
Simulation for Pedestrian Dynamics by Real-Coded 
Cellular Automata (RCA) 

Kazuhiro Yamamoto1*, Satoshi Kokubo1, Katsuhiro Nishinari2 

1 Dep. Mechanical Science and Engineering, Nagoya University, Japan 
* kazuhiro@mech.nagoya-u.ac.jp 

2 Dep. Aerospace Engineering, University of Tokyo, Japan 
 

 
 
 

Abstract 
In this paper, we propose a new approach for pedestrian dynamics. We call it a Real-
coded Cellular Automata (RCA). The scheme is based on the Real-coded Lattice Gas 
(RLG), which has been developed for fluid simulation. Similar to RLG, the position 
and velocity can be freely given, independent of grid points. Our strategy including 
the procedure for updating the position of each pedestrian is explained. It is shown 
that the movement of pedestrians in an oblique direction to the grid is successfully 
simulated by RCA, which was not taken into account in the previous CA models. 
Moreover, from simulations of evacuation from a room with an exit of various widths, 
we obtain the critical number of people beyond which the clogging appears at the exit.  
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1. Introduction 
 

Since Cellular Automata (CA) have been proposed by von Neumann in the late 
1940s, CA have been applied in a variety of scientific researches on complex system, 
including traffic models and biological fields. It is an idealization of a physical sys-
tem in which space and time are all discrete. As one of the examples achieving most 
remarkable progress is the CA model for pedestrian dynamics. Since the pedestrian 
flows are caused by collective crowd behavior, it is difficult to handle directly each 
pedestrian by solving coupled differential equations, although the social force model 
has been proposed and could reproduce some basic features of pedestrian behavior 
[1]. CA approach could be more appropriate to describe pedestrian dynamics in com-
plex situations because of its simplicity, flexibility and efficiency. 

The floor field CA model has been developed for pedestrian dynamics [2-4], where 
two kinds of floor fields, a static and a dynamic one, are introduced to translate a 
long-ranged spatial interaction into an attractive local interaction. Different CA mod-
els have also been proposed so far to simulate bi-directional flow and clogging at the 
exit [5-8].  It is important for the models to reproduce known collective behaviors of 



pedestrians such as lane formation in a corridor, oscillations of the direction at bottle-
necks and the so-called faster-is-slower effect in evacuation [9]. It has been con-
firmed that the social force model and floor field model successfully show all of these 
collective dynamics. 

In our previous study, the extended floor field CA model has been presented to 
consider the complex room of arbitrary geometry [10]. To describe the evacuation 
dynamics, the static floor field is given according to the minimum path based on the 
visibility graph and Dijkstra’s algorithm. As seen in Fig. 1, the von Neumann 
neighborhood was adopted. For each pedestrian, the transition probability, Px,y, where 
x and y is a move in x and y directions, respectively. The pedestrian moved to the 
nearest four cells at next time step or remained at the same cell, but he could only 
move in four directions: forward, backward, left, and right. That is, the direction of 
each pedestrian movement was limited. This might be a problem if we discuss the 
evacuation time in detail.   

Figure 2 shows the example of evacuation toward the exit. We consider two paths 
of A and B. Needless to say, the distance of path B is much shorter than that of path 
A in real situation (see left figure), because there are no grids and people can take any 
paths. Since there are grids in the CA simulation (see right figure), both are the same 
distance. Therefore, if we count the evacuation time in CA model, the oblique four 
directions in Fig. 1 may be needed as well. However, it should be noted that, because 
of the longer movement within one time step, the allowance of movement toward the 
oblique neighbor cells corresponds to the faster motion of the pedestrian, which may 
also give unrealistic solution. This is one of the serious common problems in all CA 
models proposed so far. To improve the model, it is better to consider any direction 
and any velocity of pedestrian movement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Target cells for a person at the next time step. 
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Fig. 2  Example for evacuation toward the exit, with two paths of A and B. 
Left figure is movement in real situation without grid points, and right figure 
shows one with CA grids.  

 
In the present paper, we propose the real-coded cellular automata (RCA) as a new 

numerical model for pedestrian dynamics. The position and the velocity can be freely 
given, independent of grid points. The procedure of updating rule for each pedestrian 
is explained in the next section.  
 
 
2. Numerical procedure of RCA 
 

Here, we explain our new approach for arbitrary velocity and directions for pedes-
trian dynamics. It is based on the Real-coded Lattice Gas (RLG), which has been 
developed for fluid simulation [11,12]. In RLG model, similar to the Lattice Gas 
Automata [13,14], the particles are used for modeling fluid as a fully discrete molecu-
lar dynamics. The main difference is that the particles have continuous velocity dis-
tributions to show Maxwell-Boltzmann distribution in the equilibrium state. Further-
more, collision and streaming schemes do not depend on the explicit lattice structure 
in the discrete space. That is, the particle of lattice gas has real number in the velocity, 
and travel to any direction. We apply this scheme to the CA model for pedestrian 
dynamics. We call it Real-coded Cellular Automata (RCA). The numerical procedure 
is explained briefly. 

The update rule of RCA consists of 3 steps, and the position of the pedestrian is 
renewed. The update rules are applied to each pedestrian randomly. The unit discrete 
time step of ∆t is used, and the space is discretized with grids. The grid is square and 
its length is ∆. Here, it is assumed that the pedestrian moves toward the target, for 
example, the exit in Fig.2. 

 
1) First, the streaming process is performed to move the pedestrian position by its 
moving velocity. It can be described simply as the sum of position and velocity vec-
tors of pedestrian i, 
 

iii vxx +='        (1) 



 
where x’i and xi are the post- and pre-streaming position for the pedestrian i, and vi is 
its moving velocity. In this method, vi can be arbitrary velocity and x’i is not on at the 
grid at this stage. Then, as shown in Eq.2, the velocity components in x- and y-
directions are divided into two parts of [ ]iv and { }iv : the former is the integer part 
corresponding to grid number and the latter is the decimal part less than the grid 
length.  
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2) To keep the pedestrian position right on the grid point, the pedestrian is reposi-
tioned on the grid point. This procedure is shown in Fig. 3. There are four candidates, 
points A, B, C, and D. Which one is selected is stochastically determined by each 
probability. As shown in Eqs.3-6, the probability of movement to each point is 

Ap , Bp , Cp , Dp , respectively.  
 
 { }{ }iyixA vvp ,, ・=  (3) 

 { }( ) { }iyixB vvp ,, ・−= 1  (4) 

 { } { }( )iyixC vvp ,, −= 1・  (5) 

 { }( ) { }( )iyixD vvp ,, −−= 11 ・    (6) 

 
Needless to say, the sum of these values is 1. However, this is not the final position. 
The next third step is needed to avoid the collision between pedestrians.  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3  The position and movement of the pedestrian at the step 2 

 
3) The third step is needed only when the pedestrian attempt to move to the grid point 
where someone already exists. In this case, he remains at the pre-streaming position. 
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Instead, he changes the angle of +45° or -45°. The choice of +45° or -45° is deter-
mined to make the pedestrian face the grid where nobody stays, which corresponds to 
our natural behavior when we try to avoid instantly the collision during walking or 
running. If the pedestrian may hit the wall, he also changes the direction. It could be a 
corner in the corridor when people evacuate in the building [4]. 
 
In the above rule of RCA model, the pedestrian only change the direction and always 
keeps the same magnitude of velocity. In the next section, some results are shown to 
demonstrate the capability of RCA. 
 
 
3. Results 
 
3.1 Movement along straight line  

 
First, to demonstrate the pedestrian motion by RCA model, benchmark simulation 

is conducted. Here, the simple motion of the pedestrian along the line is simulated. 
Figure 4 shows the calculation domain. In each test run, one pedestrian starts to leave 
from the corner grid. He moves towards to the point P along the straight line inclined 
to the x- or y-axis. The calculation domain is 16m×20m, and the length of the line 
pedestrian walks, L, is 20 m. The grid size is 0.4 m and the time step is 0.5 s. These 
values are referred to Ref. 2. He keeps walking at the speed of V = 1.3 m/s, and his 
inclined angle of θ does not change. When one arrives at the end, the next test is 
conducted, so that the number of pedestrian in the calculation domain is always unity 
and no collisions between pedestrians occur. We conduct 10,000 test runs and record 
the time when each pedestrian arrives at the end.  

Figure 5 shows the arrival time in the test. The number of people is counted to ob-
tain the histogram. It is found that the profile is similar to the normal distribution, 
because the position of the pedestrian is stochastically determined. The averaged 
value is 15.6 s. This value is very close to the estimated time of 15.4 (= L / V).  There-
fore we have successfully solved the inclined-path problem by our RCA. 
 
 
 
 
  
 
 
 
 
 
 
 

Fig. 4  Calculation domain. 
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Fig. 5 Arrival time in the movement along the straight line. 
 
3.2 Evacuation in a large room 

 
Next, we conduct the evacuation simulation. Figure 6 shows the typical snapshot of 

evacuation in a large room. The initial number of people is 300. The calculation do-
main is 16m×16m, and the grid length of ∆ is 0.4 m. The time step of ∆t is 0.5 s. 
Their initial positions are randomly given, and they start to evacuate towards the exit 
(e.g. in case of fire). The velocity is 1.3 m/s, and exit width is 0.8 m. As seen in Ref. 
3, three stages are observed: (a) beginning (t = 0.5 s), (b) middle (t = 25 s), and (c) 
final stages (t = 52.5 s). Initially, the pedestrian can pass the exit smoothly. In the 
middle stage, the bottleneck is thoroughly formed around the exit. This situation is 
automatically formed since the balance of inflow and outflow of pedestrians at the 
exit breaks. 

When the number of people is relatively small, the evacuation process is smooth 
and there are no jams all over the calculation domain. However, as seen in Fig. 6, 
when relatively large number of people evacuate, people becomes less flexible. To 
examine further, we obtain the correlation between the number of people in the room 
and the total evacuation time. Figure 7 shows the total evacuation time as functions of 
the initial number of people. From this figure, two regions are observed. In the region 
1, the total evacuation time is constant even if the number of people in the room is 
increased. By checking the time-dependent evacuation dynamics, no bottlenecks are 
formed.  
 
 
 
 
 
 
 
 

(a)                                         (b)                                        (c) 
 
Fig. 6  Evacuation simulation in a large room with one exit. Three typical stages are 

shown; (a) t = 0.5 s, (b) t = 25 s, and (c) t = 52.5 s.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Total evacuation time at different number of people in the room. 
 

On the other hand, in the region 2, as the initial number of people is increased, 
more time is needed to evacuate all people in the room. That is, the evacuation time 
depends on the initial number of people in this region. Expectedly, the bottleneck is 
observed. Thus, depending on the initial number of people, the drastic change of the 
pedestrian dynamics appears through the formation of bottleneck. By changing the 
exit door width, W, we examine this critical number of people where the bottleneck 
process appears, defined as Ns.  

Figure 8 shows the critical number of people in the above room size as functions of 
exit door width. As seen in this figure, as the exit door width is larger, Nc is larger. 
That is, more people in the room are needed to observe the bottleneck process. The 
curve in Fig. 8 could be changed when the room size is different. Although more 
benchmark studies are needed, our proposed RCA model could be a good tool to 
examine the evacuation dynamics, especially to count the evacuation time in the 
crowds.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Critical number of people as functions of exit door width. 
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We have presented the real-coded cellular automata (RCA) as a new numerical 

model for pedestrian dynamics. The approach is originally based on the real-coded 
lattice gas (RLG). The procedure for updating the position of each pedestrian is ex-
plained. As the benchmark study, the movement along the straight line is simulated. 
This situation is rather simple, but in the previous CA models, the correct evacuation 
time is hard to be obtained, because the movement in oblique direction is not consid-
ered. In our model, the pedestrian movement at any direction is given, and the rea-
sonable evacuation time is calculated. In the simulation of evacuation in a large room, 
the so-called bottleneck is observed at the exit. We examine the critical number of 
people causing the bottleneck process, Nc. It is found that when the exit door width is 
larger, more people in the room are needed. To predict Nc by changing the exit door 
width as well as the room size, this simulation is needed to construct the safety stan-
dards. We conclude that our proposed RCA can be a good tool to examine the 
pedestrian dynamics. 
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