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Introduction

Tilting theory has been central in the representation theory of finite dimensional al-
gebras since the early seventies [BGP, APR, BB, HR, Bo]. An important role in tilting
theory is played by the notion of tilting modules, which was introduced by Brenner-Butler
as a generalization of progenerators in Morita theory, because it is known that the endo-
morphism algebras of tilting modules is derived equivalent to the original algebra [Ha, Ric].
Thus these algebras share the same homological behavior. Hence it is important to give a
classification and a construction of tilting modules for a given algebra.

An effective method to construct tilting modules is given by mutation [RS, Un]. It is
an operation to replace an indecomposable direct summand of a given tilting module to
get a new one. However, it is known that mutation of tilting modules is often impossible
depending on a choice of indecomposable direct summands. One of our aim in this paper
is to improve behavior of mutation of tilting modules.

Let Λ be a basic finite dimensional algebra over an algebraically closed field K. The
behavior is caused by the following property for almost complete tilting modules: An
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almost complete tilting module U can be completed in at most two different ways to a
tilting module [RS, Un]. Moreover there are exactly two ways if and only if U is a faithful
Λ-module [HU1]. Namely, for every faithful almost complete tilting module U , there exist
exactly two indecomposable modulesX and X ′ (called complements) such that T := X⊕U
and T ′ := X ′⊕U are tilting modules. Thus, by mutation, these tilting modules T and T ′

are connected to each other. On the other hand, if an almost complete tilting module U
for a tilting module X⊕U is not faithful, then there is no mutation for the indecomposable
module X.

Even for a finite dimensional path algebra KQ, where Q is a finite acyclic quiver, not all
almost complete tilting modules U are faithful. However, the above property for almost
complete tilting modules can be reformulated in terms of the path algebra Λ = KQ as
follows [IT, Rin]: A Λ-module T is support tilting if T is a tilting (Λ/〈e〉)-module for some
idempotent e of Λ. Using the more general class of support tilting modules, it holds for
path algebras that almost complete support tilting modules can be completed in exactly
two ways to support tilting modules.

The above result for path algebras does not necessarily hold for a finite dimensional
algebra. The reason is that there may be sincere modules which are not faithful. We are
looking for a generalization of tilting modules where we have such a result, and where
at the same time some of the essential properties of tilting modules still hold. It is then
natural to try to find a class of modules satisfying the following properties:

(i) The analogs of basic almost complete tilting modules have exactly two comple-
ments.

(ii) In the hereditary case the class of modules should coincide with the tilting modules.
(iii) There is a natural connection with torsion pairs in modΛ.
(iv) The modules have exactly |Λ| non-isomorphic indecomposable direct summands,

where |X| denotes the number of nonisomorphic indecomposable direct summands
of X.

There is a generalization of tilting modules to tilting modules of finite projective dimension
[Ha, Miy]. But it is easy to see that they do not satisfy the required properties. The finite
dimensional module category is naturally embedded in the derived category of Λ. The
tilting and silting complexes for Λ [Rin, AI, Ai] are also extensions of the tilting modules.
An almost complete silting complex has infinitely many complements. But as we shall see,
things work well when we restrict to the two-term silting complexes.

In Part 1, we give a class of modules satisfying the properties (i)–(iv) above. Namely,
it turns out that a natural class of modules to consider is given as follows. As usual, we
denote by modΛ the category of finitely generated right Λ-modules, projΛ the category of
finitely generated projective right Λ-modules and τ the AR translation (see section 1.2).

Definition A. (a) We call M in modΛ τ -rigid if HomΛ(M, τM) = 0.
(b) We call M in modΛ τ -tilting (respectively, almost complete τ -tilting) if M is τ -rigid

and |M | = |Λ| (respectively, |M | = |Λ| − 1).
(c) We call M in modΛ support τ -tilting if there exists an idempotent e of Λ such that

M is a τ -tilting (Λ/〈e〉)-module.

Any τ -rigid module is rigid (i.e. Ext1Λ(M,M) = 0), and the converse holds if the
projective dimension is at most one. In particular, any partial tilting module is a τ -rigid
module, and any tilting module is a τ -tilting module. Thus we can regard τ -tilting modules
as a generalization of tilting modules.
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The first main result of this part is the following analog of Bongartz completion for
tilting modules.

Theorem B (Theorem 2.10). Any τ -rigid Λ-module is a direct summand of some τ -tilting
Λ-module.

As indicated above, in order to get our theory to work nicely, we need to consider
support τ -tilting modules. It is often convenient to view them, and the τ -rigid modules,
as certain pairs of Λ-modules.

Definition C. Let (M,P ) be a pair with M ∈ modΛ and P ∈ projΛ.

(a) We call (M,P ) a τ -rigid pair if M is τ -rigid and HomΛ(P,M) = 0.
(b) We call (M,P ) a support τ -tilting (respectively, almost complete support τ -tilting)

pair if (M,P ) is τ -rigid and |M |+ |P | = |Λ| (respectively, |M |+ |P | = |Λ| − 1).

These notions are compatible with those in Definition A (see Proposition 2.3 for details).
As usual, we say that (M,P ) is basic if M and P are basic. Similarly we say that (M,P ) is
a direct summand of (M ′, P ′) if M is a direct summand of M ′ and P is a direct summand
of P ′.

The second main result of this part is the following.

Theorem D (Theorem 2.18). Let Λ be a finite dimensional K-algebra. Then any basic
almost complete support τ -tilting pair for Λ is a direct summand of exactly two basic
support τ -tilting pairs.

These two support τ -tilting pairs are said to be mutations of each other. We will define
the support τ -tilting quiver Q(sτ -tiltΛ) by using mutation (Definition 2.29).

The third main result of this part is to obtain a close connection between support
τ -tilting modules and other important objects in tilting theory. The corresponding defi-
nitions will be given in section 1.

Theorem E (Theorems 2.7, 3.2, 4.1 and 4.7). Let Λ be a finite dimensional K-algebra.
We have bijections between

(a) the set f-torsΛ of functorially finite torsion classes in modΛ,
(b) the set sτ -tiltΛ of isomorphism classes of basic support τ -tilting modules,
(c) the set 2-siltΛ of isomorphism classes of basic two-term silting complexes for Λ,
(d) the set c-tiltC of isomorphism classes of basic cluster-tilting objects in a 2-CY

triangulated category C if Λ is an associated 2-CY tilted algebra to C.

By Theorem E, we can regard sτ -tiltΛ as a partially ordered set by using the inclusion
relation of f-torsΛ (i.e. we write T ≥ U if FacT ⊇ FacU). Then we have the following
fourth main result, which is an analog of [HU2, Theorem 2.1] and [AI, Theorem 2.35].

Theorem F (Corollary 2.34). The support τ -tilting quiver Q(sτ -tiltΛ) is the Hasse quiver
of the partially ordered set sτ -tiltΛ.

In Part 2, we classify τ -tilting modules over any Nakayama algebra Λ, and moreover
to give an algorithm to construct the Hasse quiver of support τ -tilting Λ-modules. The
following theorem is our first main result of this part.

Theorem G (Theorem 8.10, 8.12 and 8.17). Let Λ be a Nakayama algebra with n simple
modules. Assume that the Loewy length of each indecomposable projective Λ-module is at
least n. Then there are bijections between
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(1) the set τ -tiltΛ of isomorphism classes of basic τ -tilting Λ-modules,
(2) the set psτ -tiltΛ of isomorphism classes of basic proper support τ -tilting Λ-modules,
(3) the set T (n) of triangulations of an n-regular polygon with a puncture,
(4) the set Z(n) of sequences (a1, a2, · · · , an) of nonnegative integers with

∑n
i=1 ai = n.

We have a similar result for an arbitrary Nakayama algebra (see Theorem 8.22). Theo-
rem G is analogous to known classification results in representation theory: tilting modules
for cyclic quivers [BK], torsion pairs in tube categories [BBM], cluster-tilting objects in
cluster categories of type A [CCS] and D [Sc], cluster-tilting modules over self-injective
algebras and Gorenstein orders of type A and D [Iy].

Next, we study a relationship between support τ -tilting Λ-modules over an algebra Λ
(not necessarily Nakayama) and those over the factor algebra Λ = Λ/ socQ, where Q is an
indecomposable projective-injective Λ-module. The following theorem is the second main
result in this part.

Theorem H (Theorem 9.5 and 9.8). Let Λ be a basic finite dimensional K-algebra, Q
an indecomposable projective-injective Λ-module and Q := Q/ socQ. Then all support τ -
tilting modules of Λ can be obtained explicitly from those of Λ. Moreover, the Hasse quiver
of support τ -tilting modules of Λ can be constructed explicitly from that of Λ.

As an application, we have the following result for a construction of the Hasse quivers
of Nakayama algebras. Since each Nakayama algebra Λ always has an indecomposable
projective-injective Λ-module Q and the factor algebra Λ is a Nakayama algebra again,
we can iteratively apply Theorem H.

Theorem I (Algorithm 9.13). Let Λ be a Nakayama algebra. Then there exists an algo-
rithm to construct the Hasse quiver of support τ -tilting Λ-modules.

In Part 3, we study τ -rigid modules over algebras with radical square zero, which
provide one of the most fundamental classes of algebras in representation theory (e.g.,
work of Yoshii [Yo] in 1956 and Gabriel [Ga] in 1972). For an algebra Λ with radical
square zero, an important role is played by a stable equivalence F : modΛ → modKQs,
where Qs is the separated quiver (see Subsection 10.2) of the quiver Q for Λ. In particular,
we have the following famous theorem characterizing representation-finiteness.

Theorem J. [Ga, ARS] Let Λ be a finite dimensional K-algebra with radical square zero.
Then the following are equivalent:

(1) Λ is representation-finite.
(2) The separated quiver for Λ is a disjoint union of Dynkin quivers.

The following main theorem of this part is an analog of this result for τ -rigid-finiteness.
Let Q0 be the vertex set of a quiver Q. Then Qs

0 = {i+, i− | i ∈ Q0} is the vertex set
of the separated quiver Qs. A full subquiver of Qs is called a single subquiver if, for any
i ∈ Q0, the vertex set contains at most one of i+ or i−.

Theorem K (Theorem 11.1). Let Λ be a finite dimensional K-algebra with radical square
zero. Then the following are equivalent:

(1) Λ is τ -rigid-finite.
(2) Every single subquiver of the separated quiver for Λ is a disjoint union of Dynkin

quivers.

The following result plays a crucial reole in the proof of Theorem K.
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Theorem L (Theorem 11.2). Let X be an indecomposable Λ-module. Let P1 −→ P0 −→
X −→ 0 be a minimal projective presentation of X. The following are equivalent:

(1) X is a τ -rigid Λ-module.
(2) FX is a τ -rigid KQs-module and addP0 ∩ addP1 = 0.

As an application, we give a positive answer to a question given by Zhang [Zh].

Corollary M (Corollary 12.2). Let Λ be a finite dimensional K-algebra with radical square
zero. If every indecomposable Λ-module is τ -rigid, then Λ is representation-finite.

For recent results on τ -tilting theory, we refer to [Ad1, Ad2, AAC, BY, Ch, DIJ, IJY,
Ja1, MPS, Ma, Miz1, Miz2, Zh].

Notation. Throughout this paper, K is an algebraically closed field. By an algebra
we mean a basic and finite dimensional K-algebra and by a module we mean a finitely
generated right module. Let {e1, e2, · · · , en} be a complete set of primitive orthogonal
idempotents of an algebra Λ and EΛ := {

∑
i∈I ei | I ⊂ {1, 2, · · · , n}}. For each i ∈

{1, 2, · · · , n}, we put P (i) = eiΛ, S(i) = P (i)/ radP (i) and E(i) = HomK(Λei,K). For
an algebra Λ, we denote by modΛ the category of finitely generated right Λ-modules,
modΛ the stable category, projΛ the category of finitely generated projective right Λ-
modules and injΛ the category of finitely generated injective right Λ-modules. For an
Λ-module M , we denote by addM (respectively, FacM , SubM) the category of all direct
summands (respectively, factor modules, submodules) of finite direct sums of copies of M .
We denote by τΛ the Auslander-Reiten translation of Λ and by 〈e〉 a two-sided ideal of Λ
generated by e ∈ Λ. For two sets X and Y , we denote by X

∐
Y the disjoint union. We

denote by [i, j] the interval {i, i + 1, · · · , j − 1, j} of integers. Fix an integer n > 0. For
any integer i, there exist integers j and 1 ≤ k ≤ n such that i = nj + k. Then we let
(i)n := k. For integers i, j with (i)n ≤ (j)n, we let

[i, j]n := {(i)n, (i + 1)n, · · · , (j − 1)n, (j)n}.

We call a quiver Dynkin (respectively, Euclidean) if the underlying graph is one of Dynkin

(respectively, Euclidean) graphs of type A,D and E (respectively, Ã, D̃ and Ẽ).

Acknowledgement. First and foremost, I would like to express my deepest gratitude to
my supervisor Osamu Iyama. I am sure that I would not have been able to finish this
paper without his support and advice. I would like to thank Kota Yamaura. He always
took the time to answer my questions. Finally I would like to thank Y. Mizuno, T. Aihara,
A. Chan, G. Jasso and L. Demonet for many stimulating discussions.

Part 1. τ-tilting theory

This part is based on the paper [AIR] (joint work with O. Iyama and I. Reiten).

1. Background and preliminary results

In this section we give some background material on each of the 4 topics involved in
our main results. This concerns the relationship between tilting modules and functorially
finite subcategories and some results on τ -rigid and τ -tilting modules, including new basic
results about them which will be useful in the next section. Further we recall known results
on silting complexes, and on cluster-tilting objects in 2-CY triangulated categories.
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1.1. Torsion pairs and tilting modules. Let Λ be a finite dimensional K-algebra. For
a subcategory C of modΛ, we let

C⊥ := {X ∈ modΛ | HomΛ(C,X) = 0},

C⊥1 := {X ∈ modΛ | Ext1Λ(C,X) = 0}.

Dually we define ⊥C and ⊥1C. We call T in modΛ a partial tilting module if pdΛ T ≤ 1
and Ext1Λ(T, T ) = 0. A partial tilting module is called a tilting module if there is an exact
sequence 0 → Λ → T0 → T1 → 0 with T0 and T1 in addT . Then any tilting module
satisfies |T | = |Λ|. Moreover it is known that for any partial tilting module T , there is a
tilting module U such that T ∈ addU and FacU = T⊥1 , called the Bongartz completion of
T . Hence a partial tilting module T is a tilting module if and only if |T | = |Λ|. Dually T
in modΛ is a (partial) cotilting module if DT is a (partial) tilting Λop-module.

On the other hand, we say that a full subcategory T of modΛ is a torsion class (respec-
tively, torsionfree class) if it is closed under factor modules (respectively, submodules) and
extensions. A pair (T ,F) is called a torsion pair if T = ⊥F and F = T ⊥. In this case T
is a torsion class and F is a torsionfree class. Conversely, any torsion class T (respectively,
torsionfree class F) gives rise to a torsion pair (T ,F).

We say that X ∈ T is Ext-projective (respectively, Ext-injective) if Ext1Λ(X,T ) = 0
(respectively, Ext1Λ(T ,X) = 0). We denote by P (T ) the direct sum of one copy of each of
the indecomposable Ext-projective objects in T up to isomorphism. Similarly we denote
by I(F) the direct sum of one copy of each of the indecomposable Ext-injective objects in
F up to isomorphism.

We first recall the following relevant result on torsion pairs and tilting modules.

Proposition 1.1. [AS, Ho, Sma] Let (T ,F) be a torsion pair in modΛ. Then the following
conditions are equivalent.

(a) T is functorially finite.
(b) F is functorially finite.
(c) T = FacX for some X in modΛ.
(d) F = SubY for some Y in modΛ.
(e) P (T ) is a tilting (Λ/ ann T )-module.
(f) I(F) is a cotilting (Λ/ annF)-module.
(g) T = FacP (T ).
(h) F = SubI(F).

Proof. The conditions (a), (b), (c), (d), (e) and (f) are equivalent by [Sma, Theorem].
(g)⇒(c) is clear.

(e)⇒(g) There exists an exact sequence 0 → Λ/ ann T
a
−→ T 0 → T 1 → 0 with T 0, T 1 ∈

addP (T ). For any X ∈ T , we take a surjection f : (Λ/ ann T )ℓ → X. It follows from
Ext1Λ(T 1ℓ,X) = 0 that f factors through aℓ : (Λ/ ann T )ℓ → T 0ℓ. Thus X ∈ FacP (T ).

Dually (h) is also equivalent to the other conditions. �

There is also a tilting quiver associated with the (classical) tilting modules. The vertices
are the isomorphism classes of basic tilting modules. Let X⊕U and Y ⊕U be basic tilting
modules, where X and Y 6≃ X are indecomposable. Then it is known that there is some

exact sequence 0 → X
f
−→ U ′ g

−→ Y → 0, where f : X → U ′ is a minimal left (addU)-
approximation and g : U ′ → Y is a minimal right (addU)-approximation. We say that
Y ⊕U is a left mutation of X⊕U . Then we draw an arrow X⊕U → Y ⊕U , so that we get
a quiver for the tilting modules. On the other hand, the set of basic tilting modules has
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a natural partial order given by T ≥ U if and only if FacT ⊇ FacU , and we can consider
the associated Hasse quiver. These two quivers coincide [HU2, Theorem 2.1].

1.2. τ-tilting modules. Let Λ be a finite dimensional K-algebra. We have dualities

D := HomK(−,K) : modΛ↔ modΛop and (−)∗ := HomΛ(−,Λ) : projΛ↔ projΛop

which induce equivalences

ν := D(−)∗ : projΛ→ injΛ and ν−1 := (−)∗D : injΛ→ projΛ

called Nakayama functors. For X in modΛ with a minimal projective presentation

P1
d1 // P0

d0 // X // 0,

we define TrX in modΛop and τX in modΛ by exact sequences

P ∗
0

d∗1 // P ∗
1

// TrX // 0 and 0 // τX // νP1
νd1 // νP0.

Then Tr and τ give bijections between the isomorphism classes of indecomposable non-
projective Λ-modules, the isomorphism classes of indecomposable non-projective Λop-
modules and the isomorphism classes of indecomposable non-injective Λ-modules. We
denote by modΛ the stable category modulo projectives and by modΛ the costable cate-
gory modulo injectives. Then Tr gives the Auslander-Bridger transpose duality

Tr : modΛ↔ modΛop

and τ gives the AR translations

τ = DTr : modΛ→ modΛ and τ−1 = TrD : modΛ→ modΛ.

We have a functorial isomorphism

HomΛ(X,Y ) ≃ DExt1Λ(Y, τX)

for any X and Y in modΛ called AR duality. In particular, if M is τ -rigid, then we have
Ext1Λ(M,M) = 0 (i.e. M is rigid) by AR duality. More precisely, we have the following
result, which we often use in this paper.

Proposition 1.2. For X and Y in modΛ, we have the following.

(a) [AS, Proposition 5.8] HomΛ(X, τY ) = 0 if and only if Ext1Λ(Y,FacX) = 0.
(b) [AS, Theorem 5.10] If X is τ -rigid, then FacX is a functorially finite torsion class

and X ∈ addP (FacX).
(c) If T is a torsion class in modΛ, then P (T ) is a τ -rigid Λ-module.

Proof. (c) Since T := P (T ) is Ext-projective in T , we have Ext1Λ(T,FacT ) = 0. This
implies that HomΛ(T, τT ) = 0 by (a). �

We have the following direct consequence (see also [Sk, ASS]).

Proposition 1.3. Any τ -rigid Λ-module M satisfies |M | ≤ |Λ|.

Proof. By Proposition 1.2(b) we have |M | ≤ |P (FacM)|. By Proposition 1.1(e), we have
|P (FacM)| = |Λ/ annM |. Since |Λ/ annM | ≤ |Λ|, we have the assertion. �

As an immediate consequence, if τ -rigid Λ-modules M and N satisfy M ∈ addN and
|M | ≥ |Λ|, then addM = addN .

Finally we note the following relationship between τ -tilting modules and classical no-
tions.
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Proposition 1.4. [ASS, VIII.5.1]

(a) Any faithful τ -rigid Λ-module is a partial tilting Λ-module.
(b) Any faithful τ -tilting Λ-module is a tilting Λ-module.

1.3. Silting complexes. Let Λ be a finite dimensional K-algebra and Kb(projΛ) be the
category of bounded complexes of finitely generated projective Λ-modules. We recall the
definition of silting complexes and mutations.

Definition 1.5. [AI, Ai, BRT, KV] Let P ∈ Kb(projΛ).

(a) We call P presilting if HomKb(projΛ)(P,P [i]) = 0 for any i > 0.

(b) We call P silting if it is presilting and satisfies thickP = Kb(projΛ), where thickP
is the smallest full subcategory of Kb(projΛ) which contains P and is closed under
cones, [±1], direct summands and isomorphisms.

We denote by siltΛ the set of isomorphism classes of basic silting complexes for Λ.

The following result is important.

Proposition 1.6. [AI, Theorem 2.27, Corollary 2.28]

(a) For any P ∈ siltΛ, we have |P | = |Λ|.
(b) Let P =

⊕n
i=1 Pn be a basic silting complex for Λ with Pi indecomposable. Then

P1, · · · , Pn give a basis of the Grothendieck group K0(K
b(projΛ)).

We call a presilting complex P for Λ almost complete silting if |P | = |Λ| − 1. There is
a similar type of mutation as for tilting modules.

Definition-Proposition 1.7. [AI, Theorem 2.31] Let P = X ⊕ Q be a basic silting
complex with X indecomposable. We consider a triangle

X
f // Q′ // Y // X[1]

with a minimal left (addQ)-approximation f of X. Then the left mutation of P with
respect to X is µ−X(P ) := Y ⊕ Q. Dually we define the right mutation µ+

X(P ) of P with

respect to X.1 Then the left mutation and the right mutation of P are also basic silting
complexes.

There is the following partial order on the set siltΛ.

Definition-Proposition 1.8. [AI, Theorem 2.11, Proposition 2.14] For P,Q ∈ siltΛ, we
write

P ≥ Q

if HomKb(projΛ)(P,Q[i]) = 0 for any i > 0, which is equivalent to P⊥>0 ⊇ Q⊥>0 where P⊥>0

is a subcategory of Kb(projΛ) consisting of the X satisfying HomKb(projΛ)(P,X[i]) = 0 for
any i > 0. Then we have a partial order on siltΛ.

We define the silting quiver Q(siltΛ) of Λ as follows:

• The set of vertices is siltΛ.
• We draw an arrow from P to Q if Q is a left mutation of P .

1These notations µ− and µ+ are the opposite of those in [AI]. They are easy to remember since they
are the same direction as τ−1 and τ .
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Then the silting quiver gives the Hasse quiver of the partially ordered set siltΛ by [AI,
Theorem 2.35], similar to the situation for tilting modules. We shall later restrict to
two-term silting complexes to get exactly two complements for almost complete silting
complexes.

1.4. Cluster-tilting objects. Let C be aK-linear Hom-finite Krull-Schmidt triangulated
category. Assume that C is 2-Calabi-Yau (2-CY for short) i.e. there exists a functorial iso-
morphism DExt1C(X,Y ) ≃ Ext1C(Y,X). An important class of objects in these categories
are the cluster-tilting objects. We recall the definition of these and related objects.

Definition 1.9. (a) We call T in C rigid if HomC(T, T [1]) = 0.
(b) We call T in C cluster-tilting if addT = {X ∈ C | HomC(T,X[1]) = 0}.
(c) We call T in C maximal rigid if it is rigid and maximal with respect to this property,

that is, addT = {X ∈ C | HomC(T ⊕X, (T ⊕X)[1]) = 0}.

We denote by c-tiltC the set of isomorphism classes of basic cluster-tilting objects in C.
In this setting, there are also mutations of cluster-tilting objects defined via approxima-
tions, which we recall [BMRRT, IY].

Definition-Proposition 1.10. [IY, Theorem 5.3] Let T = X⊕U be a basic cluster-tilting
object in C and X indecomposable in C. We consider the triangle

X
f // U ′ // Y // X[1]

with a minimal left (addU)-approximation f of X. Let µ−X(T ) := Y ⊕U . Dually we define

µ+
X(T ). A different feature in this case is that we have µ−X(T ) ≃ µ+

X(T ). This is a basic
cluster-tilting object which as before we call the mutation of T with respect to X.

In this case we get just a graph rather than a quiver. We define the cluster-tilting graph
G(c-tiltC)of C as follows:

• The set of vertices is c-tiltC.
• We draw an edge between T and U if U is a mutation of T .

Note that U is a mutation of T if and only if T and U have all but one indecomposable
direct summand in common [IY, Theorem 5.3] (see Corollary 4.5(a)).

2. Support τ-tilting modules

Our aim in this section is to develop a basic theory of support τ -tilting modules over any
finite dimensional K-algebra. We start with discussing some basic properties of τ -rigid
modules and connections between τ -rigid modules and functorially finite torsion classes
(Theorem 2.7). As an application, we introduce Bongartz completion of τ -rigid modules
(Theorem 2.10). Then we give characterizations of τ -tilting modules (Theorem 2.12).
We also give left-right duality of τ -rigid modules (Theorem 2.14). Further we prove our
main result which states that an almost complete support τ -tilting module has exactly
two complements (Theorem 2.18). As an application, we introduce mutation of support
τ -tilting modules. We show that mutation gives the Hasse quiver of the partially ordered
set of support τ -tilting modules (Theorem 2.33).
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2.1. Basic properties of τ-rigid modules. When T is a Λ-module with I an ideal
contained in annT , we investigate the relationship between T being τ -rigid as a Λ-module
and as a (Λ/I)-module. We have the following.

Lemma 2.1. Let Λ be a finite dimensional algebra, and I an ideal in Λ. Let M and N
be (Λ/I)-modules. Then we have the following.

(a) If HomΛ(N, τM) = 0, then HomΛ/I(N, τΛ/IM) = 0.
(b) Assume I = 〈e〉 for an idempotent e in Λ. Then HomΛ(N, τM) = 0 if and only if

HomΛ/I(N, τΛ/IM) = 0.

Proof. Note that we have a natural inclusion Ext1Λ/I(M,N) → Ext1Λ(M,N). This is an

isomorphism if I = 〈e〉 for an idempotent e since mod(Λ/〈e〉) is closed under extensions
in modΛ.

(a) Assume HomΛ(N, τM) = 0. Then by Proposition 1.2, we have Ext1Λ(M,FacN) = 0.
By the above observation, we have Ext1Λ/I(M,FacN) = 0. By Proposition 1.2 again, we

have HomΛ/I(N, τΛ/IM) = 0.
(b) Assume that I = 〈e〉 and HomΛ/I(N, τΛ/IM) = 0. By Proposition 1.2, we have

Ext1Λ/I(M,FacN) = 0. By the above observation, we have Ext1Λ(M,FacN) = 0. By

Proposition 1.2 again, we have HomΛ(N, τM) = 0. �

Recall that M in modΛ is sincere if every simple Λ-module appears as a composition
factor in M . This is equivalent to the fact that there does not exist a non-zero idempotent
e of Λ which annihilates M .

Proposition 2.2. (a) τ -tilting modules are precisely sincere support τ -tilting modules.
(b) Tilting modules are precisely faithful support τ -tilting modules.
(c) Any τ -tilting (respectively, τ -rigid) Λ-module T is a tilting (respectively, partial

tilting) (Λ/ annT )-module.

Proof. (a) Clearly sincere support τ -tilting modules are τ -tilting. Conversely, if a τ -tilting
Λ-module T is not sincere, then there exists a non-zero idempotent e of Λ such that T
is a (Λ/〈e〉)-module. Since T is τ -rigid as a (Λ/〈e〉)-module by Lemma 2.1(a), we have
|T | = |Λ| > |Λ/〈e〉|, a contradiction to Proposition 1.3.

(b) Clearly tilting modules are faithful τ -tilting. Conversely, any faithful support τ -
tilting module T is partial tilting by Proposition 1.4 and satisfies |T | = |Λ|. Thus T is
tilting.

(c) By Lemma 2.1(a), we know that T is a faithful τ -tilting (respectively, τ -rigid)
(Λ/ ann T )-module. Thus the assertion follows from (b) (respectively, Proposition 1.4). �

Immediately we have the following basic observation, which will be used frequently in
this paper.

Proposition 2.3. Let (M,P ) be a pair with M ∈ modΛ and P ∈ projΛ. Let e be an
idempotent of Λ such that addP = addeΛ.

(a) (M,P ) is a τ -rigid (respectively, support τ -tilting, almost complete support τ -
tilting) pair for Λ if and only if M is a τ -rigid (respectively, τ -tilting, almost
complete τ -tilting) (Λ/〈e〉)-module.

(b) If (M,P ) and (M,Q) are support τ -tilting pairs for Λ, then addP = addQ. In
other words, M determines P and e uniquely.

Proof. (a) The assertions follow from Lemma 2.1 and the equation |Λ/〈e〉| = |Λ| − |P |.
(b) This is a consequence of Proposition 2.2(a). �
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The following observations are useful.

Proposition 2.4. Let X be in modΛ with a minimal projective presentation P1
d1−→ P0

d0−→
X → 0.

(a) For Y in modΛ, we have an exact sequence

0→ HomΛ(Y, τX)→ DHomΛ(P1, Y )
D(d1,Y )
−−−−−→ DHomΛ(P0, Y )

D(d0,Y )
−−−−−→ DHomΛ(X,Y )→ 0.

(b) HomΛ(Y, τX) = 0 if and only if the map HomΛ(P0, Y )
(d1,Y )
−−−−→ HomΛ(P1, Y ) is

surjective.

(c) X is τ -rigid if and only if the map HomΛ(P0,X)
(d1,X)
−−−−→ HomΛ(P1,X) is surjective.

Proof. (a) We have an exact sequence 0 → τX → νP1
νd1−−→ νP0. Applying HomΛ(Y,−),

we have a commutative diagram of exact sequences:

0→ HomΛ(Y, τX) // HomΛ(Y, νP1)
(Y,νd1) //

≀
��

HomΛ(Y, νP0)

≀
��

DHomΛ(P1, Y )
D(d1,Y )// DHomΛ(P0, Y )

D(d0,Y ) // DHomΛ(X,Y )→ 0.

Thus the assertion follows.
(b)(c) Immediate from (a). �

We have the following standard observation (cf. [HU2, DeKe]).

Proposition 2.5. Let X be in modΛ with a minimal projective presentation P1
d1−→ P0

d0−→
X → 0. If X is τ -rigid, then P0 and P1 have no non-zero direct summands in common.

Proof. We only have to show that any morphism s : P1 → P0 is in the radical. By
Proposition 2.4(c), there exists t : P0 → X such that d0s = td1. Since P0 is projective,
there exists u : P0 → P0 such that t = d0u. Since d0(s−ud1) = 0, there exists v : P1 → P1

such that s = ud1 + d1v.

P1
d1 //

s

��

v

~~

P0
d0 //

t

��
u~~

X // 0

P1
d1

// P0
d0

// X // 0

Since d1 is in the radical, so is s. Thus the assertion is shown. �

The following analog of Wakamatsu’s lemma [AR2] will be useful.

Lemma 2.6. Let η : 0→ Y → T ′ f
−→ X be an exact sequence in modΛ, where T is τ -rigid,

and f : T ′ → X is a right (addT )-approximation. Then we have Y ∈ ⊥(τT ).

Proof. Replacing X by Im f , we can assume that f is surjective. We apply HomΛ(−, τT )
to η to get the exact sequence

0 = HomΛ(T ′, τT )→ HomΛ(Y, τT )→ Ext1Λ(X, τT )
Ext1(f,τT )
−−−−−−−→ Ext1Λ(T ′, τT ),

where we have HomΛ(T ′, τT ) = 0 because T is τ -rigid. Since f : T ′ → X is a right (addT )-
approximation, the induced map (T, f) : HomΛ(T, T ′)→ HomΛ(T,X) is surjective. Then
also the induced map HomΛ(T, T ′) → HomΛ(T,X) of the maps modulo projectives is
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surjective, so by the AR duality the map Ext1(f, τT ) : Ext1Λ(X, τT ) → Ext1Λ(T ′, τT ) is
injective. It follows that HomΛ(Y, τT ) = 0. �

2.2. τ-rigid modules and torsion classes. The following correspondence is basic in our
paper, where we denote by f-torsΛ the set of functorially finite torsion classes in modΛ.

Theorem 2.7. There is a bijection

sτ -tiltΛ←→ f-torsΛ

given by sτ -tiltΛ ∋ T 7→ FacT ∈ f-torsΛ and f-torsΛ ∋ T 7→ P (T ) ∈ sτ -tiltΛ.

Proof. Let first T be a functorially finite torsion class in modΛ. Then we know that
T = P (T ) is τ -rigid by Proposition 1.2(c). Let e ∈ Λ be a maximal idempotent such that
T ⊆ mod(Λ/〈e〉). Then we have |Λ/〈e〉| = |Λ/ ann T |, and |Λ/ ann T | = |T | by Proposition
1.1(e). Hence (T, eΛ) is a support τ -tilting pair for Λ. Moreover we have T = FacP (T )
by Proposition 1.1(g).

Assume conversely that T is a support τ -tilting Λ-module. Then T is a τ -tilting (Λ/〈e〉)-
module for an idempotent e of Λ. Thus FacT is a functorially finite torsion class in
mod(Λ/〈e〉) such that T ∈ addP (FacT ) by Proposition 1.2(b). Since |T | = |Λ/〈e〉|, we
have addT = addP (FacT ) by Proposition 1.3. Thus T ≃ P (FacT ). �

We denote by τ -tiltΛ (respectively, tiltΛ) the set of isomorphism classes of basic τ -tilting
Λ-modules (respectively, tilting Λ-modules). On the other hand, we denote by sf-torsΛ
(respectively, ff-torsΛ) the set of sincere (respectively, faithful) functorially finite torsion
classes in modΛ.

Corollary 2.8. The bijection in Theorem 2.7 induces bijections

τ -tiltΛ←→ sf-torsΛ and tiltΛ←→ ff-torsΛ.

Proof. Let T be a support τ -tilting Λ-module. By Proposition 2.2, it follows that T is a
τ -tilting Λ-module (respectively, tilting Λ-module) if and only if T is sincere (respectively,
faithful) if and only if FacT is sincere (respectively, faithful). �

We are interested in the torsion classes where our original module U is a direct summand
of T = P (T ), since we would like to complete U to a (support) τ -tilting module. The
conditions for this to be the case are the following.

Proposition 2.9. Let T be a functorially finite torsion class and U a τ -rigid Λ-module.
Then U ∈ addP (T ) if and only if FacU ⊆ T ⊆ ⊥(τU).

Proof. We have T = FacP (T ) by Proposition 1.1(g).
Assume FacU ⊆ T ⊆ ⊥(τU). Then U is in T . We want to show that U is Ext-projective

in T , that is, Ext1Λ(U,T ) = 0, or equivalently HomΛ(P (T ), τU) = 0, by Proposition 1.2(a).
This follows since P (T ) ∈ T ⊆ ⊥(τU). Hence U is a direct summand of P (T ).

Conversely, assume U ∈ addP (T ). Then we must have U ∈ T , and hence FacU ⊆ T .
Since U is Ext-projective in T , we have Ext1Λ(U,T ) = 0. Since T = FacT , we have
HomΛ(T , τU) = 0 by Proposition 1.2(a). Hence we have T ⊆ ⊥(τU). �

We now prove the analog, for τ -tilting modules, of the Bongartz completion of classical
tilting modules.

Theorem 2.10. Let U be a τ -rigid Λ-module. Then T := ⊥(τU) is a sincere functorially
finite torsion class and T := P (T ) is a τ -tilting Λ-module satisfying U ∈ addT and
⊥(τT ) = FacT .
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We call P (⊥(τU)) the Bongartz completion of U .

Proof. The first part follows from the following observation.

Lemma 2.11. For any τ -rigid Λ-module U , we have a sincere functorially finite torsion
class ⊥(τU).

Proof. When U is τ -rigid, then SubτU is a torsionfree class by the dual of Proposition
1.2(b). Then (⊥(τU),SubτU) is a torsion pair, and SubτU and ⊥(τU) are functorially
finite by Proposition 1.1.

Assume that ⊥(τU) is not sincere. Then we have ⊥(τU) ⊆ mod(Λ/〈e〉) for some primi-
tive idempotent e in Λ. The corresponding simple Λ-module S is not a composition factor
of any module in ⊥(τU); in particular Hom(⊥(τU),D(Λe)) = 0. Then D(Λe) is in SubτU .
But this is a contradiction since τU , and hence also any module in SubτU , has no nonzero
injective direct summands. �

By Corollary 2.8, it follows that T is a τ -tilting Λ-module such that ⊥(τU) = FacT . By
Proposition 2.9, we have U ∈ addT . Clearly ⊥(τU) ⊇ ⊥(τT ) since U is in addT . Hence
we get FacT = ⊥(τU) ⊇ ⊥(τT ) ⊇ FacT , and consequently ⊥(τT ) = FacT . �

We have the following characterizations of a τ -rigid module being τ -tilting.

Theorem 2.12. The following are equivalent for a τ -rigid Λ-module T .

(a) T is τ -tilting.
(b) T is maximal τ -rigid, i.e. if T⊕X is τ -rigid for some Λ-module X, then X ∈ addT .
(c) ⊥(τT ) = FacT .
(d) If HomΛ(T, τX) = 0 and HomΛ(X, τT ) = 0, then X ∈ addT .

Proof. (a)⇒(b): Immediate from Proposition 1.3.
(b)⇒(c): Let U be the Bongartz completion of T . Since T is maximal τ -rigid, we have

T ≃ U , and hence ⊥(τT ) = ⊥(τU) = FacU = FacT , using Theorem 2.10.
(c)⇒(a): Let T be τ -rigid with ⊥(τT ) = FacT . Let U be the Bongartz completion of

T . Then we have

FacT = ⊥(τT ) ⊇ ⊥(τU) ⊇ FacU ⊇ FacT,

and hence all inclusions are equalities. Since FacU = FacT , there exists an exact sequence

0 // Y // T ′
f // U // 0 (1)

where f : T ′ → U is a right (addT )-approximation. By the Wakamatsu-type Lemma 2.6
we have HomΛ(Y, τT ) = 0, and hence HomΛ(Y, τU) = 0 since ⊥(τT ) = ⊥(τU). By the
AR duality we have Ext1Λ(U, Y ) ≃ DHomΛ(Y, τU) = 0, and hence the sequence (1) splits.
Then it follows that U is in addT . Thus T is a τ -tilting Λ-module.

(a)+(c)⇒(d): Assume that (a) and (c) hold, and HomΛ(T, τX) = 0 and HomΛ(X, τT ) =
0. Then Ext1Λ(X,FacT ) = 0 by Proposition 1.2(a) and X is in ⊥τT = FacT . Thus X is
in addP (FacT ) = addT by Theorem 2.7.

(d)⇒(b): This is clear. �

We note the following generalization.

Corollary 2.13. The following are equivalent for a τ -rigid pair (T, P ) for Λ.

(a) (T, P ) is a support τ -tilting pair for Λ.
(b) If (T ⊕X,P ) is τ -rigid for some Λ-module X, then X ∈ addT .
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(c) ⊥(τT ) ∩ P⊥ = FacT .
(d) If HomΛ(T, τX) = 0, HomΛ(X, τT ) = 0 and HomΛ(P,X) = 0, then X ∈ addT .

Proof. In view of Lemma 2.1(b), the assertion follows immediately from Theorem 2.12 by
replacing Λ by Λ/〈e〉 for an idempotent e of Λ satisfying addP = addeΛ. �

In the rest of this subsection, we discuss the left-right symmetry of τ -rigid modules. It
is somehow surprising that there exists a bijection between support τ -tilting Λ-modules
and support τ -tilting Λop-modules. We decompose M in modΛ as M = Mpr⊕Mnp where
Mpr is a maximal projective direct summand of M . For a τ -rigid pair (M,P ) for Λ, let

(M,P )† := (TrMnp ⊕ P
∗,M∗

pr) = (TrM ⊕ P ∗,M∗
pr).

We denote by τ -rigidΛ the set of isomorphism classes of basic τ -rigid pairs of Λ.

Theorem 2.14. (−)† gives bijections

τ -rigidΛ←→ τ -rigidΛop and sτ -tiltΛ←→ sτ -tiltΛop

such that (−)†† = id.

For a support τ -tilting Λ-module M , we simply write M † := TrMnp⊕P
∗ where (M,P )

is a support τ -tilting pair for Λ.

Proof. We only have to show that (M,P )† is a τ -rigid pair for Λop since the correspondence
(M,P ) 7→ (M,P )† is clearly an involution. We have

0 = HomΛ(Mnp, τM) = HomΛop(TrM,DMnp) = HomΛop(TrM, τ TrM). (2)

Moreover we have

0 = HomΛ(Mpr, τM) = HomΛop(TrM,DMpr) = DHomΛop(M∗
pr,TrM). (3)

On the other hand, we have

0 = HomΛ(P,M) = HomΛ(P,Mpr)⊕HomΛ(P,Mnp). (4)

Thus we have

0 = D(P ∗ ⊗Λ Mnp) = HomΛop(P ∗,DMnp) = HomΛop(P ∗, τ TrM).

This together with (2) shows that TrM⊕P ∗ is a τ -rigid Λop-module. We have HomΛop(M∗
pr, P

∗) =

0 by (4). This together with (3) shows that (M,P )† is a τ -rigid pair for Λop. �

Now we discuss dual notions of τ -rigid and τ -tilting modules even though we do not
use them in this paper.

• We call M in modΛ τ−-rigid if HomΛ(τ−M,M) = 0.
• We call M in modΛ τ−-tilting if M is τ−-rigid and |M | = |Λ|.
• We call M in modΛ support τ−-tilting if M is a τ−-tilting (Λ/〈e〉)-module for some

idempotent e of Λ.

Clearly M is τ−-rigid (respectively, τ−-tilting, support τ−-tilting) Λ-module if and only
if DM is τ -rigid (respectively, τ -tilting, support τ -tilting) Λop-module.

We denote by cotiltΛ (respectively, τ−-tiltΛ, sτ−-tiltΛ) the set of isomorphism classes
of basic cotilting (respectively, τ−-tilting, support τ−-tilting) Λ-modules. On the other
hand, we denote by f-torfΛ the set of functorially finite torsionfree classes in modΛ, and by
sf-torfΛ (respectively, ff-torfΛ) the set of sincere (respectively, faithful) functorially finite
torsionfree classes in modΛ. We have the following results immediately from Theorem 2.7
and Corollary 2.8.
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Theorem 2.15. We have bijections

sτ−-tiltΛ←→ f-torfΛ, τ−-tiltΛ←→ sf-torfΛ and cotiltΛ←→ ff-torfΛ

given by sτ−-tiltΛ ∋ T 7→ SubT ∈ f-torfΛ and f-torfΛ ∋ F 7→ I(F) ∈ sτ−-tiltΛ.

On the other hand, we have a bijection

sτ -tiltΛ←→ sτ−-tiltΛ

given by (M,P ) 7→ D((M,P )†) = (τM ⊕ νP, νMpr). Thus we have bijections

f-torsΛ←→ sτ -tiltΛ←→ sτ−-tiltΛ←→ f-torfΛ

by Theorems 2.7 and 2.15. We end this subsection with the following observation.

Proposition 2.16. (a) The above bijections send T ∈ f-torsΛ to T ⊥ ∈ f-torfΛ.
(b) For any support τ -tilting pair (M,P ) for Λ, the torsion pairs (FacM,M⊥) and

(⊥(τM ⊕ νP ),Sub(τM ⊕ νP )) in modΛ coincide.

Proof. (b) We only have to show FacM = ⊥(τM ⊕νP ). It follows from Proposition 1.2(b)
and its dual that (FacM,M⊥) and (⊥(τM ⊕ νP ),Sub(τM ⊕ νP )) are torsion pairs in
modΛ. They coincide since FacM = ⊥(τM) ∩ P⊥ = ⊥(τM ⊕ νP ) holds by Corollary
2.13(c).

(a) Let T ∈ f-torsΛ and (M,P ) be the corresponding support τ -tilting pair for Λ. Since
T ⊥ = M⊥ and D(M †) = τM ⊕ νP , the assertion follows from (b). �

2.3. Mutation of support τ-tilting modules. In this section we prove our main result
on complements for almost complete support τ -tilting pairs. Let us start with the following
result.

Proposition 2.17. Let T be a basic τ -rigid module which is not τ -tilting. Then there are
at least two basic support τ -tilting modules which have T as a direct summand.

Proof. By Theorem 2.12, T1 = FacT is properly contained in T2 = ⊥(τT ). By Theorem
2.7 and Lemma 2.11, we have two different support τ -tilting modules P (T1) and P (T2) up
to isomorphism. By Proposition 2.9, they are extensions of T . �

Our aim is to prove the following result.

Theorem 2.18. Let Λ be a finite dimensional K-algebra. Then any basic almost complete
support τ -tilting pair (U,Q) for Λ is a direct summand of exactly two basic support τ -tilting
pairs (T, P ) and (T ′, P ′) for Λ. Moreover we have {FacT,FacT ′} = {FacU,⊥(τU) ∩Q⊥}.

Before proving Theorem 2.18, we introduce a notion of mutation.

Definition 2.19. Two basic support τ -tilting pairs (T, P ) and (T ′, P ′) for Λ are said to be
mutations of each other if there exists a basic almost complete support τ -tilting pair (U,Q)
which is a direct summand of (T, P ) and (T ′, P ′). In this case we write (T ′, P ′) = µX(T, P )
or simply T ′ = µX(T ) if X is an indecomposable Λ-module satisfying either T = U ⊕X
or P = Q⊕X.

We can also describe mutation as follows: Let (T, P ) be a basic support τ -tilting pair
for Λ, and X an indecomposable direct summand of either T or P .

(a) If X is a direct summand of T , precisely one of the following holds.
• There exists an indecomposable Λ-module Y such thatX 6≃ Y and µX(T, P ) :=

(T/X ⊕ Y, P ) is a basic support τ -tilting pair for Λ.
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• There exists an indecomposable projective Λ-module Y such that µX(T, P ) :=
(T/X,P ⊕ Y ) is a basic support τ -tilting pair for Λ.

(b) If X is a direct summand of P , there exists an indecomposable Λ-module Y such
that µX(T, P ) := (T ⊕ Y, P/X) is a basic support τ -tilting pair for Λ.

Moreover, such a module Y in each case is unique up to isomorphism.
In the rest of this subsection, we give a proof of Theorem 2.18. The following is the

first step.

Lemma 2.20. Let (T, P ) be a τ -rigid pair for Λ. If U is a τ -rigid Λ-module satisfying
⊥(τT ) ∩ P⊥ ⊆ ⊥(τU), then there is an exact sequence U

f
−→ T ′ → C → 0 satisfying the

following conditions.

• f is a minimal left (FacT )-approximation.
• T ′ is in addT , C is in addP (FacT ) and addT ′ ∩ addC = 0.

Proof. Consider the exact sequence U
f
−→ T ′ g

−→ C → 0, where f is a minimal left (addT )-
approximation. Then g ∈ rad(T ′, C).

(i) f is a minimal left (FacT )-approximation: Take any X ∈ FacT and s : U → X. By
the Wakamatsu-type Lemma 2.6, there exists an exact sequence

0→ Y → T ′′ h
−→ X → 0

where h is a right (addT )-approximation and Y ∈ ⊥(τT ). Moreover we have Y ∈ P⊥

since T ′′ ∈ P⊥. By the assumption that ⊥(τT )∩P⊥ ⊆ ⊥(τU), we have HomΛ(Y, τU) = 0,
hence Ext1Λ(U, Y ) = 0. Then we have an exact sequence

HomΛ(U, T ′′)→ HomΛ(U,X)→ Ext1Λ(U, Y ) = 0.

Thus there is some t : U → T ′′ such that s = ht.

U
t

~~
s

��

f // T ′

0 // Y // T ′′ h // X // 0

Since T ′′ ∈ addT and f is a left (addT )-approximation, there is some u : T ′ → T ′′ such
that t = uf . Hence we have hu : T ′ → X such that (hu)f = ht = s, and the claim follows.

(ii) C ∈ addP (FacT ): We have an exact sequence 0 → Im f
i
−→ T ′ → C → 0, which

gives rise to an exact sequence

HomΛ(T ′,FacT )
(i,FacT )
−−−−−→ HomΛ(Im f,FacT )→ Ext1Λ(C,FacT )→ Ext1Λ(T ′,FacT ).

We know from (i) that (f,FacT ) : HomΛ(T ′,FacT ) → HomΛ(U,FacT ) is surjective, and
hence (i,FacT ) is surjective. Further, Ext1Λ(T ′,FacT ) = 0 by Proposition 1.2 since T ′ is
in addT and T is τ -rigid. Then it follows that Ext1Λ(C,FacT ) = 0. Since C ∈ FacT , this
means that C is Ext-projective in FacT .

(iii) addT ′ ∩ addC = 0: To show this, it is clearly sufficient to show HomΛ(T ′, C) ⊆
rad(T ′, C).

Let s : T ′ → C be an arbitrary map. We have an exact sequence HomΛ(U, T ′) →
HomΛ(U,C) → Ext1Λ(U, Im f). Since Ext1Λ(U, Im f) = 0 because Im f is in FacU , and
U is τ -tilting, there is a map t : U → T ′ such that sf = gt. Since f is a left (addT )-
approximation, and T ′ is in addT , there is a map u : T ′ → T ′ such that t = uf . Then
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(s− gu)f = sf − gt = 0, hence there is some v : C → C such that s− gu = vg, and hence
s = gu+ vg.

U
f //

t
��

T ′
g //

s

��

u

zz

C //

v

zz

0

U
%% %%KK

KKK
f // T ′

g // C // 0

Im f
99

99rrrrr

Since g ∈ rad(T ′, C), it follows that s ∈ rad(T ′, C). Hence HomΛ(T ′, C) ⊆ rad(T ′, C), and
consequently addT ′ ∩ addC = 0. �

The following information on the previous lemma is useful.

Lemma 2.21. In Lemma 2.20, assume C = 0. Then f : U → T ′ induces an isomorphism
U/U〈e〉 ≃ T ′ for a maximal idempotent e of Λ satisfying Te = 0. In particular, if T is
sincere, then U ≃ T ′.

Proof. By our assumption, we have an exact sequence

0 // Ker f // U
f // T ′ // 0. (5)

Applying HomΛ(−,FacT ), we have an exact sequence

HomΛ(T ′,FacT )
(f,FacT )
−−−−−→ HomΛ(U,FacT )→ HomΛ(Ker f,FacT )→ Ext1Λ(T ′,FacT ).

We have Ext1Λ(T ′,FacT ) = 0 because T ′ is in addT and T is τ -tilting. Since (f,FacT ) is
surjective, it follows that HomΛ(Ker f,FacT ) = 0 and so Ker f ∈ ⊥(FacT ). On the other
hand, since T is a sincere (Λ/〈e〉)-module, mod(Λ/〈e〉) is the smallest torsionfree class
of modΛ containing FacT . Thus we have a torsion pair (⊥(FacT ),mod(Λ/〈e〉)), and the
canonical sequence for X associated with this torsion pair is given by

0 // X〈e〉 // X // X/X〈e〉 // 0.

Since Ker f ∈ ⊥(FacT ) and T ′ ∈ FacT ⊆ mod(Λ/〈e〉), the canonical sequence of U is given
by (5). Thus we have U/U〈e〉 ≃ T ′. �

In the next result we prove a useful restriction on X when T = X ⊕ U is τ -tilting and
X is indecomposable.

Proposition 2.22. Let T = X⊕U be a basic τ -tilting Λ-module, with X indecomposable.
Then exactly one of ⊥(τU) ⊆ ⊥(τX) and X ∈ FacU holds.

Proof. First we assume that ⊥(τU) ⊆ ⊥(τX) and X ∈ FacU both hold. Then we have

FacU = FacT = ⊥(τT ) = ⊥(τU),

which implies that U is τ -tilting by Theorem 2.12, a contradiction.
Let Y ⊕U be the Bongartz completion of U . Then we have ⊥τ(Y ⊕U) = ⊥(τU) ⊇ ⊥τT .

Using the triple (T, 0, Y ⊕U) instead of (T, P,U) in Lemma 2.20, there is an exact sequence

Y ⊕ U
(f 0
0 1) // T ′ ⊕ U // T ′′ // 0,

where f : Y → T ′ and
(f 0
0 1

)
: Y ⊕ U → T ′ ⊕ U are minimal left (FacT )-approximations,

T ′ and T ′′ are in addT and add(T ′ ⊕ U) ∩ addT ′′ = 0. Then we have T ′′ ∈ addX.
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Assume first T ′′ 6= 0. Then T ′′ ≃ Xℓ for some ℓ ≥ 1, so we have T ′ ∈ addU . Since we
have a surjective map T ′ → T ′′, we have X ∈ FacT ′ ⊆ FacU .

Assume now that T ′′ = 0. Applying Lemma 2.21, we have that
(
f 0
0 1

)
: Y ⊕U → T ′⊕U

is an isomorphism since T is sincere. Thus Y ∈ addT , and we must have Y ≃ X. Thus
⊥(τX) = ⊥(τY ) ⊇ ⊥(τU). �

Now we are ready to prove Theorem 2.18.
(i) First we assume that Q = 0 (i.e. U is an almost complete τ -tilting module).
In view of Proposition 2.17 it only remains to show that there are at most two extensions

of U to a support τ -tilting module. Using the bijection in Theorem 2.7, we only have to
show that for any support τ -tilting module X ⊕U , the torsion class Fac(X ⊕U) is either
FacU or ⊥(τU). If X = 0 (i.e. U is a support τ -tilting module), then this is clear.
If X 6= 0, then X ⊕ U is a τ -tilting Λ-module. Moreover by Proposition 2.22 either
X ∈ FacU or ⊥(τU) ⊆ ⊥(τX) holds. If X ∈ FacU , then we have Fac(X ⊕ U) = FacU . If
⊥(τU) ⊆ ⊥(τX), then we have Fac(X ⊕ U) = ⊥(τ(X ⊕ U)) = ⊥(τU). Thus the assertion
follows.

(ii) Let (U,Q) be a basic almost complete support τ -tilting pair for Λ and e be an
idempotent of Λ such that addQ = addeΛ. Then U is an almost complete τ -tilting (Λ/〈e〉)-
module by Proposition 2.3(a). It follows from (i) that U is a direct summand of exactly two
basic support τ -tilting (Λ/〈e〉)-modules. Thus the assertion follows since basic support
τ -tilting (Λ/〈e〉)-modules which have U as a direct summand correspond bijectively to
basic support τ -tilting pairs for Λ which have (U,Q) as a direct summand. �

The following special case of Lemma 2.20 is useful.

Proposition 2.23. Let T be a support τ -tilting Λ-module. Assume that one of the fol-
lowing conditions is satisfied.

(i) U is a τ -rigid Λ-module such that FacT ⊆ ⊥(τU).
(ii) U is a support τ -tilting Λ-module such that U ≥ T .

Then there exists an exact sequence U
f
−→ T 0 → T 1 → 0 such that f is a minimal left

(FacT )-approximation of U and T 0 and T 1 are in addT and satisfy addT 0 ∩ addT 1 = 0.

Proof. Let (T, P ) be a support τ -tilting pair for Λ. Then ⊥(τT ) ∩ P⊥ = FacT holds by
Corollary 2.13(c). Thus ⊥(τT )∩P⊥ ⊆ ⊥(τU) holds for both cases. Hence the assertion is
immediate from Lemma 2.20 since C is in addP (FacT ) = addT by Theorem 2.7. �

The following well-known result [HU1] can be shown as an application of our results.

Corollary 2.24. Let Λ be a finite dimensional K-algebra and U a basic almost complete
tilting Λ-module. Then U is faithful if and only if U is a direct summand of precisely two
basic tilting Λ-modules.

Proof. It follows from Theorem 2.18 that U is a direct summand of exactly two basic
support τ -tilting Λ-modules T and T ′ such that FacT = FacU . If U is faithful, then T
and T ′ are tilting Λ-modules by Proposition 2.2(b). Thus the ‘only if’ part follows. If U is
not faithful, then T is not a tilting Λ-module since it is not faithful because FacT = FacU .
Thus the ‘if’ part follows. �

2.4. Partial order, exchange sequences and Hasse quiver. In this section we inves-
tigate two quivers. One is defined by partial order, and the other one by mutation. We
show that they coincide.
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Since we have a bijection T 7→ FacT between sτ -tiltΛ and f-torsΛ, then inclusion in
f-torsΛ gives rise to a partial order on sτ -tiltΛ, and we have an associated Hasse quiver.
Note that sτ -tiltΛ has a unique maximal element Λ and a unique minimal element 0.

The following description of when T ≥ U holds will be useful.

Lemma 2.25. Let (T, P ) and (U,Q) be support τ -tilting pairs for Λ. Then the following
conditions are equivalent.

(a) T ≥ U .
(b) HomΛ(U, τT ) = 0 and addP ⊆ addQ.
(c) HomΛ(Unp, τTnp) = 0, addTpr ⊇ addUpr and addP ⊆ addQ.

Proof. (a)⇒(c) Since FacT ⊇ FacU , we have addTpr ⊇ addUpr and HomΛ(U, τT ) = 0.
Moreover addP ⊆ addQ holds by Proposition 2.2(a).

(b)⇒(a) We have FacT = ⊥(τT ) ∩ P⊥ by Corollary 2.13(c). Since addP ⊆ addQ, we
have U ∈ Q⊥ ⊆ P⊥. Since HomΛ(U, τT ) = 0, we have U ∈ ⊥(τT ) ∩ P⊥ = FacT , which
implies FacT ⊇ FacU .

(c)⇒(b) This is clear. �

Also we shall need the following.

Proposition 2.26. Let T,U, V ∈ sτ -tiltΛ such that T ≥ U ≥ V . Then addT ∩ addV ⊆
addU .

Proof. Clearly we have P (FacT )∩FacU ⊆ P (FacU) = addU . Thus we have addT∩addV ⊆
P (FacT ) ∩ FacU ⊆ addU . �

The following observation is immediate.

Proposition 2.27. (a) For any idempotent e of Λ, the inclusion sτ -tilt(Λ/〈e〉) →
sτ -tiltΛ preserves the partial order.

(b) The bijection (−)† : sτ -tiltΛ → sτ -tiltΛop in Theorem 2.14 reverses the partial
order.

Proof. (a) This is clear.
(b) Let (T, P ) and (U,Q) be support τ -tilting pairs of Λ. By Lemma 2.25, T ≥ U if

and only if HomΛ(Unp, τTnp) = 0, addTpr ⊇ addUpr and addP ⊆ addQ. This is equivalent
to HomΛop(TrTnp, τ TrUnp) = 0, addT ∗

pr ⊇ addU∗
pr and addP ∗ ⊆ addQ∗. By Lemma 2.25

again, this is equivalent to (TrTnp ⊕ P
∗, T ∗

pr) ≤ (TrUnp ⊕Q
∗, U∗

pr). �

In the rest of this section, we study a relationship between partial order and mutation.

Definition-Proposition 2.28. Let T = X⊕U and T ′ be support τ -tilting Λ-modules such
that T ′ = µX(T ) for some indecomposable Λ-module X. Then either T > T ′ or T < T ′

holds by Theorem 2.18. We say that T ′ is a left mutation (respectively, right mutation)
of T and we write T ′ = µ−X(T ) (respectively, T ′ = µ+

X(T )) if the following equivalent
conditions are satisfied.

(a) T > T ′ (respectively, T < T ′).
(b) X /∈ FacU (respectively, X ∈ FacU).
(c) ⊥(τX) ⊇ ⊥(τU) (respectively, ⊥(τX) 6⊇ ⊥(τU)).

If T is a τ -tilting Λ-module, then the following condition is also equivalent to the above
conditions.

(d) T is a Bongartz completion of U (respectively, T is a non-Bongartz completion of
U).
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Proof. This follows immediately from Theorem 2.18 and Proposition 2.22. �

Definition 2.29. We define the support τ -tilting quiver Q(sτ -tiltΛ) of Λ as follows:

• The set of vertices is sτ -tiltΛ.
• We draw an arrow from T to U if U is a left mutation of T .

Next we show that one can calculate left mutation of support τ -tilting Λ-modules by
exchange sequences which are constructed from left approximations.

Theorem 2.30. Let T = X ⊕ U be a basic τ -tilting module which is the Bongartz com-

pletion of U , where X is indecomposable. Let X
f
−→ U ′ g

−→ Y → 0 be an exact sequence,
where f is a minimal left (addU)-approximation. Then we have the following.

(a) If U is not sincere, then Y = 0. In this case U = µ−X(T ) holds and this is a basic
support τ -tilting Λ-module which is not τ -tilting.

(b) If U is sincere, then Y is a direct sum of copies of an indecomposable Λ-module Y1

and is not in addT . In this case Y1⊕U = µ−X(T ) holds and this is a basic τ -tilting
Λ-module.

Proof. We first make some preliminary observations. We have ⊥(τU) ⊆ ⊥(τX) because T
is a Bongartz completion of U . By Lemma 2.20, we have an exact sequence

X
f
−→ U ′ g

−→ Y → 0

such that U ′ is in addU , Y is in addP (FacU), addU ′ ∩ addY = 0 and f is a left
(FacU)-approximation. We have Ext1Λ(Y,FacU) = 0 since Y ∈ addP (FacU), and hence
HomΛ(U, τY ) = 0 by Proposition 1.2. We have an injective map HomΛ(Y, τ(Y ⊕ U)) →
HomΛ(U ′, τ(Y ⊕ U)). Since U is τ -rigid, we have that HomΛ(U ′, τ(Y ⊕ U)) = 0, and
consequently HomΛ(Y, τ(Y ⊕ U)) = 0. It follows that Y ⊕ U is τ -rigid.

We show that g : U ′ → Y is a right (addT )-approximation. To see this, consider the
exact sequence

HomΛ(T,U ′)→ HomΛ(T, Y )→ Ext1Λ(T, Im f).

Since Im f ∈ FacT , we have Ext1Λ(T, Im f) = 0, which proves the claim.
We have that Y does not have any indecomposable direct summand from addT . For if

T ′ in addT is an indecomposable direct summand of Y , then the natural inclusion T ′ → Y
factors through g : U ′ → Y . This contradicts the fact that f : X → U ′ is left minimal.

Now we are ready to prove the claims (a) and (b).
(a) Assume first that U is not sincere. Let e be a primitive idempotent with Ue = 0.

Then U is a τ -rigid (Λ/〈e〉)-module. Since |U | = |Λ| − 1 = |Λ/〈e〉|, we have that U is a
τ -tilting (Λ/〈e〉)-module, and hence a support τ -tilting Λ-module which is not τ -tilting.

(b) Next assume that U is sincere. Since we have already shown that Y ⊕ U is τ -rigid
and Y /∈ addT , it is enough to show Y 6= 0. Otherwise we have X ≃ U ′ by Lemma 2.21
since U is sincere. This is not possible since U ′ is in addU , but X is not. Hence it follows
that Y 6= 0. �

We do not know the answer to the following.

Question 2.31. Is Y always indecomposable in Theorem 2.30(b)?

Note that right mutation can not be calculated as directly as left mutation.

Remark 2.32. Let T and T ′ be support τ -tilting Λ-modules such that T ′ = µX(T ) for
some indecomposable Λ-module X.
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(a) If T ′ = µ−X(T ), then we can calculate T ′ by applying Theorem 2.30.

(b) If T ′ = µ+
X(T ), then we can calculate T ′ using the following three steps: First

calculate T †. Then calculate T ′† by applying Theorem 2.30 to T †. Finally calculate
T ′ by applying (−)† to T ′†.

Our next main result is the following.

Theorem 2.33. For T,U ∈ sτ -tiltΛ, the following conditions are equivalent.

(a) U is a left mutation of T .
(b) T is a right mutation of U .
(c) T > U and there is no V ∈ sτ -tiltΛ such that T > V > U .

Before proving Theorem 2.33, we give the following result as a direct consequence.

Corollary 2.34. The support τ -tilting quiver Q(sτ -tiltΛ) is the Hasse quiver of the par-
tially ordered set sτ -tiltΛ.

The following analog of [AI, Proposition 2.36] is a main step to prove Theorem 2.33.

Theorem 2.35. Let U and T be basic support τ -tilting Λ-modules such that U > T . Then:

(a) There exists a right mutation V of T such that U ≥ V .
(b) There exists a left mutation V ′ of U such that V ′ ≥ T .

Before proving Theorem 2.35, we finish the proof of Theorem 2.33 by using Theorem
2.35.

(a)⇔(b) Immediate from the definitions.
(a)⇒(c) Assume that V ∈ sτ -tiltΛ satisfies T > V ≥ U . Then we have addT ∩ addU ⊆

addV by Proposition 2.26. Thus T and V have an almost complete support τ -tilting pair
for Λ as a common direct summand. Hence we have V ≃ U by Theorem 2.18.

(c)⇒(a) By Theorem 2.35, there exists a left mutation V of T such that T > V ≥ U .
Then V ≃ U by our assumption. Thus U is a left mutation of T . �

To prove Theorem 2.35, we shall need the following results.

Lemma 2.36. Let U and T be basic support τ -tilting Λ-modules such that U > T . Let

U
f
−→ T 0 → T 1 → 0 be an exact sequence as given in Proposition 2.23. If X is an

indecomposable direct summand of T which does not belong to addT 0, then we have U ≥
µX(T ) > T .

Proof. First we show µX(T ) > T . Since X is in FacT ⊆ FacU , there exists a surjective
map a : U ℓ → X for some ℓ > 0. Since f ℓ : U ℓ → (T 0)ℓ is a left (addT )-approximation, a
factors through f ℓ and we have X ∈ FacT 0. It follows from X /∈ addT 0 that X ∈ FacT 0 ⊆
FacµX(T ). Thus FacT ⊆ FacµX(T ) and we have µX(T ) > T .

Next we show U ≥ µX(T ). Let (U, eΛ) and (T, e′Λ) be support τ -tilting pairs for Λ. By
Proposition 2.27(b), we know that U † = TrU⊕Λe and T † = TrT⊕Λe′ are support τ -tilting
Λop-modules such that U † < T †. In particular, any minimal right (addT †)-approximation

TrT0 ⊕ P → U † (6)

of U † with T0 ∈ addTnp and P ∈ addΛe′ is surjective. The following observation shows
T0 ∈ addT 0.
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Lemma 2.37. Let X and Y be in modΛ and P in projΛop. Let f : Y → X0 be a left
(addX)-approximation of Y and g : TrX0⊕P0 → TrY be a minimal right (add TrX⊕P )-
approximation of TrY with X0 ∈ addXnp and P0 ∈ addP . If g is surjective, then X0 is a
direct summand of X0.

Proof. Assume that g is surjective and consider the exact sequence

0 // K
h // TrX0 ⊕ P0

g // TrY // 0.

Then h is in rad(K,TrX0 ⊕ P0) since g is right minimal. It is easy to see that in the
stable category modΛop, a pseudokernel of g is given by h, which is in the radical of
modΛop. In particular, g is a minimal right (add TrX)-approximation in modΛop. Since
Tr : modΛ→ modΛop is a duality, we have that Tr g : TrTrY → Tr(TrX0⊕P0) = X0 is a
minimal left (addX)-approximation of TrTrY in modΛ. On the other hand, f : Y → X0

is clearly a left (addX)-approximation of Y in modΛ. Since Tr TrY is a direct summand
of Y , we have that X0 is a direct summand of X0 in modΛ. Thus the assertion follows. �

We now finish the proof of Lemma 2.36.
Since T0 ∈ addT 0 and X /∈ addT 0, we have X /∈ addT0 and hence U † ∈ Fac(Tr(T/X)⊕

Λe′) by (6). Hence we have U † ≤ µX(T )†, which implies U ≥ µX(T ) by Proposition
2.27(b). �

Now we are ready to prove Theorem 2.35.
We only prove (a) since (b) follows from (a) and Proposition 2.27(b).
(i) Let (U, eΛ) and (T, e′Λ) be support τ -tilting pairs for Λ. Let

U // T 0 // T 1 // 0

be an exact sequence given by Proposition 2.23. If T /∈ addT 0, then any indecomposable
direct summand X of T which is not in addT 0 satisfies U ≥ µX(T ) > T by Lemma 2.36.
Thus we assume T ∈ addT 0 in the rest of proof. Since addT 0∩addT 1 = 0, we have T 1 = 0
which implies T 0 = U/U〈e′〉 by Lemma 2.21.

(ii) By Proposition 2.27(b), we know that U † = TrU ⊕ Λe and T † = TrT ⊕ Λe′ are
support τ -tilting Λop-modules such that U † < T †. Let

T †
0

f // U † // 0

be a minimal right (addT †)-approximation of U †. If Λe′ /∈ addT †
0 , then any indecomposable

direct summand Q of Λe′ which is not in addT †
0 satisfies U † ∈ Fac(T †/Q). Thus we have

U † ≤ µQ(T †) and U ≥ µQ∗(T ) > T by Proposition 2.27. We assume Λe′ ∈ addT †
0 in the

rest of proof.
(iii) We show that there exists an exact sequence

P1
a // TrT 0 ⊕ P0

// TrU // 0 (7)

in modΛop such that P0 ∈ projΛop, P1 ∈ addΛe′, a ∈ rad(P1,Tr T 0 ⊕ P0) and the map

(a,U †) : HomΛop(TrT 0 ⊕ P0, U
†) // HomΛop(P1, U

†) (8)

is surjective.
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Let Q1
d
−→ Q0 → U → 0 be a minimal projective presentation of U . Let d′ : Q′

1 → Q0

be a right (adde′Λ)-approximation of Q0. Since T 0 = U/U〈e′〉 by (i), we have a projective

presentation Q′
1 ⊕Q1

(d′

d )
−−→ Q0 → T 0 → 0 of T 0. Thus we have an exact sequence

Q∗
0

(d′∗ d∗)// Q′
1
∗ ⊕Q∗

1

(c′

c ) // TrT 0 ⊕Q // 0

for some projective Λop-module Q. We have a commutative diagram

Q∗
0

d∗ //

d′∗

��

Q∗
1

//

−c
��

TrU // 0

Q′
1
∗ c′ // TrT 0 ⊕Q // TrU // 0

of exact sequences. Now we decompose the morphism c′ as

c′ =
(
a 0
0 1Q′′

)
: Q′

1
∗ = P1 ⊕Q

′′ // TrT 0 ⊕Q = TrT 0 ⊕ P0 ⊕Q′′,

where a is in the radical. Then we naturally have an exact sequence (7), and clearly we
have P0 ∈ projΛop and P1 ∈ addΛe′ by our construction. It remains to show that (8) is
surjective. We only have to show that the map

(c′, U †) : HomΛop(TrT 0 ⊕Q,U †) // HomΛop(Q′
1
∗, U †)

is surjective. Take any map s : Q′
1
∗ → U †. By Proposition 2.4(c), there exists t : Q∗

1 → U †

such that sd′∗ = td∗. Thus there exists u : TrT 0⊕Q→ U † such that s = uc′ and t = −uc,
which shows the assertion.

(iv) First we assume P1 in (iii) is non-zero. Since Λe′ ∈ addT †
0 by (ii) and P1 ∈ addΛe′,

we have P1 ∈ addT †
0 . Thus there exists a morphism s : P1 → T †

0 which is not in the
radical. Since (8) is surjective, there exists t : TrT 0 ⊕ P0 → U † such that ta = fs.
Since f is a surjective right (addT †)-approximation and P0 is projective, there exists

u : TrT 0 ⊕ P0 → T †
0 such that t = fu.

P1
a //

s
��

TrT 0 ⊕ P0
//

t

��
u

zz

TrU // 0

T †
0 f

// U † // 0

Since f(s− ua) = 0 and f is right minimal, we have that s− ua is in the radical. Since a
is in the radical, so is s, a contradiction.

Consequently, we have P1 = 0. Thus TrT 0 ⊕ P0 ≃ TrU and TrT 0 ≃ TrU . Since
T ∈ addT 0 by our assumption, we have addTnp = addUnp. Since U > T , we have
Tpr ∈ addUpr. Thus U ≃ T ⊕ P for some projective Λ-module P .

(v) It remains to consider the case U ≃ T ⊕ P for some projective Λ-module P .
Since U > T , we have addeΛ ( adde′Λ. Take any indecomposable summand e′′Λ

of (e′ − e)Λ and let V := µe′′Λ(T, e′Λ), which has a form (T ⊕ X, (e′ − e′′)Λ) with X
indecomposable. Clearly V > T holds. Since τU ∈ addτ(T ⊕X) by our assumption and
eΛ ∈ add(e′ − e′′)Λ by our choice of e′′, we have

FacU = ⊥(τU) ∩ (eΛ)⊥ ⊇ ⊥(τ(T ⊕X)) ∩ ((e′ − e′′)Λ)⊥ = FacV
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by Corollary 2.13(c). Thus U ≥ V holds. �

We end this section with the following application, which is an analog of [HU2, Corollary
2.2].

Corollary 2.38. If Q(sτ -tiltΛ) has a finite connected component C, then Q(sτ -tiltΛ) = C.

Proof. Fix T in C. Applying Theorem 2.35(a) to Λ ≥ T , we have a sequence T = T0 <
T1 < T2 < · · · of right mutations of support τ -tilting modules such that Λ ≥ Ti for any
i. Since C is finite, this sequence must be finite. Thus Λ = Ti for some i, and Λ belongs
to C. Now we fix any U ∈ sτ -tiltΛ. Applying Theorem 2.35(b) to Λ ≥ U , we have a
sequence Λ = V0 > V1 > V2 > · · · of left mutations of support τ -tilting modules such that
Vi ≥ U for any i. Since C is finite, this sequence must be finite. Thus U = Vj for some j,
and U belongs to C. �

3. Connection with silting theory

Throughout this section, let Λ be a finite dimensional K-algebra. Any almost complete
silting complex has infinitely many complements. But if we restrict to two-term silting
complexes, we get another class of objects extending the (classical) tilting modules and
satisfying the two complement property (Corollary 3.8). Moreover we will show that there
is a bijection between support τ -tilting Λ-modules and two-term silting complexes for
Λ, which is of independent interest (Theorem 3.2). The two-term silting complexes are
defined as follows.

Definition 3.1. We call a complex P = (P i, di) in Kb(projΛ) two-term if P i = 0 for all
i 6= 0,−1. Clearly P ∈ Kb(projΛ) is two-term if and only if Λ ≥ P ≥ Λ[1].

We denote by 2-siltΛ (respectively, 2-presiltΛ) the set of isomorphism classes of basic
two-term silting (respectively, presilting) complexes for Λ.

Clearly any two-term complex is isomorphic to a two-term complex P = (P i, di) satis-
fying d−1 ∈ rad(P−1, P 0) in Kb(projΛ). Moreover, for any two-term complexes P and Q,
we have HomKb(projΛ)(P,Q[i]) = 0 for any i 6= −1, 0, 1.

The aim of this section is to prove the following result.

Theorem 3.2. Let Λ be a finite dimensional K-algebra. Then there exists a bijection

2-siltΛ←→ sτ -tiltΛ

given by 2-siltΛ ∋ P 7→ H0(P ) ∈ sτ -tiltΛ and sτ -tiltΛ ∋ (M,P ) 7→ (P1 ⊕ P
(f 0)
−−−→ P0) ∈

2-siltΛ where f : P1 → P0 is a minimal projective presentation of M .

The following result is quite useful.

Proposition 3.3. Let P be a two-term presilting complex for Λ.

(a) P is a direct summand of a two-term silting complex for Λ.
(b) P is a silting complex for Λ if and only if |P | = |Λ|.

Proof. (a) This is shown in [Ai, Proposition 2.16].
(b) The ‘only if’ part follows from Proposition 1.6(a). We will show the ‘if’ part. Let

P be a two-term presilting complex for Λ with |P | = |Λ|. By (a), there exists a complex
X such that P ⊕X is silting. Then we have |P ⊕X| = |Λ| = |P | by Proposition 1.6(a),
so X is in addP . Thus P is silting. �

The following lemma is important.
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Lemma 3.4. Let M,N ∈ modΛ. Let P1
p1
→ P0

p0
→ M → 0 and Q1

q1
→ Q0

q0
→ N → 0 be

minimal projective presentations of M and N respectively. Let P = (P1
p1
→ P0) and Q =

(Q1
q1
→ Q0) be two-term complexes for Λ. Then the following conditions are equivalent:

(a) HomΛ(N, τM) = 0.
(b) HomKb(projΛ)(P,Q[1]) = 0.

In particular, M is a τ -rigid Λ-module if and only if P is a presilting complex for Λ.

Proof. The condition (a) is equivalent to the fact that (p1, N) : HomΛ(P0, N)→ HomΛ(P1, N)
is surjective by Proposition 2.4(b).

(a)⇒(b) Any morphism f ∈ HomKb(projΛ)(P,Q[1]) is given by some f ∈ HomΛ(P1, Q0).

Since (p1, N) is surjective, there exists g : P0 → N such that q0f = gp1. Moreover, since
P0 is projective, there exists h0 : P0 → Q0 such that q0h0 = g. Since q0(f − h0p1) = 0, we
have h1 : P1 → Q1 with f = q1h1 + h0p1.

0 // P1
p1 //

f
��

h1

~~

P0
p0 //

g

��

h0

~~

M // 0

0 // Q1 q1
// Q0 q0

// N // 0.

Hence we have HomKb(projΛ)(P,Q[1]) = 0.

(b)⇒(a) Take any f ∈ HomΛ(P1, N). Since P1 is projective, there exists g : P1 → Q0

such that q0g = f .

P1
p1 //

g

��

f

  A
AA

AA
AA

A P0

Q1 q1
// Q0 q0

// N // 0.

Then g gives a morphism P → Q[1] in Kb(projΛ). Since HomKb(projΛ)(P,Q[1]) = 0, there
exist h0 : P0 → Q0 and h1 : P1 → Q1 such that g = q1h1 + h0p1. Hence we have
f = q0(q1h1 + h0p1) = q0h0p1. Therefore (p1, N) is surjective. �

We also need the following observation.

Lemma 3.5. Let P1
p1
→ P0

p0
→M → 0 be a minimal projective presentation of M in modΛ

and P := (P1
p1
→ P0) be a two-term complex for Λ. Then for any Q in projΛ, the following

conditions are equivalent.

(a) HomΛ(Q,M) = 0.
(b) HomKb(projΛ)(Q,P ) = 0.

Proof. The proof is left to the reader since it is straightforward. �

The following result shows that silting complexes for Λ give support τ -tilting modules.

Proposition 3.6. Let P = (P1
d
→ P0) be a two-term complex for Λ and M := Cok d.

(a) If P is a silting complex for Λ and d is right minimal, then M is a τ -tilting Λ-
module.

(b) If P is a silting complex for Λ, then M is a support τ -tilting Λ-module.
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Proof. (b) We write d = (d′ 0) : P1 = P ′
1 ⊕ P

′′
1 → P0, where d′ is right minimal. Then the

sequence P ′
1
d′
→ P0 → M → 0 is a minimal projective presentation of M . We show that

(M,P ′′
1 ) is a support τ -tilting pair for Λ. Since P is silting, M is a τ -rigid Λ-module by

Lemma 3.4. On the other hand, since P is silting, we have HomKb(projΛ)(P
′′
1 , P ) = 0. By

Lemma 3.5, we have HomΛ(P ′′
1 ,M) = 0. Thus (M,P ′′

1 ) is a τ -rigid pair for Λ. Since d′ is

a minimal projective presentation of M , we have |M | = |P ′
1
d′
−→ P0|. Thus we have

|M |+ |P ′′
1 | = |P

′
1
d′
−→ P0|+ |P

′′
1 | = |P |,

which is equal to |Λ| by Proposition 1.6(a). Hence (M,P ′′
1 ) is a support τ -tilting pair for

Λ.
(a) This is the case P ′′

1 = 0 in (b). �

The following result shows that support τ -tilting Λ-modules give silting complexes for
Λ.

Proposition 3.7. Let P1
d1−→ P0

d0−→ M → 0 be a minimal projective presentation of M
in modΛ.

(a) If M is a τ -tilting Λ-module, then (P1
d1−→ P0) is a silting complex for Λ.

(b) If (M,Q) is a support τ -tilting pair for Λ, then P1⊕Q
(d1 0)
−−−−→ P0 is a silting complex

for Λ.

Proof. (b) We know that (P1
d1−→ P0) is a presilting complex for Λ by Lemma 3.4. Let

P := (P1 ⊕Q
(d1 0)
−−−−→ P0). By Lemmas 3.4 and 3.5, we have that P is a presilting complex

for Λ. Since d1 is a minimal projective presentation, we have |P1
d1−→ P0| = |M |. Moreover,

since (M,Q) is a support τ -tilting pair for Λ, we have |M |+ |Q| = |Λ|. Thus we have

|P | = |P1
d1−→ P0|+ |Q| = |M |+ |Q| = |Λ|.

Hence P is a silting complex for Λ by Proposition 3.3(b).
(a) This is the case Q = 0 in (b). �

Now Theorem 3.2 follows from Propositions 3.6 and 3.7. �

We give some applications of Theorem 3.2.

Corollary 3.8. Let Λ be a finite dimensional K-algebra.

(a) Any basic two-term presilting complex P for Λ with |P | = |Λ| − 1 is a direct
summand of exactly two basic two-term silting complexes for Λ.

(b) Let P,Q ∈ 2-siltΛ. Then P and Q have all but one indecomposable direct summand
in common if and only if P is a left or right mutation of Q.

Proof. (a) This follows from Theorems 2.18 and 3.2.
(b) This is immediate from (a). �

Now we define Q(2-siltΛ) as the full subquiver of Q(siltΛ) with vertices corresponding
to two-term silting complexes for Λ.

Corollary 3.9. The bijection in Theorem 3.2 is an isomorphism of the partially or-
dered sets. In particular, it induces an isomorphism between the two-term silting quiver
Q(2-siltΛ) and the support τ -tilting quiver Q(sτ -tiltΛ).
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Proof. Let (M,eΛ) and (N, fΛ) be support τ -tilting pairs for Λ. Let P := (P1→P0) and
Q := (Q1→Q0) be minimal projective presentations of M and N respectively. We only
have to show that M ≥ N if and only if HomKb(projΛ)(P ⊕ eΛ[1], (Q ⊕ fΛ[1])[1]) = 0.

We know thatM ≥ N if and only if HomΛ(N, τM) = 0 and eΛ ∈ addfΛ by Lemma 2.25.
Moreover HomΛ(N, τM) = 0 if and only if HomKb(projΛ)(P,Q[1]) = 0 by by Lemma 3.4. On

the other hand eΛ ∈ addfΛ if and only if HomΛ(eΛ, N) = 0 since N is a sincere (Λ/〈f〉)-
module. Thus eΛ ∈ addfΛ is equivalent to HomKb(projΛ)(eΛ, Q) = 0 by Lemma 3.5.

ConsequentlyM ≥ N if and only if HomKb(projΛ)(P⊕eΛ[1], Q[1]) = 0, and this is equivalent

to HomKb(projΛ)(P ⊕ eΛ[1], (Q⊕ fΛ[1])[1]) = 0 since HomKb(projΛ)(P ⊕ eΛ[1], fΛ[2]) = 0 is
automatic. Thus the assertion follows. �

Immediately we have the following application.

Corollary 3.10. If Q(2-siltΛ) has a finite connected component C, then Q(2-siltΛ) = C.

Proof. This is immediate from Corollaries 2.38 and 3.9. �

Note also that Theorem 3.2 and Corollary 3.9 give an alternative proof of Theorem 2.35
since the corresponding property for two-term silting complexes holds by [AI, Proposition
2.36].

4. Connection with cluster-tilting theory

Let C be a Hom-finite Krull-Schmidt 2-Calabi-Yau (2-CY for short) triangulated cat-
egory (for example, the cluster category CQ associated with a finite acyclic quiver Q
[BMRRT]). We shall assume that our category C has a cluster-tilting object T . Associ-
ated with T , we have by definition the 2-CY-tilted algebra Λ = EndC(T ), whose module
category is closely connected with the 2-CY-category C. In particular, there is an equiva-
lence of categories [BMR1, KR]:

(−) := HomC(T,−) : C/[T [1]]→ modΛ. (9)

In this section we investigate this relationship more closely by giving a bijection between
cluster-tilting objects in C and support τ -tilting Λ-modules (Theorem 4.1). This was the
starting point for the theory of τ -rigid and τ -tilting modules. As an application, we give
a proof of some known results for cluster-tilting objects (Corollary 4.5). Also we give
a direct connection between cluster-tilting objects in C and two-term silting complexes
for Λ (Theorem 4.7). There is an induced isomorphism between the associated graphs
(Corollary 4.8).

4.1. Support τ-tilting modules and cluster-tilting objects. In this subsection we
show that there is a close relationship between the cluster-tilting objects in C and support
τ -tilting Λ-modules. We use this to apply our main Theorem 2.18 to get a new proof of
the fact that almost complete cluster-tilting objects have exactly two complements, and of
the fact that all maximal rigid objects are cluster-tilting, as first proved in [IY] and [ZZ],
respectively.

We denote by isoC the set of isomorphism classes of objects in a category C. From our
equivalence (9), we have a bijection

(̃−) : isoC ←→ iso(modΛ)× iso(projΛ)

given by X = X ′ ⊕ X ′′ 7→ X̃ := (X ′,X ′′[−1]), where X ′′ is a maximal direct summand
of X which belongs to addT [1]. We denote by rigidC (respectively, m-rigidC) the set
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of isomorphism classes of basic rigid (respectively, maximal rigid) objects in C, and by
c-tiltTC the set of isomorphism classes of basic cluster-tilting objects in C which do not
have non-zero direct summands in addT [1].

Our main result in this section is the following.

Theorem 4.1. The bijection (̃−) induces bijections

rigidC ←→ τ -rigidΛ, c-tiltC ←→ sτ -tiltΛ and c-tiltTC ←→ τ -tiltΛ.

Moreover we have c-tiltC = m-rigidC = {U ∈ rigidC | |U | = |T |}.

We start with the following easy observation (see [KR]).

Lemma 4.2. The functor (−) induces an equivalence of categories between addT (re-
spectively, addT [2]) and projΛ (respectively, injΛ). Moreover we have an isomorphism

(−) ◦ [2] ≃ ν ◦ (−) : addT → injΛ of functors.

Now we express Ext1C(X,Y ) in terms of the images X and Y in our fixed 2-CY tilted
algebra Λ. We let

〈X,Y 〉Λ = 〈X,Y 〉 := dimK HomΛ(X,Y ).

Proposition 4.3. Let X and Y be objects in C. Assume that there are no nonzero
indecomposable direct summands of T [1] for X and Y .

(a) We have X[1] ≃ τX and Y [1] ≃ τY as Λ-modules.
(b) We have an exact sequence

0→ DHomΛ(Y , τX)→ Ext1C(X,Y )→ HomΛ(X, τY )→ 0.

(c) dimExt1C(X,Y ) = 〈X, τY 〉Λ + 〈Y , τX〉Λ.

Proof. (a) This can be shown as in the proof of [BMR1, Proposition 3.2]. Here we give a
direct proof. Take a triangle

T1
g // T0

f // X // T1[1] (10)

with a minimal right (addT )-approximation f and T0, T1 ∈ addT . Applying ( ) to (10),
we have an exact sequence

T1

g // T0

f // X // 0. (11)

This gives a minimal projective presentation of X since X has no nonzero indecomposable
direct summands of T [1]. Applying the Nakayama functor to (11) and HomC(T,−) to (10)
and comparing them by Lemma 4.2, we have the following commutative diagram of exact
sequences:

0 // τX // νT1

νg //

≀
��

νT0

≀
��

0 = T0[1]
// X[1] // T1[2]

g[2] // T0[2].

Thus we have τX ≃ X[1].
(b) We have an exact sequence

0→ [T [1]](X,Y [1])→ HomC(X,Y [1])→ HomC/[T [1]](X,Y [1])→ 0,
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where [T [1]] is the ideal of C consisting of morphisms which factor through addT [1]. We
have a functorial isomorphism

HomC/[T [1]](X,Y [1]) ≃ HomΛ(X,Y [1])
(a)
≃ HomΛ(X, τY ). (12)

On the other hand, the first of following functorial isomorphism was given in [Pa, 3.3].

[T [1]](X,Y [1]) ≃ DHomC/[T [1]](Y,X[1])
(12)
≃ DHomΛ(Y , τX).

Thus the assertion follows.
(c) This is immediate from (b). �

We now consider the general case, where we allow indecomposable direct summands
from T [1] in X or Y .

Proposition 4.4. Let X = X ′ ⊕X ′′ and Y = Y ′ ⊕ Y ′′ be objects in C such that X ′′ and
Y ′′ are the maximal direct summands of X and Y respectively, which belong to addT [1].
Then

dim Ext1C(X,Y ) = 〈X ′, τY ′〉Λ + 〈Y ′, τX ′〉Λ + 〈X ′′[−1], Y ′〉Λ + 〈Y ′′[−1],X ′〉Λ.

Proof. Since Ext1C(X
′′, Y ′′) = 0, we have

dimExt1C(X,Y ) = dim Ext1C(X
′, Y ′) + dimExt1C(X

′′, Y ′) + dim Ext1C(X
′, Y ′′).

By Proposition 4.3, the first term equals 〈X ′, τY ′〉Λ + 〈Y ′, τX ′〉Λ. Clearly the second term

equals 〈X ′′[−1], Y ′〉Λ, and the third term equals 〈Y ′′[−1],X ′〉Λ. �

Now we are ready to prove Theorem 4.1.

By Proposition 4.4, we have that X is rigid if and only if X̃ is a τ -rigid pair for Λ. Thus
we have bijections rigidC ↔ τ -rigidΛ, which induces a bijection m-rigidC ↔ sτ -tiltΛ by
Corollary 2.13(a)⇔(b).

On the other hand we show that a bijection c-tiltC ↔ sτ -tiltΛ is induced. Since c-tiltC ⊆
m-rigidC, we only have to show that any X ∈ rigidC satisfying that X̃ is a support τ -tilting
pair for Λ is a cluster-tilting object in C. Assume that Y ∈ C satisfies Ext1C(X,Y ) = 0. By

Proposition 4.4, we have HomΛ(X ′, τY ′) = 0, HomΛ(Y ′, τX ′) = 0, HomΛ(X ′′[−1], Y ′) = 0

and HomΛ(Y ′′[−1],X ′) = 0. By the first 3 equalities, we have Y ′ ∈ addX ′ by Corollary

2.13(a)⇔(d). By the last equality we have Y ′′[−1] ∈ addX ′′[−1]. Thus Y ∈ addX holds,
which shows that X is a cluster-tilting object in C.

The remaining statements follow immediately. �

Now we recover the following results in [IY] and [ZZ].

Corollary 4.5. Let C be a 2-CY triangulated category with a cluster-tilting object T .

(a) [IY] Any basic almost complete cluster-tilting object is a direct summand of exactly
two basic cluster-tilting objects. In particular, T is a mutation of V if and only if
T and V have all but one indecomposable direct summand in common.

(b) [ZZ] An object X in C is cluster-tilting if and only if it is maximal rigid if and only
if it is rigid and |X| = |T |.

Proof. (a) This is immediate from the bijections given in Theorem 4.1 and the correspond-
ing result for support τ -tilting pairs given in Theorem 2.18.

(b) This is the last equality in Theorem 4.1. �
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Connections between cluster-tilting objects in C and tilting Λ-modules have been in-
vestigated in [Smi, FL]. It was shown that a tilting Λ-module always comes from a
cluster-tilting object in C, but the image of a cluster-tilting object is not always a tilting
Λ-module. This is explained by Theorem 4.1 asserting that the Λ-modules correspond-
ing to the cluster-tilting objects of C are the support τ -tilting Λ-modules, which are not
necessarily tilting Λ-modules.

4.2. Two-term silting complexes and cluster-tilting objects. Throughout this sub-
section, let C be a 2-CY category with a cluster-tilting object T . Fix a cluster-tilting object
T ∈ C. Let Λ := EndC(T ) and let Kb(projΛ) be the homotopy category of bounded com-
plexes of finitely generated projective Λ-modules. In this section, we shall show that there
is a bijection between cluster-tilting objects in C and two-term silting complexes for Λ and
that the mutations are compatible with each other.

The following result will be useful, where we denote by K2(projΛ) the full subcategory
of Kb(projΛ) consisting of two-term complexes for Λ.

Proposition 4.6. There exists a bijection

isoC ←→ iso(K2(projΛ))

which preserves the number of non-isomorphic indecomposable direct summands.

Proof. For any object U ∈ C, there exists a triangle

T1
g // T0

f // U // T1[1]

where T1, T0 ∈ addT and f is a minimal right (addT )-approximation. By Lemma 4.2, we

have a two-term complex T1
g
−→ T0 in Kb(projΛ).

Conversely, let P1
d
→ P0 be a two-term complex for Λ. By Lemma 4.2, there exists a

morphism g : T1 → T0 in addT such that g = d. Taking the cone of g, we have an object
U in C. Then we can easily check that the correspondence gives a bijection and preserves
the number of non-isomorphic indecomposable direct summands. �

Using this, we get the desired correspondence.

Theorem 4.7. The bijection in Proposition 4.6 induces bijections

rigidC ←→ 2-presiltΛ and c-tiltC ←→ 2-siltΛ.

Proof. (i) For any rigid object U ∈ C, we have a triangle

T1
g // T0

f // U
h // T1[1]

where T1, T0 ∈ addT and f is a minimal right (addT )-approximation. Let a : T1 → T0

be an arbitrary morphism in C. Since U is rigid, we have fah[−1] = 0. Thus we have a
commutative diagram

U [−1]
h[−1] //

��

T1
g //

a

��

T0
f //

b

��

U

��
T1

g // T0
f // U

h // T1[1]
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of triangles in C. Since hb = 0, there exists k0 : T0 → T0 such that b = fk0. Since
f(a− k0g) = 0, there exists k1 : T1 → T1 such that gk1 = a− k0g. Therefore we have

HomKb(projΛ)((T1
g
−→ T0), (T1

g
−→ T0)[1]) = 0.

Thus T1
g
−→ T0 is a presilting complex for Λ.

(ii) Let P := (P1
d
→ P0) be a two-term presilting complex for Λ. There exists a unique

g : T1 → T0 in addT such that g = d. We consider a triangle

T1
g // T0

f // U
h // T1[1]

in C. We take a morphism a : U → U [1] in C. Then we have the commutative diagram

T1
g //

��

T0
//

h[1]af
��

0

��
0 // T1[2]

g[2] // T0[2].

Applying (−), we have a commutative diagram

P1
d //

��

P0
//

h[1]af
��

0

��
0 // νP1

νd // νP0.

Thus we have a morphism P → νP [−1] in Kb(projΛ). Since P is a presilting complex for
Λ, we have

HomKb(projΛ)(P, νP [−1]) ≃ D HomKb(projΛ)(P [−1], P ) = 0.

Therefore h[1]af = 0, and the morphism h[1]af factors through addT [1]. Hence we have
h[1]af = 0. Thus we have a commutative diagram

T1
g // T0

f //

a0
��

U
h //

a

��

T1[1]

T1[1]
g[1] // T0[1]

f [1] // U [1]
h[1] // T1[2].

Since T0 ∈ addT , we have a0 = 0. Thus af = 0, so there exists ϕ : T1[1]→ U [1] such that
a = ϕh. Since T1 ∈ addT , we have h[1]ϕ = 0. Thus there exists b : T1[1] → T0[1] such
that ϕ = f [1]b. Consequently, we have commutative diagrams

0 //

��

T1
g //

b[−1]
��

T0

��
T1

g // T0
// 0

0 //

��

P1
d //

b[−1]
��

P0

��
P1

d // P0
// 0

Since P is a presilting complex for Λ, there exist s : T0[1] → T0[1] and t : T1[1] → T1[1]
such that b = sg[1] + g[1]t. Therefore we have

a = ϕh = f [1]bh = f [1]sg[1]h + f [1]g[1]th = 0.

Hence HomC(U,U [1]) = 0, that is, U is rigid, and the claim follows. �
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Corollary 4.8. The bijections in Theorems 3.2 and 4.7 induce isomorphisms of the fol-
lowing graphs.

(a) The underlying graph of the support τ -tilting quiver Q(sτ -tiltΛ) of Λ.
(b) The underlying graph of the two-term silting quiver Q(2-siltΛ) of Λ.
(c) The cluster-tilting graph G(c-tiltC) of C.

Proof. (a) and (b) are the same by Corollary 3.9.
We show that (b) and (c) are the same. Let U and V be cluster-tilting objects in C.

Let P and Q be the two-term silting complexes for Λ corresponding respectively to U and
V by Theorem 4.7. By Corollary 4.5(a) the following conditions are equivalent:

(a) There exists an edge between U and V in the exchange graph.
(b) U and V have all but one indecomposable direct summand in common.

Clearly (b) is equivalent to the following condition:

(c) P and Q have all but one indecomposable direct summand in common.

Now (c) is equivalent to the following condition by Corollary 3.8(b).

(d) There exists an edge between P and Q in the underlying graph of the silting quiver.

Therefore the exchange graph of C and the underlying graph of the silting full subquiver
consisting of two-term complexes for Λ coincide. �

We end this section with the following application.

Corollary 4.9. If G(c-tiltC) has a finite connected component C, then G(c-tiltC) = C.

Proof. This is immediate from Corollaries 2.38 and 4.8. �

5. Numerical invariants

In this section, we introduce g-vectors following [AR1] and [DeKe]. We show that g-
vectors of indecomposable direct summands of support τ -tilting modules form a basis of
the Grothendieck group (Theorem 5.1). Moreover we observe that non-isomorphic τ -rigid
pairs have different g-vectors (Theorem 5.5). In [DWZ] the authors defined what they
called E-invariants of finite dimensional decorated representations of Jacobian algebras,
and used this to solve several conjectures from [FZ]. In the case of finite dimensional
Jacobian algebras they showed that the E-invariants were given by formulas which we
were led to in section 4.1, by considering dimK Ext1C(T, T ) for a cluster-tilting object T
in C. We here consider E-invariants for any finite dimensional algebra, using the same
formula, and show that they can be expressed in terms of homomorphism spaces, dimension
vectors and g-vectors. We give some further results on the case of 2-CY tilted algebras,
including a comparison for neighbouring 2-CY tilted algebras (Theorem 5.7).

5.1. g-vectors and E-invariants for finite dimensional algebras. Recall from [DeKe]
that the g-vectors are defined as follows: Let K0(projΛ) be the Grothendieck group of the
additive category projΛ. Then the isomorphism classes P (1), . . . , P (n) of indecomposable
projective Λ-modules form a basis of K0(projΛ). Consider M in modΛ and let

P1
// P0

// M // 0

be its minimal projective presentation in modΛ. Then we write

P0 − P1 =
n∑

i=1

gMi P (i),
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where by definition gM = (gM1 , . . . , gMn ) is the g-vector of M . The element P0 − P1 is
also called an index of M , which was investigated in [AR1], in connection with studying
modules determined by their composition factors, and in [DeKe].

Another useful vector associated with M is the dimension vector cM = (cM1 , . . . , c
M
n ).

Denote by S(i) the simple top of P (i). Then cMi is by definition the multiplicity of the
simple module S(i) as composition factor of M . This vector has played an important
role in cluster theory for the acyclic case, since the denominators of cluster variables
are determined by dimension vectors of indecomposable rigid modules over path algebras
[BMRT, CK]. Now this result is not true in general [BMR2].

We have the following result on g-vectors of support τ -tilting modules.

Theorem 5.1. Let (M,P ) be a support τ -tilting pair for Λ with M =
⊕ℓ

i=1Mi and

P =
⊕n

i=ℓ+1 Pi with Mi and Pi indecomposable. Then gM1 , · · · , gMℓ , gPℓ+1 , · · · , gPn form
a basis of the Grothendieck group K0(projΛ).

Proof. By Theorem 3.2, we have a corresponding silting complex Q =
⊕n

i=1Qi for Λ with
indecomposable Qi, where the vectors gM1 , · · · , gMℓ , gPℓ+1 , · · · , gPn are exactly the classes
of Q1, · · · , Qn in the Grothendieck group K0(K

b(projΛ)) = K0(projΛ). By Proposition
1.6(b), we have the assertion. �

This gives a result below due to Dehy-Keller. Recall that for a cluster-tilting object
T ∈ C and an object X ∈ C, there exists a triangle

T ′′ → T ′ → X → T ′′[1]

in C with T ′, T ′′ ∈ addT . We call indT (X) := T ′ − T ′′ ∈ K0(addT ) the index of X.

Corollary 5.2. [DeKe, Theorem 2.4] Let C be a 2-CY triangulated category, and T and
U =

⊕n
i=1 Ui be basic cluster-tilting objects with Ui indecomposable. Then the indices

indT (U1), · · · , indT (Un) form a basis of the Grothendieck group K0(addT ) of the additive
category addT .

Proof. We can assume that Ui /∈ addT [1] for 1 ≤ i ≤ ℓ, and Ui ∈ addT [1] for ℓ+1 ≤ i ≤ n.

Then (
⊕ℓ

i=1 Ui,
⊕n

i=ℓ+1 Ui[−1]) is a support τ -tilting pair for Λ by Theorem 4.1. The
equivalence HomC(T,−) : addT → projΛ gives an isomorphism K0(addT ) ≃ K0(projΛ).

This sends indT (Ui) to gUi for 1 ≤ i ≤ ℓ, and to −gUi[−1] for ℓ + 1 ≤ i ≤ n. Thus the
assertion follows from Theorem 5.1. �

Now we consider a pair M = (X,P ) of a Λ-module X and a projective Λ-module P .
We regard a Λ-module X as a pair (X, 0). For such pairs M = (X,P ) and N = (Y,Q),
let

gM := gX − gP ,

E′
Λ(M,N) := 〈X, τY 〉+ 〈P, Y 〉,

EΛ(M,N) := E′
Λ(M,N) + E′

Λ(N,M),

EΛ(M) := EΛ(M,M).

We call gM the g-vector of M , and EΛ(M,N) the E-invariant of M and N . Clearly a pair
(M, 0) is τ -rigid if and only if EΛ(M) = 0.

There is the following relationship between E-invariants and g-vectors, where we de-
note by a · b the standard inner product

∑n
i=1 aibi for vectors a = (a1, · · · , an) and

b = (b1, · · · , bn).
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Proposition 5.3. Let Λ be a finite dimensional algebra, and let X and Y be in modΛ.
Then we have the following.

E′
Λ(X,Y ) = 〈Y,X〉 − gY · cX ,

EΛ(X,Y ) = 〈Y,X〉+ 〈X,Y 〉 − gY · cX − gX · cY ,

EΛ(X) = 2(〈X,X〉 − gX · cX).

Proof. We only have to show the first equality. Since P0 − P1 =
∑n

i=1 g
Y
i P (i), then

〈P0,X〉 − 〈P1,X〉 = gY · cX . By Proposition (2.4)(a), we have

E′
Λ(X,Y ) = 〈X, τY 〉 = 〈Y,X〉 + 〈P1,X〉 − 〈P0,X〉 = 〈Y,X〉 − gY · cX .

�

The following more general description of E-invariants is also clear.

Proposition 5.4. For any pair M = (X,P ) and N = (Y,Q), we have

EΛ(M,N) = 〈Y,X〉 + 〈X,Y 〉 − gM · cY − gN · cX .

We end this subsection with the following analog of [DeKe, Theorem 2.3], which was
also observed by Plamondon.

Theorem 5.5. The map M 7→ gM gives an injection from the set of isomorphism classes
of τ -rigid pairs for Λ to K0(projΛ).

Proof. The proof is based on Propositions 2.4(c) and 2.5, and is the same as that of [DeKe,
Theorem 2.3]. �

5.2. E-invariants for 2-CY tilted algebras. In the rest of this section, let C be a 2-CY
triangulated K-category and let T be a cluster-tilting object in C. Let Λ := EndC(T ). For
any object X ∈ C, we take a decomposition X = X ′ ⊕X ′′ where X ′′ is a maximal direct
summand of X which belongs to addT [1] and define a pair by

X̃Λ := (X ′,X ′′[−1]),

where (−) is an equivalence HomC(T,−) : C/[T [1]]→ modΛ given in (9).
We have the following interpretation of E-invariants.

Proposition 5.6. We have EΛ(X̃Λ, ỸΛ) = dimK Ext1C(X,Y ) for any X,Y ∈ C.

Proof. This is immediate from Proposition 4.4 and our definition of E-invariants. �

Now let T ′ be a cluster-tilting mutation of T . Then we refer to the 2-CY-tilted algebras
Λ = EndC(T ) and Λ′ = EndC(T

′) as neighbouring 2-CY-tilted algebras. We define a pair

X̃Λ′ for Λ′ in a similar way to X̃Λ by using the equivalence HomC(T
′,−) : C/[T ′[1]] →

modΛ′.
By our approach to the E-invariant, the following is now a direct consequence.

Theorem 5.7. With the above notation, let M and N be objects in C. Then EΛ(M̃Λ, ÑΛ) =

EΛ′(M̃Λ′ , ÑΛ′).

Proof. This is clear from Proposition 5.6 since both sides are equal to dimK Ext1C(M,N).
�
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In particular, M̃Λ is τ -rigid if and only if M̃Λ′ is τ -rigid.
This result is analogous to the corresponding result for (neighbouring) Jacobian algebras

proved in [DWZ], in a larger generality. It is however not clear whether the two concepts
of neighbouring algebras coincide for finite dimensional neighbouring Jacobian algebras.
See [BIRS] for more information.

6. Examples

In this section we illustrate some of our work with easy examples.

Example 6.1. Let Λ be a local finite dimensional K-algebra. Then we have sτ -tiltΛ =
{Λ, 0} since the condition HomΛ(M, τM) = 0 implies either M = 0 or τM = 0 (i.e. M
is projective). We have Q(sτ -tiltΛ) = ( Λ // 0 ), Q(f-torsΛ) = ( modΛ // 0 ) and

Q(2-siltΛ) = ( Λ // Λ[1] ).

Example 6.2. Let Λ be a finite dimensional K-algebra given by the quiver 1
a // 2
b

oo

with relations ab = ba = 0. Then Q(sτ -tiltΛ), Q(f-torsΛ) and Q(2-siltΛ) are the following:

1
2 ⊕

2
1

//

��

1
2 ⊕ 1 // 1

��
2⊕ 2

1
// 2 // 0

modΛ //

��

add( 1
2 ⊕ 1) // add1

��
add(2⊕ 2

1 ) // add2 // 0

Λ //

��

[
2
1

[b 0]
−−→ 1

2 ⊕
1
2

]
//
[

2
1 ⊕

2
1

[b 0]
−−→ 1

2

]

��[
1
2

[a 0]
−−−→ 2

1 ⊕
2
1

]
//
[

1
2 ⊕

1
2

[a 0]
−−−→ 2

1

]
// Λ[1]

Example 6.3. Let Λ be a finite dimensional K-algebra given by the quiver 2 b
��<

<

1

a @@��
3c

oo

with relations ab = bc = ca = 0. Then Λ is a cluster-tilted algebra of type A3, and there
are 14 elements in c-tiltC for the cluster category C of type A3. By our bijections, we know
that there are 14 elements in each set sτ -tiltΛ, f-torsΛ and 2-siltΛ.
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1
2 ⊕

2
3 ⊕ 2 //

((QQQQQQQ
2
3 ⊕ 2

%%KK
KKK

KK

1
2 ⊕ 2 //

''OOOOOO
2

��3
33

33
33

33
33

1
2 ⊕

2
3 ⊕

3
1

;;wwwwwwwwwwwwww
//

##G
GGGGGGGGGGGGG
1
2 ⊕ 1⊕ 3

1
//

((QQQQQQQ
1
2 ⊕ 1

%%KK
KKK

KK

3
1 ⊕ 1 //

''OOOOOO 1 // 0

3⊕ 2
3 ⊕

3
1

//

((QQQQQQQ
3
1 ⊕ 3

%%KK
KKK

KK

2
3 ⊕ 3 //

II����������������������������
3

EE�����������

Example 6.4. Let Λ = KQ/〈αβ〉, where Q is the quiver 1
α
−→ 2

β
−→ 3. Then T =

S1⊕P1⊕P3 is a τ -tilting module which is not a tilting module. Here Si denotes the simple
Λ-module associated with the vertex i, and Pi denotes the corresponding indecomposable
projective Λ-module.

In this case there are 12 basic support τ -tilting Λ-modules, and Q(sτ -tiltΛ) is the
following.

1
2 ⊕

2
3 ⊕ 2 //

**TTTTTTTTTTTTTTTTTT
1
2 ⊕ 2 //

((RRRRRRRRRRRRRRRRRR
1
2 ⊕ 1 // 1

��:
::

::
::

:

1
2 ⊕

2
3 ⊕ 3

88ppppppppppp
//

&&NNNNNNNNNNN
1
2 ⊕ 1⊕ 3

44jjjjjjjjjjjjjjjjjj
// 1⊕ 3

66llllllllllllllllll

((RRRRRRRRRRRRRRRRRR
2
3 ⊕ 2 // 2 // 0

2
3 ⊕ 3 //

44jjjjjjjjjjjjjjjjjjjj
3

AA��������

Part 2. The classification of τ-tilting modules over Nakayama algebras

This part is based on the paper [Ad1].

7. Preliminaries

Let Λ be a basic finite dimensional K-algebra. In this section, we collect basic results
which are necessary in this part.

By the following lemma, we may regard (Λ/I)-modules as Λ-modules.

Lemma 7.1. [ASS, A.6.1] Let I be a two-sided ideal of Λ. Then the natural surjection
Λ→ Λ/I induces a fully faithful functor mod(Λ/I)→ modΛ.

The following elementary lemma is often used.

Lemma 7.2. Let M ∈ modΛ be indecomposable, P ∈ modΛ indecomposable projective,
and E ∈ modΛ indecomposable injective.

(1) [ARS, II.1] The following hold.
(a) HomΛ(P,M) 6= 0 if and only if M has topP as a composition factor.
(b) HomΛ(M,E) 6= 0 if and only if M has socE as a composition factor.

(2) [ASS, IV.3.5] The following hold.
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(a) Assume that M 6≃ P . The natural injection radP → P induces an isomor-
phism HomΛ(M,P ) ≃ HomΛ(M, radP ).

(b) Assume that M 6≃ E. The natural surjection E → E/ socE induces an
isomorphism HomΛ(E,M) ≃ HomΛ(E/ socE,M).

We recall the definition and basic properties of τ -tilting modules. For more details, we
refer to [AIR]. We denote by |M | the number of pairwise nonisomorphic indecomposable
summands of a Λ-module M .

Definition 7.3. (1) We call M in modΛ τ -rigid if HomΛ(M, τM) = 0.
(2) We call M in modΛ τ -tilting if it is τ -rigid and |M | = |Λ|.

It is known that

(i) If M is τ -rigid, then |M | ≤ |Λ|.
(ii) Each τ -tilting Λ-module M is sincere (i.e., every simple Λ-module appears as a

composition factor in M).

For τ -tilting modules, we have an analog of Bongartz Lemma for tilting modules.

Proposition 7.4. [AIR, Theorem 2.10 and 2.12] Let M be a τ -rigid Λ-module. Then there
exists N ∈ modΛ such that M ⊕ N is a τ -tilting Λ-module. Moreover, M is a τ -tilting
Λ-module if and only if it is a maximal τ -rigid Λ-module (i.e if M ⊕L is τ -rigid for some
Λ-module L, then L ∈ addM).

Definition 7.5. We call M in modΛ support τ -tilting if there exists an idempotent eM ∈ Λ
such that M is a τ -tilting (Λ/〈eM 〉)-module. Note that eM is uniquely determined since
M is a sincere (Λ/〈eM 〉)-module by (ii) above. If moreover eM 6= 0, M is called a proper
support τ -tilting Λ-module.

Throughout this part, we denote by tiltΛ (respectively, τ -tiltΛ, sτ -tiltΛ, psτ -tiltΛ) the
set of isomorphism classes of basic tilting (respectively, τ -tilting, support τ -tilting, proper
support τ -tilting) Λ-modules. The following obsevations are clear.

Proposition 7.6. (1) sτ -tiltΛ = τ -tiltΛ
∐

psτ -tiltΛ.
(2) psτ -tiltΛ =

∐
e∈EΛ\{0}

τ -tilt(Λ/〈e〉).

(3) If Λ is hereditary, then τ -tiltΛ = tiltΛ.

The following lemma is useful.

Lemma 7.7. [AIR, Lemma 2.1] Let I be a two-sided ideal of Λ, and M,N ∈ mod(Λ/I).
Then the following hold.

(1) If HomΛ(N, τΛM) = 0, then HomΛ/I(N, τΛ/IM) = 0.
(2) The converse of (1) holds if I = 〈e〉 for an idempotent e ∈ Λ.

We give a criterion for τ -rigid modules to be support τ -tilting modules. We denote by
s(M) the number of nonisomorphic simple modules appearing in a composition series of
M ∈ modΛ.

Proposition 7.8. Let M be a τ -rigid Λ-module. Then the following are equivalent:

(1) M is a support τ -tilting Λ-module.
(2) |M | = s(M).

Proof. Let e ∈ Λ be a maximal idempotent such that HomΛ(eΛ,M) = 0. Namely, M does
not have top eΛ as a composition factor by Lemma 7.2(1). Then we have s(M) = |Λ|−|eΛ|.
Thus (1)⇒(2) holds clearly. On the other hand, (2)⇒(1) holds sinceM is a τ -rigid (Λ/〈e〉)-
module by Lemma 7.7(1). �
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We call M in modΛ almost complete support τ -tilting if there exists an idempotent e ∈ Λ
such that M is a τ -rigid (Λ/〈e〉)-module and |M | = |Λ| − |eΛ| − 1. In this case, we write
(M,e) instead of M .

Proposition 7.9. [AIR, Theorem 2.18] Any basic almost complete support τ -tilting Λ-
module (M,e) is a direct summand of exactly two basic support τ -tilting Λ-modules L and
N such that eΛ ∈ addeLΛ ∩ addeNΛ.

For a Λ-module M , we denote by Fac(M) the full subcategory of modΛ consisting of
factor modules of direct sums of copies of M .

Definition-Proposition 7.10. [AIR, Theorem 2.7] For any M,N ∈ sτ -tiltΛ, we write
M ≥ N if Fac(M) ⊇ Fac(N). Then ≥ gives a partial order on sτ -tiltΛ.

We introduce the Hasse quiver of sτ -tiltΛ.

Definition 7.11. We define the Hasse quiver H(Λ) of sτ -tiltΛ as follows:

• The set of vertices is sτ -tiltΛ.
• We draw an arrow from M to N if M > N and there exists no L ∈ sτ -tiltΛ such

that M > L > N .

Remark 7.12. By [AIR, Corollary 2.34], the Hasse quiver H(Λ) is a |Λ|-regular graph.

8. Classification of τ-tilting modules over Nakayama algebras

In this section, for Nakayama algebras, we study a connection between (1) τ -tilting
modules, (2) proper support τ -tilting modules, (3) triangulations of a regular polygon
with a puncture, and (4) certain integer sequences. At Table 1 in Subsection 8.4, we give
an example of these correspondences.

Recall the definition and basic properties of Nakayama algebras. A module M is said to
be uniserial if it has a unique composition series. A finite dimensional algebra is said to be
Nakayama if every indecomposable projective module and every indecomposable injective
module are uniserial. The following quivers will play a central role in this part.

~An : n
αn−1// n−1

αn−2 // · · ·
α2 // 2

α1 // 1

~∆n : 1
αn

zzuuuuuuuu

n

αn−1

��

2

α1

ccFFFFFFF

n−1

αn−2 $$II
III

III
3

α2

OO

· · ·
α3

;;xxxxxxx

Proposition 8.1. [ASS, V.3.2] A basic connected algebra is Nakayama if and only if its

quiver is either ~An or ~∆n.

Throughout this section, we assume that Λ is a basic connected Nakayama algebra
with n simple modules. We give a concrete description of indecomposable modules over
Nakayama algebras. We denote by ℓ(M) the Loewy length of M ∈ modΛ.

Proposition 8.2. [ASS, V.3.5, V.4.1 and V.4.2] For any indecomposable Λ-module M ,
there exists i ∈ [1, n] and t ∈ [1, ℓ(P (i))] such that M ≃ P (i)/ radt P (i) and t = ℓ(M).
Moreover, if M is not projective, then we have τM ≃ radP (i)/ radt+1 P (i) and ℓ(τM) =
ℓ(M).
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We let Λrn := K~∆n/J
r, where J is the arrow ideal of K~∆n. The Auslander-Reiten

quiver of Λrn can be drawn easily [ASS, V.4.1]. For example, the AR-quiver of Λ5
4 is given

by the following, where we identify the extreme left of the quiver with the extreme right
of the quiver, and the broken arrows are the action of the AR-translation τ :
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By Proposition 8.2, each indecomposable Λ-module M is uniquely determined, up to
isomorphism, by its simple top S(j) and the Loewy length l := ℓ(M). In this case, M
has a unique composition series with the associated composition factors S((j)n), S((j −
1)n), · · · , S((j − l+ 1)n). Thus we can easily understand the existence of homomorphisms
between indecomposable Λ-modules.

Lemma 8.3. Let M = P (j)/ radl P (j) and N = P (i)/ radk P (i) for i, j, k, l ∈ [1, n]. The
following conditions are equivalent:

(1) HomΛ(M,N) 6= 0.
(2) j ∈ [i− k + 1, i]n and (i− k + 1)n ∈ [j − l + 1, j]n.

Moreover, if l ≥ k, then the following condition is also equivalent:

(3) HomΛ(P (j), N) 6= 0.

Proof. (1)⇒ (2): If HomΛ(M,N) 6= 0, thenM has S((i−k+1)n) = socN as a composition
factor and N has S(j) = topM as a composition factor by Lemma 7.2(1). Hence the
assertion follows.

(2) ⇒ (1): By our assumption, there exists an indecomposable Λ-module L such that
topL = S(j), socL = S((i− k + 1)n) and ℓ(L) ≤ n. Then L is a factor module of M and
a submodule of N . Thus we have HomΛ(M,N) 6= 0.

(1) ⇒ (3): This is clear since M is a factor module of P (j).
(3) ⇒ (2): Since N has S(j) = topM as a composition factor by Lemma 7.2(1), l ≥ k

imply that M has S((i − k + 1)n) = socN as a composition factor. Hence the assertion
follows. �

We give a criterion for indecomposable modules to be τ -rigid.

Proposition 8.4. Let M be an indecomposable nonprojective Λ-module. Then M is τ -
rigid if and only if ℓ(M) < n.
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Proof. By Proposition 8.2, we can assume that M = P (j)/ radl P (j) and τM = P (j −
1)/ radl P (j − 1). Then we have

HomΛ(M, τM) 6= 0
8.3
⇔

{
j ∈ [j − l, j − 1]n

(j − l)n ∈ [j − l + 1, j]n

⇔ ℓ(M) ≥ n.

�

In view of [AIR, Theorem 3.2], this was independently obtained by Antipov-Zvonareva
[AZ, Proposition 5.3].

8.1. τ-tilting modules and triangulations. In this subsection, we give a connection
between τ -tilting Λ-modules and triangulations of an n-regular polygon with a puncture.
Recall the definition and basic results of triangulations. Let Gn be an n-regular polygon
with a puncture. We label the points of Gn counterclockwise around the boundary by
1, 2, · · · , n.

Definition 8.5. Let i, j ∈ [1, n].

(1) An inner arc 〈i, j〉 in Gn is a path from the point i to the point j homotopic to
the boundary path through i, i + 1, · · · , i + t = j (modn), where t is an integer
satisfying 2 ≤ t ≤ n. Then we call i an initial point, j a terminal point, and
ℓ(〈i, j〉) := t the length of the inner arc. By definition, ℓ(〈i, j〉) ≤ n holds for any
inner arc in Gn.

(2) A projective arc 〈•, j〉 in Gn is a path from the puncture to the point j. Then we
call j a terminal point.

(3) An admissible arc is an inner arc or a projective arc. Namely,

Arc(n) := {admissible arcs in Gn} = {〈i, j〉 | i, j ∈ [1, n]}
∐
{〈•, j〉 | j ∈ [1, n]}.

Note that, if i 6= j, 〈i, j〉 and 〈j, i〉 are different arcs as the picture in Figure 1 shows.

jj − 1

i + 1

i

〈i, j〉
jj − 1

i + 1

i

〈j, i〉
j

〈j, j〉
j

〈•, j〉

Figure 1. Admissible arcs in a polygon with a puncture

Definition 8.6. (1) Two admissible arcs in Gn are called compatible if they do not
intersect in Gn (except their initial and terminal points).

(2) A triangulation of Gn is a maximal set of distinct pairwise compatible admissible
arcs. We denote by T (n) the set of triangulations of Gn.

(3) For integers l1, l2, · · · , ln ≥ 1, we denote by T (n; l1, l2, · · · , ln) the subset of T (n)
consisting of triangulations such that the length of every inner arc with the terminal
point j is at most lj for any j ∈ [1, n].

For example, the set of all projective arcs gives a triangulation of Gn.
For a subset X of Arc(n), we denote by Xi,j the subset of X consisting of all inner arcs

contained in the fan whose boundary is 〈•, i〉, 〈•, j〉 and the edge connecting from i to j
in the counterclockwise direction.
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1

4

3

2

1

4

3

2

1

4

3

2

Figure 2. Triangulations of G4

Remark 8.7. Let X ∈ T (n). Assume that X contains an inner arc 〈i, j〉. Then we
regard Xi,j as a triangulation of the ((j − i)n + 1)-regular polygon (with no puncture) by
identifying the inner arc 〈i, j〉 with a side of the polygon. Thus the cardinality of Xi,j is
equal to (j − i)n − 1.

1

n-3

n-2 n-1

n

1

n-3

n-2 n-1

n

Figure 3. Examples of Xn−3,1 and triangulation of a 5-regular polygon

Triangulations of Gn have the following properties. Let X ∈ T (n). Assume that 1 ≤
j1 < j2 < · · · < jr ≤ n are all integers satisfying 〈•, ji〉 ∈ X, and let j+i := ji+1 for any

i ∈ [1, r], where jr+1 := j1 + n. Note that, if j+i − ji > 0, then X must contain the inner

arc 〈ji, j
+
i 〉.

Proposition 8.8. Each triangulation of Gn consists of exactly n admissible arcs and
contains at least one projective arc.

Proof. Let X ∈ T (n). For a longest inner arc in X with the initial point i and the terminal
point j, there exist projective arcs 〈•, i〉, 〈•, j〉 ∈ X by the maximality of triangulations.
Thus any triangulation contains a projective arc. Moreover, by Remark 8.7, the cardinality
of X is

|X| =
r∑

i=1

{1 + (j+i − ji − 1)} = jr+1 − j1 = n.

�

We give a correspondence between indecomposable τ -rigid modules and admissible
arcs. We denote by iτ -rigidΛ the set of isomorphism classes of indecomposable τ -rigid
Λ-modules. By Proposition 8.4, every indecomposable nonprojective τ -rigid Λ-module
M is uniquely determined by its simple top S(j) and its simple socle S(k). Such an
indecomposable τ -rigid module is denoted by Mk−2,j. Moreover, let M•,j := P (j).

Proposition 8.9. Let Λ be a Nakayama algebra and ℓj := ℓ(P (j)). The following hold.

(1) There is a bijection

{〈•, i〉 | i ∈ [1, n]}
∐
{〈i, j〉 | i, j ∈ [1, n], ℓ(〈i, j〉) ≤ ℓj} −→ iτ -rigidΛ

given by 〈i, j〉 7→Mi,j for i ∈ [1, n]
∐
{•} and j ∈ [1, n].

(2) For any i, k ∈ [1, n]
∐
{•} and j, l ∈ [1, n], 〈i, j〉 and 〈k, l〉 are compatible if and

only if Mi,j ⊕Mk,l is τ -rigid.
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Proof. (1) By Proposition 8.4, every indecomposable Λ-module M is either a projective
Λ-module or a Λ-module with ℓ(M) < min{ℓ(P ), n}, where P is a projective cover of M .
Thus there are one-to-one correspondences

{〈•, j〉 | j ∈ [1, n]} ←→ {P (j) | j ∈ [1, n]}

{〈i, j〉 | i, j ∈ [1, n], ℓ(〈i, j〉) ≤ ℓj} ←→ {Mi,j | i, j ∈ [1, n], ℓ(Mi,j) < min{ℓj , n}}.

(2) If i = k ∈ {•}, then the assertion is clear. We may assume that i ∈ [1, n]
∐
{•} and

j, k, l ∈ [1, n]. Since we have τMk,l = Mk−1,l−1 by Proposition 8.2, thus, by Lemma 8.3,
HomΛ(Mi,j , τMk,l) 6= 0 if and only if j ∈ [k+ 1, l− 1]n and (k+ 1)n ∈ [j − ℓ(Mi,j) + 1, j]n.
This means that 〈i, j〉 and 〈k, l〉 are compatible. �

As a conclusion, we obtain the following theorem. A similar observation was given
independently in [AZ, Proposition 5.4].

Theorem 8.10. Let Λ be a Nakayama algebra with n simple modules and ℓj := ℓ(P (j))
for any j ∈ [1, n]. Then the map in Proposition 8.9 induces a bijection

τ -tiltΛ −→ T (n; ℓ1, ℓ2, · · · , ℓn).

Proof. Each τ -tilting Λ-module is maximal τ -rigid with exactly n indecomposable direct
summands by Proposition 7.4. On the other hand, each triangulation of Gn is a maximal
set of pairwise compatible admissible arcs with the cardinality n by Proposition 8.8. Thus
the assertion follows from Proposition 8.9(2). �

As an application, we have the following corollary.

Corollary 8.11. Each τ -tilting Λ-module has a nonzero projective Λ-module as a direct
summand.

Proof. It follows from Theorem 8.10, since any triangulation of Gn contains a projective
arc by Proposition 8.8. �

8.2. Triangulations and integer sequences. In this subsection, we give a simple de-
scription of τ -tiltΛ and T (n) in terms of certain integer sequences. Let

Z(n) :=

{
(a1, a2, · · · , an) ∈ Zn≥0 |

n∑

i=1

ai = n

}
.

Let X be a subset of the set Arc(n) of all admissible arcs in Gn. In view of Proposition
8.9, we define top(X) = (a1, a2, · · · , an), where ap is the number of admissible arcs in X
with a terminal point p. If X ∈ T (n), then top(X) ∈ Z(n) since any triangulation of Gn
contains exactly n admissible arcs by Proposition 8.8.

We give the following observation.

Theorem 8.12. There is a bijection

T (n) −→ Z(n)

given by X 7→ top(X).

To prove Theorem 8.12, we construct the inverse mapZ(n)→ T (n). Let a = (a1, · · · , an) ∈
Z(n). We associate to a a sequence a′ = (a′1, · · · , a

′
n) given by

a′i =

i∑

p=1

(ap − 1)
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and let

||a′|| = max{a′1, · · · , a
′
n}.

We define the subset Xa of Arc(n) as follows: Assume that 1 ≤ j1 < j2 < · · · < jr ≤ n are
all integers such that a′ji = ||a′|| and let j+i := ji+1 for any i ∈ [1, r], where jr+1 := j1 + n

and ap := a(p)n
if p is an integer. For any l ∈ [1, n], we define (al − δl) inner arcs with the

terminal point l as follows, where,

δℓ :=

{
1 ((ℓ)n ∈ {j1, j2, · · · , jr})

0 (else).

for any integer ℓ. Note that, if j+i − ji = 1, then aj+i
− δj+i

= 0 holds. Then there does not

exist inner arcs with the terminal point j+i . Thus we assume that j+i − ji > 1. Moreover,

we may assume that l ∈ [ji+2, j+i ] for some i ∈ [1, r]. For each s ∈ [1, al− δl], there exists

unique k := k
(l)n
s ∈ [ji + 1, l − 1] satisfying the following conditions:

(a) ak = 0,
(b) (ak+1 − 1) + · · ·+ (al−1 − 1) + (s− 1) = 0,
(c) (ak+1 − 1) + · · ·+ (am−1 − 1) + (am − 1) ≤ 0 for any integer k < m < l − 1.

We define a set Xa of admissible arcs by

Xa := {〈•, ji〉 | i ∈ [1, r]}
∐
{〈(kls − 1)n, l〉 | l ∈ [1, n], s ∈ [1, al − δl]}.

We explain the construction of Xa by the following example.

Example 8.13. Let n = 8 and a := (0, 4, 1, 0, 1, 0, 2, 0) ∈ Z(8). Now we associate a to
Figure A, where the coordinates of black points are (i, a′i + i). The number ||a′|| can be
detected by drawing parallel diagonal lines. In this example, ||a′|| = a′2 = a′3 hold because
the points (2, a′2 + 2) and (3, a′3 + 3) are on the highest diagonal line.

Moreover, we can also detect kls. For example, if l = 2 and s = 3, then k2
3 = 4.

The corresponding Xa can be obtained in the following way. First we slightly move
diagonal lines in Figure A as Figure B. Next, regarding all diagonal lines (except the
highest diagonal line) as inner arcs, we get Xa in Figure C.

FIGURE A.

FIGURE B.

FIGURE C.1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

s
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s=3
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We note that Xa in Figure C is a triangulation of G8. This is always the case as the
following result shows.

Proposition 8.14. We have Xa ∈ T (n) and top(Xa) = a.

Proof. Since there are exactly al admissible arcs in Xa with a terminal point l by definition,
top(Xa) = a holds. We claim that Xa ∈ T (n). Since each projective arc in Xa is
compatible with all admissible arcs in Xa, it is enough to show that two inner arcs 〈(kls −
1)n, l〉, 〈(k

h
u − 1)n, h〉 ∈ Xa are compatible. If they are not compatible, we may assume

that 1 ≤ j < khu < kls < h < l ≤ j+ ≤ n, where j satisfies a′j = ||a′||. Then, by (b) and (c)

in the conditions of kls and khu, we have

(akh
u+1 − 1) + · · ·+ (akl

s−1 − 1) + (akl
s
− 1) + (akl

s+1 − 1) + · · ·+ (ah − 1) = ah − u(≥ 0).

Moreover, by (a) and (b), the left-hand side of the equation above is less than zero because
we have

(akh
u+1 − 1) + · · ·+ (akl

s−1 − 1) ≤ 0

(akl
s
− 1) = −1

(akl
s+1 − 1) + · · ·+ (ah − 1) ≤ 0.

Hence the claim follows. �

Now, we are ready to prove Theorem 8.12.

Proof of Theorem 8.12. By Proposition 8.14, we have top(Xa) = a for any a ∈ Z(n). We
have only to show thatXtop(X) = X for anyX ∈ T (n). Let a := top(X) = (a1, a2, · · · , an).

(i) First, we show that X and Xa contain exactly the same projective arcs. Namely,
we claim that 〈•, j〉 ∈ X if and only if a′j = ||a′||. Indeed, By Proposition 8.8, we can fix

a projective arc 〈•, j〉 ∈ X. The number aj+1 + aj+2 + · · · + aj+ is exactly one plus the
number of inner arcs in Xj,j+ and the number aj+1 +aj+2 + · · ·+ai is at most the number
of inner arcs in Xj,i for any i ∈ [j + 1, j+ − 1]. Thus we have

j+∑

p=1

ap −

j∑

p=1

ap = aj+1 + aj+2 + · · ·+ aj+ = j+ − j

i∑

p=1

ap −

j∑

p=1

ap = aj+1 + aj+2 + · · ·+ ai < i− j.

This implies a′j = a′j+ and a′j > a′i. Repeating the same argument, we have a′j = a′k if

〈•, k〉 ∈ X and a′j > a′k otherwise. Hence, the claim follows.

(ii) Next we show that, for any j, l ∈ [1, n], the inner arc 〈j, l〉 ∈ X satisfies (a), (b),
and (c) in the conditions of inner arcs in Xtop(X). We take an integer l−n+1 ≤ k ≤ l− 1
with j = (k − 1)n. Since ai − δi gives the number of inner arcs with a terminal point i,
clearly ak = 0 holds. Since Xj,l is an triangulation of (l − k + 2)-gon by Remark 8.7, we
have

ak+1 + ak+2 + · · · + al′−1 + s = 1 + |Xj,l| = l − k

for some 1 ≤ s ≤ al− δl. Hence (b) holds. Moreover, for any k < m < l, since the number∑m
p=k+1 ap is at most one plus the cardinality of Xj,(m)n

, we have

ak+1 + ak+2 + · · ·+ am−1 + am ≤ 1 + |Xj,(m)n
| = m− k.
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Therefore (c) holds. Thus we have X ⊆ Xa, and hence X = Xa because each triangulation
consists exactly n admissible arcs by Proposition 8.8. �

We give an example of Theorem 8.12.

Example 8.15. Let n = 3.

1

2 3

(1, 1, 1)

1

2 3

(2, 1, 0)

1

2 3

(1, 2, 0)

1

2 3

(0, 3, 0)

1

2 3

(0, 2, 1)

1

2 3

(0, 1, 2)

1

2 3

(0, 0, 3)

1

2 3

(1, 0, 2)

1

2 3

(2, 0, 1)

1

2 3

(3, 0, 0)

The next result gives a generalization of Theorem 8.12, For l1, l2, · · · , ln ≥ 1, we denote
by Z(n; l1, · · · , ln) the subset of Z(n) consisting of the integer sequences a = (a1, · · · , an)
such that ℓj(a) ≤ lj for any j ∈ [1, n], where ℓj(a) is given by

ℓj(a) :=

{
0 if aj = 0.

(j − kjaj−δj
+ 1)n if aj > 0.

Note that ℓj(a) is at most n and equals to the maximal length of inner arcs in Xa with a
terminal point j.

Theorem 8.16. Let l1, · · · , ln ≥ 1. There are mutually inverse bijections

T (n; l1, · · · , ln)←→ Z(n; l1, · · · , ln)

given by X 7→ top(X) and a 7→ Xa.

Proof. It is clear from Theorem 8.10 and the definition of Xa. �

8.3. τ-tilting modules and proper support τ-tilting modules. In this subsection, we
study a connection between τ -tilting Λ-modules and proper support τ -tilting Λ-modules.

Let {e1, e2, · · · , en} be a complete set of primitive orthogonal idempotents of Λ and
EΛ := {

∑
j∈J ej | J ⊂ [1, n]}. We define the bijection

φ : EΛ −→ EΛ

given by φ(
∑

i∈I ei) =
∑

i∈I ei−1, where e0 := en.
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We denote by modnpΛ the full subcategory of modΛ consisting of Λ-modules which does
not have nonzero projective direct summands, and let psτ -tiltnpΛ := psτ -tiltΛ∩modnpΛ.
We decompose M ∈ modΛ as M = Mnp ⊕ Mpr, where Mnp ∈ modnpΛ and Mpr is a
maximal projective direct summand of M .

We state our main theorem in this subsection, where eM is the idempotent in Definition
7.5.

Theorem 8.17. Let Λ be a Nakayama algebra. Then the following hold.

(1) There are mutually inverse bijections

τ -tiltΛ←→ psτ -tiltnpΛ

given by τ -tiltΛ ∋M 7→Mnp and psτ -tiltnpΛ ∋M 7→M ⊕ φ(eM )Λ.
(2) If ℓ(P (i)) ≥ n for any i ∈ [1, n], then psτ -tiltnpΛ = psτ -tiltΛ. In particular, we

have a bijection

τ -tiltΛ←→ psτ -tiltΛ.

In the rest of this subsection, we will give a proof of Theorem 8.17. First, we show that
the map psτ -tiltnpΛ ∋M 7→M ⊕ φ(eM )Λ ∈ τ -tiltΛ is well-defined.

Proposition 8.18. If M ∈ psτ -tiltnpΛ, then we have M ⊕ φ(eM )Λ ∈ τ -tiltΛ.

Proof. Since M is annihilated by eM , M does not have top eMΛ as a composition factor.
By Proposition 8.2, τM does not have top(φ(eM )Λ) as a composition factor. Hence
M ⊕ φ(eM )Λ is a τ -rigid Λ-module. Moreover, by M ∈ modnpΛ, we have

|M ⊕ φ(eM )Λ| = |M |+ |φ(eM )Λ| = |M |+ |eMΛ| = |Λ|.

Thus M ⊕ φ(eM )Λ is a τ -tilting Λ-module. �

Conversely, for given a τ -tilting Λ-module, we give a construction of a certain proper
support τ -tilting Λ-module. By Corollary 8.11, every τ -tilting Λ-module has a nonzero
projective direct summand.

Proposition 8.19. If M ∈ τ -tiltΛ, then we have Mnp ∈ psτ -tiltnpΛ and M = Mnp ⊕
φ(eMnp)Λ.

Proof. Let M = Mnp ⊕Mpr ∈ τ -tiltΛ. We may assume that Mpr = eΛ, where e ∈ Λ is
a nonzero idempotent. Since M is τ -rigid, τMnp does not have top eΛ as a composition
factor by Lemma 7.2(1). Thus Mnp does not have top(φ−1(e)Λ) as a composition factor
by Proposition 8.2. Hence Mnp is a τ -rigid (Λ/〈φ−1(e)〉)-module. Moreover, we have

|Mnp| = |M | − |eΛ| = |Λ| − |φ
−1(e)Λ|.

Thus Mnp is a τ -tilting (Λ/〈φ−1(e)〉)-module. Hence, Mnp ∈ psτ -tiltnpΛ holds, and more-
over we have φ−1(e) = eMnp . Thus Mpr = eΛ = φ(eMnp)Λ. �

Now we are ready to prove Theorem 8.17.

Proof of Theorem 8.17. (1) It follows from Proposition 8.18 and 8.19.
(2) This is clear because ℓ(P (i)) ≥ n implies that P (i) is sincere. �

We give another proof of Corollary 8.11 without using combinatorics.
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Proof of Corollary 8.11. Let M ∈ τ -tiltΛ and L be an indecomposable direct summand
of M with the maximal Loewy length. We write M = L ⊕ N . Then (N, 0) is an almost
complete support τ -tilting Λ-module. Assume that M does not have a nonzero projective
Λ-module as a direct summand. Since M is τ -rigid, HomΛ(L, τN) vanishes. Since the
Loewy length of L is at least the Loewy length of any indecomposable direct summand of
N by the choice of L, we have HomΛ(PL, τN) = 0 by Lemma 8.3, where PL is a projective
cover of L. Thus PL ⊕ N is a τ -rigid Λ-module. Moreover, since PL is indecomposable,
we have

|PL ⊕N | = |PL|+ |N | = |PL|+ |M | − |L| = |M | = |Λ|.

Hence, PL ⊕ N is a τ -tilting Λ-module. Moreover, N is a support τ -tilting Λ-module by
Proposition 8.19. This means that almost complete support τ -tilting Λ-module (N, 0) is
a direct summand of three support τ -tilting Λ-modules N,L⊕N and PL ⊕N . However,
this contradicts Proposition 7.9. �

As an immediate consequence of Theorem 8.17, we have the following statement, where
τ -tiltnp(Λ/〈e〉) := τ -tilt(Λ/〈e〉) ∩modnpΛ.

Corollary 8.20. Let Λ be a Nakayama algebra.

(1) We have

sτ -tiltΛ =
∐

e∈EΛ\{0}

(
τ -tilt(Λ/〈e〉)

∐
{M ⊕ φ(e)Λ | M ∈ τ -tiltnp(Λ/〈e〉)

)
.

(2) If ℓ(P (i)) ≥ n for any i ∈ [1, n], we have

sτ -tiltΛ =
∐

e∈EΛ\{0}

{M, M ⊕ φ(e)Λ | M ∈ tilt(Λ/〈e〉)}.

Proof. By Theorem 8.17(1), we have

τ -tiltΛ =
∐

e∈EΛ\{0}

{M ⊕ φ(e)Λ |M ∈ τ -tiltnp(Λ/〈e〉)}. (13)

(1) The assertion follows from (13), Proposition 7.6(1) and (2).
(2) By Theorem 8.17(2), we can omit “np” in (13), and hence we have

sτ -tiltΛ =
∐

e∈EΛ\{0}

{M, M ⊕ φ(e)Λ | M ∈ τ -tilt(Λ/〈e〉)}. (14)

By Proposition 7.6(3), we can replace τ -tilt(Λ/〈e〉) in (14) by tilt(Λ/〈e〉). Thus the asser-
tion follows. �

Finally, we give an example.

Example 8.21. Let Λ := Λ3
3 = K~∆3/J

3 (see Proposition 8.1). To obtain τ -tilting Λ-

modules, let us calculate Λ/〈e〉 for any idempotent e ∈ EΛ. We have Λ/〈ei〉 ≃ K ~A2,

Λ/〈ei + ei+1〉 ≃ K ~A1, and Λ/〈e1 + e2 + e3〉 = {0} for i ∈ [1, 3]. Thus we have

τ -tilt(Λ/〈ei〉) = tilt(K ~A2) = { i+2
i+1 ⊕ i+2 , i+2

i+1 ⊕ i+1 }

τ -tilt(Λ/〈ei + ei+1〉) = tilt(K ~A1) = { i+2 }

τ -tilt(Λ/〈e1 + e2 + e3〉) = {0}.
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Applying Theorem 8.17, we have

sτ -tiltΛ = { {0} , 1 , 2 , 3 , 1
3 ⊕ 1 , 1

3 ⊕ 3 , 2
1 ⊕ 2 , 2

1 ⊕ 1 , 3
2 ⊕ 3 , 3

2 ⊕ 2 }
∐
{

1
3
2
⊕

2
1
3
⊕

3
2
1
, 1 ⊕

1
3
2
⊕

2
1
3
, 2 ⊕

2
1
3
⊕

3
2
1
, 3 ⊕

3
2
1
⊕

1
3
2
,

1
3 ⊕ 1 ⊕

1
3
2
, 1

3 ⊕ 3 ⊕
1
3
2
, 2

1 ⊕ 2 ⊕
2
1
3
, 2

1 ⊕ 1 ⊕
2
1
3
, 3

2 ⊕ 3 ⊕
3
2
1
, 3

2 ⊕ 2 ⊕
3
2
1
}.

Moreover, the Hasse quiver H(Λ) is the following:
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8.4. Summary and applications. Summarizing Theorem 8.10, 8.16 and 8.17, we have
the following result.

Theorem 8.22. Let Λ be a Nakayama algebra with n simple modules and ℓi := ℓ(P (i))
for any i ∈ [1, n]. Then there are bijections between

(1) τ -tiltΛ,
(2) psτ -tiltnpΛ,
(3) T (n; ℓ1, ℓ2, · · · , ℓn),
(4) Z(n; ℓ1, ℓ2, · · · , ℓn).

The following corollary is an immediate consequence of Theorem 8.22. We identify
topM = S(1)a1 ⊕ S(2)a2 ⊕ · · · ⊕ S(n)an with a sequence (a1, a2, · · · , an).

Corollary 8.23. Assume that ℓ(P (i)) ≥ n for any i ∈ [1, n]. Then the map M 7→ topM
gives a bijection

τ -tiltΛ −→ Z(n).

In particular, the cardinality of sτ -tiltΛ is

|sτ -tiltΛ| =

(
2n

n

)
.

Proof. For any M ∈ τ -tiltΛ, we have

topM = topX,

whereX is the triangulation corresponding toM by Theorem 8.12. Thus the first assertion
follows from Theorem 8.22. Next, we have

|sτ -tiltΛ| = |τ -tiltΛ|+ |psτ -tiltΛ|
8.17(2)

= 2|τ -tiltΛ|
8.22
= 2|Z(n)|.
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1
4
3
2

1
4
3

1
4 1

1
4
3
2

1
4
3

1
4 4

1
4
3
2

1
4
3

4
3 4

{0}

3

1 3

4
3 3

4
3 4

1
4
3

4
3 3

1
4
3

1 3

1
4
3

1
4 1

1
4
3

1
4 4

1
4
3

4
3 4

1
4
3

2
1
4

3
2
1

4
3
2

1
4
3

3
2
1

4
3
2

3

1
4
3

3
2
1

1 3

1
4
3

4
3
2

4
3 3

1
4
3

4
3
2

4
3 4

1
4

2
1

3
2

4
3

1
4

3
2

4
3 3

1
4

3
2 1 3

Table 1. Example of Theorem 8.22
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Now, it is elementary that 2|Z(n)| = 2
(
2n−1
n−1

)
=

(
2n
n

)
holds. �

As an application of Theorem 8.22, we give a proof of the following well-known result
(e.g. [BK]).

Corollary 8.24. Let Λ := K ~An be a path algebra. Then there are bijections between

(1) tiltΛ,
(2) S(n) := {X ∈ T (n) | 〈•, n〉 ∈ X},
(3) Y(n) := {a ∈ Z(n) | ||a′|| = 0}.

In particular, we have

|tiltΛ| = Cn,

where Cn is the n-th Catalan number 1
n+1

(2n
n

)
.

Note that S(n) can identify the set of triangulations of (n + 2)-regular polygon (with
no puncture). Therefore the cardinality of S(n) is equal to the n-th Catalan number Cn.

Proof. Since Λ is hereditary, we have τ -tiltΛ = tiltΛ by Proposition 7.6(3). Moreover,
there are bijections between tiltΛ, T (n; 1, 2, · · · , n), and Z(n; 1, 2, · · · , n) by Theorem
8.22.

First, we show that

S(n) = T (n; 1, 2, · · · , n). (15)

Indeed, assume that X ∈ S(n). Since X contains the projective arc 〈•, n〉, we have
ℓ(〈i, j〉) ≤ j for each inner arc 〈i, j〉 ∈ X. Thus, we have X ∈ T (n; 1, 2, · · · , n). Conversely,
assume that X ∈ T (n; 1, 2, · · · , n). Clearly, the projective arc 〈•, n〉 is compatible with all
admissible arc in X. Thus, we have 〈•, n〉 ∈ X, and hence X ∈ S(n).

Next, we show that

Y(n) = Z(n; 1, 2, · · · , n).

Indeed, if a ∈ Z(n; 1, 2, · · · , n), then Xa contains the projective arc 〈•, n〉 by (15). Thus
we have ||a′|| = a′n(= 0), and hence a ∈ Y(n). Conversely, if a ∈ Y(n), then a′n =
0 = ||a′||. Thus we have 1 ≤ kiai−δi

< i ≤ n for any i, and hence ℓi(a) ≤ i. Therefore

a ∈ Z(n; 1, 2, · · · , n). �

8.5. Miscellaneous results on Nakayama algebras of type A. In this subsection,
we give another classification of τ -tilting modules over Nakayama algebras of type A. The
calculation of proper support τ -tilting modules over Nakayama algebras can be reduced
to that of τ -tilting modules over smaller Nakayama algebras of type A. Moreover, as an
application, we give the number of τ -tilting modules as a recurrence relation.

Throughout this subsection, we assume that Λ is a Nakayama algebra of type ~Aop
n . Here

we use the quiver ~Aop
n instead of ~An because the opposite index is more convenient for our

setting. Namely, its quiver is isomorphic to ~Aop
n , that is,

~Aop
n : n n−1

αn−1oo · · ·
αn−2oo 2

α2oo 1
α1oo

Thus τM has the following property for any M ∈ modΛ.

Lemma 8.25. If M is a τ -rigid Λ-module, then M ⊕ P (1) is also a τ -rigid Λ-module.

Proof. Since the vertex 1 in ~Aop
n is a source, τM does not have S(1) as a composition

factor by Proposition 8.2. Hence HomΛ(P (1), τM) = 0 by Lemma 7.2. Thus M ⊕P (1) is
τ -rigid. �
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By Lemma 8.25, we have the following result for τ -tilting modules.

Proposition 8.26. Each τ -tilting Λ-module has P (1) as a direct summand.

Proof. Let M be a basic τ -tilting Λ-module. Then M ⊕ P (1) is a τ -rigid Λ-module by
Lemma 8.25. Thus we have P (1) ∈ addM by Proposition 7.4. �

Our aim in this subsection is to show the following theorem.

Theorem 8.27. Let Λ be a Nakayama algebra of type ~Aop
n . Then there are mutually

inverse bijections

τ -tiltΛ←→

ℓ(P (1))∐

i=1

τ -tilt (Λ/〈ei〉)

given by τ -tiltΛ ∋M 7→M/P (1) and N 7→ N ⊕ P (1) ∈ τ -tiltΛ.

Proof. Let N ∈ τ -tilt(Λ/〈ei〉) for i ∈ [1, ℓ(P (1))]. Then N ⊕ P (1) is a τ -tilting Λ-module
because it is τ -rigid by Lemma 8.25 and |N ⊕ P (1)| = |Λ| by P (1) /∈ mod(Λ/〈ei〉).

Conversely, let M be a basic τ -tilting Λ-module. Then, by Proposition 8.26, we de-
compose M as M = P (1) ⊕ N1 ⊕ N2, where N1 is a maximal direct summand of M
consisting of (Λ/〈e1〉)-modules and N2 is a direct summand of M with topN2 ∈ addS(1).
If N2 = 0, then N1 is a τ -tilting (Λ/〈e1〉)-module clearly. Assume that N2 6= 0. Then
we have N2 ∈ mod(Λ/〈ej+1〉) for j := ℓ(N2). Note that 1 ≤ j < ℓ(P (1)). Now, we
claim that N1 ∈ mod(Λ/〈ej+1〉). Indeed, if it does not hold, then there exists an in-
decomposable Λ-module Y ∈ addN1 which has S(j + 1) as a composition factor. Let
X := P (1)/ radj P (1) ∈ addN2. Since soc(τX) = S(j + 1) and top(τX) = S(2) hold
by Proposition 8.2, we have HomΛ(Y, τX) 6= 0 by Lemma 8.3(2)⇒(1). However, this
contradicts that M is τ -rigid. Thus N1 ⊕N2 is a τ -tilting (Λ/〈ej+1〉)-module. �

As an application of Theorem 8.27, we have a recurrence relation for the cardinality of
τ -tiltΛ.

Corollary 8.28. (1) Let Λ be a Nakayama algebra of type Aop
n . Then we have

|τ -tiltΛ| =

ℓ(P (1))∑

i=1

Ci−1 · |τ -tilt(Λ/〈e≤i〉)|

where e≤i := e1 + e2 + · · ·+ ei.

(2) Let Λ = Γrn := K ~Aop
n / radrK ~Aop

n . Then we have

|τ -tiltΓrn| =
r∑

i=1

Ci−1 · |τ -tiltΓ
r
n−i|.

Proof. (1) By Theorem 8.27, we have

|τ -tiltΛ| =

ℓ(P (1))∑

i=1

|τ -tilt(Λ/〈ei〉)|.

Since the quiver of Λ is a tree, we have Λ/〈ei〉 ≃ (Λ/〈e≥i〉) × (Λ/〈e≤i〉), where e≥i :=
ei + ei+1 + · · · + en and e≤i := e1 + e2 + · · ·+ ei for i ∈ [1, n]. Thus there is a bijection

τ -tilt(Λ/〈e≥i〉)× τ -tilt(Λ/〈e≤i〉) −→ τ -tilt(Λ/〈ei〉)
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given by (N,L) 7→ N ⊕ L. Hence we have

|τ -tilt(Λ/〈ei〉)| = |τ -tilt(Λ/〈e≥i〉)| · |τ -tilt(Λ/〈e≤i〉)|.

If i ≤ ℓ(P (1)), then Λ/〈e≥i〉 is isomorphic to K ~Aop
i−1. Thus, by Corollary 8.24, we have

|τ -tilt(Λ/〈e≥i〉)| = |tilt(K ~Ai−1)| = Ci−1.

Therefore the assertion follows.
(2) If Λ = Γrn, then we have Λ/〈e≤i〉 ≃ Γrn−i. Hence it is clear from (1). �

Example 8.29. We calculate τ -tiltΓ2
n inductively. First, we already know that

tilt(K ~A1) = { 1 }, tilt(K ~A2) = { 2 ⊕ 1
2 , 1 ⊕ 1

2 }.

By Theorem 8.27,

τ -tiltΓ2
3 ←→ τ -tilt(Γ2

3/〈e2〉)
∐

τ -tilt(Γ2
3/〈e1〉) = { 1 ⊕ 3 }

∐
{ 3 ⊕ 2

3 , 2 ⊕ 2
3 }.

Thus we have

τ -tiltΓ2
3 = { 3 ⊕ 2

3 ⊕
1
2 , 2 ⊕ 2

3 ⊕
1
2 , 1 ⊕ 3 ⊕ 1

2 }.

Similarly, we have

τ -tiltΓ2
4 ={ 4 ⊕ 3

4 ⊕ 1 ⊕ 1
2 , 3 ⊕ 3

4 ⊕ 1 ⊕ 1
2 }∐

{ 4 ⊕ 3
4 ⊕

2
3 ⊕

1
2 , 3 ⊕ 3

4 ⊕
2
3 ⊕

1
2 , 2 ⊕ 4 ⊕ 2

3 ⊕
1
2 }.

As a similar result of Corollary 8.28, Jasso [Ja2] showed a recurrence relation

|sτ -tiltΓ2
n| = 2|sτ -tiltΓ2

n−1|+ |sτ -tiltΓ
2
n−2|.

We give examples of the number of support τ -tilting modules over some Nakayama
algebras.

Table 2. |τ -tiltΓrn|

r
n

1 2 3 4 5

1 1 1 1 1 1
2 1 2 3 5 8
3 1 2 5 9 18
4 1 2 5 14 28
5 1 2 5 14 42

Table 3. |sτ -tiltΓrn|

r
n

1 2 3 4 5

1 2 4 8 16 32
2 2 5 12 29 70
3 2 5 14 37 98
4 2 5 14 42 118
5 2 5 14 42 132

Table 4. |τ -tiltΛrn|

r
n

1 2 3 4 5

1 1 1 1 1 1
2 1 3 4 7 11
3 1 3 10 15 31
4 1 3 10 35 56
5 1 3 10 35 126

Table 5. |sτ -tiltΛrn|

r
n

1 2 3 4 5

1 2 4 8 16 32
2 2 6 14 34 82
3 2 6 20 50 132
4 2 6 20 70 182
5 2 6 20 70 252
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9. τ-tilting modules and Drozd-Kirichenko rejection

Our aim in this section is to study a connection of support τ -tilting modules between two
algebras related by Drozd-Kirichenko rejection. As an application, we give an algorithm
to construct the Hasse quivers of support τ -tilting modules over Nakayama algebras.

Rejection Lemma of Drozd-Kirichenko is the following statement, which give explicit
relationship between representation theory of Λ and that of the factor algebra Λ/S of Λ.
We denote by indΛ the set of isomorphism classes of indecomposable Λ-modules.

Proposition 9.1. [DrKi] Let Λ be a basic finite dimensional K-algebra and Q an inde-
composable projective-injective summand of Λ as a Λ-module. Then the following hold.

(1) S := socQ is a two-sided ideal of Λ.
(2) ind(Λ/S) = ind(Λ) \ {Q}.
(3) τΛU ≃ τΛ/SU for any U ∈ mod(Λ/S) with U 6≃ Q/S, and τΛ(Q/S) ≃ radQ.
(4) Any almost split sequence in mod(Λ/S) is an almost split sequence in modΛ.
(5) All almost split sequences in modΛ are either almost split sequences in mod(Λ/S)

or

0 // radQ // Q⊕ radQ/S // Q/S // 0.

(6) Q/S is an indecomposable projective (Λ/S)-module and radQ is an indecomposable
injective (Λ/S)-module.

9.1. Main results. Let Λ be an arbitrary basic finite dimensional K-algebra (we do not
assume that Λ is Nakayama). We always assume that Λ has an indecomposable projective-
injective summandQ as a Λ-module. Moreover, let S := socQ and Λ := Λ/S. We consider
the functor

(−) := −⊗Λ Λ : modΛ→ modΛ.

Then Q = Q/S. Note that, for every indecomposable Λ-module M 6≃ Q, we have an
isomorphism M ≃M as Λ-module.

In this subsection, we show that the poset sτ -tiltΛ can be constructed from the poset
sτ -tiltΛ. The following construction is crucial.

Definition 9.2. Let Ω = (Ω,≥) be a poset and N a subposet of Ω. We define a new poset
ΩN = (ΩN ,≥N ) as follows, where N+ := {n+ | n ∈ N} is a copy of N and ω1, ω2 ∈ Ω,
w ∈ Ω \N , and n1, n2 ∈ N are arbitrary elements:

ΩN := Ω
∐

N+,

ω1 ≥N ω2 :⇔ ω1 ≥ ω2

w ≥N n+
1 :⇔ w ≥ n1

n+
2 ≥N ω2 :⇔ n2 ≥ ω2

n+
1 ≥N n+

2 :⇔ n1 ≥ n2.

In particular, n1 ≥N n+
2 never hold. It is easily checked that (ΩN ,≥N ) forms a poset.

Now we observe that the Hasse quiver H(ΩN ) of the poset ΩN is constructed from the
Hasse quiver H(Ω) of the poset Ω by the combinatorial operation given as follows. For a
quiver H, we denote by H0 the set of vertices of H and by H1 the set of arrows of H.
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Definition-Proposition 9.3. In the setting of Definition 9.2, let H(Ω) := (H0,H1) and
H(ΩN ) := (H′

0,H
′
1) be the Hasse quivers of Ω and ΩN , respectively. We define a new

quiver H(Ω)N := (H′′
0 ,H

′′
1) as follows, where ω1, ω2 are arbitrary elements in Ω \ N and

n1, n2 are arbitrary elements in N :

H′′
0 = H0

∐
N+

H′′
1 = {ω1 → ω2 | ω1 → ω2 in H1}

∐
{n2 → ω2 | n2 → ω2 in H1}

∐
{n1 → n2, n

+
1 → n+

2 | n1 → n2 in H1}
∐
{ω1 → n+

1 | ω1 → n1 in H1}
∐
{n+

1 → n1 | n1 ∈ H0}.

Then we have

H(Ω)N = H(ΩN ).

ω1

��

++WWWWWWWWWWW ω1

��

++WWWWWWWWWW

n1

��

n+
1

wwppp
pp

''OOO
OO

// n1
((QQQQQ n+

2
vvmmmmm

n2
rreeeeeeeeeee n2

rrffffffffff

ω2 ω2

H(Ω) H(Ω)N

Proof. By the definition of ΩN , H′
0 = H0

∐
N+ = H′′

0 clearly holds.
To show the statement for H′

1, we give the following observation.

Lemma 9.4. Let ω1, ω2 ∈ Ω \N and n1, n2 ∈ N be any elements.

(1) The following hold.
(a) There is an arrow ω1 → ω2 in H1 if and only if so is in H′

1.
(b) There is an arrow n2 → ω2 in H1 if and only if so is in H′

1.
(c) There is an arrow n1 → n2 in H1 if and only if so is in H′

1 if and only if there
is an arrow n+

1 → n+
2 in H′

1.
(d) There is an arrow ω1 → n1 in H1 if and only if there is an arrow ω1 → n+

1 in
H′

1.
(e) For any n1 ∈ N , there is an arrow n+

1 → n1 in H′
1.

(2) There are no arrows n1 → n+
2 , n+

1 → ω2 and ω1 → n1 in H′
1.

Proof. (1) We only prove (a); the proofs of (b), (c) and (d) are similar.
(a) It follows from that the following conditions are equivalent by definition.

(i) There is an arrow ω1 → ω2 in H1.
(ii) ω1 > ω2 in Ω and there does not exist x ∈ Ω such that ω1 > x > ω2.
(iii) ω1 >N ω2 in ΩN and there does not exist y ∈ ΩN such that ω1 >N y >N ω2.
(iv) There is an arrow ω1 → ω2 in H′

1.

(e) By definition, we have n+
1 >N n1. Assume that there exists y ∈ ΩN such that

n+
1 ≥N y ≥N n1. Then y = n+

1 or n1 holds clearly. Hence the assertion follows.
(2) It is clear from the definition of ΩN . �

By Lemma 9.4, the assertion follows. �
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The following theorem is our main result. Let

N := {N ∈ sτ -tiltΛ | Q ∈ addN and HomΛ(N,Q) = 0}.

Applying Definition 9.2, we have a poset (sτ -tiltΛ)N . For any Λ-module M , we denote by
α(M) a basic Λ-module satisfying add(α(M)) = addM .

Theorem 9.5. Let Λ be a basic finite dimensional algebra and Q an indecomposable
projective-injective summand of Λ as a Λ-module. Then M 7→ α(M) gives an isomorphism
of posets

sτ -tiltΛ −→ (sτ -tiltΛ)N .

In particular, we have an isomorphism of Hasse quivers

H(Λ) ≃ H((sτ -tiltΛ)N ).

The proof of Theorem 9.5 will be given at the end of this subsection. We illustrate
Theorem 9.5 with the following example.

Example 9.6. Let Λ be the preprojective algebra of Dynkin type A3. Then we have

Λ =
1
2
3
⊕

2
1 3
2
⊕

3
2
1
. Let Q :=

1
2
3
. Then we have Λ = 1

2 ⊕
2

1 3
2
⊕

3
2
1
. The Hasse quiver H(Λ) is

given by

1
2

2
1 3
2

3
2
1
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!!C
CC

CC
CC
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where the elements in N are marked by circles.
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On the other hand, the Hasse quiver H(Λ) is given by
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where the elements in N+ are marked by rectangles. One can easily check that the
relationship between sτ -tiltΛ and sτ -tiltΛ is given by Theorem 9.8.

We refer to [Miz2] for more information on H(Λ) for a preprojective algebra Λ of Dynkin
type.

Next we give the following corollary of Theorem 9.5.

Corollary 9.7. In the setting of Theorem 9.5, assume that Q has S as a composition
factor. Then N = ∅ holds, and we have an isomorphism of posets

sτ -tiltΛ ≃ sτ -tiltΛ

and an isomorphism of Hasse quivers

H(Λ) ≃ H(Λ).

Proof. Since Q has S as a composition factor, we have HomΛ(Q,Q) 6= 0 by Lemma

7.2(1). Thus N = ∅ holds. The assertion follows from Theorem 9.5 since (sτ -tiltΛ)∅ =
sτ -tiltΛ. �

In the rest of this subsection, we give a proof of Theorem 9.5. We will describe the
relationship between sτ -tiltΛ and sτ -tiltΛ more explicitly. We decompose sτ -tiltΛ as
sτ -tiltΛ =M1

∐
M−

2

∐
M+

2

∐
M3, where

M1 =M1(Q) := {M ∈ sτ -tiltΛ | Q,Q /∈ addM},

M−
2 =M−

2 (Q) := {M ∈ sτ -tiltΛ | Q /∈ addM and Q ∈ addM},

M+
2 =M+

2 (Q) := {M ∈ sτ -tiltΛ | Q⊕Q ∈ addM},

M3 =M3(Q) := {M ∈ sτ -tiltΛ | Q ∈ addM and Q /∈ addM}.

Theorem 9.8. Let Λ be a basic finite dimensional algebra and Q an indecomposable
projective-injective summand of Λ as a Λ-module. Then the following hold.

(1) The map M 7→ α(M) gives bijections

M1 → N1, M
−
2 → N2, M

+
2 → N

+
2 , M3 → N3,
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where

N1 = N1(Q) := {N ∈ sτ -tiltΛ | Q /∈ addN},

N2 = N2(Q) := N = {N ∈ sτ -tiltΛ | Q ∈ addN and HomΛ(N,Q) = 0},

N3 = N3(Q) := {N ∈ sτ -tiltΛ | Q ∈ addN and HomΛ(N,Q) 6= 0}.

and N+
2 is a copy of N2. In particular, there is a bijection

α : sτ -tiltΛ→ (sτ -tiltΛ)N2

given by the bijection above.
(2) We have

sτ -tiltΛ = {N | N ∈ N1

∐
N2}

∐
{Q⊕N | N ∈ N2}

∐
{Q⊕ (N/Q) | N ∈ N3}.

Proof. We only have to give a proof of (1) because (2) follows from (1) immediately. We
start with an easy lemma.

Lemma 9.9. Assume Q 6= 0 and that U ∈ modΛ does not have Q as a direct summand.
The following are equivalent.

(a) Q⊕ U is a τ -rigid Λ-module.
(b) Q⊕ U is a τ -rigid Λ-module with HomΛ(Q⊕ U,Q) = 0.

Proof. We have isomorphisms

HomΛ(Q⊕ U, τΛ(Q⊕ U))
9.1(3)
≃ HomΛ(Q⊕ U, radQ)⊕HomΛ(Q⊕ U, τΛU)

7.2(2)
≃ HomΛ(Q⊕ U,Q)⊕HomΛ(Q⊕ U, τΛ(Q⊕ U)).

Thus the assertion follows. �

The following proposition plays an important role.

Proposition 9.10. Assume Q 6= 0 and that U ∈ modΛ does not have Q as a direct
summand.

(1) The following are equivalent:
(a) U is a support τ -tilting Λ-module.
(b) U is a support τ -tilting Λ-module.

(2) The following are equivalent:
(a) Q⊕Q⊕ U is a support τ -tilting Λ-module.
(b) Q⊕ U is a support τ -tilting Λ-module.
(c) Q⊕ U is a support τ -tilting Λ-module with HomΛ(Q⊕ U,Q) = 0.

(3) The following are equivalent:
(a) Q⊕ U is a support τ -tilting Λ-module.
(b) Q⊕ U is a support τ -tilting Λ-module with HomΛ(Q⊕ U,Q) 6= 0.

Proof. (1) Since we have τΛU ≃ τΛU by Proposition 9.1(3), the assertion follows.

(2) (a) ⇔ (b): We claim that M := Q ⊕ Q ⊕ U is a τ -rigid Λ-module if and only if
N := Q⊕ U is a τ -rigid Λ-module. Indeed, this follows from isomorphisms

HomΛ(M, τΛM) ≃ HomΛ(Q, τΛN)⊕HomΛ(N, τΛN)

7.2(2)
≃ HomΛ(Q, τΛN)⊕HomΛ(N, τΛN),

and Q ∈ addN .
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By Lemma 9.9, both (a) and (b) imply HomΛ(N,Q) = 0, or equivalently N does not
have S as a composition factor by Lemma 7.2(2). Hence s(M) = s(N) + 1 holds, where
s(M) is the number of nonisomorphic simple modules appearing in a composition series
of M .. Thus the assertion follows from Proposition 7.8 and |M | = |N |+ 1.

(b) ⇔ (c): This is immediate from Lemma 9.9.
(3) First, we claim that Q ⊕ U is a τ -rigid Λ-module if and only if Q ⊕ U is a τ -rigid

Λ-module. Indeed, this follows from isomorphisms

HomΛ(Q⊕ U, τΛU)
7.2(2)
≃ HomΛ(Q⊕ U, τΛU)

9.1(3)
≃ HomΛ(Q⊕ U, τΛU).

Next, we claim that, if Q⊕U ∈ sτ -tiltΛ, then HomΛ(Q⊕U,Q) 6= 0. Indeed, assume that
HomΛ(Q⊕U,Q) = 0. Since Q⊕U is τ -rigid, Q⊕U is a τ -rigid Λ-module by Lemma 7.2(2)
and Proposition 9.1(3), and hence Q⊕ U is a τ -rigid Λ-module by by Lemma 9.9. Thus
Q⊕Q⊕U is a τ -rigid (Λ/〈eQ⊕U )〉)-module by Lemma 7.7. This contradicts that τ -tilting

modules are maximal τ -rigid by Proposition 7.4. Since HomΛ(Q⊕U,Q) 6= 0 holds by our
assumption, Q ⊕ U has S as a composition factor by Lemma 7.2(2). Thus the assertion
follows from Proposition 7.8 since we have s(Q⊕ U) = s(Q⊕ U). �

Remark 9.11. If Q is a simple projective-injective Λ-module, or equivalently Q = 0,
then we have sτ -tiltΛ = N2. In this case, Proposition 9.10(2) holds because we have
Λ ≃ Λ/〈ei〉, where soc(Q) = S(i) = top(eiΛ).

We now finish the proof of Theorem 9.8(1).
By Proposition 9.10, the map M 7→ α(M) gives bijections

M1 → N1, M
−
2 → N2, M

+
2 → N

+
2 , M3 → N3.

Hence α : sτ -tiltΛ→ (sτ -tiltΛ)N is a bijection. �

From now, we give a proof of Theorem 9.5. The following lemma is useful to understand
the structure of the poset sτ -tiltΛ.

Lemma 9.12. (1) Let N,N ′ ∈ sτ -tiltΛ. If N > N ′ holds, then we have

(N,N ′) /∈ (N1 ×N2)
∐

(N1 ×N3)
∐

(N2 ×N3).

(2) Let M,M ′ ∈ sτ -tiltΛ. If M > M ′ holds, then we have

(M,M ′) /∈ (M1 ×M
±
2 )

∐
(M1 ×M3)

∐
(M±

2 ×M3)
∐

(M−
2 ×M

+
2 ).

Proof. We only prove (1); the proof of (2) is similar. If N ≥ N ′ holds and P ∈ addN ′ is
projective, then P ∈ addN . Thus the assertion except (N,N ′) /∈ N2×N3 follows. Assume
that (N,N ′) ∈ N2×N3. Then we have N ′ ∈ Fac(N). This is a contradiction since N does
not have S as a composition factor and N ′ has S as a composition factor. �

Now, we are ready to prove Theorem 9.5.

Proof of Theorem 9.5. Since the map α : sτ -tiltΛ→ (sτ -tiltΛ)N is a bijection by Theorem
9.8, we have only to show that, for any M,L ∈ sτ -tiltΛ, M ≥ L holds if and only if
α(M) ≥ α(L) holds. Indeed, if M ≥ L, then L ∈ FacM , and hence L ∈ FacM hold, which
implies α(M) ≥ α(L). Conversely, assume that α(M) ≥ α(L). If both M and L are in
either M1, M

±
2 or M3, then M ≥ L holds clearly. Otherwise, by Lemma 9.12, we have

(M,L) ∈ (M3 ×M
±
2 )

∐
(M3 ×M1)

∐
(M±

2 ×M1)
∐

(M+
2 ,M

−
2 ).
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By the definition of the functor (−), we have M ∈ FacM in modΛ. Hence M ≥ α(M) ≥
α(L) holds in modΛ. If we have L ∈ M1

∐
M−

2 , then α(L) = L = L and hence M ≥ L

hold. On the other hand, if we have L ∈ M+
2 , then L = Q ⊕ L ∈ FacM holds because

M ∈M3 has Q as a direct summand. Hence the assertion follows. �

9.2. Applications to Nakayama algebras. In this subsection, we apply the results in
the previous subsection to a Nakayama algebra Λ. We give a combinatorial method to
construct the Hasse quiver of support τ -tilting Λ-modules.

It is basic that any Nakayama algebra Λ has an at least one indecomposable projective-
injective module Q and its factor algebra Λ/ socQ is again Nakayama (see [ASS, V.3.3 and
V.3.4]). Thus we can iteratively apply Drozd-Kirichenko rejection to Nakayama algebras.
We have the following algorithm for a construction of the Hasse quiver.

Algorithm 9.13. Let Λ be a Nakayama algebra.

(0) Take a (non-unique) sequence of Nakayama algebras

Λ =: Λ1
// // Λ2

// // · · · // // Λm−1
// Λm := 0

such that Λi+1 := Λi/ socQi, where Qi is an indecomposable projective-injective
Λi-module, and m > 0 is an integer.

(1) First, the Hasse quiver H(Λm) consists of one vertex and no arrows.

(2) Secondly, the Hasse quiver H(Λm−1) is given by H((sτ -tiltΛm)N2(Qm−1)) (see Definition-
Proposition 9.3).

(3) Thirdly, the Hasse quiver H(Λm−2) is given by H((sτ -tiltΛm−1)
N2(Qm−2)).

...
(l) The Hasse quiver H(Λm−l+1) is given by H((sτ -tiltΛm−l+2)

N2(Qm−l+1)).
...

(m) Finally, the Hasse quiver H(Λ1) is given by H((sτ -tiltΛ2)
N2(Q1)).

As a direct consequence of Theorem 9.5, we have the following result.

Theorem 9.14. Let Λ be a Nakayama algebra with n simple modules. Assume that
ℓ(P (i)) ≥ n for any i ∈ [1, n]. Then we have

H(Λ) ≃ H(Λnn),

where Λnn is the self-injective Nakayama algebra with n simple modules and the Loewy
length n.

We give an example of calculation of the Hasse quiver using Algorithm 9.13.

Example 9.15. Let Λ1 := Λ4
3 = K ~∆3/J

4. Then we have sequence

Λ1
// // Λ2

// // Λ3
// // · · · // // Λ8

// // Λ9
// // Λ10 =: K3 .

of Nakayama algebras, where each Λi is explicitly given bellow. We will describe H(Λi)
inductively, where the elements in N2(Qi) are marked by rectangles and those inM2(Qi)
are marked by circles. Note that H(Km) is isomorphic to the Hasse quiver of the set of all
subsets of an m-element set ordered by inclusion. Thus we may begin with a semisimple
algebra.

(1) H(Λ10) is the following, where Λ10 = K3 and Q9 = 3
2
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(2) H(Λ9) is the following, where Λ9 = K( 3 // 2 1 ) and Q8 = 2
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(3) H(Λ8) is the following, where Λ8 = K ~A3/〈α2α1〉 and Q7 =
3
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(4) H(Λ7) is the following, where Λ7 = K ~A3 and Q6 = 1
3
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(5) H(Λ6) is the following, where Λ6 = K~∆3/〈α3α2, α1α3〉 and Q5 =
2
1
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(6) H(Λ5) is the following, where Λ5 = K~∆3/〈α3α2, α2α1α3〉 and Q4 =
1
3
2
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(7) H(Λ4) is the following, where Λ4 = Λ3
3 and Q3 =

3
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(8) H(Λ3) is the following, where Λ3 = K~∆3/〈α3α2α1, α1α3α2〉 and Q2 =
2
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(9) H(Λ2) is the following, where Λ2 = K~∆3/〈α3α2α1, α2α1α3α2〉 and Q1 =
1
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(10) H(Λ1) is the following, where Λ1 = Λ4
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Note that the Hasse quivers Λi (i ≤ 4) are the same shapes. This is a consequence of
Theorem 9.14.

Part 3. Characterizing τ-rigid-finite algebras with radical square zero

This part is based on the paper [Ad2].

10. Preliminaries

In this section, we collect some results which are necessary in this part. Let Λ be a
basic finite dimensional K-algebra and J := JΛ a Jacobson radical of Λ.

10.1. τ-rigid modules. We recall basic properties of τ -rigid modules.

Definition 10.1. A Λ-module X is called τ -rigid if HomΛ(X, τX) = 0. We denote by
iτ -rigidΛ the set of isomorphism classes of indecomposable τ -rigid Λ-modules. An algebra
Λ is called τ -rigid-finite if iτ -rigidΛ is a finite set.
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By Auslander-Reiten duality Ext1Λ(X,Y ) ≃ DHomΛ(Y, τX), every τ -rigid Λ-module X
is rigid (i.e. Ext1Λ(X,X) = 0), and the converse is true if Λ is hereditary (e.g., the path
algebra KQ of an acyclic quiver Q).

For a Λ-module X, we denote by

PX1
p
→ PX0

q
→ X → 0

a minimal projective presentation. The following proposition plays an important role in
this part.

Proposition 10.2. [AIR, Proposition 2.4 and 2.5] For a Λ-module X, the following hold.

(1) X is τ -rigid if and only if the map (p,X) : HomΛ(PX0 ,X) → HomΛ(PX1 ,X) is
surjective.

(2) If X is τ -rigid, then we have addPX0 ∩ addPX1 = 0.

For an idempotent e ∈ Λ, we consider two K-linear functors

Le(−) := −⊗eΛe eΛ : mod(eΛe)→ modΛ, Re(−) := (−)e : modΛ→ mod(eΛe).

Then (Le, Re) is an adjoint pair. Moreover, the following result gives a connection between
τ -rigid (eΛe)-modules and τ -rigid Λ-modules.

Lemma 10.3. [ASS, I.6.8] Let Λ be an algebra and e ∈ Λ an idempotent.

(1) The functor Le is fully faithful and there exists a functorial isomorphism ReLe ≃
1modeAe. In particular, Le and Re induce mutually quasi-inverse equivalences be-
tween categories mod(eΛe) and ImLe := {Le(X) | X ∈ mod(eΛe)}.

(2) A Λ-module X is in the category ImLe if and only if PX0 ⊕ P
X
1 ∈ addeΛ.

We have the following result.

Proposition 10.4. Let Λ be an algebra and e ∈ Λ an idempotent. Assume that a Λ-
module X is in ImLe. Then X is τ -rigid if and only if the (eΛe)-module Xe is τ -rigid.
In particular, Le and Re induce mutually inverse bijections

iτ -rigid(eΛe)←→ iτ -rigidΛ ∩ ImLe.

Proof. By Lemma 10.3(2), we have PX0 ⊕ P
X
1 ∈ addeΛ. Hence the sequence

PX1 e
pe
−→ PX0 e

qe
−→ Xe −→ 0

is a projective presentation. By Lemma 10.3(1), the projective presentation is minimal,
and moreover we have a commutative diagram

HomA(PX0 ,X)
(p,X) //

≃
��

HomA(PX1 ,X)

≃
��

HomeAe(P
X
0 e,Xe)

(pe,Xe)// HomeAe(P
X
1 e,Xe)

where the vertical maps are isomorphisms. By using Proposition 10.2(1), we have that X
is a τ -rigid Λ-module if and only if Xe is a τ -rigid (eΛe)-module. �

The following proposition is a well-known result for path algebras.

Proposition 10.5. [ASS, VII.5.1, VIII.2.7 and VIII.2.9] Let Q be a connected acyclic
quiver and Λ := KQ the path algebra of Q. Then the following hold.
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(1) Λ is representation-finite if and only if Q is a Dynkin quiver. In this case, every
indecomposable Λ-module is rigid.

(2) If Λ is not representation-finite, then there exist infinitely many isomorphism
classes of indecomposable rigid Λ-modules. Moreover, there exists an indecom-
posable Λ-module which is not rigid.

Immediately, we have the following characterization of τ -rigid-finiteness for path alge-
bras of acyclic quivers.

Theorem 10.6. Let Q be a connected acyclic quiver and Λ := KQ the path algebra of Q.
Then the following are equivalent:

(1) Λ is representation-finite.
(2) Λ is τ -rigid-finite.
(3) Q is a Dynkin quiver.

Proof. It follows from Proposition 10.5 because rigid modules are exactly τ -rigid modules
for any hereditary algebra. �

10.2. Algebras with radical square zero. Throughout this subsection, we assume that
Λ is an algebra with radical square zero (i.e., J2 = 0). For algebras with radical square
zero, the following triangular matrix algebra plays an important role:

∆ := ∆(Λ) :=
[

Λ/J J
0 Λ/J

]
.

Each ∆-module is given by a triplet (X ′,X ′′;ϕ), where X ′,X ′′ are (Λ/J)-modules and ϕ
is a morphism

ϕ : X ′ ⊗Λ/J J −→ X ′′

in mod(Λ/J). A morphism f : (X ′,X ′′;ϕ) −→ (Y ′, Y ′′;ψ) in mod∆ is given by a pair
(f ′, f ′′), where f ′ : X ′ −→ Y ′ and f ′′ : X ′′ −→ Y ′′ are morphisms in mod(Λ/J) such that
ψf ′ = f ′′ϕ (see [ASS, A.2.7] and [ARS, III.2] for details).

X ′
ϕ //

f ′

��

X ′′

f ′′

��
Y ′

ψ // Y ′′

We recall some properties of the triangular matrix algebra ∆. Let Q = (Q0, Q1) be
a quiver, where Q0 is the vertex set and Q1 is the arrow set. Then we define a new
quiver Qs = (Qs

0, Q
s
1), called separated quiver, as follows: Let Q+

0 := {i+ | i ∈ Q0} and
Q−

0 := {i− | i ∈ Q0} be copies of Q0. Then

Qs
0 := Q+

0

∐
Q−

0 , Qs
1 := {i+ → j− | i→ j in Q1}.

Note that the separated quiver Qs is not necessarily connected even if Q is connected. For
example, the separated quiver Qs of the following quiver Q is not connected:

Q = Qs =0

1

2

34

5
0+

1− 2− 3− 4− 5− 0−

1+ 2+ 3+ 4+ 5+

\\

�� DD��

++

kk

��

PP

uu
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We call a quiver bipartite if each vertex is either a sink or a source.

Proposition 10.7. [ARS, III.2.5 and X.2.6] Let Q be the quiver of Λ. The following hold.

(1) The separated quiver Qs is bipartite.
(2) The algebra ∆ is isomorphic to the path algebra of Qs. In particular, ∆ is a

hereditary algebra with radical square zero.
(3) Each simple ∆-module is one of the form (S, 0; 0) or (0, S; 0), where S is a simple

Λ-module.
(4) Each indecomposable projective ∆-module is one of the form (P/PJ, PJ ; 1PJ ) or

(0, P/PJ ; 0), where P is an indecomposable projective Λ-module.

Now we recall results on representation theory of algebras with radical square zero. We
define a functor F : modΛ −→ mod∆ as follows: For any Λ-module X, we let

F (X) := (X/XJ,XJ ;ϕX ),

where the map ϕX : X/XJ⊗Λ/JJ −→ XJ is naturally induced by the natural multiplication

morphism X ⊗Λ J −→ XJ since J2 = 0. For any morphism g : X −→ Y , we let

F (g) := (g′, g′′),

where g′ : X/XJ −→ Y/Y J is induced by g and g′′ : XJ −→ Y J is the restriction of XJ .

Proposition 10.8. [ARS, X.2.1 and X.2.2] The following hold.

(1) The functor F is full and induces an equivalence of categories modΛ→ mod∆.
(2) A Λ-module X is indecomposable (respectively, projective) if and only if FX is an

indecomposable (respectively, a projective) ∆-module.
(3) The following are equivalent:

(a) Λ is representation-finite.
(b) The separated quiver of the quiver for Λ is a disjoint union of Dynkin quivers.

Remark 10.9. Clearly a stable equivalence preserves representation-finiteness. However
a stable equivalence does not preserve τ -rigid-finiteness in general. Indeed, let Λ be an
algebra with radical square zero whose quiver consists of one vertex and n loops with n ≥ 2.
Since Λ is local, every indecomposable τ -rigid Λ-module is projective, and in particular Λ
is τ -rigid-finite. On the other hand, since the separated quiver is the n-Kronecker quiver

◦
//

.

.

. // ◦ ,

∆ is not τ -rigid-finite by Theorem 10.6.

11. Main results

Throughout this section, let Λ be an algebra with radical square zero, and ∆, F as in
Subsection 10.2. Let Q be the quiver of Λ and Qs the separated quiver of Q. A full
subquiver Q′ of Qs is called a single subquiver (respectively, a maximal single subquiver)
if, for any i ∈ Q0, the vertex set Q′

0 contains at most (respectively, exactly) one of i+ or
i−. We denote by S the set of all single subquivers of Qs.

The following theorem is our main result of this part.

Theorem 11.1. Let Λ be an algebra with radical square zero and Qs the separated quiver
of the quiver Q for Λ. Then the following are equivalent:

(1) Λ is τ -rigid-finite.
(2) Every single subquiver of Qs is a disjoint union of Dynkin quivers.
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(3) Every maximal single subquiver of Qs is a disjoint union of Dynkin quivers.

The proof of Theorem 11.1 will be given in the rest of this section. A key result is the
following criterion for indecomposable Λ-modules to be τ -rigid in terms of the triangular
matrix algebra ∆.

Theorem 11.2. Let X be an indecomposable Λ-module. The following are equivalent:

(1) X is a τ -rigid Λ-module.
(2) FX is a τ -rigid ∆-module and addPX0 ∩ addPX1 = 0.

We prove Theorem 11.2 by comparing a minimal projective presentation of a Λ-module
X with that of the ∆-module FX. We start with an easy lemma.

Lemma 11.3. Let f : X → Y be a nonzero morphism between indecomposable modules in
modΛ. If Im f is contained in Y J , then there exists a unique morphism f̃ : X/XJ → Y J
such that

f = (X
π
−→ X/XJ

f̃
−→ Y J

ι
−→ Y ),

where π and ι are natural morphisms.

Proof. This is clear since f(XJ) ⊆ (Y J)J = 0 holds by J2 = 0. �

The following lemma gives a construction of a minimal projective presentation of FX
from that of X.

Lemma 11.4. Let PX1
p
→ PX0

q
→ X → 0 be a minimal projective presentation of an

indecomposable Λ-module X. Then

0 // (0, PX1 /PX1 J ; 0)
(0,p̃) // FPX0

Fq // FX // 0 (16)

is a minimal projective resolution of the ∆-module FX.

Proof. Since J2 = 0 holds, ker q is semisimple. Hence ker q = PX1 /PX1 J holds. Since ker q
is contained in PX0 J , by Lemma 11.3, we have a decomposition

p = (PX1
π
−→ PX1 /PX1 J

p̃
−→ PX0 J

ι
−→ PX0 ),

where π and ι are natural morphisms. Thus, we have the following commutative diagram

0

��

0

��
PX1 /PX1 J

p̃
��

ker q

��
0 // PX0 J

ι //

q′′

��

PX0
//

q
��

PX0 /PX0 J //

q′

0

0 // XJ //

��

X //

��

X/XJ // 0

0 0

where Fq = (q′, q′′). Thus the exact sequence

0 −→ (0, PX1 /PX1 J ; 0)
(0,p̃)
−−−→ (PX0 /PX0 J, PX0 J ; 1PX

0 J)
(q′,q′′)
−−−−→ (X/XJ,XJ ;ϕX ) −→ 0
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in mod∆ is a minimal projective resolution of FX, because ∆ is hereditary and (0, p̃) is
in the radical of modΛ. �

Now we are ready to prove Theorem 11.2.

Proof of Theorem 11.2. Let ι : PX0 J → PX0 , ι′ : XJ → X and π : PX1 → PX1 /PX1 J are
natural morphisms.

(1)⇒(2): Assume that X is τ -rigid. By Proposition 10.2(2), we have addPX0 ∩addPX1 =
0. Now we show that FX is a τ -rigid ∆-module. We have a minimal projective resolution
(16) in Lemma 11.4. By Proposition 10.2(1), we have only to show that

((0, p̃), FX) : Hom∆(FP,FX)→ Hom∆((0, PX1 /PX1 J ; 0), FX) (17)

is surjective. Let

(0, h) : (0, PX1 /PX1 J ; 0)→ FX = (X/XJ,XJ ;ϕX )

be a morphism in mod∆ and f := ι′hπ : PX1 → X a morphism in modΛ. Since X is
τ -rigid, there exists a morphism g : PX0 → X such that f = gp. Let

Fg := (g′, g′′) : (PX0 /PX0 J, PX0 J ; 1PX
0 J)→ (X/XJ,XJ ;ϕX ).

Then we have

ι′hπ = f = gp = gιp̃π = ι′g′′p̃π,

and hence we have h = g′′p̃. Thus we have (0, h) = (g′, g′′)(0, p̃). Consequently, the map
(17) is surjective.

PX1

f

��

p

$$I
IIIII

π // PX1 /PX1 J

h

��

p̃wwoooooooo

PX0

gyyttttttt
PX0 J

g′′

((PPPPPPPPPι
oo

X XJ
ι′

oo

(2)⇒(1): Assume that FX is τ -rigid and addPX0 ∩ addPX1 = 0. We have only to show
that

(p,X) : HomΛ(PX0 ,X)→ HomΛ(PX1 ,X) (18)

is surjective by Proposition 10.2(1). Let f : PX1 → X be a morphism in modΛ. Since
addPX0 ∩ addPX1 = 0 holds, Im f is contained in XJ . Thus, by Lemma 11.3, there exists a

morphism f̃ : PX1 /PX1 J → XJ in modΛ such that f = ι′f̃π. Now we consider a morphism

(0, f̃ ) : (0, PX1 /PX1 J ; 0) −→ FX = (X/XJ,XJ ;ϕX )

in mod∆. Since (16) in Lemma 11.4 gives a minimal projective resolution and FX is

τ -rigid, there exists a morphism (g′, g′′) : FPX0 → FX in mod∆ such that (0, f̃) =

(g′, g′′)(0, p̃). In particular, we have f̃ = g′′p̃. Since F is full by Proposition 10.8(1), there
exists a morphism g : PX0 → X such that Fg = (g′, g′′). Then g′′ is a restriction of g by
construction of F , and we have

gp = gιp̃π = ι′g′′p̃π = ι′f̃π = f.
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Consequently, the map (18) is surjective.

PX1

f

��

p

$$I
IIIII

π // PX1 /PX1 J

f̃

��

p̃wwoooooooo

PX0

gyyttttttt
PX0 J

g′′

((PPPPPPPPPι
oo

X XJ
ι′

oo

This finishes the proof. �

For any indecomposable Λ-moduleX, we decompose the terms PX0 and PX1 in a minimal
projective presentation of X as

PX0 :=
⊕

i∈Q0

(eiΛ)ni , PX1 :=
⊕

i∈Q0

(eiΛ)mi ,

where ni and mi are multiplicities of the indecomposable projective Λ-module correspond-
ing to i ∈ Q0. Then, by Lemma 11.4, the terms PFX0 and PFX1 in a minimal projective
presentation of the ∆-module FX can be written as

PFX0 =
⊕

i∈Q0

(ei+∆)ni , PFX1 :=
⊕

i∈Q0

(ei−∆)mi .

We denote by QX the full subquiver of Qs with QX0 := {i+ ∈ Qs
0 | ni 6= 0}

∐
{i− ∈ Qs

0 |
mi 6= 0}. Then, the condition addPX0 ∩ addPX1 = 0 is satisfied if and only if QX is a single
subquiver of Qs. In particular, if X is τ -rigid, then QX is a single subquiver of Qs by
Proposition 10.2(2).

Now we are ready to prove Theorem 11.1. For any full subquiver Q′ of Qs, let

iτ -rigid(∆, Q′) := iτ -rigid∆ ∩ ImLeQ′
,

where eQ′ :=
∑

i∈Q′

0
ei and LeQ′

is the functor in Subsection 10.1. We denote by iτ -rigidnpΛ

the subset of iτ -rigidΛ consisting of nonprojective modules.

Proof of Theorem 11.1. (1)⇔(2): First we claim that the functor F : modΛ −→ mod∆
induces a bijection

iτ -rigidnpΛ −→
⋃

Q′∈S

iτ -rigidnp(∆, Q
′).

Indeed, by Proposition 10.8(2) and Theorem 11.2, X is an indecomposable nonprojective
τ -rigid Λ-module if and only if FX is an indecomposable nonprojective τ -rigid ∆-module
satisfying addPX0 ∩ addPX1 = 0, or equivalently QX ∈ S. In this case, FX ∈ ImLe

QX

clearly holds. Hence the claim follows from that the functor F induces a stable equivalence
modΛ→ mod∆ by Proposition 10.8(1).

Next, by Proposition 10.4, for any full subquiver Q′ of Qs, we have bijections

iτ -rigid(∆, Q′)↔ iτ -rigid(eQ′∆eQ′).

Since Q′ is bipartite, there is an isomorphism eQ′∆eQ′ ≃ KQ′. Since there are only finitely
many single subquiver of Qs, we have that Λ is τ -rigid-finite if and only if KQ′ is τ -rigid-
finite for every single subquiver Q′ of Qs. Hence the assertion follows from Theorem
10.6.

(2)⇒(3): It is clear.
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(3)⇒(2): Since every single subquiver of the separated quiver Qs is contained in some
maximal single subquiver, the assertion follows from the fact that every subquiver of
Dynkin quivers is a disjoint union of Dynkin quivers. �

12. Applications and examples

In this section, we give applications and examples of results in previous section. As an
immediate consequence of Theorem 11.2, we have the following two corollaries.

Corollary 12.1. Let Λ be a representation-finite algebra with radical square zero and X an
indecomposable Λ-module. Then X is a τ -rigid Λ-module if and only if addPX0 ∩addPX1 =
0.

Proof. The ‘only if’ part follows from Proposition 10.2(2). We show the ‘if’ part. Since
Λ is representation-finite, ∆ is a finite product of path algebras with Dynkin quivers by
Proposition 10.8(3). Hence FX is a τ -rigid ∆-module by Proposition 10.5(1). Thus, if
addPX0 ∩ addPX1 = 0 holds, then X is τ -rigid by Theorem 11.2. �

We give a positive answer to a question posed by Zhang [Zh].

Corollary 12.2. Let Λ be an algebra with radical square zero. If every indecomposable
Λ-module is τ -rigid, then Λ is representation-finite.

Proof. Assume that Λ is not representation-finite. By Proposition 10.8(3), the separated
quiver contains a non-Dynkin quiver as a subquiver. By Proposition 10.5(2), there exists
an indecomposable ∆-module M which is not rigid. By Proposition 10.8(1), there exists
an indecomposable nonprojective Λ-module X such that FX ≃ M . The Λ-module X is
not τ -rigid by Theorem 11.2. �

At the end of this part, we apply our main results to the following algebras which
associate with Brauer graph algebras. We start with the following observation.

Proposition 12.3. [Ad1, Corollary 3.7] Let Λ be a ring-indecomposable non-semisimple
symmetric algebra and Λ := Λ/ soc Λ. Then there is a bijection

iτ -rigidΛ→ iτ -rigidΛ

given by X 7→ X ⊗Λ Λ. In particular, Λ is τ -rigid-finite if and only if Λ is τ -rigid-finite.

Note that, for every indecomposable projective Λ-module P , the module P/ socP is a
τ -rigid Λ-module but not a τ -rigid Λ-module.

First, we give a classification of indecomposable τ -rigid modules over a multiplicity-free
Brauer line algebra. This is a special case of results in [AZ] and [AAC]. We denote by
indΛ the set of isomorphism classes of indecomposable Λ-modules.

Proposition 12.4. Let Q be the following quiver:

1
α1 // 2
β1

oo
α2 // 3
β2

oo
α3 // · · ·
β3

oo
αn−2// n− 1
βn−2

oo
αn−1 // n
βn−1

oo

(1) Let Λ be an algebra with radical square zero whose quiver is Q. Then Λ is a
representation-finite algebra with

iτ -rigidΛ = indΛ.
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(2) Let Γ is a multiplicity-free Brauer line algebra, that is, Γ ≃ KQ/I, where

I = 〈α1β1α1, βn−1αn−1βn−1, αiαi+1, βi+1βi, βiαi − αi+1βi+1 | i = 1, 2, · · · , n − 2〉.

Then we have

iτ -rigidΓ = ind Γ \ {eiΓ/ soc(eiΓ) | i ∈ Q0}.

Proof. (1) Since the underlying graph of the separated quiver Qs is a disjoint union of the
following two Dynkin graphs of type A

1+ 2− · · · n−1−ǫ nǫ 1− 2+ · · · n−1ǫ n−ǫ

where ǫ = − if n is even and ǫ = + if n is odd, Λ is representation-finite by Proposition
10.8. Moreover, for any indecomposable Λ-module X, the ∆-module FX is rigid by
Proposition 10.5(1), or equivalently τ -rigid. Moreover, we have addPX0 ∩ addPX1 = 0 by
Lemma 11.4. Hence, every indecomposable Λ-module is always τ -rigid by Theorem 11.2.

(2) Since Γ is a symmetric algebra, there is a bijection

iτ -rigidΓ −→ iτ -rigidΓ

by Proposition 12.3. Since Γ is isomorphic to Λ, the assertion follows from (1). �

Finally, we give an example of τ -rigid-finite algebras which is not representation-finite.

Proposition 12.5. Let Q be the following quiver:

2

β1zzvvv
vv

vv
v

α2 //
3

β2

oo
α3

$$JJ
JJJ

JJJJ

1

α1

::vvvvvvvv

βn

##H
HH

HHH
HH

...
β3

ddJJJJJJJJJ

αn−2zzuuuuuuuu

n
βn−1 //αn

ccHHHHHHHH
n−1

βn−2

::uuuuuuuu

αn−1

oo

(1) Let Λ be an algebra with radical square zero whose quiver is Q. Then the following
hold.
(a) Λ is not representation-finite.
(b) Λ is τ -rigid-finite if and only if n is odd.

(2) Let Γ be a multiplicity-free Brauer cyclic graph algebra, that is, Γ ≃ KQ/I, where

I = 〈αnα1, β1βn, βnαn − α1β1, αiαi+1, βi+1βi, βiαi − αi+1βi+1 | i = 1, 2, · · · , n− 1〉.

Then Γ is τ -rigid-finite if and only if n is odd.

Proof. (1) The separated quiver Qs is one of the following quivers:

2− 3+oo

""F
FFFF

1+

=={{{{

  B
BB

BB
...

n− (n−1)+

<<yyyyy
oo

2+

}}{{
{{

// 3−

1− ...

bbFFFFFF

||yy
yyy

n+ //

``BBBBB
(n−1)−

2− 3+oo // · · · // (n−1)− n+oo

  A
AA

1+

>>}}}

  A
AA

1−

n− (n−1)+oo // · · · // 3− 2+oo

>>}}}

n: even n: odd

Thus Λ is not representation-finite by Proposition 10.8.
If n is odd, then every maximal single subquiver is a disjoint union of Dynkin quivers.

Thus Λ is τ -rigid-finite by Theorem 11.1. On the other hand, if n is even, then two
connected components are non-Dynkin maximal single subquivers. Thus Λ is not τ -rigid-
finite by Theorem 11.1.
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(2) Since Γ is a symmetric algebra, by Proposition 12.3, we have only to claim that Γ is
τ -rigid-finite if and only if n is odd. Indeed, since Γ is isomorphic to Λ, the claim follows
from (1). �
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