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Chapter 1

Overview

1.1 Introduction

In this article, we study the Cauchy problem of nonlinear dispersive equations with
derivative nonlinearity. Specifically, we deal with the system of quadratic derivative

nonlinear Schrodinger equations:

(10 + aA)u = —(V - w)v,
(i0; + BAYW = —(V - W), (1.1)
(10 + yA)w = V(u - 0)

with a, 3, v € R\{0}, the nonlinear Schrédinger equations:
(10 + A)u = O (u™) (1.2)
with m € N, m > 2, 1 < k < d and the higher order KdV type equations:
Dt + (—1)FH1 21y 4 %ax(@ﬂ) ~0 (1.3)

with & € N, where u, v, w in (1.1) are C? valued, u in (1.2) is C valued, u in
(1.3) is R valued, d is a dimension of the spatial variable, 0y = 0/0z; and A is the
usual Laplacian A = Zi:l 0?/0z%. The system (1.1) is a model of laser-plasma
interaction ([11]). The equation (1.2) is a mathematical model which is studied by
Griinrock ([23]). The equation (1.3) is called “Korteweg-de Vries equation” (“KdV
equation” for short) when k£ = 1 and “Kawahara equation” when k& = 2 which are
the model of water waves ([42], [52]). We assume that the spatial variable x is in
R? or T¢ (= R4/ (27Z)%).



Our first aim is to obtain the well-posedness (existence of solutions, their unique-
ness and their continuous dependence on initial data) for the Cauchy problem of
these equations. Well-posedness is a fundamental and important property of differ-
ential equations since the existence of solutions and their uniqueness are necessary
to justify the equation as a model of physical phenomena and the continuous de-
pendence on initial data is necessary to justify numerical solutions of the equation.
We say that a differential equation is locally well-posed (LWP for short) in the
Banach space H if for any initial data uy € H, there exist 7" > 0 and a solution
u € C([0,T];H) of the equation, such solution is unique in the suitable Banach
space X7 which is embedded in C([0,7];H) and the data-to-solution map ug — u
is continuous from each ball in ‘H to Xr. Furthermore if for any ug € ‘H and T" > 0,
there exists a solution u € C([0,7];H) and the uniqueness and the continuous of
the data-to-solution map above hold, then we say that the differential equation is
globally well-posed (GWP for short) in H.

To obtain the well-posedness of a differential equation, we use the iteration ar-
gument as below. We consider the general problem:

i0u + Lu = N (u), (14)

uli=0 = uo,
where £ is a linear differential operator given as £ = p(—iV) for a real coefficients
polynomial p and N (u) is a nonlinear term. For example, (1.4) corresponds (1.2)
when p(¢) = —[€]?, N (u) = 9x(u™). By the Duamel’s formula, (1.4) can be rewritten

as the integral equation:
t
u(t) = eug —i / e TEN (u(t))dt (1.5)
0

where {e*£},cp is one-parameter unitary group defined by €L f = e F and =
denotes the spatial Fourier transform. We call the second term of R.H.S of (1.5)
“Duamel term” and the solution of (1.5) “mild solution”. In this article, a solution

of Cauchy problem means the mild solution. If we have the estimates

<OPl,  (16)
X1

t
e ualy < Cullualb || [ e2ntu(e)ar
0

and

| [ et - swear

< G (Jful |5, + 1ol|% D e =0l (1.7)
XT
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for some Cy, Cy, 6 > 0 and a > 1, then we obtain the well-posedness of (1.4) in
H with the solution u € Xp. In fact for given uy € H, we put &, [u](t) :=(R.H.S
of (1.5)) and Xr,, = {u € Xp| ||ullx, < 2C1||uolln}, then @, is a contraction
map on Xr,, for T = (2971C¥ 1 Cyl|ug||*1) /9. Therefore by the Banach fixed
point theorem, there exists unique u € Xr,, such that u(t) = &, [ul(t) on t €
[0, 7], namely u is a solution of (1.5). If the estimates (1.6) and (1.7) are proved
as 0 = 0, we obtain the well-posedness of (1.4) for any ug € H with ||ug||ly <
(20+1Ce1(0y) /(@ Dby the same argument. So the key estimates to obtain the
well-posedness are (1.6) and (1.7).

In this article, we always set H = H?® which is the inhomogeneous Sobolev space

with the norm
111 = [1€)* Fllz = NI(L+ 1) F 2

or H = H* which is the homogeneous Sobolev space with the norm

in

e = Il Al

The lower regularity s we choose, the more difficult we show the nonlinear estimates
such as (1.6) and (1.7). For example, if s > d/2 then the estimate

1fg]

e < Cl|f]

msllgl|ms (1.8)

holds. But if s < d/2 then (1.8) fails generally. Because of such reason, our interest
is the well-posedness of differential equations with “low regularity” initial data. One
of the target of the regularity for the well-posedness is “scaling critical regularity”
which is decided by the invariant transformation for the equation. For example the

equation (1.2) is invariant under the following scaling transformation:
up(t,z) = ANV Dy (A2, A7),

Since
e = AP0 (0, )

[ux(0,-)]

the scaling critical regularity for (1.2) is s, = d/2 — 1/(m — 1). We note that if

Hs»

s > 8., then large initial data and short time settings is equivalent to small initial
data and long time settings. It match the iteration argument above. While if s < s,
then small initial data and short time settings is equivalent to large initial data and
long time settings. But the latter settings is more difficult to obtain well-posedness

than the former settings. In fact, there are many blow up results for large initial
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data. Therefore, the well-posedness for s < s, is not expected. The critical case
s = S. is the most important because if s = s., the time interval of the solution
is not depend on H*c-norm of the initial data since H*-norm is invariant by the
scaling transformation. Therefore if we obtain LWP for uy € H* with ||ug||gse <7
for some r > 0, then it is expected that GWP for same uq is also obtained.

Next, we explain the function spaces. If we choose Xy = C([0,T]; H®), then it is
difficult to obtain the estimates (1.6) and (1.7) for (1.1), (1.2) and (1.3) because of
the derivative loss arising from the nonlinearity in these equations. To recover the
derivative loss, we use the Bourgain space XZ’b and the spaces U2H®, VZH?* which
norms depend on the structure of the linear terms of the equation (1.4).

The Bourgain space XZ’b is introduced by Bourgain to prove the well-posedness
of the nonlinear Schrédinger equation and the KdV equation with the periodic initial
data ([5]). His method is called “Fourier restriction norm method”. The norm of
the Bourgain space, which is called “Bourgain norm” depends on the linear terms
of the equation. The Bourgain space XZ’b is the completion of the Schwarz space

with respect to the norm defined by

lullxse = (T = p() (€)@l = lle™" “ull gy,

where - denotes the space-time Fourier transform. The weight function (7 — p(§))
is decided by the hypersurface {(7,&)|7 — p(§) = 0} which contains supp uz, where
up = efuq is a solution of the Linearized equation of (1.4). If b > 1/2, then
X2°([0,T]) is embedded in C([0,T]; H*) continuously. We note that the function
e~y with u € XZ’b has the regularity with respect to the time variable and we use
it to recover the derivative loss. For example if suppu C {(7,&)| |7 — p(&)| > &I},

then we have

lull 20 > CINE) Iz, = Cllull 2

where C' > 0 is a constant. Therefore, L?H**®-norm is controlled by X&’-norm.
So, there is the derivative gain eb with respect to the spatial variable. To obtain
(1.6) and (1.7) as the solution space Xy = X5°([0,T]), we use the duality argument.
Since e~* N (u) in the Duamel term of (1.5) has the first derivative gain with respect
to the time variable arising from the integral and the dual space of XZ’bil for the

s,1—b

L*inner product is X 7", we obtain

<O s W)

x
X2b([0,11) HvHXZs,l_b:l

/t LN (u(t'))dt’ : (1.9)




where C" > 0 is a constant ([21] Lemma 2.1). We note that if we choose b >
1/2, then the derivative gain for the function v in the dual space ng’l_b with
suppv C {(7,&)] |7 — p(&)| > [£|°} is less than €/2. While if we choose b < 1/2,
then the derivative gain for the function u in the solution space XZ’b with suppu C
{(1,0)] |7 — p(&)] > |£]¢} is less than €/2. So, the best choice of the index b to
get the derivative gain is b = 1/2. But if we choose b = 1/2, then X2°([0,T]) is
not embedded in C([0,T]; H*). To avoid this problem, we use the auxiliary space
Y® which also be introduced by Bourgain. The norm of Y* is defined by ||u|

Yys i—
H(f)SﬂHLgL;. To obtain the well-posedness of (1.3), we will set the solution space
Xr = 73(0,T)) == X2"%([0,7)) N Y*([0,T]) in Chapter 6. The norm of Zi is
defined by ||u| ys and Z2([0,T7]) is embedded in C([0,T7]; H®)

continuously.

7 = ||ull o2+ lu]

For 1 < p,p’ < oo satisfying 1/p 4+ 1/p/, the space VP consists of bounded p-
variation functions and the space U? is the dual space of V¥ in some sense. The
bounded p-variation function is introduced by Wiener ([72]). The first application
of the spaces UP and VP for differential equations is Tataru’s unpublished work for
wave maps. The properties of the spaces UP and V? are studied by Hadac, Herr and
Koch ([25], [26]) to prove the well-posedness of KP-IT equation in the scaling critical
Sobolev space. Furthermore, Herr, Tataru and Tzvetkov ([31]) applied the spaces U?
and VP to the 3D quintic nonlinear Schrodinger equation with the periodic setting
and proved its well-posedness in the scaling critical Sobolev space. We explain the
advantage of U? and VP compared with the Bourgain space. One of the key estimate
to prove the well-posedness of dispersive equation such as (1.4) is the Strichartz
estimate

le™@llores < el (1.10)
If (1.10) holds, we call (p,q,s) a “admissible exponents”. It is known that the
Bourgain space XZ’b is embedded in LY L% continuously if b > 1/2 and (p, ¢, s) are
an admissible exponents ([21] Lemma 2.3). Therefore, if we use both the Bourgain
space X 5" and the Strichartz estimate (1.10), then we have to choose b > 1/2. But
as mentioned above, b > 1/2 is not the best choice of index to get the derivative
gain. Because of such reason, it is difficult to imply the well-posedness in the scaling
critical Sobolev space by using the Bourgain space. An idea to avoid this difficulty
is to use the Besov type Bourgain space XZ’I/ >! which norm is defined by

lull oz = 37 MY2€) as(7 — p(E))ill12 .

M€2NU{O}



where {¥ar}arean € C™(R) satisfies supp ey, C [—2M,—M /2] U [M/2,2M] for
M > 2, suppty C [=2,2] and ), comu0y ¥ = 1. The Besov type Bourgain
spaces are introduced by Muramatu and Taoka ([57]) and XZ’l/ >!_norm is stronger
than X>"*norm. We note that the derivative gain for u € X¥"/*' is same as
for u € XZ’I/ ? and XZ’I/ >!is embedded in LFLY continuously if (p,q,s) are an
admissible exponents. So, if we use XZ’I/ >1 as the solution space, we can apply the
Strichartz estimate and obtain the best derivative gain. But the norm of the dual
space of XZ’l/Q’l is too weak. In fact, the dual space of X‘Z’l/Q’l in the sense of (1.9)

is ng’l/ 2 whose norm is defined by

lull ysarzee = sup  MY2[[(€) " (T — p(€))all 2.,
L MGQNU{O} T

since the dual space of ! for the [?>-inner product is I*°. For any s € R and
b <1/2, le’lﬂ’oo—norm is stronger than le’b/—norm, but weaker than X*"'/2-norm.
Therefore, we cannot apply the Strichartz estimate to the dual function because
XZ/’I/ 22 is not embedded in LYLY for any admissible exponents (p,q,s’). This
difficulty can be overcome if we use the spaces U2H*® and VZH*® whose norms are

defined by

—itL —itL

||UHU3H = |le UHUEH;a HUHVEH = |[le “||V3H;-

Since the dual space of U2H* in the sense of (1.9) is VZH ~* ([25] Remark 2.11, 2.12)
and U2H®, V2H*® are embedded in LYLY continuously if (p,q,s) are an admissible
exponents with p > 2 ([25] Proposition 2.19), we can apply the Strichartz estimate

also to the dual function. Furthermore since the continuous embeddings

X5V UZHS < VEHS < X315

hold ([25] Remark 2.17), the derivative gain for u € VZH?* is same as for u € XZ’UZ,

which is the best derivative gain, where XZ’l/ >1 and XZ’I/ 22 are the homogeneous
Besov type Bourgain space. Because of such reason, the spaces U2 H* and VZH* are
suitable spaces to obtain the well-posedness in the scaling critical Sobolev space. We
will use these spaces and prove the well-posedness of (1.1) and (1.2) in the scaling
critical Sobolev space in Chapter 3, 4, 5.

If we obtain GWP for a differential equation, our interest is focused on the
asymptotic behavior of the solution naturally. We say that the solution of the
equation (1.4) scatters in H if there exist u € H such that u(t) —e™“uy is converges

to 0 in ‘H as t — 400, namely the solution behaves like a solution of the linearized



equation of (1.4) asymptotically in time. Our second aim is to obtain the scattering
for the solution of the equations (1.1) and (1.2). To obtain the scattering, we will use
the fact that lim; 4, u(t) exist for any u € V2 ([25] Proposition 2.4) in Chapter 3, 5.

Most part of this article are based on the author’s papers [32], [33], [34] and
[35]. The rest of this article is planned as follows. In Chapter 2, we will introduce
the property of the spaces U?, V? referred from [25] and [26]. In Chapter 3, which
is based on [33], we will prove the well-posedness and scattering for the system
(1.1) and the equation (1.2) for d > 2, m = 2 with the nonperiodic initial data.
Furthermore, we also prove the ill-posedness of the system (1.1) in a weak sense. In
Chapter 4, which is based on [34], we will prove the well-posedness of the system
(1.1) and the equation (1.2) for d > 2, m = 2 with the periodic initial data. In
Chapter 5, which is based on [35], we will prove the well-posedness and scattering
for the equation (1.2) for d > 1, m > 3 with the nonperiodic initial data. In Chapter
6, which is based on [32], We will prove the well-posedness of the equation (1.3) with
the periodic initial data. In particular, the well-posedness results in Chapter 3, 4, 5

contain the scaling critical case.

Notation.

e Weput (-):=1+]-|.

We put Z* := Z\{0}.

For A > 1, we put Zy := {n/\| n € Z} and Z} := Z,\{0}.

We define the integral on Z3 as

[ Hode= 5 3 fe)

I

For a function f defined on Z3, we put

1/2
120y = </z |f(f)’2d§> :

For functions F' and G defined on R x Z3, we put

FG(r6) = / » / Flr — 11,6 — 6)G(m, &) dnde,



We define the integral on T) as
2T
f(s)ds ::/ f(s)ds.
Ty 0

We define the integral on T¢ as

/Td f(z)dx = /[Ov%}d f(z)dz.

We define the spatial Fourier transform for the function on X as
FAA© = Fie) = [ fa)e s, e X
where (X, X') = (T, Zy) or (R%R?) or (T4, Z%).
We define the space time Fourier transform for the function on R x X as
FIf(r,€) = f(1,€) == /R/Xf(t,x)e_me_wfdxdt, TeR e X,
where (X, X') is same as above.

For s € R, we define the Sobolev space H*(R?) (resp. HS(Rd)) as the space of

all §’(R?) functions for which the norm

~

111+ = 1€)* Fllzey (resp. [11€]° Fllz2)-

For s € R, we define the Sobolev space H*(T?) (resp. H*(T))) as the space of
all L*(T¢) (resp. L?(T))) functions for which the norm

~ ~

1z = 1146)° fllizzay (vesp. [[€€)° Fllizcn))-
For a Banach space ‘H and r > 0, we put
Br(H) :=A{f € H[ [|flln <7}

We will use A < B to denote an estimate of the foorm A < CB for some
constant C' and write A ~ B to mean A < B and B < A.

We will use the convention that capital letters denote dyadic numbers, e.g.

N = 2" for n € Z and for a dyadic summation we write )y ay := Y, , Gon

and ZNEM an = ZnEZ,Z”ZM Aagn for bl"eVIty.
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e Let x € C5°((—2,2)) be an even, non-negative function such that y(s) =1 for

|s| < 1. We define 1o(&) := x(|£]) and ¥y (€) := o(N1E) — (2N 1E) for
N € 2%,

o We define frequency and modulation projections

—~—

Psu(€) == xs()a(€), Pyu(€) := ¢n(€)A(E), Qfru(r,€) := (7 —p(€))i(7,€)

for the set S C Z% and the dyadic numbers N, M, where Yy is the characteristic
function of S, and L is a linear differential operator given as £ = p(—iV) for

a real coefficients polynomial p. Furthermore, we define Py := Id — >+, Pn,
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1.2 Review for the Schrodinger equations with
derivative nonlinearity
We consider the Cauchy problem of the system of Schrodinger equations:
i0; + aA)u = —(V-w)v, te€ (0,00), z€R%or T
(

V- -w)u, te(0,00), xR or T
(1.11)

w=V(u-7), te(0,00), z€Ror T
0

@), w(0,2)) = (uo(), vol(x), wo(x)), = € R or T,
and the Cauchy problem of the nonlinear Schrodinger equations:

(10, + A)u = O (™), t € (0,00), x € R? or T,

uw(0,2) = up(z), z € R or T,

(1.12)

where «, f, v € R\{0}, m € N, m > 2 1 < k < d, dy = 0/0xy, the unknown
functions u, v, w in (1.11) are C%valued and the unknown function u in (1.12)

is C-valued. The system (1.11) was introduced by Colin and Colin in [11] as a
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model of laser-plasma interaction. (1.12) is a mathematical model dealt by Griinrock
([23]). The scaling critical regularity for (1.11) is s, = d/2 — 1 and for (1.12) is
Se=d/2—1/(m—1).

First, we introduce some known results for related Schrodinger equations. The
system (1.11) and equation (1.12) have derivative nonlinearity. A derivative loss
arising from the nonlinearity makes the problem difficult. In fact, Mizohata ([55])

proved that a necessary condition for the L? well-posedness of the problem:
i0u — Au = b (2)Vu, t e R, x € RY,
u(0,2) = up(z), v € R?

is the uniform bound

R
sup Re/ bi(x + rw) - wdr| < co.
0

z€R4 weS4—1 R>0

Furthermore, Christ ([9]) proved that the flow map of the Cauchy problem:

i0u — 0*u =ud,u, t e R, x € Ror T,
(1.13)
u(0,z) = up(x), x € Ror T,

is not continuous on H*(R) and H*(T) for any s € R. While, Ozawa ([60]) proved
that the local well-posedness of (1.13) in the space of all function ¢ € H'(R) satis-

[

Furthermore, he proved that if the initial data ¢ satisfies some condition, then the

fying the bounded condition

sup < 0.

z€R

local solution can be extend globally in time and the solution scatters. For the

Cauchy problem of the one dimensional derivative Schrodinger equation:

i0u + 0*u = iNO,([u]*u), t e R, z € R or T,
u(0,2) = ug(x), © € Ror T,

(1.14)

Takaoka ([66]) proved the local well-posedness in H*(R) for s > 1/2 by using the
gauge transform. This result was extended to global well-posedness ([16], [17], [54],
[67]). While, ill-posedness of (1.14) was obtained for s < 1/2 ([3], [67]). For the
periodic case, Herr ([30]) proved the local well-posedness of (1.14) in H*(T) for s >

10



1/2 by using the gauge transform and Win ([73]) proved the global well-posedness
of (1.14) in H*(T) for s > 1/2. For more general problem:

i0u — Au = P(u,u,Vu,Vu), t € R, z € RY,
’LL(O,.%’) = UO(QT), S Rd7 (115)

P is a polynomial which has no constant and linear terms,

there are many positive results for the well-posedness in the weighted Sobolev space
([1], [2], [7], 8], [48], [65]). Kenig, Ponce and Vega ([48]) also obtained that (1.15) is
locally well-posed in H* (without weight) for large enough s when P has no quadratic
terms. For the equation (1.12), Griinrock ([23]) proved the global well-posedness in
L*(R) and L*(T) when d = 1, m = 2 and local well-posedness in H*(R%) and H*(T¢)
for s > s, when d > 1, m + d > 4. We extend his results to the following.

Main theorem 1.1. Let s, =d/2—1/(m —1).

(i) Assume d > 1, m+d > 4. Then (1.12) is globally well-posed for small data in
Hoe(RY) (resp. H*(RY) for s > s.). Furthermore, the solution scatters in H®(R%)
(resp. H*(R?) for s > s.)

(ii)) Assume d > 5, m = 2. Then (1.12) is locally well-posed for small data in
HSC(Td)

Next, we introduce some known results for systems of quadratic nonlinear deriva-
tive Schrodinger equations. Ikeda, Katayama and Sunagawa ([36]) considered (1.11)
for the nonperiodic case with null form nonlinearity and obtained the small data
global existence and the scattering in the weighted Sobolev space for the dimension
d > 2 under the condition afy(1/a—1/8 — 1/7) = 0. While, Ozawa and Suna-
gawa ([61]) gave the examples of the quadratic derivative nonlinearity which causes
the small data blow up for a system of Schrodinger equations with the nonperiodic
setting. As the known result for (1.11), we introduce the work by Colin and Colin
([11]). They proved that the local existence of the solution of (1.11) in H*(R?)
for s > d/2 + 3. We extend the results by Colin and Colin ([11]) and also prove
the well-posedness for the periodic case. We put 6 := afvy(1/a —1/8 — 1/v) and
k= (a—B)(a—7)(B+ 7). Note that if a, 5, v € R\{0} and 6 > 0, then s # 0.
Our result for (1.11) is following.

Main theorem 1.2. Let s, =d/2 — 1.
(i) We assume that o, B, v € R\{0} satisfy k #0 ifd > 4, and 0 > 0 if d = 2, 3.

11



Then (1.11) is globally well-posed for small data in H(RY) (resp. H*(RY) for s >
s¢). Furthermore, the solution scatters in H(RY) (resp. H*(R?) for s > s.).

(ii) We assume that d > 5, s > s. and «, B, v € R\{0} satisfy 0 > 0 and o/p,
B/v € Q. Then (1.11) is locally well-posed for small data in H*(T?).

Furthermore, we obtain following subcritical results:

Main theorem 1.3. Let s, =d/2—1 and a, 3, v € R\{0}.

(i) We assume that d > 4, s > s. and a, B, v € R\{0} satisfy (o« —v)(B + ) # 0.
Then (1.11) is locally well-posed in H*(R?).

(ii) We assume thatd =2, 3 and s > s, if 0 >0, s> 14if0 <0 and k #0, s > 1 if
a = . Then (1.11) is locally well-posed in H*(R?).

(iii) We assume thatd=1and s >0 if0>0,s>1if0=0,s>1/21f0 <0 and
(=) (B+7) #0. Then (1.11) is locally well-posed in H*(R?).

(iv) We assume that d > 1, s > max{s., 0} and a, 3, v € R\{0} satisfy 6 > 0 and
a/B, B/v € Q. Then (1.11) is locally well-posed in H*(T?).

System (1.11) has the following conservation quantities (see Proposition 3.30):

M (u, v, w) = 2| |ul[75 + [[v][7z + [[wl]|72,

H(u,v,w) = o||Vul[z; + Bl V]2 + 7/ Vwl[Z: + 2Re(w, V(u - 7)) 2.
By using the conservation law for M and H, we obtain the following result.

Main theorem 1.4.

(i) Let d = 1. We assume that o, 5, v € R\{0} satisfy 6 > 0. For every
(ug, v, wo) € L*(R) x L?*(R) x L*(R), we can extend the local L*(R) solution of
Main theorem 1.3 globally in time.

(ii) We assume that o, B, v € R\{0} have the same sign and satisfy k # 0 if
d=2,3and (o —y)(B+7) #0ifd=1. There exists r > 0 such that for every
(ug, vo, wo) € B.(HY(R?) x HY(R?) x HY(R?)), we can extend the local H'(R?) so-
lution of Main theorem 1.3 globally in time.

(iii) Let d = 1, 2, 3. We assume that o, 3, v € R\{0} have the same sign and
satisfy 0 > 0. There exists r > 0 such that for every (ug,vo,wy) € B.(HY(TY) x
HY(T?) x HY(T?)), we can extend the local H*(T?) solution of Main theorem 1.3
globally in time.

While, we obtain the negative result as follows.
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Main theorem 1.5. Let d > 1 and o, 5, v € R\{0}. We assume s € R if
(a=y)(B+7) =0,s<1if0 =0, and s <1/2if 0 < 0. Then the flow map of
(1.11) is not C? in H*(R?).

The main tools of our results for the scaling critical case are UP space and V7P
space, which are applied to prove the well-posedness and the scattering for KP-II
equation at the scaling critical regularity by Hadac, Herr and Koch ([25], [26]). For
the equation (1.12), Griinrock used the Bourgain space to construct the solution and
proved the well-posedness in the scaling subcritical Sobolev space. But as mentioned
in previous section, the well-posedness of (1.12) in the scaling critical Sobolev space
cannot be obtained by using the Bourgain space. To overcome this difficulty, we
apply the U2, V2 type spaces to construct the solution. Because of such reason, we
obtain the well-posedness of (1.12) in the scaling critical Sobolev space. We give
the proof of Main theorem 1.1 (i) for d > 2, m = 2 in Chapter 3, the proof of (i) for
d > 1, m > 3 in Chapter 5 and the proof of (ii) in Chapter 4.

While even if we use the U2, V2 type spaces, we cannot obtain the well-posedness
of (1.11) in the scaling critical Sobolev space generally since there are the cases that
the resonance arises from the nonlinear interaction. We study the resonance and
the nonresonance for (1.11) and prove that if «, 3, v € R\{0} satisfy afy(1/a —
1/8 —1/v) > 0, then the resonance never arises (see Lemma 3.16). So, afvy(1/a —
1/6 —1/4) > 0 is the nonresonance condition for (1.11). By applying both the
nonresonance condition and U?, V2 type spaces, we succeed in proving the well-
posedness of (1.11) for the nonperiodic case in the scaling critical Sobolev space.
We remark that Oh ([59]) also studied the resonance and the nonresonance for the
system of KAV equations and proved that the regularity for the well-posedness of
the system under the nonresonance condition is lower than the regularity under the
resonance condition. We give the proof of Main theorems 1.2- 1.5 for the nonperiodic
case in Chapter 3.

For the periodic case of (1.11), there are also the other difficulty that the number
of admissible pairs of the Strichartz estimate for the periodic function is less than

the nonperiodic function. To overcome this difficulty, we show the bilinear estimate

|| Prvy (Prvyua - PNQUQ)HLQ(TM,HX']N)
(1.16)

Ny 1\’
S N (3 5 ) Pl 1Pl

and use it instead of the Strichartz estimate (see Proposition 4.16). The estimate

13



(1.16) for the case N1 ~ N3 = N is proved by Wang ([71]). Therefore, we will prove
(1.16) for the case Ny ~ Ny > N3. But the proof is difference from Wang’s proof
on the several points. We give the proof of Main theorems 1.2— 1.4 for the periodic
case in Chapter 4.

1.3 Review for the higher order KdV type equa-

tions

We consider the Cauchy problem of the periodic high order KdV type equations;

1
o+ (=)o 4 ~0,(u?) =0, (t,x) € (0,00) x T,
bu+ (—1) 50x(u) (t,z) € (0,00) @17)

u(0,2) = ug(x), x €T,
where k € N and the unknown function u is real valued.

When k£ = 1, the equation (1.17) is called “KdV equation”. We first introduce
some known results for the KdV equation. In [5], Bourgain introduced a new method
called “Fourier restriction norm method” and proved that the KdV equation is lo-
cally well-posed in L*(T). In [47], Kenig, Ponce and Vega refined a bilinear estimate
used in the Fourier restriction norm method, and proved that the KdV equation is
locally well-posed in H*(T) for s > —1/2. In [18], by using the local well-posedness
result and the almost conservation law, Colliander, Keel, Staffilani, Takaoka and Tao
obtained that the KdV equation is the globally well-posed in H*(T) for s > —1/2.
Their method is called “I-method”. On the other hand, In [10], Christ, Colliander
and Tao proved that the KdV equation is ill-posed in H*(T) for —2 < s < —1/2
in weak sense. Local well-posedness of the non-periodic KdV equation also was
studied by many people before Bourgain’s work ([4], [20], [41], [43], [44]) and after
Bourgain’s work ([18], [24], [45], [47], [49], [50], [58], [69]).

Next, we introduce some known results for the fifth order KdV type equations
Ou + ad2u + Bou + 0, (u®) =0 (1.18)
and
O — O5u — 30u*du + 200,ud?u + 10udu = 0. (1.19)

Especially, (1.18) is called “Kawahara equation”. Local well-posedness of these
equations are studied for non-periodic case. For the known results of the non-
periodic Kawahara equation, see [6], [19], [38], [70] and the equation (1.19), see [53],
[63].

14



Now, we introduce the high order nonlinear dispersive equations related to (1.17).

In [46], Kenig, Ponce and Vega studied the high order nonlinear dispersive equations
opu + Oy + P(u, Opu, - -+, 0% u) = 0, (1.20)

where P is a polynomial without constant and linear terms. They proved that (1.20)
is LWP in L?(|z|™dx) N H*(R), where s > 0 and m € Z* are sufficiently large. In
[62], Pilod proved that (6.4) with

2k ki, ok
P(u,0yu,--- ,05"u) = E Aoy ey O U021

0<k1+k2<2k

is locally well-posed in H*(R) N H*~%*(2%dx) for s € N and s > 2k + 1/4. He also
proved some ill-posedness results for (1.20).

We return to introduce the known result for (1.17) for general k& € N. In [22],
Gorsky and Himonas proved that (1.17) is locally well-posed in H*(T) for s > —1/2
by an argument similar to [47]. Our result is an extension of the result by Gorsky

and Himonas as follows.

Main theorem 1.6. Let k € N. If s > —k/2 then (1.17) is locally well-posed in
H*(T).

Remark 1.1. After our work, Kato ([40]) extended the result in Main theorem 1.6
for k = 2 to local well-posedness in H*(T) for s > —3/2 and global well-posedness
in H*(T) for s > —1.

A bilinear estimate plays an important role to prove well-posedness of (1.17).

Gorsky and Himonas derived the following bilinear estimate for s > —1/2:
| |8x(uv) | |Xs,—1/2 S Cl |u| |Xs,l/2 | |U| |Xs,1/2, (121)

where

[Jullxso o= [ = €241 (€) a2 2.
But as mentioned in [22], the estimate (1.21) with s < —1/2 has been open problem.
We extend (1.21) to prove Main theorem 1.6 as follows.

Theorem 1.2. Let k € N. For s > —k/2, the bilinear estimate (1.21) holds.
On the other hand, we also obtain negative result for s < —k/2.

Theorem 1.3. Let k € N. For any s < —k/2, the bilinear estimate (1.21) fails.
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Remark 1.4. By Theorems 1.2, 1.3, s = —k/2 is optimal reqularity for the bilinear
estimate (1.21). But this does not imply ill-posedness of (1.17) for s < —k/2.

The bilinear estimate (1.21) for s = —k/2 can be written as

1) 2 — €0 720 5 B2 2

SIKE T2 (r — N2 2 | [(6) TP — €520 2 e,

~

where

uxv(r,€) = Z / u(71,€1)0(72, &) dT1.

Tesgrie, T
We note that the most difficult region to prove this estimate is |§1| ~ [&] > [€].

Gorsky and Himonas used the estimate
€ — g — MY 2 1€6iGel - € (1.22)
to prove (1.21). On the other hand, we use the refined estimate

€26 — g — P ~ (€616 max{[€], &, 1€},

which is better estimate than (1.22) in the region |&;| ~ [&2| > || (see Lemma 6.8).
Because of such reason, we could improve the bilinear estimate. We give the proof
of Main theorem 1.6 in Chapter 6.
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Chapter 2
Function spaces

In this chapter, we define the UP space and the V? space, and introduce the proper-

ties of these spaces which are proved in [25] and [26]. These spaces will be used in

Chapter 3, 4, 5. Throughout this section let H be a separable Hilbert space over C.
We define the set of finite partitions Z as

Z={{ti})|K eN,—co <ty <ty < <tg < oo}
and tx = oo, we put v(tg) := 0 for all functions v : R — H.

Definition 2.1. Let 1 < p < oo. For {t;,}, € Z and {¢p}i—y C H with
Zi:ol |Pxlly, =1 we call the function a : R — H given by

K
a(t) = Z 1 o) (D) k1
k=1

a “UP-atom”. Furthermore, we define the atomic space

UP(R;H) = {u = Z/\jaj
=1

with the norm

aj : UP—atom, \; € C such that Z I\ < oo}

j=1

o)

[[ullvr (@;3) = inf {Z Al

j=1

u = Z)\jaj, a; : UP—atom, \; € C} .

=1

Definition 2.2. Let 1 < p < oco. We define the space of the bounded p-variation

VIR H) = {v: R = H] ||v||lvemmn) < oo}
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with the norm

K 1/p
|vllve@ay == sup (Z!\v(tk)—v(tk—l)!@) -

{W}ﬁwez k=1

Likewise, let V¥ | (R;H) denote the closed subspace of all right-continuous functions

v € VP(R;H) with limy_,_o v(t) = 0, endowed with the same norm || - ||vr®m)-

Proposition 2.3 ([25] Proposition 2,2, 2.4, Corollary 2.6). Let 1 < p < ¢ < 0.

i) UP(R;H), VP(R;H) and VP, (R;H) are Banach spaces.

(ii) Every u € UP(R;H) is right-continuous as u : R — L?.

(iii) For Every u € UP(R;H), limy o u(t) = 0 and lim;_,o, u(t) exists in L.

(iv) For Every v € VP(R;H), limy_,_ v(t) and limy o, v(t) exist in L.

(v) The embeddings UP(R;H) — VP (R;H) — UI(R;H) — LF(R;H) are contin-

uous.

Theorem 2.4 ([25] Proposition 2.10, Remark 2.12). Let1 < p < oo and 1/p+1/p’ =

1. Ifue V_lyrc(R;’H) be absolutely continuous on every compact intervals, then

/OO (u'(t),v(t))ndt] .

—00

|[ullve@®a) = sup
VeV (RiH), o]

vp’<R;H):l

Definition 2.5. Let 1 < p < oo. For the operator L given as L = p(—iV) for a

real coefficients polynomial p, we define

UPH = {u: R — H| e "*u € UP(R; H)}

_MU| |UP(R;H);

with the norm |ul[yzy == [le

VEH = {v:R—=H| e veV? (R;H)}

—itCU ’ ‘ VP(RH) -

with the norm |[v]|yzqy = |le
Remark 2.6. We note that |[al|yzy = ||ullvr 4 and [[0]|vey = [|v]lve, 2

Proposition 2.7 ([25] Corollary 2.18). Let 1 < p < co. We have

HQf/[uHLf(R;H) S Mﬁl/pHUHV};H, HQgMUHLf(R;H) N Mﬁl/pH“vaa» (2.1)
1QZaullver S Nullves, 1QSarullven S Hullves (2:2)
HQﬁMuHUZ’H S ||u||U£H7 HQéMUHUZH S ||U||U2H (2.3)
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Proposition 2.8 ([25] Proposition 2.19). Let
To:Hx--xH—= L,

be a m-linear operator and I C R be an interval. Assume that for some 1 < p,q < 00

m

| To(e™ by, -+, €™ )l pr(rey S H @il [2-
i1

Then, there exists T : Uy H x --- x Up H — LY(I; L%) satisfying

T (ur, -+ um) | ppipey S HHU%HU”

such that T(uy, -+ ,uy)(t)(z) = To(ur(t), -+, un(t))(z) a.e.

Proposition 2.9 ([25] Proposition 2.20). Let ¢ > 1, E be a Banach space and
T : UH — E be a bounded, linear operator with |[Tullr < Cyllullysy for all
w € UMH. In addition, assume that for some 1 < p < q there exists C, € (0,C,]
such that the estimate ||Tu||p < Cplullyry holds true for all w € UgH. Then, T

satisfies the estimate

Cy
I7le < G (140G ) lullvzm e VER

p

where implicit constant depends only on p and q.

19



Chapter 3

System of quadratic derivative

nonlinear Schrodinger equations
on RY

3.1 Review for results

We consider the Cauchy problem of the system of Schrédinger equations:

(z@t +al)u=—(V-w, (t,x)ec(0,00)xR?
(10, + BAYv = —(V -@)u, (t,z) € (0,00) x R? (3.1)
(10, + yA)w = V(u-7), (t,z) € (0,00) x R?

[ (u(0,2),v(0,2), w(0,2)) = (uo(x), vo(x), wo(x)), x€R?

where a, 5, v € R\{0} and the unknown functions u, v, w are d-dimensional
complex vector valued. The system (3.1) was introduced by Colin and Colin in [11]
as a model of laser-plasma interaction. (3.1) is invariant under the following scaling

transformation:
At z) = ATANTH A T) (A = (w0, w)), (3.2)

and the scaling critical regularity is s, = d/2—1. The aim of this chapter is to prove
the well-posedness and the scattering of (3.1) in the scaling critical Sobolev space.

First, we introduce some known results for related problems. The system (3.1)
has quadratic nonlinear terms which contains a derivative. A derivative loss arising

from the nonlinearity makes the problem difficult. In fact, Mizohata ([55]) proved
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that a necessary condition for the L? well-posedness of the problem:
i0u — Au = by (z)Vu, t € R, v € RY
u(0,7) = up(z), r € R?

is the uniform bound

sup
z€R4 weS4—1 R>0

R
Re/ bi(x + rw) - wdr| < oo.
0

Furthermore, Christ ([9]) proved that the flow map of the Cauchy problem:

i0u — O*u =udu, t ER, x € R,
(3.3)
u(0,2) = ug(x), z € R

is not continuous on H*(R) for any s € R. While, there are positive results for the

Cauchy problem:

0w — Au=1(V-7u), t R, v € RY,
(3.4)
u(0,z) = up(z), v € R

Griinrock ([23]) proved that (3.4) is globally well-posed in L*(R) for d = 1 and
locally well-posed in H*(R?) for d > 2 and s > s, (= d/2 —1). For more general

problem:

i0u — Au = P(u,u, Vu,Vu), t € R, r € RY

u(0,2) = up(z), v € RY, (3.5)

P is a polynomial which has no constant and linear terms,
there are many positive results for the well-posedness in the weighted Sobolev space
([1], [2], [7], [8], [48], [65]). Kenig, Ponce and Vega ([48]) also obtained that (3.5)
is locally well-posed in H*(R?) (without weight) for large enough s when P has no

quadratic terms.

The Benjamin—-Ono equation:
O+ HO*u = ud,u, (t,z) €ER xR (3.6)

is also related to the quadratic derivative nonlinear Schrodinger equation. It is
known that the flow map of (3.6) is not uniformly continuous on H*(R) for s > 0

([51]). But the Benjamin—-Ono equation has better structure than the equation

21



(3.3). Actually, Tao ([68]) proved that (3.6) is globally well-posed in H' by using
the gauge transform. Furthermore, Ionescu and Kenig ([37]) proved that (3.6) is
globally well-posed in H?(R) for s > 0, where H?(R) is the Banach space of the all
real valued function f € H*(R).

Next, we introduce some known results for systems of quadratic nonlinear deriva-
tive Schrodinger equations. Ikeda, Katayama and Sunagawa ([36]) considered (3.1)
with null form nonlinearity and obtained the small data global existence and the
scattering in the weighted Sobolev space for the dimension d > 2 under the condition
afy(l/a— 1/ —1/v) = 0. While, Ozawa and Sunagawa ([61]) gave the examples
of the quadratic derivative nonlinearity which causes the small data blow up for a
system of Schrodinger equations. As the known result for (3.1), we introduce the
work by Colin and Colin ([11]). They proved that the local existence of the solution
of (3.1) in H*(R?) for s > d/2 + 3. There are also some known results for a system
of Schrédinger equations with no derivative nonlinearity ([12], [13], [14], [28], [29]).
Our results are an extension of the results by Colin and Colin ([11]) and Griinrock
(123)).

Now, we give the main results in this chapter. To begin with, we define the

function spaces to construct the solution.

Definition 3.1. Let s, 0 € R.
(i) We define Z[j = {u e C(R; HS(Rd)) NU2AL?| ||ul

s < 0o} with the norm

1/2
lullz; == (Z N?SHPNuH?UgALg) -
N

(ii) We define Z5 := {u € C(R; H*(R?)) N U2, L?| ||u|

zs < 0o} with the norm

ullzs = [lull zo + [[ullz-

(iti) We define Y7 := {u € C(R; H*(R%)) N VA L?| ||u|

ys < oo} with the norm

1/2
lally, -~ (z N?SHPNW@AB) |

N

(iv) We define Y = {u € C(R; H*(R%)) N V2 L?| ||u]

ys < oo} with the norm

[lullve = lfullye +[lully,-
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Remark 3.2 ([25] Remark 2.23). Let E be a Banach space of continuous functions
f R —H, for some Hilbert space H. We also consider the corresponding restriction

space to the interval I C R by
E(I)={ueC(I,H)|Fv e E s.t. v(t) = u(t), t € I}

endowed with the norm ||ul|gy = inf{||v||g|v(t) = u(t), t € I}. Obviously, E(I) is

also a Banach space.

For an interval I C R, We define X*(I) := Z3(I) x ZE(I) X Zi(]) and X*(1) :=
Zo(I) x Z5(I) x Z5(I). Furthermore, we put 6 := afy(l/a —1/8 — 1/v) and

«

k= (a— B)(a—~)(B+7). Note that if o, 8, v € R\{0} and 6 > 0, then x # 0.

Theorem 3.3. Let s, =d/2 —1.

(i) We assume that o, B, v € R\{0} satisfy k #0 ifd > 4, and 0 > 0 if d = 2, 3.
Then (3.1) is globally well-posed for small data in H*(R®). More precisely, there
exists 1 > 0 such that for all initial data (ug,ve,wo) € Bp(H(RY) x H*(RY) x

H5(R%)), there exists a solution
(u,v,w) € X7([0,00)) € C([0, 00); H**(R7))

of the system (3.1) on (0,00). Such solution is unique in X3([0,00)) which is a
closed subset of X*([0,00)) (see (3.49)). Moreover, the flow map

Sy @ B(H*(RY) x H*(RY) x H*(RY)) 3 (ug, v, wo) — (u,v,w) € X*(]0,00))

1s Lipschitz continuous.
(ii) The statement in (i) remains valid if we replace the space H*(R%), X ([0, 00))
and X?<(]0,00)) by H*(RY), X*([0,00)) and X3([0,00)) for s > s..

Remark 3.4. Due to the time reversibility of the system (3.1), the above theorems

also hold in corresponding intervals (—oo,0). We denote the flow map with respect

to (—00,0) by S_.

Corollary 3.5. s, =d/2 — 1.

(i) We assume that o, 8, v € R\{0} satisfy k #0 ifd > 4, and 0 > 0 if d = 2, 3.
Let 7> 0 be as in Theorem 3.3. For every (ug, v, wy) € By(H(R%) x H* (R%) x
Hee(RY), there exists (ur,vs,ws) € H%(RY) x H*(RY) x H*(RY) such that

S (ug, vo, wo) — (e™Puy, ey, P wy) = 0

in Hs(RY) x H*(RY) x H*(R?) as t — +oo0.
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(ii) The statement in (1) remains valid if we replace the space H%(R?) by H®(R?)
for s > s..

Theorem 3.6. Let s, =d/2—1 and a, 3, v € R\{0}.

(i) Let d > 4. We assume (o —7)(B+7) # 0 and s > s.. Then (3.1) is locally well-

posed in H*(RY). More precisely, for any r > 0 and for all initial data (ug,vo,wy) €
B.(H*(RY) x H*(R?) x H*(R?)), there exist T = T(r) > 0 and a solution

(u,v,w) € X*([0,T]) C C ([0, T]; H*(RY))

of the system (3.1) on (0,T]. Such solution is unique in X:([0,T]) which is a closed
subset of X*([0,T]). Moreover, the flow map

Sy : B(H*(RY) x H*(R%) x H*(RY) > (ug, v, wo) + (u,v,w) € X*([0,T7])

18 Lipschitz continuous.

(ii) Let d =2, 3. We assume s > s. if 6 >0, s>1if0 <0 and Kk #0, and s > 1
if « = B. Then the statement in (1) remains valid.

(i) Let d=1. We assume s >0 if0 >0, s>1if0 =0, and s > 1/2 if 6 <0 and
(o —=¥)(B+7) #0. Then the statement in (i) remains valid.

Remark 3.7. For the cased=1,1>s>1/2,0 <0 and (o« —7)(B+7) # 0, we
prove the well-posedness as X*([0,T]) = X2b([0,7T]) x X;’b([O,T]) x X2b([0,T7),
where X3° denotes the standard Bourgain space which is the completion of the

e 1= QP (7 + 0€2) 2, (see Sec

Schwarz space with respect to the norm ||u|
tion 3.8 ).

System (3.1) has the following conservation quantities (see Proposition 3.30):

M (u, v, w) = 2|[ul|Z; + [[0]|Z2 + [[wl][Z2,

H(u,v,w) := al[Vul[7; + Bl Voll7; +9][Vwl[Z; + 2Re(w, V(u - 7))z
By using the conservation law for M and H, we obtain the following result.
Theorem 3.8.
(i) Let d = 1 and assume that o, 5, v € R\{0} satisfy 0 > 0. For every (ug, vy, wy) €
L*(R) x L*(R) x L*(R), we can extend the local L* solution of Theorem 3.6 globally
m time.
(ii) We assume that o, B, v € R\{0} have the same sign and satisfy k # 0 if
d=2,3and (o« —¥)(B+7) #0 ifd =1. There exists r > 0 such that for every
(ug, vo, wo) € B.(HY(R?) x HY(RY) x HY(RY)), we can extend the local H' solution
of Theorem 3.6 globally in time.
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While, we obtain the negative result as follows.

Theorem 3.9. Letd > 1 and o, 3, v € R\{0}. We assume s € R if (a—7)(B+7) =
0,s<1if0=0,ands < 1/2if 0 < 0. Then the flow map of (3.1) is not C? in
H*(RY).

Furthermore, for the equation (3.4), we obtain the following result.

Theorem 3.10. Let d > 2 and s, = d/2 — 1. Then, the equation (3.4) is globally
well-posed for small data in H*(R?) (resp. H*(RY) for s > s.) and the solution
converges to a free solution in H%(R?) (resp. H*(RY) for s > s.) asymptotically in

time.

Remark 3.11. The results by Grinrock ([23]) are not contained the critical case
s = S. and global property of the solution. In this sense, Theorem 3.10 is the
extension of the results by Grinrock ([23]).

The main tools of our results are U? space and V? space which are applied to
prove the well-posedness and scattering for KP-II equation at the scaling critical
regularity by Hadac, Herr and Koch ([25], [26]). After their work, U? space and
VP space are used to prove the well-posedness of the 3D periodic quintic nonlinear
Schrodinger equation at the scaling critical regularity by Herr, Tataru and Tzvetkov
([31]) and to prove the well-posedness and the scattering of the quadratic Klein-
Gordon system at the scaling critical regularity by Schottdorf ([64]).

The rest of this chapter is planned as follows. In Sections 2, 3 and 4, we will give
the bilinear and trilinear estimates which will be used to prove the well-posedness.
In Section 5, we will give the proof of the well-posedness and the scattering (Theo-
rems 3.3, 3.6, 3.10 and Corollary 3.5). In Section 6, we will give the a priori esti-
mates and show Theorem 3.8. In Section 7, we will give the proof of C?-ill-posedness
(Theorem 3.9). In Section 8, we will give the proof of the bilinear estimates for the

standard 1-dimensional Bourgain norm under the condition (o —v)(5+ ) # 0 and

afy(l/a—1/8—1/v) #0.

3.2 Strichartz and bilinear Strichartz estimates

In this section, implicit constants in < actually depend on oy, 09. First, we give

the Strichartz estimate for the Schrodinger equation.
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Proposition 3.12 (Strichartz estimate). Let o € R\{0} and (p,q) be an admissible
pair of exponents for the Schriodinger equation, i.e. 2 < q<2d/(d—2) (2<qg< o
ifd=2,2<q¢<o0ifd=1),2/p=4d(1/2—1/q). Then, we have

e 2 elleres S Mlellez

for any ¢ € L*(R?).
By Proposition 2.8 and 3.12, we have following:

Corollary 3.13. Let 0 € R\{0} and (p,q) be an admissible pair of exponents for
the Schridinger equation, i.e. 2 < q<2d/(d—2) (2<q¢g< o0 ifd=2,2<qg<
ifd=1),2/p=4d(1/2—-1/q). Then, we have

lullpes < llulloz,, we€ UZAL?, (3.7)

ul[rrs S HUHVan ue VI L? (1<p<p). (3.8)
Next, we show the bilinear Stricharz estimate.

Lemma 3.14. Let d € N, s, = d/2 — 1, b > 1/2 and o1, 0o € R\{0}. For any
dyadic numbers L, H € 2% with L < H, we have

L\ M2
PPl S 2 () IPrullgslPrallgs (39)

where [[ul] yoo := [|{T + o]€]*)0l| 2,

Proof. For the case d = 2 and (071,03) = (1,+£1), the estimate (3.9) is proved by
Colliander, Delort, Kenig, and Staffilani ([15], Lemma 1). The proof for general case
as following is similar to their argument.

We put g1(71,&1) = <Tl+01‘51|2>bFH\/U1(7—1;§1)a 92(712,§2) = <72+02|52\2>b1§;/@(72752)
and Ay := {£ € RYN/2 < |¢| < 2N} for a dyadic number N. By the Plancherel’s
theorem and the duality argument, it is enough to prove the estimate

91(71751) 92(72,52)
" AHf T1 +7_27§1 +£2) <7_1 +0_1|§1|2>b <7_2+0_2|€2|2>

bd§1d£2d7—1d7—2

Ld 1)/2
S ||fHL,5||gl||LT§ng||LT§

for f € LZ,. We change the variables (71, 72) = (61,62) as 6; = 7; + 03[&i]* (i = 1,2)
and put
F(01,05,81,8) = f(01 + 02 — 01[&1|* — 0|6, & + &),
Gl(ewfl) : g( O-Z|£l|2 gz) (7' = 172)'
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Then, we have

// 01 bl (/AL /AH 917627€IJ€2)G1(91 61)G2(627§2)|d€1d£2) d81d02
1/2
S /R/RW (/AL /AH |F(91792,§1,§2)|2d§1d§2) G101, )| 2] | G2 (62, )| L2d6r dO-

by the Cauchy-Schwarz inequality. For 1 < 57 < d, we put
Ay ={a=@&", 6" eR H/2 < |6 <28, || > H/(2Vd)}

and

K000 i= [ [ 1002606 Pdude
Ay J Al
We consider only the estimate for K;. The estimates for other K; are obtained by

the same way.

Assume d > 2. By changing the variables (&1, &) = (5%1), e %d), 551), e ,{éd)) —
(1, v,m) as
n= 91 + 92 — 01‘61‘2 — 02|§2|2 € R,
V=64 &ERY (3.10)
s
we have
dpdvdn = 2|01€" — 056" |dé1de
and

F(01,09,61,&2) = f(p,v).

We note that |01§§1) — 0588V ~ H for any (¢,&) € AL x Ay with L < H.
Furthermore, & € Ay, implies that n € [-2L,2L]4"1. Therefore, we obtain

1
Ki(61,62) S E/ / / | f(p,v)?
(—2r,2r)4-1 Jrd JR

As a result, we have

d 1/2

1
]S//— K;(6,,0 G161, )| 12]|Ga(Bs, )| 26,0
o Je (0005(0,) (; (6 2)) G101, )112]1G2 (82, )| 2 d01d0y

I(d=1)/2
< S iz Nz Dol

by the Cauchy-Schwarz inequality and changing the variables (0, 6,) — (71, 72) as
0; =7 + 0il&|? (i =1,2).
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For d = 1, we obtain the same result by changing the variables (&1, &) — (i, v)
as 1 = 01 + 0y — 01|&1)? — 02]&]?, v = & + & instead of (3.10). O

Corollary 3.15. Letd € N, s, =d/2 — 1 and o1, 05 € R\{0}.
(i) If d > 2, then for any dyadic numbers L, H € 2% with L < H, we have

(L 1/2
PPl $ 2 () Pz ool Poell o (3.11)

I\ 12 7\ 2
||PHU1PLu2||L§m 5 L3 (ﬁ) (1 + In f) ||PHU1||V021AL2||PLUQ||V022AL2' (312)
(i) If d = 1, then for any dyadic numbers L, H € 2% with L < H , we have

1
|1PrusPrusllizqonxr) S g |lPrtlloz  rell Pruelluz 12, (3.13)

' (14+InH)?
|| Prua Prus|[r2(jo,1)xr) S min {Lw, iz ( 1Prwllvz gl Prusllvz e

(3.14)

Proof. To obtain (3.11) and (3.13), we use the argument of the proof of Corollary
2.21 (27) in [25]. Let ¢, ¢ € L*(RY) and define ¢} (z) := ¢;(Az) (j = 1,2) for
A € R. By using the rescaling (¢,z) — (A%, A\x), we have

||Pr (€7 2 1) Pr (€22 o) || 12,1 <

= /\SC+2"PAH(eimlA(bi\)P)\L(eimzA(ég)|‘L2([—)\*2T,)\*2T]><Rd)-
Therefore by putting A = v/7' and Lemma 3.14, we have
|| Per (€722 1) Pr (€72 o) || 21,1y

1/2
2(sc+1) L
<VT L (E) HP\/TH¢1/THL%HP\/TL¢%/THL%

L\ /2
e (E) 1Pl 2| Prdellzz.

Let T'— oo, then we obtain

‘ . L\ 12
||PH(eztglAfﬁl)PL(@mA%)||L§m S L (E) ||PH¢1HL%HPL¢2HL%

and (3.11), (3.13) follow from proposition 2.8.
To obtain (3.12) and (3.14), we first prove the U* estimate for d > 2 and U®
estimate for d = 1. Assume d > 2. By the Cauchy-Schwarz inequality, the Sobolev
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embedding W2 (@=1)(R%) — [24(R?) and (3.7), we have

||PHU1PLU2||L2 SJ LSC||PHU1|| 4 2d/(d—1)||PLU2|| 472d/(d—1)
tx LiLy LiLy

o o (3.15)
S L

PHUl"UﬁlALQHPLu2HU§2AL2

for any dyadic numbers L, H € 2%2. While if d = 1, then by the Holder’s inequality
and (3.7), we have

[Py Prus||r2oayxry < |[Lo,nllzsl | Prunl|pspal | Pruzl|ps (316)

S Pawallys el Prusllus |, r2

for any dyadic numbers L, H € 2%. We use the interpolation between (3.11) and
(3.15) via Proposition 2.9. Then, we get (3.12) by the same argument of the proof
of Corollary 2.21 (28) in [25]. The estimate (3.14) follows from

|| Prrua Pous|| c2o)xmy < |1 Lo |zs LYl Prrva |21 ]| Pousal | o s (3.17)
S LYo\ Pyusllye e |[Prusllve |, re.

and the interpolation between (3.13) and (3.16), where we used the Hélder’s inequal-
ity, the Sobolev embedding W'/63(R) < LS(R) and (3.8) to obtain (3.17). O

3.3 Time global estimates

In this and next section, implicit constants in < actually depend on oy, 03, 03.

Lemma 3.16. Let d € N. We assume that o1, 0o, 03 € R\{0} satisfy (o1+02)(02+
03)(03 + 01) # 0 and (11,61), (72,8), (73,&3) € R x RY satisfy m +m + 713 = 0,

§i+&+&=0.
(i) If there exist 1 <i,j < 3 such that |&| < |&;], then we have

) e |2 > 12
Eg?é,’ 17+ 051& 171 2 lrgig% €517 (3.18)
(i) If o10903(1 /01 + 1/o9 + 1/03) > 0, then we have (3.18).
Proof. By the triangle inequality and the completing the square, we have

Cyp— . . . 2
My := 11252% |TJ + UJ‘§J| ‘

2 o1& + o2&l + 03185

= |(o1 + 03)|&1[* + 203&1 - & + (02 + 03)| & (3.19)
2
03 010203 1 1 1 9
= |01+ o3 ||& + p qoeos (2 2 L1 '
| 1 3| él ozl +0.3§2 (0_1 +0.3)2 (0.1 09 0_3) |£2|
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We first prove (i). By the symmetry, we can assume |&;] ~ |£3] 2 |&]. If [&1] > |&|,
then we have My > |&]? ~ maxi<j<3 |§;]? by (3.19). Next, we prove (ii). By the
symmetry, we can assume || ~ |&| 2 |€s|. If o10903(1 /01 +1/02+1/03) > 0, then
we have My > |&[* ~ max;<;j<3 |§;]? by (3.19). O

In the following Propositions and Corollaries in this and next section, we assume
Pyyuy € V2AL?, Pynyuy € V2 AL? and Pyus € V2 AL? for each Ny, Np, Ny € 27,
Propositions 3.17, 3.18 and its proofs are based on Proposition 3.1 in [25].

Proposition 3.17. Letd > 2, s, =d/2—1, 0 < T < 0o and o1, 09, 03 € R\{0}
satisfy (o1 + 02)(09 + 03)(03 + 01) # 0. For any dyadic numbers Ny, N3 € 2% with
Ny ~ N3, we have

Z max/ /d PN1u1 PN2u2>(PN3u3)dxdt
R

N1 N2

(X

N1<KNa

(3.20)

1/2
PN1U1||%/U21AL2> ||PN2u2| |V022AL2 | |PN3U3| |V023AL2’

where Nipax = max N;.
1<5<3

Proof. We define f; v, 7 := Lo Pnyu; (j = 1,2,3) For sufﬁciently large constant
C, we put M := C~'N2 and decompose Id = Q +Q%y (j =1,2,3). We divide

max

the integrals on the left-hand side of (3.20) into eight piece of the form

/ / QP i) (@2 fovar) (@5 fovir) o (3:21)

with QJJ € {Q>M, (j = 1,2,3). By the Plancherel’s theorem, we have

3

(3.21) = ¢ / / [171Q7™ fm, ) (7.6)),
T2 4+73=0 J &1 +E2+£3=0 ;¢

where ¢ is a constant. Therefore, Lemma 3.16 (i) implies that
[ Q5 (@ o) @25 )t = 0
R JR

when N; < N,. So, let us now consider the case that Q;’] = > M for some
1<j<3.
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First, we consider the case Q‘l’lA = Q‘;@. By the Holder’s inequality and the

Sobolev embedding H*(R%) < L*(R?), we have

Z Nmax/R/Rd(lej\%fl,Nl,T)(ngAfZ,Ng,T)(QggAfB,Ng,T)dl’dt

N1 <K Na
S Z Nmax|VSCQ§J@f1,N1,T ||Q32Af2,N2,T||L§L§d/<d—1)||Q§3Af3,N3,T||L§L§d/<d—1>-
N1 <K N2

L,
(3.22)

Furthermore, by the L? orthogonality and (2.1) with p = 2, we have

D NualV

N1< N2

A
Qv i T

1/2
S./ ( Z NzlaxN%scM_l‘|fl,N1,TH%/'021AL2>
1.2

N1 Na

While by (3.8) and (2.2), we have

||Q§2Af2,N2,T\|L§Lgd/(d71> S e rllve o2, \\QggAfz,Na,T!|L§Lgd/<d71> S fsnsrllvz 2

Therefore, we obtain

2 Nowe [ [ (@2 o) (@F o) (@5 )

N1< N2
1/2
. ( > NP PN1U1||%/021AL2> 1Pryusllvz 2| Pryusllvz |, 2,
N1< N2
since M ~ N7, and [|1jo7) fllvz, 2 S [|flly2, 12 for any o € R and any T' € (0, 00].

Next, we consider the case Qg3A = Q‘g’]@. By the Cauchy-Schwarz inequality, we

have

5 N [ [ (@02 )@ ) Q2

N1<K N2

< Z Nmaxw (flAfl,NhT)( gQAfZNz,T)"foHQggj\%fB,Ns,THLgm-
N1 N2

Furthermore, by (2.1) with p = 2, we have

Q24 favarllez, S M_1/2||f3,N3,T||v33AL2~ (3.23)

While by (3.12), (2.2) and the Cauchy-Schwarz inequality for the dyadic sum, we
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have

>0 I@QTA fun ) Q2 fonor)l 22,

N1 N2
N A
S DN <F> 1frmrllve gl fomarllve e (3.24)
N1<N2
1/2
S ( Z N128c fl,leTH%/flALQ) HfZ,Nz,THV%Am.
N1 N2

Therefore, we obtain

Z Nmax//( T2 f1n 1) Q922 fona ) (QZ41 fo,n 1) dwdlt
R JRd

N1< N2

S ( > N

N1< N2

1/2
PNMH%;ALz) 1Enaallvz, 2l Pvatallvz, sz

since M ~ N, and [|Ljo1) fllvz, 12 S [|fllvz, 1> for any o € R and any T' € (0, oc].
For the case QgQA = Q?]@ is proved in exactly same way as the case Qg?’A =

o3
e L]

Proposition 3.18. Let d > 2, s, = d/2—-1, s > 0,0 < T < oo and o1, 09,
o3 € R\{0} satisfy (01 4+ 03)(02 + 03)(03 + 01) # 0. For any dyadic numbers Ny,
Ny € 2% with Ny ~ Ny, we have

1/2
T 2
Z N sup Nmax/ /(PNlul)(PN2u2)(PN3u3)dxdt
Ny N |\u3||V33AL2=1 0 JRd (3.25)
S Nel|Pynllvz 12 Ns || Pryusllvz 12,

where Npax := max N;.
1<5<3

Proof. We define f; n, 7 := 1) Pn;u; (j = 1,2,3). For sufficiently large constant
C, we put M := C~'N2  and decompose Id = Q?ﬁ—i—@‘g]@ (j =1,2,3). We divide

max

the integrals on the left-hand side of (3.25) into eight piece of the form

/ / (7 Fins ) (QF o 1) (Q fo s )l
R JRE

with Q;-”A S {Q;’ﬁ, Z@ (j = 1,2,3). By the same argument of the proof of

Proposition 3.17, we consider only the case that ij - ‘g]@ for some 1 < j < 3.
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oA

First, we consider the case Q)7 Q‘”A By the Cauchy-Schwarz inequality, we

have

p (lejﬁfl,NhT) (QgQAfQ,Nz,T) (QgSAf&Ns,T)d‘rdt
R

< HQUlAfl M2z 1(QF22 fong ) (@522 fona )12,
Furthermore by (2.1) with p = 2, we have

1QZt Frvirlloz, € M PNl fumrllve e (3.26)
While by (3.12) and (2.2), we have

1(Q5°2 fova,r)(Q5° Frvair) 12,
e (3.27)
5 N§C (E) Hf2,N2,THV£2AL2Hf3’N3’THV53AL2

when N3 < Ns. Therefore, we obtain

Z N25 su

2

max/ o Q>Mf1 Ny, T )(Qg2Af2,N2,T)(QgSAf&NS’T)dxdt

N3< No HUSHVQ
S N128C PN1U1||V2 L2N225||PN2U2||V2 L2
g1 A agoA
by M ~ NZ.., Ni ~ Ny and [|Ljo7)fllvz, 2 S || fllvz 2 for any o € R and any
T € (0,00].

Next, we consider the case Q"3A Q"?’A We define f’NS = Pn,/2 + Pny + Pon,.
By the Cauchy-Schwarz inequality, we have

] (@ ) (Q5°% oo ) Q257 Fovr ) dadt

<P, ((QT frv 1) Q3 foa, 7)1z, ||QU3Af3N37T||L2

since Py, = Py, Py,. Furthermore, by (2.1) with p = 2, we have

1QZt Fsvarrlloz, S M7 PNl fsmarllvz e (3.28)

Therefore, we obtain

Z st su

N3< Ny HU3H\/2

S Y NN 71HﬁN3(( T2 fun o) Q5 fong, )72

N3<Na

S NPIHQT v ) (@52 oo )72,
S Ny

o1 A A 2
/ / fl,Nl, )(( ?22 f27N277 )(Q>3]\/1f37N3, )dl‘dt
R4 1

PN1U1||V021AL2N225||PN2U2||%/(32AL2

(3.29)
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by M ~ N?

max’

Ny ~ N,, L*-orthogonality, (3.15), the embedding V2, — U*, (2.2)
and |[Lo7) fllvz, 2 S || fllvz, 12 for any o € R and any T" € (0, o0].

For the case Q”A = Q”A is proved in exactly same way as the case Q‘”A =

o1 A
78, O

Proposition 3.19. Let s, =d/2—1 and , 0 < T < 0.
(i) Let d > 4. For any oy, 09, 03 € R\{0} and any dyadic numbers Ny, No, N3 € 2%

, we have

T
Nmax/ /d(P]\hul)(PNQUQ)(PN?,UZ)))dxdt
R

(3.30)
<N§1ax||PN1U1||v2 L2||PN2u2||V2 L2||PN3U3||V2 NZL

where Nyax 1= 1H<1a<x3 N;.
<j<
(ii) Let d =2, 3 and 010903(1/01 + 1/09 + 1/03) > 0. For any dyadic numbers Ny,

Ny, N3 € 2%, we have (3.30).

Proof. First, we consider the case d > 4. By the Holder’s inequality, the Sobolev
embedding Wse—104/Bd=4) (R} <y [34/4(R) and (3.8), we have

(L.H.S of (3.30)) < Nmax||PN1ull|L?Lg6€d/(3d—4)||PN2U2||L?L2d/(3d—4)|||V 56—1PN3U3||

6d/(3d—4
L3154/ (3d—1)

< N

max

|PN1U1HVUQIAL2||PN2U2HV022AL2||PN3U3HV023AL2-

Next, we consider the case d = 2, 3 and 0y0903(1/01 + 1/09 + 1/03) > 0. We
define f;n, v = 1o Pnu; (j = 1,2,3). For sufﬁciently large constant C, we put
M := C7'N2__ and decompose Id = Qij + Q%) ( = 1,2,3). We divide the

integral on the left-hand side of (3.30) into eight piece of the form

//Rd f1N1 (QgQAfZNg,T)(QgSAfs,Ng,,T)da:dt

with Q;TJ € {Q>M, (j = 1,2,3). Since oy0903(1/01 + 1/09 + 1/03) > 0,
Lemma 3.16 (ii) 1mphes that

/R/Rd(Qzlz\%fl,Nl,T)(Q?}@fQ,NQ,T)(Q?;@f:s,NP,,T)dflfdt =0

for any Ni, No, N3 € 2%, So, let us now consider the case that Q‘j’j = ZJJ@ for
some 1 < j < 3. We consider only for the case Q‘”A = Q‘”A since for the other

cases is same manner.
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By the Cauchy-Schwarz inequality, we have

Rd(@;ﬁfl,Nl,T)(QggAfQ,NQ,T)(Qg3Af3,N3,T)d$dt
< ||Q01Af1 Ny, T||L2 H( g2Af2,N2,T>(QgSAf&Ng,T)l|L?z'
Furthermore by (2.1) with p = 2, we have
HQalAlel THL2 S M- 1/2||f1N1THV2 A L2 (3.31)
While by (3.15), the embedding V2, < U* and (2.2), we have
1(Q5*2 founo ) (QF* f3.ns, )|z, S Novaxl [ 232, THV2 NZIPERS T||V2 G2 (3.32)
Therefore, we obtain

‘Nmax//d(Q(gj\%fl,Nl,T)(Qg2Af2,N2,T)(QgSAf?),N&T)dl’dt
R

< N

max

|PN1u1HV021AL2||PN2u2||VU22AL2HPNSU3HV53AL27

max

(0, o0]. 0

since M~ Ni,. and |17 fllvz, 2 S IIfllve 2 for any o € R and any T €

Proposition 3.18 and Proposition 3.19 imply the following:
Corollary 3.20. Let 01, 09, 03 € R\{0} satisfy (o1 + 02)(02 + 03)(03 + 01) # 0 if
d >4, and oy0905(1 /01 + 1/oa + 1/03) > 0 if d = 2, 3. Then the estimate (3.25)
holds if we replace ZN3<<N2 by ZNggNz'

3.4 Time local estimates

Proposition 3.21. Let s > s, (=d/2—-1),0<T <o0ifd>2ands>0,T =1
if d = 1. We assume o1, 0q, 03 € R\{0} satisfy (o1 + 02)(09 + 03)(05 + 01) # 0.
For any dyadic numbers Ny, N3 € 2% with Ny ~ N3, we have

Z max/ / PNlul PNqu)(PNsu?’)dxdt
Rd

N1 <K No

y (3.33)
sTJ( > <N1v1>25||PN1ul||2v;1AL2> 1Pl ol Pl

N1 N2

for some 0 > 0, where Nyax := max Nj.
1<5<3
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Proof. First, we assume d > 2. We choose ¢ > 0 satisfying § < (s—s.)/2 and 0 < 1.
In the proof of proposition 3.17, for L.H.S of (3.22), we use the Sobolev embedding
Hset20 oy [4/(1-20) ingtead of H < L% . Then we have

3 Nowe [ [ Q2 ) (@5 o) (@5 )

N1< N2

Z Nmax|v‘sc+26Qo.1Afl N1, T

N1< N3

E UlA
Nmax fl N1, T

N1< N3

195 fo s 2l gl Q5 Fov |

2
Lt:c

S omllge

1Q5%2 fo,va 2|12 28 1QF* fo vy 2l 2
L,
with (p, ¢) = (4/(1—24),2d/(d—1+2)) which is the admissible pair of the Strichartz
estimate. Furthermore for L.H.S of (3.23), we use the Hélder’s inequality and (2.1)
with p = 2/(1 — 20) instead of p = 2. Then we have

Q25 fanvarllrz, < Loyl s lQF o1 fN, rllzra-ep, S T(SM_(l_%)/2||f3,N3,T||VJ23AL2-

For the other part, by the same way of the proof of proposition 3.17, we obtain
(3.33).
Next, we assume d = 1. In the proof of proposition 3.17, for L.H.S of (3.22), we

use the Holder’s inequality as follows:

Z max//QJlAf1N1 NQT2 fono.r) Q5P 3,5, 1) ddt

N1<K N2

S o)l

A
Z NmanglM fl,N1 T

N1< N2

1952 fomo el ra 195 Fovaurlgis-

2
Lt:t

We note that (8,4) is the admissible pair of the Strichartz estimate for d =

Furthermore for the first inequality in (3.24), we use (3.14) instead of (3.12). For
the other part, by the same way of the proof of proposition 3.17, we obtain (3.33)
with 7" = 1. [

Proposition 3.22. Let s > s, (=d/2—-1),0<T <0 ifd>2ands>0,T =1
if d = 1. We assume o1, 0q, 05 € R\{0} satisfy (o1 + 02)(02 + 03)(03 + 01) # 0.
For any dyadic numbers Ny, Ny € 2% with N, ~ Ny, we have

Z N3*  sup

N3< N> HUBHVJ23AL2:1

1/2
9\ Y/

T
N / / (P ) (Pyua) (s
0 R

(3.34)

S TNV | Pyl 1o (No v 1] Prllys oo
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for some 6 > 0, where Nyayx 1= max Nj.
1<5<3

Proof. First, we assume d > 2. We choose § > 0 satisfying 6 < (s—s.)/2 and § < 1.

In the proof of proposition 3.18, for L.H.S of (3.26) and (3.28), we use the Holder’s
inequality and (2.1) with p = 2/(1 — 24) instead of p = 2. Then we have

Q5 finvrllr, < |’1[0,T)||Lg/6||Q§z@f1,Nl,T\|L§/<1726)Lg S T(SM_(l_%)/2||f1,N1,THV021AL2a

Q5 fanvarll 2, < ||1[0,T)||Lt1/6||Q§31@f3,1v3,:r||L§/<1—26)L3 S T(SM_(I_25)/2||f3,N3,T||v33AL2-

For the other part, by the same way of the proof of proposition 3.18, we obtain
(3.34).

Next, we assume d = 1. In the proof of proposition 3.18, for L.H.S of (3.27), we
use (3.14) instead of (3.12) and for the third inequality in (3.29), we use (3.16) and
V2, . < U® instead of (3.15) and V2, < U*. For the other part, by the same way

—,rc —,rc

of the proof of proposition 3.18, we obtain (3.34) with 7" = 1. n

Proposition 3.23.
(i) Let d > 4, s > s, and 0 < T < oo. For any o1, 09, 03 € R\{0}, any dyadic
numbers N1, Ny, N3 € 2% and 1 < j < 3, we have

T
‘NJ/ /d(PN1u1>(PN2u2)(PN3U3)dIdt
0 JR

ST°(N; v 1)SHPN1U1HV31AL2\|PN2U2‘|V§2AL2|’PN3U3|’V53AL2~

(3.35)

for some § > 0.

(ii) Let d =1,2,3, s > 1,0 < T < oo. For any oy, 09, 03 € R\{0}, any dyadic
numbers Ny, Ny, Ny € 2% and 1 < j <3, we have (3.35).

(iii) Let s > s, 0 < T <0 ifd=2,3and s> 0, T =11ifd=1. We assume oy,
o9, 03 € R\{0} satisfy o10905(1/01 + 1/o9 + 1/03) > 0. For any dyadic numbers
Ny, Ny, N3 € 22 with Ny ~ Ny ~ N3 and 1 < j < 3, we have (3.35).

Proof. By symmetry, it is enough to prove for j = 3. We choose § > 0 satisfying
J < (s—5.)/2and 6 < 1.

First, we consider the case d > 4. By the Holder’s inequality and the Sobolev
embedding W se+20-1,0d/(3d—4+120) (R «y [3d/4(RY) we have

/oT /Rd(PNlul)(PNzuz)(szgug)dxdt

Sc+20—1 (

S Lol pasll Py ull s poasca—s [| Prytia] s psarca-s [[[V Prgus)||rre
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with (p,q) = (3/(1 — 30),6d/(3d — 4 + 126) which is the admissible pair of the
Strichartz estimate. Therefore we obtain (3.35) by (3.8).

Second, we consider the case d = 1, 2, 3 and 0y, 09, 03 € R\{0} are arbitary. By
the Holder’s inequality and (3.8), we have

[ [P e

S Mom |l pra-al [ Pxyuall proa g [Py ua|| rzra s || Prgus| | pr2va

ST Pryunllve ol Paal vz, ol P usllve oo

and obtain (3.35) as § =1 —d/4 for s > 1.

Third, we consider the case d = 2, 3 and oy0903(1/01 + 1/03 + 1/03) > 0. In
the proof of proposition 3.19, for L.H.S of (3.31), we use the Holder’s inequality and
(2.1) with p = 2/(1 — 24) instead of p = 2. Then we have

Q257 fumrllr, < |ll[o,T)HL;/é||Q§11@f1,Nl,T||L§/<1—26>L3 S T6M7(1726)/2||f1,N1,THVflAL2'

For the other part, by the same way of the proof of proposition 3.19, we obtain
(3.35).

Finally, we consider the case d = 1 and o10903(1/01 + 1/09 + 1/03) > 0. In the
proof of proposition 3.19, for L.H.S of (3.32), we use (3.16) and V2, < U® instead
of (3.15) and V2,
proposition 3.19, we obtain (3.35) with 7" = 1. O

< U*. For the other part, by the same way of the proof of

Proposition 3.22 and Proposition 3.23 imply the following:

Corollary 3.24. Let 0 < T < <0 ifd>2 andT =1 if d =1. We assume o1, 09,
o3 € R\{0} satisfy (o1 + 02)(02 + 03)(03 + 01) # 0.

(i) Let s > s, if d >4, and s > 1 if d = 1, 2, 3. Then the estimate (3.34) holds if
we replace D . <y, bY Do ni<n,-

(i) Let s > s if d = 2,3 and s > 0 if d = 1. We assume o1, 09, 03 € R\{0}
satisfy o10903(1/01 +1/09+1/03) > 0. Then the estimate (3.34) holds if we replace

ZN3<<N2 by ZN?,,ENQ :

Let (4,7, k) is one of the permutation of (1,2,3). If 0; + 0; = 0, then Proposi-
tion 3.16 (i) fails only for the case |§;| < |&] ~ |€;]. We obtain following estimates
for the case |&| < [&] ~ [&].
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Corollary 3.25. Let s > s, ifd >4, and s > 1 ifd =2, 3.

(i) We assume o1, 09, 03 € R\{0} satisfy o2 + 03 =0 and (o1 + 02)(03 + 01) # 0.

Then for any 0 < T < oo, and any dyadic numbers Ny, N3 € 2% with Ny ~ N3, we
have

>N /0 ' /R (Prur) (Prvyuz) (P, ug) dvdt

N1< N2

(3.36)

1/2
STJ( > <N1v1>25||PN1ul||2v;AL2> Prstall zall Pl v 22
N1< N2

(ii) We assume oy, 04, 03 € R\{0} satisfy 01 + 0 = 0 and (o3 + 03)(03 + 01) # 0.
Then for any 0 < T < oo, and any dyadic numbers Ny, Ny € 2% with N; ~ N, we

have

1/2
5\ Y/

Z N sup

N3SN2 ||u3HV023AL2:1

N /O /R (Prvyu) (Pryuz) (Pryus)ddt (3.37)

ST (N v D l|Pvnllvz o2 (Na V1| Pryus|lvz | ze-

for some § > 0.

Proof. By the Hélder’s inequality, V2, (R; L?) < L>*(R; L?) and (3.12), we have

T
‘Nl/ /d(PNlul)(PN2u2>(PN3u3)dSUdt
0 JR

< Nul[Lpomll 2l [(Pavyua ) (P, ua) || 22 || P us| e 2 (3.38)

N, 1/2
SN () Pl ool Pl ool Pl

2
03AL

for Ny < No. We use (3.38) for the summation for V; < 1 and use (3.35) with j =1

for the summation for 1 < N; < Ny. Then, we obtain (3.36) by the Cauchy-Schwarz
inequality for the dyadic sum.

The estimate (3.37) is obtained by using (3.35) with j = 3. O
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3.5 Proof of the well-posedness and the scattering

In this section, we prove Theorems 3.3, 3.6, 3.10 and Corollary 3.5. We define the
map ®(u, v, w) = (&%) (w,v), @%%7v0(@,v),®(2) (u,v)) as

T,a,ug T?’Y?’LUO

o) (f,9)(t) = e"Pp — I (f,9)(t),

¥ (F0)(1) = R+ I (1. 9) (1)

where
1Y) (£, 9)(t) = / Loy (£)e' 72 (T - F(¢))g(t)dt,
I (f,9)(t) = / Lio.ry (1) TAT(f(H) - g(t'))dt.

To prove the existence of the solution of (3.1), we prove that ® is a contraction map
on a closed subset of Z5([0,T]) x Z5([0,T]) x Z3([0,T]) or Z5([0,T]) x Z5([0,T7]) x
Z5([0,T]). Key estimates are the followings:

Proposition 3.26. We assume that o, B, v € R\{0} satisfy the condition in The-
orem 3.3. Then for s. =d/2 —1 and any 0 < T < 00, we have

1

15w, 0)]z2e S wllysellollyse, (3.39)
1) —

123wl e S uollyse Ll e (3.40)
2 _

1250 () e S MullyelJollyse- (3.41)

Proof. We prove only (3.41) since (3.39) and (3.40) are proved by the same way. We

show the estimate

2 _
1252 (u, )|

2 S llullygellvlly; +lullyglvllyze (3.42)

for s > 0. (3.41) follows from (3.42) as s = s.. We put (uj,us) := (u,v) and
(01,09,03) := (o, —f,—7). To obtain (3.42), we use the argument of the proof of
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Theorem 3.2 in [25]. We define

J1 = Z Z ]T2) o3 PNlul,PNZUQ) s
Nz N1<N2 Zio3
J2 = Z Z 17(12) o3 PNlul, PN2u2> s
No Ni~No s
Zog
Jg = Z Z 11(12’)_03<PN1U1, PNQUQ) 3
N1 No<kN; Zs

% o
where implicit constants in < actually depend on o4, 09, 03.
First, we prove the estimate for J;. By Theorem 2.4, we have

1/2

eitagAPN3 Z ],}27)_03 (PNlul, PN2U2)

SISO NP DY
N3

N2~ N3 N1< N2 U2(R;L2)
24 1/2
T
=Sy N DS sup > N / / (P, 1) ( Py ) (Py,us)dadt
N3 ]VQN]V3||'U‘3HV2 L2_1 N1 < Na Rd
Therefore by Proposition 3.17, we have
12 2y 1/2
LADS ( > N PNIumaﬁlp) Pl i
N3 Na~N3 \N1<KN2
1/2 1/2
S (Z N125c PNl’LLlH%/flALz) (ZNQZS“PN2UQ“%/(,22AL2>
N1 N2
= ||u1HY§f
Second, we prove the estimate for J,. By Theorem 2.4, we have
1/2
< 3| D0 Nl AP IR (Pay, Pryuz) e
Ny Ni~Ny \ N3<Na
. o\ 12
Y S [ v sw / / (Pytir)(Pry i) (P, ) dadt
0 JRrd

Ny Ni~Np \Nz<ny  usllvz r2=1
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Therefore by Corollary 3.20 and Cauchy-Schwarz inequality for dyadic sum, we have

Jy < Z Z Nfc||PN1u1||V021AL2N§||PN2UQ||VJ22AL2

N2 Nj~Na
1/2 1/2
< (ZNESC PN U1||22 2) (ZNQSHPN U2H22 2)
~ 1 vo'lAL 2 2 VUQAL
Ny No
= sl el

Finally, we prove the estimate for J3. By the same manner as for J;, we have

Js S [Ju

Ve U2||Y;26‘

Therefore, we obtain (3.42) since |Ju1|ly, = [[ully; and |Jus|lyze = [|v] ygeo U
o1

Corollary 3.27. We assume that o, B, v € R\{0} satisfy the condition in Theo-
rem 3.3. Then for s > s. (=d/2—1) and any 0 < T < 0o, we have

1
1250w, 0)llzg S Hewllysl o]l (3.43)
1I%@, w)l 25 S [y [y (3.44)
15 (w9 |25 S [l o]y (3.45)

Proof. We prove only (3.45) since (3.43) and (3.44) are proved by the same way. By
(3.42), we have

(15 (s D)1 2 = 11T (0, D) 20 + [ (D) 2
S Mullyzellvllyo + lullyollvllyse 4 [lullyzel[vllys + lullygllvllyse-
We decompose u = Pyu + (Id — Py)u and v = Pyv + (Id — Py)v. Since
[ Poullyge S [[Poullyg, [[(Td = Po)ullyze S 11(1d — Fo)ullyg,
1Psollyze S [1Bsollys. 11(Td= Po)ollyz S 11(d = Folly,
for s > s., we obtain (3.45). O

Proposition 3.28.
(i) Let d > 2. We assume that o, B, v € R\{0} and s € R satisfy the condition in
Theorem 3.6. Then there exists d > 0 such that for any 0 < T < oo, we have

||IT1,()1(7»U,U)| 7s S T°l|w] zs|[v] zs (3.46)
22 h(@, w)l 25 < T0lwl|z: ||ul | 23, (3.47)
112 (u, 925 < TNl zg ] z5- (3.48)
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(ii) Let d = 1. We assume that o, 5, v € R\{0} and s € R satisfy the condition in
Theorem 3.6 except the case 1 > s> 1/2, 0 <0 and (a« —)(8+ ) # 0. Then we
have (3.46)—(3.48) with T = 1.

Proof. We obtain (3.46)—(3.48) by using Proposition 3.21 and Corollary 3.24 if
a # B, using Corollary 3.25 if d > 2 and a = (3 instead of Proposition 3.17 and
Corollary 3.20 in the proof of Proposition 3.26. O

Proof of Theorem 3.3. We prove only the homogeneous case. The inhomoge-

neous case is also proved by the same way. For r > 0, we define

X3(1) = {(u,v,w) e XD | |Iul sy < 27“} (3.49)

Zs (1) |v] Z5(1) |Jw]

which is a closed subset of X*(I). Let (ug, vy, wy) € B,(H*(R?) x H%(R%) x
H5(R%)) be given. For (u,v,w) € X*([0,00)), we have

1
1R 0 (w5 0] 2 10,000y < N0l zee + Cllwl| e o op 10| 25 0007y < (1 +4C),

T,&,’U,O

1 _
0%, ,, (@, )|

e + Cllw]

75 (0.00)) < |0 zze (000 |1l 220 (0,00)) < T(1 4 4CT),

195 0 (0P| z5e 0,00y < N0l zee + Cllull 25 0.0 101 26 0,007y < (1 +4Cr)
and
15, 0, 01) = @ (13, 02) | 220 0.0y < 207 (101 = w3l 50 1000y + 101 = 2l 00 )
1% o (@1, 11) = @) (15, 02) | 50,0 < 207 (I01 = 5|22 0.0y + i1 = 2l 220 000 )
19 1, 5) = O (02,3 2 0.0y < 267 (111 = 2l 3 000y + 101 = il 220000 )

by Proposition 3.26 and

‘ |€io'tA iotA

el zze (0,000 < 0,000 "l 220 < Nl e

where C' is an implicit constant in (3.39)—(3.41). Therefore if we choose r satisfying
r< (40)71,

then ® is a contraction map on X ([0,00)). This implies the existence of the
solution of the system (3.1) and the uniqueness in the ball X% ([0, 00)). The Lipschitz

continuously of the flow map is also proved by similar argument. O

Theorem 3.6 except the case d =1,1>s>1/2,0 <0 and (a« —7)(5f+7) #0
is proved by the same way for the proof of Theorem 3.3.

43



Remark 3.29. For d = 1 and s > s. (in particular s > 0), we can assume the
H?-norm of the initial data is small enough by the scaling (3.2) with large \ since
S. < 0.

Proof of Corollary 3.5. We prove only the homogeneous case. The inhomoge-
neous case is also proved by the same way. By Proposition 3.26, the global solution
(u, v, w) € X*([0,00)) of (3.1) which was constructed in Theorem 3.3 satisfies

NSC(e’“O‘APN[&?a(w, v), e’itﬂAPNIooﬁ(@, u), e’mAPNIg?V(u, v))
€ VA(R; L*) x V3(R; L?) x V*(R; L?)
for each N € 2%. This implies that
(uy, vy, wy) = tgrgo(uo—e_itaAIg?a(w,v), vo—e PRI 5 (W, ), w0+e_mAI£?,y(u7U))
exists in H%(R%) x H*(R?) x H%(R%) by Proposition 2.3 (iv). Then we obtain
(u,v,w) — (e"Pup, ™o, eMPw,) — 0
in H*(RY) x H%(RY) x H*(R?) as t — oc. O

Theorem 3.10 is proved by using the estimate (3.39) and (3.43) for (o, 8,7) =
(—1,1,1).

3.6 A priori estimates

In this section, we prove Theorem 3.8. We define
M (u, v, w) = 2|[ul |75 + [[0][22 + [|w]|Z;
H(u,v,) = al|Vul s + BIIVoll2; + 1[I w]l2; + 2Re(w, V(7))
and put My := M (ug, vo, wo), Ho := H (ug, vg, wo).
Proposition 3.30. For the smooth solution (u,v,w) of the system (3.1), we have

M (u,v,w) = My, H(u,v,w)= Hy

Proof. For the system

(10 + aA)u = —(V - w)v (3.50)
(10 + fA)v = —(V - W)u (3.51)
(10 + yA)w = V(u - ), (3.52)
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We have the conservation law for M by calculating

Im | {(~2u x (3.50)) + (v x (3.51)) + (@ x (3.52)) }dz

and for H by calculating

Re [ {(9u x (3.50)) + (87 x (3.51)) + (9, x (3.52))}dx.

The following a priori estimates imply Theorem 3.8.

Proposition 3.31. We assume «, 5 and v have the same sign and put

Prmaz := max{|al, [B],[V[}; pmin = min{|al, |B], [v[}-
(i) Let d = 1, 2. For the data (ug, vy, wo) € HY(R?) x HY(R?) x H(RY) satisfying
My~ * < prnins (3.53)

there exists C > 0 such that for the solution (u,v,w) € (C([0,T]; Hl(Rd)))3 of (3.1),
the following estimate holds:

Hy+CM~*
Pmin — CM[)I_d/4 ‘

sup (|IVu(t)li3; + IVo@)I; + [ Ve)?;) <

0<t<T o

(3.54)

(ii) Let d = 3. If the data (ug,vo,wy) € HY(RY) x HY(RY) x H'(R?) satisfies
1Vuol[Zz + [[Vvollzz + IVwol[Zz < €/ pmac (3.55)

for some € with 0 < € < 1, then for the solution (u,v,w) € (C([0,T7; Hl(]R"l)))3 of
(3.1), the following estimate holds:

sup (IIVu(®)|lEz + (1Yol + IVe@)z) < 3¢/pum:  (356)

0<t<T
Proof. We put
F = F(t) = [[Vu(®)|[;2 + Vo072 + [[Vw()][:.

Since «, f and ~ are same sign, we have

1

F <

(H (u,v,w) +2[((V - w), (u-0))2]).
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By the Cauchy-Schwarz inequality and the Gagliardo-Nirenberg inequality we have

(V- w), (u-0))2]) < |V - w]] 2 [ul || [v]| s
1-d/4 d/4 1—-d/4 d/4
SV - wllallul |l IV ul | ol Vol

S M(U, v, w)lfd/4F(d+2)/4

for d < 4. Therefore, by using Proposition 3.30, we obtain

F< <H0 + CM(}*d/‘*F(d”)/‘*) (3.57)

Pmin
for some constant C' > 0. For d < 2 we have F(#+2/4 < 14 F because of (d+2)/4 < 1.
Therefore if (3.53) holds, then the estimate (3.54) follows from (3.57).

By the same argument as above, we obtain

Hy, < PmaxF(O) + 2’((V . w(())), (u((]) . U(O)))Lil < PmaxF(O) + CMgfd/4F(O)(d+2)/4

for some constant C' > 0 and d < 4. Therefore if (3.55) holds for some e with
0 < e < 1, we have

Hy < (1 + C’Mé_d/4 _(d+2)/46(d_2)/2>.

pma:p

By choosing ¢ sufficiently small, we have Hy < 2¢? for d = 3 (and also d = 4).

Therefore the estimate

F< (262 oMz 4F<d+2>/4) (3.58)

Pmin
follows from (3.57). If there exists ¢ty € [0, 7] such that F(ty) < 4€*/pmin for suffi-
ciently small ¢, then we have F(ty) < 3€%/pmin by (3.58). Since F(0) < €2/pmin <
4€%/ ppin and F(t) is continuous with respect to ¢, we obtain (3.56). O

3.7 (C*ill-posedness

In this section, we prove Theorem 3.9. We rewrite Theorem 3.9 as follows:

Theorem 3.32. Letd > 1,0 < T < 1 and «, B, v € R\{0}. We assume s € R
Fa—DB+7) =0, 5 <1ifapr(lja-1/6—1/3) =0, and s < 1/2 if
aBfy(l/a—1/8 —1/v) < 0. Then for every C > 0 there exist f, g € H*(R?) such
that

t —
| et @i

0

sup
0<t<T

> C[f]

HS

b (3.59)

Hs 9|
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Proof. We prove only for d = 1. For d > 2, it is enough to replace Dy, Dy and D
by Dy x [0,1]97Y, Dy x [0,1]7! and D x [1/2,1]%7! in the following argument. We
use the argument of the proof of Theorem 1 in [56]. For the sets Dy, Dy C R, we
define the functions f, g € H*(R) as

F(€) =1p,(€), G(€) = 1p,(€).

First, we consider the case (v —)(8 4+ ) = 0. We assume a — vy = 0. (For the
case 3+ = 0 is proved by similar argument. ) We put M := —(5 + ~)/2v, then
we have

aléi? = BIE — &l = e = 29{& — M(€ — &) HE — &)
For N > 1, we define the sets D, Dy and D C R as

Dy = [N, N+ N7, Dyi= N7, 2N, D= [N +3N"/2, N+ 2N
Then, we have
1 flrs ~ N2 |gllms ~ N7V20[(F*9)(€)] 2 N7'p(€)

and .
/ it (@l P -Ble-€1 21 g7 - 4
0

for any £ € Dy satisfying £ — & € Dy and 0 <t < 1. This implies

sup Z/ Ns—1/2

0<t<T

t —
[ et @i
0

HS
Therefore we obtain (3.59) because s — 1/2 > s — 1 for any s € R.

Second, we consider the case afy(1/a—1/8—1/y) =0. We put M :=~/(a—"),
then M # —1 since o # 0 and we have

alél)* = BlE = &P = 7E)* = (a = )& — M(§ - &)™
For N > 1, we define the sets D, Dy and D C R as
Dy := [N, N+1], Dy := [N/M, N/M+1/|M|], D := [(1+1/M)N+1/2, (14+1/M)N+1].
Then, we have

o~ N* lgllms ~ N, |(F%§)(€)] 2 10(©)

I
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and .
/ it (@len P-Ble-& 2 —e®) gy - 4
0

for any £ € D, satisfying £ — & € Dy and 0 <t < 1. This implies

s+1
> N
Hs

sup
0<t<T

t
| et raverer @)
0

Therefore we obtain (3.59) because s+ 1 > 2s for any s < 1.
Finally, we consider the case (« —7)(8+7) # 0 and afvy(1/a—1/8—1/7v) < 0.

We put
1 1 1 1
My=——+ —am< _____ )
a—y a—y a [y

then My € R and M, # M_ since afy(1/a—1/8 —1/7v) < 0, and we have

alér’ = Bl — &P =€) = (a+){& — My (6§ — &) H&a — M_(§— &)}

Because M, # M_, at least one of M, and M_ is not equal to —1. We can assume
M, # —1 without loss of generality. For N > 1, we define the sets D;, D, and
D CRas

Dy :=[N, N+ N7, Dy:=[N/M,, N/M,+ N~"/|M,]|],
D:=[1+1/M)N+N"1'/2, (1+1/M,)N+N"1.

Then, we have

[ l1s ~ N2 gl s ~ N2 (F )] 2 N71p(€)

and .
/ it (@len P -Ble-&[2—e®) gy - 4
0

for any £ € D; satisfying £ — & € Dy and 0 < ¢ < 1. This implies

¢
sup / ei(t—t’)wAv«eit’aAf) (eitlﬁAg))dt, Z NS_I/Z.
0<t<T [|J0O Hs

Therefore we obtain (3.59) because s — 1/2 > 2s — 1 for any s < 1/2. O

3.8 Bilinear estimates for 1D Bourgain norm

In this section, we give the bilinear estimates for the standard 1-dimensional Bour-
gain norm under the condition (o —)(8 +7) # 0 and afy(l/a—1/8 —1/v) # 0.
Which estimates imply the well-posedness of (3.1) for 1 > s > 1/2 as the solution
(u,v,w) be in the Bourgain space X;([0,T7]) x X5([0,T7]) x X5([0, 7).
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Lemma 3.33. Let 01, 0y, 03 € R\{0} satisfy (02 + 03)(03 4+ 01) # 0 and (11,&),
(12,&2), (13,&3) € R X R satisfy m + 10+ 73 =0, & + & + & = 0. If there exist
1 <14,j <3 such that |&;| < ||, then we have

2 2
max 175 +0565| 2 &5

Proof. For the case o1 4+ 09 # 0, proof was complete in Lemma 3.16. We assume

o1 + 09 = 0. Then we have

My :==max{|r; + 01&}|, |72 + 0265, |73 + 03&3|}
2 |01&} + 02€5 + 0363
= [&l[(o1 + 03)& + 2018
= |&[|(02 + 03)&s + 20281

by the triangle inequality. Therefore if || < [;| for some 1 < 4,j < 3, then we
have My > £2. O

Lemma 3.34. We assume oy, 09, 05 € R\{0} satisfy 0 := 010203(1/01 + 1/09 +
1/o3) # 0. For any (1,€) € R x R with |§| > 1 and b > 1/2, we have

drid
L e s e ey © (ol o) +0g  (@60)
and

/ / dﬁd&
[€1[>[€—=&1] or |&1|<|E=£&1] IR <Tl + 01§%>2b<7 -7+ 02(5 - 51)2>

where implicit constants in < actually depend on oy, 0s.

5 S (€7 (361)

Proof. We put I(7,£) :=(L.H.S of (3.60)). By Lemma 2.3, (2.8) in [47], we have

dg,
I(1,8) S /R (0183 + 02(§ — &) + 038> + (T — 0362))%

We change the variable &; — u as u = 01€2 + 09(€ — &) + 0382, then we have

dp = 2|01& — 02(€ — &)|dés ~ | (o1 + o) — 9§2|1/2 déi.

Therefore if 01 + 09 = 0, we obtain

1 dp -1
1095 5 | Tt 5 ©
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for b > 1/2 since 0 # 0 and |{| > 1. While if o1 + 09 # 0, we obtain

/ i
R+ (T — 03€2))2 |(01 + oa)p — 0622 ™

I(1,¢) < < (014 09)(T—03E2)+-0€2) ™ 1/2

for b > 1/2 by Lemma 2.3, (2.9) in [47]. The estimate (3.61) follows from
dp = 2|0181 — 02(€ — &1)|d& ~ max{|& [, [§ — & [hd&r ~ [€]d&

when |§;] > [€ — & or |&] < [€ — & -

Proposition 3.35. We assume d =1 and 01, 02, 03 € R\{0} satisfy (o1 +03)(02+
o3) # 0 and 0 := o10903(1/0y + 1/o9 + 1/03) # 0. Then for 3/4 > b > 1/2 and
1> s>1/2, we have
(D) us|
10z (urus)|

e S g

Xgéb |U2|

X;’b7 (362)

vaggl S |us| x50 (3.63)

s,b
X5y

where

Proof. We prove only (3.63) since the proof of (3.62) is similar. By the Cauchy-

Schwarz inequality, we have

102 (urus)]

so-t S zgglual | e

s,b s,b
X X3 Xgy

where

(P DEE - &) 2
1n8) = (<7—03§2 201~ b)// T1+0151 2b T—T1+02(f §1)%)% dﬁd&) .

It is enough to prove I(7,&) < 1 for [€] > 1. For fixed (7,€) € R x R, we divide
R x R into three regions S, S3, S3 as

Sp={(m,&) e Rx R [¢] < [&]}
Sy = {(11,&) € Rx R[ [¢] 2 &, max{|n +01&7], |7 — 71 + 0a(€ = &)°[} 2 €%}
Sy :={(m,&) € Rx R [¢] Z [&], max{|m + o1&, |7 — 71 + 02(§ — &)?]} < €7}

First, we consider the region S;. For any (71,&;) € S1, we have

)€ 2 (€ — &) S (6)F >

20



because || < |&1| ~ |€ — &1|. Therefore, we have

(e v
I(m8) 5 ((7’ — 0382)2070((0y + 02) (7 — 03€?) + 9§2>1/2>

for b > 1/2 by (3.60). Because 0 # 0,

£ = % {(01 4 02)(T — 03&?) + 06 — (01 + 02) (T — 03E7) } .

Therefore we obtain

1
I(1,8) S (<T — 05E2)5= 1 (0] + 02) (T — 03E2) + 0£2)1/2
1 1/2
P oo T
<1

for3/4>b>1/2and 1> s> 1/2.
Second, we consider the region S;. We assume |1 — 71 + 02(€ — &)?| = &2
(2 €)1 o16 |12 — €)1 71/28) since for the case |1 + 0162] 2> €2 is same argument.

Then, we have

12b 255 €>1 2b—2s 1/2
I(Tv f) 5 (< 0—362 2(1—b) // 7_1 +0_152> dTldfl) .

Because
/ dT1 - g 1
R <7'1 + 01§1>2b

for b > 1/2, we obtain

(€ s v
I(1,€) < (<T e £2>2(17b) /R <§1>2s+2b1<§1_51>23+2b1>

1/2
( (T — 03£2)20- b)<€>2b1)
1

N

AN

for 1 >b>1/2 and s > 1/2 by Lemma 2.3, (2.8) in [47].
Finally, we consider the region S3. To begin with, we consider the case |7 —
03&%| = €%, Then we have

()27 i |&g] ~ € — &
()72 if 6] > |€ =& or |&] < € - &

25| ¢|2
(7 —<23§|2€>|2<1—b) () (E-a) ™ s
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since |£] ~ max{|&1], | — & |} for any (7,€) € S3. Therefore we obtain

< <§>4b—2—2$
(01 + 02)(T — 038%) + 06?)

for 3/4 > b > 1/2 and s > 1/2 by (3.60) and (3.61). Next, we consider the case
|7 — 03&?| < £2. Because (01 + 03)(02 + 03) # 0 and

1/2
1r6) < A 51

max{|7 + 17|, |7 — 71 + 02(€ = €)%, |7 — 0367} < &7,
we have [§| ~ |£ — & | ~ |&]| by Lemma 3.33. Therefore, we have

( () )1/2
(T — 0362)20-D) (0} + 0) (T — 03E2) + 0€2)1/2

for b > 1/2 by (3.60). Because 0 # 0 and |7 — 03£?| < £2, we have

g)l-2s 1/2
1095 (—Sany) =1

for 1 >b>1/2and s > 1/2. O

I(7,§) S

Corollary 3.36. We assume d =1 and o, 3, v € R\{0} satisfy (a« —~)(B+7) #0
and apy(1/a—1/8 —1/v) #0. Then for 3/4>b>1/2 and 1 > s > 1/2, we have

1@l gz S ol ool (3.6)
1@l S llollgoollull (3.65)
105 ) eor S Nl gzel ol (3.66)
Proof. (3.64) follows from (3.62) with (ug,u3) = (v,w) and (oy, 02, 03) = (—a, §,7).
(3.65) follows from (3.62) with (ug,u3) = (u,w) and (o1,09,03) = («, —7).

(3.66) follows from (3.63) with (u1,us) = (u,v) and (01, 09, 03) = (o, =, ’y) O

Theorem 3.6 (iii) under the condition 1 > s > 1/2,0 = apy(1/a—1/5—-1/7) <0
and (o —v)(8 + ) # 0 follows from Lemma 2.1 in [21] and Corollary 3.36.
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Chapter 4

System of quadratic derivative

nonlinear Schrodinger equations
on T¢

4.1 Review for results

We consider the Cauchy problem of the system of Schrédinger equations:
( ) (V-w)v, (t,z) € (0,00) x T

(i0, + BA)v = —(V -W)u, (t,z) € (0,00) x T?,

( Jw=V(u-7), (tz)€(0,00)x T,

[ (u(0,2),0(0,2), w(0,2)) = (uo(), vo(w), wo(x)), = €T,

(4.1)

where a, 5, v € R\{0} and the unknown functions u, v, w are d-dimensional
complex vector valued. The system (4.1) was introduced by Colin and Colin in [11]
as a model of laser-plasma interaction. (4.1) is invariant under the following scaling

transformation:
Ayt z) = XA AT ) (A = (u,v,w)),

and the scaling critical regularity is s, = d/2—1. The aim of this chapter is to prove
the well-posedness of (4.1) in the scaling critical Sobolev space.

First, we introduce some known results for related problems. The system (4.1)
has quadratic nonlinear terms which contains a derivative. A derivative loss arising

from the nonlinearity makes the problem difficult. In fact, Christ ([9]) proved that

23



the flow map of the Cauchy problem:
i0u — 0*u =ud,u, t R, z €T,
u(0,2) = up(x), v €T

is not continuous on H*(T) for any s € R. While, there are positive results for the

Cauchy problem:

i0u— Au=u(V-1u), t R, x €T,
(4.2)
u(0,2) = up(z), z € T
Griinrock ([23]) proved that (4.2) is globally well-posed in L?(T) for d = 1 and
locally well-posed in H*(T%) for d > 2 and s > s. (= d/2 — 1). For the Cauchy

problem of the one dimensional derivative Schrodinger equation:

i0u + 0*u = iNO,(|[u]*u), t eR, z €T,

u(0,2) = ug(x), v € T,
Herr ([30]) proved the local well-posedness in H*(T) for s > 1/2 by using the gauge
transform and Win ([73]) proved the global well-posedness in H*(T) for s > 1/2. For
the nonperiodic case, there are many results for the well-posedness of the nonlinear
Schrédinger equations with derivative nonlinearity ([1], [2], [3], [7], [8], [16], [17],
[48], [54], [60], [65], [66], [67]).

Next, we introduce some known results for (4.1). For the nonperiodic case,
Colin and Colin ([11]) proved the local existence of the solution of (4.1) in H*(R%)
for s > d/2+ 3. We proved that (4.1) for the nonperiodic case is globally well-posed
and the solution scatters for small data in H*(R?) under the condition (o — 3)(a —
NGB +7) #0if d > 4 and afy(l/a — 1/ —1/v) > 0 if d = 2, 3 in Chapter 3.
We also obtained some well-posedness results at the subcritical regularity under the
other condition for o, § and 7. But there are no well-posedness result of (4.1) for
the periodic case.

Now, we give the main results in the present chapter. To begin with, we define

the function spaces to construct the solution.

Definition 4.1. Let s, 0 € R.
(i) We define Z¢ as the space of all functions u : R — H*(T%) such that for every
€ € Z% the map t — e"EPu(t)(¢) is in U(R;C), and for which the norm

1/2

2= | DO P uB) ()P ey

¢ezd

||l

o4



is finite.
(ii) We define Y as the space of all functions u : R — H*(T?) such that for every
£ €7 the map t — eit”|5|217(15\)(§) is in V?,.(R; C), and for which the norm

1/2

v = | D@ ut) (O mey

¢ezd

[l

18 finite.

Remark 4.2 ([25] Remark 2.23). Let E be a Banach space of continuous functions
f R — H, for some Hilbert space H. We also consider the corresponding restriction

space to the interval I C R by
E(I)={ueC(,H)|FveFE st v(t)=u(t), tel}

endowed with the norm ||ul|gy = inf{||v||g|v(t) = u(t), t € I}. Obviously, E(I) is

also a Banach space.
The spaces Z; and Y satisfy following properties.

Proposition 4.3 ([31] Proposition 2.8, Corollary 2.9). The embeddings
U H® — 75 < Y? s V2 H*

are continuous. Furthermore if Z¢ = UC}, be a partition of Z2, then

1/2
(zupckuuafﬁm) <
k

For an interval I C R, we define X*(I) := Z;(I) x Z3(I) x Z5(I). Our results

are followings.

Y- (4.3)

Theorem 4.4. Let s, = d/2—1. We assume that o, 5, v € R\{0} satisfy afv(1/a—

1/8—1/7) > 0 and a/8, B/ € Q.
(i) If d > 5, then (4.1) is locally well-posed for small data in H*¢(T?). More precisely,

there exists r > 0 such that for all initial data (ug,vo, wo) € B,(H® (T?) x H(T%) x
H?*<(T%)), there exist T = T(r) > 0 and a solution

(u,v,w) € X:([0,T)) C C([0,T); H**(T%))
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of the system (4.1) on (0,T). Such solution is unique in X3([0,T")) which is a closed
subset of X*([0,T")) (see (4.26)). Moreover, the flow map

S : B (H*(T%) x H*(T%) x H*(T%) > (ug, vo, wo) — (u,v,w) € X*([0,T))

1s Lipschitz continuous.
(i) If d > 1 and s > max{s., 0}, then (4.1) is locally well-posed in H*(T?). More

precisely, the statement in (1) holds for any r > 0 if we replace s. by s.

Remark 4.5. afy(1/a—1/5—1/v) > 0 is the nonresonance condition for (4.1). Oh
([59]) also studied the resonance and the nonresonance for the system of KdV equa-
tions. He proved that if the coefficient of the linear term of the system satisfies the
nonresonance condition, then the well-posedness of the system is obtained at lower

reqularity than the reqularity for the coefficient satisfying the resonance condition.

We recall the following conservation quantities given in Chapter 3 (see Proposi-

tion 3.30).

M (u,v,w) = 2l[ullzz + [[vll7z + [lwllzz,

H(u,v,0) := af[Vul[f; + BI[Vol[7; +9][Vwl[Z; + 2Re(w, V(u - 7))z
By using the conservation law for H, we obtain the following result.

Theorem 4.6. Let d = 1, 2, 3. We assume that o, 3, v € R\{0} have the same
sign and satisfy afy(1/a— 1/ —1/v) > 0 and «/B, 5/v € Q. There exists r > 0
such that for every (ug, v, wo) € B,(HY(T4) x HY(T?) x HY(T%)), we can extend the
local H' solution of Theorem 4.4 globally in time.

Remark 4.7. Theorem 4.6 follows from the a priori estimate which is obtained
by the conservation law for H. Proof of the a priori estimate is the same as the

nonperiodic case (see Proposition 3.31).
Furthermore, for the equation (4.2), we obtain the following result.

Theorem 4.8. Let d > 5 and s. = d/2 — 1. Then, the equation (4.2) is locally

well-posed for small data in H®.

Remark 4.9. The results by Grinrock ([23]) do not contain the critical case s = s,
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The main tools of our results are UP space and VP space which are applied
to prove the well-posedness and the scattering for KP-II equation at the scaling
critical regularity by Hadac, Herr and Koch ([25], [26]). For the periodic case, UP
space and V? space are used to prove the well-posedness of the power type nonlinear
Schrodinger equations at the scaling critical regularity by Herr, Tataru and Tzvetkov
([31]) and Wang ([71]). To obtain the well-posedness of (4.1), we show the following

bilinear estimate.

Proposition 4.10. Let s > 0ifd=1, s> s. (=d/2—1) if d=2,3,4, s > s. if
d > 5 and oy, 09 € R\{0} satisfy o1 + 09 # 0 and o1/09 = my/my for some my,
mg € Z\{0}. For any dyadic numbers Ny, Na, N3 > 1, we have

1P (Pryun - Pryua)||zcr <)

o1

(4.4)

N 1\’
min
S Nain (Nmax + Nmin) 1Py v [l yvg, || Py ua |y,

for some § > 0, where 0 := 01/my = 03/Ma, Npax := max N;, Ny, := min N;.
1<5<3 1<j<3

Wang ([71]) proved (4.10) for the case Ny ~ N3 = Ny. Therefore, Proposi-
tion 4.10 is the extension of his estimate. To prove Proposition 4.10, we will show
the new bilinear estimate (Proposition 4.16) which is the estimate (4.4) for the case
Ny ~ Ny > Nj.

The rest of this chapter is planned as follows. In Section 2, we will give the
L*-Strichartz estimates on torus and the bilinear estimates. In Section 3, we will

give the trilinear estimates. In Section 4, we will give the proof of the well-posedness
(Theorems 4.4, 4.8).

4.2 Strichartz and bilinear Strichartz estimates

In this section, we introduce some L%-Strichartz estimates on torus proved in [5],
[31], [71] and the bilinear estimate proved in [71]. Furthermore, we show the new
bilinear estimate (Proposition 4.16) to obtain Proposition 4.10.

For a dyadic number N > 1, we define Cy as the collection of disjoint cubes
C C Z% of side-length N with arbitrary center and orientation. Furthermore for
dyadic numbers N > 1 and M > 1, we define Ry (N) as the collection of all sets of
the form

(& + [-N. NJ) n{e € 2 Ja- & — A| < M}
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with some & € Z%, a € R?, |a| =1 and A € R.

Proposition 4.11 ([5], [31], [71]). Let 0 € R, m € Z\{0}.
(i) For any dyadic number N > 1 and s > 0ifd=1, s > d/4—1/2 ifd = 2, 3,
s>d/4—1/2 if d > 4, we have

1Pxe™ 20| a0 x1e) S NI Prgl|L2ray.- (4.5)
(ii) For any C € Cy with N > 1 and s > 0 ifd =1, s > d/4—1/2 if d = 2, 3,
s>d/4—1/2 if d > 4, we have

||P0€it0A90||L4(1r‘m/o‘de) S N Pewl| 2 ray- (4.6)
(iii) For any R € Ry (N) with N > M > 1 and s >0ifd =1, s > d/4—1/2 if
d=2,3,4,s>d/4—1/2ifd > 5, we have

5
1P sy S N (57 ) Pl (@7)
for some § > 0.
Remark 4.12. Implicit constants in the estimates (4.5)-(4.7) depend on m and o.
By Propositions 2.8 and 4.11, we have following;:

Corollary 4.13. Letc e R, m € Z\{0} and s >0 ifd =1, s > d/4—1/2 if d = 2,
3,s>d/4—1/2ifd> 4. For any dyadic number N > 1 and C € Cx, we have

[Pyullzacr,,, o xre) S N[ Pyvullvs, 12, (4.8)
HPCUHL4(T|m/U‘><Td) 5 NSHPCuHUgALQ' (49)
Proposition 4.14 ([71] Proposition 4.2). Let s >0 ifd=1, s > s. (=d/2 — 1) if

d=2,3,4,8>s.ifd>5 and o1, 09 € R\{0} satisfy o1/02 = mq/msy for some my,
me € Z\{0}. For any dyadic numbers H and L with H > L > 1, we have

L 1

5
||PHU1 : PLu2||L2('ﬂ‘|U_1‘><’J1‘d) 5 L (ﬁ + Z) ||PHU1||Y£1 ||PLU2||YC,02 (4-10)

for some 6 > 0, where 0 := g1/my = g9/ M.

Remark 4.15. Wang proved (4.10) only for d > 5. To obtain (4.10) for 1 < d < 4,
we choose p = q =4 and use (4.7) as above in the proof of [[71] Proposition 4.2] for
k=1, n>5. The other parts are the same way.
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We get the following bilinear estimate.

Proposition 4.16. Let s > 0ifd=1, s > s. (=d/2—1) if d = 2,3,4, s > s. if
d > 5 and oy, 09 € R\{0} satisfy o1 + 09 # 0 and o1/09 = my/my for some my,
ms € Z\{0}. For any dyadic numbers L, H, H" with H ~ H' > L > 1, we have

L N Pyl [1Pasllys, (411)
o HUL YR [FH U2]|Yg, .

|PL(Pruy - Prrug)||r2cr, g sy S L° (
for some 6 > 0, where o := g1/my = g9/ M.
Proof. We decompose Pyu; = chec,; Pc, Pyuy. For fixed C) € Cyp, let & be the
center of (. Since & € C} and |& + &| < 2L imply |& + &| < 3L, we obtain

|PL(Foy Py - Prous)|[r2er s xray < |[Poy Prus - Poyon Prrusll 2, xra),
where Co(Cy) := {& € Z9| |& + &| < 3L}. If we prove

|| Py, Prug - PCQ(Cl)PH/u2HL2('J1“U_1‘><'Jl‘d)

L 1\’ (4.12)
S L (F + Z) | Poy Prwallvz 2| Poson Prrdallvz o2,

then we obtain

||PL(PHU1 . PH’UZ)HL2(T|U_1‘><T”[)

(L 1\’
§CZC L <F+Z> 1oy Prwallvz |, 2 || Poy(on Prruallvz |, 2
1€Cr

1/2 12
(L 1\’ , 2
S L <ﬁ+Z) (Z ||P01PHU1||V31AL2> (Z ||P02(CI)PH’“2||V32AL2)

C1€eCy, CreCr,

and the proof is complete by (4.3). The estimate (4.12) follows by interpolation

between
|| P, Prruy - PC2(Cl)PH/u2"LQ(T‘U,”XTCZ) (4.13)
S LSHPCIPHulHU;llALQ"PCQ(Cl)PH’u2|‘U;‘2AL2 |
and
|| Poy Prua - Poy(on) Prrval| 2, <)
I 1 (4.14)

6/
5 I <E + z) ||P01PHU1||U31AL2||P02(CI)PH/U2||U§2AL2
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via Proposition 2.9. The estimate (4.13) is proved by the Cauchy-Schwartz inequal-
ity and (4.9). While the estimate (4.14) follows from the estimate

|1 Pe, Prr (€7 1) - Pey(cyyPrr (€™ d2)lrar,_y <o)
< IS (£ -+ 1)6 HPC PH¢1HL2(Td)HPC (« )PH’QSZHLQ('JN)- <4.15)
~ H L 1 2 1
and Proposition 2.8.
Now, we prove the estimate (4.15). Put u; = ¢9i®¢; (j = 1,2). We note
that ujus is periodic function with period 2w|o~!| with respect to ¢ since o1/0y =
my1/my € Q. We partition C) = UpR; and Cy(Ch) = U;Rs; into almost disjoint

strips as
Ryp = {& € Chf&1 - o € [|€o|ME, [€o| M (K + )]}, k~ H/M,
Ry =A{& € Co(Ch)[&2 - So € [—[&|M (I + 1), —|&o| M}, I~ H/M,

where M = max{L?/H,1}. The condition for k and [ as above follows from || ~
H > L. To obtain the almost orthogonality for the summation

Pe, Prruy - PCQ(Cl)PH’UZ = Z Z PRMPHUl ’ PR2,lPH/u27
Eool

we use the argument in [[31] Proposition 3.5]. Since L? < M?k ~ M?[, we have

£ 2 _ L2
& ]* = ’61‘50‘%’ + & — &l - & !53012 SF _ MK + O(M?k)
and
|€2|2: ‘52’6 TQOP +|§2+§0|2_ ‘(62 —i_|€€0|150|2 :M2l2+O(M2k)
0 0

for any & € Ry and & € Ry;. More precisely, there exist the constants A; ,A; > 0
which do not depend on k and [, such that & € Ry and & € Ry, satisfy

M2E? < |6 < MPK? + AL Mk, M2 < |&)* < MP1% + Ay MPE.
Furthermore, o1k? + 051% # 0 because
o[ ]* + 02l f*] = (01 + 02)|&1[* = 0a(&1 — &) - (&1 + &) | ~ H?.

Therefore, the expression Pg, , Pguy - Pr,,Prrug are localized at time frequency
M?(o1k* + 03l*) + O(M?k). This implies the almost orthogonality:

[[Pey Prr Poy(cn) Partal[fagr,_, roy S Y [1Pr, Prris- Pry, Pl G, ey
k l
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By the Cauchy-Schwartz inequality and (4.7), we have
|Pr, , Prus - Pry, Prrusllpzer _y x1e) S |IPry o Pruallpaer s xro)l| Pry, Prrvallpac <)

MmN
S L (f) 1 Pry s Prn| 2w | P, Prodol| 2 va)

for some ¢ >0 and any s >0ifd=1,s > s.if d =2, 3,4 and s > s.if d > 5 since
Rix € Ry(L), Ryy € Ry(3L). Therefore, we obtain (4.15) by the L?-orthogonality
and M < L[?/H + 1. O

Remark 4.17. Proposition 4.10 is implied from Propositions 4.14 and 4.16.

To deal with large data at the scaling subcritical regularity, we show the follow-

ing.

Proposition 4.18. Let d > 1, s > 5o := max{s.,0} and o1, 0o € R\{0} satisfy
o1+ 09 # 0 and 01/09 = my/ms for some my, mg € Z\{0}. For any dyadic numbers
Ny, Noy, N3 > 1 and 0 < T < 27|o™!|, we have

|| Py (Pyun - Pyua)|| 22 0,7y 1)
(4.16)

<7eng,, ((Dwin 1 6 P P
~ min Nmax+Nmin H NluluYé’lH N2u2HYc92

for some § > 0 and € > 0, where o := 01/my = 03/Ma, Npax = max Nj, Nuyin =
1<5<

min N;.
1<5<3

Proof. We first prove the case N; ~ Ny > N3. By Corollary 4.1 in [71], we have
| Poullzecr, -y xre) S wa{d/z_(dJrz)/p’a}||PCU||U§1_AL2 (i=1,2)

for any p > 4, a > 0 and C € Cy with N > 1. Therefore, for any ¢’ > 0, there
exists € > 0 such that

||PCU||L4([O,T)><'J1‘d) 5 ||1||L2/6'([0,T)><11‘d)||PCU||L4/(1*25'>(T‘U_1|><’11'd)

) , (4.17)
< T /2 \so/2+e ||PCU||U4_AL2 (1=1,2)

for any 0 < T' < 27|o ™| since U2\ L? — U?, L? for p > 4. For the L.H.S of (4.13)
with H = Ny, H' = Ny, L = N3, we use (4.17) with ¢/ = (s — s0)/2, then we have

1Py Prvy s - Pey(cn) Py tia] |22 (0,r)<me) (4.18)
< TE/N3S||P()1PN1U1||U§1AL2||PC'2(01)PN2u2||U§2AL2‘
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While by (4.14) with H = Ny, H' = Ny, L = N3, we have

||P01PN1U1 ’ PCQ(C1)PN2u2||L2([0,T)><’]I‘d)

1

Ny ’
SN <F1 T Fg) ||P01PN1U1||U§1AL2||P02(01)PN2u2||U32AL2

(4.19)

for any s > s, 0 < T < 27|o~!| and some ¢’ > 0. By interpolation between (4.18)
and (4.19) via Proposition 2.9, we obtain

||PC1PN1u1 ’ PCQ(Cl)PN2U2||L2([0,T)><’]I"1)

Ns 1

s
S TNy (E + E) ||P01PN1U1||U31AL2||P02(01)PN2“2||U32AL2

(4.20)

for some § > 0 and € > 0. Therefore, we have (4.16) by the same argument of the
proof of Proposition 4.16.

For the case N; ~ N3 2 N,, we also obtain (4.16) by using above argument in
the proof of [[71] Proposition 4.2]. O

4.3 Trilinear estimates

In this section, we give the trilinear estimates. We recall the modulation estimate

given in Chapter 3 (see Lemma 4.19).

Lemma 4.19. Letd € N. We assume that o1, 09, 03 € R\{0} satisfy o10203(1/01+
1/0-2 + 1/03) > 0 and (717§1>z (T27£2)7 (7—3753) € R x Rd Satisfy T + To + Ty = O;
&+ &+ & =0. Then we have

. e 121 > 12
112;3%‘7]"“7]’5” ’Nflgl?%lfﬂ .

Proposition 4.20. Let s > 0 ifd =1, s > s. (=d/2—1) if d = 2,3,4, s > s
if d > 5 and o1, 09, 03 € R\{0} satisfy o10903(1/01 + 1/o9 + 1/03) > 0 and
01/09 = my/mg, 03/03 = my/ms for some my, my, ms € Z\{0}. For 0 < T <
2rlo~!|, any dyadic numbers Ny, N, N3 > 1 and Py,u; € VC,Q],L2 (j =1,2,3) with
maxi<;<s |§;| # 0 for & € supp u/j(t\), we have

T 3
Nmax P - ] d dt
AL@MQI

N 1 6 3
S M (e ) THevulhg, a2

j=1
for some § > 0, where o := o1/m; = 02/my = 03/M3, Npax = max N;, Ny, =
1<j<3
min N;.
1<5<3
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Proof. We define u;p := lpnu; (j = 1,2,3). Furthermore for sufﬁciently large
constant C, we put M := C~'N2_ and decompose Id = Q7, S+ Q% (j =1,2,3).

max

We divide the integrals on the left-hand side of (4.21) into eight piece of the form

//W(

with QJJ € {Q>M, (j = 1,2,3). By the Plancherel’s theorem, we have

(4.22) — / S [[FQ Pyusal(.6).

A0 ¢ ey +e3=0 =1

Q?jAPNjU%T) dxdt (422)
1

Jj=

where ¢ is a constant. Therefore, Lemma 4.19 and max;<;<3|{;| # 0 imply that

//Td (HQ PNuJT> dwdt = 0.

j=1

So, let us now consider the case that Qaj = > ‘v 2 for some 1 <j<3.

o3 __

We consider only for the case ()5 Q"SA since the other cases are similar. By

the Cauchy-Schwartz inequality, we have

T8 Py (QgQAPNz?LQ)(Qg@PNwS)dxdt

Rd

S ||P Q72 Pyyuy - Q3 PN2U2)||L2(T ,1|xrd)||Q>A%PN3U3||L2(r L1 xT4)

since Py, = Py, Py,, where Py, = Py, /2 + Py, + Pan,. Furthermore by (4.4) and
(2.2), we have

HﬁN3< TlAPNrul ’ QS2APN2U2>"LQ(T\rHXTd)

Ny 1\’
min
S Nin (m + Nmin> [P, ua l[yp, || Ptz v, -

While by (2.1) with p =2, M ~ N2, and Y — V2 L? we have
QT Pryusllraer, s xrey S [|QF o Ps s 2 rty S Nl [ Prsus [y -

]

By using (4.16) instead of (4.4) in the proof of Proposition 4.20, we get following.
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Proposition 4.21. Let d > 1, s > max{s.,0} and o1, 09, 05 € R\{0} satisfy
010203(1 /o1 +1/oy+1/03) > 0 and 01/09 = my/ms, 02/03 = ma/ms for some my,
may, ms € Z\{0}. For 0 < T < 2x|o~!|, any dyadic numbers Ny, Ny, N3 > 1 and

—

Py,u; € VUQJ_L2 (7 =1,2,3) with maxy<;<3 |£;| # 0 for & € suppu,(t), we have

T 3
Nmax/ / HPN]UJ dxdt
0 Td

=1

€ NTS Nmin 1 g
STNmin (m+ Nmin) -:1||PNjuj||Y£j

for some 6 > 0 and € > 0, where 0 := 01/my = 02/Mmy = 03/m3, Nyax = max Nj,
1<5<3

Npin = min Nj.
1<j<3

4.4 Proof of the well-posedness

In this section, we prove Theorems 4.4, 4.8. First, we give the duality for the spaces
Z5([0,7)) and Y, *([0,T)) as follows.

Proposition 4.22 ([31] Proposition 2.10). For f € Li (R; L*(T%)) and o € R\{0},

loc

we define t
I, — i(t—t')oA Nt
A0 = [ 072 pea
fort > 0 and 1,[f](t) = 0 fort < 0. Then for s > 0, T > 0, 0 € R\{0} and
f e LY[0,T); H5(TY)), we have I,[f] € Z5([0,T)) and

|6 [f]]

zs([0,1) = sup
veY;([0,T))

/oT A $)Wdt’ .

Jlolly —o=1

Next, we define the map

®(u,v,w) = (L), (w,v), @Y} (@,v), 22, (u,7))

Y,Wo

as
B0 (f.g)(t) == 73 — ID(f. g)(8),
P (f.9)(t) == "o+ I (f,9)(t),
where
19(f,g)(t) = / Loy ()73 ( - (1)) gt
19(£,9)(t) == / Loy (F)EE BT (F(1) - (1))
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To obtain the well-posedness of (4.1), we prove that ® is a contraction map on a
closed subset of Z5([0,7')) x Z5([0,T)) x Z3([0,T)). We consider only for small data
since for large data at the scaling subcritical regularity is similar argument. Key

estimates are the followings:

Proposition 4.23. We assume that s > 0ifd=1,s> s. (=d/2—1) ifd = 2,3,4,

s> scifd>5 and a, B, v € R\{0} satisfy afy(1/a— 1/ —1/v) > 0 and o/,
B/v € Q. Then for any 0 < T < 1, such that

HIS)(’LUWNZS([OT) #([0,) nlvlly Y5([0.7))> (4.23)
1) /—

Hfé)(w,u)| Z5([0,7)) OT’ 5([0,T)) (4.24)

12w, 9) 2507 S HU||Y;<[0,T))|\UHY5([0,T)>- (4.25)

Proof. We prove only (4.25) since (4.23) and (4.24) are proved by the same way.
Let (uq,u) := (u,v) and (01,09, 03) := (a, =, —7). Since oy /09, 02/03 € Q, there
exist my, mo, mg € Z\{0} such that o;/09 = my/ms, 02/03 = my/m3. We choose

T > 0 satisfying T' < 27|o~t|, where ¢ := o1 /m; = g9/mg = 03/m3. We define
Sj = {(NlaNQaN3)|Nmax ~ med < Nmm 2 1 len — N} (] — 1 2 3)

and S = U§:1 S;, where (Nmax, Nimed, Nmin) be one of the permutation of (N1, N3, N3)
such that Npax > Nmed = Nuim- By Proposition 4.22; the Plancherel’s theorem
,(4.21), we have

HI_JS (w1, us) ’ sup urug(V - ug da:dt’
z:,,([0,T)) ||u3\| e Td
< sup Z Ng/ / PN1U1PN2u2pN3U3d{Edt‘
[fusly 5= S Td
< s SN (R ) HHPN sl
[Jus]]| voso1 S max mln
73
since

urug(V - Ug)dl'dt‘ =
Td

65



—

if max;<;<3|€;| = 0 for &; € suppu;(t). Furthermore, we have

Z mln( i >H||PNUJ||YO

maX mln
1 é
Yy Y NSNS(N ) 1Pwallg 1Pl 1Pl
No N3~Noy N1<N2

< ]

Yg U2|Y;2 U3||YU—35

and

Z mm( i ) HHPNU“]HYO

maX nlln
1 )
Y YT A (ﬁ+ﬁ) | Pruanll, [ Pl | Pl
N1 No~Np N3<N2

< [

Yg, us| Y, Us”yags
by the Cauchy-Schwartz inequality for the dyadic sum. By the same way as the

estimate for the summation of S;, we have

s 3
1
Z min ( min Nmin) H ||PNjUjHY(9]- S HU1|

Yy U] Yy, U3||Y;;'
Hlax ]:1
Therefore, we obtain (4.25) since [[u1ly; = |[ully; and [Jus|ly; = [|v]]y;. O
Proof of Theorem 4.4. For r > 0, we define
X5(1) = {(u,v,w) e X*(I) o lollzgeoys lwllzsy < Qr} (4.26)

which is a closed subset of X*(I). Let s > 0ifd=1,s > s. (=d/2—1)ifd = 2,3,4,
s > s.ifd > 5, (ug, vo, wo) € B, (H*(T?) x H*(T?) x H*(T¢)) be given and o be given
in the proof of Proposition 4.23. For 0 < T' < 27|o~!| and (u, v, w) € X:([0,T]), we

have

||q)auo(w7v)| zs(o,r)) < ||uollms + Cllw] 25 +(0.7) ) < r(1+4Cr),
H(I)/avo(w, u) s(0.7)) = |[vol |#rs s(om)) < r(144Cr),
H(I)'ywo(u7 v) s(0,1) S [lwol |+ 5(10,7)) HU s(0.7) = r(144Cr)

and

@50, (wr, v1) = @, (w2, v)l| 25 (0,ry) < 2CT <||w1 = wa|z5 o,y + llor = U2Hzg<[o,T>>) )

2(00, T)))

Z( OT))>

@4, (@1, ur) — © ) (@2, ua)l| 25079y < 207 (w1 — wal|zs g0,y + [

zs(o,my) < 20T (||U1

||(I)'y w()(ulﬂv_l) - (I)g,zm)(u%v_?H 5([0,T7)) + ||Ul - U2|
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by Proposition 4.23 and

iotA

zz (o) < Lo 2 l|z: < Il ms,

1]

where C' is an implicit constant in (4.23)—(4.25). Therefore if we choose r satisfying
r < (4C)7

then @ is a contraction map on X?([0,77)). This implies the existence of the solu-
tion of the system (4.1) and the uniqueness in the ball X?([0,00)). The Lipschitz

continuously of the flow map is also proved by similar argument. O

Theorem 4.8 is proved by using the estimate (4.23) for (a, 8,v) = (—1,1,1).
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Chapter 5

Nonlinear Schrodinger equations

with a derivative nonlinearity

5.1 Review for results

We consider the Cauchy problem of the nonlinear Schrodinger equations:
(10, + A)u = O (@™), (t,z) € (0,00) x R?

u(0,2) = up(z), z€R?

(5.1)

where m € N, m > 2,1 < k < d, 0y = 0/0zx) and the unknown function u is

C-valued. (5.1) is invariant under the following scaling transformation:
up(t,z) = XV Dy (A2 A ),

and the scaling critical regularity is s, = d/2—1/(m —1). The aim of this chapter is
to prove the well-posedness and the scattering for the solution of (5.1) in the scaling
critical Sobolev space.

First, we introduce some known results for related problems. The nonlinear term
in (5.1) contains a derivative. A derivative loss arising from the nonlinearity makes
the problem difficult. In fact, Mizohata ([55]) proved that a necessary condition for
the L? well-posedness of the problem:

i0u — Au = by(z) - Vu, t e R, z € RY,
u(0,7) = up(z), r € R?
is the uniform bound

sup
z€R® weSi—1 R>0

R
Re/ bi(x + rw) - wdr| < oco.
0
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Furthermore, Christ ([9]) proved that the flow map of the Cauchy problem:

i0u — O*u = udu, t €R, x € R,
(5.2)
u(0,2) = up(x), r € R

is not continuous on H*(R) for any s € R. While, Ozawa ([60]) proved that the
local well-posedness of (5.2) in the space of all function ¢ € H'(R) satisfying the

[.e

Furthermore, he proved that if the initial data ¢ satisfies some condition, then the

bounded condition

sup < 00.

zeR

local solution can be extend globally in time and the solution scatters. For the

Cauchy problem of the one dimensional derivative Schrodinger equation:

i0pu + 0*u = i\, ([u]*u), t €R, z € R, (5.3)
u(0,z) = up(x), z € R, '

Takaoka ([66]) proved the local well-posedness in H*(R) for s > 1/2 by using the
gauge transform. This result was extended to global well-posedness ([16], [17], [54],
[67]). While, ill-posedness of (5.3) was obtained for s < 1/2 ([3], [67]). Hao ([27])
considered the Cauchy problem:

i0wu — O%u + iN|u|*0u, t € R, z € R,
u(0,z) = up(x), v € R
for k > 5 and obtained local well-posedness in H'/2(R). For more general problem:
i0u — Au = P(u,u, Vu,Vu), t € R, € RY

u(0,7) = up(z), v € RY, (5.4)

P is a polynomial which has no constant and linear terms,

there are many positive results for the well-posedness in the weighted Sobolev space
([1], [2], [7], [8], [48], [65]). Kenig, Ponce and Vega ([48]) also obtained that (5.4)
is locally well-posed in H*(R?) (without weight) for large enough s when P has no
quadratic terms.

The Benjamin—-Ono equation:
O+ HO*u = udyu, (t,r) € R xR (5.5)
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is also related to the quadratic derivative nonlinear Schrodinger equation. It is
known that the flow map of (5.5) is not uniformly continuous on H*(R) for s > 0
([51]). But the Benjamin—Ono equation has better structure than the equation (5.2).
Actually, Tao ([68]) proved that (5.5) is globally well-posed in H'(R) by using the
gauge transform. Furthermore, Ionescu and Kenig ([37]) proved that (5.5) is globally
well-posed in H?(R) for s > 0, where H?(R) is the Banach space of the all real valued
function f € H*(R).

Next, we introduce some known results for (5.1). Griinrock ([23]) proved that
(5.1) is locally well-posed in L*(R) when d = 1, m = 2 and in H*(R?) for s > s,
when d > 1, m +d > 4. We proved that (5.1) with d > 2, m = 2 is globally
well-posed for small data in H* (R?) (also in H%(R?)) and the solution scatters in
Chapter 3. The results are an extension of the results by Griinrock ([23]) for d > 2,
m = 2. The main results in this chapter are an extension of the results by Griinrock
([23]) for d > 1, m > 3.

Now, we give the main results in the present chapter. To begin with, we define

the function spaces to construct the solution.

Definition 5.1. Let s € R.
(i) We define Z* := {u € C(R; H*(R%)) N UZL?| ||ul

4s < 00} with the norm

1/2

N

||l

(ii) We define Z* := {u € C(R; H*(R%)) N UZ L?| ||u]

zs < 00} with the norm

[lullzs == [lull zo + lull 2.

(iii) We define Y° := {u € C(R; H*(R%)) N VZL?| ||u||y. < oo} with the norm

1/2
ys = (Z NQSHPN“H%/gm) :

N

[l

(iv) We define Y* := {u € C(R; H*(R%)) N VZL?| ||ul

ys < 0o} with the norm
[lullys = lfullyo +[lully..

Remark 5.2 ([25] Remark 2.23). Let E be a Banach space of continuous functions
f R — H, for some Hilbert space H. We also consider the corresponding restriction

space to the interval I C R by
E(I)={ueC(I,H)|Fv € E s.t. v(t) = u(t), t € I}
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endowed with the norm ||ul|gy = inf{||v||g|v(t) = u(t), t € I}. Obviously, E(I) is

also a Banach space.
Our results are followings.

Theorem 5.3. Letd > 1, m >3 and s, =d/2—1/(m —1).
(i) The equation (5.1) is globally well-posed for small data in H*(R?). More pre-
cisely, there exists v > 0 such that for all initial data ug € B,(H*(R%)), there exists

a solution

u € Z5(]0,00)) C C([0, 00); H* (R%))

of (5.1) on (0,00). Such solution is unique in Z*(]0,00)) which is a closed subset
of Z°¢(]0,00)) (see (5.19)). Moreover, the flow map

Sy By(H*(RY) 3 ug — u € Z°(]0, 00))

18 Lipschitz continuous.
(ii) The statement in (i) remains valid if we replace the space H*(R%), Z*([0, 00))
and Z5([0,00)) by H*(RY), Z*([0,00)) and Z5([0,00)) for s > s,.

Remark 5.4. Due to the time reversibility of the system (5.1), the above theorems
also hold in corresponding intervals (—oo0,0). We denote the flow map with t €
(—00,0) by S_.

Corollary 5.5. Letd>1, m>3 and s. =d/2—1/(m —1).
(i) Let 7 > 0 be as in Theorem 5.3. For every uy € B,(H*(R?)), there ezists
Ut € Hse such that

So(ug) — €™ uy — 0 in H5<(R?) as t — o0,

(ii) The statement in (1) remains valid if we replace the space H(R%) by H*(R?)

for s > s..

The main tools of our results are U? space and V? space which are applied to
prove the well-posedness and the scattering for KP-II equation at the scaling critical
regularity by Hadac, Herr and Koch ([25], [26]).

The rest of this chapter is planned as follows. In Section 2, we will give the mul-
tilinear estimates which are main estimates in this chapter. In Section 3, we will give

the proof of the well-posedness and the scattering (Theorems 5.3 and Corollary 5.5).
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5.2 Strichartz and multilinear estimates

In this section, we give the Strichartz estimate and prove multilinear estimates which
will be used to prove the well-posedness. First, we recall the Strichartz estimate

given in Chapter 3 (see Proposition 3.12, Corollary 3.13).

Proposition 5.6 (Strichartz estimate). Let (p, q) be an admissible pair of exponents
for the Schrodinger equation, i.e. 2 < q < 2d/(d—2) (2 < ¢ < o0 if d = 2,
2<q¢<o0ifd=1),2/p=d(1/2—1/q). Then, we have

le®@llores S llellez

for any ¢ € L*(R?).

Corollary 5.7. Let (p,q) be an admissible pair of exponents for the Schridinger
equation, i.e. 2 < q<2d/(d—2) 2<q¢g<xifd=2,2<qg<o0ifd=1),
2/p=d(1/2—1/q). Then, we have

lullzprs S Nulloy, we URL (5.6)
Next, we prove the multilinear estimate as follows.

Lemma 5.8. Letd > 1, m>2, s, =d/2—1/(m—1) and b > 1/2. For any dyadic
numbers Ny > Ny > --- > N,,, we have

m m Nj 1/2(m—1)
1 Pvul| S lPvwllxes [] <ﬁ> N[ | Py, usl| xoe, (5.7)
=1 7, = N

where [[ul|xos = [[{T + [¢[*)"l] 2,

Proof. For the case d = 2 and m = 2, the estimate (5.7) is proved by Colliander,
Delort, Kenig, and Staffilani ([15] Lemma 1). The proof for general case as following
is similar to their argument.

We put g;(7;.&) == (1 + |2 Pr,us(75.&) (7 = 1+ ,m) and Ay = {€ €
RYN/2 < |€] < 2N} for a dyadic number N. By the Plancherel’s theorem and the

duality argument, it is enough to prove the estimate

. - . 9i(7,&))
= /n (ZT]’Z@) [ g ppdedn

J=1

N] 1/2(m 1) m
< H(E) 37 ) I sl

=2
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for gy € Lﬁf, where &, = (&1, ,&n), T« = (11, -+ ,Tm). We change the variables
Tor> 0= (01, ,0p) as b, =7, + &2 (j=1,--- ,m) and put

m

Go(0.,€.) == go (Z —lg?) Z@) ,

7=1

Then, we have

G;(05,&5) == g;(0; ’&‘2 &) =1, ,m).
S|
i< (H W) (/HM

df*) do
W ] V2
1 <9j>b> ( /. !Go(9*75*>|2d£*> IT16; .

by the Cauchy-Schwartz inequality. For 1 < k < d, we put

m

Go(6-. &) [ 1 G165,

=1

At = {a =", g eRY N2 <[] < 2Ny, €] > Ni/(2vad))
and

I(0.) = (/ — |G0(9*7§*)’2d5*>-

We consider only the estimate for J;. The estimates for other J, are obtained by

the same way.

Assume d > 2. By changing the variables (£, &) = ( %1), s %d), él), e ,féd)) >
(1, v,m) as
p=220000— 1§17 € R,
v=3" &R (5.8)
n=(&".6") eR,
we have
dpdvdy = 21¢1" — &) d61dé,
and

GO(Q*a f*) = gO(:ua V)'
We note that |§§1) - fél)| ~ Ny for any (&,&) € Ay, x Ay, with Ny > N,
Furthermore, & € Ay, implies that n € [—2N,, 2N,]47L. Therefore, we obtain

1
D) 5 / ( / / / 90 (1, u>|2ﬁdudvdn) dy -+ - d&m
[T/ 5 An; [~2N2,2N,]4-1 JRe JR 1

N NNV
2 < C e
(HN ) ool (H (¥) ~ ol

=2
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since Np > Nj for 3 < j < m. As a result, we have

m d /2 .,
= / n <.H ﬁ) (Z W*)) ]HlHGj(@j,-)HLgde*

j=1 k=1
m N] 1/2(m—1) m
(%) ) sl
j=2 Jj=0
by the Cauchy-Schwartz inequality and changing the variables 6, — 7. as 0; =
T+ 1§17 (=1, m).

For d = 1, we obtain the same result by changing the variables (&1, &) — (i, v)
as =1 (0; — [§51%), v = 2201, & instead of (5.8). O
Corollary 5.9. Let m > 2, m+d >4 and s, = d/2 —1/(m — 1). For any dyadic
numbers Ny > Ny > --- > N,,, and 0 < 0 < 1/2(m — 1), we have

m m N. 1/2(m—1)

Trvo| shevolaIT(3)  Slesullze 69
7=1 2 j=2

. tx . N 6

[TrPvo||  sipvale IT(F) M lPswligee (5.10)
=1 12 =2

Proof. To obtain (5.9), we use the argument of the proof of Corollary 2.21 (27) in
[25]. Let ¢y, -+, ¢ € L2(RY) and define ¢]A(x) =¢;j(A\x) (j=1,--- ,m) for A € R.
By using the rescaling (¢, z) — (A%, Az), we have

m

H Py, <€itA¢j)

Jj=1

m

H P/\Nj (eitA(b;\)

Jj=1

— )\d/2+1

L2([-T,T]xR%) L2([-A—2T,A—2T|xR9)

Therefore by putting A = v/T and (5.7), we have

m

H PNj (eitA¢j)

j=1

L2([~T,T]xRd)

m 1/2(m—1)
d/2 N; s
VTP () 31wl

Jj=2

m N. 1/2(m—1)
— ||PN1Q51||L3 H (Fi) N;c

=2

Pn; ;2.

Let T"— oo, then we obtain

m

H PNj (eitAqu)

Jj=1

m

N\ Y2
SPwdillez [] (_> N

LW,
1 =

Pr; 9|2
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and (5.9) follows from proposition 2.8.

To obtain (5.10), we first prove the U?™ estimate. By the Cauchy-Schwartz
inequality, the Sobolev embedding W se-2md/(md=2)(Rd) . [m(m=1d(R4) (which holds
when m > 2, m+d > 4) and (5.6), we have

m m
H PNJ' Uj rg | |PN1U’1 | |L$mLimd/(md—2) H N;c | |PNJU’] | |L?mLimd/(md—2)
j=1 L2, 7j=2
i - (5.11)
S 1Pavurllygm e H N || Pr;ul|ygm g
j=2
for any dyadic numbers Ny, ---, N,, € 2. We use the interpolation between (5.9)

and (5.11) via Proposition 2.9. Then, we get (5.10) by the same argument of the
proof of Corollary 2.21 (28) in [25]. O

Lemma 5.10. We assume that (19,&), (171,&1), *++, (Tm,&m) € R x R? satisfy
Z;l:o 7; =0 and Z;'l:o ¢ = 0. Then, we have

‘ 12 > |2
Jax |7+ |§17] = —— max [§[". (5.12)
Proof. By the triangle inequality, we obtain (5.12). [

The following propositions will be used to prove the key estimate for the well-

posedness in the next section.

Proposition 5.11. Letd > 1, m >3, s.=d/2—1/(m—1) and 0 < T < oo. For
a dyadic number Ny € 27, we define the set S(Ny) as

S(Nl) = {(N27 7Nm) S <2Z)m_1|N1 > N2 Z Z Nm}

If Ny ~ Ny, then we have

T m
Z / / (NOHPNJ‘U]') dxdt
S(ny) /0 /R j=0

m
N ‘|PNou0‘|V§L2||PN1UI||VA2L2 H Ji
=2

Proof. We define u; n, 7 == LjomPy,u; (j =1,--- ,m) and put M := N§/4(m + 1).
We decompose Id = QﬁM + QgM. We divide the integrals on the left-hand side of
(5.13) into 2™ piece of the form

m A
/R/Rd (N()HQ] u],Nj,T> dxdt (514)

Jj=0

(5.13)

Voe-
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with QF € {Q2,,Q2y} (= m). By the Plancherel’s theorem, we have

(5.14) —c/

where c is a constant. Therefore, Lemma 5.10 implies that

/ /Rd (NO H Q2N ,T) dxdt = 0.

7=0

/ FIQRus )76

] =0Tj= J &=

So, let us now consider the case that Q]-A = QéM for some 0 < 7 < m.
First, we consider the case Q3 = éM. By the Cauchy-Schwartz inequality, we

have

Z// <N0Q§MU0,NO,THQ]~AU]‘,N]-,T> dzdt
S(ny) R /R =1

<> NollQS ooz,
S(N1)

Lt,
Furthermore by (2.1) with p = 2 and M ~ N2, we have
QS vrwo.no. 7122, S N Huo.norllvre-

While by (5.10), (2.2) and the Cauchy-Schwartz inequality for the dyadic sum, we

have
m
S T @] Motz S TT(M) Mol
S(Ny) [17=1 L2, S(N1) j=2
1/2
m
S ||U1,N1,THV§L2H Z N7 |ujn, v %/KLZ
Jj=2 \ N;<MN;
Therefore, we obtain
m
Z // (NOQQMUO,NO,THQij,Nj,T> dxdt
s(vy) VR R j=1
m
N HPNOU’OHVAQLQHPN1u1||VA2L2 H J
j=2
since |[Loryullvzre < [[ullyz e for any T € (0, 00]. For the case QY = Q%,, is proved

in same way.

76



Next, we consider the case QkA = éM for some 2 < k < m. By the Holder’s

inequality, we have

m
Z// NOQéMuk,Nk,THQjAuj,Nj,T dxdt
Staw) R =
~ 0 0 O,N(),T L4L2d/(d_1> 1 I,Nl,T L4L2d/(d_1>
S NollQBuo syl 0o QP un il 2

m
A
]2 @ruma

5 (m—1)d j=2 || N;
Like™ gz 1Y

X

A
E QzMuk,Nk,T
Ny

LtooL(zm_l)d

By (5.6), the embedding V2L? — UAL? and (2.2), we have

||Q0AU0,NO,T||L;LL3}/M*1>||Q1AU1,N1,T||L§Lgd/<d71> S fuo,no, 7 |VA2L2||U1,N1,T||VA2L2~

While by the Sobolev embedding H* (R?) — L(™=D4(R%) L? orthogonality and
(2.1) with p = 2, we have

1/2
N <Z N;fScHQéMUk,Nk,TH%gx)
Ny

A
E QzMuk,Nk,T
Ny

L?L(zm_l)d
1/2
-1 2s 2
S No (E N CHuk,NlmTHVKL2>
Ny

since M ~ NZ. Furthermore by the Sobolev embedding H®(RY) — Lm~Dd(R%),
L? orthogonality, VZL?* < L>(R; L?) and (2.2), we have

1/2
> QPuin, T SN Q N 7 e
Nj LtooL;m_l)d Nj
1/2
5 ;Nfsc ijNj,TH%/AQLz
i
As a result, we obtain
m
Z / /d NoQS st N, 1 H QPujn, 1 | dudt
S(ny) VR IR j=0
ik
m
S ||PN0U0||VA2L2||PN1U1||V§L2 H |||y
=2
since |[Ljomyullyzre S |[ullyzre for any T € (0, oc]. O
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Proposition 5.12. Letd>1, m >3, s.=d/2—1/(m—1) and 0 < T < co. For
a dyadic number Ny € 2%, we define the set S.(Nz) as

Su(N2) :={(N3, -+, Np) € (2°)" 2Ny > N3 > -+ > Ny, }.

If Ng < Ny ~ N, then we have

Z / /Rd (NOHPN uj> dxdt

7=0

(5.15)
No
S N

~ |[Prottol[vz el Py vz o No*| | Pry vz 2 H [l le-

Proof. We define u; y, 7 := 1) Py,u; (j = 1,--- ,m) and put M := N7 /4(m +1).
We decompose Id = Q2,, + QéM. We divide the integrals on the left-hand side of
(5.15) into 2™ piece of the form

// (NOHQ N, T) dxdt (5.16)
with QF € {Q2,, @2y} (j =0,--+ ,m). By the Plancherel’s theorem, we have
o) =c [ / [T7Q w0106
Ej 0Ti= J TL08=0
where c is a constant. Therefore, Lemma 5.10 implies that
/ / (NO [TQ%umwx, T) dxdt = 0.
Rd i=0

So, let us now consider the case that Q]-A = QéM for some 0 < 5 < m.

We consider only for the case QF = Q2 since the case Qf = Q%) is similar
argument and the cases Qi = Q2,, (k = 2,--- ,m) are similar to the argument in

the proof of Proposition 5.11. By the Holder’s inequality and we have

Z // (NOQQMUO,NO,THQJ-AUj,Nj,T> dxdt
S.(Ng) /R /RY =1

5 N0| |Q§MU0,N07T| |L%L§Cmfl>d ’ |Q1Au17N1,T‘ |L;1L?Cd/<d*1> HQZAuZNLT‘ ‘LzlLi_d/(d*U

m

A
X H E Q7 uiN, T
Nj

7j=3 LtOOLgmfl)d
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By the Sobolev embedding H* (R%) < Lm~D4(R%) and (2.1) with p = 2, we have

A A
QS tono.x|| 12 pom-va S Noe||QSaro.no.7 12,
Ll

< Ny N

uo,No,7||v2 L2
since M ~ N? and Ny < N,. While by (5.6), the embedding VZL? < UAL? and
(2.2), we have

QT urn, 7] | pag2ara-n| Q5 ua N, 7| | pagzara-n S |luam rllvzeelluew rllvz e

Furthermore by the Sobolev embedding H®(R%) < Lm=D4(R4), L2 orthogonality,
VRL? — L>*(R; L?) and (2.2), we have

1/2
> QPuin T SO NENQ N 1 e 2
Nj LtooLgcmfl)d Nj
1/2
SN win |2 e
Nj
As a result, we obtain
m
Z / / (NOQéMUO,NO,T H Qf%‘,]\@-,T) dxdt
S.(Np) /R /RY j=1
N m
0
S E||PNou0|’VAQLQHPNlul‘|V§L2N;CI|PN2UJ2HVA2L2 H G
=2
since || 1o, ryullvzre S [|ullvzre for any T € (0, 00]. O

5.3 Proof of the well-posedness and the scattering

In this section, we prove Theorem 5.3 and Corollary 5.5. We define the map ®7, as
Oy, (u)(t) = "o —ilp(u, - u)(t),
where

t m
IT(Ul, oo um)(t> = / 1[0,T) (t/)ei(t_t/)Aak <H Uj (t,)> dt/
0 j=1

To prove the well-posedness of (5.1), we prove that ®7, is a contraction map on a
closed subset of Z*([0,T7]) or Z*([0,T]). Key estimate is the following:
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Proposition 5.13. We assume d > 1, m > 3. Then for s, =d/2 —1/(m — 1) and
any 0 < T < oo, we have

m

[z S T T 1wl
j=1

[ I (uy, - - - U)

Vse - (5.17)

Proof. We show the estimate

m

# S

k=1

[ 7 (ug, - - )|

. (5.18)

yo ][ llus]
j=1
J#k
for s > 0. (5.17) follows from (5.18) with s = s.. We decompose
Ir(uy, - Up) = Z Ir(Pyyuy, - - Py, ).
Nl:"'7N’VVL
By symmetry, it is enough to consider the summation for Ny > --- > N,,. We put
Sl = {(Nb' o 7Nm) € <2Z)m‘N1 > N2 Z e Z Nm}
Sy i={(N1,-++ ,Np) € (2°)"|Ny ~ Ny > -+ > Ny}
and

> Ir(Pyuy, - Pyug)|| (k= 1,2).

I
First, we prove the estimate for J;. By Theorem 2.4 and the Plancherel’s theo-

rem, we have

9 1/2

J, < Z NZ* ||e "2 Py, Z Ir(Pyyua, - P, )

No S1 UQ(R;LQ)

2y 1/2
SoaE Y 3 / / <N0HPN uj> dxdt
No N1~No ||u0HV2L2 sy
Therefore by Proposition 5.11, we have
2y 1/2

Ji S ZNSS Z Sup ||PNOUO||VA2L2||PN1U1||VA2L2H||uj| Yse

No Ni~Np \Ilwollyz r2=1 =2

Vo

/2 ,,
§<ZN128HPN1U1||%/A2L2) T sl
N j=2
m
yo ][Il
j=2

Vee-
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Next, we prove the estimate for J;. By Theorem 2.4 and the Plancherel’s theo-

rem, we have

) 1/2
RS [Nl ry S - Py
N1 Na~Njp No S«(N2) U2(]R'L2)
1/2
— Z Z Z N2 sup Z / / (NOHPN uj> dxdt
N1 No~Np \ No<$Ny ||U0||V2L2 =115, (\2) Rd i
Therefore by Proposition 5.12 and Cauchy-Schwartz inequality for dyadic sum, we
have
o\ 1/2
s [ No se
LSY > D™ <_||PN1U1||V2L2N ||PN2U2||V2L2H||UJ'|YS¢>
N1 Na~Ni \ No<SN: 3
1/2 12 .,
N (Z N128HPJ\71U1H%/§L2> (Z NQQSCHPNQUQH%/AQLQ) TT 11l
Ny Ny j=3
v [T sl
j=2
O

The estimates (5.18) with s = 0 and with s = s, imply the following.

Corollary 5.14. We assume d > 1, m > 3. Then for s > s, (=d/2—1/(m — 1))
and any 0 < T < 0o, we have

||]T(U1’ e Um)| zs S
j=1

Proof of Theorem 5.3. We prove only the homogeneous case. The inhomoge-

neous case is also proved by the same way. For r > 0, we define

2:(1) = {ue 2 | Ilu

sy S 2} (5.19)

which is a closed subset of Z5(I). Let uy € B.(H*(R%)) be given. For u €
Z5(]0,00)), we have

<r(l+2mCrm

Hse + C| |U|

D (w)]

Foe(0,00)) < ||l Z3e([0,00)) =
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and

P70 () = Py (V)]

Zse([0,00)) = C([lul Zse([0,00)) T ||v] ZSc([o,oo)))m_lHU — |

< 4™ Or™H|u — o

Z32([0,00))

Z3¢([0,00))
by Proposition 5.13 and

| | eitA itA

Pll zse (0,00 < 110,006 "0l 720 < [l]] e

where C' is an implicit constant in (5.17). Therefore if we choose r satisfying
r< (4m—1c)—1/(m—1)’

then &7, is a contraction map on Z% ([0, c0)). This implies the existence of the so-
lution of (5.1) and the uniqueness in the ball Z%([0, c0)). The Lipschitz continuously

of the flow map is also proved by similar argument. O]

Proof of Corollary 5.5. We prove only the homogeneous case. The inhomoge-
neous case is also proved by the same way. By Proposition 5.13, the global solution

u € Z%([0,00)) of (5.1) which was constructed in Theorem 5.3 satisfies
Néee "APyTo(u,--- ,u) € VA(R; L?)
for each N € 2%, This implies that
Uy 1= tlirﬁlo(uo — e AT (u, - u)(t))
exists in H*(R%) by Proposition 2.3. (iv). Then we obtain
u—eu, — 0

in H%(R%) as t — oo. O
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Chapter 6

Higher order KdV type equations

6.1 Review for results

We consider the Cauchy problem of the periodic high order KdV type equations;

Opu + (—1)FF192R 1y, 1 %&c(uQ) =0, (t,x)€ (0,00)x T, 6.1)
w(0,2) = up(z), ze€T, |

where £ € N and the unknown function u is real valued. The aim of this paper is
to prove the local well-posedness (LWP for short) of (6.1) with low regularity initial
data.

When k£ = 1, the equation (6.1) is called “KdV equation”. We first introduce
some known results for the KdV equation. In [5], Bourgain introduced a new method
called “Fourier restriction norm method” and proved that the KdV equation is LWP
in L*(T). In [47], Kenig, Ponce and Vega refined a bilinear estimate used in the
Fourier restriction norm method, and proved that the KdV equation is LWP in
H*(T) for s > —1/2. In [18], by using the local well-posedness result and the almost
conservation low, Colliander, Keel, Staffilani, Takaoka and Tao obtained that the
KdV equation is the globally well-posed in H*(T) for s > —1/2. Their method is
called “I-method”. On the other hand, In [10], Christ, Colliander and Tao proved
that the KdV equation is ill-posed. More precisely, the data-to-solution map is not
uniformly continuous on H*(T) for —2 < s < —1/2. LWP of the non-periodic KdV
equation also was studied by many people before Bourgain’s work ([4], [20], [41],
[43], [44]) and after Bourgain’s work ([18], [24], [45], [47], [49], [50], [58], [69)]).

Next, we introduce some known results for the fifth order KdV type equations

O+ adu + BO2u + 0, (u?) =0 (6.2)
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and
Opu — OPu — 30u*0,u + 200, ud?u + 10udu = 0. (6.3)

Especially, (6.2) is called “Kawahara equation”. LWP of these equations are studied
for non-periodic case. For the known results of the non-periodic Kawahara equation
(6.2), see [6], [19], [38], [70] and the non-periodic fifth order KdV equation (6.3), see
[39], [53], [63].

We return to introduce the known result for (6.1) for general k£ € N. Recently in
[22], Gorsky and Himonas have proved that (6.1) is LWP in H*(T) for s > —1/2 by
an argument similar to [47]. The main result in the present paper is an extension of
the result by Gorsky and Himonas.

Finally, we introduce the high order nonlinear dispersive equations related to
(6.1). In [46], Kenig, Ponce and Vega studied the high order nonlinear dispersive
equations

O+ 0y + P(u, Opu, - -+, 0% u) = 0, (6.4)

where P is a polynomial without constant and linear terms. They proved that (6.4)
is LWP in L?(|z|™dx) N H*(R), where s > 0 and m € Z* are sufficiently large. In
[62], Pilod proved that (6.4) with

P(u, Opu, - -+, 0% u) = Z Uy ey OF U020
0<k1+ko<2k

is LWP in H*(R) N H*"**(z%dz) for s € N and s > 2k + 1/4. He also proved some
ill-posed results for (6.4).

Without loss of generality, we can assume that %y(0) = 0 by the following trans-
form:

U u— % Tuo(x)dx.

Therefore, we have only to prove LWP of (6.1) in H*(T), where

-~

H*(T) := {f € H*(T)| (0) = 0},

and 4 is the Fourier transform of u with respect to z. We note that H*(T) is a

Banach space with respect to the norm

[1£]

Hs(T) "= |||§|sf||zg-

Next, we define the Bourgain spaces Z*(A) and Zj y(A), where A is the scale pa-
rameter. We will use the scaling property (6.22) in the proof of Theorem 6.2.
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Definition 6.1. Let A > 1, Ty := R/(27A\)Z and X, be the space of all F' : R x
Ty — R such that F(-,x) € S(R) for all x € Ty, the map x — F(-,z) is C* and
F(7,0) = 0 for all 7 € R, where S(R) is the Schwartz space and F is the Fourier
transform of F with respect to x and t.

(i) For s € R, we define the function space Z*(X\) as the completion of Xy with

respect to the norm

ullzsoy = l[ullxs o + [lullys o,

where

_ §2k+1>1/2|§|5

ullxsn = [[{7 ullzoyzzs [lullysoy = MlIElullizoyrr-

(i) We define the function space Zj () and the norm || - |

Zior(A) = {ulpr lue Z°(N)},

Zio ) 45

lullzg 0 = it {l[ollz=y [0 € Z°(N), v(t) = u(t) on [0,T1}.

We omit to write down “(\)” when A = 1.
The main result in the present paper is the following theorem:

Theorem 6.2. Let k € N. If s > —k/2 then (6.1) is LWP in H*(T). More
particularly, for all v > 1 and uy € B,(H*(T)), there exist T = T(r) > 0 and a
solution u € Zj, 1 N C([0,TT; H*(T)) of (6.1). Such solution u is unique in a closed
subset of Zg . Moreover, the map uo — u from B,(H*(T)) into Z 5y is Lipschitz

continuous.

Remark 6.3. After our work, Kato ([40]) extended the result in Theorem 6.2 for
k=2 to LWP in H*(T) for s > —3/2 and GWP in H*(T) for s > —1.

Bilinear estimate plays an important role to prove LWP of (6.1). Gorsky and

Himonas derived the following bilinear estimate for s > —1/2;

IF (= € 710 (uo)lllze < Cllullz: ]

o (6.5)

But as mentioned in [22], the estimate (6.5) with s < —1/2 has been open problem.

We extend (6.5) to prove Theorem 6.2 and obtain the following bilinear estimate;

Theorem 6.4. Let k € N and A > 1. For s > —k/2, there exist a positive constant
Co and € satisfying 0 < € < 2k + s — 1/2 such that the following bilinear estimate
holds;

1F [ — €410, (o))

2o < CoX||u]

zsl[vllzs ), (6.6)

where Cy does not depend on \.

85



On the other hand, we also obtain negative result for s < —k/2.
Theorem 6.5. Let k € N. For any s < —k/2, the bilinear (6.6) with A =1 fails.

Remark 6.6. By Theorem 6.4 and 6.5, s = —k/2 is optimal reqularity for the
bilinear estimate (6.6). But this does not imply ill-posedness of (6.1) for s < —k/2.

The bilinear estimate (6.12) below with A = 1 can be written
[I[E1 2 (r — €)1 D
S NETH2(r = &) 2l pa[1€72(r — €571 20 e,

where

uxv(r, &) = Z / u(71,1)0(72, &) dm.

T eerte, It
We note that the most difficult region to prove this estimate is |§;| ~ [&] > [€].

Gorsky and Himonas used the estimate

€ — g — M 2 1€Gi &l - €1 (6.7)

to prove (6.5). On the other hand, we use the refined estimate

€241 — &1 ) el macl 8] 6al, [l }4,

which is better estimate than (6.7) in the region |&;]| ~ |&| > |€|. Because of such
reason, we could improve the bilinear estimate.

The rest of this chapter is planned as follows. In Section 2, we will prepare to
prove the bilinear estimate. In Section 3, we will prove the bilinear estimate and give

a counterexample. In Section 4, we will prove the well-posedness (Theorem 6.2).

6.2 Preliminary

In this section, we prepare to prove the bilinear estimate.

Lemma 6.7. Letk € N. Ifp,q,v € R satisfy p+q+r = 0 and p* 1 g%+ 4p2+1 =
0 then at least one of p, q and r is equal to 0.

Proof. We can assume [p| > |¢| > |r| and p > 0, ¢ < 0, r < 0 without loss of

generality. Since
P = (el — (g Zq% I(—p)i = pZ(—l)j(—q)%_j(—r)j
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and

2\ j
we have
qu’é{(% —<—1>J}< @)* 1 =yt =0 (6.9)

While if pgr # 0, then we have
261 ¢ rop
pr (%) - 0 ot 0
j=1

since p > 0, —¢ >0, —r > 0 and

(2;{;) —(=1)7 >0

for 1 < j < 2k — 1. This contradicts the equation (6.8). Therefore we obtain
pgr = 0. O

Nobu Kishimoto pointed out Lemma 6.8 and a proof of it to the author. The

proof of Lemma 6.8 below is simpler than his.

Lemma 6.8. If p,q,r € R\{0} satisfy p+q+r =0 then

2k+1 2k+1 2k+1
++q++r+|N

p Ipgr| max{|pl, |q|, [r|}** 2.

Proof. We can assume |p| > |g| > |r| without loss of generality. By an elementary

calculation, we have

p2k+1 + q2k+1 + 7"2k+1 — p2kz+1 4 q2k+1 . (p 4 q)2k+1

2k
2k +1 i
S ()

j=1
261 / j

2k +1 1 e

= —pq(p+q) Z (Z(_I)Hl( , )>p2k 1=j g1
Jj=1 =1

= pgr - p**Q(B),

where
2%—1

O
j=1

=1



We note that —1 < § < —1/2 and Q(—1) = 2k + 1. Furthermore, we have

‘p2k+1 +q2k+1 +7“2k+1’

Q)| = #0
) [pgr| - [p[**~2
for —1 < f < —1/2 from Lemma 6.7. This implies
inf 0.
L 1Q(B)| >

Therefore, we obtain
[P+ PP 2 = pgr| - [p*1Q(B)] ~ [par| max{|p], lqf, [} O
Lemma 6.9. If [,m,n € Z} satisfy | +m +n =0, then we have
P 2 a2 (6.9)
Proof. We can assume |l| > |m| > |n| without loss of generality. Since

1] < [m[ + [n] < 2[m|

and
nl >
Z 1
we obtain .
| > S ~ a1, 0]}
Therefore, we have (6.9) by Lemma 6.8. O

Lemma 6.10. Let a € R. For any § and § satisfying 0 < §' < 6 < 1, we have
1 1
i< ——
/R (0)(0 +a)' ="~ ()=
where the implicit constant depends only on & and J'.

For the proof of Lemma 6.10, see Lemma 4.2 in [21].

Lemma 6.11. Let A > 1. For any § satisfying 1/m < 0, we have

1
de < Aé(m+1)fl
/Z; ISIZGIE ’

where P(x) is a polynomial of the form
P(z) =) ¢ (6.10)
5=0

with co, -+ ,cm € R, ¢, does not depend on A and the implicit constant depends

only on c,,.
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Proof. Let v, ,vm € C be the roots of the equation
P(xz) =0.

Then we have .

P(&) = cm [ [(€ = ).

j=1
We put

Cj={er;||6—yl <1}, C:=|]Cy D:=Z;\C.

j=1
Since #C; < A, we have

1 1 1 &
/deﬁﬁ/cldfzﬁ#cﬁﬁ;#cjgl-

On the other hand, since
1< [€ =l

for any £ € D and 1 < j < m, we have

[TE= ~TlE=nl<A <A—1H<s —%-)> :

j=1 Jj=1 Jj=1
Therefore, we have

1 1 " 1 1/m
g% S )\5/ <N’ (/ —dﬁ)
| oy S viaenre bl | AV A e

by Holder’s inequality. Since

om

1 1 A
- dn S S )\Jmfl
/D (€ —)m 27\ 2 (€ = Ay;)om

gezx

by 1/m < §, we obtain

1
de < )\(5(m+1)—1.
J, orps =

6.3 Proof of the bilinear estimate

In this section, we give the proofs of Theorem 6.4 and Theorem 6.5.
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Proof of Theorem 6.4.
For s > —k/2, we note that

€0 % D) < JEI7H2 (€472 7] + [+ (6420
< AR | R (€5 K20 4 (€442

by the triangle inequality and A=t < || for all £ € Z3. Thus, we only need to prove
the bilinear estimate (6.6) for the case s = —k/2.
We put

F(r,6) = (1 — N2 1| 78257, €), G(r,€) = (1 — EFNI2)e| K/ 2%5(1, ¢),

then we have

||u||X—’€/2(>\) = ||f||l§(A)L27 ||v||X—’“/2(A) = ||§||zg(A)Lg-
Furthermore, we put

€2k+1 . 2k+1 2k+1
2

S =8—&, =T —T, O =T — ,o1i=T1 =&, 09 =Ty —

9

and divide the set (R x Z3)? into

AO = {(7—7557_1751) S (R X Zi)Q‘M = ‘0‘7 f?é 51}7
A ={(1,¢,11,&) € (R x Z§)2|M = o], £ # &1},
Ay ={(1,&,11,&) € (R x Z;)2|M = |oa|, § # &1},

where M = M(7,&, 711, &) := max{|o|, |o1], |o2|}. Since
M > |0 — 01 — 0g| = |(—€)2H1 4 g2h+1 4 g2hr1)

we have
€616l S M

when £ =1 by Lemma 6.8 and
IE[17R2 < AL (g B2 < (M)A, |6, |F/2 < (AM)YA
when k > 2 by A™! < |¢] for all £ € Z} and Lemma 6.9. Thus we have
€12l a2 < AETD M2 (6.11)

for any k£ € N. We define yq as the characteristic function of a set €.
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Step 1. (Estimate for the norm || - || x-r/2(y))

We prove the estimate
IF (= &5 T 0 (o)l x-wr2ny S AMullx w2010l x-7200. (6.12)
for some € satisfying 0 < € < (3k — 1)/2. From (6.11), we have

1F 1 (r — 171, (uo)] || -2

1=k/2| ¢ (k/2|¢ |k/2
R 5)1/2 (C’fi’l/2<f22>|1/2 [(11,6)9(72, &) dm1d&,

Z\{¢}

2
S Z HJszg(A)Lg,
§=0

(VL2

where

A\ (B— 1/2M1/2XA _ N
// 1/2 1/2 >1/2f(7'1751)9(7'2752)617'16551-

By symmetry, we only need to consider the estimate for Jy and J;.

Estimate for .J,

By the Cauchy-Schwartz inequality, we have

HJOng(A)Lg < sup (KO)I/2 |’f|’l§(,\)L3H§||l§(A)L§
A B (6.13)
= sup (Ko) " [[ul|x—rrz V]l x-rr20)

670—

)\k 1M )\k 1
/ / XAO do_ldé—l / / XAO do,ldé-l

Let ¢ and o be fixed. We define a; and P;(&;) as

where

a1 =01+ 0y =0+ M - G = P (&),

Since Pj(x) is of the form of (6.10) with m = 2k, from Lemma 6.10, Lemma 6.11
and [£] > A, we have

1 1 1
VRN S e < Rk
L L mmmea = [, s < | s 2

for any 0 satisfying 1/2k < § < 1. This implies

Ky < A\S(@hF1)+h—2
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Therefore, we obtain
Hjong(/\)LZ S Xs(kH/QHk/zfl"u"X*W(,\)HUHX*’C/Z(A) (6.14)

by (6.13).

Estimate for J;

By using the duality and the Cauchy-Schwartz inequality twice, we have

1lliz o2 <SUP(K1)1/2Hle2 22, 1191l ez
b (6.15)

= gSUP(Kl)l/2||U||ka/2(x)||"U||ka/2(x)a
1,01

et

Let & and o7 be fixed. We define a and P(

where

a:=0—0y =0y — &R 4 §2k+1 §2k+1 =& P(8).

Since P(z) is of the form of (6.10) with m = 2k, from Lemma 6.10, Lemma 6.11
and |&;] > A1, we have

// Y (o) dad§ / / _de S \O(@2k+1)—1

for any ¢ satisfying 1/2k < § < 1. This implies
Ky < M@k k=2,
Therefore, we obtain
||J1||zg < N (EFL/2) /2 1||U||X k/2()) [v]|x- k/2()) (6.16)
by (6.15).

Putting € := 0 (k+ 1/2) + k/2 — 1, we obtain the estimate (6.12) by (6.14) and
(6.16), where € satisfies 0 < € < (3k — 1)/2 since 1/2k < § < 1.

Step 2. (Estimate for the norm || - ||y—#/2)

We prove the estimate
[F M = €5 710, (wo)][ly-rr2a) S ANl [0l xc-kr20) (6.17)
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for some € satisfying 0 < € < (3k —1)/2. From (6.11), we have

1F (= €254 710, ()] |y-sr2gny

1-k/2|¢ |k/2| ¢ |k/2 _
\{g}/ < 011511/’2 ‘€>21|/2 f(7'17§1)§(7'2,52)d7'1d§1

ZNLL
2
S e

j=0

where

/// 1/2 Xf}]z’f(Tb51)’|§(72a§2)\d71df1d7

By symmetry, we only need to consider the estimate for I, and I;.

Estimate for I,

By the Cauchy-Schwartz inequality, we have
||IO||l§(>\) < Slg-p(LO)l/2||f||l§()\)LZ||§||l§(>\)L$

L (6.18)
= S%P(LO) / ||U||X—k/2(x)||U||X—k/2(,\)»

)\k 1M )\k 1
/ / / XAO oo (o ddiado ~ / / / XAO Do iy dodéado

Let & be fixed and we define a; and Py(&;) as

where

aj = §2k+1 _'_§2k+1 + §2k+1 — €P1(§1)

Since 09 = 0 — (01 + a1) and Pj(x) is of the form of (6.10) with m = 2k, from
Lemma 6.10, Lemma 6.11 and |¢] > A™!, we have

/ /(/ )(02) dg) <01>d01d€1 N// 01—|—a11>1 "o )d‘m@

1 _s") _
~/w>6”& /4xwﬁ»6”ﬁ5ﬂ62m>

for any 0 and ¢’ satisfying 0 < ¢’ <9 < 1 and 1/2k < 6 — ¢’. This implies

Ly < N0-8)@k+1)+k-2
Therefore, we obtain
S AR ]| o [0]| x ez (6.19)

[Hollzy S
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by (6.18).

Estimate for I;

Let v > 0. By the Cauchy-Schwartz inequality, we have

AB=D/2) 172y,
llzgy < / / T oyl (€I )i

2)

(VL2
By using the duality and the Cauchy-Schwartz inequality twice, we have
HllHlQ(A) S Sup( )1/2WH12 (ML, Hnggl(A)m

(6.20)

= gsup(Ll)l/Q"u|’X*k/Q(A)HUHX*k/Q(/\w
1,01

/\k 1MXA1 )\k 1XA1
b= [ Lot [ e

Let & and oy be fixed. We define a and P(§) as

where

a:=0— 0y =0y — ML @Rl 2 6 P(g).

Since P(z) is of the form of (6.10) with m = 2k, from Lemma 6.10, Lemma 6.11
and [&| > A71 we have

1
< —_— —de < \0-27)(2k+1)-1
// T2 (o) dad§ / (= dg§ < - <)\_1P(§)>5_27d§,v)\

for all ¢ satisfying 1/2k < § — 2y < 1. This implies

L, < )\(5—27)(2k+1)+k—2'

Therefore, we obtain

[11llizy S ACT2EDIRE ]| o 0] x-rr2r) (6.21)

by (6.20).
Putting v = §'/2 and € := (6 — ') (k+ 1/2) + k/2 — 1, we obtain the estimate

(6.17) by (6.19) and (6.21), where € satisfies 0 < € < (3k—1)/2 since 1/2k < §—9¢' <
1. [

Next, we prove Theorem 6.5.
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Proof of Theorem 6.5.
Let N > 1, and we put

un(7,€) == (v (&) + xiny (=8)) X1 (7 — €,

v (7,) 1= (x-m(©) + X0 (—6) X — €44,
where
1 =c 1 (o .
NP L BV L

for ¢ € Z. Then we have

lunlzs ~ [lonllzs ~ N*([Ix-1llez + lxlley) ~ N°.

We put

A1(51752) = X{N}(fl)X{l—N}(fz), A2(51,52) = X{N}(fl)Xﬂ—N}(—fz),
A3(&1, &) = xvy (=&)xp-n(&2)s Aa(€r, &2) == xvy (=&)X -~y (—&2)-

Then we have

1F Y (r — 1719, (uyun)]|

Xs

4
Z/Z E1T A (&, &) </R(0>I/QX[—LH(Ul)X[—l,l}(@)dUl) d&;
j=1

2L
From gy = £2k+1 — g6+ _ 2641 4 5 51 and Lemma 6.8, we have

(o) ~ [EFH — P — GF Y ~ Je616o max{[€], & ], €]}
when there exists o7 satisfying |o1] < 1 and |oy| < 1. This implies

Lo P xcmeneanlo)do 2 €6l max(il. 6l el
R

As a result, we obtain

IF [ = &) 710, (uvow)]|

XS

z

4
S [ty il max{jel. 6l el
j=1

12
£
~ [IN"FOxay + xgey) + NN T2 (vono 1y + Xqeanty)| }lg
>N,
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By above discussion, if the bilinear estimate (6.6) holds, then we have

N7F S IF(r — €470, (unon)]||xe < [|F [ — €51 710, (unow))]|

YA

UNHZS ~ ]\[257

S lunl]zs

which contradicts the assumption s < —k/2. O

6.4 Proof of local well-posedness

In this section, we prove LWP of (6.1) by using the bilinear estimate. First, we
consider the scaling property. (6.1) with initial data uo € H*(T) is invariant under

the following scaling;
un(t, ) = A RuNTF AT ), uno(n) = A Pug (A ).

More precisely, if u satisfies (6.1) on [0,7] x T with initial data uy € H*(T), then

uy satisfies the same equation on [0, \>**1T] x T with initial data uyy € ITIS(’]I‘)\).

Proposition 6.12. For s € R, and X\ > 1, we have

wsoll oz, = A=+ 2 gy s (1) (6.22)

where

1 ey = M1 Pz
Proof. We note that

1/2 12
S SI0OR| =2 (% )y |f(§)l2>
ez cezr

for all function f defined on T. This implies

1Oy = A1 £l (6.23)

Since Uy (&) = A2+ (AE) and
A6 iy = A2 A€ A1

by (6.23), we obtain (6.22). O

Next, we give the linear estimates for the equation (6.1).
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Proposition 6.13. Let A > 1. We put

OONe) = [ explite*!+ i) Fe)de
and

(Uy %5 F)(t) = /0 t Un(t — ) F(t'))dt'.

For s € R, there exist positive constants Cy and Csy such that

DU fll 200 < Cullfll s ry s
1 (Ux %5 F)|| 250 < Col|[FH (T — €1 F 50,

where C7 and Cy do not depend on A and ¥ is a cut-off function such that ¢ €
C>®(R), ¥(t) =1 on [—1,1] and supp ¢ C [-2,2].

For the proof of Proposition 6.13, see Lemma 2.1 in [21].

Proof of Theorem 6.2.
For uy € B,(H*(T)), we choose A > 1 such that A26+5=1/2=¢ > 40, Cyr, where C}
and Cy appeared in Proposition 6.13, and Cy and € appeared in Theorem 6.4. Then
we have |[uxo|g(p,) < 1/(4CoC1C2X°) =: R, from Proposition 6.12. Therefore, we
assume that uyg € Bg, (H*(T))).

We define the map @, as

Do a[u] () = V() U (t)uro — @ /0 Ux(t — 1" (u(t))?)dt,

where 1 is a cut function satisfying the assumption in Proposition 6.13. To prove

the existence of the solution of (6.1), we first prove that ®,, , is a contraction map
on Bacy r, (Z2°()))

Step 1. (Existence)
For any u € Bac,r, (Z°())), from Proposition 6.13 and Theorem 6.4, we have

[P A [u]]

zs(n) < ||[YUN(-)uxol

1
zs(\) + §||l/1 (Ux *r (0:(u?)) |25 0n)

1
S ClR)\ + 50200)\6Hu‘

2

Z5(X)

< CiRy) + (2000102)\6R)\)01R>\
< 2CiR,.
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Therefore, we obtain @, x[u] € Bac, g, (Z°(N)).

For any u, v € By, g, (Z°())), from Proposition 6.13 and Theorem 6.4, we have
1
750 < §|W (UA g (Op(u® — 712))) |

1
S §CQCO>\€| |U + U|

[[@up A [u] = Py A []]

Z°(N)

zsllu = vl|zs

S 2000102>\ER)\HU - U|

Z5(N)

1
= §||u - U! Z5(N\)

This implies that ®,, 5 is a contraction map.

By above discussion and applying Banach’s fixed point theorem, there exists
u) € Bocyr, (Z°(N)), such that

Wi () = YU (E)uro — @ /0 Un(t — )9, () ?)dt. (6.24)

Especially, u/, satisfies the integral equation

dy(8) = Un()uro % /O U (t — )0, (0l ()2) (6.25)

in the time interval [0,1]. Therefore, ux = u)[j0,1] € Bacyr,(Z[p,)()) is the time
local solution of (6.1).

Next, we prove that uy is unique in Bac, g, (Z 11(A))-

Step 2. (Uniqueness)
We assume that uy, vx € Bacyr,(Zjp,)(A)) satisfy (6.25) on [0,1]. For any uj,
vl € Z5Y2(\) such that u)\(t) = uy(t), v} (t) = vA(t) on [0, 1], we have

[lux = vallz;

e < —\|¢( Un g (9u(u3 = v3))) |z,
< §Hw (U *r (8:((d)* = (1)) Iz
1
< 50Xy + villzs o lluh = villze0n

from Proposition 6.13 and Theorem 6.4. Therefore we obtain

[lux = vallz;, , x —0200/\6\|UA +oallzg o llua = UA||ZOH )
< 20,C1C9X¢ R)\HU)\ — U)\‘ Z[501
1
e —||U,>\ — 1))\| Z[?)l ()\)
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Thus, uy(t) = v(t) on [0, 1].

Finally, we prove that the data-to-solution map is Lipschitz continuous.
Step 3. (Lipschitz continuity of the data-to-solution map)
Let u), (resp. v}) € Bac,r, (Z*'/%()\)) be the solution of (6.24) with initial data wuxg
(resp. vxg) € Br, (H*(T,)) obtained in Step 1. Then we have

e + gl — o)
He(1y) Tl T U

[[uy =)

70 < Ciluno — vaol Z5(\)-
in the same manner as above. Therefore, we obtain
[y = Villzsn < 2C1luso = vaoll sry -
This implies that the data-to-solution map is Lipschitz continuous. O
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