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Chapter 1

Introduction

In this chapter, we present the Riemann-von Mangoldt formula and some
properties of the function S(¢) appearing in this formula. Also, we define the
functions Sy (t), Sa(t), - -+, Sm(t) which are integrations of S(t), and present
order results on those functions.

1.1 The argument of ((s) on the critical line

The Riemann zeta function is an infinite series given by

)=
n=1
where s is a complex variable written as s = o 4 it. This function admits an
analytic continuation as a meromorphic function over all complex plane, and
holomorphic except for the point s = 1 in this plane. At the point s = 1,
((s) have a simple pole with residue 1.

To define the argument of the Riemann zeta function on the critical line,
we should consider the number of zeros of ((s) in the bounded region. Let
N(T) be the number of non-trivial zeros (p = 5+ i) of ((s) in the rectan-
gular area 0 <o <1, 0 <t <T (T > 0) counted with the multiplicity. The
function N(t) can be approximated as follows which is called the Riemann-
von Mangoldt formula;
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Theorem 1.1.

T T T 7 1

Proof. Define £(s) by

s s (S
§(s) = S(s = e i (5 ) ().
2 2
We assume 7' > 3. If T is not equal to any ~, £(s) has 2N (T') zeros in the
rectangle whose vertices are 2 + 47" and —1 + 47", and does not have zeros on

the boundary. Denote boundary of this rectangle by C.
By the argument principle, we get

ArN(T) = / darg&(s).

C

Putting {(s) = 5(s — 1)¢(s), we have

log&(s) = log ’g(s - 1)‘ + log |o(s)| —|—z'arg§(s — 1) +iargo(s).

Thus,

/Cdargf(s):/Cdargg(s—l)+/cdarg¢(s).

By the argument principle, the first term on the right-hand side is

/Cdargg(s—l):%/c(—ll)

The second term on the right-hand side is

| dareots) =4 [ dargo(s),
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where L is the broken line made up of the Ly from 2 to 2 + T followed by
Ly from 2 + 4T to 1 4 iT. Hence

WN(T)zw+/

L

dargw‘g—l—/LdargF(g) —l—/LdargC(s). (1.1)

The second term on the right-hand side of (1.1) is

S t, t T
/dargﬁ_2 :/aleurge_2“0g7r = —/d (—logw) = ——logm.
L L L \2 2

We apply Stirling’s formula
1
logl'(z + a) = (z +a— 5) logz — 2+ log V21 + O(|z|™!) (2 — o0)

to the third term on the right-hand side of (1.1) with z = £ and o =
Then we have

/Ldargr(%) :/Ld{%logPG)} :%{bngJrg) —logF(l)}
T T & T

T L -1 s oo)
—210g2 3 2—FO(T ) (T — o0)

Substituting this into (1.1), we have

T T T 7 1
NT)=—log — — — 4+ — + — d T,
(1) = 5o 2W+8+W/L arg C(s) + O(T)

1
1

Since L [ darg((s) = Larg((3 + iT'), we obtain the result.
So, if T' # ~, we may define
1 1
T)=— — 441 .
S(T) 7Targ((Q—i-z )

Rigorously speaking, S(7') is obtained by continuous variation along the
segments connecting 2, 2 + 7', and % + 4T, starting with the value zero.
Also, if T' = ~, we define

S(T) = %{S(T +0)+ S(T —0)}.
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We have known the classical result that S(7T") = O(logT") obtained by von-
Mangoldt (cf. (9.4.2) on p.214 of Titchmarsh [20]). Therefore, N(T") is esti-
mated by

T T

T
N(T) = %log% —5-t O(logT).

Also by the mean value theorem, we see easily that
N(T+h)— N(T)=O(logT),

where the implied contstant on the right-hand side depends on h, for h > 0.
Moreover, it is a classical result of Littlewood [11] that under the Riemann

Hypothesis we have
logT
ST)=0| ——— |-
(T) (loglogT )

1.2 Properties of S(¢)

We have a corollary to the Riemann-von Mangoldt formula.

Theorem 1.2. U

1. S(t) is a piecewise smooth function with discontinuities at the ordi-
nates of the complex zeros of ((s).

2. When t passes through a point of discontinuity, the function S(t)
makes a jump equal to the sum of the multiplicities of the zeros of ((s)
with this point as ordinate.

3. Let v and v be neighboring ordinates of zeros of ((s). Then, S(t) is
monotonically decreasing with derivatives

! 1 t 1 » 1 1
S(t)z—%log%vLO(t—Q) and S(t):_%—'—O(t_s)

on every interval (v,7").

In this paper, we prove only the last assertion.
Proof. Let v <t <. Then, the quantity N(¢) = N(v + 0) is constant
in the entire interval. By (1.1),

1

T 1 T
N(T) = - (w— Elogﬂ—k%logF (Z + %) —|—7rS(T))
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—1 Tl +Tl T2+1 1 actanl —T
B R R W R T 42 Ao ) T

AT L S
L s}

2

where {u} is the fractional part of u. Here we put

T 1 1 5 — {u}
(T) = —log (1 + —2> —arctan — — —/ sdu.
4 4T 4 2T (%)

Then, we have

! :__1 o ! 1! o 1/ 12
)= —log -~ (1), ()=~ — "0, (12)
Here, we put
< 1 _y4u
](t:/ 212[12du
o (ut3) +(3)

So

t 1 1 1 ¢
d(t) zzlog (14—@) +Z—Larctan%—§ J(t).

The contribution to §*)(t) of the first and second term of the right-hand side
is O(t*2) (k=0,1,2) by the Taylor expansion

Next, we put p(u) = 3 —u+ [u] and [} p(z)dz = o(u) to estimate j(t).
Then, we have

Using the inequality 0 < o(u) <

L[> u+ti Lu > 1
i(t)] < - 1 d —d —d —
RSy A w [ [ i<
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U%ﬂhﬂﬂémlﬁggiigﬂu< ;{§u+lm?mﬁ<$.
Hence
70 =50+ +0(5) =0 (). (1)
(0 =500 oo (5)=o(5).  aw

Therefore, we obtain the result by (1.2), (1.3), and (1.4).

1.3 The integral of S(t)
For any positive number 7, the function S;(7") is defined by
T
Si(T) = / S(t)dt + C,
0
where C' is the constant defined by
1 [e.e]
C:;/I%MMM.

Classical results of J. E. Littlewood imply that S;(7") = O(logT), and

under the Riemann Hypothesis S;(T) = O <(logki§gT 7z )

Next, we introduce the functions Sy(7"), S3(7T'), -- - similarly to the case
of S1(T). When T # ~, we put

and
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for any integer m > 1, where C),’s are the constants which are defined by,
for any integer k > 1,

02“_ / / /1og|g )|(do)* 1,

(2k— 1) times

) —1
CQk— // / da 2/€ [22k

2k times

and

When T' = ~, we put
1
S (T) = §{Sm(T +0)+ S, (T —0)}.

A. Fujii [3] proved
m—1

logT

Sm(T) < (1.5)

for any integer m > 2. To obtain this result, we introduce two functions

L, (T) and Np . (T).
When T # ~, we define for any integer k > 1

L1 (T )—— )h- 13%{/ / / log ¢ (o +iT) (do )%~ 1}

(2k— 1) —times

Ly(T) = %(—1)’%‘{[0 /Uoo---[Twlogg(a+iT)(da)2k}.

2k—times

and

Also, when T' = ~, we define for m > 1

I,.(T) = %{Im(T +0) 4+ Ln(T — 0)}.
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Then, 1,,(T) can be expressed as a single integral of the following form (cf.
Lemma 2 in Fujii [3]): for any integer m > 1

Im(T):—%%{%Z (0—%) %(a+iT)da}.

By A. Fujii [3], for any integer m > 1, we have
I(T) <o log T, (1.6)

where <, means that the constant of the upper bound depend on m.
For h>1and r > 1,

Nty = [ [ [ [ Nt ary

h—times 2r—times

and for h =0 and r > 1,

No2,(T) :[ /al---/al N(o,T)(do)*,
o

2r—times

where N(o,T) denote the number of zeros p = 3 + iy for o > % and T > Ty
such that § > o0 and 0 < v < T when T # v. When t = v, we put

1
N(o,T) = §{N(0,T—|—O) + N(o, T —0)}.
Then, by A. Fujii [3] we have following results;
SU(T) = I(T)
and for any integer m > 2

Su(T) = In(T) +2 37 (=1 Ny (T). (17)

h+2r=m
h>0,r>1

Also, by (1.6) we get
Su(T) =2 Y (=1)"'Ny2r(T) + Olog T)

h+2r=m
h>0,r>1
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for any integer m > 2.

To obtain (1.5), we estimate the first term on the right-hand side of the
above inequality. We apply Selberg’s density theorem (cf. Theorem 1 of
Selberg [15]); for T' > T, and some positive constant C,

N(o,T) < TlogT - e Clo=2)leaT

uniformly for ¢ > 5. Then we have

/; /Ul---/UlN(a,T)(da)Qr < W.

~————
2r—times
Hence
Th+1
Nar
1S Qg TP
and
m—1
2 )" Ny o (T
Z( ) h2()<<10gT
h+2r=m
h>0,r>1

So, we have

Tm—l Tm—l
Sm(T) =0 (logT) +O(logT) =0 (logT) .

Thus we obtain (1.5).

Under the Riemann Hypothesis, the second term on the right-hand side
of (1.7) vanishes. Therefore, when we estimate S,,(7") under the Riemann
Hypothesis, we should consider S,,,(T") = I,,,(T") for m > 1.

Concerning S,,,(T) for m > 2, Littlewood [11] have shown under the
Riemann Hypothesis that

S(T) = O (ML) |

(log log T")m+1

Thus,

O(logt) unconditionally,
S(t) = {

O (lo—gt> assuming R.H.

loglogt
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O(logt) unconditionally,
Si(t) = O ((h)gki—igtt)?> assuming R.H.
and
O (% 7; ) unconditionally,
Sm(t) = ¢ log t .
O W) assuming R.H.
for m > 2.

For the functions S(t), S1(t), - , Sim(t) defined in this chapter, we present
explicit upper bounds on the order of them in Chapter 2. Also in Chapter 3,
we present some ()-results, and especially those of functions S(t) and S ()
especially.



Chapter 2

Explicit upper bounds

In this chapter, we introduce explicit upper bounds for order estimations of
the functions S(t), Si(t), - - -, Sy (t). The following explicit upper bounds for
S(t) and S;(t) are obtained by A. Fujii. The author obtained the bounds for
Sm(t) by generalizing Fujii’s result for Si(t).

2.1 Explicit upper bounds of S(t)

For explicit upper bounds of |S(t)|, we have known the following result.

Theorem 2.1. (cf. Theorem 1 of Chapter 3 in [8])

S(t 8logt unconditionally,
5@ ll%t assuming R.H.
oglogt

fort >t,.

To prove Theorem 2.1, we introduce some lemmas and notations.
For x > 2 and n € Z~(, we denote

A(n) for 1 <n<ux,

B\2 Oﬁz
A(n) = A(n)'(log") (05%) z<n<a?

for 22 <n < a?,

15
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with

A(n) = logp if n = p¥ with a prime p and an integer k > 1,
10 otherwise.

Let 2 < x < t2. We denote
1 1

51 R 9
2| logx

where p = (1 + i7 is non-trivial zeros of ((s) such that |t — | <
Also, we put

1
Opt = 3 —|—2max<

3161— 51

log x

T

A, (n
r(z,t) = Z nO':c,(t"rzt.

n<z3

Using these notations, we state the following lemma.

Lemma 2.1. (cf. Theorem 1 of Chapter 2 in [8])
For e'® < x < 2

1 Au(n) sin(tlogn) 1
t)=—— : 15 0pp — = )] +log [t]).
S0 =~ 3 ST g+ 15 (o g (rte 0+ logt)

In this thesis, the proof of this lemma is omitted. R
Proof of Theorem 2.1. We take x = /logt in Lemma 2.1. Since A,(n) <
log n, we have

logn 1
|S(t)] <15 Z gl —I—(ax7t—§>logt

n<a3 nz

3 1
<15 {12x2 log x + (am - 5) logt}

4
5

1
<15 (0@7,5 - 5) logt + (logt)s.

Since 0,4 — % < 2, we obtain

4
5

|S(t)] < 7.5logt+ (logt)s < 8logt.
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On the other hand, since o, — % = @ under the Riemann Hypothesis, we
obtain
logt 4 logt
S(t)| < 60 logt)s < 61 .
Sl loglogt+(og ) loglogt

The first explicit upper bound of S(¢) is the inequality
|S(t)] < alogt+ bloglogt + ¢
for t > to, which was given by von Mangoldt [22]. After von Mangoldt,

several mathematicians improved the values of a, b, ¢ and ty. The table of
values of a, b, ¢, and t; is as follows;

a b c to
Von Mangoldt [22] (1905) 0.432 1.917 12.204 28.588
Grossmann [7] (1913) 0.291 1.787 6.137 50
Biicklund [1] (1914) 0.275 0.979 7.446 200
Bécklund [2] (1918) 0.137 0.443 435 200
Rosser [13] (1941) 0.137 0443 1588 1467
Trudgian [18] (2012) 0.17 0 1.998 e
Trudgian [19] (2012) 0.111 0275 2450 e

So, the latest result on the upper bound of S(t) is
1S(t)] < 0.1111logt + 0.275log log t + 2.450

for t > e, due to Trudgian [19] .

Also, there exists a recent result on the explicit upper bound for S(t)
under the Riemann Hypothesis. Under the Riemann Hypothesis, it was
shown that

logt
t) <0.
Sl _08310g10gt

for t > ¢ in Fujii [5].
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2.2 Explicit upper bounds of Si()

The classical result on explicit upper bounds for S(¢) is the following theo-
rem.

Theorem 2.2. (cf. Theorem 2 of Chapter 3 in [8])

1.2logt unconditionally,
[S1()] < { 40 (logl(iigtt)Q assuming R.H.

fort >tg.

We apply the following Lemma 2.2 to the proof of Theorem 2.2. But the
proof of Lemma 2.2 is omitted.

Lemma 2.2. (cf. Theorem 2 of Chapter 2 in [8])
For e'® < x < ¢?

Si(t) +C =2 3 Au(n) cos(tlogn) {1 + (am - %) logn}

T o (logn)?

1 2
#50 (920 3 ) (rGe.t)] + gl

where |0 < 1| and C =1 [®log|¢(o)|do.

Proof of Theorem 2.2. We apply Lemma 2.2 with x = /logt. Then,

1 1 1 9 1 9 /1\2
< = — 42 — 412 (Z) .4
|Sl(t)+0|_7rz +(2W+8) Z3n;+8 (2>

1
et nzlogn 2ine

9 1\’
—f—z O-\/@,t_§ 10gt

W

1\? 7
O egie ~ 5 logt + §(log t)a.
Since 0, — % < %, we obtain

1 7
. Zlogt~|— §(logt)% +|C] < 1.21ogt.
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Also, since 0,4 — % = @ under the Riemann Hypothesis, we obtain
9 16logt 7 3 logt
S1)| < -+ ——=+ =(logt)s + |C]| < 40—""—.
510l < 4 (loglogt)? * 2( ogt)t +C] (loglogt)?
O
Moreover in Fujii [6], it was shown under the Riemann Hypothesis that
logt
S1(t)] <051l ———— 2.1
Si(0)] < 051 B 21)

for t > to.

2.3 Explicit upper bounds of S5,,(t)

The author obtained explicit upper bounds of S,,(t) by generalizing tech-
niques in the proof of Fujii’s result (2.1).

Theorem 2.3. U
Under the Riemann Hypothesis for any integer m > 1, if m is odd,

log t 1 1 . ml 1 1
W) < : > — -+ =
[Sm(B)] < (loglog t)m+1 27Tm!{1— 1 (1+%) — (m — j)! (6 " 2J+162>

e ]:O

1
Tl

| o |=

1+ 1) N 1 ' 1
La+Y mm+1) 1-1(1+1)

e

logt
© (<1og log t>m+2) ’

abd if m is even,

Zm: m (1 1
(m—j ) \e 27tle?

logt 1 1
S (t :
[Sm(®)] < (loglogt)™+1  27m! { 1-1(1+1) =

€ €

TN TES NS ST VN OV
m+1 1-1(1+1) 2 1-1(1+1)) (loglogt)m+2 /-

This is Theorem 1 of author’s result in [23]. It is to be stressed that the
argument when the number of integration is odd is different from that when
the number of integration is even.
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The basic policy of the proof of this theorem is based on A. Fujii [6]. In
the case when m is odd, we can directly generalize the proof of A. Fujii [6].
In the case when m is even, it is an extension of the method of A. Fujii [5].

The table of values of the constant part that is, the quantity in the curly
parentheses for m = 1,2, --- is as follows;

3

constant part
0.5090250- - -
0.6002287- - -
0.3426155- - -
0.3509932- - -
0.3254150- - -
0.3235654- - -
0.3216216- - -
0.3210078- - -
0.3206855- - -
0.3205262- - -

—
O O 00O Otk WD

To prove Theorem 2.3, we introduce some lemmas and some notatinos. Let
s = o +1t. We suppose that ¢ > % and t > 2. Let X be a positive number
satisfying 4 < X < t2. Also, we put

1 n 1
7173 log X
and
A(n) for 1<n<X,
AX(n) = logX—2 9
A(n)log)"( for X <n<X?,
with

An) = logp if n = p¥ with a prime p and an integer k& > 1,
10 otherwise.

Using these notations, we state the following lemma.
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Lemma 2.3. O

Lett>2, X >0 such that 4 < X < 2. FOTUZUl:%""logX’

SR e VR (S ) S e

c notit 1-1(1+ Yo notit
n< X2 e e n<X?

where w| < 1,-1 <o < 1.

This has been proved in Fujii [6]. Moreover, we will use the following two
lemmas.

Lemma 2.4. (cf. 2.12.7 of Titchmarsh[20])

wo(j3)

where E is the Euler constant and p runs through zeros of ((s).

Lemma 2.5. (Lemma 1 of Selberg [14]) O
For X >1,s#1,s# —2q¢ (¢q=1,2,3,---), s # p,

g/ AX(”) X2(1—s) — X1-s 1 00 X205 _ X*2(2q+8)
OO S PR M o
¢ n (1—s)2logX  logX (2¢ + )

n<X? q=1
1 XP—s _ X2(p—s)
o X 2
log X (s = p)?

p
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By Lemma 2.4, we have

Since for 0y < o

X” s X2(p s)
logX Z

we have
1 XP—s — X2p—s) _1
> - ()i
log X (s —p) ~ (01— 3)" + (t—7)?

where |w| < 1. Since for o > % and X < t?

X2(1fa) Xf—a
< tzlogX ~log X’

XQ(lfs) —_ X1-s
(1 —5)2log X

we have for 0y < o

oo Ax(n) ) (X3
Flotit) = - > n)‘i“t +O<logX>

n<X?

e (1)
;(0 —3) (=)

by Lemma 2.5. Especially,

!/

%Z(al +it) = R (Z n01+it) +0 <logX)

where —1 < o' <1.



Hence by (2.2) and (2.3), we get

1
0'1—5 1 1
= -—logt+ O
1-1(1+Yw 5 o8l (

A
Y Al

n<X?

2.3. EXPLICIT UPPER BOUNDS OF Sy/(T) 23
) (2.4)
This relation will be used in the following proof of Theorem 2.3.
Proof of Theorem 2.3. If m is odd, we have

m ) mo .y _1\ym+l /
L,(t) = : +1%{2’{/ (0—%) S(U—i—ilﬁ)da#—M-C—(Jl%—it)

m) ¢ m+ 1 ¢
o1 1 m CI ' C/ )
/ (#-3) {Z<‘“+“>‘E<"““}d"}}
im—&—l
= —S{i(h ) (2.5)

say.
First, we estimate J;. By Lemma 2.3,

Jy = /U h (a — %)m {— Z /:;iint) N O;f@? j)Xj’_a% (Z ﬁi(ﬁ))

n<X?2

1 1
Slogt+0 (X577) 4
T e 2O }

[ (D) S

n<X?

say. Then, by integration by parts repeatedly

“ m! "’ Ax(n
h==2 (W ("1 - 5) 2 n01+it(1(§g31)j+1> Fm(). (26)

§=0 n<X?

And we have

00 1\™ 1—|-)(%7‘7 wX%"’ A (n> 1

1
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[e'e) 1 m
+O{/ <0—§) Xé_”da}
1 Ax<n)
————|=logt— R ‘
EEE (Z ) ‘
o " 15\ vlog o N o1,
(0——) <1+X2 >X2 da—i—O{/ (0——) X3 da}
o1 2 o1 2
1 1 L oml 1 1
< 1 te——— —_— -+ —
“1-1(1+1) 2 %" llog X)m+ (;: —J)! (6+23“62)>
1 Ax(n)
-+ O ((logX)m+1 ;2 no1+it )
1 Ax(n)
= no(t : 2.
n2( )+ 0 ((1OgX)m+1 ;Q no1tit > ’ ( 7)
say, since by partial integration

/:O <a—%)m(1+X_">X2 %zo——(long)m+1 (i—'j) (2+2j+—1162)>

Next, applying Lemma 2.3 to Jy, we get

_ 1 Ax(n)  (14)w Ax(n)
S = (m + 1)(log X)m+1 { Z poitit 1 _ 1 (1+1) w/% ( Z na1+it>

n<X? e

(I+7)ew 1 1o
+1_%(1+%)w,-§logt+O<X 1)
1 (1+1) 1
(m+ D(log X)™ 1 1T—L(1+ 1w §logt+0{(logX)’”+1 ;

)+ 0 ot | 3 220 25)

n<X?
say.
Next, we estimate J3. By Lemma 2.4, we have

S(iJs) = R(Jy) = —/m (a _ 5) %{g(m i) — %@wt)} do

1
2
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+0 (o)
o ; (01 = %)21+ (t—)? roo (W) -

say, where ~ is the imaginary part of p = 3 + i7.
Ift=n,

K(y) = — /G (0 _ %)m_l <01 _ %) (01 — o) do

S 1)’” (210)

m(m + 1) 2

Ift;é%byputtinga—%:v, 01—%:10g1X:Aand It —~| = B, we
get

[P (A=) (B? = Av)
K(Py)—/O v 2B dv

A B B2 B2—|—A2 Um—l
:/0 {va—(B2+A)vm1+ (v2+B2) }dv

B A™M+2 (BQ +A2)Am N /A (B2 + AQ)Um—ldU
m+1 m 0 (%)2 +1 '
Putting z = u, we have
A2 (B2 4 ADA™ ) 4 (uB)"1B
K(~) = — B? + A? ——d
) m+ 1 m (B )/0 1+uz 0
_ Am+2 B (B2 +A2)Am
S om+1 m

3 - 2j—1
2 2\ pm m+1 (=1 é - é
+ (B* 4+ A®%)B™i { > 5 1\ B arctan 5
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+ Bm+2+& gmrt ~ () a 2j_l—au"ctam a
Amt2  Am ‘~ 25 —1 \ B B

Putting y = %, we get

1
K(v) = Am”{—imﬂ <ym+2 + —m) arctany — —

Y my
T G Do
— AMF2 (g(y) _ m(m1+ 1)) ‘ (2.11)
When y tends to 0, g(y) is convergent to m since
9y) = m(m2+ 2 (m+ 2)2(m ry A s 4)2(m oY "

When y tends to infinity, g(y) tends to 0. Hence for y > 0, we get ¢'(y) < 0.
Hence

2
0<g(y) < mim +2)’
so that
1 1 1
T D) S T D S a1 (2.12)

Therefore by (2.11) and (2.12), we obtain

m+2 m+42
2 < K(y) < =

T mim+1) "~

so that

e (7 %)m <KO) S g (7 %)m '
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Hence

_ 5 K
Dy

(0 - !
Sy S oyea—y 0

A
3 Axln)

n<X?

m+1(m+2) |1-1 1+ w

— Lymtt
Z_ (01 2) { 1 ,%logt—f—O(

)j

(2.16)

Hence by (2.9), (2.10), (2.15) and (2.16), if m =1 (mod 4),

1 1 1 1
: : . Zlogt
(m+1)(m+2) (ogX)™ 1 1-1(1+ 1w 20

1 Ax(n)
+0 ((logX)m—H Z no1tit )

n<X?

i (i 3) <
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28
1 Ax(n)
= 774(t) + O ((IOgX)m-H Z no1tit > (217)
n<X?
and
1 1 1 1
S (i) > — . . logt
PESOL) 2 ST D) (g X 1T (14 D 2%
1 AX(TL)
+0|+—r— :
<(logX>m+1 n§2 noﬁ—zt )
1 Ax(n>
= —7]5(t> + O (W Z no1tit ) <218)
n<X?
since —i™™! =1 and ™" = —1. And if m =3 (mod 4),
1 1 1 1
LG (. : - =logt
mSGR) = T (1ogX)m+1 I+ 0w 2°®
1 Ax(n)
+0 ((log X)m+1 =, na1+zt )
1 Ax(
ms(t) +0 (W D i ) (2.19)
n<X?
and
1 1 1 1
. s logt

2m41 0 T > .
PR TS ) e T L1t Do

3 Al
no’1+it

) (2.20)
since —i"™*t! = —1 and ™! = 1.

n<X?
Ax(n)
Z no1tit
Therefore by (2.5), (2.7), (2.8), (2.17), (2.18), (2.19) and (2.20), we obtain

1
n<X?
1 “ m! "™ Ax(n)
_ = ) _;m+tl 1 X
In(t) = { ( Z ((m — ) (01 2) g); noitit(log n)j+1>

1
o ((log Xy

=—m(t)+0 ((logX)mH
Tm)! ,
7=0



A
5 A

n<X?
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1
+ 0 <<10g X)m—f—l

| ]

= 2.21
+ 5 E(), (2.21)

where Z(t) satisfies the following inequalities. If m =1 (mod 4),

2(t) < ma(t) — na(t) + ma(?)

+ . — | te ———,
(m+D)m+2) 1L+ 0w 25" (log X)mi

B 1 et 1 i m! L, 1
TTIoIa+Ly 2 (egx)m “ )t \e T e

j=0

1 1+ iw 1 1
m+1l 1-L(1+)w 2 8l g Xyt

1 1 1 1
Cm(m+1) 1L+ 2 (log X)m+t”

and if m =3 (mod 4),

2(t) < ma(t) +ns(t) +ns(t)

B 1 R 1 i m! 1+ 1
C1-i(1+d) 2 8 (log X )m+1 p (m —j)! 27+1e2

L (1+1)iw Lt 1

m+1l 1-L(1+ 0w 2% (og Xyt
1 1 1

+
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1 Lot 1 zm: m! L1
— R— O  —_— P — -
1-1(1+1) 2 & (log X )™+ pr (m—j) \e ' 2+ie2
1 (1—1—% %w 1 1
- logt -
m+1 1-2(1+1)w 2 (log X )m+1
1 1 1 1

In (2.21), we have

Z n0'1+7,t

n<X?

An)logX 1 X
+ > () 8 (2.22)
n2 log X log X’

1
n2

<30

Hence the second term on the right-hand side of (2.21) is < W. Sim-
ilarly, since

Z Ax(n)
noitit(log n)itl

n<X?2

X<n<X?2

3 A(n) 3 An)logX® 1
B nz (log n)i+! nz(logn)itt log X

n<X X<n<X?2
X
(log X)it2’

<

we estimate that the first term on the right-hand side of (2.21) is < W.
Therefore, taking X = logt, we obtain

1 logt
L,(t)] = =(t —_—
[T (1)] 7m! H+0 ((loglogt)m+2)

_ logt 1 z’”: L.
~ (loglogt)m*1  27m! 1—l 141 (m —j)! 23+162

€ Jj=

1 a4y 1 1 )}

T 1—%(1+%)+m(m+1) 1-1(141

logt
of—28"___ ).
" (<loglogt>m+2)
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This is the first part of the theorem.
If m is even, we get similarly

1)m+1

L,(t) = %\s{{/:o (a 2> g(a—i—zt)da—l—(am% %/(Ul-f-lt)

_/2 ) {g(al—l—zt) CC/(aJrit)}da}}

ym

_ l,s (i + o+ J5)}, (2.23)

m™m

T3
VR
Q
|

| —

say. By Lemma 2.3 and (2.22), we have

Jl:_/: (0_%> E;QiigZ)dUJr/: (a—%) O()(%—ff)dg

e U ()

<1 +XT") wX37°0 1
- =logt pdo
R

_I_

e n\" Ax(n e n\" 1, ,
:—/m <0—5) Z n)jgring—I—O{/m <0—5> X2 da}—i—nl(t)
Jj=0 n<X
Ax(n)
Z no1tit

n<X?
= ml "™ Ax(n)
- Z (m — j)! (Ul - §> 22 noitit(log n)i+t
+0 ! + ()
(log X )m+1 ~, h
+m(t), (2.24)

< X
(log X )m+2

say, and

_ Ax(n)  (1+g)w Ax(n)
S = (m + 1)(10gX)m+1{ Z npoitit 1 _ L1415 w’% ( Z nal+z’t>

n<X?

(I+e)ew 1 Lo
+1_l(1+%)w/§10gt+O<X )




32 CHAPTER 2. EXPLICIT UPPER BOUNDS

B 1 (1+1)iw 1

~ (m+D(log X)mH 1L (14 L)
1 Ax(n)
+0 { (10g X)m—l—l Z no1tit
n<X?
, X
< 773(75) + W, (2.25)

say. Similarly to n;(t), we have

, 1 1 1 ~ml 1 1
OIS T 2 Teg (ZW (?w—w)) |

Jj=0

1-1

e

Finally, we estimate J3. By Stirling’s formula, we get

U (it g it (oI
P = |— log — - —
r\~ 2 2 %875 2 {2

Also |% (7% 4 1)| is estimated similarly.
Hence by (2.26) and Lemma 2.4, we have

’%{%(al +it) — %(U—Fit)}‘

{2 (i) S o)

o+t —p

logt + O (%) . (2.26)
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NS RIOE

2

If t = 7, the first term on the right-hand side of the above inequality is 0. If
t # 7, since o < o1, we have

<= <g 1>m+lz o~ 3
>3 135 .
2N T ey -y

Applying (2.4) and (2.22), and taking X = logt lastly, the right-hand side
of the above inequality is

m—+1
<T L ! Llogt +0
—|o1—= -=lo
2\ 72 -1+ Dw 2%

A
5 Al

n<X?2

. 1 logt L0 X
4 1=+ (log X)mH (log X )m+2
T 1 logt logt
< - : — ). 2.27
4 1-1(1+1) (loglogt)m+t O ((log log t)m+2) (227)

[ (o-3) 0 () w=0 (i) €

1 logt

T
4 1-1 (1 + %) (log log t)m+1
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1 logt
+0 (—t(log Tog t)m+1> +0 (—(log Tog t)m+2> . (2.29)

Therefore, we obtain by (2.23), (2.24), (2.25), (2.29), n;(t) and n5(t)

1 log t 1 . ml 1 1
S (1) < . I
< 5 (loglogt)m“{l—l(url)Z(m—j)! <6+21+162)

(‘b

1 _(+ge m 1
ml T-L0+]) 2 T

logt
+0 ((log log t)m+2) '




Chapter 3

()-results

In this chapter, we show some Q-result for functions S(¢) and Si(t). Also,
we show the result on the supremum in short intervals for S(t), and obtain
the same type of result for S;(t). Moreover, we give an improved Q-result of
Selberg’s result on Si(t) which is deduced from the result on the supremum
for Sl (t)

3.1 Some Q-results for 5,,(t)

Let g(x) be a non-negative function for sufficiently large value of t. The
notation f(x) = Q(g(x)) as t — oo means that there exists an infinite series
{z;}, j=1,2,--- — o0, such that f(z;) > cg(z;), where ¢ is some constant.
Similarly, f(z) = Q4 (g(z)) means that there exist two series {z;} and {y,},
j=1,2,--- — o0, such that f(z;) > cg(z;) and f(y;) < —cg(y;).

In 1946, Selberg [15] proved that

(loglogt)

Qi< _(log )% ) unconditionally,

4
3
( gt ) > assuming R.H.

loglogt

In 1986, Tsang [21] proved that

S(t) = 0 ((10{(:5););) (3.1)

35
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by improving the methods of the above results of Selberg.
For Si(t), Selberg [15] proved

B (logt)s
Su(t) = Q. <—(10g 1Ogt)130> . (3.2)

The above inequality in the €2, case was improved to the following result
using another method also given in Selberg [15];

(logt)?
Silf) = (agl—gt)> '

Also, Tsang [21] proved for S;(¢) that

( 1

(]ogt)Q o,
Q4 p—— unconditionally,
1
Sy(t) = Q_ ( losb® unconditionally, (3.3)
(loglogt)3
1
Q4 ULN@ assuming R.H.
L (loglogt)2

3.2 Results for the supremum

For the supremum on S(t), in 1986 Tsang [21] improved the methods of [15]
to obtain the following inequalities;

sup (£S(8) > A (k’i>

T<t<2T loglog T’

where A > 0 is an absolute constant and the value of a is equal to % if the
Riemann Hypothesis is true and equal to % otherwise.
Also, more explicitly, in 2005 Karatsuba and Korolev [8] established the

following result; Let 0 < ¢ < 15, T'> Tp(€) > 0, and H = T5*, Then

5 1
€4 logT" \3
su +S5(t)) > ) 3.4
B A R T (loglogT) (3.4)
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Moreover, Korolev [10] proved the following result; Let T > Ty > 0 and

— 18T < H < T. Then
(loglogT)2

N|=

1 log H ,
su +S5(¢t)) > assuming R.H. 3.5
TngtngJrZH( () = 907 (log log H) g (3:5)

Next, we consider S(t + h) — S(t) for small positive values of h. This
measures the variation of S(t) over short intervals. By Selberg, it is known
that there exists ¢ > 0 such that when 7" — oo,

N

sup ={S(t+h)—S(t)} > c(hlogT)z assuming R.H.

te[T,2T)
for any h € [@, m} . Also, without assuming the Riemann Hypothesis,

it is known by Tsang that there exists ¢ > 0 such that when 7" — oo,

sup £{S(t+h)—S(t)} > c(hlog T)% unconditionally
te[T,27)

1 1
for any h € |:_10gT’ ToglosT T} )

For Si(t+ h) — Si(t) Tsang proved the following result; there exists ¢ > 0
such that when T" — oo,

h (10350 ZT) unconditionally
sup +{S1(t +h) — Si(t)} = 1
te[T,27) ch <lolg°ﬁ)gT> ’ assuming R.H.

for any h € [0, m].

Here, (3.1) is easily obtained by applying above result directly since

o % t+h
c (%) < %{i—(&(t +h) — Si()} = %/t +5(u)du
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3.3 A generalization of S(t)

We define for o € [3,1],
1 :
S(o,t) = =Slog (o + it).
m

Then, we see easily that S(t) = S(3,1).
We have known few results for the function S(o,t). One of the results is

as follows; there exists a positive constant ¢ such that when T — oo

1 1
_logT \? 1 1 loglogT' ) 3
¢ (loglogT) fOT 2 S o S 2 + ( log T )
sup £S5(o,t) > 1 |
te[T,2T] c (0-3) 106 ) * for L 4 (logleT Poo<ly 1
loglogT' 2 logT — — 2 loglogT*

(3.1) is a particular case of the above result. This result can be compared
with a result of Montgomery (Theorem 1 of [12]) which says that; for fixed
o>1

2

(0 — %)% (logt)t=

=0
S(o:1) * (loglogt)®

3.4 An explicit supremum for 5(t)

The author obtained the following results for S;(¢) by using techniques in
the proof of the result (3.4) of Karatsuba and Kolorev.

Theorem 3.1. 0
Let 0 < € < -5, T'>Ty(e) >0, and H = T, Then

103~
€ (logT)3
su +£51(t)) > .
T7H§t§pT+2H( 1(0) 2 40007 ((log log T)§>

This is Theorem 1 of author’s result in [24]. This can be proven similarly to
(3.4). However, lemmas to apply for proof of this theorem is different from

(3.4).
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Lemma 3.1. U

Let f(z) be a function taking real values on the real line, analytic on
the strip |Sz| < 1, and satisfying the inequality |f(2)| < c(|z| + 1)~0+),
c >0, a>0, on this strip. Then, the formula

/ f(u)Sy(t + u)d Z

1 - N
> %bgn (ﬁfaogn))—Cf(m

B—o
Rf(y—t —ix)dxd
+2{/@%:%/é /0 fl(y =t —iz)dxdo

—[1 Al_a%f(—t—ix)da:da},

where f'(x) is given by the formula

-/ Z F(uw)emdu,

holds for any t, where the summation in the last sum is taken over all
complex zeros p = [+ iy of ((s) to the right of the critical line, and
where

1 oo
C= ;/ log |((0)|do.

This is Lemma 1 of author’s result in [24]. The proof of this lemma is an
analogue of the proof of Theorem 2 of Chapter 3 in Karatsuba and Korolev
[3].

Outline of the proof of Lemma 3.1. Put % <o < % We set 1(z) =
f(i(c — ) —t) and take X > 2(|t| + 10) such that the distance from the
ordinate of any zero of ((s) to X is not less than c(log X)~!, where c is a
positive absolute constant.

Let I' be the boundary of the rectangle with the vertices o +iX, % +iX,
and let a horizontal cut be drawn from the line Rs = o inside this rectangle
to each zero p = (3 + iy and also to the point z = 1. Then the functions
log ¢(2) and v (z) are analytic inside I



40 CHAPTER 3. Q-RESULTS

By the residue theorem, the following equality holds:

Oz/w(z)bgg‘(z)dz
(/XX /XX [ _ZX) Yo ((2)d=

=1 — I, — I3+ Iy,

say. Then, we have

~—  An) 1
]1 = ZZ Wf(logn) + O (ﬁ)
2

n—=

since for o = % —0
e A |
/ w(§+iu>log(( —l—zu)d Z 3(n) / —f(u —t —ia)du
o \2 = n2logn J-c ™
= Aln)
- nz:: notit lognf(log n)
Also,
(log X)?
I=0 ( X(+a) /)
(log X)?
I4=0 ( X (1+a)

as in p. 461 of Karatsuba and Korolev [8].
And

X—o0

lim I3 = i/oo f(u)log (o + i(t + u))du

A

n
,30
+ 2mi Z/ —t—z:ndx—/ f(=t —ix)d
B>c
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as in pp. 461 — 462 of Karatsuba and Korolev [8]. Then we get for o > 3

/_oo F)logC(o +it+u)du=3 —

B—o
+ 27 (Z/ f(y—t—ix)de — K(o)
B>0 0

1—0o

f(=t— w)dx) :

0

where

1 fori<o<i
_ 2 >0 > 1,
K(U)_{ 0 foro>1.

Here, applying

1 (5
Sl(t):;[ log |((c +it)|do + C

in Selberg [15] and integrating in o over the interval (1, 3], we have
~ 13
/ / f(u)log|C(o +i(t +u))|dodu
o J1

= W/_Z Sl(t—i-u)f(u)du—i-ﬂ/_z f(u)Cdu
= :02 %?ﬁ (%f(log n))

% B—o 1 l1—0o
+ 27 (/ Z/ S%f('y—t—ix)dycda—/ %f(—t—z'm)da:da) :
% B>0 0 % 0

Therefore

/_00 Si(t+u) f(u)du

o0

LI A (L N
= n%aogn)ﬁ( ftozn)) - o

—
12 (/ Z/OH Rf(y —t — iz)dedo — /; /01_0 Rf(—t — z’x)dxda)

2 >0
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iy Ay (%f(log n)) - ()

nms 12 (log n)2

+2 Z/ §Rf —t—m)d:pda—// Rf(—t — iz)dedo

Lemma 3.2. 0
For any sufficiently large positive values of H, t, and 7 with T < logt
and H < t,

/i: (Sizufsl (t+ QTu) du=W(t) +R(t)+ 0 (ji{t) o),

where

O e ]

per D2 logp T

_TZ/ /BU (Sm _tt__zg))deda.

This is Lemma 2 of author’s result in [24]. The proof of this lemma is an
analogue of the proof of Lemma 2 of Korolev [10].

sin 72\ 2
Proof. Put f(z) = (b £2> . By
2

Xz

flz) = /00 e ™ f(u)du = 27T max (O, 1-— ‘—D ,

—o0 T
we get

f(logn):{ (Q)WT(l_lo%) (L<n

(n>em)

Then, by Lemma 3.1 we have

00 i TU N 2
/ (SHTIUQ ) Si(t+ u)du = ! Z f\i L (1 — bﬂ) cos(tlogn)
_ = T

o] 2 7'(' n<eT nz (10g n)2 T
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B ho sin%(v—t—if))Q
déd
+2{2//0 %( i) ) *
sin Z(y —t —i§) 2
// 2R )

1
2

O) (3.6)
Since for 0 < ¢<1—o0
sin Z(t + i€) |? _ 1
$(t+14€) 10

as in p. 117 of Korolev [10], the second term on the right-hand side of (3.6)
is O(1). Also, in the first term on the right-hand side of (3.6), we single out
the terms corresponding to the n = p in the sum and estimate the remainder
terms. Then, we have

k
5) cos(tlogp*) 2 1 1 2 1
> > ng ot ;( = ) I D e R E s

2<k ph<er logp ) 2<k ph<er p logp

Hence

oo i TU N 2
/ (511;2) Sl(t—i—u)du:zzcosl(tbgp) (1_logp> _0.2_7'(

o \ 3 T <er Dp2logp T T

o [ (Y e
+0 (%) . (3.7)

Put v = %*. Then the left-hand side of the above is equal to

(Lo L) ) s (e 2) 2

Since S;(t) = O(logt), we have

) ) e

1 [ 1
< = /H 10g(t—|—v’)ﬁdv’
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1 “logt * log v’
< - / 98 1! +/ 98 Y
T " U/Q ¢ 1)/2

1 [logt logt logt
<<F<H M )<<TH'

Inserting these estimates into (3.7) and dividing by % the both sides, we
obtain the result.
O

Lemma 3.3. [

Let € with 0 < € < 155 be fiwed. Let T > Ty(e) > 0, H = T3t and k be
an integer such that k > ko(e) > 1, let m = 2k + 1, 7 = 2loglog H, and
mr < %elog T. Then the function R(t) defined by Lemma 3.2 satisfies
the inequality

/T+H R(O)["dt < H {25m + (log T)? ( 50rm? )m} |

T e3logT

This is Lemma 3 of author’s result in [24]. The proof of this lemma is an
analogue of the proof of Lemma 4 of Chapter 3 in Karatsuba and Korolev
8].

Proof. We put

T+H
L= / R(E) [+t
T
and note the inequality
- <Sin([E — i) ) 2 8yev
T —yi 1+ 22+ 9?2

for any x, y € R, y > 0 similarly to pp. 476 — 477 of Karatsuba and Korolev
[8]. Then,

o< [ [ (S

1
,3>§

’8 ﬂi% 667—(6_%)
2
<MZ[A . i
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:8; (ﬂ—%)g (2 + (y—t2+ (F— 1)

1
B>3

We split the last sum into two sums. The first sum ¥; is the sum of the
terms satisfying |y — t| > (logT)?, and the second sum 3, is the sum of the
other terms.

Here, we denote by 6; the largest difference of the form 3 — % for zeros
p = 0 + vy in the rectangle § < 8 < 1, [y —t| < (logT)?. Also, we denote
by 0 the supremum of the form g — % for zeros p = 3 + i7y in the rectangle
V< By — 1) > (logT)

As in p. 478 of Karatsuba and Korolev [8], we apply the estimation
related to o, and the result N(t+ 1) — N(¢) < 18logt which is obtained by
the Riemann-von Mangoldt formula and |S(t)| < 8logt for t > ¢, > 0. Then
we take z = (logT)2, and we have

1 2e3 2 1

|[y—t|>(log T')? i [y—t|>(log T')2 n<|y—t|<n+1
2, log T+ logn ,
< 30, log T 36 > — <250,
[y—t|>(log T')2
and
1
To < 86% > 5 >
ly—t|<(log T)2 (%) +(y =02+ (5 - %)
13 1
< 863%™ <80 =. — _logT
2 G 1P 5 -1
13 5T T
<8WPe™ = . —logT =80%" - ~logT.
5 39 % © 308

From the definitions of §; and 6], we get 6; < 1 and #, < 1. Hence, we have

2
|R(t)| < 25 (9; + gefeTgtTlogT> L ( 792 T‘}tﬂogT) :

2
25\"
Lk < (?)

Hence

T+H 7 m
/ (1 + =0%¢" 1 log T) dt.
T 2
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This integrand is the same as that in p. 479 of Karatsuba and Korolev [8].
Hence for the estimation of the last integral we can apply the same method
as in pp. 480 — 481 of Karatsuba and Korolev [8]. Along that way, we have

24 1 7 m e ~2m
L <25"HI1+ 2. Z(ogTVPm)!  Lr10gT (-1 T)
k<25 {—|—5 m(og )°(2m) (270g ) 75 lo8 }
<25"H {1+ (logT)? 2mir A"
& e3logT

50m2r \™
H (25" + (logT)? | —x .
= (5 + (log ) (63logT) )

Lemma 3.4. [
LetT>Ty>0,e2<H<T,2<7<logH, and k be an integer such
that k > ko > 1 and (2klog k) < e37. Then

T+H 1 s 2k
W (t)**dt > : H — %7, 3.8
T Q 5v/10e logk (3.8)
T+H 3
W (t)***1dt| < e3F+aT, (3.9)
T

This is Lemma 4 of author’s result in [24]. The proof of this lemma is an
analogue of the proof of Lemma 3 of Chapter 3 in Karatsuba and Korolev
[8]. But in Karatsuba and Korolev [8], the function W (t) is defined by

W(t):_zwo_loﬁ)’

1
p<er p2 T
which are defferent from the definition in this thesis.
Proof. As in pp. 474 — 475 of Karatsuba and Korolev [8], we can write
T+H

H
W (t)*dt = I, = (2]{"‘;) o T e,

T

where

1 log p
S= X st f) = e (1 2ER).
PLPE=4q1"qk p2 logp T
D1, ,qk e’
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Then,

SR fe) e foe)

p1,-,pr are distinct

p17”. 7kaeT
>R f) Y fe)’ Y o)
p1<e” pa<e” pr<e’
DP1#D2 D1, ,Pk—17Pk

Since £ f(p)* < 0, f(p)* is monotonically decreasing for p > 2. Also, since
the (k — 1)th prime does not exceed 2klogk, the inner sum of the above
inequality is greater than the same sum over 2klogk < pi < e37. Hence the
inner sum over py is greater than

()

2k log k<p<e’T p(logp)*

For (2klog k)% < e57, since

1 1 1
2 logp) > M0, 2=

U<p<U? U<p<U?

1

1
= ——(loglogU? — log1 1 _
(loglog oglog U + o ))>8(logU)2’

4(log U)?

the sum over p; is greater than % (%)2 m. Also, the same lower bound

holds for the sums over p1,po, -+, pr—1. Therefore, we see

1 F Vo B\
S>>k —m ] > V2rk| — - —— .
- (250(10g k)Q) = ver (5\/106 log k:)

So,

1 ]{;l 2k

2
I.>H . — 3k,
g (5\/106 logk>

This is the first part of Lemma 3.4. The second part is as same as that
proved in [8].
O
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The following lemma is a special case of Lemma 4 of Tsang [21], and
following type is written in Lemma 1 of Chapter 3 in Karatsuba and Korolev

).

Lemma 3.5. O

Let H> 0 and M > 0, let k > 1 be an integer, and let W (t), R(t) be
real functions which satisfy the conditions

T+H
1)/ W (t)[*dt > HM?,

T
T+H 1
2) W(t)2k+1dt’ S §HM2k+1,
T
T+H M 2k+1
3) / m@ﬁ“ﬁ<H(—) .
T 2
Then
1
> M.
r 287, IV RO) 2 gM

The proof of this lemma is omitted in this thesis.

Proof of Theorem 3.1 Put 7 = 2loglog H. Consider the right-hand side
of the inequality in the statement of Lemma 3.3. We see easily that

=

50rm? _ 500k* loglogT _ k2 500k> (loglogT)? Kk

. . — 5
e3log T €3 logT ~ logk € logT logk "’
say.
2
. _ €2 (logT)3 1 2 ir
Here, putting k = [m ((logi}T)%)} , we have 0 < &, (2klogk)® < e5

and 7 < H3. Hence, we can apply Lemma 3.3 and Lemma 3.4. Then we
have

T+H
W(t)2*dt > HM?*,
T

T+H

1
LL (t)2k+1dt‘ < 5]1} M2k+1,
T

T+H M\ 2k
/ W@W“ﬁ<ﬂ(—) ,

T 2
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with M = 30’?%. Thus, vxlze see that W(t) and R(t) satisfy the conditions of

Lemma 3.5 with M = 3ofg

- Hence there are two points ¢, and ?; such that

Wito) + Rlto) > 5. W(t)+R(n) < —5

in the interval T'<t < T + H. By Lemma 3.2, we have

lgr . 2

2 2 M log t
/ (Smu> Sl<t0+—u>du2—+0<0g ”),
“lHr \ U T 8 TH

s . 2

2 M logt

/2 (Sm“> Sl<t1+—u>du§——+0(0g 1).
“lHr \ U T 8 TH

Here, putting

° T—HE?SPT—WH 1() ! T*H§1?§T+2H 1()

we have

lgr . 2 0o . 2
2
/2 (Sm“) S, (tﬁ—“) du<M0/ (Sm“) ~ "My (Mo > 0),
~LlHr U T oo U 2
2HT fsinu) 2 2u > fsinu\® T
() s o 2 [ (22 2 o
—LlHr U T oo U 2

Therefore, we obtain for r = 0,1

2 M logt, 1 k3 log T)3
(=1)'M,>—=-—+40 o8 > — - S (log )35 :
T 8 TH 47 30logk = 40007 (loglogT)s

Thus, we obtain the result.

Moreover, we see immediately the following theorem from Theorem 3.1.

Corollary 3.1.

_ (log )3
Si(t) = ((loglogtﬁ) '
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This is Theorem 2 of author’s result in [24]. This is an improvement on
Selberg’s result (3.2). The technique of Karatsuba and Korolev [8] can obtain
the Q, and the 2_ estimates simultaneously. Our method is based on the
idea of Karatsuba and Korolev [8], so our method can treat the €, and the
()_ estimates simultaneously. This should be compared with Tsang’s paper,
in which the result of the €2, case is different from that of the {2_ case. Our
Q-result can improve the Selberg’s 2-result, but cannot improve the Tsang’s
Q-result.
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