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Chapter 1

Overview

1.1 Introduction

In this article, we study the Cauchy problem of nonlinear dispersive equations with

derivative nonlinearity. Specifically, we deal with the system of quadratic derivative

nonlinear Schrödinger equations:
(i∂t + α∆)u = −(∇ · w)v,

(i∂t + β∆)v = −(∇ · w)u,

(i∂t + γ∆)w = ∇(u · v)

(1.1)

with α, β, γ ∈ R\{0}, the nonlinear Schrödinger equations:

(i∂t +∆)u = ∂k(u
m) (1.2)

with m ∈ N, m ≥ 2, 1 ≤ k ≤ d and the higher order KdV type equations:

∂tu+ (−1)k+1∂2k+1
x u+

1

2
∂x(u

2) = 0 (1.3)

with k ∈ N, where u, v, w in (1.1) are Cd valued, u in (1.2) is C valued, u in

(1.3) is R valued, d is a dimension of the spatial variable, ∂k = ∂/∂xk and ∆ is the

usual Laplacian ∆ =
∑d

k=1 ∂
2/∂x2k. The system (1.1) is a model of laser-plasma

interaction ([11]). The equation (1.2) is a mathematical model which is studied by

Grünrock ([23]). The equation (1.3) is called “Korteweg-de Vries equation” (“KdV

equation” for short) when k = 1 and “Kawahara equation” when k = 2 which are

the model of water waves ([42], [52]). We assume that the spatial variable x is in

Rd or Td (= Rd/(2πZ)d).
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Our first aim is to obtain the well-posedness (existence of solutions, their unique-

ness and their continuous dependence on initial data) for the Cauchy problem of

these equations. Well-posedness is a fundamental and important property of differ-

ential equations since the existence of solutions and their uniqueness are necessary

to justify the equation as a model of physical phenomena and the continuous de-

pendence on initial data is necessary to justify numerical solutions of the equation.

We say that a differential equation is locally well-posed (LWP for short) in the

Banach space H if for any initial data u0 ∈ H, there exist T > 0 and a solution

u ∈ C([0, T ];H) of the equation, such solution is unique in the suitable Banach

space XT which is embedded in C([0, T ];H) and the data-to-solution map u0 7→ u

is continuous from each ball in H to XT . Furthermore if for any u0 ∈ H and T > 0,

there exists a solution u ∈ C([0, T ];H) and the uniqueness and the continuous of

the data-to-solution map above hold, then we say that the differential equation is

globally well-posed (GWP for short) in H.

To obtain the well-posedness of a differential equation, we use the iteration ar-

gument as below. We consider the general problem:i∂tu+ Lu = N (u),

u|t=0 = u0,
(1.4)

where L is a linear differential operator given as L = p(−i∇) for a real coefficients

polynomial p and N (u) is a nonlinear term. For example, (1.4) corresponds (1.2)

when p(ξ) = −|ξ|2, N (u) = ∂k(u
m). By the Duamel’s formula, (1.4) can be rewritten

as the integral equation:

u(t) = eitLu0 − i

∫ t

0

ei(t−t′)LN (u(t′))dt′, (1.5)

where {eitL}t∈R is one-parameter unitary group defined by êitLf = eitp(ξ)f̂ and ·̂
denotes the spatial Fourier transform. We call the second term of R.H.S of (1.5)

“Duamel term” and the solution of (1.5) “mild solution”. In this article, a solution

of Cauchy problem means the mild solution. If we have the estimates

||eitLu0||XT
≤ C1||u0||H,

∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)LN (u(t′))dt′
∣∣∣∣∣∣∣∣

XT

≤ C2T
δ||u||aXT

(1.6)

and∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)L(N (u(t′))−N (v(t′)))dt′
∣∣∣∣∣∣∣∣

XT

≤ C2T
δ(||u||a−1

XT
+ ||v||a−1

XT
)||u−v||XT

(1.7)
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for some C1, C2, δ > 0 and a > 1, then we obtain the well-posedness of (1.4) in

H with the solution u ∈ XT . In fact for given u0 ∈ H, we put Φu0 [u](t) :=(R.H.S

of (1.5)) and XT,u0 := {u ∈ XT | ||u||XT
≤ 2C1||u0||H}, then Φu0 is a contraction

map on XT,u0 for T = (2a+1Ca−1
1 C2||u0||a−1)−1/δ. Therefore by the Banach fixed

point theorem, there exists unique u ∈ XT,u0 such that u(t) = Φu0 [u](t) on t ∈
[0, T ], namely u is a solution of (1.5). If the estimates (1.6) and (1.7) are proved

as δ = 0, we obtain the well-posedness of (1.4) for any u0 ∈ H with ||u0||H ≤
(2a+1Ca−1

1 C2)
−1/(a−1)by the same argument. So the key estimates to obtain the

well-posedness are (1.6) and (1.7).

In this article, we always set H = Hs which is the inhomogeneous Sobolev space

with the norm

||f ||Hs := ||⟨ξ⟩sf̂ ||L2
ξ
= ||(1 + |ξ|)sf̂ ||L2

ξ

or H = Ḣs which is the homogeneous Sobolev space with the norm

||f ||Ḣs := |||ξ|sf̂ ||L2
ξ
.

The lower regularity s we choose, the more difficult we show the nonlinear estimates

such as (1.6) and (1.7). For example, if s > d/2 then the estimate

||fg||Hs ≤ C||f ||Hs||g||Hs (1.8)

holds. But if s ≤ d/2 then (1.8) fails generally. Because of such reason, our interest

is the well-posedness of differential equations with “low regularity” initial data. One

of the target of the regularity for the well-posedness is “scaling critical regularity”

which is decided by the invariant transformation for the equation. For example the

equation (1.2) is invariant under the following scaling transformation:

uλ(t, x) = λ−1/(m−1)u(λ−2t, λ−1x).

Since

||uλ(0, ·)||Ḣs = λd/2−1/(m−1)−s||u(0, ·)||Ḣs ,

the scaling critical regularity for (1.2) is sc = d/2 − 1/(m − 1). We note that if

s > sc, then large initial data and short time settings is equivalent to small initial

data and long time settings. It match the iteration argument above. While if s < sc,

then small initial data and short time settings is equivalent to large initial data and

long time settings. But the latter settings is more difficult to obtain well-posedness

than the former settings. In fact, there are many blow up results for large initial
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data. Therefore, the well-posedness for s < sc is not expected. The critical case

s = sc is the most important because if s = sc, the time interval of the solution

is not depend on Ḣsc-norm of the initial data since Ḣsc-norm is invariant by the

scaling transformation. Therefore if we obtain LWP for u0 ∈ Hsc with ||u0||Hsc ≤ r

for some r > 0, then it is expected that GWP for same u0 is also obtained.

Next, we explain the function spaces. If we choose XT = C([0, T ];Hs), then it is

difficult to obtain the estimates (1.6) and (1.7) for (1.1), (1.2) and (1.3) because of

the derivative loss arising from the nonlinearity in these equations. To recover the

derivative loss, we use the Bourgain space Xs,b
L and the spaces U2

LH
s, V 2

LH
s which

norms depend on the structure of the linear terms of the equation (1.4).

The Bourgain space Xs,b
L is introduced by Bourgain to prove the well-posedness

of the nonlinear Schrödinger equation and the KdV equation with the periodic initial

data ([5]). His method is called “Fourier restriction norm method”. The norm of

the Bourgain space, which is called “Bourgain norm” depends on the linear terms

of the equation. The Bourgain space Xs,b
L is the completion of the Schwarz space

with respect to the norm defined by

||u||Xs,b
L

:= ||⟨τ − p(ξ)⟩b⟨ξ⟩sũ||L2
τ,ξ

= ||e−itLu||Hb
tH

s
x
,

where ·̃ denotes the space-time Fourier transform. The weight function ⟨τ − p(ξ)⟩
is decided by the hypersurface {(τ, ξ)|τ − p(ξ) = 0} which contains supp ũL, where

uL := eitLu0 is a solution of the Linearized equation of (1.4). If b > 1/2, then

Xs,b
L ([0, T ]) is embedded in C([0, T ];Hs) continuously. We note that the function

e−itLu with u ∈ Xs,b
L has the regularity with respect to the time variable and we use

it to recover the derivative loss. For example if supp ũ ⊂ {(τ, ξ)| |τ − p(ξ)| ≥ |ξ|ϵ},
then we have

||u||Xs,b
L

≥ C||⟨ξ⟩s+ϵbũ||L2
τ,ξ

= C||u||L2
tH

s+ϵb
x

,

where C > 0 is a constant. Therefore, L2
tH

s+ϵb
x -norm is controlled by Xs,b

L -norm.

So, there is the derivative gain ϵb with respect to the spatial variable. To obtain

(1.6) and (1.7) as the solution space XT = Xs,b
L ([0, T ]), we use the duality argument.

Since e−itLN (u) in the Duamel term of (1.5) has the first derivative gain with respect

to the time variable arising from the integral and the dual space of Xs,b−1
L for the

L2-inner product is X−s,1−b
L , we obtain∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)LN (u(t′))dt′
∣∣∣∣∣∣∣∣

Xs,b
L ([0,T ])

≤ C ′ sup
||v||

X
−s,1−b
L

=1

∣∣(N (u), v)L2
tx

∣∣ , (1.9)
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where C ′ > 0 is a constant ([21] Lemma 2.1). We note that if we choose b >

1/2, then the derivative gain for the function v in the dual space X−s,1−b
L with

supp ṽ ⊂ {(τ, ξ)| |τ − p(ξ)| ≥ |ξ|ϵ} is less than ϵ/2. While if we choose b < 1/2,

then the derivative gain for the function u in the solution space Xs,b
L with supp ũ ⊂

{(τ, ξ)| |τ − p(ξ)| ≥ |ξ|ϵ} is less than ϵ/2. So, the best choice of the index b to

get the derivative gain is b = 1/2. But if we choose b = 1/2, then Xs,b
L ([0, T ]) is

not embedded in C([0, T ];Hs). To avoid this problem, we use the auxiliary space

Y s which also be introduced by Bourgain. The norm of Y s is defined by ||u||Y s :=

||⟨ξ⟩sũ||L2
ξL

1
τ
. To obtain the well-posedness of (1.3), we will set the solution space

XT = Zs
L([0, T ]) := X

s,1/2
L ([0, T ]) ∩ Y s([0, T ]) in Chapter 6. The norm of Zs

L is

defined by ||u||Zs
L
:= ||u||

X
s,1/2
L

+ ||u||Y s and Zs
L([0, T ]) is embedded in C([0, T ];Hs)

continuously.

For 1 < p, p′ < ∞ satisfying 1/p + 1/p′, the space V p consists of bounded p-

variation functions and the space Up is the dual space of V p′ in some sense. The

bounded p-variation function is introduced by Wiener ([72]). The first application

of the spaces Up and V p for differential equations is Tataru’s unpublished work for

wave maps. The properties of the spaces Up and V p are studied by Hadac, Herr and

Koch ([25], [26]) to prove the well-posedness of KP-II equation in the scaling critical

Sobolev space. Furthermore, Herr, Tataru and Tzvetkov ([31]) applied the spaces Up

and V p to the 3D quintic nonlinear Schrödinger equation with the periodic setting

and proved its well-posedness in the scaling critical Sobolev space. We explain the

advantage of Up and V p compared with the Bourgain space. One of the key estimate

to prove the well-posedness of dispersive equation such as (1.4) is the Strichartz

estimate

||eitLφ||Lp
tL

q
x
. ||φ||Ḣs

x
. (1.10)

If (1.10) holds, we call (p, q, s) a “admissible exponents”. It is known that the

Bourgain space Xs,b
L is embedded in Lp

tL
q
x continuously if b > 1/2 and (p, q, s) are

an admissible exponents ([21] Lemma 2.3). Therefore, if we use both the Bourgain

space Xs,b
L and the Strichartz estimate (1.10), then we have to choose b > 1/2. But

as mentioned above, b > 1/2 is not the best choice of index to get the derivative

gain. Because of such reason, it is difficult to imply the well-posedness in the scaling

critical Sobolev space by using the Bourgain space. An idea to avoid this difficulty

is to use the Besov type Bourgain space X
s,1/2,1
L which norm is defined by

||u||
X

s,1/2,1
L

:=
∑

M∈2N∪{0}

M1/2||⟨ξ⟩sψM(τ − p(ξ))ũ||L2
τ,ξ
,
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where {ψM}M∈2N ⊂ C∞(R) satisfies suppψM ⊂ [−2M,−M/2] ∪ [M/2, 2M ] for

M ≥ 2, suppψ1 ⊂ [−2, 2] and
∑

M∈2N∪{0} ψM ≡ 1. The Besov type Bourgain

spaces are introduced by Muramatu and Taoka ([57]) and X
s,1/2,1
L -norm is stronger

than X
s,1/2
L -norm. We note that the derivative gain for u ∈ X

s,1/2,1
L is same as

for u ∈ X
s,1/2
L and X

s,1/2,1
L is embedded in Lp

tL
q
x continuously if (p, q, s) are an

admissible exponents. So, if we use X
s,1/2,1
L as the solution space, we can apply the

Strichartz estimate and obtain the best derivative gain. But the norm of the dual

space of X
s,1/2,1
L is too weak. In fact, the dual space of X

s,1/2,1
L in the sense of (1.9)

is X
−s,1/2,∞
L whose norm is defined by

||u||
X

−s,1/2,∞
L

:= sup
M∈2N∪{0}

M1/2||⟨ξ⟩−sψM(τ − p(ξ))ũ||L2
τ,ξ
,

since the dual space of l1 for the l2-inner product is l∞. For any s′ ∈ R and

b′ < 1/2, X
s′,1/2,∞
L -norm is stronger than Xs′,b′

L -norm, but weaker than Xs′,1/2-norm.

Therefore, we cannot apply the Strichartz estimate to the dual function because

X
s′,1/2,∞
L is not embedded in Lp

tL
q
x for any admissible exponents (p, q, s′). This

difficulty can be overcome if we use the spaces U2
LH

s and V 2
LH

s whose norms are

defined by

||u||U2
LH

s := ||e−itLu||U2
t H

s
x
, ||u||V 2

LHs := ||e−itLu||V 2
t Hs

x
.

Since the dual space of U2
LH

s in the sense of (1.9) is V 2
LH

−s ([25] Remark 2.11, 2.12)

and U2
LH

s, V 2
LH

s are embedded in Lp
tL

q
x continuously if (p, q, s) are an admissible

exponents with p > 2 ([25] Proposition 2.19), we can apply the Strichartz estimate

also to the dual function. Furthermore since the continuous embeddings

Ẋ
s,1/2,1
L ↪→ U2

LH
s ↪→ V 2

LH
s ↪→ Ẋ

s,1/2,∞
L

hold ([25] Remark 2.17), the derivative gain for u ∈ V 2
LH

s is same as for u ∈ Ẋ
s,1/2
L ,

which is the best derivative gain, where Ẋ
s,1/2,1
L and Ẋ

s,1/2,∞
L are the homogeneous

Besov type Bourgain space. Because of such reason, the spaces U2
LH

s and V 2
LH

s are

suitable spaces to obtain the well-posedness in the scaling critical Sobolev space. We

will use these spaces and prove the well-posedness of (1.1) and (1.2) in the scaling

critical Sobolev space in Chapter 3, 4, 5.

If we obtain GWP for a differential equation, our interest is focused on the

asymptotic behavior of the solution naturally. We say that the solution of the

equation (1.4) scatters in H if there exist u± ∈ H such that u(t)−eitLu± is converges

to 0 in H as t → ±∞, namely the solution behaves like a solution of the linearized
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equation of (1.4) asymptotically in time. Our second aim is to obtain the scattering

for the solution of the equations (1.1) and (1.2). To obtain the scattering, we will use

the fact that limt→±∞ u(t) exist for any u ∈ V 2 ([25] Proposition 2.4) in Chapter 3, 5.

Most part of this article are based on the author’s papers [32], [33], [34] and

[35]. The rest of this article is planned as follows. In Chapter 2, we will introduce

the property of the spaces U2, V 2 referred from [25] and [26]. In Chapter 3, which

is based on [33], we will prove the well-posedness and scattering for the system

(1.1) and the equation (1.2) for d ≥ 2, m = 2 with the nonperiodic initial data.

Furthermore, we also prove the ill-posedness of the system (1.1) in a weak sense. In

Chapter 4, which is based on [34], we will prove the well-posedness of the system

(1.1) and the equation (1.2) for d ≥ 2, m = 2 with the periodic initial data. In

Chapter 5, which is based on [35], we will prove the well-posedness and scattering

for the equation (1.2) for d ≥ 1, m ≥ 3 with the nonperiodic initial data. In Chapter

6, which is based on [32], We will prove the well-posedness of the equation (1.3) with

the periodic initial data. In particular, the well-posedness results in Chapter 3, 4, 5

contain the scaling critical case.

Notation.

• We put ⟨·⟩ := 1 + | · |.

• We put Z∗ := Z\{0}.

• For λ ≥ 1, we put Zλ := {n/λ| n ∈ Z} and Z∗
λ := Zλ\{0}.

• We define the integral on Z∗
λ as∫

Z∗
λ

f(ξ)dξ :=
1

2πλ

∑
ξ∈Z∗

λ

f(ξ).

• For a function f defined on Z∗
λ, we put

||f ||l2ξ(λ) :=

(∫
Z∗
λ

|f(ξ)|2dξ

)1/2

.

• For functions F and G defined on R× Z∗
λ, we put

F ∗G(τ, ξ) :=
∫
Z∗
λ\{ξ}

∫
R
F (τ − τ1, ξ − ξ1)G(τ1, ξ1)dτ1dξ1

7



• We define the integral on Tλ as∫
Tλ

f(s)ds :=

∫ 2πλ

0

f(s)ds.

• We define the integral on Td as∫
Td

f(x)dx :=

∫
[0,2π]d

f(x)dx.

• We define the spatial Fourier transform for the function on X as

Fx[f ](ξ) = f̂(ξ) :=

∫
X

f(x)e−iξ·xdx, ξ ∈ X ′,

where (X,X ′) = (Tλ,Zλ) or (Rd,Rd) or (Td,Zd).

• We define the space time Fourier transform for the function on R×X as

F [f ](τ, ξ) = f̃(τ, ξ) :=

∫
R

∫
X

f(t, x)e−itτe−ix·ξdxdt, τ ∈ R, ξ ∈ X ′,

where (X,X ′) is same as above.

• For s ∈ R, we define the Sobolev space Hs(Rd) (resp. Ḣs(Rd)) as the space of

all S ′(Rd) functions for which the norm

||f ||Hs := ||⟨ξ⟩sf̂ ||L2
ξ(Rd) (resp. |||ξ|sf̂ ||L2

ξ
).

• For s ∈ R, we define the Sobolev space Hs(Td) (resp. Hs(Tλ)) as the space of

all L2(Td) (resp. L2(Tλ)) functions for which the norm

||f ||Hs := ||⟨ξ⟩sf̂ ||l2ξ(Zd) (resp. ||⟨ξ⟩sf̂ ||l2ξ(λ)).

• For a Banach space H and r > 0, we put

Br(H) := {f ∈ H| ||f ||H ≤ r}.

• We will use A . B to denote an estimate of the form A ≤ CB for some

constant C and write A ∼ B to mean A . B and B . A.

• We will use the convention that capital letters denote dyadic numbers, e.g.

N = 2n for n ∈ Z and for a dyadic summation we write
∑

N aN :=
∑

n∈Z a2n

and
∑

N≥M aN :=
∑

n∈Z,2n≥M a2n for brevity.
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• Let χ ∈ C∞
0 ((−2, 2)) be an even, non-negative function such that χ(s) = 1 for

|s| ≤ 1. We define ψ0(ξ) := χ(|ξ|) and ψN(ξ) := ψ0(N
−1ξ) − ψ0(2N

−1ξ) for

N ∈ 2Z.

• We define frequency and modulation projections

P̂Su(ξ) := χS(ξ)û(ξ), P̂Nu(ξ) := ψN(ξ)û(ξ), Q̃L
Mu(τ, ξ) := ψM(τ−p(ξ))ũ(τ, ξ)

for the set S ⊂ Zd and the dyadic numbersN ,M , where χS is the characteristic

function of S, and L is a linear differential operator given as L = p(−i∇) for

a real coefficients polynomial p. Furthermore, we define P0 := Id−
∑

N≥1 PN ,

QL
≥M :=

∑
N≥M QL

N and QL
<M := Id−QL

≥M .
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1.2 Review for the Schrödinger equations with

derivative nonlinearity

We consider the Cauchy problem of the system of Schrödinger equations:

(i∂t + α∆)u = −(∇ · w)v, t ∈ (0,∞), x ∈ Rd or Td,

(i∂t + β∆)v = −(∇ · w)u, t ∈ (0,∞), x ∈ Rd or Td,

(i∂t + γ∆)w = ∇(u · v), t ∈ (0,∞), x ∈ Rd or Td,

(u(0, x), v(0, x), w(0, x)) = (u0(x), v0(x), w0(x)), x ∈ Rd or Td,

(1.11)

and the Cauchy problem of the nonlinear Schrödinger equations:(i∂t +∆)u = ∂k(u
m), t ∈ (0,∞), x ∈ Rd or Td,

u(0, x) = u0(x), x ∈ Rd or Td,
(1.12)

where α, β, γ ∈ R\{0}, m ∈ N, m ≥ 2, 1 ≤ k ≤ d, ∂k = ∂/∂xk, the unknown

functions u, v, w in (1.11) are Cd-valued and the unknown function u in (1.12)

is C-valued. The system (1.11) was introduced by Colin and Colin in [11] as a

9



model of laser-plasma interaction. (1.12) is a mathematical model dealt by Grünrock

([23]). The scaling critical regularity for (1.11) is sc = d/2 − 1 and for (1.12) is

sc = d/2− 1/(m− 1).

First, we introduce some known results for related Schrödinger equations. The

system (1.11) and equation (1.12) have derivative nonlinearity. A derivative loss

arising from the nonlinearity makes the problem difficult. In fact, Mizohata ([55])

proved that a necessary condition for the L2 well-posedness of the problem:i∂tu−∆u = b1(x)∇u, t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd

is the uniform bound

sup
x∈Rd,ω∈Sd−1,R>0

∣∣∣∣Re∫ R

0

b1(x+ rω) · ωdr
∣∣∣∣ <∞.

Furthermore, Christ ([9]) proved that the flow map of the Cauchy problem:i∂tu− ∂2xu = u∂xu, t ∈ R, x ∈ R or T,

u(0, x) = u0(x), x ∈ R or T,
(1.13)

is not continuous on Hs(R) and Hs(T) for any s ∈ R. While, Ozawa ([60]) proved

that the local well-posedness of (1.13) in the space of all function ϕ ∈ H1(R) satis-
fying the bounded condition

sup
x∈R

∣∣∣∣∫ x

−∞
ϕ

∣∣∣∣ <∞.

Furthermore, he proved that if the initial data ϕ satisfies some condition, then the

local solution can be extend globally in time and the solution scatters. For the

Cauchy problem of the one dimensional derivative Schrödinger equation:i∂tu+ ∂2xu = iλ∂x(|u|2u), t ∈ R, x ∈ R or T,

u(0, x) = u0(x), x ∈ R or T,
(1.14)

Takaoka ([66]) proved the local well-posedness in Hs(R) for s ≥ 1/2 by using the

gauge transform. This result was extended to global well-posedness ([16], [17], [54],

[67]). While, ill-posedness of (1.14) was obtained for s < 1/2 ([3], [67]). For the

periodic case, Herr ([30]) proved the local well-posedness of (1.14) in Hs(T) for s ≥
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1/2 by using the gauge transform and Win ([73]) proved the global well-posedness

of (1.14) in Hs(T) for s > 1/2. For more general problem:
i∂tu−∆u = P (u, u,∇u,∇u), t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,

P is a polynomial which has no constant and linear terms,

(1.15)

there are many positive results for the well-posedness in the weighted Sobolev space

([1], [2], [7], [8], [48], [65]). Kenig, Ponce and Vega ([48]) also obtained that (1.15) is

locally well-posed inHs (without weight) for large enough s when P has no quadratic

terms. For the equation (1.12), Grünrock ([23]) proved the global well-posedness in

L2(R) and L2(T) when d = 1, m = 2 and local well-posedness in Hs(Rd) and Hs(Td)

for s > sc when d ≥ 1, m+ d ≥ 4. We extend his results to the following.

Main theorem 1.1. Let sc = d/2− 1/(m− 1).

(i) Assume d ≥ 1, m + d ≥ 4. Then (1.12) is globally well-posed for small data in

Ḣsc(Rd) (resp. Hs(Rd) for s ≥ sc). Furthermore, the solution scatters in Ḣsc(Rd)

(resp. Hs(Rd) for s ≥ sc)

(ii) Assume d ≥ 5, m = 2. Then (1.12) is locally well-posed for small data in

Hsc(Td).

Next, we introduce some known results for systems of quadratic nonlinear deriva-

tive Schrödinger equations. Ikeda, Katayama and Sunagawa ([36]) considered (1.11)

for the nonperiodic case with null form nonlinearity and obtained the small data

global existence and the scattering in the weighted Sobolev space for the dimension

d ≥ 2 under the condition αβγ(1/α − 1/β − 1/γ) = 0. While, Ozawa and Suna-

gawa ([61]) gave the examples of the quadratic derivative nonlinearity which causes

the small data blow up for a system of Schrödinger equations with the nonperiodic

setting. As the known result for (1.11), we introduce the work by Colin and Colin

([11]). They proved that the local existence of the solution of (1.11) in Hs(Rd)

for s > d/2 + 3. We extend the results by Colin and Colin ([11]) and also prove

the well-posedness for the periodic case. We put θ := αβγ(1/α − 1/β − 1/γ) and

κ := (α − β)(α − γ)(β + γ). Note that if α, β, γ ∈ R\{0} and θ ≥ 0, then κ ̸= 0.

Our result for (1.11) is following.

Main theorem 1.2. Let sc = d/2− 1.

(i) We assume that α, β, γ ∈ R\{0} satisfy κ ̸= 0 if d ≥ 4, and θ > 0 if d = 2, 3.

11



Then (1.11) is globally well-posed for small data in Ḣsc(Rd) (resp. Hs(Rd) for s ≥
sc). Furthermore, the solution scatters in Ḣsc(Rd) (resp. Hs(Rd) for s ≥ sc).

(ii) We assume that d ≥ 5, s ≥ sc and α, β, γ ∈ R\{0} satisfy θ > 0 and α/β,

β/γ ∈ Q. Then (1.11) is locally well-posed for small data in Hs(Td).

Furthermore, we obtain following subcritical results:

Main theorem 1.3. Let sc = d/2− 1 and α, β, γ ∈ R\{0}.
(i) We assume that d ≥ 4, s > sc and α, β, γ ∈ R\{0} satisfy (α − γ)(β + γ) ̸= 0.

Then (1.11) is locally well-posed in Hs(Rd).

(ii) We assume that d = 2, 3 and s > sc if θ > 0, s ≥ 1 if θ ≤ 0 and κ ̸= 0, s > 1 if

α = β. Then (1.11) is locally well-posed in Hs(Rd).

(iii) We assume that d = 1 and s ≥ 0 if θ > 0, s ≥ 1 if θ = 0, s ≥ 1/2 if θ < 0 and

(α− γ)(β + γ) ̸= 0. Then (1.11) is locally well-posed in Hs(Rd).

(iv) We assume that d ≥ 1, s > max{sc, 0} and α, β, γ ∈ R\{0} satisfy θ > 0 and

α/β, β/γ ∈ Q. Then (1.11) is locally well-posed in Hs(Td).

System (1.11) has the following conservation quantities (see Proposition 3.30):

M(u, v, w) := 2||u||2L2
x
+ ||v||2L2

x
+ ||w||2L2

x
,

H(u, v, w) := α||∇u||2L2
x
+ β||∇v||2L2

x
+ γ||∇w||2L2

x
+ 2Re(w,∇(u · v))L2

x
.

By using the conservation law for M and H, we obtain the following result.

Main theorem 1.4.

(i) Let d = 1. We assume that α, β, γ ∈ R\{0} satisfy θ > 0. For every

(u0, v0, w0) ∈ L2(R) × L2(R) × L2(R), we can extend the local L2(R) solution of

Main theorem 1.3 globally in time.

(ii) We assume that α, β, γ ∈ R\{0} have the same sign and satisfy κ ̸= 0 if

d = 2, 3 and (α − γ)(β + γ) ̸= 0 if d = 1. There exists r > 0 such that for every

(u0, v0, w0) ∈ Br(H
1(Rd) ×H1(Rd) ×H1(Rd)), we can extend the local H1(Rd) so-

lution of Main theorem 1.3 globally in time.

(iii) Let d = 1, 2, 3. We assume that α, β, γ ∈ R\{0} have the same sign and

satisfy θ > 0. There exists r > 0 such that for every (u0, v0, w0) ∈ Br(H
1(Td) ×

H1(Td) × H1(Td)), we can extend the local H1(Td) solution of Main theorem 1.3

globally in time.

While, we obtain the negative result as follows.
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Main theorem 1.5. Let d ≥ 1 and α, β, γ ∈ R\{0}. We assume s ∈ R if

(α − γ)(β + γ) = 0, s < 1 if θ = 0, and s < 1/2 if θ < 0. Then the flow map of

(1.11) is not C2 in Hs(Rd).

The main tools of our results for the scaling critical case are Up space and V p

space, which are applied to prove the well-posedness and the scattering for KP-II

equation at the scaling critical regularity by Hadac, Herr and Koch ([25], [26]). For

the equation (1.12), Grünrock used the Bourgain space to construct the solution and

proved the well-posedness in the scaling subcritical Sobolev space. But as mentioned

in previous section, the well-posedness of (1.12) in the scaling critical Sobolev space

cannot be obtained by using the Bourgain space. To overcome this difficulty, we

apply the U2, V 2 type spaces to construct the solution. Because of such reason, we

obtain the well-posedness of (1.12) in the scaling critical Sobolev space. We give

the proof of Main theorem 1.1 (i) for d ≥ 2, m = 2 in Chapter 3, the proof of (i) for

d ≥ 1, m ≥ 3 in Chapter 5 and the proof of (ii) in Chapter 4.

While even if we use the U2, V 2 type spaces, we cannot obtain the well-posedness

of (1.11) in the scaling critical Sobolev space generally since there are the cases that

the resonance arises from the nonlinear interaction. We study the resonance and

the nonresonance for (1.11) and prove that if α, β, γ ∈ R\{0} satisfy αβγ(1/α −
1/β − 1/γ) > 0, then the resonance never arises (see Lemma 3.16). So, αβγ(1/α−
1/β − 1/γ) > 0 is the nonresonance condition for (1.11). By applying both the

nonresonance condition and U2, V 2 type spaces, we succeed in proving the well-

posedness of (1.11) for the nonperiodic case in the scaling critical Sobolev space.

We remark that Oh ([59]) also studied the resonance and the nonresonance for the

system of KdV equations and proved that the regularity for the well-posedness of

the system under the nonresonance condition is lower than the regularity under the

resonance condition. We give the proof of Main theorems 1.2– 1.5 for the nonperiodic

case in Chapter 3.

For the periodic case of (1.11), there are also the other difficulty that the number

of admissible pairs of the Strichartz estimate for the periodic function is less than

the nonperiodic function. To overcome this difficulty, we show the bilinear estimate

||PN3(PN1u1 · PN2u2)||L2(T|σ−1|×Td)

. N s
min

(
Nmin

Nmax

+
1

Nmin

)δ

||PN1u1||Y 0
σ1
||PN2u2||Y 0

σ2

(1.16)

and use it instead of the Strichartz estimate (see Proposition 4.16). The estimate
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(1.16) for the case N1 ∼ N3 & N2 is proved by Wang ([71]). Therefore, we will prove

(1.16) for the case N1 ∼ N2 ≫ N3. But the proof is difference from Wang’s proof

on the several points. We give the proof of Main theorems 1.2– 1.4 for the periodic

case in Chapter 4.

1.3 Review for the higher order KdV type equa-

tions

We consider the Cauchy problem of the periodic high order KdV type equations;∂tu+ (−1)k+1∂2k+1
x u+

1

2
∂x(u

2) = 0, (t, x) ∈ (0,∞)× T,

u(0, x) = u0(x), x ∈ T,
(1.17)

where k ∈ N and the unknown function u is real valued.

When k = 1, the equation (1.17) is called “KdV equation”. We first introduce

some known results for the KdV equation. In [5], Bourgain introduced a new method

called “Fourier restriction norm method” and proved that the KdV equation is lo-

cally well-posed in L2(T). In [47], Kenig, Ponce and Vega refined a bilinear estimate

used in the Fourier restriction norm method, and proved that the KdV equation is

locally well-posed in Hs(T) for s ≥ −1/2. In [18], by using the local well-posedness

result and the almost conservation law, Colliander, Keel, Staffilani, Takaoka and Tao

obtained that the KdV equation is the globally well-posed in Hs(T) for s ≥ −1/2.

Their method is called “I-method”. On the other hand, In [10], Christ, Colliander

and Tao proved that the KdV equation is ill-posed in Hs(T) for −2 < s < −1/2

in weak sense. Local well-posedness of the non-periodic KdV equation also was

studied by many people before Bourgain’s work ([4], [20], [41], [43], [44]) and after

Bourgain’s work ([18], [24], [45], [47], [49], [50], [58], [69]).

Next, we introduce some known results for the fifth order KdV type equations

∂tu+ α∂5xu+ β∂3xu+ ∂x(u
2) = 0 (1.18)

and

∂tu− ∂5xu− 30u2∂xu+ 20∂xu∂
2
xu+ 10u∂3xu = 0. (1.19)

Especially, (1.18) is called “Kawahara equation”. Local well-posedness of these

equations are studied for non-periodic case. For the known results of the non-

periodic Kawahara equation, see [6], [19], [38], [70] and the equation (1.19), see [53],

[63].
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Now, we introduce the high order nonlinear dispersive equations related to (1.17).

In [46], Kenig, Ponce and Vega studied the high order nonlinear dispersive equations

∂tu+ ∂2k+1
x u+ P (u, ∂xu, · · · , ∂2kx u) = 0, (1.20)

where P is a polynomial without constant and linear terms. They proved that (1.20)

is LWP in L2(|x|mdx) ∩Hs(R), where s > 0 and m ∈ Z+ are sufficiently large. In

[62], Pilod proved that (6.4) with

P (u, ∂xu, · · · , ∂2kx u) =
∑

0≤k1+k2≤2k

ak1,k2∂
k1
x u∂

k2
x u

is locally well-posed in Hs(R) ∩Hs−2k(x2dx) for s ∈ N and s > 2k + 1/4. He also

proved some ill-posedness results for (1.20).

We return to introduce the known result for (1.17) for general k ∈ N. In [22],

Gorsky and Himonas proved that (1.17) is locally well-posed in Hs(T) for s ≥ −1/2

by an argument similar to [47]. Our result is an extension of the result by Gorsky

and Himonas as follows.

Main theorem 1.6. Let k ∈ N. If s ≥ −k/2 then (1.17) is locally well-posed in

Hs(T).

Remark 1.1. After our work, Kato ([40]) extended the result in Main theorem 1.6

for k = 2 to local well-posedness in Hs(T) for s ≥ −3/2 and global well-posedness

in Hs(T) for s ≥ −1.

A bilinear estimate plays an important role to prove well-posedness of (1.17).

Gorsky and Himonas derived the following bilinear estimate for s ≥ −1/2:

||∂x(uv)||Xs,−1/2 ≤ C||u||Xs,1/2 ||v||Xs,1/2 , (1.21)

where

||u||Xs,b := ||⟨τ − ξ2k+1⟩b⟨ξ⟩sũ||l2ξL2
τ
.

But as mentioned in [22], the estimate (1.21) with s < −1/2 has been open problem.

We extend (1.21) to prove Main theorem 1.6 as follows.

Theorem 1.2. Let k ∈ N. For s ≥ −k/2, the bilinear estimate (1.21) holds.

On the other hand, we also obtain negative result for s < −k/2.

Theorem 1.3. Let k ∈ N. For any s < −k/2, the bilinear estimate (1.21) fails.
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Remark 1.4. By Theorems 1.2, 1.3, s = −k/2 is optimal regularity for the bilinear

estimate (1.21). But this does not imply ill-posedness of (1.17) for s < −k/2.

The bilinear estimate (1.21) for s = −k/2 can be written as

||⟨ξ⟩1−k/2⟨τ − ξ2k+1⟩−1/2ũ ∗ ṽ||l2ξL2
τ

. ||⟨ξ⟩−k/2⟨τ − ξ2k+1⟩1/2ũ||l2ξL2
τ
||⟨ξ⟩−k/2⟨τ − ξ2k+1⟩1/2ṽ||l2ξL2

τ
,

where

ũ ∗ ṽ(τ, ξ) = 1

2π

∑
ξ=ξ1+ξ2

∫
τ=τ1+τ2

ũ(τ1, ξ1)ṽ(τ2, ξ2)dτ1.

We note that the most difficult region to prove this estimate is |ξ1| ∼ |ξ2| ≫ |ξ|.
Gorsky and Himonas used the estimate

|ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 | & |ξξ1ξ2| · |ξ|2k−2 (1.22)

to prove (1.21). On the other hand, we use the refined estimate

|ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 | ∼ |ξξ1ξ2|max{|ξ|, |ξ1|, |ξ2|}2k−2,

which is better estimate than (1.22) in the region |ξ1| ∼ |ξ2| ≫ |ξ| (see Lemma 6.8).

Because of such reason, we could improve the bilinear estimate. We give the proof

of Main theorem 1.6 in Chapter 6.
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Chapter 2

Function spaces

In this chapter, we define the Up space and the V p space, and introduce the proper-

ties of these spaces which are proved in [25] and [26]. These spaces will be used in

Chapter 3, 4, 5. Throughout this section let H be a separable Hilbert space over C.
We define the set of finite partitions Z as

Z :=
{
{tk}Kk=0|K ∈ N,−∞ < t0 < t1 < · · · < tK ≤ ∞

}
and tK = ∞, we put v(tK) := 0 for all functions v : R → H.

Definition 2.1. Let 1 ≤ p < ∞. For {tk}Kk=0 ∈ Z and {ϕk}K−1
k=0 ⊂ H with∑K−1

k=0 ||ϕk||pH = 1 we call the function a : R → H given by

a(t) =
K∑
k=1

1[tk−1,tk)(t)ϕk−1

a “Up-atom”. Furthermore, we define the atomic space

Up(R;H) :=

{
u =

∞∑
j=1

λjaj

∣∣∣∣∣ aj : Up−atom, λj ∈ C such that
∞∑
j=1

|λj| <∞

}

with the norm

||u||Up(R;H) := inf

{
∞∑
j=1

|λj|

∣∣∣∣∣u =
∞∑
j=1

λjaj, aj : U
p−atom, λj ∈ C

}
.

Definition 2.2. Let 1 ≤ p <∞. We define the space of the bounded p-variation

V p(R;H) := {v : R → H| ||v||V p(R;H) <∞}
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with the norm

||v||V p(R;H) := sup
{tk}Kk=0∈Z

(
K∑
k=1

||v(tk)− v(tk−1)||pH

)1/p

.

Likewise, let V p
−,rc(R;H) denote the closed subspace of all right-continuous functions

v ∈ V p(R;H) with limt→−∞ v(t) = 0, endowed with the same norm || · ||V p(R;H).

Proposition 2.3 ([25] Proposition 2,2, 2.4, Corollary 2.6). Let 1 ≤ p < q <∞.

(i) Up(R;H), V p(R;H) and V p
−,rc(R;H) are Banach spaces.

(ii) Every u ∈ Up(R;H) is right-continuous as u : R → L2.

(iii) For Every u ∈ Up(R;H), limt→−∞ u(t) = 0 and limt→∞ u(t) exists in L2.

(iv) For Every v ∈ V p(R;H), limt→−∞ v(t) and limt→∞ v(t) exist in L2.

(v) The embeddings Up(R;H) ↪→ V p
−,rc(R;H) ↪→ U q(R;H) ↪→ L∞

t (R;H) are contin-

uous.

Theorem 2.4 ([25] Proposition 2.10, Remark 2.12). Let 1 < p <∞ and 1/p+1/p′ =

1. If u ∈ V 1
−,rc(R;H) be absolutely continuous on every compact intervals, then

||u||Up(R;H) = sup
v∈V p′ (R;H),||v||

V p′ (R;H)
=1

∣∣∣∣∫ ∞

−∞
(u′(t), v(t))Hdt

∣∣∣∣ .
Definition 2.5. Let 1 ≤ p < ∞. For the operator L given as L = p(−i∇) for a

real coefficients polynomial p, we define

Up
LH := {u : R → H| e−itLu ∈ Up(R;H)}

with the norm ||u||Up
LH := ||e−itLu||Up(R;H),

V p
LH := {v : R → H| e−itLv ∈ V p

−,rc(R;H)}

with the norm ||v||V p
LH := ||e−itLv||V p(R;H) .

Remark 2.6. We note that ||u||Up
LH = ||u||Up

−LH and ||v||V p
LH = ||v||V p

−LH.

Proposition 2.7 ([25] Corollary 2.18). Let 1 < p <∞. We have

||QL
Mu||Lp

t (R;H) .M−1/p||u||V p
LH, ||QL

≥Mu||Lp
t (R;H) .M−1/p||u||V p

LH, (2.1)

||QL
<Mu||V p

LH . ||u||V p
LH, ||QL

≥Mu||V p
LH . ||u||V p

LH, (2.2)

||QL
<Mu||Up

LH . ||u||Up
LH, ||QL

≥Mu||Up
LH . ||u||Up

LH. (2.3)
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Proposition 2.8 ([25] Proposition 2.19). Let

T0 : H× · · · × H → L1
loc

be a m-linear operator and I ⊂ R be an interval. Assume that for some 1 ≤ p, q <∞

||T0(eitL1ϕ1, · · · , eitLmϕm)||Lp
t (I:L

q
x) .

m∏
i=1

||ϕi||H.

Then, there exists T : Up
L1
H× · · · × Up

Lm
H → Lp

t (I;L
q
x) satisfying

||T (u1, · · · , um)||Lp
t (I;L

q
x) .

m∏
i=1

||ui||Up
Li

H

such that T (u1, · · · , um)(t)(x) = T0(u1(t), · · · , um(t))(x) a.e.

Proposition 2.9 ([25] Proposition 2.20). Let q > 1, E be a Banach space and

T : U q
LH → E be a bounded, linear operator with ||Tu||E ≤ Cq||u||Uq

LH for all

u ∈ U q
LH. In addition, assume that for some 1 ≤ p < q there exists Cp ∈ (0, Cq]

such that the estimate ||Tu||E ≤ Cp||u||Up
LH holds true for all u ∈ Up

LH. Then, T

satisfies the estimate

||Tu||E . Cp

(
1 + ln

Cq

Cp

)
||u||V p

LH, u ∈ V p
LH,

where implicit constant depends only on p and q.
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Chapter 3

System of quadratic derivative

nonlinear Schrödinger equations

on Rd

3.1 Review for results

We consider the Cauchy problem of the system of Schrödinger equations:

(i∂t + α∆)u = −(∇ · w)v, (t, x) ∈ (0,∞)× Rd

(i∂t + β∆)v = −(∇ · w)u, (t, x) ∈ (0,∞)× Rd

(i∂t + γ∆)w = ∇(u · v), (t, x) ∈ (0,∞)× Rd

(u(0, x), v(0, x), w(0, x)) = (u0(x), v0(x), w0(x)), x ∈ Rd

(3.1)

where α, β, γ ∈ R\{0} and the unknown functions u, v, w are d-dimensional

complex vector valued. The system (3.1) was introduced by Colin and Colin in [11]

as a model of laser-plasma interaction. (3.1) is invariant under the following scaling

transformation:

Aλ(t, x) = λ−1A(λ−2t, λ−1x) (A = (u, v, w)), (3.2)

and the scaling critical regularity is sc = d/2−1. The aim of this chapter is to prove

the well-posedness and the scattering of (3.1) in the scaling critical Sobolev space.

First, we introduce some known results for related problems. The system (3.1)

has quadratic nonlinear terms which contains a derivative. A derivative loss arising

from the nonlinearity makes the problem difficult. In fact, Mizohata ([55]) proved
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that a necessary condition for the L2 well-posedness of the problem:i∂tu−∆u = b1(x)∇u, t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd

is the uniform bound

sup
x∈Rd,ω∈Sd−1,R>0

∣∣∣∣Re∫ R

0

b1(x+ rω) · ωdr
∣∣∣∣ <∞.

Furthermore, Christ ([9]) proved that the flow map of the Cauchy problem:i∂tu− ∂2xu = u∂xu, t ∈ R, x ∈ R,

u(0, x) = u0(x), x ∈ R
(3.3)

is not continuous on Hs(R) for any s ∈ R. While, there are positive results for the

Cauchy problem: i∂tu−∆u = u(∇ · u), t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd.
(3.4)

Grünrock ([23]) proved that (3.4) is globally well-posed in L2(R) for d = 1 and

locally well-posed in Hs(Rd) for d ≥ 2 and s > sc (= d/2 − 1). For more general

problem: 
i∂tu−∆u = P (u, u,∇u,∇u), t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,

P is a polynomial which has no constant and linear terms,

(3.5)

there are many positive results for the well-posedness in the weighted Sobolev space

([1], [2], [7], [8], [48], [65]). Kenig, Ponce and Vega ([48]) also obtained that (3.5)

is locally well-posed in Hs(Rd) (without weight) for large enough s when P has no

quadratic terms.

The Benjamin–Ono equation:

∂tu+H∂2xu = u∂xu, (t, x) ∈ R× R (3.6)

is also related to the quadratic derivative nonlinear Schrödinger equation. It is

known that the flow map of (3.6) is not uniformly continuous on Hs(R) for s > 0

([51]). But the Benjamin–Ono equation has better structure than the equation
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(3.3). Actually, Tao ([68]) proved that (3.6) is globally well-posed in H1 by using

the gauge transform. Furthermore, Ionescu and Kenig ([37]) proved that (3.6) is

globally well-posed in Hs
r (R) for s ≥ 0, where Hs

r (R) is the Banach space of the all

real valued function f ∈ Hs(R).
Next, we introduce some known results for systems of quadratic nonlinear deriva-

tive Schrödinger equations. Ikeda, Katayama and Sunagawa ([36]) considered (3.1)

with null form nonlinearity and obtained the small data global existence and the

scattering in the weighted Sobolev space for the dimension d ≥ 2 under the condition

αβγ(1/α − 1/β − 1/γ) = 0. While, Ozawa and Sunagawa ([61]) gave the examples

of the quadratic derivative nonlinearity which causes the small data blow up for a

system of Schrödinger equations. As the known result for (3.1), we introduce the

work by Colin and Colin ([11]). They proved that the local existence of the solution

of (3.1) in Hs(Rd) for s > d/2 + 3. There are also some known results for a system

of Schrödinger equations with no derivative nonlinearity ([12], [13], [14], [28], [29]).

Our results are an extension of the results by Colin and Colin ([11]) and Grünrock

([23]).

Now, we give the main results in this chapter. To begin with, we define the

function spaces to construct the solution.

Definition 3.1. Let s, σ ∈ R.
(i) We define Żs

σ := {u ∈ C(R; Ḣs(Rd)) ∩ U2
σ∆L

2| ||u||Żs
σ
<∞} with the norm

||u||Żs
σ
:=

(∑
N

N2s||PNu||2U2
σ∆L2

)1/2

.

(ii) We define Zs
σ := {u ∈ C(R;Hs(Rd)) ∩ U2

σ∆L
2| ||u||Zs

σ
<∞} with the norm

||u||Zs
σ
:= ||u||Ż0

σ
+ ||u||Żs

σ
.

(iii) We define Ẏ s
σ := {u ∈ C(R; Ḣs(Rd)) ∩ V 2

σ∆L
2| ||u||Ẏ s

σ
<∞} with the norm

||u||Ẏ s
σ
:=

(∑
N

N2s||PNu||2V 2
σ∆L2

)1/2

.

(iv) We define Y s
σ := {u ∈ C(R;Hs(Rd)) ∩ V 2

σ∆L
2| ||u||Y s

σ
<∞} with the norm

||u||Y s
σ
:= ||u||Ẏ 0

σ
+ ||u||Ẏ s

σ
.
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Remark 3.2 ([25] Remark 2.23). Let E be a Banach space of continuous functions

f : R → H, for some Hilbert space H. We also consider the corresponding restriction

space to the interval I ⊂ R by

E(I) = {u ∈ C(I,H)|∃v ∈ E s.t. v(t) = u(t), t ∈ I}

endowed with the norm ||u||E(I) = inf{||v||E|v(t) = u(t), t ∈ I}. Obviously, E(I) is

also a Banach space.

For an interval I ⊂ R, We define Ẋs(I) := Żs
α(I)× Żs

β(I)× Żs
γ(I) and X

s(I) :=

Zs
α(I) × Zs

β(I) × Zs
γ(I). Furthermore, we put θ := αβγ(1/α − 1/β − 1/γ) and

κ := (α− β)(α− γ)(β + γ). Note that if α, β, γ ∈ R\{0} and θ ≥ 0, then κ ̸= 0.

Theorem 3.3. Let sc = d/2− 1.

(i) We assume that α, β, γ ∈ R\{0} satisfy κ ̸= 0 if d ≥ 4, and θ > 0 if d = 2, 3.

Then (3.1) is globally well-posed for small data in Ḣsc(Rd). More precisely, there

exists r > 0 such that for all initial data (u0, v0, w0) ∈ Br(Ḣ
sc(Rd) × Ḣsc(Rd) ×

Ḣsc(Rd)), there exists a solution

(u, v, w) ∈ Ẋsc
r ([0,∞)) ⊂ C([0,∞); Ḣsc(Rd))

of the system (3.1) on (0,∞). Such solution is unique in Ẋsc
r ([0,∞)) which is a

closed subset of Ẋsc([0,∞)) (see (3.49)). Moreover, the flow map

S+ : Br(Ḣ
sc(Rd)× Ḣsc(Rd)× Ḣsc(Rd)) ∋ (u0, v0, w0) 7→ (u, v, w) ∈ Ẋsc([0,∞))

is Lipschitz continuous.

(ii) The statement in (i) remains valid if we replace the space Ḣsc(Rd), Ẋsc([0,∞))

and Ẋsc
r ([0,∞)) by Hs(Rd), Xs([0,∞)) and Xs

r ([0,∞)) for s ≥ sc.

Remark 3.4. Due to the time reversibility of the system (3.1), the above theorems

also hold in corresponding intervals (−∞, 0). We denote the flow map with respect

to (−∞, 0) by S−.

Corollary 3.5. sc = d/2− 1.

(i) We assume that α, β, γ ∈ R\{0} satisfy κ ̸= 0 if d ≥ 4, and θ > 0 if d = 2, 3.

Let r > 0 be as in Theorem 3.3. For every (u0, v0, w0) ∈ Br(Ḣ
sc(Rd) × Ḣsc(Rd) ×

Ḣsc(Rd)), there exists (u±, v±, w±) ∈ Ḣsc(Rd)× Ḣsc(Rd)× Ḣsc(Rd) such that

S±(u0, v0, w0)− (eitα∆u±, e
itβ∆v±, e

itγ∆w±) → 0

in Ḣsc(Rd)× Ḣsc(Rd)× Ḣsc(Rd) as t→ ±∞.
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(ii) The statement in (i) remains valid if we replace the space Ḣsc(Rd) by Hs(Rd)

for s ≥ sc.

Theorem 3.6. Let sc = d/2− 1 and α, β, γ ∈ R\{0}.
(i) Let d ≥ 4. We assume (α− γ)(β+ γ) ̸= 0 and s > sc. Then (3.1) is locally well-

posed in Hs(Rd). More precisely, for any r > 0 and for all initial data (u0, v0, w0) ∈
Br(H

s(Rd)×Hs(Rd)×Hs(Rd)), there exist T = T (r) > 0 and a solution

(u, v, w) ∈ Xs([0, T ]) ⊂ C
(
[0, T ];Hs(Rd)

)
of the system (3.1) on (0, T ]. Such solution is unique in Xs

r ([0, T ]) which is a closed

subset of Xs([0, T ]). Moreover, the flow map

S+ : Br(H
s(Rd)×Hs(Rd)×Hs(Rd)) ∋ (u0, v0, w0) 7→ (u, v, w) ∈ Xs([0, T ])

is Lipschitz continuous.

(ii) Let d = 2, 3. We assume s > sc if θ > 0, s ≥ 1 if θ ≤ 0 and κ ̸= 0, and s > 1

if α = β. Then the statement in (i) remains valid.

(iii) Let d = 1. We assume s ≥ 0 if θ > 0, s ≥ 1 if θ = 0, and s ≥ 1/2 if θ < 0 and

(α− γ)(β + γ) ̸= 0. Then the statement in (i) remains valid.

Remark 3.7. For the case d = 1, 1 > s ≥ 1/2, θ < 0 and (α − γ)(β + γ) ̸= 0, we

prove the well-posedness as Xs([0, T ]) = Xs,b
α ([0, T ]) × Xs,b

β ([0, T ]) × Xs,b
γ ([0, T ]),

where Xs,b
σ denotes the standard Bourgain space which is the completion of the

Schwarz space with respect to the norm ||u||Xs,b
σ

:= ||⟨ξ⟩s⟨τ + σξ2⟩bũ||L2
τξ

(see Sec-

tion 3.8 ).

System (3.1) has the following conservation quantities (see Proposition 3.30):

M(u, v, w) := 2||u||2L2
x
+ ||v||2L2

x
+ ||w||2L2

x
,

H(u, v, w) := α||∇u||2L2
x
+ β||∇v||2L2

x
+ γ||∇w||2L2

x
+ 2Re(w,∇(u · v))L2

x
.

By using the conservation law for M and H, we obtain the following result.

Theorem 3.8.

(i) Let d = 1 and assume that α, β, γ ∈ R\{0} satisfy θ > 0. For every (u0, v0, w0) ∈
L2(R)×L2(R)×L2(R), we can extend the local L2 solution of Theorem 3.6 globally

in time.

(ii) We assume that α, β, γ ∈ R\{0} have the same sign and satisfy κ ̸= 0 if

d = 2, 3 and (α − γ)(β + γ) ̸= 0 if d = 1. There exists r > 0 such that for every

(u0, v0, w0) ∈ Br(H
1(Rd)×H1(Rd)×H1(Rd)), we can extend the local H1 solution

of Theorem 3.6 globally in time.
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While, we obtain the negative result as follows.

Theorem 3.9. Let d ≥ 1 and α, β, γ ∈ R\{0}. We assume s ∈ R if (α−γ)(β+γ) =
0, s < 1 if θ = 0, and s < 1/2 if θ < 0. Then the flow map of (3.1) is not C2 in

Hs(Rd).

Furthermore, for the equation (3.4), we obtain the following result.

Theorem 3.10. Let d ≥ 2 and sc = d/2 − 1. Then, the equation (3.4) is globally

well-posed for small data in Ḣsc(Rd) (resp. Hs(Rd) for s ≥ sc) and the solution

converges to a free solution in Ḣsc(Rd) (resp. Hs(Rd) for s ≥ sc) asymptotically in

time.

Remark 3.11. The results by Grünrock ([23]) are not contained the critical case

s = sc and global property of the solution. In this sense, Theorem 3.10 is the

extension of the results by Grünrock ([23]).

The main tools of our results are Up space and V p space which are applied to

prove the well-posedness and scattering for KP-II equation at the scaling critical

regularity by Hadac, Herr and Koch ([25], [26]). After their work, Up space and

V p space are used to prove the well-posedness of the 3D periodic quintic nonlinear

Schrödinger equation at the scaling critical regularity by Herr, Tataru and Tzvetkov

([31]) and to prove the well-posedness and the scattering of the quadratic Klein-

Gordon system at the scaling critical regularity by Schottdorf ([64]).

The rest of this chapter is planned as follows. In Sections 2, 3 and 4, we will give

the bilinear and trilinear estimates which will be used to prove the well-posedness.

In Section 5, we will give the proof of the well-posedness and the scattering (Theo-

rems 3.3, 3.6, 3.10 and Corollary 3.5). In Section 6, we will give the a priori esti-

mates and show Theorem 3.8. In Section 7, we will give the proof of C2-ill-posedness

(Theorem 3.9). In Section 8, we will give the proof of the bilinear estimates for the

standard 1-dimensional Bourgain norm under the condition (α− γ)(β + γ) ̸= 0 and

αβγ(1/α− 1/β − 1/γ) ̸= 0.

3.2 Strichartz and bilinear Strichartz estimates

In this section, implicit constants in ≪ actually depend on σ1, σ2. First, we give

the Strichartz estimate for the Schrödinger equation.
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Proposition 3.12 (Strichartz estimate). Let σ ∈ R\{0} and (p, q) be an admissible

pair of exponents for the Schrödinger equation, i.e. 2 ≤ q ≤ 2d/(d− 2) (2 ≤ q <∞
if d = 2, 2 ≤ q ≤ ∞ if d = 1), 2/p = d(1/2− 1/q). Then, we have

||eitσ∆φ||Lp
tL

q
x
. ||φ||L2

x

for any φ ∈ L2(Rd).

By Proposition 2.8 and 3.12, we have following:

Corollary 3.13. Let σ ∈ R\{0} and (p, q) be an admissible pair of exponents for

the Schrödinger equation, i.e. 2 ≤ q ≤ 2d/(d− 2) (2 ≤ q < ∞ if d = 2, 2 ≤ q ≤ ∞
if d = 1), 2/p = d(1/2− 1/q). Then, we have

||u||Lp
tL

q
x
. ||u||Up

σ∆
, u ∈ Up

σ∆L
2, (3.7)

||u||Lp
tL

q
x
. ||u||

V p̃
σ∆
, u ∈ V p̃

σ∆L
2, (1 ≤ p̃ < p). (3.8)

Next, we show the bilinear Stricharz estimate.

Lemma 3.14. Let d ∈ N, sc = d/2 − 1, b > 1/2 and σ1, σ2 ∈ R\{0}. For any

dyadic numbers L, H ∈ 2Z with L≪ H, we have

||PHu1PLu2||L2
tx
. Lsc

(
L

H

)1/2

||PHu1||X0,b
σ1
||PLu2||X0,b

σ2
, (3.9)

where ||u||X0,b
σ

:= ||⟨τ + σ|ξ|2⟩bũ||L2
τξ
.

Proof. For the case d = 2 and (σ1, σ2) = (1,±1), the estimate (3.9) is proved by

Colliander, Delort, Kenig, and Staffilani ([15], Lemma 1). The proof for general case

as following is similar to their argument.

We put g1(τ1, ξ1) := ⟨τ1+σ1|ξ1|2⟩bP̃Hu1(τ1, ξ1), g2(τ2, ξ2) := ⟨τ2+σ2|ξ2|2⟩bP̃Lu2(τ2, ξ2)

and AN := {ξ ∈ Rd|N/2 ≤ |ξ| ≤ 2N} for a dyadic number N . By the Plancherel’s

theorem and the duality argument, it is enough to prove the estimate

I :=

∣∣∣∣∫
R

∫
R

∫
AL

∫
AH

f(τ1 + τ2, ξ1 + ξ2)
g1(τ1, ξ1)

⟨τ1 + σ1|ξ1|2⟩b
g2(τ2, ξ2)

⟨τ2 + σ2|ξ2|2⟩b
dξ1dξ2dτ1dτ2

∣∣∣∣
. L(d−1)/2

H1/2
||f ||L2

τξ
||g1||L2

τξ
||g2||L2

τξ

for f ∈ L2
τξ. We change the variables (τ1, τ2) 7→ (θ1, θ2) as θi = τi + σi|ξi|2 (i = 1, 2)

and put

F (θ1, θ2, ξ1, ξ2) := f(θ1 + θ2 − σ1|ξ1|2 − σ2|ξ2|2, ξ1 + ξ2),

Gi(θi, ξi) := gi(θi − σi|ξi|2, ξi), (i = 1, 2).
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Then, we have

I ≤
∫
R

∫
R

1

⟨θ1⟩b⟨θ2⟩b

(∫
AL

∫
AH

|F (θ1, θ2, ξ1, ξ2)G1(θ1, ξ1)G2(θ2, ξ2)|dξ1dξ2
)
dθ1dθ2

.
∫
R

∫
R

1

⟨θ1⟩b⟨θ2⟩b

(∫
AL

∫
AH

|F (θ1, θ2, ξ1, ξ2)|2dξ1dξ2
)1/2

||G1(θ1, ·)||L2
ξ
||G2(θ2, ·)||L2

ξ
dθ1dθ2

by the Cauchy-Schwarz inequality. For 1 ≤ j ≤ d, we put

Aj
H := {ξ1 = (ξ

(1)
1 , · · · , ξ(d)1 ) ∈ Rd| H/2 ≤ |ξ1| ≤ 2H, |ξ(j)1 | ≥ H/(2

√
d)}

and

Kj(θ1, θ2) :=

∫
AL

∫
Aj

H

|F (θ1, θ2, ξ1, ξ2)|2dξ1dξ2.

We consider only the estimate for K1. The estimates for other Kj are obtained by

the same way.

Assume d ≥ 2. By changing the variables (ξ1, ξ2) = (ξ
(1)
1 , · · · , ξ(d)1 , ξ

(1)
2 , · · · , ξ(d)2 ) 7→

(µ, ν, η) as 
µ = θ1 + θ2 − σ1|ξ1|2 − σ2|ξ2|2 ∈ R,

ν = ξ1 + ξ2 ∈ Rd,

η = (ξ
(2)
2 · · · , ξ(d)2 ) ∈ Rd−1,

(3.10)

we have

dµdνdη = 2|σ1ξ(1)1 − σ2ξ
(1)
2 |dξ1dξ2

and

F (θ1, θ2, ξ1, ξ2) = f(µ, ν).

We note that |σ1ξ(1)1 − σ2ξ
(1)
2 | ∼ H for any (ξ1, ξ2) ∈ A1

H × AL with L ≪ H.

Furthermore, ξ2 ∈ AL implies that η ∈ [−2L, 2L]d−1. Therefore, we obtain

K1(θ1, θ2) .
1

H

∫
[−2L,2L]d−1

∫
Rd

∫
R
|f(µ, ν)|2dµdνdη ∼ Ld−1

H
||f ||2L2

τξ
.

As a result, we have

I .
∫
R

∫
R

1

⟨θ1⟩b⟨θ1⟩b

(
d∑

j=1

Kj(θ1, θ2)

)1/2

||G1(θ1, ·)||L2
ξ
||G2(θ2, ·)||L2

ξ
dθ1dθ2

. L(d−1)/2

H1/2
||f ||L2

τξ
||g1||L2

τξ
||g2||L2

τξ

by the Cauchy-Schwarz inequality and changing the variables (θ1, θ2) 7→ (τ1, τ2) as

θi = τi + σi|ξi|2 (i = 1, 2).
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For d = 1, we obtain the same result by changing the variables (ξ1, ξ2) 7→ (µ, ν)

as µ = θ1 + θ2 − σ1|ξ1|2 − σ2|ξ2|2, ν = ξ1 + ξ2 instead of (3.10).

Corollary 3.15. Let d ∈ N, sc = d/2− 1 and σ1, σ2 ∈ R\{0}.
(i) If d ≥ 2, then for any dyadic numbers L, H ∈ 2Z with L≪ H, we have

||PHu1PLu2||L2
tx
. Lsc

(
L

H

)1/2

||PHu1||U2
σ1∆

L2 ||PLu2||U2
σ2∆

L2 , (3.11)

||PHu1PLu2||L2
tx
. Lsc

(
L

H

)1/2(
1 + ln

H

L

)2

||PHu1||V 2
σ1∆

L2 ||PLu2||V 2
σ2∆

L2 . (3.12)

(ii) If d = 1, then for any dyadic numbers L, H ∈ 2Z with L≪ H , we have

||PHu1PLu2||L2([0,1]×R) .
1

H1/2
||PHu1||U2

σ1∆
L2 ||PLu2||U2

σ2∆
L2 , (3.13)

||PHu1PLu2||L2([0,1]×R) . min

{
L1/6,

(1 + lnH)2

H1/2

}
||PHu1||V 2

σ1∆
L2||PLu2||V 2

σ2∆
L2 .

(3.14)

Proof. To obtain (3.11) and (3.13), we use the argument of the proof of Corollary

2.21 (27) in [25]. Let ϕ1, ϕ2 ∈ L2(Rd) and define ϕλ
j (x) := ϕj(λx) (j = 1, 2) for

λ ∈ R. By using the rescaling (t, x) 7→ (λ2t, λx), we have

||PH(e
itσ1∆ϕ1)PL(e

itσ2∆ϕ2)||L2([−T,T ]×Rd)

= λsc+2||PλH(e
itσ1∆ϕλ

1)PλL(e
itσ2∆ϕλ

2)||L2([−λ−2T,λ−2T ]×Rd).

Therefore by putting λ =
√
T and Lemma 3.14, we have

||PH(e
itσ1∆ϕ1)PL(e

itσ2∆ϕ2)||L2([−T,T ]×Rd)

.
√
T

2(sc+1)
Lsc

(
L

H

)1/2

||P√
THϕ

√
T

1 ||L2
x
||P√

TLϕ
√
T

2 ||L2
x

= Lsc

(
L

H

)1/2

||PHϕ1||L2
x
||PLϕ2||L2

x
.

Let T → ∞, then we obtain

||PH(e
itσ1∆ϕ1)PL(e

itσ2∆ϕ2)||L2
tx
. Lsc

(
L

H

)1/2

||PHϕ1||L2
x
||PLϕ2||L2

x

and (3.11), (3.13) follow from proposition 2.8.

To obtain (3.12) and (3.14), we first prove the U4 estimate for d ≥ 2 and U8

estimate for d = 1. Assume d ≥ 2. By the Cauchy-Schwarz inequality, the Sobolev
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embedding Ẇ sc,2d/(d−1)(Rd) ↪→ L2d(Rd) and (3.7), we have

||PHu1PLu2||L2
tx
. Lsc||PHu1||L4

tL
2d/(d−1)
x

||PLu2||L4
tL

2d/(d−1)
x

. Lsc||PHu1||U4
σ1∆

L2 ||PLu2||U4
σ2∆

L2

(3.15)

for any dyadic numbers L, H ∈ 2Z. While if d = 1, then by the Hölder’s inequality

and (3.7), we have

||PHu1PLu2||L2([0,1]×R) ≤ ||1[0,1)||L4
t
||PHu1||L8

tL
4
x
||PLu2||L8

tL
4
x

. ||PHu1||U8
σ1∆

L2 ||PLu2||U8
σ2∆

L2

(3.16)

for any dyadic numbers L, H ∈ 2Z. We use the interpolation between (3.11) and

(3.15) via Proposition 2.9. Then, we get (3.12) by the same argument of the proof

of Corollary 2.21 (28) in [25]. The estimate (3.14) follows from

||PHu1PLu2||L2([0,1]×R) ≤ ||1[0,1)||L3
t
L1/6||PHu1||L12

t L3
x
||PLu2||L12

t L3
x

. L1/6||PHu1||V 2
σ1∆

L2 ||PLu2||V 2
σ2∆

L2 .
(3.17)

and the interpolation between (3.13) and (3.16), where we used the Hölder’s inequal-

ity, the Sobolev embedding Ẇ 1/6,3(R) ↪→ L6(R) and (3.8) to obtain (3.17).

3.3 Time global estimates

In this and next section, implicit constants in ≪ actually depend on σ1, σ2, σ3.

Lemma 3.16. Let d ∈ N. We assume that σ1, σ2, σ3 ∈ R\{0} satisfy (σ1+σ2)(σ2+

σ3)(σ3 + σ1) ̸= 0 and (τ1, ξ1), (τ2, ξ2), (τ3, ξ3) ∈ R × Rd satisfy τ1 + τ2 + τ3 = 0,

ξ1 + ξ2 + ξ3 = 0.

(i) If there exist 1 ≤ i, j ≤ 3 such that |ξi| ≪ |ξj|, then we have

max
1≤j≤3

|τj + σj|ξj|2| & max
1≤j≤3

|ξj|2. (3.18)

(ii) If σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0, then we have (3.18).

Proof. By the triangle inequality and the completing the square, we have

M0 := max
1≤j≤3

|τj + σj|ξj|2|

& |σ1|ξ1|2 + σ2|ξ2|2 + σ3|ξ3|2|

= |(σ1 + σ3)|ξ1|2 + 2σ3ξ1 · ξ2 + (σ2 + σ3)|ξ2|2|

= |σ1 + σ3|

∣∣∣∣∣
∣∣∣∣ξ1 + σ3

σ1 + σ3
ξ2

∣∣∣∣2 + σ1σ2σ3
(σ1 + σ3)2

(
1

σ1
+

1

σ2
+

1

σ3

)
|ξ2|2

∣∣∣∣∣ .
(3.19)
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We first prove (i). By the symmetry, we can assume |ξ1| ∼ |ξ3| & |ξ2|. If |ξ1| ≫ |ξ2|,
then we have M0 & |ξ1|2 ∼ max1≤j≤3 |ξj|2 by (3.19). Next, we prove (ii). By the

symmetry, we can assume |ξ1| ∼ |ξ2| & |ξ3|. If σ1σ2σ3(1/σ1+1/σ2+1/σ3) > 0, then

we have M0 & |ξ2|2 ∼ max1≤j≤3 |ξj|2 by (3.19).

In the following Propositions and Corollaries in this and next section, we assume

PN1u1 ∈ V 2
σ1∆

L2, PN2u2 ∈ V 2
σ2∆

L2 and PN3u3 ∈ V 2
σ3∆

L2 for each N1, N2, N3 ∈ 2Z.

Propositions 3.17, 3.18 and its proofs are based on Proposition 3.1 in [25].

Proposition 3.17. Let d ≥ 2, sc = d/2 − 1, 0 < T ≤ ∞ and σ1, σ2, σ3 ∈ R\{0}
satisfy (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) ̸= 0. For any dyadic numbers N2, N3 ∈ 2Z with

N2 ∼ N3, we have∣∣∣∣∣ ∑
N1≪N2

Nmax

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣∣
.
( ∑

N1≪N2

N2sc
1 ||PN1u1||2V 2

σ1∆
L2

)1/2

||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2 ,

(3.20)

where Nmax := max
1≤j≤3

Nj.

Proof. We define fj,Nj ,T := 1[0,T )PNj
uj (j = 1, 2, 3). For sufficiently large constant

C, we putM := C−1N2
max and decompose Id = Q

σj∆
<M +Q

σj∆
≥M (j = 1, 2, 3). We divide

the integrals on the left-hand side of (3.20) into eight piece of the form∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt (3.21)

with Q
σj∆
j ∈ {Qσj∆

≥M , Q
σj∆
<M} (j = 1, 2, 3). By the Plancherel’s theorem, we have

(3.21) = c

∫
τ1+τ2+τ3=0

∫
ξ1+ξ2+ξ3=0

3∏
j=1

F [Q
σj∆
j fj,Nj ,T ](τj, ξj),

where c is a constant. Therefore, Lemma 3.16 (i) implies that∫
R

∫
Rd

(Qσ1∆
<M f1,N1,T )(Q

σ2∆
<M f2,N2,T )(Q

σ3∆
<M f3,N3,T )dxdt = 0

when N1 ≪ N2. So, let us now consider the case that Q
σj∆
j = Q

σj∆
≥M for some

1 ≤ j ≤ 3.
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First, we consider the case Qσ1∆
1 = Qσ1∆

≥M . By the Hölder’s inequality and the

Sobolev embedding Ḣsc(Rd) ↪→ Ld(Rd), we have∣∣∣∣∣ ∑
N1≪N2

Nmax

∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣∣
.
∣∣∣∣∣
∣∣∣∣∣ ∑
N1≪N2

Nmax|∇|scQσ1∆
≥M f1,N1,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

||Qσ2∆
2 f2,N2,T ||L4

tL
2d/(d−1)
x

||Qσ3∆
3 f3,N3,T ||L4

tL
2d/(d−1)
x

.

(3.22)

Furthermore, by the L2 orthogonality and (2.1) with p = 2, we have∣∣∣∣∣
∣∣∣∣∣ ∑
N1≪N2

Nmax|∇|scQσ1∆
≥M f1,N1,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

.
( ∑

N1≪N2

N2
maxN

2sc
1 M−1||f1,N1,T ||2V 2

σ1∆
L2

)1/2

While by (3.8) and (2.2), we have

||Qσ2∆
2 f2,N2,T ||L4

tL
2d/(d−1)
x

. ||f2,N2,T ||V 2
σ2∆

L2 , ||Qσ3∆
3 f3,N3,T ||L4

tL
2d/(d−1)
x

. ||f3,N3,T ||V 2
σ3∆

L2 .

Therefore, we obtain∣∣∣∣∣ ∑
N1≪N2

Nmax

∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣∣
.
( ∑

N1≪N2

N2sc
1 ||PN1u1||2V 2

σ1∆
L2

)1/2

||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2 ,

since M ∼ N2
max and ||1[0,T )f ||V 2

σ∆L2 . ||f ||V 2
σ∆L2 for any σ ∈ R and any T ∈ (0,∞].

Next, we consider the case Qσ3∆
3 = Qσ3∆

≥M . By the Cauchy-Schwarz inequality, we

have ∣∣∣∣∣ ∑
N1≪N2

Nmax

∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
≥M f3,N3,T )dxdt

∣∣∣∣∣
≤

∑
N1≪N2

Nmax||(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )||L2

tx
||Qσ3∆

≥M f3,N3,T ||L2
tx
.

Furthermore, by (2.1) with p = 2, we have

||Qσ3∆
≥M f3,N3,T ||L2

tx
.M−1/2||f3,N3,T ||V 2

σ3∆
L2 . (3.23)

While by (3.12), (2.2) and the Cauchy-Schwarz inequality for the dyadic sum, we
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have ∑
N1≪N2

||(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )||L2

tx

.
∑

N1≪N2

N sc
1

(
N1

N2

)1/4

||f1,N1,T ||V 2
σ1∆

L2||f2,N2,T ||V 2
σ2∆

L2

.
( ∑

N1≪N2

N2sc
1 ||f1,N1,T ||2V 2

σ1∆
L2

)1/2

||f2,N2,T ||V 2
σ2∆

L2 .

(3.24)

Therefore, we obtain∣∣∣∣∣ ∑
N1≪N2

Nmax

∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
≥M f3,N3,T )dxdt

∣∣∣∣∣
.
( ∑

N1≪N2

N2sc
1 ||PN1u1||2V 2

σ1∆
L2

)1/2

||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2 ,

since M ∼ N2
max and ||1[0,T )f ||V 2

σ∆L2 . ||f ||V 2
σ∆L2 for any σ ∈ R and any T ∈ (0,∞].

For the case Qσ2∆
2 = Qσ2∆

≥M is proved in exactly same way as the case Qσ3∆
3 =

Qσ3∆
≥M .

Proposition 3.18. Let d ≥ 2, sc = d/2 − 1, s ≥ 0, 0 < T ≤ ∞ and σ1, σ2,

σ3 ∈ R\{0} satisfy (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) ̸= 0. For any dyadic numbers N1,

N2 ∈ 2Z with N1 ∼ N2, we have ∑
N3≪N2

N2s
3 sup

||u3||V 2
σ3∆

L2=1

∣∣∣∣Nmax

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣2
1/2

. N sc
1 ||PN1u1||V 2

σ1∆
L2N s

2 ||PN2u2||V 2
σ2∆

L2 ,

(3.25)

where Nmax := max
1≤j≤3

Nj.

Proof. We define fj,Nj ,T := 1[0,T )PNj
uj (j = 1, 2, 3). For sufficiently large constant

C, we putM := C−1N2
max and decompose Id = Q

σj∆
<M +Q

σj∆
≥M (j = 1, 2, 3). We divide

the integrals on the left-hand side of (3.25) into eight piece of the form∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

with Q
σj∆
j ∈ {Qσj∆

≥M , Q
σj∆
<M} (j = 1, 2, 3). By the same argument of the proof of

Proposition 3.17, we consider only the case that Q
σj∆
j = Q

σj∆
≥M for some 1 ≤ j ≤ 3.
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First, we consider the case Qσ1∆
1 = Qσ1∆

≥M . By the Cauchy-Schwarz inequality, we

have ∣∣∣∣∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣
≤ ||Qσ1∆

≥M f1,N1,T ||L2
tx
||(Qσ2∆

2 f2,N2,T )(Q
σ3∆
3 f3,N3,T )||L2

tx
.

Furthermore by (2.1) with p = 2, we have

||Qσ1∆
≥M f1,N1,T ||L2

tx
.M−1/2||f1,N1,T ||V 2

σ1∆
L2 . (3.26)

While by (3.12) and (2.2), we have

||(Qσ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )||L2

tx

. N sc
3

(
N3

N2

)1/4

||f2,N2,T ||V 2
σ2∆

L2 ||f3,N3,T ||V 2
σ3∆

L2

(3.27)

when N3 ≪ N2. Therefore, we obtain∑
N3≪N2

N2s
3 sup

||u3||V 2
σ3∆

L2=1

∣∣∣∣Nmax

∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣2
. N2sc

1 ||PN1u1||2V 2
σ1∆

L2N
2s
2 ||PN2u2||2V 2

σ2∆
L2

by M ∼ N2
max, N1 ∼ N2 and ||1[0,T )f ||V 2

σ∆L2 . ||f ||V 2
σ∆L2 for any σ ∈ R and any

T ∈ (0,∞].

Next, we consider the case Qσ3∆
3 = Qσ3∆

≥M . We define P̃N3 = PN3/2 + PN3 + P2N3 .

By the Cauchy-Schwarz inequality, we have∣∣∣∣∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
≥M f3,N3,T )dxdt

∣∣∣∣
. ||P̃N3((Q

σ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T ))||L2

tx
||Qσ3∆

≥M f3,N3,T ||L2
tx

since PN3 = P̃N3PN3 . Furthermore, by (2.1) with p = 2, we have

||Qσ3∆
≥M f3,N3,T ||L2

tx
.M−1/2||f3,N3,T ||V 2

σ3∆
L2 . (3.28)

Therefore, we obtain∑
N3≪N2

N2s
3 sup

||u3||V 2
σ3∆

L2=1

∣∣∣∣Nmax

∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
≥M f3,N3,T )dxdt

∣∣∣∣2
.

∑
N3≪N2

N2s
3 N

2
maxM

−1||P̃N3((Q
σ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T ))||2L2

tx

. N2s
2 ||(Qσ1∆

1 f1,N1,T )(Q
σ2∆
2 f2,N2,T )||2L2

tx

. N2sc
1 ||PN1u1||2V 2

σ1∆
L2N

2s
2 ||PN2u2||2V 2

σ2∆
L2

(3.29)
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by M ∼ N2
max, N1 ∼ N2, L

2-orthogonality, (3.15), the embedding V 2
−,rc ↪→ U4, (2.2)

and ||1[0,T )f ||V 2
σ∆L2 . ||f ||V 2

σ∆L2 for any σ ∈ R and any T ∈ (0,∞].

For the case Qσ2∆
2 = Qσ2∆

≥M is proved in exactly same way as the case Qσ1∆
1 =

Qσ1∆
≥M .

Proposition 3.19. Let sc = d/2− 1 and , 0 < T ≤ ∞.

(i) Let d ≥ 4. For any σ1, σ2, σ3 ∈ R\{0} and any dyadic numbers N1, N2, N3 ∈ 2Z

, we have ∣∣∣∣Nmax

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣
. N sc

max||PN1u1||V 2
σ1∆

L2 ||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2 ,

(3.30)

where Nmax := max
1≤j≤3

Nj.

(ii) Let d = 2, 3 and σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0. For any dyadic numbers N1,

N2, N3 ∈ 2Z, we have (3.30).

Proof. First, we consider the case d ≥ 4. By the Hölder’s inequality, the Sobolev

embedding Ẇ sc−1,6d/(3d−4)(Rd) ↪→ L3d/4(Rd) and (3.8), we have

(L.H.S of (3.30)) . Nmax||PN1u1 ||L3
tL

6d/(3d−4)
x

||PN2u2 ||L3
tL

6d/(3d−4)
x

|||∇|sc−1PN3u3 ||
L3
t L

6d/(3d−4)
x

. N sc
max||PN1u1 ||V 2

σ1∆
L2 ||PN2u2||V 2

σ2∆
L2 ||PN3u3 ||V 2

σ3∆
L2 .

Next, we consider the case d = 2, 3 and σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0. We

define fj,Nj ,T := 1[0,T )PNj
uj (j = 1, 2, 3). For sufficiently large constant C, we put

M := C−1N2
max and decompose Id = Q

σj∆
<M + Q

σj∆
≥M (j = 1, 2, 3). We divide the

integral on the left-hand side of (3.30) into eight piece of the form∫
R

∫
Rd

(Qσ1∆
1 f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

with Q
σj∆
j ∈ {Qσj∆

≥M , Q
σj∆
<M} (j = 1, 2, 3). Since σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0,

Lemma 3.16 (ii) implies that∫
R

∫
Rd

(Qσ1∆
<M f1,N1,T )(Q

σ2∆
<M f2,N2,T )(Q

σ3∆
<M f3,N3,T )dxdt = 0

for any N1, N2, N3 ∈ 2Z. So, let us now consider the case that Q
σj∆
j = Q

σj∆
≥M for

some 1 ≤ j ≤ 3. We consider only for the case Qσ1∆
1 = Qσ1∆

≥M since for the other

cases is same manner.
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By the Cauchy-Schwarz inequality, we have∣∣∣∣∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣
≤ ||Qσ1∆

≥M f1,N1,T ||L2
tx
||(Qσ2∆

2 f2,N2,T )(Q
σ3∆
3 f3,N3,T )||L2

tx
.

Furthermore by (2.1) with p = 2, we have

||Qσ1∆
≥M f1,N1,T ||L2

tx
.M−1/2||f1,N1,T ||V 2

σ1∆
L2 . (3.31)

While by (3.15), the embedding V 2
−,rc ↪→ U4 and (2.2), we have

||(Qσ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )||L2

tx
. N sc

max||f2,N2,T ||V 2
σ2∆

L2 ||f3,N3,T ||V 2
σ3∆

L2 . (3.32)

Therefore, we obtain∣∣∣∣Nmax

∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣
. N sc

max||PN1u1||V 2
σ1∆

L2 ||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2 ,

since M ∼ N2
max and ||1[0,T )f ||V 2

σ∆L2 . ||f ||V 2
σ∆L2 for any σ ∈ R and any T ∈

(0,∞].

Proposition 3.18 and Proposition 3.19 imply the following:

Corollary 3.20. Let σ1, σ2, σ3 ∈ R\{0} satisfy (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) ̸= 0 if

d ≥ 4, and σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0 if d = 2, 3. Then the estimate (3.25)

holds if we replace
∑

N3≪N2
by
∑

N3.N2
.

3.4 Time local estimates

Proposition 3.21. Let s > sc (= d/2− 1), 0 < T < ∞ if d ≥ 2 and s ≥ 0, T = 1

if d = 1. We assume σ1, σ2, σ3 ∈ R\{0} satisfy (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) ̸= 0.

For any dyadic numbers N2, N3 ∈ 2Z with N2 ∼ N3, we have∣∣∣∣∣ ∑
N1≪N2

Nmax

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣∣
. T δ

( ∑
N1≪N2

(N1 ∨ 1)2s||PN1u1||2V 2
σ1∆

L2

)1/2

||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2

(3.33)

for some δ > 0, where Nmax := max
1≤j≤3

Nj.
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Proof. First, we assume d ≥ 2. We choose δ > 0 satisfying δ < (s−sc)/2 and δ ≪ 1.

In the proof of proposition 3.17, for L.H.S of (3.22), we use the Sobolev embedding

Ḣsc+2δ ↪→ Ld/(1−2δ) instead of Ḣsc ↪→ Ld . Then we have∣∣∣∣∣ ∑
N1≪N2

Nmax

∫
R

∫
Rd

(Qσ1∆
≥M f1,N1,T )(Q

σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣∣
. ||1[0,T )||L1/δ

t

∣∣∣∣∣
∣∣∣∣∣ ∑
N1≪N2

Nmax|∇|sc+2δQσ1∆
≥M f1,N1,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

||Qσ2∆
2 f2,N2,T ||Lp

tL
q
x
||Qσ3∆

3 f3,N3,T ||Lp
tL

q
x

≤ T δ

∣∣∣∣∣
∣∣∣∣∣ ∑
N1≪N2

Nmax⟨∇⟩sQσ1∆
≥M f1,N1,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

||Qσ2∆
2 f2,N2,T ||Lp

tL
q
x
||Qσ3∆

3 f3,N3,T ||Lp
tL

q
x

with (p, q) = (4/(1−2δ), 2d/(d−1+2δ)) which is the admissible pair of the Strichartz

estimate. Furthermore for L.H.S of (3.23), we use the Hölder’s inequality and (2.1)

with p = 2/(1− 2δ) instead of p = 2. Then we have

||Qσ3∆
≥M f3,N3,T ||L2

tx
≤ ||1[0,T )||L1/δ

t
||Qσ3∆

≥M f3,N3,T ||L2/(1−2δ)
t L2

x
. T δM−(1−2δ)/2||f3,N3,T ||V 2

σ3∆
L2 .

For the other part, by the same way of the proof of proposition 3.17, we obtain

(3.33).

Next, we assume d = 1. In the proof of proposition 3.17, for L.H.S of (3.22), we

use the Hölder’s inequality as follows:∣∣∣∣∣ ∑
N1≪N2

Nmax

∫
R

∫
R
(Qσ1∆

≥M f1,N1,T )(Q
σ2∆
2 f2,N2,T )(Q

σ3∆
3 f3,N3,T )dxdt

∣∣∣∣∣
. ||1[0,T )||L4

t

∣∣∣∣∣
∣∣∣∣∣ ∑
N1≪N2

NmaxQ
σ1∆
≥M f1,N1,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

||Qσ2∆
2 f2,N2,T ||L8

tL
4
x
||Qσ3∆

3 f3,N3,T ||L8
tL

4
x
.

We note that (8, 4) is the admissible pair of the Strichartz estimate for d = 1.

Furthermore for the first inequality in (3.24), we use (3.14) instead of (3.12). For

the other part, by the same way of the proof of proposition 3.17, we obtain (3.33)

with T = 1.

Proposition 3.22. Let s > sc (= d/2− 1), 0 < T < ∞ if d ≥ 2 and s ≥ 0, T = 1

if d = 1. We assume σ1, σ2, σ3 ∈ R\{0} satisfy (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) ̸= 0.

For any dyadic numbers N1, N2 ∈ 2Z with N1 ∼ N2, we have ∑
N3≪N2

N2s
3 sup

||u3||V 2
σ3∆

L2=1

∣∣∣∣Nmax

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣2
1/2

. T δ(N1 ∨ 1)s||PN1u1||V 2
σ1∆

L2(N2 ∨ 1)s||PN2u2||V 2
σ2∆

L2 .

(3.34)
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for some δ > 0, where Nmax := max
1≤j≤3

Nj.

Proof. First, we assume d ≥ 2. We choose δ > 0 satisfying δ < (s−sc)/2 and δ ≪ 1.

In the proof of proposition 3.18, for L.H.S of (3.26) and (3.28), we use the Hölder’s

inequality and (2.1) with p = 2/(1− 2δ) instead of p = 2. Then we have

||Qσ1∆
≥M f1,N1,T ||L2

tx
≤ ||1[0,T )||L1/δ

t
||Qσ1∆

≥M f1,N1,T ||L2/(1−2δ)
t L2

x
. T δM−(1−2δ)/2||f1,N1,T ||V 2

σ1∆
L2 ,

||Qσ3∆
≥M f3,N3,T ||L2

tx
≤ ||1[0,T )||L1/δ

t
||Qσ3∆

≥M f3,N3,T ||L2/(1−2δ)
t L2

x
. T δM−(1−2δ)/2||f3,N3,T ||V 2

σ3∆
L2 .

For the other part, by the same way of the proof of proposition 3.18, we obtain

(3.34).

Next, we assume d = 1. In the proof of proposition 3.18, for L.H.S of (3.27), we

use (3.14) instead of (3.12) and for the third inequality in (3.29), we use (3.16) and

V 2
−,rc ↪→ U8 instead of (3.15) and V 2

−,rc ↪→ U4. For the other part, by the same way

of the proof of proposition 3.18, we obtain (3.34) with T = 1.

Proposition 3.23.

(i) Let d ≥ 4, s > sc and 0 < T < ∞. For any σ1, σ2, σ3 ∈ R\{0}, any dyadic

numbers N1, N2, N3 ∈ 2Z and 1 ≤ j ≤ 3, we have∣∣∣∣Nj

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣
. T δ(Nj ∨ 1)s||PN1u1||V 2

σ1∆
L2 ||PN2u2||V 2

σ2∆
L2 ||PN3u3||V 2

σ3∆
L2 .

(3.35)

for some δ > 0.

(ii) Let d = 1, 2, 3, s ≥ 1, 0 < T < ∞. For any σ1, σ2, σ3 ∈ R\{0}, any dyadic

numbers N1, N2, N3 ∈ 2Z and 1 ≤ j ≤ 3 , we have (3.35).

(iii) Let s > sc, 0 < T < ∞ if d = 2, 3 and s ≥ 0, T = 1 if d = 1. We assume σ1,

σ2, σ3 ∈ R\{0} satisfy σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0. For any dyadic numbers

N1, N2, N3 ∈ 2Z with N1 ∼ N2 ∼ N3 and 1 ≤ j ≤ 3, we have (3.35).

Proof. By symmetry, it is enough to prove for j = 3. We choose δ > 0 satisfying

δ < (s− sc)/2 and δ ≪ 1.

First, we consider the case d ≥ 4. By the Hölder’s inequality and the Sobolev

embedding Ẇ sc+2δ−1,6d/(3d−4+12δ)(Rd) ↪→ L3d/4(Rd), we have∣∣∣∣∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣
. ||1[0,T )||L1/δ

t
||PN1u||L3

tL
6d/(3d−4)
x

||PN2u2||L3
tL

6d/(3d−4)
x

|||∇|sc+2δ−1(PN3u3)||Lp
tL

q
x
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with (p, q) = (3/(1 − 3δ), 6d/(3d − 4 + 12δ) which is the admissible pair of the

Strichartz estimate. Therefore we obtain (3.35) by (3.8).

Second, we consider the case d = 1, 2, 3 and σ1, σ2, σ3 ∈ R\{0} are arbitary. By

the Hölder’s inequality and (3.8), we have∣∣∣∣∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣
. ||1[0,T )||L4/(4−d)

t
||PN1u1||L12/d

t L3
x
||PN2u2||L12/d

t L3
x
||PN3u3||L12/d

t L3
x

. T 1−d/4||PN1u1||V 2
σ1∆

L2 ||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2

and obtain (3.35) as δ = 1− d/4 for s ≥ 1.

Third, we consider the case d = 2, 3 and σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0. In

the proof of proposition 3.19, for L.H.S of (3.31), we use the Hölder’s inequality and

(2.1) with p = 2/(1− 2δ) instead of p = 2. Then we have

||Qσ1∆
≥M f1,N1,T ||L2

tx
≤ ||1[0,T )||L1/δ

t
||Qσ1∆

≥M f1,N1,T ||L2/(1−2δ)
t L2

x
. T δM−(1−2δ)/2||f1,N1,T ||V 2

σ1∆
L2 .

For the other part, by the same way of the proof of proposition 3.19, we obtain

(3.35).

Finally, we consider the case d = 1 and σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0. In the

proof of proposition 3.19, for L.H.S of (3.32), we use (3.16) and V 2
−,rc ↪→ U8 instead

of (3.15) and V 2
−,rc ↪→ U4. For the other part, by the same way of the proof of

proposition 3.19, we obtain (3.35) with T = 1.

Proposition 3.22 and Proposition 3.23 imply the following:

Corollary 3.24. Let 0 < T < ∞ if d ≥ 2 and T = 1 if d = 1. We assume σ1, σ2,

σ3 ∈ R\{0} satisfy (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) ̸= 0.

(i) Let s > sc if d ≥ 4, and s ≥ 1 if d = 1, 2, 3. Then the estimate (3.34) holds if

we replace
∑

N3≪N2
by
∑

N3.N2
.

(ii) Let s > sc if d = 2, 3 and s ≥ 0 if d = 1. We assume σ1, σ2, σ3 ∈ R\{0}
satisfy σ1σ2σ3(1/σ1+1/σ2+1/σ3) > 0. Then the estimate (3.34) holds if we replace∑

N3≪N2
by
∑

N3.N2
.

Let (i, j, k) is one of the permutation of (1, 2, 3). If σi + σj = 0, then Proposi-

tion 3.16 (i) fails only for the case |ξk| ≪ |ξi| ∼ |ξj|. We obtain following estimates

for the case |ξk| ≪ |ξi| ∼ |ξj|.
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Corollary 3.25. Let s > sc if d ≥ 4, and s > 1 if d = 2, 3.

(i) We assume σ1, σ2, σ3 ∈ R\{0} satisfy σ2 + σ3 = 0 and (σ1 + σ2)(σ3 + σ1) ̸= 0.

Then for any 0 < T < ∞, and any dyadic numbers N2, N3 ∈ 2Z with N2 ∼ N3, we

have∣∣∣∣∣ ∑
N1≪N2

N1

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣∣
. T δ

( ∑
N1≪N2

(N1 ∨ 1)2s||PN1u1||2V 2
σ1∆

L2

)1/2

||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2

(3.36)

(ii) We assume σ1, σ2, σ3 ∈ R\{0} satisfy σ1 + σ2 = 0 and (σ2 + σ3)(σ3 + σ1) ̸= 0.

Then for any 0 < T < ∞, and any dyadic numbers N1, N2 ∈ 2Z with N1 ∼ N2, we

have ∑
N3.N2

N2s
3 sup

||u3||V 2
σ3∆

L2=1

∣∣∣∣N3

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣2
1/2

. T δ(N1 ∨ 1)s||PN1u1||V 2
σ1∆

L2(N2 ∨ 1)s||PN2u2||V 2
σ2∆

L2 .

(3.37)

for some δ > 0.

Proof. By the Hölder’s inequality, V 2
−,rc(R;L2) ↪→ L∞(R;L2) and (3.12), we have∣∣∣∣N1

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣
≤ N1||1[0,T )||L2

t
||(PN1u1)(PN2u2)||L2

tx
||PN3u3||L∞

t L2
x

. T 1/2N sc+1
1

(
N1

N2

)1/2

||PN1u1||V 2
σ1∆

L2 ||PN2u2||V 2
σ2∆

L2 ||PN3u3||V 2
σ3∆

L2

(3.38)

for N1 ≪ N2. We use (3.38) for the summation for N1 < 1 and use (3.35) with j = 1

for the summation for 1 ≤ N1 ≪ N2. Then, we obtain (3.36) by the Cauchy-Schwarz

inequality for the dyadic sum.

The estimate (3.37) is obtained by using (3.35) with j = 3.
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3.5 Proof of the well-posedness and the scattering

In this section, we prove Theorems 3.3, 3.6, 3.10 and Corollary 3.5. We define the

map Φ(u, v, w) = (Φ
(1)
T,α,u0

(w, v),Φ
(1)
T,β,v0

(w, v),Φ
(2)
T,γ,w0

(u, v)) as

Φ
(1)
T,σ,φ(f, g)(t) := eitσ∆φ− I

(1)
T,σ(f, g)(t),

Φ
(2)
T,σ,φ(f, g)(t) := eitσ∆φ+ I

(2)
T,σ(f, g)(t),

where

I
(1)
T,σ(f, g)(t) :=

∫ t

0

1[0,T )(t
′)ei(t−t′)σ∆(∇ · f(t′))g(t′)dt′,

I
(2)
T,σ(f, g)(t) :=

∫ t

0

1[0,T )(t
′)ei(t−t′)σ∆∇(f(t′) · g(t′))dt′.

To prove the existence of the solution of (3.1), we prove that Φ is a contraction map

on a closed subset of Żs
α([0, T ])× Żs

β([0, T ])× Żs
γ([0, T ]) or Z

s
α([0, T ])×Zs

β([0, T ])×
Zs

γ([0, T ]). Key estimates are the followings:

Proposition 3.26. We assume that α, β, γ ∈ R\{0} satisfy the condition in The-

orem 3.3. Then for sc = d/2− 1 and any 0 < T ≤ ∞, we have

||I(1)T,α(w, v)||Żsc
α

. ||w||Ẏ sc
γ
||v||Ẏ sc

β
, (3.39)

||I(1)T,β(w, u)||Żsc
β

. ||w||Ẏ sc
γ
||u||Ẏ sc

α
, (3.40)

||I(2)T,γ(u, v)||Żsc
γ

. ||u||Ẏ sc
α
||v||Ẏ sc

β
. (3.41)

Proof. We prove only (3.41) since (3.39) and (3.40) are proved by the same way. We

show the estimate

||I(2)T,γ(u, v)||Żs
γ
. ||u||Ẏ sc

α
||v||Ẏ s

β
+ ||u||Ẏ s

α
||v||Ẏ sc

β
(3.42)

for s ≥ 0. (3.41) follows from (3.42) as s = sc. We put (u1, u2) := (u, v) and

(σ1, σ2, σ3) := (α,−β,−γ). To obtain (3.42), we use the argument of the proof of
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Theorem 3.2 in [25]. We define

J1 :=

∣∣∣∣∣
∣∣∣∣∣∑
N2

∑
N1≪N2

I
(2)
T,−σ3

(PN1u1, PN2u2)

∣∣∣∣∣
∣∣∣∣∣
Żs
−σ3

,

J2 :=

∣∣∣∣∣
∣∣∣∣∣∑
N2

∑
N1∼N2

I
(2)
T,−σ3

(PN1u1, PN2u2)

∣∣∣∣∣
∣∣∣∣∣
Żs
−σ3

,

J3 :=

∣∣∣∣∣
∣∣∣∣∣∑
N1

∑
N2≪N1

I
(2)
T,−σ3

(PN1u1, PN2u2)

∣∣∣∣∣
∣∣∣∣∣
Żs
−σ3

,

where implicit constants in ≪ actually depend on σ1, σ2, σ3.

First, we prove the estimate for J1. By Theorem 2.4, we have

J1 ≤

∑
N3

N2s
3

 ∑
N2∼N3

∣∣∣∣∣
∣∣∣∣∣eitσ3∆PN3

∑
N1≪N2

I
(2)
T,−σ3

(PN1u1, PN2u2)

∣∣∣∣∣
∣∣∣∣∣
U2(R;L2)

2
1/2

=

∑
N3

N2s
3

 ∑
N2∼N3

sup
||u3||V 2

σ3∆
L2=1

∣∣∣∣∣ ∑
N1≪N2

N3

∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣∣
2

1/2

.

Therefore by Proposition 3.17, we have

J1 .

∑
N3

N2s
3

 ∑
N2∼N3

( ∑
N1≪N2

N2sc
1 ||PN1u1||2V 2

σ1
L2

)1/2

||PN2u2||V 2
σ2∆

L2

2
1/2

.
(∑

N1

N2sc
1 ||PN1u1||2V 2

σ1∆
L2

)1/2(∑
N2

N2s
2 ||PN2u2||2V 2

σ2∆
L2

)1/2

= ||u1||Ẏ sc
σ1
||u2||Ẏ s

σ2
.

Second, we prove the estimate for J2. By Theorem 2.4, we have

J2 ≤
∑
N2

∑
N1∼N2

 ∑
N3.N2

N2s
3 ||eitσ3∆PN3I

(2)
T,−σ3

(PN1u1, PN2u2)||2U2(R;L2)

1/2

=
∑
N2

∑
N1∼N2

 ∑
N3.N2

N2s
3 sup

||u3||V 2
σ3∆

L2=1

∣∣∣∣∫ T

0

∫
Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣∣∣∣2
1/2

.
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Therefore by Corollary 3.20 and Cauchy-Schwarz inequality for dyadic sum, we have

J2 .
∑
N2

∑
N1∼N2

N sc
1 ||PN1u1||V 2

σ1∆
L2N s

2 ||PN2u2||V 2
σ2∆

L2

.
(∑

N1

N2sc
1 ||PN1u1||2V 2

σ1∆
L2

)1/2(∑
N2

N2s
2 ||PN2u2||2V 2

σ2∆
L2

)1/2

= ||u1||Ẏ sc
σ1
||u2||Ẏ s

σ2
.

Finally, we prove the estimate for J3. By the same manner as for J1, we have

J3 . ||u1||Ẏ s
σ1
||u2||Ẏ sc

σ2
.

Therefore, we obtain (3.42) since ||u1||Ẏ s
σ1

= ||u||Ẏ s
α
and ||u2||Ẏ sc

σ2
= ||v||Ẏ sc

β
.

Corollary 3.27. We assume that α, β, γ ∈ R\{0} satisfy the condition in Theo-

rem 3.3. Then for s ≥ sc (= d/2− 1) and any 0 < T ≤ ∞, we have

||I(1)T,α(w, v)||Zs
α
. ||w||Y s

γ
||v||Y s

β
, (3.43)

||I(1)T,β(w, u)||Zs
β
. ||w||Y s

γ
||u||Y s

α
, (3.44)

||I(2)T,γ(u, v)||Zs
γ
. ||u||Y s

α
||v||Y s

β
. (3.45)

Proof. We prove only (3.45) since (3.43) and (3.44) are proved by the same way. By

(3.42), we have

||I(2)T,γ(u, v)||Zs
γ
= ||I(2)T,γ(u, v)||Ż0

γ
+ ||I(2)T,γ(u, v)||Żs

γ

. ||u||Ẏ sc
α
||v||Ẏ 0

β
+ ||u||Ẏ 0

α
||v||Ẏ sc

β
+ ||u||Ẏ sc

α
||v||Ẏ s

β
+ ||u||Ẏ s

α
||v||Ẏ sc

β
.

We decompose u = P0u+ (Id− P0)u and v = P0v + (Id− P0)v. Since

||P0u||Ẏ sc
α

. ||P0u||Ẏ 0
α
, ||(Id− P0)u||Ẏ sc

α
. ||(Id− P0)u||Ẏ s

α
,

||P0v||Ẏ sc
β

. ||P0v||Ẏ 0
β
, ||(Id− P0)v||Ẏ sc

β
. ||(Id− P0)v||Ẏ s

β

for s ≥ sc, we obtain (3.45).

Proposition 3.28.

(i) Let d ≥ 2. We assume that α, β, γ ∈ R\{0} and s ∈ R satisfy the condition in

Theorem 3.6. Then there exists δ > 0 such that for any 0 < T <∞, we have

||I(1)T,α(w, v)||Zs
α
. T δ||w||Zs

γ
||v||Zs

β
, (3.46)

||I(1)T,β(w, u)||Zs
β
. T δ||w||Zs

γ
||u||Zs

α
, (3.47)

||I(2)T,γ(u, v)||Zs
γ
. T δ||u||Zs

α
||v||Zs

β
. (3.48)
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(ii) Let d = 1. We assume that α, β, γ ∈ R\{0} and s ∈ R satisfy the condition in

Theorem 3.6 except the case 1 > s ≥ 1/2, θ < 0 and (α − γ)(β + γ) ̸= 0. Then we

have (3.46)–(3.48) with T = 1.

Proof. We obtain (3.46)–(3.48) by using Proposition 3.21 and Corollary 3.24 if

α ̸= β, using Corollary 3.25 if d ≥ 2 and α = β instead of Proposition 3.17 and

Corollary 3.20 in the proof of Proposition 3.26.

Proof of Theorem 3.3. We prove only the homogeneous case. The inhomoge-

neous case is also proved by the same way. For r > 0, we define

Ẋs
r (I) :=

{
(u, v, w) ∈ Ẋs(I)

∣∣∣ ||u||Żs
α(I)

, ||v||Żs
β(I)

, ||w||Żs
γ(I)

≤ 2r
}

(3.49)

which is a closed subset of Ẋs(I). Let (u0, v0, w0) ∈ Br(Ḣ
sc(Rd) × Ḣsc(Rd) ×

Ḣsc(Rd)) be given. For (u, v, w) ∈ Ẋsc
r ([0,∞)), we have

||Φ(1)
T,α,u0

(w, v)||Żsc
α ([0,∞)) ≤ ||u0||Ḣsc + C||w||Żsc

γ ([0,∞))||v||Żsc
β ([0,∞)) ≤ r(1 + 4Cr),

||Φ(1)
T,β,v0

(w, u)||Żsc
β ([0,∞)) ≤ ||v0||Ḣsc + C||w||Żsc

γ ([0,∞))||u||Żsc
α ([0,∞)) ≤ r(1 + 4Cr),

||Φ(2)
T,γ,w0

(u, v)||Żsc
γ ([0,∞)) ≤ ||w0||Ḣsc + C||u||Żsc

α ([0,∞))||v||Żsc
β ([0,∞)) ≤ r(1 + 4Cr)

and

||Φ(1)
T,α,u0

(w1, v1)− Φ
(1)
T,α,u0

(w2, v2)||Żsc
α ([0,∞)) ≤ 2Cr

(
||w1 − w2||Żsc

γ ([0,∞)) + ||v1 − v2||Żsc
β ([0,∞))

)
,

||Φ(1)
T,β,v0

(w1, u1)− Φ
(1)
T,β,v0

(w2, u2)||Żsc
β ([0,∞)) ≤ 2Cr

(
||w1 − w2||Żsc

γ ([0,∞)) + ||u1 − u2||Żsc
α ([0,∞))

)
,

||Φ(2)
T,γ,w0

(u1, v1)− Φ
(1)
T,γ,w0

(u2, v2)||Żsc
γ ([0,∞)) ≤ 2Cr

(
||u1 − u2||Żsc

α ([0,∞)) + ||v1 − v2||Żsc
β ([0,∞))

)
by Proposition 3.26 and

||eiσt∆φ||Żsc
σ ([0,∞)) ≤ ||1[0,∞)e

iσt∆φ||Żsc
σ

≤ ||φ||Ḣsc ,

where C is an implicit constant in (3.39)–(3.41). Therefore if we choose r satisfying

r < (4C)−1,

then Φ is a contraction map on Ẋsc
r ([0,∞)). This implies the existence of the

solution of the system (3.1) and the uniqueness in the ball Ẋsc
r ([0,∞)). The Lipschitz

continuously of the flow map is also proved by similar argument.

Theorem 3.6 except the case d = 1, 1 > s ≥ 1/2, θ < 0 and (α − γ)(β + γ) ̸= 0

is proved by the same way for the proof of Theorem 3.3.
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Remark 3.29. For d = 1 and s > sc (in particular s ≥ 0), we can assume the

Hs-norm of the initial data is small enough by the scaling (3.2) with large λ since

sc < 0.

Proof of Corollary 3.5. We prove only the homogeneous case. The inhomoge-

neous case is also proved by the same way. By Proposition 3.26, the global solution

(u, v, w) ∈ Ẋsc([0,∞)) of (3.1) which was constructed in Theorem 3.3 satisfies

N sc(e−itα∆PNI
(1)
∞,α(w, v), e

−itβ∆PNI∞,β(w, u), e
−itγ∆PNI

(2)
∞,γ(u, v))

∈ V 2(R;L2)× V 2(R;L2)× V 2(R;L2)

for each N ∈ 2Z. This implies that

(u+, v+, w+) := lim
t→∞

(u0−e−itα∆I(1)∞,α(w, v), v0−e−itβ∆I∞,β(w, u), w0+e
−itγ∆I(2)∞,γ(u, v))

exists in Ḣsc(Rd)× Ḣsc(Rd)× Ḣsc(Rd) by Proposition 2.3 (iv). Then we obtain

(u, v, w)− (eitα∆u+, e
itβ∆v+, e

itγ∆w+) → 0

in Ḣsc(Rd)× Ḣsc(Rd)× Ḣsc(Rd) as t→ ∞.

Theorem 3.10 is proved by using the estimate (3.39) and (3.43) for (α, β, γ) =

(−1, 1, 1).

3.6 A priori estimates

In this section, we prove Theorem 3.8. We define

M(u, v, w) := 2||u||2L2
x
+ ||v||2L2

x
+ ||w||2L2

x

H(u, v, w) := α||∇u||2L2
x
+ β||∇v||2L2

x
+ γ||∇w||2L2

x
+ 2Re(w,∇(u · v))L2

x

and put M0 :=M(u0, v0, w0), H0 := H(u0, v0, w0).

Proposition 3.30. For the smooth solution (u, v, w) of the system (3.1), we have

M(u, v, w) =M0, H(u, v, w) = H0

Proof. For the system

(i∂t + α∆)u = −(∇ · w)v (3.50)

(i∂t + β∆)v = −(∇ · w)u (3.51)

(i∂t + γ∆)w = ∇(u · w), (3.52)
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We have the conservation law for M by calculating

Im

∫
Rd

{(−2u× (3.50)) + (v × (3.51)) + (w × (3.52))}dx

and for H by calculating

Re

∫
Rd

{(∂tu× (3.50)) + (∂tv × (3.51)) + (∂tw × (3.52))}dx.

The following a priori estimates imply Theorem 3.8.

Proposition 3.31. We assume α, β and γ have the same sign and put

ρmax := max{|α|, |β|, |γ|}, ρmin := min{|α|, |β|, |γ|}.

(i) Let d = 1, 2. For the data (u0, v0, w0) ∈ H1(Rd)×H1(Rd)×H1(Rd) satisfying

M
1−d/4
0 ≪ ρmin, (3.53)

there exists C > 0 such that for the solution (u, v, w) ∈
(
C([0, T ];H1(Rd))

)3
of (3.1),

the following estimate holds:

sup
0≤t≤T

(
||∇u(t)||2L2

x
+ ||∇v(t)||2L2

x
+ ||∇w(t)||2L2

x

)
≤ H0 + CM

1−d/4
0

ρmin − CM
1−d/4
0

. (3.54)

(ii) Let d = 3. If the data (u0, v0, w0) ∈ H1(Rd)×H1(Rd)×H1(Rd) satisfies

||∇u0||2L2
x
+ ||∇v0||2L2

x
+ ||∇w0||2L2

x
< ϵ2/ρmax (3.55)

for some ϵ with 0 < ϵ ≪ 1, then for the solution (u, v, w) ∈
(
C([0, T ];H1(Rd))

)3
of

(3.1), the following estimate holds:

sup
0≤t≤T

(
||∇u(t)||2L2

x
+ ||∇v(t)||2L2

x
+ ||∇w(t)||2L2

x

)
< 3ϵ2/ρmin. (3.56)

Proof. We put

F = F (t) := ||∇u(t)||2L2
x
+ ||∇v(t)||2L2

x
+ ||∇w(t)||2L2

x
.

Since α, β and γ are same sign, we have

F ≤ 1

ρmin

(H(u, v, w) + 2|((∇ · w), (u · v))L2
x
|).
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By the Cauchy-Schwarz inequality and the Gagliardo-Nirenberg inequality we have

|((∇ · w), (u · v))L2
x
|) ≤ ||∇ · w||L2

x
||u||L4

x
||v||L4

x

. ||∇ · w||L2
x
||u||1−d/4

L2
x

||∇u||d/4L2
x
||v||1−d/4

L2
x

||∇v||d/4L2
x

.M(u, v, w)1−d/4F (d+2)/4

for d ≤ 4. Therefore, by using Proposition 3.30, we obtain

F ≤ 1

ρmin

(
H0 + CM

1−d/4
0 F (d+2)/4

)
(3.57)

for some constant C > 0. For d ≤ 2 we have F (d+2)/4 ≤ 1+F because of (d+2)/4 ≤ 1.

Therefore if (3.53) holds, then the estimate (3.54) follows from (3.57).

By the same argument as above, we obtain

H0 ≤ ρmaxF (0) + 2|((∇ · w(0)), (u(0) · v(0)))L2
x
| ≤ ρmaxF (0) + CM

1−d/4
0 F (0)(d+2)/4

for some constant C > 0 and d ≤ 4. Therefore if (3.55) holds for some ϵ with

0 < ϵ≪ 1, we have

H0 < ϵ2(1 + CM
1−d/4
0 ρ−(d+2)/4

max ϵ(d−2)/2).

By choosing ϵ sufficiently small, we have H0 < 2ϵ2 for d = 3 (and also d = 4).

Therefore the estimate

F ≤ 1

ρmin

(
2ϵ2 + CM

1−d/4
0 F (d+2)/4

)
(3.58)

follows from (3.57). If there exists t0 ∈ [0, T ] such that F (t0) < 4ϵ2/ρmin for suffi-

ciently small ϵ, then we have F (t0) < 3ϵ2/ρmin by (3.58). Since F (0) < ϵ2/ρmin <

4ϵ2/ρmin and F (t) is continuous with respect to t, we obtain (3.56).

3.7 C2-ill-posedness

In this section, we prove Theorem 3.9. We rewrite Theorem 3.9 as follows:

Theorem 3.32. Let d ≥ 1, 0 < T ≪ 1 and α, β, γ ∈ R\{0}. We assume s ∈ R
if (α − γ)(β + γ) = 0, s < 1 if αβγ(1/α − 1/β − 1/γ) = 0, and s < 1/2 if

αβγ(1/α − 1/β − 1/γ) < 0. Then for every C > 0 there exist f , g ∈ Hs(Rd) such

that

sup
0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)γ∆∇((eit
′α∆f)(eit′β∆g))dt′

∣∣∣∣∣∣∣∣
Hs

≥ C||f ||Hs||g||Hs . (3.59)
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Proof. We prove only for d = 1. For d ≥ 2, it is enough to replace D1, D2 and D

by D1 × [0, 1]d−1, D2 × [0, 1]d−1 and D × [1/2, 1]d−1 in the following argument. We

use the argument of the proof of Theorem 1 in [56]. For the sets D1, D2 ⊂ R, we
define the functions f , g ∈ Hs(R) as

f̂(ξ) = 1D1(ξ), ĝ(ξ) = 1D2(ξ).

First, we consider the case (α− γ)(β + γ) = 0. We assume α− γ = 0. (For the

case β + γ = 0 is proved by similar argument. ) We put M := −(β + γ)/2γ, then

we have

α|ξ1|2 − β|ξ − ξ1|2 − γ|ξ|2 = 2γ{ξ1 −M(ξ − ξ1)}(ξ − ξ1).

For N ≫ 1, we define the sets D1, D2 and D ⊂ R as

D1 := [N, N +N−1], D2 := [N−1, 2N−1], D := [N + 3N−1/2, N + 2N−1]

Then, we have

||f ||Hs ∼ N s−1/2, ||g||Hs ∼ N−1/2, |(f̂ ∗ ĝ)(ξ)| & N−11D(ξ)

and ∫ t

0

e−it′(α|ξ1|2−β|ξ−ξ1|2−γ|ξ|2)dt′ ∼ t

for any ξ ∈ D1 satisfying ξ − ξ1 ∈ D2 and 0 ≤ t≪ 1. This implies

sup
0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)γ∆∇((eit
′α∆f)(eit′β∆g))dt′

∣∣∣∣∣∣∣∣
Hs

& N s−1/2

Therefore we obtain (3.59) because s− 1/2 > s− 1 for any s ∈ R.
Second, we consider the case αβγ(1/α−1/β−1/γ) = 0. We putM := γ/(α−γ),

then M ̸= −1 since α ̸= 0 and we have

α|ξ1|2 − β|ξ − ξ1|2 − γ|ξ|2 = (α− γ)|ξ1 −M(ξ − ξ1)|2.

For N ≫ 1, we define the sets D1, D2 and D ⊂ R as

D1 := [N, N+1], D2 := [N/M, N/M+1/|M |], D := [(1+1/M)N+1/2, (1+1/M)N+1].

Then, we have

||f ||Hs ∼ N s, ||g||Hs ∼ N s, |(f̂ ∗ ĝ)(ξ)| & 1D(ξ)
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and ∫ t

0

e−it′(α|ξ1|2−β|ξ−ξ1|2−γ|ξ|2)dt′ ∼ t

for any ξ ∈ D1 satisfying ξ − ξ1 ∈ D2 and 0 ≤ t≪ 1. This implies

sup
0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)γ∆∇((eit
′α∆f)(eit′β∆g))dt′

∣∣∣∣∣∣∣∣
Hs

& N s+1

Therefore we obtain (3.59) because s+ 1 > 2s for any s < 1.

Finally, we consider the case (α− γ)(β+ γ) ̸= 0 and αβγ(1/α− 1/β− 1/γ) < 0.

We put

M± :=
γ

α− γ
± 1

α− γ

√
−αβγ

(
1

α
− 1

β
− 1

γ

)
,

then M± ∈ R and M+ ̸=M− since αβγ(1/α− 1/β − 1/γ) < 0, and we have

α|ξ1|2 − β|ξ − ξ1|2 − γ|ξ|2 = (α+ γ){ξ1 −M+(ξ − ξ1)}{ξ1 −M−(ξ − ξ1)}.

Because M+ ̸=M−, at least one of M+ and M− is not equal to −1. We can assume

M+ ̸= −1 without loss of generality. For N ≫ 1, we define the sets D1, D2 and

D ⊂ R as

D1 := [N, N +N−1], D2 := [N/M+, N/M+ +N−1/|M+|],

D := [(1 + 1/M+)N +N−1/2, (1 + 1/M+)N +N−1].

Then, we have

||f ||Hs ∼ N s−1/2, ||g||Hs ∼ N s−1/2, |(f̂ ∗ ĝ)(ξ)| & N−11D(ξ)

and ∫ t

0

e−it′(α|ξ1|2−β|ξ−ξ1|2−γ|ξ|2)dt′ ∼ t

for any ξ ∈ D1 satisfying ξ − ξ1 ∈ D2 and 0 ≤ t≪ 1. This implies

sup
0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0

ei(t−t′)γ∆∇((eit
′α∆f)(eit′β∆g))dt′

∣∣∣∣∣∣∣∣
Hs

& N s−1/2.

Therefore we obtain (3.59) because s− 1/2 > 2s− 1 for any s < 1/2.

3.8 Bilinear estimates for 1D Bourgain norm

In this section, we give the bilinear estimates for the standard 1-dimensional Bour-

gain norm under the condition (α− γ)(β + γ) ̸= 0 and αβγ(1/α− 1/β − 1/γ) ̸= 0.

Which estimates imply the well-posedness of (3.1) for 1 > s ≥ 1/2 as the solution

(u, v, w) be in the Bourgain space Xs
α([0, T ])×Xs

β([0, T ])×Xs
γ([0, T ]).
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Lemma 3.33. Let σ1, σ2, σ3 ∈ R\{0} satisfy (σ2 + σ3)(σ3 + σ1) ̸= 0 and (τ1, ξ1),

(τ2, ξ2), (τ3, ξ3) ∈ R × R satisfy τ1 + τ2 + τ3 = 0, ξ1 + ξ2 + ξ3 = 0. If there exist

1 ≤ i, j ≤ 3 such that |ξi| ≪ |ξj|, then we have

max
1≤j≤3

|τj + σjξ
2
j | & ξ23 .

Proof. For the case σ1 + σ2 ̸= 0, proof was complete in Lemma 3.16. We assume

σ1 + σ2 = 0. Then we have

M0 :=max{|τ1 + σ1ξ
2
1 |, |τ2 + σ2ξ

2
2 |, |τ3 + σ3ξ

2
3 |}

& |σ1ξ21 + σ2ξ
2
2 + σ3ξ

2
3 |

= |ξ3||(σ1 + σ3)ξ3 + 2σ1ξ2|

= |ξ3||(σ2 + σ3)ξ3 + 2σ2ξ1|

by the triangle inequality. Therefore if |ξi| ≪ |ξj| for some 1 ≤ i, j ≤ 3, then we

have M0 & ξ23 .

Lemma 3.34. We assume σ1, σ2, σ3 ∈ R\{0} satisfy θ := σ1σ2σ3(1/σ1 + 1/σ2 +

1/σ3) ̸= 0. For any (τ, ξ) ∈ R× R with |ξ| ≥ 1 and b > 1/2, we have∫
R

∫
R

dτ1dξ1
⟨τ1 + σ1ξ21⟩2b⟨τ − τ1 + σ2(ξ − ξ1)2⟩2b

. ⟨(σ1+σ2)(τ −σ3ξ
2)+ θξ2⟩−1/2 (3.60)

and∫
|ξ1|≫|ξ−ξ1| or |ξ1|≪|ξ−ξ1|

∫
R

dτ1dξ1
⟨τ1 + σ1ξ21⟩2b⟨τ − τ1 + σ2(ξ − ξ1)2⟩2b

. ⟨ξ⟩−1, (3.61)

where implicit constants in ≪ actually depend on σ1, σ2.

Proof. We put I(τ, ξ) :=(L.H.S of (3.60)). By Lemma 2.3, (2.8) in [47], we have

I(τ, ξ) .
∫
R

dξ1
⟨σ1ξ21 + σ2(ξ − ξ1)2 + σ3ξ2 + (τ − σ3ξ2)⟩2b

.

We change the variable ξ1 7→ µ as µ = σ1ξ
2
1 + σ2(ξ − ξ1)

2 + σ3ξ
2, then we have

dµ = 2|σ1ξ1 − σ2(ξ − ξ1)|dξ1 ∼
∣∣(σ1 + σ2)µ− θξ2

∣∣1/2 dξ1.
Therefore if σ1 + σ2 = 0, we obtain

I(τ, ξ) . 1

|ξ|

∫
R

dµ

⟨µ+ (τ − σ3ξ2)⟩2b
. ⟨ξ⟩−1
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for b > 1/2 since θ ̸= 0 and |ξ| ≥ 1. While if σ1 + σ2 ̸= 0, we obtain

I(τ, ξ) .
∫
R

dµ

⟨µ+ (τ − σ3ξ2)⟩2b |(σ1 + σ2)µ− θξ2|1/2
. ⟨(σ1+σ2)(τ−σ3ξ2)+θξ2⟩−1/2

for b > 1/2 by Lemma 2.3, (2.9) in [47]. The estimate (3.61) follows from

dµ = 2|σ1ξ1 − σ2(ξ − ξ1)|dξ1 ∼ max{|ξ1|, |ξ − ξ1|}dξ1 ∼ |ξ|dξ1

when |ξ1| ≫ |ξ − ξ1| or |ξ1| ≪ |ξ − ξ1|.

Proposition 3.35. We assume d = 1 and σ1, σ2, σ3 ∈ R\{0} satisfy (σ1+σ3)(σ2+

σ3) ̸= 0 and θ := σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) ̸= 0. Then for 3/4 ≥ b > 1/2 and

1 > s ≥ 1/2, we have

||(∂xu3)u2||Xs,b−1
−σ1

. ||u3||Xs,b
σ3
||u2||Xs,b

σ2
, (3.62)

||∂x(u1u2)||Xs,b−1
−σ3

. ||u1||Xs,b
σ1
||u2||Xs,b

σ2
, (3.63)

where

||u||Xs,b
σ

:= ||⟨ξ⟩s⟨τ + σξ2⟩bũ||L2
τξ
.

Proof. We prove only (3.63) since the proof of (3.62) is similar. By the Cauchy-

Schwarz inequality, we have

||∂x(u1u2)||Xs,b−1
−σ3

. ||I||L∞
τξ
||u1||Xs,b

σ1
||u2||Xs,b

σ2
,

where

I(τ, ξ) :=

(
⟨ξ⟩2s|ξ|2

⟨τ − σ3ξ2⟩2(1−b)

∫
R

∫
R

⟨ξ1⟩−2s⟨ξ − ξ1⟩−2s

⟨τ1 + σ1ξ21⟩2b⟨τ − τ1 + σ2(ξ − ξ1)2⟩2b
dτ1dξ1

)1/2

.

It is enough to prove I(τ, ξ) . 1 for |ξ| ≥ 1. For fixed (τ, ξ) ∈ R × R, we divide

R× R into three regions S1, S2, S3 as

S1 := {(τ1, ξ1) ∈ R× R| |ξ| ≪ |ξ1|}

S2 := {(τ1, ξ1) ∈ R× R| |ξ| & |ξ1|, max{|τ1 + σ1ξ
2
1 |, |τ − τ1 + σ2(ξ − ξ1)

2|} & ξ2}

S3 := {(τ1, ξ1) ∈ R× R| |ξ| & |ξ1|, max{|τ1 + σ1ξ
2
1 |, |τ − τ1 + σ2(ξ − ξ1)

2|} ≪ ξ2}

First, we consider the region S1. For any (τ1, ξ1) ∈ S1, we have

⟨ξ⟩2s|ξ|2⟨ξ1⟩−2s⟨ξ − ξ1⟩−2s . ⟨ξ⟩2−2s
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because |ξ| ≪ |ξ1| ∼ |ξ − ξ1|. Therefore, we have

I(τ, ξ) .
(

⟨ξ⟩2−2s

⟨τ − σ3ξ2⟩2(1−b)⟨(σ1 + σ2)(τ − σ3ξ2) + θξ2⟩1/2

)1/2

for b > 1/2 by (3.60). Because θ ̸= 0,

ξ2 =
1

θ

{
(σ1 + σ2)(τ − σ3ξ

2) + θξ2 − (σ1 + σ2)(τ − σ3ξ
2)
}
.

Therefore we obtain

I(τ, ξ) .
(

1

⟨τ − σ3ξ2⟩s−(2b−1)⟨(σ1 + σ2)(τ − σ3ξ2) + θξ2⟩1/2

+
1

⟨τ − σ3ξ2⟩2(1−b)⟨(σ1 + σ2)(τ − σ3ξ2) + θξ2⟩s−1/2

)1/2

. 1

for 3/4 ≥ b > 1/2 and 1 > s ≥ 1/2.

Second, we consider the region S2. We assume |τ − τ1 + σ2(ξ − ξ1)
2| & ξ2

(& |ξ|1/b|ξ1|1−1/2b|ξ − ξ1|1−1/2b) since for the case |τ1 + σ1ξ
2
1 | & ξ2 is same argument.

Then, we have

I(τ, ξ) .
(

⟨ξ⟩2s

⟨τ − σ3ξ2⟩2(1−b)

∫
R

∫
R

⟨ξ1⟩1−2b−2s⟨ξ − ξ1⟩1−2b−2s

⟨τ1 + σ1ξ21⟩2b
dτ1dξ1

)1/2

.

Because ∫
R

dτ1
⟨τ1 + σ1ξ21⟩2b

. 1

for b > 1/2, we obtain

I(τ, ξ) .
(

⟨ξ⟩2s

⟨τ − σ3ξ2⟩2(1−b)

∫
R

dξ1
⟨ξ1⟩2s+2b−1⟨ξ − ξ1⟩2s+2b−1

)1/2

.
(

1

⟨τ − σ3ξ2⟩2(1−b)⟨ξ⟩2b−1

)1/2

. 1

for 1 ≥ b > 1/2 and s ≥ 1/2 by Lemma 2.3, (2.8) in [47].

Finally, we consider the region S3. To begin with, we consider the case |τ −
σ3ξ

2| & ξ2. Then we have

⟨ξ⟩2s|ξ|2

⟨τ − σ3ξ2⟩2(1−b)
⟨ξ1⟩−2s⟨ξ−ξ1⟩−2s .

⟨ξ⟩4b−2−2s if |ξ1| ∼ |ξ − ξ1|

⟨ξ⟩4b−2 if |ξ1| ≫ |ξ − ξ1| or |ξ1| ≪ |ξ − ξ1|
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since |ξ| ∼ max{|ξ1|, |ξ − ξ1|} for any (τ, ξ) ∈ S3. Therefore we obtain

I(τ, ξ) .
(

⟨ξ⟩4b−2−2s

⟨(σ1 + σ2)(τ − σ3ξ2) + θξ2⟩1/2
+ ⟨ξ⟩4b−3

)1/2

. 1

for 3/4 ≥ b > 1/2 and s ≥ 1/2 by (3.60) and (3.61). Next, we consider the case

|τ − σ3ξ
2| ≪ ξ2. Because (σ1 + σ3)(σ2 + σ3) ̸= 0 and

max{|τ1 + σ1ξ
2
1 |, |τ − τ1 + σ2(ξ − ξ1)

2|, |τ − σ3ξ
2|} ≪ ξ2,

we have |ξ| ∼ |ξ − ξ1| ∼ |ξ1| by Lemma 3.33. Therefore, we have

I(τ, ξ) .
(

⟨ξ⟩2−2s

⟨τ − σ3ξ2⟩2(1−b)⟨(σ1 + σ2)(τ − σ3ξ2) + θξ2⟩1/2

)1/2

for b > 1/2 by (3.60). Because θ ̸= 0 and |τ − σ3ξ
2| ≪ ξ2, we have

I(τ, ξ) .
(

⟨ξ⟩1−2s

⟨τ − σ3ξ2⟩2(1−b)

)1/2

. 1

for 1 ≥ b > 1/2 and s ≥ 1/2.

Corollary 3.36. We assume d = 1 and α, β, γ ∈ R\{0} satisfy (α− γ)(β+ γ) ̸= 0

and αβγ(1/α− 1/β − 1/γ) ̸= 0. Then for 3/4 ≥ b > 1/2 and 1 > s ≥ 1/2, we have

||(∂xw)v||Xs,b−1
α

. ||w||Xs,b
γ
||v||Xs,b

β
, (3.64)

||(∂xw)u||Xs,b−1
β

. ||w||Xs,b
γ
||u||Xs,b

α
, (3.65)

||∂x(uv)||Xs,b−1
γ

. ||u||Xs,b
α
||v||Xs,b

β
, . (3.66)

Proof. (3.64) follows from (3.62) with (u2, u3) = (v, w) and (σ1, σ2, σ3) = (−α, β, γ).
(3.65) follows from (3.62) with (u2, u3) = (u,w) and (σ1, σ2, σ3) = (α,−β,−γ).
(3.66) follows from (3.63) with (u1, u2) = (u, v) and (σ1, σ2, σ3) = (α,−β,−γ).

Theorem 3.6 (iii) under the condition 1 > s ≥ 1/2, θ = αβγ(1/α−1/β−1/γ) < 0

and (α− γ)(β + γ) ̸= 0 follows from Lemma 2.1 in [21] and Corollary 3.36.
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Chapter 4

System of quadratic derivative

nonlinear Schrödinger equations

on Td

4.1 Review for results

We consider the Cauchy problem of the system of Schrödinger equations:

(i∂t + α∆)u = −(∇ · w)v, (t, x) ∈ (0,∞)× Td,

(i∂t + β∆)v = −(∇ · w)u, (t, x) ∈ (0,∞)× Td,

(i∂t + γ∆)w = ∇(u · v), (t, x) ∈ (0,∞)× Td,

(u(0, x), v(0, x), w(0, x)) = (u0(x), v0(x), w0(x)), x ∈ Td,

(4.1)

where α, β, γ ∈ R\{0} and the unknown functions u, v, w are d-dimensional

complex vector valued. The system (4.1) was introduced by Colin and Colin in [11]

as a model of laser-plasma interaction. (4.1) is invariant under the following scaling

transformation:

Aλ(t, x) = λ−1A(λ−2t, λ−1x) (A = (u, v, w)),

and the scaling critical regularity is sc = d/2−1. The aim of this chapter is to prove

the well-posedness of (4.1) in the scaling critical Sobolev space.

First, we introduce some known results for related problems. The system (4.1)

has quadratic nonlinear terms which contains a derivative. A derivative loss arising

from the nonlinearity makes the problem difficult. In fact, Christ ([9]) proved that
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the flow map of the Cauchy problem:i∂tu− ∂2xu = u∂xu, t ∈ R, x ∈ T,

u(0, x) = u0(x), x ∈ T

is not continuous on Hs(T) for any s ∈ R. While, there are positive results for the

Cauchy problem: i∂tu−∆u = u(∇ · u), t ∈ R, x ∈ Td,

u(0, x) = u0(x), x ∈ Td.
(4.2)

Grünrock ([23]) proved that (4.2) is globally well-posed in L2(T) for d = 1 and

locally well-posed in Hs(Td) for d ≥ 2 and s > sc (= d/2 − 1). For the Cauchy

problem of the one dimensional derivative Schrödinger equation:i∂tu+ ∂2xu = iλ∂x(|u|2u), t ∈ R, x ∈ T,

u(0, x) = u0(x), x ∈ T,

Herr ([30]) proved the local well-posedness in Hs(T) for s ≥ 1/2 by using the gauge

transform and Win ([73]) proved the global well-posedness in Hs(T) for s > 1/2. For

the nonperiodic case, there are many results for the well-posedness of the nonlinear

Schrödinger equations with derivative nonlinearity ([1], [2], [3], [7], [8], [16], [17],

[48], [54], [60], [65], [66], [67]).

Next, we introduce some known results for (4.1). For the nonperiodic case,

Colin and Colin ([11]) proved the local existence of the solution of (4.1) in Hs(Rd)

for s > d/2+3. We proved that (4.1) for the nonperiodic case is globally well-posed

and the solution scatters for small data in Hsc(Rd) under the condition (α−β)(α−
γ)(β + γ) ̸= 0 if d ≥ 4 and αβγ(1/α − 1/β − 1/γ) > 0 if d = 2, 3 in Chapter 3.

We also obtained some well-posedness results at the subcritical regularity under the

other condition for α, β and γ. But there are no well-posedness result of (4.1) for

the periodic case.

Now, we give the main results in the present chapter. To begin with, we define

the function spaces to construct the solution.

Definition 4.1. Let s, σ ∈ R.
(i) We define Zs

σ as the space of all functions u : R → Hs(Td) such that for every

ξ ∈ Zd the map t 7→ eitσ|ξ|
2
û(t)(ξ) is in U2(R;C), and for which the norm

||u||Zs
σ
:=

∑
ξ∈Zd

⟨ξ⟩2s||eitσ|ξ|2û(t)(ξ)||2U2(R;C)

1/2
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is finite.

(ii) We define Y s
σ as the space of all functions u : R → Hs(Td) such that for every

ξ ∈ Zd the map t 7→ eitσ|ξ|
2
û(t)(ξ) is in V 2

−,rc(R;C), and for which the norm

||u||Y s
σ
:=

∑
ξ∈Zd

⟨ξ⟩2s||eitσ|ξ|2û(t)(ξ)||2V 2(R;C)

1/2

is finite.

Remark 4.2 ([25] Remark 2.23). Let E be a Banach space of continuous functions

f : R → H, for some Hilbert space H. We also consider the corresponding restriction

space to the interval I ⊂ R by

E(I) = {u ∈ C(I,H)|∃v ∈ E s.t. v(t) = u(t), t ∈ I}

endowed with the norm ||u||E(I) = inf{||v||E|v(t) = u(t), t ∈ I}. Obviously, E(I) is

also a Banach space.

The spaces Zs
σ and Y s

σ satisfy following properties.

Proposition 4.3 ([31] Proposition 2.8, Corollary 2.9). The embeddings

U2
σ∆H

s ↪→ Zs
σ ↪→ Y s

σ ↪→ V 2
σ∆H

s

are continuous. Furthermore if Zd = ∪Ck be a partition of Zd, then(∑
k

||PCk
u||2V 2

σ∆Hs

)1/2

. ||u||Y s
σ
. (4.3)

For an interval I ⊂ R, we define Xs(I) := Zs
α(I) × Zs

β(I) × Zs
γ(I). Our results

are followings.

Theorem 4.4. Let sc = d/2−1. We assume that α, β, γ ∈ R\{0} satisfy αβγ(1/α−
1/β − 1/γ) > 0 and α/β, β/γ ∈ Q.

(i) If d ≥ 5, then (4.1) is locally well-posed for small data in Hsc(Td). More precisely,

there exists r > 0 such that for all initial data (u0, v0, w0) ∈ Br(H
sc(Td)×Hsc(Td)×

Hsc(Td)), there exist T = T (r) > 0 and a solution

(u, v, w) ∈ Xsc
r ([0, T )) ⊂ C

(
[0, T );Hsc(Td)

)
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of the system (4.1) on (0, T ). Such solution is unique in Xsc
r ([0, T )) which is a closed

subset of Xsc([0, T )) (see (4.26)). Moreover, the flow map

S : Br(H
sc(Td)×Hsc(Td)×Hsc(Td)) ∋ (u0, v0, w0) 7→ (u, v, w) ∈ Xsc([0, T ))

is Lipschitz continuous.

(ii) If d ≥ 1 and s > max{sc, 0}, then (4.1) is locally well-posed in Hs(Td). More

precisely, the statement in (i) holds for any r > 0 if we replace sc by s.

Remark 4.5. αβγ(1/α−1/β−1/γ) > 0 is the nonresonance condition for (4.1). Oh

([59]) also studied the resonance and the nonresonance for the system of KdV equa-

tions. He proved that if the coefficient of the linear term of the system satisfies the

nonresonance condition, then the well-posedness of the system is obtained at lower

regularity than the regularity for the coefficient satisfying the resonance condition.

We recall the following conservation quantities given in Chapter 3 (see Proposi-

tion 3.30).

M(u, v, w) := 2||u||2L2
x
+ ||v||2L2

x
+ ||w||2L2

x
,

H(u, v, w) := α||∇u||2L2
x
+ β||∇v||2L2

x
+ γ||∇w||2L2

x
+ 2Re(w,∇(u · v))L2

x
.

By using the conservation law for H, we obtain the following result.

Theorem 4.6. Let d = 1, 2, 3. We assume that α, β, γ ∈ R\{0} have the same

sign and satisfy αβγ(1/α − 1/β − 1/γ) > 0 and α/β, β/γ ∈ Q. There exists r > 0

such that for every (u0, v0, w0) ∈ Br(H
1(Td)×H1(Td)×H1(Td)), we can extend the

local H1 solution of Theorem 4.4 globally in time.

Remark 4.7. Theorem 4.6 follows from the a priori estimate which is obtained

by the conservation law for H. Proof of the a priori estimate is the same as the

nonperiodic case (see Proposition 3.31).

Furthermore, for the equation (4.2), we obtain the following result.

Theorem 4.8. Let d ≥ 5 and sc = d/2 − 1. Then, the equation (4.2) is locally

well-posed for small data in Hsc.

Remark 4.9. The results by Grünrock ([23]) do not contain the critical case s = sc

.
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The main tools of our results are Up space and V p space which are applied

to prove the well-posedness and the scattering for KP-II equation at the scaling

critical regularity by Hadac, Herr and Koch ([25], [26]). For the periodic case, Up

space and V p space are used to prove the well-posedness of the power type nonlinear

Schrödinger equations at the scaling critical regularity by Herr, Tataru and Tzvetkov

([31]) and Wang ([71]). To obtain the well-posedness of (4.1), we show the following

bilinear estimate.

Proposition 4.10. Let s > 0 if d = 1, s > sc (= d/2 − 1) if d = 2, 3, 4, s ≥ sc if

d ≥ 5 and σ1, σ2 ∈ R\{0} satisfy σ1 + σ2 ̸= 0 and σ1/σ2 = m1/m2 for some m1,

m2 ∈ Z\{0}. For any dyadic numbers N1, N2, N3 ≥ 1, we have

||PN3(PN1u1 · PN2u2)||L2(T|σ−1|×Td)

. N s
min

(
Nmin

Nmax

+
1

Nmin

)δ

||PN1u1||Y 0
σ1
||PN2u2||Y 0

σ2

(4.4)

for some δ > 0, where σ := σ1/m1 = σ2/m2, Nmax := max
1≤j≤3

Nj, Nmin := min
1≤j≤3

Nj.

Wang ([71]) proved (4.10) for the case N1 ∼ N3 & N2. Therefore, Proposi-

tion 4.10 is the extension of his estimate. To prove Proposition 4.10, we will show

the new bilinear estimate (Proposition 4.16) which is the estimate (4.4) for the case

N1 ∼ N2 ≫ N3.

The rest of this chapter is planned as follows. In Section 2, we will give the

L4-Strichartz estimates on torus and the bilinear estimates. In Section 3, we will

give the trilinear estimates. In Section 4, we will give the proof of the well-posedness

(Theorems 4.4, 4.8).

4.2 Strichartz and bilinear Strichartz estimates

In this section, we introduce some L4-Strichartz estimates on torus proved in [5],

[31], [71] and the bilinear estimate proved in [71]. Furthermore, we show the new

bilinear estimate (Proposition 4.16) to obtain Proposition 4.10.

For a dyadic number N ≥ 1, we define CN as the collection of disjoint cubes

C ⊂ Zd of side-length N with arbitrary center and orientation. Furthermore for

dyadic numbers N ≥ 1 and M ≥ 1, we define RM(N) as the collection of all sets of

the form (
ξ0 + [−N,N ]d

)
∩ {ξ ∈ Zd| |a · ξ − A| ≤M}
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with some ξ0 ∈ Zd, a ∈ Rd, |a| = 1 and A ∈ R.

Proposition 4.11 ([5], [31], [71]). Let σ ∈ R, m ∈ Z\{0}.
(i) For any dyadic number N ≥ 1 and s ≥ 0 if d = 1, s > d/4 − 1/2 if d = 2, 3,

s ≥ d/4− 1/2 if d ≥ 4, we have

||PNe
itσ∆φ||L4(T|m/σ|×Td) . N s||PNφ||L2(Td). (4.5)

(ii) For any C ∈ CN with N ≥ 1 and s ≥ 0 if d = 1, s > d/4 − 1/2 if d = 2, 3,

s ≥ d/4− 1/2 if d ≥ 4, we have

||PCe
itσ∆φ||L4(T|m/σ|×Td) . N s||PCφ||L2(Td). (4.6)

(iii) For any R ∈ RM(N) with N ≥ M ≥ 1 and s > 0 if d = 1, s > d/4 − 1/2 if

d = 2, 3, 4, s ≥ d/4− 1/2 if d ≥ 5, we have

||PRe
itσ∆φ||L4(T|m/σ|×Td) . N s

(
M

N

)δ

||PRφ||L2(Td) (4.7)

for some δ > 0.

Remark 4.12. Implicit constants in the estimates (4.5)–(4.7) depend on m and σ.

By Propositions 2.8 and 4.11, we have following:

Corollary 4.13. Let σ ∈ R, m ∈ Z\{0} and s ≥ 0 if d = 1, s > d/4− 1/2 if d = 2,

3, s ≥ d/4− 1/2 if d ≥ 4. For any dyadic number N ≥ 1 and C ∈ CN , we have

||PNu||L4(T|m/σ|×Td) . N s||PNu||U4
σ∆L2 , (4.8)

||PCu||L4(T|m/σ|×Td) . N s||PCu||U4
σ∆L2 . (4.9)

Proposition 4.14 ([71] Proposition 4.2). Let s > 0 if d = 1, s > sc (= d/2− 1) if

d = 2, 3, 4, s ≥ sc if d ≥ 5 and σ1, σ2 ∈ R\{0} satisfy σ1/σ2 = m1/m2 for some m1,

m2 ∈ Z\{0}. For any dyadic numbers H and L with H ≥ L ≥ 1, we have

||PHu1 · PLu2||L2(T|σ−1|×Td) . Ls

(
L

H
+

1

L

)δ

||PHu1||Y 0
σ1
||PLu2||Y 0

σ2
(4.10)

for some δ > 0, where σ := σ1/m1 = σ2/m2.

Remark 4.15. Wang proved (4.10) only for d ≥ 5. To obtain (4.10) for 1 ≤ d ≤ 4,

we choose p = q = 4 and use (4.7) as above in the proof of [[71] Proposition 4.2] for

k = 1, n ≥ 5. The other parts are the same way.
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We get the following bilinear estimate.

Proposition 4.16. Let s > 0 if d = 1, s > sc (= d/2 − 1) if d = 2, 3, 4, s ≥ sc if

d ≥ 5 and σ1, σ2 ∈ R\{0} satisfy σ1 + σ2 ̸= 0 and σ1/σ2 = m1/m2 for some m1,

m2 ∈ Z\{0}. For any dyadic numbers L, H, H ′ with H ∼ H ′ ≫ L ≥ 1, we have

||PL(PHu1 · PH′u2)||L2(T|σ−1|×Td) . Ls

(
L

H
+

1

L

)δ

||PHu1||Y 0
σ1
||PH′u2||Y 0

σ2
(4.11)

for some δ > 0, where σ := σ1/m1 = σ2/m2.

Proof. We decompose PHu1 =
∑

C1∈CL PC1PHu1. For fixed C1 ∈ CL, let ξ0 be the

center of C1. Since ξ1 ∈ C1 and |ξ1 + ξ2| ≤ 2L imply |ξ2 + ξ0| ≤ 3L, we obtain

||PL(PC1PHu1 · PH′u2)||L2(T|σ−1|×Td) ≤ ||PC1PHu1 · PC2(C1)PH′u2||L2(T|σ|×Td),

where C2(C1) := {ξ2 ∈ Zd| |ξ2 + ξ0| ≤ 3L}. If we prove

||PC1PHu1 · PC2(C1)PH′u2||L2(T|σ−1|×Td)

. Ls

(
L

H
+

1

L

)δ

||PC1PHu1||V 2
σ1∆

L2 ||PC2(C1)PH′ϕ2||V 2
σ2∆

L2 ,
(4.12)

then we obtain

||PL(PHu1 · PH′u2)||L2(T|σ−1|×Td)

.
∑

C1∈CL

Ls

(
L

H
+

1

L

)δ

||PC1PHu1||V 2
σ1∆

L2||PC2(C1)PH′u2||V 2
σ2∆

L2

. Ls

(
L

H
+

1

L

)δ
( ∑

C1∈CL

||PC1PHu1||2V 2
σ1∆

L2

)1/2( ∑
C1∈CL

||PC2(C1)PH′u2||2V 2
σ2∆

L2

)1/2

and the proof is complete by (4.3). The estimate (4.12) follows by interpolation

between

||PC1PHu1 · PC2(C1)PH′u2||L2(T|σ−1|×Td)

. Ls||PC1PHu1||U4
σ1∆

L2 ||PC2(C1)PH′u2||U4
σ2∆

L2

(4.13)

and

||PC1PHu1 · PC2(C1)PH′u2||L2(T|σ−1|×Td)

. Ls

(
L

H
+

1

L

)δ′

||PC1PHu1||U2
σ1∆

L2 ||PC2(C1)PH′u2||U2
σ2∆

L2

(4.14)
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via Proposition 2.9. The estimate (4.13) is proved by the Cauchy-Schwartz inequal-

ity and (4.9). While the estimate (4.14) follows from the estimate

||PC1PH(e
itσ1ϕ1) · PC2(C1)PH′(eitσ2ϕ2)||L2(T|σ−1|×Td)

. Ls

(
L

H
+

1

L

)δ′

||PC1PHϕ1||L2(Td)||PC2(C1)PH′ϕ2||L2(Td).
(4.15)

and Proposition 2.8.

Now, we prove the estimate (4.15). Put uj = eitσj∆ϕj (j = 1, 2). We note

that u1u2 is periodic function with period 2π|σ−1| with respect to t since σ1/σ2 =

m1/m2 ∈ Q. We partition C1 = ∪kR1,k and C2(C1) = ∪lR2,l into almost disjoint

strips as

R1,k = {ξ1 ∈ C1|ξ1 · ξ0 ∈ [|ξ0|Mk, |ξ0|M(k + 1)]}, k ∼ H/M,

R2,l = {ξ2 ∈ C2(C1)|ξ2 · ξ0 ∈ [−|ξ0|M(l + 1),−|ξ0|Ml}, l ∼ H/M,

where M = max{L2/H, 1}. The condition for k and l as above follows from |ξ0| ∼
H ≫ L. To obtain the almost orthogonality for the summation

PC1PHu1 · PC2(C1)PH′u2 =
∑
k

∑
l

PR1,k
PHu1 · PR2,l

PH′u2,

we use the argument in [[31] Proposition 3.5]. Since L2 .M2k ∼M2l, we have

|ξ1|2 =
|ξ1 · ξ0|2

|ξ0|2
+ |ξ1 − ξ0|2 −

|(ξ1 − ξ0) · ξ0|2

|ξ0|2
=M2k2 +O(M2k)

and

|ξ2|2 =
|ξ2 · ξ0|2

|ξ0|2
+ |ξ2 + ξ0|2 −

|(ξ2 + ξ0) · ξ0|2

|ξ0|2
=M2l2 +O(M2k)

for any ξ1 ∈ R1,k and ξ2 ∈ R2,l. More precisely, there exist the constants A1 ,A2 > 0

which do not depend on k and l, such that ξ1 ∈ R1,k and ξ2 ∈ R2,l satisfy

M2k2 ≤ |ξ1|2 ≤M2k2 + A1M
2k, M2l2 ≤ |ξ2|2 ≤M2l2 + A2M

2k.

Furthermore, σ1k
2 + σ2l

2 ̸= 0 because

|σ1|ξ1|2 + σ2|ξ2|2| = |(σ1 + σ2)|ξ1|2 − σ2(ξ1 − ξ2) · (ξ1 + ξ2)| ∼ H2.

Therefore, the expression PR1,k
PHu1 · PR2,l

PH′u2 are localized at time frequency

M2(σ1k
2 + σ2l

2) +O(M2k). This implies the almost orthogonality:

||PC1PHu1 ·PC2(C1)PH′u2||2L2(T|σ−1|×Td) .
∑
k

∑
l

||PR1,k
PHu1 ·PR2,l

PH′u2||2L2(T|σ−1|×Td).
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By the Cauchy-Schwartz inequality and (4.7), we have

||PR1,k
PHu1 · PR2,l

PH′u2||L2(T|σ−1|×Td) . ||PR1,k
PHu1||L4(T|σ−1|×Td)||PR2,l

PH′u2||L4(T|σ−1|×Td)

. Ls

(
M

L

)δ′

||PR1,k
PHϕ1||L2(Td)||PR2,l

PH′ϕ2||L2(Td)

for some δ′ > 0 and any s > 0 if d = 1, s > sc if d = 2, 3, 4 and s ≥ sc if d ≥ 5 since

R1,k ∈ RM(L), R2,l ∈ RM(3L). Therefore, we obtain (4.15) by the L2-orthogonality

and M ≤ L2/H + 1.

Remark 4.17. Proposition 4.10 is implied from Propositions 4.14 and 4.16.

To deal with large data at the scaling subcritical regularity, we show the follow-

ing.

Proposition 4.18. Let d ≥ 1, s > s0 := max{sc, 0} and σ1, σ2 ∈ R\{0} satisfy

σ1+σ2 ̸= 0 and σ1/σ2 = m1/m2 for some m1, m2 ∈ Z\{0}. For any dyadic numbers

N1, N2, N3 ≥ 1 and 0 < T ≤ 2π|σ−1|, we have

||PN3(PN1u1 · PN2u2)||L2([0,T )×Td)

. T ϵN s
min

(
Nmin

Nmax

+
1

Nmin

)δ

||PN1u1||Y 0
σ1
||PN2u2||Y 0

σ2

(4.16)

for some δ > 0 and ϵ > 0, where σ := σ1/m1 = σ2/m2, Nmax := max
1≤j≤3

Nj, Nmin :=

min
1≤j≤3

Nj.

Proof. We first prove the case N1 ∼ N2 ≫ N3. By Corollary 4.1 in [71], we have

||PCu||Lp(T|σ−1|×Td) . Nmax{d/2−(d+2)/p,a}||PCu||Up
σi∆

L2 (i = 1, 2)

for any p > 4, a > 0 and C ∈ CN with N ≥ 1. Therefore, for any ϵ′′ > 0, there

exists ϵ′ > 0 such that

||PCu||L4([0,T )×Td) . ||1||L2/ϵ′ ([0,T )×Td)||PCu||L4/(1−2ϵ′)(T|σ−1|×Td)

. T ϵ′/2N s0/2+ϵ′′ ||PCu||U4
σi∆

L2 (i = 1, 2)
(4.17)

for any 0 < T ≤ 2π|σ−1| since U4
σ∆L

2 ↪→ Up
σ∆L

2 for p > 4. For the L.H.S of (4.13)

with H = N1, H
′ = N2, L = N3, we use (4.17) with ϵ′′ = (s− s0)/2, then we have

||PC1PN1u1 · PC2(C1)PN2u2||L2([0,T )×Td)

. T ϵ′N s
3 ||PC1PN1u1||U4

σ1∆
L2 ||PC2(C1)PN2u2||U4

σ2∆
L2 .

(4.18)
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While by (4.14) with H = N1, H
′ = N2, L = N3, we have

||PC1PN1u1 · PC2(C1)PN2u2||L2([0,T )×Td)

. N s
3

(
N3

N1

+
1

N3

)δ′

||PC1PN1u1||U2
σ1∆

L2 ||PC2(C1)PN2u2||U2
σ2∆

L2

(4.19)

for any s > s0, 0 < T ≤ 2π|σ−1| and some δ′ > 0. By interpolation between (4.18)

and (4.19) via Proposition 2.9, we obtain

||PC1PN1u1 · PC2(C1)PN2u2||L2([0,T )×Td)

. T ϵN s
3

(
N3

N1

+
1

N3

)δ

||PC1PN1u1||U2
σ1∆

L2 ||PC2(C1)PN2u2||U2
σ2∆

L2

(4.20)

for some δ > 0 and ϵ > 0. Therefore, we have (4.16) by the same argument of the

proof of Proposition 4.16.

For the case N1 ∼ N3 & N2, we also obtain (4.16) by using above argument in

the proof of [[71] Proposition 4.2].

4.3 Trilinear estimates

In this section, we give the trilinear estimates. We recall the modulation estimate

given in Chapter 3 (see Lemma 4.19).

Lemma 4.19. Let d ∈ N. We assume that σ1, σ2, σ3 ∈ R\{0} satisfy σ1σ2σ3(1/σ1+

1/σ2 + 1/σ3) > 0 and (τ1, ξ1), (τ2, ξ2), (τ3, ξ3) ∈ R × Rd satisfy τ1 + τ2 + τ3 = 0,

ξ1 + ξ2 + ξ3 = 0. Then we have

max
1≤j≤3

|τj + σj|ξj|2| & max
1≤j≤3

|ξj|2.

Proposition 4.20. Let s > 0 if d = 1, s > sc (= d/2 − 1) if d = 2, 3, 4, s ≥ sc

if d ≥ 5 and σ1, σ2, σ3 ∈ R\{0} satisfy σ1σ2σ3(1/σ1 + 1/σ2 + 1/σ3) > 0 and

σ1/σ2 = m1/m2, σ2/σ3 = m2/m3 for some m1, m2, m3 ∈ Z\{0}. For 0 < T ≤
2π|σ−1|, any dyadic numbers N1, N2, N3 ≥ 1 and PNj

uj ∈ V 2
σj
L2 (j = 1, 2, 3) with

max1≤j≤3 |ξj| ̸= 0 for ξj ∈ supp ûj(t), we have∣∣∣∣∣Nmax

∫ T

0

∫
Td

(
3∏

j=1

PNj
uj

)
dxdt

∣∣∣∣∣ . N s
min

(
Nmin

Nmax

+
1

Nmin

)δ 3∏
j=1

||PNj
uj||Y 0

σj
(4.21)

for some δ > 0, where σ := σ1/m1 = σ2/m2 = σ3/m3, Nmax = max
1≤j≤3

Nj, Nmin =

min
1≤j≤3

Nj.
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Proof. We define uj,T := 1[0,T )uj (j = 1, 2, 3). Furthermore for sufficiently large

constant C, we put M := C−1N2
max and decompose Id = Q

σj∆
<M +Q

σj∆
≥M (j = 1, 2, 3).

We divide the integrals on the left-hand side of (4.21) into eight piece of the form∫
R

∫
Td

(
3∏

j=1

Q
σj∆
j PNj

uj,T

)
dxdt (4.22)

with Q
σj∆
j ∈ {Qσj∆

≥M , Q
σj∆
<M} (j = 1, 2, 3). By the Plancherel’s theorem, we have

(4.22) = c

∫
τ1+τ2+τ3=0

∑
ξ1+ξ2+ξ3=0

3∏
j=1

F [Q
σj∆
j PNj

uj,T ](τj, ξj),

where c is a constant. Therefore, Lemma 4.19 and max1≤j≤3 |ξj| ̸= 0 imply that∫
R

∫
Td

(
3∏

j=1

Q
σj∆
<MPNj

uj,T

)
dxdt = 0.

So, let us now consider the case that Q
σj∆
j = Q

σj∆
≥M for some 1 ≤ j ≤ 3.

We consider only for the case Qσ3∆
3 = Qσ3∆

≥M since the other cases are similar. By

the Cauchy-Schwartz inequality, we have∣∣∣∣∫ T

0

∫
Rd

(Qσ1∆
1 PN1u1)(Q

σ2∆
2 PN2u2)(Q

σ3∆
≥MPN3u3)dxdt

∣∣∣∣
. ||P̃N3(Q

σ1∆
1 PN1u1 ·Qσ2∆

2 PN2u2)||L2(T|σ−1|×Td)||Qσ3∆
≥MPN3u3||L2(T|σ−1|×Td)

since PN3 = P̃N3PN3 , where P̃N3 = PN3/2 + PN3 + P2N3 . Furthermore by (4.4) and

(2.2), we have

||P̃N3(Q
σ1∆
1 PN1u1 ·Qσ2∆

2 PN2u2)||L2(T|σ−1|×Td)

. N s
min

(
Nmin

Nmax

+
1

Nmin

)δ

||PN1u1||Y 0
σ1
||PN2u2||Y 0

σ2
.

While by (2.1) with p = 2, M ∼ N2
max and Y 0

σ3
↪→ V 2

σ3
L2, we have

||Qσ3
≥MPN3u3||L2(T|σ−1|×Td) . ||Qσ3∆

≥MPN3u3||L2(R×Td) . N−1
max||PN3u3||Y 0

σ3
.

By using (4.16) instead of (4.4) in the proof of Proposition 4.20, we get following.
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Proposition 4.21. Let d ≥ 1, s > max{sc, 0} and σ1, σ2, σ3 ∈ R\{0} satisfy

σ1σ2σ3(1/σ1 +1/σ2 +1/σ3) > 0 and σ1/σ2 = m1/m2, σ2/σ3 = m2/m3 for some m1,

m2, m3 ∈ Z\{0}. For 0 < T ≤ 2π|σ−1|, any dyadic numbers N1, N2, N3 ≥ 1 and

PNj
uj ∈ V 2

σj
L2 (j = 1, 2, 3) with max1≤j≤3 |ξj| ̸= 0 for ξj ∈ supp ûj(t), we have∣∣∣∣∣Nmax

∫ T

0

∫
Td

(
3∏

j=1

PNj
uj

)
dxdt

∣∣∣∣∣ . T ϵN s
min

(
Nmin

Nmax

+
1

Nmin

)δ 3∏
j=1

||PNj
uj||Y 0

σj

for some δ > 0 and ϵ > 0, where σ := σ1/m1 = σ2/m2 = σ3/m3, Nmax = max
1≤j≤3

Nj,

Nmin = min
1≤j≤3

Nj.

4.4 Proof of the well-posedness

In this section, we prove Theorems 4.4, 4.8. First, we give the duality for the spaces

Zs
σ([0, T )) and Y

−s
σ ([0, T )) as follows.

Proposition 4.22 ([31] Proposition 2.10). For f ∈ L1
loc(R;L2(Td)) and σ ∈ R\{0},

we define

Iσ[f ](t) :=

∫ t

0

ei(t−t′)σ∆f(t′)dt′.

for t ≥ 0 and Iσ[f ](t) = 0 for t < 0. Then for s ≥ 0, T > 0, σ ∈ R\{0} and

f ∈ L1([0, T );Hs(Td)), we have Iσ[f ] ∈ Zs
σ([0, T )) and

||Iσ[f ]||Zs
σ([0,T )) ≤ sup

v∈Y −s
σ ([0,T )),||v||

Y −s
σ

=1

∣∣∣∣∫ T

0

∫
Td

f(t, x)v(t, x)dt

∣∣∣∣ .
Next, we define the map

Φ(u, v, w) = (Φ(1)
α,u0

(w, v),Φ
(1)
β,v0

(w, v),Φ(2)
γ,w0

(u, v))

as

Φ(1)
σ,φ(f, g)(t) := eitσ∆φ− I(1)σ (f, g)(t),

Φ(2)
σ,φ(f, g)(t) := eitσ∆φ+ I(2)σ (f, g)(t),

where

I(1)σ (f, g)(t) :=

∫ t

0

1[0,∞)(t
′)ei(t−t′)σ∆(∇ · f(t′))g(t′)dt′,

I(2)σ (f, g)(t) :=

∫ t

0

1[0,∞)(t
′)ei(t−t′)σ∆∇(f(t′) · g(t′))dt′.
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To obtain the well-posedness of (4.1), we prove that Φ is a contraction map on a

closed subset of Zs
α([0, T ))×Zs

β([0, T ))×Zs
γ([0, T )). We consider only for small data

since for large data at the scaling subcritical regularity is similar argument. Key

estimates are the followings:

Proposition 4.23. We assume that s > 0 if d = 1, s > sc (= d/2−1) if d = 2, 3, 4,

s ≥ sc if d ≥ 5 and α, β, γ ∈ R\{0} satisfy αβγ(1/α − 1/β − 1/γ) > 0 and α/β,

β/γ ∈ Q. Then for any 0 < T ≪ 1, such that

||I(1)α (w, v)||Zs
α([0,T )) . ||w||Y s

γ ([0,T ))||v||Y s
β ([0,T )), (4.23)

||I(1)β (w, u)||Zs
β([0,T )) . ||w||Y s

γ ([0,T ))||u||Y s
α ([0,T )), (4.24)

||I(2)γ (u, v)||Zs
γ([0,T )) . ||u||Y s

α ([0,T ))||v||Y s
β ([0,T )). (4.25)

Proof. We prove only (4.25) since (4.23) and (4.24) are proved by the same way.

Let (u1, u2) := (u, v) and (σ1, σ2, σ3) := (α,−β,−γ). Since σ1/σ2, σ2/σ3 ∈ Q, there

exist m1, m2, m3 ∈ Z\{0} such that σ1/σ2 = m1/m2, σ2/σ3 = m2/m3. We choose

T > 0 satisfying T ≤ 2π|σ−1|, where σ := σ1/m1 = σ2/m2 = σ3/m3. We define

Sj := {(N1, N2, N3)|Nmax ∼ Nmed & Nmin ≥ 1, Nmin = Nj} (j = 1, 2, 3)

and S :=
∪3

j=1 Sj, where (Nmax, Nmed, Nmin) be one of the permutation of (N1, N2, N3)

such that Nmax ≥ Nmed ≥ Nmin. By Proposition 4.22, the Plancherel’s theorem

,(4.21), we have∣∣∣∣∣∣I(2)−σ3
(u1, u2)

∣∣∣∣∣∣
Zs
−σ3

([0,T ))
. sup

||u3||Y −s
σ3

=1

∣∣∣∣∫ T

0

∫
Td

u1u2(∇ · u3)dxdt
∣∣∣∣

≤ sup
||u3||Y −s

σ3
=1

∑
S

∣∣∣∣N3

∫ T

0

∫
Td

PN1u1PN2u2PN3u3dxdt

∣∣∣∣
≤ sup

||u3||Y −s
σ3

=1

∑
S

N s
min

(
Nmin

Nmax

+
1

Nmin

)δ 3∏
j=1

||PNj
uj||Y 0

σj

since ∣∣∣∣∫ T

0

∫
Td

u1u2(∇ · u3)dxdt
∣∣∣∣ = 0
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if max1≤j≤3 |ξj| = 0 for ξj ∈ supp ûj(t). Furthermore, we have∑
S1

N s
min

(
Nmin

Nmax

+
1

Nmin

)δ 3∏
j=1

||PNj
uj||Y 0

σj

∼
∑
N2

∑
N3∼N2

∑
N1.N2

N s
3N

s
1

(
N1

N2

+
1

N1

)δ

||PN1u1||Y 0
σ1
||PN2u2||Y 0

σ2
||PN3u3||Y −s

σ3

≤ ||u1||Y s
σ1
||u2||Y s

σ2
||u3||Y −s

σ3

and ∑
S3

N s
min

(
Nmin

Nmax

+
1

Nmin

)δ 3∏
j=1

||PNj
uj||Y 0

σj

∼
∑
N1

∑
N2∼N1

∑
N3.N2

N2s
3

(
N3

N2

+
1

N3

)δ

||PN1u1||Y 0
σ1
||PN2u2||Y 0

σ2
||PN3u3||Y −s

σ3

≤ ||u1||Y s
σ1
||u2||Y s

σ2
||u3||Y −s

σ3

by the Cauchy-Schwartz inequality for the dyadic sum. By the same way as the

estimate for the summation of S1, we have∑
S2

N s
min

(
Nmin

Nmax

+
1

Nmin

)δ 3∏
j=1

||PNj
uj||Y 0

σj
. ||u1||Y s

σ1
||u2||Y s

σ2
||u3||Y −s

σ3
.

Therefore, we obtain (4.25) since ||u1||Y s
σ1

= ||u||Y s
α
and ||u2||Y s

σ2
= ||v||Y s

β
.

Proof of Theorem 4.4. For r > 0, we define

Xs
r (I) :=

{
(u, v, w) ∈ Xs(I)

∣∣∣ ||u||Zs
α(I), ||v||Zs

β(I)
, ||w||Zs

γ(I) ≤ 2r
}

(4.26)

which is a closed subset of Xs(I). Let s > 0 if d = 1, s > sc (= d/2−1) if d = 2, 3, 4,

s ≥ sc if d ≥ 5, (u0, v0, w0) ∈ Br(H
s(Td)×Hs(Td)×Hs(Td)) be given and σ be given

in the proof of Proposition 4.23. For 0 < T ≤ 2π|σ−1| and (u, v, w) ∈ Xs
r ([0, T ]), we

have

||Φ(1)
α,u0

(w, v)||Zs
α([0,T )) ≤ ||u0||Hs + C||w||Zs

γ([0,T ))||v||Zs
β([0,T )) ≤ r(1 + 4Cr),

||Φ(1)
β,v0

(w, u)||Zs
β([0,T )) ≤ ||v0||Hs + C||w||Zs

γ([0,T ))||u||Zs
α([0,T )) ≤ r(1 + 4Cr),

||Φ(2)
γ,w0

(u, v)||Zs
γ([0,T )) ≤ ||w0||Hs + C||u||Zs

α([0,T ))||v||Zs
β([0,T )) ≤ r(1 + 4Cr)

and

||Φ(1)
α,u0

(w1, v1)− Φ(1)
α,u0

(w2, v2)||Zs
α([0,T )) ≤ 2Cr

(
||w1 − w2||Zs

γ([0,T )) + ||v1 − v2||Zs
β([0,T ))

)
,

||Φ(1)
β,v0

(w1, u1)− Φ
(1)
β,v0

(w2, u2)||Zs
β([0,T )) ≤ 2Cr

(
||w1 − w2||Zs

γ([0,T )) + ||u1 − u2||Zs
α([0,T ))

)
,

||Φ(2)
γ,w0

(u1, v1)− Φ(2)
γ,w0

(u2, v2)||Zs
γ([0,T )) ≤ 2Cr

(
||u1 − u2||Zs

α([0,T )) + ||v1 − v2||Zs
β([0,T ))

)
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by Proposition 4.23 and

||eiσt∆φ||Zs
σ([0,T )) ≤ ||1[0,T )e

iσt∆φ||Zs
σ
≤ ||φ||Hs ,

where C is an implicit constant in (4.23)–(4.25). Therefore if we choose r satisfying

r < (4C)−1,

then Φ is a contraction map on Xs
r ([0, T )). This implies the existence of the solu-

tion of the system (4.1) and the uniqueness in the ball Xs
r ([0,∞)). The Lipschitz

continuously of the flow map is also proved by similar argument.

Theorem 4.8 is proved by using the estimate (4.23) for (α, β, γ) = (−1, 1, 1).
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Chapter 5

Nonlinear Schrödinger equations

with a derivative nonlinearity

5.1 Review for results

We consider the Cauchy problem of the nonlinear Schrödinger equations:(i∂t +∆)u = ∂k(u
m), (t, x) ∈ (0,∞)× Rd

u(0, x) = u0(x), x ∈ Rd
(5.1)

where m ∈ N, m ≥ 2, 1 ≤ k ≤ d, ∂k = ∂/∂xk and the unknown function u is

C-valued. (5.1) is invariant under the following scaling transformation:

uλ(t, x) = λ−1/(m−1)u(λ−2t, λ−1x),

and the scaling critical regularity is sc = d/2−1/(m−1). The aim of this chapter is

to prove the well-posedness and the scattering for the solution of (5.1) in the scaling

critical Sobolev space.

First, we introduce some known results for related problems. The nonlinear term

in (5.1) contains a derivative. A derivative loss arising from the nonlinearity makes

the problem difficult. In fact, Mizohata ([55]) proved that a necessary condition for

the L2 well-posedness of the problem:i∂tu−∆u = b1(x) · ∇u, t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd

is the uniform bound

sup
x∈Rd,ω∈Sd−1,R>0

∣∣∣∣Re∫ R

0

b1(x+ rω) · ωdr
∣∣∣∣ <∞.
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Furthermore, Christ ([9]) proved that the flow map of the Cauchy problem:i∂tu− ∂2xu = u∂xu, t ∈ R, x ∈ R,

u(0, x) = u0(x), x ∈ R
(5.2)

is not continuous on Hs(R) for any s ∈ R. While, Ozawa ([60]) proved that the

local well-posedness of (5.2) in the space of all function ϕ ∈ H1(R) satisfying the

bounded condition

sup
x∈R

∣∣∣∣∫ x

−∞
ϕ

∣∣∣∣ <∞.

Furthermore, he proved that if the initial data ϕ satisfies some condition, then the

local solution can be extend globally in time and the solution scatters. For the

Cauchy problem of the one dimensional derivative Schrödinger equation:i∂tu+ ∂2xu = iλ∂x(|u|2u), t ∈ R, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(5.3)

Takaoka ([66]) proved the local well-posedness in Hs(R) for s ≥ 1/2 by using the

gauge transform. This result was extended to global well-posedness ([16], [17], [54],

[67]). While, ill-posedness of (5.3) was obtained for s < 1/2 ([3], [67]). Hao ([27])

considered the Cauchy problem:i∂tu− ∂2xu+ iλ|u|k∂xu, t ∈ R, x ∈ R,

u(0, x) = u0(x), x ∈ R

for k ≥ 5 and obtained local well-posedness in H1/2(R). For more general problem:
i∂tu−∆u = P (u, u,∇u,∇u), t ∈ R, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,

P is a polynomial which has no constant and linear terms,

(5.4)

there are many positive results for the well-posedness in the weighted Sobolev space

([1], [2], [7], [8], [48], [65]). Kenig, Ponce and Vega ([48]) also obtained that (5.4)

is locally well-posed in Hs(Rd) (without weight) for large enough s when P has no

quadratic terms.

The Benjamin–Ono equation:

∂tu+H∂2xu = u∂xu, (t, x) ∈ R× R (5.5)
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is also related to the quadratic derivative nonlinear Schrödinger equation. It is

known that the flow map of (5.5) is not uniformly continuous on Hs(R) for s > 0

([51]). But the Benjamin–Ono equation has better structure than the equation (5.2).

Actually, Tao ([68]) proved that (5.5) is globally well-posed in H1(R) by using the

gauge transform. Furthermore, Ionescu and Kenig ([37]) proved that (5.5) is globally

well-posed inHs
r (R) for s ≥ 0, whereHs

r (R) is the Banach space of the all real valued

function f ∈ Hs(R).
Next, we introduce some known results for (5.1). Grünrock ([23]) proved that

(5.1) is locally well-posed in L2(R) when d = 1, m = 2 and in Hs(Rd) for s > sc

when d ≥ 1, m + d ≥ 4. We proved that (5.1) with d ≥ 2, m = 2 is globally

well-posed for small data in Hsc(Rd) (also in Ḣsc(Rd)) and the solution scatters in

Chapter 3. The results are an extension of the results by Grünrock ([23]) for d ≥ 2,

m = 2. The main results in this chapter are an extension of the results by Grünrock

([23]) for d ≥ 1, m ≥ 3.

Now, we give the main results in the present chapter. To begin with, we define

the function spaces to construct the solution.

Definition 5.1. Let s ∈ R.
(i) We define Żs := {u ∈ C(R; Ḣs(Rd)) ∩ U2

∆L
2| ||u||Żs <∞} with the norm

||u||Żs :=

(∑
N

N2s||PNu||2U2
∆L2

)1/2

.

(ii) We define Zs := {u ∈ C(R;Hs(Rd)) ∩ U2
∆L

2| ||u||Zs <∞} with the norm

||u||Zs := ||u||Ż0 + ||u||Żs .

(iii) We define Ẏ s := {u ∈ C(R; Ḣs(Rd)) ∩ V 2
∆L

2| ||u||Ẏ s <∞} with the norm

||u||Ẏ s :=

(∑
N

N2s||PNu||2V 2
∆L2

)1/2

.

(iv) We define Y s := {u ∈ C(R;Hs(Rd)) ∩ V 2
∆L

2| ||u||Y s <∞} with the norm

||u||Y s := ||u||Ẏ 0 + ||u||Ẏ s .

Remark 5.2 ([25] Remark 2.23). Let E be a Banach space of continuous functions

f : R → H, for some Hilbert space H. We also consider the corresponding restriction

space to the interval I ⊂ R by

E(I) = {u ∈ C(I,H)|∃v ∈ E s.t. v(t) = u(t), t ∈ I}
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endowed with the norm ||u||E(I) = inf{||v||E|v(t) = u(t), t ∈ I}. Obviously, E(I) is

also a Banach space.

Our results are followings.

Theorem 5.3. Let d ≥ 1, m ≥ 3 and sc = d/2− 1/(m− 1).

(i) The equation (5.1) is globally well-posed for small data in Ḣsc(Rd). More pre-

cisely, there exists r > 0 such that for all initial data u0 ∈ Br(Ḣ
sc(Rd)), there exists

a solution

u ∈ Żsc
r ([0,∞)) ⊂ C([0,∞); Ḣsc(Rd))

of (5.1) on (0,∞). Such solution is unique in Żsc
r ([0,∞)) which is a closed subset

of Żsc([0,∞)) (see (5.19)). Moreover, the flow map

S+ : Br(Ḣ
sc(Rd)) ∋ u0 7→ u ∈ Żsc([0,∞))

is Lipschitz continuous.

(ii) The statement in (i) remains valid if we replace the space Ḣsc(Rd), Żsc([0,∞))

and Żsc
r ([0,∞)) by Hs(Rd), Zs([0,∞)) and Zs

r ([0,∞)) for s ≥ sc.

Remark 5.4. Due to the time reversibility of the system (5.1), the above theorems

also hold in corresponding intervals (−∞, 0). We denote the flow map with t ∈
(−∞, 0) by S−.

Corollary 5.5. Let d ≥ 1, m ≥ 3 and sc = d/2− 1/(m− 1).

(i) Let r > 0 be as in Theorem 5.3. For every u0 ∈ Br(Ḣ
sc(Rd)), there exists

u± ∈ Ḣsc such that

S±(u0)− eit∆u± → 0 in ˙Hsc(Rd) as t→ ±∞.

(ii) The statement in (i) remains valid if we replace the space Ḣsc(Rd) by Hs(Rd)

for s ≥ sc.

The main tools of our results are Up space and V p space which are applied to

prove the well-posedness and the scattering for KP-II equation at the scaling critical

regularity by Hadac, Herr and Koch ([25], [26]).

The rest of this chapter is planned as follows. In Section 2, we will give the mul-

tilinear estimates which are main estimates in this chapter. In Section 3, we will give

the proof of the well-posedness and the scattering (Theorems 5.3 and Corollary 5.5).
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5.2 Strichartz and multilinear estimates

In this section, we give the Strichartz estimate and prove multilinear estimates which

will be used to prove the well-posedness. First, we recall the Strichartz estimate

given in Chapter 3 (see Proposition 3.12, Corollary 3.13).

Proposition 5.6 (Strichartz estimate). Let (p, q) be an admissible pair of exponents

for the Schrödinger equation, i.e. 2 ≤ q ≤ 2d/(d − 2) (2 ≤ q < ∞ if d = 2,

2 ≤ q ≤ ∞ if d = 1), 2/p = d(1/2− 1/q). Then, we have

||eit∆φ||Lp
tL

q
x
. ||φ||L2

x

for any φ ∈ L2(Rd).

Corollary 5.7. Let (p, q) be an admissible pair of exponents for the Schrödinger

equation, i.e. 2 ≤ q ≤ 2d/(d − 2) (2 ≤ q < ∞ if d = 2, 2 ≤ q ≤ ∞ if d = 1),

2/p = d(1/2− 1/q). Then, we have

||u||Lp
tL

q
x
. ||u||Up

∆
, u ∈ Up

∆L
2. (5.6)

Next, we prove the multilinear estimate as follows.

Lemma 5.8. Let d ≥ 1, m ≥ 2, sc = d/2− 1/(m− 1) and b > 1/2. For any dyadic

numbers N1 ≫ N2 ≥ · · · ≥ Nm, we have∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PNj
uj

∣∣∣∣∣
∣∣∣∣∣
L2
tx

. ||PN1u1||X0,b

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j ||PNj

uj||X0,b , (5.7)

where ||u||X0,b := ||⟨τ + |ξ|2⟩bũ||L2
τξ
.

Proof. For the case d = 2 and m = 2, the estimate (5.7) is proved by Colliander,

Delort, Kenig, and Staffilani ([15] Lemma 1). The proof for general case as following

is similar to their argument.

We put gj(τj, ξj) := ⟨τj + |ξj|2⟩bP̃Nj
uj(τj, ξj) (j = 1, · · · ,m) and AN := {ξ ∈

Rd|N/2 ≤ |ξ| ≤ 2N} for a dyadic number N . By the Plancherel’s theorem and the

duality argument, it is enough to prove the estimate

I :=

∣∣∣∣∣
∫
Rm

∫
∏m

j=1 ANj

g0

(
m∑
j=1

τj,

m∑
j=1

ξj

)
m∏
j=1

gj(τj, ξj)

⟨τj + |ξj|2⟩b
dξ∗dτ∗

∣∣∣∣∣
.
(

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j

)
m∏
j=0

||gj||L2
τξ
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for g0 ∈ L2
τξ, where ξ∗ = (ξ1, · · · , ξm), τ∗ = (τ1, · · · , τm). We change the variables

τ∗ 7→ θ∗ = (θ1, · · · , θm) as θj = τj + |ξj|2 (j = 1, · · · ,m) and put

G0(θ∗, ξ∗) := g0

(
m∑
j=1

(θj − |ξj|2),
m∑
j=1

ξj

)
,

Gj(θj, ξj) := gj(θj − |ξj|2, ξj) (j = 1, · · · ,m).

Then, we have

I ≤
∫
Rm

(
m∏
j=1

1

⟨θj⟩b

)(∫
∏m

j=1 ANj

∣∣∣∣∣G0(θ∗, ξ∗)
m∏
j=1

Gj(θj, ξj)

∣∣∣∣∣ dξ∗
)
dθ∗

.
∫
Rm

(
m∏
j=1

1

⟨θj⟩b

)(∫
∏m

j=1 ANj

|G0(θ∗, ξ∗)|2dξ∗

)1/2 m∏
j=1

||Gj(θj, ·)||L2
ξ
dθ∗

by the Cauchy-Schwartz inequality. For 1 ≤ k ≤ d, we put

Ak
N1

:= {ξ1 = (ξ
(1)
1 , · · · , ξ(d)1 ) ∈ Rd| N1/2 ≤ |ξ1| ≤ 2N1, |ξ(k)1 | ≥ N1/(2

√
d)}

and

Jk(θ∗) :=

(∫
Ak

N1
×
∏m

j=2 ANj

|G0(θ∗, ξ∗)|2dξ∗

)
.

We consider only the estimate for J1. The estimates for other Jk are obtained by

the same way.

Assume d ≥ 2. By changing the variables (ξ1, ξ2) = (ξ
(1)
1 , · · · , ξ(d)1 , ξ

(1)
2 , · · · , ξ(d)2 ) 7→

(µ, ν, η) as 
µ =

∑m
j=1(θj − |ξj|2) ∈ R,

ν =
∑m

j=1 ξj ∈ Rd,

η = (ξ
(2)
2 · · · , ξ(d)2 ) ∈ Rd−1,

(5.8)

we have

dµdνdη = 2|ξ(1)1 − ξ
(1)
2 |dξ1dξ2

and

G0(θ∗, ξ∗) = g0(µ, ν).

We note that |ξ(1)1 − ξ
(1)
2 | ∼ N1 for any (ξ1, ξ2) ∈ A1

N1
× AN2 with N1 ≫ N2.

Furthermore, ξ2 ∈ AN2 implies that η ∈ [−2N2, 2N2]
d−1. Therefore, we obtain

J1(θ∗) .
∫
∏m

j=3 ANj

(∫
[−2N2,2N2]d−1

∫
Rd

∫
R
|g0(µ, ν)|2

1

N1

dµdνdη

)
dξ3 · · · dξm

∼ Nd−1
2

N1

(
m∏
j=3

Nd
j

)
||g0||2L2

τξ
≤

(
m∏
j=2

(
Nj

N1

)1/(m−1)

N
d−2/(m−1)
j

)
||g0||2L2

τξ
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since N2 ≥ Nj for 3 ≤ j ≤ m. As a result, we have

I .
∫
Rm

(
m∏
j=1

1

⟨θj⟩b

)(
d∑

k=1

Jk(θ∗)

)1/2 m∏
j=1

||Gj(θj, ·)||L2
ξ
dθ∗

.
(

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j

)
m∏
j=0

||gj||L2
τξ

by the Cauchy-Schwartz inequality and changing the variables θ∗ 7→ τ∗ as θj =

τj + |ξj|2 (j = 1, · · · ,m).

For d = 1, we obtain the same result by changing the variables (ξ1, ξ2) 7→ (µ, ν)

as µ =
∑m

j=1(θj − |ξj|2), ν =
∑m

j=1 ξj instead of (5.8).

Corollary 5.9. Let m ≥ 2, m + d ≥ 4 and sc = d/2 − 1/(m − 1). For any dyadic

numbers N1 ≫ N2 ≥ · · · ≥ Nm and 0 < δ < 1/2(m− 1), we have∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PNj
uj

∣∣∣∣∣
∣∣∣∣∣
L2
tx

. ||PN1u1||U2
∆

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j ||PNj

uj||U2
∆L2 , (5.9)

∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PNj
uj

∣∣∣∣∣
∣∣∣∣∣
L2
tx

. ||PN1u1||V 2
∆

m∏
j=2

(
Nj

N1

)δ

N sc
j ||PNj

uj||V 2
∆L2 . (5.10)

Proof. To obtain (5.9), we use the argument of the proof of Corollary 2.21 (27) in

[25]. Let ϕ1, · · · , ϕm ∈ L2(Rd) and define ϕλ
j (x) := ϕj(λx) (j = 1, · · · ,m) for λ ∈ R.

By using the rescaling (t, x) 7→ (λ2t, λx), we have∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PNj
(eit∆ϕj)

∣∣∣∣∣
∣∣∣∣∣
L2([−T,T ]×Rd)

= λd/2+1

∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PλNj
(eit∆ϕλ

j )

∣∣∣∣∣
∣∣∣∣∣
L2([−λ−2T,λ−2T ]×Rd)

.

Therefore by putting λ =
√
T and (5.7), we have∣∣∣∣∣

∣∣∣∣∣
m∏
j=1

PNj
(eit∆ϕj)

∣∣∣∣∣
∣∣∣∣∣
L2([−T,T ]×Rd)

.
√
T

md/2
||P√

TN1
ϕ
√
T

1 ||L2
x

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j ||P√

TNj
ϕ
√
T

j ||L2
x

= ||PN1ϕ1||L2
x

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j ||PNj

ϕj||L2
x
.

Let T → ∞, then we obtain∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PNj
(eit∆ϕj)

∣∣∣∣∣
∣∣∣∣∣
L2
tx

. ||PN1ϕ1||L2
x

m∏
j=2

(
Nj

N1

)1/2(m−1)

N sc
j ||PNj

ϕj||L2
x
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and (5.9) follows from proposition 2.8.

To obtain (5.10), we first prove the U2m estimate. By the Cauchy-Schwartz

inequality, the Sobolev embedding Ẇ sc,2md/(md−2)(Rd) ↪→ Lm(m−1)d(Rd) (which holds

when m ≥ 2, m+ d ≥ 4) and (5.6), we have∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

PNj
uj

∣∣∣∣∣
∣∣∣∣∣
L2
tx

. ||PN1u1||L2m
t L

2md/(md−2)
x

m∏
j=2

N sc
j ||PNj

uj||L2m
t L

2md/(md−2)
x

. ||PN1u1||U2m
∆ L2

m∏
j=2

N sc
j ||PNj

uj||U2m
∆ L2

(5.11)

for any dyadic numbers N1, · · · , Nm ∈ 2Z. We use the interpolation between (5.9)

and (5.11) via Proposition 2.9. Then, we get (5.10) by the same argument of the

proof of Corollary 2.21 (28) in [25].

Lemma 5.10. We assume that (τ0, ξ0), (τ1, ξ1), · · · , (τm, ξm) ∈ R × Rd satisfy∑d
j=0 τj = 0 and

∑d
j=0 ξj = 0. Then, we have

max
0≤j≤m

|τj + |ξj|2| ≥
1

m+ 1
max
0≤j≤m

|ξj|2. (5.12)

Proof. By the triangle inequality, we obtain (5.12).

The following propositions will be used to prove the key estimate for the well-

posedness in the next section.

Proposition 5.11. Let d ≥ 1, m ≥ 3, sc = d/2− 1/(m− 1) and 0 < T ≤ ∞. For

a dyadic number N1 ∈ 2Z, we define the set S(N1) as

S(N1) := {(N2, · · · , Nm) ∈ (2Z)m−1|N1 ≫ N2 ≥ · · · ≥ Nm}.

If N0 ∼ N1, then we have∣∣∣∣∣∣
∑
S(N1)

∫ T

0

∫
Rd

(
N0

m∏
j=0

PNj
uj

)
dxdt

∣∣∣∣∣∣
. ||PN0u0||V 2

∆L2 ||PN1u1||V 2
∆L2

m∏
j=2

||uj||Ẏ sc .

(5.13)

Proof. We define uj,Nj ,T := 1[0,T )PNj
uj (j = 1, · · · ,m) and put M := N2

0/4(m+ 1).

We decompose Id = Q∆
<M +Q∆

≥M . We divide the integrals on the left-hand side of

(5.13) into 2m+1 piece of the form∫
R

∫
Rd

(
N0

m∏
j=0

Q∆
j uj,Nj ,T

)
dxdt (5.14)
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with Q∆
j ∈ {Q∆

≥M , Q
∆
<M} (j = 0, · · · ,m). By the Plancherel’s theorem, we have

(5.14) = c

∫
∑m

j=0 τj=0

∫
∑m

j=0 ξj=0

N0

m∏
j=0

F [Q∆
j uj,Nj ,T ](τj, ξj),

where c is a constant. Therefore, Lemma 5.10 implies that∫
R

∫
Rd

(
N0

m∏
j=0

Q∆
<Muj,Nj ,T

)
dxdt = 0.

So, let us now consider the case that Q∆
j = Q∆

≥M for some 0 ≤ j ≤ m.

First, we consider the case Q∆
0 = Q∆

≥M . By the Cauchy-Schwartz inequality, we

have ∣∣∣∣∣∣
∑
S(N1)

∫
R

∫
Rd

(
N0Q

∆
≥Mu0,N0,T

m∏
j=1

Q∆
j uj,Nj ,T

)
dxdt

∣∣∣∣∣∣
≤
∑
S(N1)

N0||Q∆
≥Mu0,N0,T ||L2

tx

∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

Q∆
j uj,Nj ,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

.

Furthermore by (2.1) with p = 2 and M ∼ N2
0 , we have

||Q∆
≥Mu0,N0,T ||L2

tx
. N−1

0 ||u0,N0,T ||V 2
∆L2 .

While by (5.10), (2.2) and the Cauchy-Schwartz inequality for the dyadic sum, we

have∑
S(N1)

∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

Q∆
j uj,Nj ,T

∣∣∣∣∣
∣∣∣∣∣
L2
tx

. ||u1,N1,T ||V 2
∆L2

∑
S(N1)

m∏
j=2

(
Nj

N1

)δ

N sc
j ||uj,Nj ,T ||V 2

∆L2

. ||u1,N1,T ||V 2
∆L2

m∏
j=2

 ∑
Nj≤N1

N2sc
j ||uj,Nj ,T ||2V 2

∆L2

1/2

.

Therefore, we obtain∣∣∣∣∣∣
∑
S(N1)

∫
R

∫
Rd

(
N0Q

∆
≥Mu0,N0,T

m∏
j=1

Q∆
j uj,Nj ,T

)
dxdt

∣∣∣∣∣∣
. ||PN0u0||V 2

∆L2 ||PN1u1||V 2
∆L2

m∏
j=2

||uj||Ẏ sc

since ||1[0,T )u||V 2
∆L2 . ||u||V 2

∆L2 for any T ∈ (0,∞]. For the case Q∆
1 = Q∆

≥M is proved

in same way.
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Next, we consider the case Q∆
k = Q∆

≥M for some 2 ≤ k ≤ m. By the Hölder’s

inequality, we have∣∣∣∣∣∣∣∣
∑
S(N1)

∫
R

∫
Rd

N0Q
∆
≥Muk,Nk,T

m∏
j=0
j ̸=k

Q∆
j uj,Nj ,T

 dxdt

∣∣∣∣∣∣∣∣
. N0||Q∆

0 u0,N0,T ||L4
tL

2d/(d−1)
x

||Q∆
1 u1,N1,T ||L4

tL
2d/(d−1)
x

×

∣∣∣∣∣
∣∣∣∣∣∑
Nk

Q∆
≥Muk,Nk,T

∣∣∣∣∣
∣∣∣∣∣
L2
tL

(m−1)d
x

m∏
j=2
j ̸=k

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
Nj

Q∆
j uj,Nj ,T

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞
t L

(m−1)d
x

.

By (5.6), the embedding V 2
∆L

2 ↪→ U4
∆L

2 and (2.2), we have

||Q∆
0 u0,N0,T ||L4

tL
2d/(d−1)
x

||Q∆
1 u1,N1,T ||L4

tL
2d/(d−1)
x

. ||u0,N0,T ||V 2
∆L2 ||u1,N1,T ||V 2

∆L2 .

While by the Sobolev embedding Ḣsc(Rd) ↪→ L(m−1)d(Rd), L2 orthogonality and

(2.1) with p = 2, we have∣∣∣∣∣
∣∣∣∣∣∑
Nk

Q∆
≥Muk,Nk,T

∣∣∣∣∣
∣∣∣∣∣
L2
tL

(m−1)d
x

.
(∑

Nk

N2sc
k ||Q∆

≥Muk,Nk,T ||2L2
tx

)1/2

. N−1
0

(∑
Nk

N2sc
k ||uk,Nk,T ||2V 2

∆L2

)1/2

since M ∼ N2
0 . Furthermore by the Sobolev embedding Ḣsc(Rd) ↪→ L(m−1)d(Rd),

L2 orthogonality, V 2
∆L

2 ↪→ L∞(R;L2) and (2.2), we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
Nj

Q∆
j uj,Nj ,T

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞
t L

(m−1)d
x

.

∑
Nj

N2sc
j ||Q∆

j uj,Nj ,T ||2L∞
t L2

x

1/2

.

∑
Nj

N2sc
j ||uj,Nj ,T ||2V 2

∆L2

1/2

.

As a result, we obtain∣∣∣∣∣∣∣∣
∑
S(N1)

∫
R

∫
Rd

N0Q
∆
≥Muk,Nk,T

m∏
j=0
j ̸=k

Q∆
j uj,Nj ,T

 dxdt

∣∣∣∣∣∣∣∣
. ||PN0u0||V 2

∆L2 ||PN1u1||V 2
∆L2

m∏
j=2

||uj||Ẏ sc

since ||1[0,T )u||V 2
∆L2 . ||u||V 2

∆L2 for any T ∈ (0,∞].
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Proposition 5.12. Let d ≥ 1, m ≥ 3, sc = d/2− 1/(m− 1) and 0 < T ≤ ∞. For

a dyadic number N2 ∈ 2Z, we define the set S∗(N2) as

S∗(N2) := {(N3, · · · , Nm) ∈ (2Z)m−2|N2 ≥ N3 ≥ · · · ≥ Nm}.

If N0 . N1 ∼ N2, then we have∣∣∣∣∣∣
∑

S∗(N2)

∫ T

0

∫
Rd

(
N0

m∏
j=0

PNj
uj

)
dxdt

∣∣∣∣∣∣
. N0

N1

||PN0u0||V 2
∆L2 ||PN1u1||V 2

∆L2N sc
2 ||PN2u2||V 2

∆L2

m∏
j=3

||uj||Ẏ sc .

(5.15)

Proof. We define uj,Nj ,T := 1[0,T )PNj
uj (j = 1, · · · ,m) and put M := N2

1/4(m+ 1).

We decompose Id = Q∆
<M +Q∆

≥M . We divide the integrals on the left-hand side of

(5.15) into 2m+1 piece of the form∫
R

∫
Rd

(
N0

m∏
j=0

Q∆
j uj,Nj ,T

)
dxdt (5.16)

with Q∆
j ∈ {Q∆

≥M , Q
∆
<M} (j = 0, · · · ,m). By the Plancherel’s theorem, we have

(5.16) = c

∫
∑m

j=0 τj=0

∫
∑m

j=0 ξj=0

N0

m∏
j=0

F [Q∆
j uj,Nj ,T ](τj, ξj),

where c is a constant. Therefore, Lemma 5.10 implies that∫
R

∫
Rd

(
N0

m∏
j=0

Q∆
<Muj,Nj ,T

)
dxdt = 0.

So, let us now consider the case that Q∆
j = Q∆

≥M for some 0 ≤ j ≤ m.

We consider only for the case Q∆
0 = Q∆

≥M since the case Q∆
1 = Q∆

≥M is similar

argument and the cases Q∆
k = Q∆

≥M (k = 2, · · · ,m) are similar to the argument in

the proof of Proposition 5.11. By the Hölder’s inequality and we have∣∣∣∣∣∣
∑

S∗(N2)

∫
R

∫
Rd

(
N0Q

∆
≥Mu0,N0,T

m∏
j=1

Q∆
j uj,Nj ,T

)
dxdt

∣∣∣∣∣∣
. N0||Q∆

≥Mu0,N0,T ||L2
tL

(m−1)d
x

||Q∆
1 u1,N1,T ||L4

tL
2d/(d−1)
x

||Q∆
2 u2,N2,T ||L4

tL
2d/(d−1)
x

×
m∏
j=3

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
Nj

Q∆
j uj,Nj ,T

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞
t L

(m−1)d
x

.
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By the Sobolev embedding Ḣsc(Rd) ↪→ L(m−1)d(Rd) and (2.1) with p = 2, we have∣∣∣∣Q∆
≥Mu0,N0,T

∣∣∣∣
L2
tL

(m−1)d
x

. N sc
0 ||Q∆

≥Mu0,N0,T ||L2
tx

. N−1
1 N sc

2 ||u0,N0,T ||V 2
∆L2

since M ∼ N2
1 and N0 . N2. While by (5.6), the embedding V 2

∆L
2 ↪→ U4

∆L
2 and

(2.2), we have

||Q∆
1 u1,N1,T ||L4

tL
2d/(d−1)
x

||Q∆
2 u2,N2,T ||L4

tL
2d/(d−1)
x

. ||u1,N1,T ||V 2
∆L2 ||u2,N2,T ||V 2

∆L2 .

Furthermore by the Sobolev embedding Ḣsc(Rd) ↪→ L(m−1)d(Rd), L2 orthogonality,

V 2
∆L

2 ↪→ L∞(R;L2) and (2.2), we have∣∣∣∣∣∣
∣∣∣∣∣∣
∑
Nj

Q∆
j uj,Nj ,T

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞
t L

(m−1)d
x

.

∑
Nj

N2sc
j ||Q∆

j uj,Nj ,T ||2L∞
t L2

x

1/2

.

∑
Nj

N2sc
j ||uj,Nj ,T ||2V 2

∆L2

1/2

.

As a result, we obtain∣∣∣∣∣∣
∑

S∗(N2)

∫
R

∫
Rd

(
N0Q

∆
≥Mu0,N0,T

m∏
j=1

Q∆
j uj,Nj ,T

)
dxdt

∣∣∣∣∣∣
. N0

N1

||PN0u0||V 2
∆L2 ||PN1u1||V 2

∆L2N sc
2 ||PN2u2||V 2

∆L2

m∏
j=2

||uj||Ẏ sc

since ||1[0,T )u||V 2
∆L2 . ||u||V 2

∆L2 for any T ∈ (0,∞].

5.3 Proof of the well-posedness and the scattering

In this section, we prove Theorem 5.3 and Corollary 5.5. We define the map ΦT,φ as

ΦT,φ(u)(t) := eit∆φ− iIT (u, · · · , u)(t),

where

IT (u1, · · ·um)(t) :=
∫ t

0

1[0,T )(t
′)ei(t−t′)∆∂k

(
m∏
j=1

uj(t′)

)
dt′.

To prove the well-posedness of (5.1), we prove that ΦT,φ is a contraction map on a

closed subset of Żs([0, T ]) or Zs([0, T ]). Key estimate is the following:
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Proposition 5.13. We assume d ≥ 1, m ≥ 3. Then for sc = d/2− 1/(m− 1) and

any 0 < T ≤ ∞, we have

||IT (u1, · · ·um)||Żsc .
m∏
j=1

||uj||Ẏ sc . (5.17)

Proof. We show the estimate

||IT (u1, · · ·um)||Żs .
m∑
k=1

||uk||Ẏ s

m∏
j=1
j ̸=k

||uj||Ẏ sc

 (5.18)

for s ≥ 0. (5.17) follows from (5.18) with s = sc. We decompose

IT (u1, · · ·um) =
∑

N1,··· ,Nm

IT (PN1u1, · · ·PNmum).

By symmetry, it is enough to consider the summation for N1 ≥ · · · ≥ Nm. We put

S1 := {(N1, · · · , Nm) ∈ (2Z)m|N1 ≫ N2 ≥ · · · ≥ Nm}

S2 := {(N1, · · · , Nm) ∈ (2Z)m|N1 ∼ N2 ≥ · · · ≥ Nm}

and

Jk :=

∣∣∣∣∣
∣∣∣∣∣∑
Sk

IT (PN1u1, · · ·PNmum)

∣∣∣∣∣
∣∣∣∣∣
Żs

(k = 1, 2).

First, we prove the estimate for J1. By Theorem 2.4 and the Plancherel’s theo-

rem, we have

J1 ≤

∑
N0

N2s
0

∣∣∣∣∣
∣∣∣∣∣e−it∆PN0

∑
S1

IT (PN1u1, · · ·PNmum)

∣∣∣∣∣
∣∣∣∣∣
2

U2(R;L2)


1/2

.

∑
N0

N2s
0

∑
N1∼N0

 sup
||u0||V 2

∆
L2=1

∣∣∣∣∣∣
∑
S(N1)

∫ T

0

∫
Rd

(
N0

m∏
j=0

PNj
uj

)
dxdt

∣∣∣∣∣∣
2

1/2

.

Therefore by Proposition 5.11, we have

J1 .

∑
N0

N2s
0

∑
N1∼N0

 sup
||u0||V 2

∆
L2=1

||PN0u0||V 2
∆L2 ||PN1u1||V 2

∆L2

m∏
j=2

||uj||Ẏ sc

2
1/2

.
(∑

N1

N2s
1 ||PN1u1||2V 2

∆L2

)1/2 m∏
j=2

||uj||Ẏ sc

= ||u1||Ẏ s

m∏
j=2

||uj||Ẏ sc .
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Next, we prove the estimate for J2. By Theorem 2.4 and the Plancherel’s theo-

rem, we have

J2 ≤
∑
N1

∑
N2∼N1

∑
N0

N2s
0

∣∣∣∣∣∣
∣∣∣∣∣∣e−it∆PN0

∑
S∗(N2)

IT (PN1u1, · · ·PNmum)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

U2(R;L2)


1/2

=
∑
N1

∑
N2∼N1

 ∑
N0.N1

N2s
0 sup

||u0||V 2
∆

L2=1

∣∣∣∣∣∣
∑

S∗(N2)

∫ T

0

∫
Rd

(
N0

m∏
j=0

PNj
uj

)
dxdt

∣∣∣∣∣∣
21/2

.

Therefore by Proposition 5.12 and Cauchy-Schwartz inequality for dyadic sum, we

have

J2 .
∑
N1

∑
N2∼N1

 ∑
N0.N1

N2s
0

(
N0

N1

||PN1u1||V 2
∆L2N sc

2 ||PN2u2||V 2
∆L2

m∏
j=3

||uj||Ẏ sc

)2
1/2

.
(∑

N1

N2s
1 ||PN1u1||2V 2

∆L2

)1/2(∑
N2

N2sc
2 ||PN2u2||2V 2

∆L2

)1/2 m∏
j=3

||uj||Ẏ sc

= ||u1||Ẏ s

m∏
j=2

||uj||Ẏ sc .

The estimates (5.18) with s = 0 and with s = sc imply the following.

Corollary 5.14. We assume d ≥ 1, m ≥ 3. Then for s ≥ sc (= d/2− 1/(m− 1))

and any 0 < T ≤ ∞, we have

||IT (u1, · · ·um)||Zs .
m∏
j=1

||uj||Y s .

Proof of Theorem 5.3. We prove only the homogeneous case. The inhomoge-

neous case is also proved by the same way. For r > 0, we define

Żs
r (I) :=

{
u ∈ Żs(I)

∣∣∣ ||u||Żs(I) ≤ 2r
}

(5.19)

which is a closed subset of Żs(I). Let u0 ∈ Br(Ḣ
sc(Rd)) be given. For u ∈

Żsc
r ([0,∞)), we have

||ΦT,u0(u)||Żsc ([0,∞)) ≤ ||u0||Ḣsc + C||u||m
Żsc ([0,∞))

≤ r(1 + 2mCrm−1)
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and

||ΦT,u0(u)− ΦT,u0(v)||Żsc ([0,∞)) ≤ C(||u||Żsc ([0,∞)) + ||v||Żsc ([0,∞)))
m−1||u− v||Żsc ([0,∞))

≤ 4m−1Crm−1||u− v||Żsc ([0,∞))

by Proposition 5.13 and

||eit∆φ||Żsc ([0,∞)) ≤ ||1[0,∞)e
it∆φ||Żsc

σ
≤ ||φ||Ḣsc ,

where C is an implicit constant in (5.17). Therefore if we choose r satisfying

r < (4m−1C)−1/(m−1),

then ΦT,u0 is a contraction map on Żsc
r ([0,∞)). This implies the existence of the so-

lution of (5.1) and the uniqueness in the ball Żsc
r ([0,∞)). The Lipschitz continuously

of the flow map is also proved by similar argument.

Proof of Corollary 5.5. We prove only the homogeneous case. The inhomoge-

neous case is also proved by the same way. By Proposition 5.13, the global solution

u ∈ Żsc([0,∞)) of (5.1) which was constructed in Theorem 5.3 satisfies

N sce−it∆PNI∞(u, · · · , u) ∈ V 2(R;L2)

for each N ∈ 2Z. This implies that

u+ := lim
t→∞

(u0 − e−it∆I∞(u, · · · , u)(t))

exists in Ḣsc(Rd) by Proposition 2.3. (iv). Then we obtain

u− eit∆u+ → 0

in Ḣsc(Rd) as t→ ∞.

82



Chapter 6

Higher order KdV type equations

6.1 Review for results

We consider the Cauchy problem of the periodic high order KdV type equations;∂tu+ (−1)k+1∂2k+1
x u+

1

2
∂x(u

2) = 0, (t, x) ∈ (0,∞)× T,

u(0, x) = u0(x), x ∈ T,
(6.1)

where k ∈ N and the unknown function u is real valued. The aim of this paper is

to prove the local well-posedness (LWP for short) of (6.1) with low regularity initial

data.

When k = 1, the equation (6.1) is called “KdV equation”. We first introduce

some known results for the KdV equation. In [5], Bourgain introduced a new method

called “Fourier restriction norm method” and proved that the KdV equation is LWP

in L2(T). In [47], Kenig, Ponce and Vega refined a bilinear estimate used in the

Fourier restriction norm method, and proved that the KdV equation is LWP in

Hs(T) for s ≥ −1/2. In [18], by using the local well-posedness result and the almost

conservation low, Colliander, Keel, Staffilani, Takaoka and Tao obtained that the

KdV equation is the globally well-posed in Hs(T) for s ≥ −1/2. Their method is

called “I-method”. On the other hand, In [10], Christ, Colliander and Tao proved

that the KdV equation is ill-posed. More precisely, the data-to-solution map is not

uniformly continuous on Hs(T) for −2 < s < −1/2. LWP of the non-periodic KdV

equation also was studied by many people before Bourgain’s work ([4], [20], [41],

[43], [44]) and after Bourgain’s work ([18], [24], [45], [47], [49], [50], [58], [69]).

Next, we introduce some known results for the fifth order KdV type equations

∂tu+ α∂5xu+ β∂3xu+ ∂x(u
2) = 0 (6.2)
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and

∂tu− ∂5xu− 30u2∂xu+ 20∂xu∂
2
xu+ 10u∂3xu = 0. (6.3)

Especially, (6.2) is called “Kawahara equation”. LWP of these equations are studied

for non-periodic case. For the known results of the non-periodic Kawahara equation

(6.2), see [6], [19], [38], [70] and the non-periodic fifth order KdV equation (6.3), see

[39], [53], [63].

We return to introduce the known result for (6.1) for general k ∈ N. Recently in

[22], Gorsky and Himonas have proved that (6.1) is LWP in Hs(T) for s ≥ −1/2 by

an argument similar to [47]. The main result in the present paper is an extension of

the result by Gorsky and Himonas.

Finally, we introduce the high order nonlinear dispersive equations related to

(6.1). In [46], Kenig, Ponce and Vega studied the high order nonlinear dispersive

equations

∂tu+ ∂2k+1
x u+ P (u, ∂xu, · · · , ∂2kx u) = 0, (6.4)

where P is a polynomial without constant and linear terms. They proved that (6.4)

is LWP in L2(|x|mdx) ∩Hs(R), where s > 0 and m ∈ Z+ are sufficiently large. In

[62], Pilod proved that (6.4) with

P (u, ∂xu, · · · , ∂2kx u) =
∑

0≤k1+k2≤2k

ak1,k2∂
k1
x u∂

k2
x u

is LWP in Hs(R) ∩Hs−2k(x2dx) for s ∈ N and s > 2k + 1/4. He also proved some

ill-posed results for (6.4).

Without loss of generality, we can assume that û0(0) = 0 by the following trans-

form:

u 7→ u− 1

2π

∫
T
u0(x)dx.

Therefore, we have only to prove LWP of (6.1) in H̃s(T), where

H̃s(T) := {f ∈ Hs(T)| f̂(0) = 0},

and û is the Fourier transform of u with respect to x. We note that H̃s(T) is a

Banach space with respect to the norm

||f ||H̃s(T) := |||ξ|sf̂ ||l2ξ .

Next, we define the Bourgain spaces Zs(λ) and Zs
[0,T ](λ), where λ is the scale pa-

rameter. We will use the scaling property (6.22) in the proof of Theorem 6.2.
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Definition 6.1. Let λ ≥ 1, Tλ := R/(2πλ)Z and Xλ be the space of all F : R ×
Tλ → R such that F (·, x) ∈ S(R) for all x ∈ Tλ, the map x 7→ F (·, x) is C∞ and

F̃ (τ, 0) = 0 for all τ ∈ R, where S(R) is the Schwartz space and F̃ is the Fourier

transform of F with respect to x and t.

(i) For s ∈ R, we define the function space Zs(λ) as the completion of Xλ with

respect to the norm

||u||Zs(λ) := ||u||Xs(λ) + ||u||Y s(λ),

where

||u||Xs(λ) := ||⟨τ − ξ2k+1⟩1/2|ξ|sũ||l2ξ(λ)L2
τ
, ||u||Y s(λ) := |||ξ|sũ||l2ξ(λ)L1

τ
.

(ii) We define the function space Zs
[0,T ](λ) and the norm || · ||Zs

[0,T ]
(λ) as

Zs
[0,T ](λ) := {u|[0,T ] |u ∈ Zs(λ)},

||u||Zs
[0,T ]

(λ) := inf{||v||Zs(λ) |v ∈ Zs(λ), v(t) = u(t) on [0, T ]}.

We omit to write down “(λ)” when λ = 1.

The main result in the present paper is the following theorem:

Theorem 6.2. Let k ∈ N. If s ≥ −k/2 then (6.1) is LWP in Hs(T). More

particularly, for all r ≥ 1 and u0 ∈ Br(H̃
s(T)), there exist T = T (r) > 0 and a

solution u ∈ Zs
[0,T ] ∩ C([0, T ]; H̃s(T)) of (6.1). Such solution u is unique in a closed

subset of Zs
[0,T ]. Moreover, the map u0 7→ u from Br(H̃

s(T)) into Zs
[0,T ] is Lipschitz

continuous.

Remark 6.3. After our work, Kato ([40]) extended the result in Theorem 6.2 for

k = 2 to LWP in Hs(T) for s ≥ −3/2 and GWP in Hs(T) for s ≥ −1.

Bilinear estimate plays an important role to prove LWP of (6.1). Gorsky and

Himonas derived the following bilinear estimate for s ≥ −1/2;

||F−1[⟨τ − ξ2k+1⟩−1∂̃x(uv)]||Zs ≤ C||u||Zs||v||Zs . (6.5)

But as mentioned in [22], the estimate (6.5) with s < −1/2 has been open problem.

We extend (6.5) to prove Theorem 6.2 and obtain the following bilinear estimate;

Theorem 6.4. Let k ∈ N and λ ≥ 1. For s ≥ −k/2, there exist a positive constant

C0 and ϵ satisfying 0 < ϵ < 2k + s − 1/2 such that the following bilinear estimate

holds;

||F−1[⟨τ − ξ2k+1⟩−1∂̃x(uv)]||Zs(λ) ≤ C0λ
ϵ||u||Zs(λ)||v||Zs(λ), (6.6)

where C0 does not depend on λ.
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On the other hand, we also obtain negative result for s < −k/2.

Theorem 6.5. Let k ∈ N. For any s < −k/2, the bilinear (6.6) with λ = 1 fails.

Remark 6.6. By Theorem 6.4 and 6.5, s = −k/2 is optimal regularity for the

bilinear estimate (6.6). But this does not imply ill-posedness of (6.1) for s < −k/2.

The bilinear estimate (6.12) below with λ = 1 can be written

|||ξ|1−k/2⟨τ − ξ2k+1⟩−1/2ũ ∗ ṽ||l2ξL2
τ

. |||ξ|−k/2⟨τ − ξ2k+1⟩1/2ũ||l2ξL2
τ
|||ξ|−k/2⟨τ − ξ2k+1⟩1/2ṽ||l2ξL2

τ
,

where

ũ ∗ ṽ(τ, ξ) = 1

2π

∑
ξ=ξ1+ξ2

∫
τ=τ1+τ2

ũ(τ1, ξ1)ṽ(τ2, ξ2)dτ1.

We note that the most difficult region to prove this estimate is |ξ1| ∼ |ξ2| ≫ |ξ|.
Gorsky and Himonas used the estimate

|ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 | & |ξξ1ξ2| · |ξ|2k−2 (6.7)

to prove (6.5). On the other hand, we use the refined estimate

|ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 | ∼ |ξξ1ξ2|max{|ξ|, |ξ1|, |ξ2|}2k−2,

which is better estimate than (6.7) in the region |ξ1| ∼ |ξ2| ≫ |ξ|. Because of such

reason, we could improve the bilinear estimate.

The rest of this chapter is planned as follows. In Section 2, we will prepare to

prove the bilinear estimate. In Section 3, we will prove the bilinear estimate and give

a counterexample. In Section 4, we will prove the well-posedness (Theorem 6.2).

6.2 Preliminary

In this section, we prepare to prove the bilinear estimate.

Lemma 6.7. Let k ∈ N. If p, q, r ∈ R satisfy p+q+r = 0 and p2k+1+q2k+1+r2k+1 =

0 then at least one of p, q and r is equal to 0.

Proof. We can assume |p| ≥ |q| ≥ |r| and p ≥ 0, q ≤ 0, r ≤ 0 without loss of

generality. Since

p2k+1 = −(q2k+1 + r2k+1) = −(q + r)
2k∑
j=0

q2k−j(−r)j = p

2k∑
j=0

(−1)j(−q)2k−j(−r)j
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and

p2k+1 = p(−q − r)2k = p

2k∑
j=0

(
2k

j

)
(−q)2k−j(−r)j,

we have

pqr
2k−1∑
j=1

{(
2k

j

)
− (−1)j

}
(−q)2k−1−j(−r)j−1 = 0. (6.8)

While if pqr ̸= 0, then we have

pqr
2k−1∑
j=1

{(
2k

j

)
− (−1)j

}
(−q)2k−1−j(−r)j−1 > 0

since p ≥ 0, −q ≥ 0, −r ≥ 0 and(
2k

j

)
− (−1)j > 0

for 1 ≤ j ≤ 2k − 1. This contradicts the equation (6.8). Therefore we obtain

pqr = 0.

Nobu Kishimoto pointed out Lemma 6.8 and a proof of it to the author. The

proof of Lemma 6.8 below is simpler than his.

Lemma 6.8. If p, q, r ∈ R\{0} satisfy p+ q + r = 0 then

|p2k+1 + q2k+1 + r2k+1| ∼ |pqr|max{|p|, |q|, |r|}2k−2.

Proof. We can assume |p| ≥ |q| ≥ |r| without loss of generality. By an elementary

calculation, we have

p2k+1 + q2k+1 + r2k+1 = p2k+1 + q2k+1 − (p+ q)2k+1

= −
2k∑
j=1

(
2k + 1

j

)
p2k+1−jqj

= −pq(p+ q)
2k−1∑
j=1

(
j∑

l=1

(−1)j+l

(
2k + 1

l

))
p2k−1−jqj−1

= pqr · p2k−2Q(β),

where

Q(β) =
2k−1∑
j=1

αjβ
j−1, αj :=

j∑
l=1

(−1)j+l

(
2k + 1

l

)
, β :=

q

p
.
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We note that −1 < β ≤ −1/2 and Q(−1) = 2k + 1. Furthermore, we have

|Q(β)| = |p2k+1 + q2k+1 + r2k+1|
|pqr| · |p|2k−2

̸= 0

for −1 < β ≤ −1/2 from Lemma 6.7. This implies

inf
−1<β≤−1/2

|Q(β)| > 0.

Therefore, we obtain

|p2k+1 + q2k+1 + r2k+1| = |pqr| · |p|2k−2|Q(β)| ∼ |pqr|max{|p|, |q|, |r|}2k−2.

Lemma 6.9. If l,m, n ∈ Z∗
λ satisfy l +m+ n = 0, then we have

|l2k+1 +m2k+1 + n2k+1| & 1

λ
max{|l|, |m|, |n|}2k. (6.9)

Proof. We can assume |l| ≥ |m| ≥ |n| without loss of generality. Since

|l| ≤ |m|+ |n| ≤ 2|m|

and

|n| ≥ 1

λ
,

we obtain

|lmn| ≥ 1

2λ
|l|2 ∼ 1

λ
max{|l|, |m|, |n|}2.

Therefore, we have (6.9) by Lemma 6.8.

Lemma 6.10. Let a ∈ R. For any δ and δ′ satisfying 0 ≤ δ′ < δ < 1, we have∫
R

1

⟨θ⟩⟨θ + a⟩1−δ′
dθ . 1

⟨a⟩δ−δ′
,

where the implicit constant depends only on δ and δ′.

For the proof of Lemma 6.10, see Lemma 4.2 in [21].

Lemma 6.11. Let λ ≥ 1. For any δ satisfying 1/m < δ, we have∫
Z∗
λ

1

⟨λ−1P (ξ)⟩δ
dξ . λδ(m+1)−1,

where P (x) is a polynomial of the form

P (x) :=
m∑
j=0

cjx
j (6.10)

with c0, · · · , cm ∈ R, cm does not depend on λ and the implicit constant depends

only on cm.
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Proof. Let γ1, · · · , γm ∈ C be the roots of the equation

P (x) = 0.

Then we have

P (ξ) = cm

m∏
j=1

(ξ − γj).

We put

Cj := {ξ ∈ Z∗
λ | |ξ − γj| ≤ 1} , C :=

m∪
j=1

Cj, D := Z∗
λ\C.

Since #Cj . λ, we have∫
C

1

⟨λ−1P (ξ)⟩δ
dξ ≤

∫
C

1dξ =
1

2πλ
#C ≤ 1

2πλ

m∑
j=1

#Cj . 1.

On the other hand, since

1 ≤ |ξ − γj|

for any ξ ∈ D and 1 ≤ j ≤ m, we have

m∏
j=1

⟨ξ − γj⟩ ∼
m∏
j=1

|ξ − γj| ≤ λ

⟨
λ−1

m∏
j=1

(ξ − γj)

⟩
.

Therefore, we have∫
D

1

⟨λ−1P (ξ)⟩δ
dξ . λδ

∫
D

1∏m
j=1⟨ξ − γj⟩δ

dξ ≤ λδ
m∏
j=1

(∫
D

1

⟨ξ − γj⟩δm
dξ

)1/m

by Holder’s inequality. Since∫
D

1

⟨ξ − γj⟩δm
dn ≤ 1

2πλ

∑
ξ∈Z∗

λδm

⟨ξ − λγj⟩δm
. λδm−1

by 1/m < δ, we obtain ∫
D

1

⟨λ−1P (ξ)⟩δ
dξ . λδ(m+1)−1.

6.3 Proof of the bilinear estimate

In this section, we give the proofs of Theorem 6.4 and Theorem 6.5.
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Proof of Theorem 6.4.

For s > −k/2, we note that

|ξs(ũ ∗ ṽ)| . |ξ|−k/2
(
|(ξs+k/2ũ) ∗ ṽ|+ |ũ ∗ (ξs+k/2ṽ)|

)
. λs+k/2|ξ|−k/2|(ξs+k/2ũ) ∗ (ξs+k/2ṽ)|

by the triangle inequality and λ−1 ≤ |ξ| for all ξ ∈ Z∗
λ. Thus, we only need to prove

the bilinear estimate (6.6) for the case s = −k/2.
We put

f̃(τ, ξ) := ⟨τ − ξ2k+1⟩1/2|ξ|−k/2ũ(τ, ξ), g̃(τ, ξ) := ⟨τ − ξ2k+1⟩1/2|ξ|−k/2ṽ(τ, ξ),

then we have

||u||X−k/2(λ) = ||f̃ ||l2ξ(λ)L2
τ
, ||v||X−k/2(λ) = ||g̃||l2ξ(λ)L2

τ
.

Furthermore, we put

ξ2 := ξ − ξ1, τ2 := τ − τ1, σ := τ − ξ2k+1, σ1 := τ1 − ξ2k+1
1 , σ2 := τ2 − ξ2k+1

2 ,

and divide the set (R× Z∗
λ)

2 into

A0 := {(τ, ξ, τ1, ξ1) ∈ (R× Z∗
λ)

2|M = |σ|, ξ ̸= ξ1},

A1 := {(τ, ξ, τ1, ξ1) ∈ (R× Z∗
λ)

2|M = |σ1|, ξ ̸= ξ1},

A2 := {(τ, ξ, τ1, ξ1) ∈ (R× Z∗
λ)

2|M = |σ2|, ξ ̸= ξ1},

where M =M(τ, ξ, τ1, ξ1) := max{|σ|, |σ1|, |σ2|}. Since

M & |σ − σ1 − σ2| = |(−ξ)2k+1 + ξ2k+1
1 + ξ2k+1

2 |,

we have

|ξξ1ξ2| .M

when k = 1 by Lemma 6.8 and

|ξ|1−k/2 . λk/2−1, |ξ1|k/2 . (λM)1/4, |ξ2|k/2 . (λM)1/4

when k ≥ 2 by λ−1 ≤ |ξ| for all ξ ∈ Z∗
λ and Lemma 6.9. Thus we have

|ξ|1−k/2|ξ1|k/2|ξ2|k/2 . λ(k−1)/2M1/2 (6.11)

for any k ∈ N. We define χΩ as the characteristic function of a set Ω.
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Step 1. (Estimate for the norm || · ||X−k/2(λ))

We prove the estimate

||F−1[⟨τ − ξ2k+1⟩−1∂̃x(uv)]||X−k/2(λ) . λϵ||u||X−k/2(λ)||v||X−k/2(λ). (6.12)

for some ϵ satisfying 0 < ϵ < (3k − 1)/2. From (6.11), we have

||F−1[⟨τ − ξ2k+1⟩−1∂̃x(uv)]||X−k/2(λ)

=

∣∣∣∣∣
∣∣∣∣∣
∫
Z∗
λ\{ξ}

∫
R

|ξ|1−k/2|ξ1|k/2|ξ2|k/2

⟨σ⟩1/2⟨σ1⟩1/2⟨σ2⟩1/2
f̃(τ1, ξ1)g̃(τ2, ξ2)dτ1dξ1

∣∣∣∣∣
∣∣∣∣∣
l2ξ(λ)L

2
τ

.
2∑

j=0

||Jj||l2ξ(λ)L2
τ
,

where

Jj =

∫
Z∗
λ

∫
R

λ(k−1)/2M1/2χAj

⟨σ⟩1/2⟨σ1⟩1/2⟨σ2⟩1/2
f̃(τ1, ξ1)g̃(τ2, ξ2)dτ1dξ1.

By symmetry, we only need to consider the estimate for J0 and J1.

Estimate for J0

By the Cauchy-Schwartz inequality, we have

||J0||l2ξ(λ)L2
τ
≤ sup

ξ,σ
(K0)

1/2 ||f̃ ||l2ξ(λ)L2
τ
||g̃||l2ξ(λ)L2

τ

= sup
ξ,σ

(K0)
1/2 ||u||X−k/2(λ)||v||X−k/2(λ),

(6.13)

where

K0 =

∫
Z∗
λ

∫
R

λk−1MχA0

⟨σ⟩⟨σ1⟩⟨σ2⟩
dσ1dξ1 ∼

∫
Z∗
λ

∫
R

λk−1χA0

⟨σ1⟩⟨σ2⟩
dσ1dξ1.

Let ξ and σ be fixed. We define a1 and P1(ξ1) as

a1 := σ1 + σ2 = σ + ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 =: ξP1(ξ1).

Since P1(x) is of the form of (6.10) with m = 2k, from Lemma 6.10, Lemma 6.11

and |ξ| ≥ λ−1, we have∫
Z∗
λ

∫
R

1

⟨σ1⟩⟨σ2⟩
dσ1dξ1 .

∫
Z∗
λ

1

⟨a1⟩δ
dξ1 ≤

∫
Z∗
λ

1

⟨λ−1P1(ξ1)⟩δ
dξ1 . λδ(2k+1)−1

for any δ satisfying 1/2k < δ < 1. This implies

K0 . λδ(2k+1)+k−2.
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Therefore, we obtain

||J0||l2ξ(λ)L2
τ
. λδ(k+1/2)+k/2−1||u||X−k/2(λ)||v||X−k/2(λ) (6.14)

by (6.13).

Estimate for J1

By using the duality and the Cauchy-Schwartz inequality twice, we have

||J1||l2ξ(λ)L2
τ
. sup

ξ1,σ1

(K1)
1/2||f̃ ||l2ξ1 (λ)L2

τ1
||g̃||l2ξ1 (λ)L2

τ1

= sup
ξ1,σ1

(K1)
1/2||u||X−k/2(λ)||v||X−k/2(λ),

(6.15)

where

K1 =

∫
Z∗
λ

∫
R

λk−1MχA1

⟨σ⟩⟨σ1⟩⟨σ2⟩
dσdξ ∼

∫
Z∗
λ

∫
R

λk−1χA1

⟨σ⟩⟨σ2⟩
dσdξ.

Let ξ1 and σ1 be fixed. We define a and P (ξ) as

a := σ − σ2 = σ1 − ξ2k+1 + ξ2k+1
1 + ξ2k+1

2 =: ξ1P (ξ).

Since P (x) is of the form of (6.10) with m = 2k, from Lemma 6.10, Lemma 6.11

and |ξ1| ≥ λ−1, we have∫
Z∗
λ

∫
R

1

⟨σ⟩⟨σ2⟩
dσdξ .

∫
Z∗
λ

1

⟨a⟩δ
dξ ≤

∫
Z∗
λ

1

⟨λ−1P (ξ)⟩δ
dξ . λδ(2k+1)−1

for any δ satisfying 1/2k < δ < 1. This implies

K1 . λδ(2k+1)+k−2.

Therefore, we obtain

||J1||l2ξ(λ)L2
τ
. λδ(k+1/2)+k/2−1||u||X−k/2(λ)||v||X−k/2(λ) (6.16)

by (6.15).

Putting ϵ := δ (k + 1/2) + k/2− 1, we obtain the estimate (6.12) by (6.14) and

(6.16), where ϵ satisfies 0 < ϵ < (3k − 1)/2 since 1/2k < δ < 1.

Step 2. (Estimate for the norm || · ||Y −k/2)

We prove the estimate

||F−1[⟨τ − ξ2k+1⟩−1∂̃x(uv)]||Y −k/2(λ) . λϵ||u||X−k/2(λ)||v||X−k/2(λ) (6.17)
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for some ϵ satisfying 0 < ϵ < (3k − 1)/2. From (6.11), we have

||F−1[⟨τ − ξ2k+1⟩−1∂̃x(uv)]||Y −k/2(λ)

=

∣∣∣∣∣
∣∣∣∣∣
∫
Z∗
λ\{ξ}

∫
R

|ξ|1−k/2|ξ1|k/2|ξ2|k/2

⟨σ⟩⟨σ1⟩1/2⟨σ2⟩1/2
f̃(τ1, ξ1)g̃(τ2, ξ2)dτ1dξ1

∣∣∣∣∣
∣∣∣∣∣
l2ξ(λ)L

1
τ

.
2∑

j=0

||Ij||l2ξ(λ),

where

Ij =

∫
R

∫
Z∗
λ

∫
R

λ(k−1)/2M1/2χAj

⟨σ⟩⟨σ1⟩1/2⟨σ2⟩1/2
|f̃(τ1, ξ1)||g̃(τ2, ξ2)|dτ1dξ1dτ.

By symmetry, we only need to consider the estimate for I0 and I1.

Estimate for I0

By the Cauchy-Schwartz inequality, we have

||I0||l2ξ(λ) ≤ sup
ξ
(L0)

1/2||f̃ ||l2ξ(λ)L2
τ
||g̃||l2ξ(λ)L2

τ

= sup
ξ
(L0)

1/2||u||X−k/2(λ)||v||X−k/2(λ),
(6.18)

where

L0 =

∫
R

∫
Z∗
λ

∫
R

λk−1MχA0

⟨σ⟩2⟨σ1⟩⟨σ2⟩
dσ1dξ1dσ ∼

∫
R

∫
Z∗
λ

∫
R

λk−1χA0

⟨σ⟩⟨σ1⟩⟨σ2⟩
dσ1dξ1dσ.

Let ξ be fixed and we define a1 and P1(ξ1) as

a1 := −ξ2k+1 + ξ2k+1
1 + ξ2k+1

2 =: ξP1(ξ1).

Since σ2 = σ − (σ1 + a1) and P1(x) is of the form of (6.10) with m = 2k, from

Lemma 6.10, Lemma 6.11 and |ξ| ≥ λ−1, we have∫
Z∗
λ

∫
R

(∫
R

1

⟨σ⟩⟨σ2⟩
dσ

)
1

⟨σ1⟩
dσ1dξ1 .

∫
Z∗
λ

∫
R

1

⟨σ1 + a1⟩1−δ′⟨σ1⟩
dσ1dξ1

.
∫
Z∗
λ

1

⟨a1⟩δ−δ′
dξ1 ≤

∫
Z∗
λ

1

⟨λ−1P1(ξ1)⟩δ−δ′
dξ1 . λ(δ−δ′)(2k+1)−1

for any δ and δ′ satisfying 0 < δ′ < δ < 1 and 1/2k < δ − δ′. This implies

L0 . λ(δ−δ′)(2k+1)+k−2.

Therefore, we obtain

||I0||l2ξ(λ) . λ(δ−δ′)(k+1/2)+k/2−1||u||X−k/2(λ)||v||X−k/2(λ) (6.19)
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by (6.18).

Estimate for I1

Let γ > 0. By the Cauchy-Schwartz inequality, we have

||I1||l2ξ(λ) .
∣∣∣∣∣
∣∣∣∣∣
∫
Z∗
λ

∫
R

λ(k−1)/2M1/2χA1

⟨σ⟩1/2−γ⟨σ1⟩1/2⟨σ2⟩1/2
|f̃(τ1, ξ1)||g̃(τ2, ξ2)|dτ1dξ1

∣∣∣∣∣
∣∣∣∣∣
l2ξ(λ)L

2
τ

.

By using the duality and the Cauchy-Schwartz inequality twice, we have

||I1||l2ξ(λ) . sup
ξ1,σ1

(L1)
1/2||f̃ ||l2ξ1 (λ)L2

τ1
||g̃||l2ξ1 (λ)L2

τ1

= sup
ξ1,σ1

(L1)
1/2||u||X−k/2(λ)||v||X−k/2(λ),

(6.20)

where

L1 =

∫
Z∗
λ

∫
R

λk−1MχA1

⟨σ⟩1−2γ⟨σ1⟩⟨σ2⟩
dσdξ ∼

∫
Z∗
λ

∫
R

λk−1χA1

⟨σ⟩1−2γ⟨σ2⟩
dσdξ.

Let ξ1 and σ1 be fixed. We define a and P (ξ) as

a := σ − σ2 = σ1 − ξ2k+1 + ξ2k+1
1 + ξ2k+1

2 =: ξ1P (ξ).

Since P (x) is of the form of (6.10) with m = 2k, from Lemma 6.10, Lemma 6.11

and |ξ1| ≥ λ−1, we have∫
Z∗
λ

∫
R

1

⟨σ⟩1−2γ⟨σ2⟩
dσdξ .

∫
Z∗
λ

1

⟨a⟩δ−2γ
dξ ≤

∫
Z∗
λ

1

⟨λ−1P (ξ)⟩δ−2γ
dξ . λ(δ−2γ)(2k+1)−1

for all δ satisfying 1/2k < δ − 2γ < 1. This implies

L1 . λ(δ−2γ)(2k+1)+k−2.

Therefore, we obtain

||I1||l2ξ(λ) . λ(δ−2γ)(k+1/2)+k/2−1||u||X−k/2(λ)||v||X−k/2(λ) (6.21)

by (6.20).

Putting γ = δ′/2 and ϵ := (δ − δ′) (k + 1/2) + k/2 − 1, we obtain the estimate

(6.17) by (6.19) and (6.21), where ϵ satisfies 0 < ϵ < (3k−1)/2 since 1/2k < δ−δ′ <
1.

Next, we prove Theorem 6.5.
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Proof of Theorem 6.5.

Let N ≫ 1, and we put

ũN(τ, ξ) :=
(
χ{N}(ξ) + χ{N}(−ξ)

)
χ[−1,1](τ − ξ2k+1),

ṽN(τ, ξ) :=
(
χ{1−N}(ξ) + χ{1−N}(−ξ)

)
χ[−1,1](τ − ξ2k+1),

where

χ{c}(ξ) :=

1 (ξ = c)

0 (ξ ̸= c)
, χ[−1,1](σ) :=

1 (|σ| ≤ 1)

0 (|σ| > 1)
.

for c ∈ Z. Then we have

||uN ||Zs ∼ ||vN ||Zs ∼ N s(||χ[−1,1]||L2
σ
+ ||χ[−1,1]||L1

σ
) ∼ N s.

We put

A1(ξ1, ξ2) := χ{N}(ξ1)χ{1−N}(ξ2), A2(ξ1, ξ2) := χ{N}(ξ1)χ{1−N}(−ξ2),

A3(ξ1, ξ2) := χ{N}(−ξ1)χ{1−N}(ξ2), A4(ξ1, ξ2) := χ{N}(−ξ1)χ{1−N}(−ξ2).

Then we have

||F−1[⟨τ − ξ2k+1⟩−1 ˜∂x(uNvN)]||Xs

=

∣∣∣∣∣
∣∣∣∣∣

4∑
j=1

∫
Z∗

|ξ|s+1Aj(ξ1, ξ2)

(∫
R
⟨σ⟩−1/2χ[−1,1](σ1)χ[−1,1](σ2)dσ1

)
dξ1

∣∣∣∣∣
∣∣∣∣∣
l2ξL

2
σ

.

From σ2 = ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 + σ − σ1 and Lemma 6.8, we have

⟨σ⟩ ∼ |ξ2k+1 − ξ2k+1
1 − ξ2k+1

2 | ∼ |ξξ1ξ2|max{|ξ|, |ξ1|, |ξ2|}2k−2

when there exists σ1 satisfying |σ1| ≤ 1 and |σ2| ≤ 1. This implies∫
R
⟨σ⟩−1/2χ[−1,1](σ1)χ[−1,1](σ2)dσ1 & |ξξ1ξ2|−1/2max{|ξ|, |ξ1|, |ξ2|}−(k−1).

As a result, we obtain

||F−1[⟨τ − ξ2k+1⟩−1 ˜∂x(uNvN)]||Xs

&
∣∣∣∣∣
∣∣∣∣∣

4∑
j=1

∫
Z∗

|ξ|s+1Aj(n1, n2)|ξξ1ξ2|−1/2 max{|ξ|, |ξ1|, |ξ2|}−(k−1)dξ1

∣∣∣∣∣
∣∣∣∣∣
l2ξ

∼
∣∣∣∣N−k(χ{1} + χ{−1}) +N s+1N−k−1/2(χ{2N−1} + χ{−2N+1})

∣∣∣∣
l2ξ

& N−k.
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By above discussion, if the bilinear estimate (6.6) holds, then we have

N−k . ||F−1[⟨τ − ξ2k+1⟩−1 ˜∂x(uNvN)]||Xs ≤ ||F−1[⟨τ − ξ2k+1⟩−1 ˜∂x(uNvN)]||Zs

. ||uN ||Zs||vN ||Zs ∼ N2s,

which contradicts the assumption s < −k/2.

6.4 Proof of local well-posedness

In this section, we prove LWP of (6.1) by using the bilinear estimate. First, we

consider the scaling property. (6.1) with initial data u0 ∈ H̃s(T) is invariant under
the following scaling;

uλ(t, x) = λ−2ku(λ−2k−1t, λ−1x), uλ0(x) = λ−2ku0(λ
−1x).

More precisely, if u satisfies (6.1) on [0, T ] × T with initial data u0 ∈ H̃s(T), then
uλ satisfies the same equation on [0, λ2k+1T ]× Tλ with initial data uλ0 ∈ H̃s(Tλ).

Proposition 6.12. For s ∈ R, and λ ≥ 1, we have

||uλ0||H̃s(Tλ)
= λ−2k−s+1/2||u0||H̃s(T), (6.22)

where

||f ||H̃s(Tλ)
:= |||ξ|sf̂ ||l2ξ(λ).

Proof. We note that 1

2πλ

∑
ξ∈Z∗

λ

|f(λξ)|2
1/2

= λ−1/2

(
1

2π

∑
ξ∈Z∗

|f(ξ)|2
)1/2

for all function f defined on T. This implies

||f(λξ)||l2ξ(λ) = λ−1/2||f ||l2ξ . (6.23)

Since ûλ0(ξ) = λ−2k+1û0(λξ) and

|||ξ|sλ−2k+1û0(λξ)||l2ξ(λ) = λ−1/2|||λ−1ξ|sλ−2k+1û0||l2ξ

by (6.23), we obtain (6.22).

Next, we give the linear estimates for the equation (6.1).
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Proposition 6.13. Let λ ≥ 1. We put

(Uλ(t)f)(x) :=

∫
Z∗
λ

exp(itξ2k+1 + ixξ)f̂(ξ)dξ

and

(Uλ ∗R F )(t) :=
∫ t

0

Uλ(t− t′)F (t′)dt′.

For s ∈ R, there exist positive constants C1 and C2 such that

||ψUλ(·)f ||Zs(λ) ≤ C1||f ||H̃s(Tλ)
,

||ψ(Uλ ∗R F )||Zs(λ) ≤ C2||F−1[⟨τ − ξ2k+1⟩−1F̃ ]||Zs(λ),

where C1 and C2 do not depend on λ and ψ is a cut-off function such that ψ ∈
C∞(R), ψ(t) = 1 on [−1, 1] and supp ψ ⊂ [−2, 2].

For the proof of Proposition 6.13, see Lemma 2.1 in [21].

Proof of Theorem 6.2.

For u0 ∈ Br(H̃
s(T)), we choose λ > 1 such that λ2k+s−1/2−ϵ ≥ 4C0C1C2r, where C1

and C2 appeared in Proposition 6.13, and C0 and ϵ appeared in Theorem 6.4. Then

we have ||uλ0||H̃s(Tλ)
≤ 1/(4C0C1C2λ

ϵ) =: Rλ from Proposition 6.12. Therefore, we

assume that uλ0 ∈ BRλ
(H̃s(Tλ)).

We define the map Φu0,λ as

Φu0,λ[u](t) := ψ(t)Uλ(t)uλ0 −
ψ(t)

2

∫ t

0

Uλ(t− t′)∂x(u(t
′)2)dt′,

where ψ is a cut function satisfying the assumption in Proposition 6.13. To prove

the existence of the solution of (6.1), we first prove that Φu0,λ is a contraction map

on B2C1Rλ
(Zs(λ)).

Step 1. (Existence)

For any u ∈ B2C1Rλ
(Zs(λ)), from Proposition 6.13 and Theorem 6.4, we have

||Φu0,λ[u]||Zs(λ) ≤ ||ψUλ(·)uλ0||Zs(λ) +
1

2
||ψ
(
Uλ ∗R (∂x(u

2))
)
||Zs(λ)

≤ C1Rλ +
1

2
C2C0λ

ϵ||u||2Zs(λ)

≤ C1Rλ + (2C0C1C2λ
ϵRλ)C1Rλ

≤ 2C1Rλ.
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Therefore, we obtain Φu0,λ[u] ∈ B2C1Rλ
(Zs(λ)).

For any u, v ∈ B2C1Rλ
(Zs(λ)), from Proposition 6.13 and Theorem 6.4, we have

||Φu0,λ[u]− Φu0,λ[v]||Zs(λ) ≤
1

2
||ψ
(
Uλ ∗R (∂x(u

2 − v2))
)
||Zs(λ)

≤ 1

2
C2C0λ

ϵ||u+ v||Zs(λ)||u− v||Zs(λ)

≤ 2C0C1C2λ
ϵRλ||u− v||Zs(λ)

=
1

2
||u− v||Zs(λ).

This implies that Φu0,λ is a contraction map.

By above discussion and applying Banach’s fixed point theorem, there exists

u′λ ∈ B2C1Rλ
(Zs(λ)), such that

u′λ(t) = ψ(t)Uλ(t)uλ0 −
ψ(t)

2

∫ t

0

Uλ(t− t′)∂x(u
′
λ(t

′)2)dt′. (6.24)

Especially, u′λ satisfies the integral equation

u′λ(t) = Uλ(t)uλ0 −
1

2

∫ t

0

Uλ(t− t′)∂x(u
′
λ(t

′)2)dt′. (6.25)

in the time interval [0, 1]. Therefore, uλ = u′λ|[0,1] ∈ B2C1Rλ
(Zs

[0,1](λ)) is the time

local solution of (6.1).

Next, we prove that uλ is unique in B2C1Rλ
(Zs

[0,1](λ)).

Step 2. (Uniqueness)

We assume that uλ, vλ ∈ B2C1Rλ
(Zs

[0,1](λ)) satisfy (6.25) on [0, 1]. For any u′λ,

v′λ ∈ Zs,1/2(λ) such that u′λ(t) = uλ(t), v
′
λ(t) = vλ(t) on [0, 1], we have

||uλ − vλ||Zs
[0,1]

(λ) ≤
1

2
||ψ
(
Uλ ∗R

(
∂x(u

2
λ − v2λ)

))
||Zs

[0,1]
(λ)

≤ 1

2
||ψ
(
Uλ ∗R

(
∂x((u

′
λ)

2 − (v′λ)
2)
))

||Zs(λ)

≤ 1

2
C2C0λ

ϵ||u′λ + v′λ||Zs(λ)||u′λ − v′λ||Zs(λ)

from Proposition 6.13 and Theorem 6.4. Therefore we obtain

||uλ − vλ||Zs
[0,1]

(λ) ≤
1

2
C2C0λ

ϵ||uλ + vλ||Zs
[0,1]

(λ)||uλ − vλ||Zs
[0,1]

(λ)

≤ 2C0C1C2λ
ϵRλ||uλ − vλ||Zs

[0,1]
(λ)

=
1

2
||uλ − vλ||Zs

[0,1]
(λ).
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Thus, uλ(t) = vλ(t) on [0, 1].

Finally, we prove that the data-to-solution map is Lipschitz continuous.

Step 3. (Lipschitz continuity of the data-to-solution map)

Let u′λ (resp. v′λ) ∈ B2C1Rλ
(Zs,1/2(λ)) be the solution of (6.24) with initial data uλ0

(resp. vλ0) ∈ BRλ
(H̃s(Tλ)) obtained in Step 1. Then we have

||u′λ − v′λ||Zs(λ) ≤ C1||uλ0 − vλ0||H̃s(Tλ)
+

1

2
||u′λ − v′λ||Zs(λ).

in the same manner as above. Therefore, we obtain

||u′λ − v′λ||Zs(λ) ≤ 2C1||uλ0 − vλ0||H̃s(Tλ)
.

This implies that the data-to-solution map is Lipschitz continuous.
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