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Abstract 

As for the recent PM regulations, a diesel particulate filter (DPF) has been one of the 

important aftertreatment technologies. Although the square cell structure of DPF is a 

generally worldwide standard, several cell designs have been proposed to reduce the 

pressure loss due to the soot loading as well as the ash deposition in DPF. In this study, 

we focused on the cell geometry using a hexagonal cell DPF and a conventional square 

cell DPF. In the engine test bench under nearly real conditions, these DPF performances 

were evaluated. Results show that, in comparison with square cell DPF, the particle 

number concentration of the hexagonal cell DPF decreases more rapidly, and the 

filtration efficiency is higher. In addition, in DPF regeneration test, independent of the 

inlet temperature, the regeneration rate of the hexagonal cell DPF is higher. Between 

two DPFs, the aperture ratio of inlet/outlet cells is different. Thus, the superior DPF 

performance of the hexagonal cell DPF could be explained by the difference of exhaust 

gas flow and soot deposition region.  
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1. Introduction 

 Diesel engines have low fuel consumption and enough torque compared with 

equivalent gasoline engines. Diesel engines emitted less CO2 which is known well as 

the greenhouse gas, and a percentage of new diesel passenger car registrations is 

increasing in EU year by year [1]. However, NOx and the soot (particulate matter, PM) 

emitted by the diesel engines cause problems such as air pollutions and asthma sickness 

[2]. Since the automobile regulations have been stricter for considering environments 

and human health [3], new technologies for the diesel emission have been proposed. For 

example, improvements on the fuel injection for the combustion process [4,5], exhaust 

gas recirculation (EGR) [6,7], and the engine control [8,9] are effective for the NOx and 

PM reduction. In addition, some kinds of fuel additive have been used for the diesel 

smoke reduction [10-12]. The PM can be reduced by using water containing 

ethanol-biodiesel [13]. Moreover, the inlet manifold water injection has been also 

investigated for the NOx and PM reduction of an automotive direct injection diesel 

engine [14]. 

 As for the current regulations, the European Union restricts PM emissions to 5 
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mg/km for passenger diesel cars in the EURO 5 and 6 regulations. Furthermore, the 

basis of PM emission regulations is being changed from mass to number concentration 

[15]. A diesel particulate filter (DPF) is one of the most important technologies for the 

above strict PM regulations [16]. Figure 1 shows the image of a wall-flow DPF made of 

the structured porous ceramic. It has many flow path channels called “cells”, and the 

exhaust gas is flown into cells. PM in exhaust gas is trapped on the surface of the wall 

when the exhaust gas is passed through the porous wall. 

 The DPF needs low pressure loss for the lower fuel consumption. Since the 

pressure loss increases by the formation of a thick soot cake as the soot is accumulated, 

the DPF needs to be periodically regenerated by burning off the accumulated soot. 

Therefore, DPF is mainly demanded three performances - filtration, pressure drop, and 

regeneration. Torregrosa et al. have proposed the model about the relationship of these 

DPF performances [17]. In particular, Payri et al. have evaluated the pore structure 

properties – permeability, porosity, and pore size, on experimental - theoretical 

methodology, because the pressure drop and the filtration process are strongly 

depending on these properties [18]. Dilip et al. have developed a mesh-type particulate 
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filter for the regeneration required lower input power [19]. However, the filtration 

efficiency of the mesh-type particulate filter has not reached to the level of the strict 

regulations. 

 On the other hand, a lot of regeneration cycles cause the ash, which is the 

remaining of soot burning [20]. The ash is formed all along the filter walls of the inflow 

channels; and it induces the increase of the pressure loss [21]. The pressure loss also 

increases by the ash accumulation, and it is considered that the regeneration cycle is 

shortened by the ash accumulation [22]. 

 Although the square cell DPF is a generally worldwide standard, several cell 

designs have been proposed to prevent the pressure loss from increasing by soot loading 

and to reduce the effect of the ash deposition. Ogyu et al. have reported that the increase 

of the pressure loss with the soot loading and the ash deposition can be controlled to be 

lower by changing the aperture ratio of inlet cells. In particular, the octagon-square cell 

DPF has superior performances on the pressure loss during the soot loading and the ash 

capacity, compared with the conventional square cell DPF [22,23]. At present, such 

DPFs that have specially shaped cells have been realized with advance of manufacturing 
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technologies. 

 In our previous studies, we have examined an initial PM filtration efficiency, 

and have confirmed that the soot leakage is reduced due to the soot layer formation on 

the surface of the filter wall during the initial usage of the clean DPF. Additionally, the 

washcoat (W/C) samples for the catalyzed DPF, we have found that there is a proper 

range of the W/C amounts in terms of the W/C amounts and the pressure loss [24]. 

Amirnordin et al. have investigated a honeycomb monolith with hexagonal cell, and 

have reported that its pressure loss is relatively low [25]. However, they have focused 

on catalytic converters. It is not clear that the effect of the cell structure on the DPF 

performance. Therefore, in this study, we focused on the cell geometry by using a 

hexagonal cell DPF and a conventional square cell DPF to evaluate the DPF 

performances. The experimental study was carried out. As for the conditions of the 

engine test, we set the medium speed with high torque (1400 rpm 190 Nm) for the soot 

loading, and the high speed (3000 rpm) for the DPF regeneration [26]. 

 

2. Experimental methods 
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2.1.DPF 

Two silicon-carbide (SiC) DPFs were prepared in this study. The specifications 

of two DPF samples are shown in Table 1, and their appearances and cell designs are 

shown in Fig. 2. Sample A has hexagonal cells, and sample B has conventional square 

cells. Two samples are non-catalytic filters. For each sample, size is Φ144 mm × L153 

mm, cell density is 300 cpsi, and wall thickness is 0.25 mm. The pore structure 

characteristics were measured by mercury porosimetry (MICROMERITICS Co. 

AutoPore 9500), and showed that porosity and average pore diameter were almost the 

same. 

 

2.2. Measurement of PM filtration efficiency 

The filtration efficiency of the DPF was evaluated with a QD32 diesel engine 

(NISSAN). Table 2 shows the engine specifications. The engine was connected to an 

eddy current dynamometer (Tokyo Plant Co. ED-150) on the test-bench for the test 

condition at 1400 rpm and 190 Nm load. A schematic of the experimental setup is 

shown in Fig. 3. A diesel oxidation catalyst (DOC; ACR Co. EXCAT C15) was set 
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upstream of the DPF. To measure the particle number concentration and the particle size 

distribution in the exhaust gas, an engine exhaust particle sizer (TSI Co. EEPS 3090) 

was used in conjunction with a flow path selection system to obtain the data 

downstream of the DPF [27,28]. Generally, the EEPS can measure the particle number 

concentration in the range from 103 to 107 particles/cm3. The sampling particles are 

electrical charged, and are distributed in the range from 5.6 to 560 nm based on 

differential electrical mobility classification [29]. The data from EEPS or pressure 

sensor was recorded by 10 data per second. The sampling gas was diluted by 120 times 

using 350 °C air in a dilution machine (TSI Co. ASET). For reference, a flange with 

orifices was used without DPF downstream of the EEPS conjunction point for the 

equivalent backpressure of the DPF. 

 

2.3. Measurement of backpressure and amounts of soot loading 

 The pressure loss during soot loading was measured as the backpressure by a 

pressure sensor (KEYENCE Co. AP-32A) in front of the DPF. The measurement range 

of the pressure sensor is from 0 to 100 kPa, with the resolution of 0.1 kPa. We also 
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measured the initial backpressure under the cold flow condition with 4, 6, 9, 9.5 

Nm3/min. The amount of soot loading was calculated based on the difference of the 

DPF weight every 15 minutes driving. In experiments, the DPF with canning was got 

off from the exhaust pipe, and the weight was measured by an electronic balance. Its 

resolution was 0.1 g.  

 

 

2.4. DPF regeneration test 

 Each sample was loaded with 8 g/L soot for the test condition at 1400 rpm and 

190 Nm load. Temperature and oxygen conditions were kept constant for 30 minutes by 

using the exhaust gas to burn off the soot for regeneration. Such a controlled DPF 

regeneration is often called “active regeneration” [26]. The amount of burned soot and 

the regeneration rate were calculated based on the DPF weight after the regeneration 

test. Three thermocouples were inserted at the front area, the middle area, and the rear 

area of the DPF, as shown in Fig. 4. A set of K-type thermocouples was used. We 

controlled the DPF inlet temperature located at ch3 in this figure. Three test conditions 
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were selected at different inlet temperatures of 510, 550, and 590 °C at the engine speed 

of 3000 rpm. We also measured the oxygen concentrations using an oxygen sensor 

(COSMOS Co. XP-3180E). These test conditions are shown in Table 3. 

 

3. Results 

3.1. Time variations of PM filtration efficiency 

 Figure 5 shows the number-based filtration efficiency upon the initial usage. 

The time was counted when the particle number concentration downstream of the DPF 

reached the maximum after the engine accelerator was released. Filtration efficiency 

was calculated by: 

 

 

 

where N0 is the total particle number concentration without the DPF, which is the 

time-averaged number concentration in stable engine condition, and N1 is the total 
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on the particle concentration was checked several times, and the error was less than 3 

percent. Although the filtration efficiencies for both samples are initially about 70 %, 

more particles are trapped by sample A with higher filtration efficiency as the time is 

passed. After 180 seconds, the filtration efficiency is approximately 100 %, which is 

caused by the surface filtration due to the soot layer formation. Therefore, the better 

filtration efficiency of the hexagonal cell DPF could be explained by the process of soot 

layer formation, which will be discussed later. 

 In our previous study [24], we have introduced new parameters: T90 and T99; 

where T90 (T99) is the time to reach more than 90 % (99 %) filtration efficiency. The 

smaller these parameters, the less PM leakage are achieved with higher filtration 

efficiency. Figure 6 shows T90 and T99 of samples A and B. In comparison with sample 

B, T90 and T99 of sample A are much smaller. Resultantly, the filtration efficiency of 

the hexagonal cell DPF is higher. As seen in Table 1, since these two DPFs have 

approximately the same properties of the porosity and the pore size, the cell geometry 

surely affects the PM filtration efficiency. 
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3.2. Comparison of backpressure 

 Figure 7 shows the relationship between the initial backpressure and the air 

flow rate of each sample. As the air flow rate increases, the initial backpressure 

monotonically increases. This tendency corresponds with the results conducted by the 

numerical simulation and experiments [30]. In addition, it is seen that the initial 

backpressure of sample A is always higher than that of sample B. Figure 8 shows the 

backpressure during soot loading of each sample. Although the initial backpressure of 

sample A is higher than that of sample B, the backpressure during the soot loading of 

two samples are almost equal at approximately 2 g/L soot loading. When the amount of 

soot loading is larger than 2 g/L, the backpressure of sample A is lower than that of 

sample B. 

 Figure 9 shows the relationship between the soot loading time and the amount 

of soot loading for each sample. For both cases, the amount of soot loading increased 

almost linearly. Interestingly, the amount of soot loading did not depend on the cell 

geometry. 

 



11 
 

3.3. Regeneration rate  

 Next, we examined the amount of the burned soot in the DPF regeneration 

process. Figure 10 shows the time variation of the temperatures inside of the DPF (ch1: 

inlet side, ch2: center, ch3: outlet side) and the backpressure during the regeneration 

test. The inlet temperature was maintained at 590 °C (test condition 3). For comparison, 

the results of both samples are shown. It is found that the backpressure gradually 

decreases once the temperature inside the DPF reaches 590 °C. That is, the deposited 

soot inside the DPF is burned off, and the DPF is regenerated. For both cases, the 

temperatures inside the DPF are almost uniform during regeneration. Also, the decrease 

of the backpressure is almost constant. Then, the DPF is regenerated at the same 

combustion rate.  

 Figure 11 shows the comparison of the regeneration rate of two samples at 

different inlet temperature. The regeneration rate was calculated by: 
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where M0 is the total amount of accumulated soot before regeneration, and M1 is the 

amount of burned soot during regeneration. As the inlet temperature of the DPF is 

higher, the regeneration rate also increases. 

 Song et al. have reported a relationship between the DPF inlet temperature and 

the rate of pressure drop during the regeneration; and the better regeneration is achieved 

at the higher inlet temperature [31]. Lee et al. have reported that the soot combustion is 

affected by the oxidation concentration of the exhaust gas [32]. In our previous study, 

we have confirmed that the soot oxidation rate varies with oxygen concentration [33]. In 

addition, the soot oxidation is largely intensified at higher temperature [34]. Table 3 

shows that more soot is burned off at higher inlet temperature although the oxygen 

concentration is lower at higher inlet temperature. Interestingly, independent of the inlet 

temperature, the regeneration rate of sample A with the hexagonal cells is higher than 

that of sample B with the conventional square cells. Therefore, the effect of the cell 

geometry on the DPF regeneration rate is confirmed. 

 

4. Discussions 
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Table 4 shows the comparison of the test results, where the circle symbol in 

this table means that which sample is more superior on each specification. In 

comparison with sample B, sample A had the higher initial PM filtration efficiency, the 

lower backpressure during soot loading, and the higher regeneration rate. Here, we 

discuss the difference of the filter structure and characteristics. 

 As for the initial PM filtration usage, it is considered that the effective filtration 

area of the gas flow of sample A is smaller than that of sample B. In the case of sample 

B, the gas flows from the inlet cell to the surrounding outlet cells in four directions. On 

the other hand, in the case of sample A, the gas hardly flows the filter wall between the 

inlet cell and the inlet cell, but flows in three directions from the inlet cell to the outlet 

cells (flow 1 shown in Fig. 12 (a)) [22]. It should be noted that the DPF has very high 

filtration efficiency when a thin soot layer is formed [24]. Both the flow and the 

backpressure of the filter are affected by the soot layer formation [35,36]. There is the 

correlation between the pressure drop with the soot layer growing and the filtration 

efficiency [37]. Therefore, the PM filtration area of sample A is smaller on initial usage, 

and resultantly, the soot layer is easily formed on the filter wall, so that the high 
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filtration efficiency is achieved more rapidly. 

 To confirm the above explanation, we observed the surface of the filter wall cut 

from the DPF at the time of two minutes filtration after initial usage. Figure 13 shows a 

schematic of the cell structure of sample A with SEM image. Here, the inlet side of “a” 

is the wall surface of the flow toward the outlet channel. The inlet side of “b” is the wall 

surface of the flow toward the inlet channel. On the other hand, the outlet side of “c” is 

the wall surface of the flow from the inlet channel. Figure 14 show the SEM images of 

these wall surfaces at the side of “a”, “b”, and “c”, respectively. At the inlet side of “a”, 

the gaps of SiC grains are covered by the soot layer. On the other hand, at the inlet side 

of “b”, there are many gaps of SiC grains. At the outlet side of “c”, the soot layer is not 

observed, because PM is mainly trapped at the inlet side of the wall surface. From these 

results, it is confirmed that the soot layer is formed only at the inlet side of the wall 

surface of the flow toward the outlet channel. That is, the area where the soot layer can 

be formed is limited, which could be related with the high filtration efficiency of sample 

A at the earlier stage of the filter usage in Fig. 5. 

 Next, we examined the initial backpressure based on the inlet and the outlet 
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aperture ratio. In the case of sample B, the inlet and outlet aperture ratio is equal. On the 

other hand, in the case of sample A, there are less outlet cells, and the outlet aperture 

ratio is smaller than that of sample B. Then, in the case of sample A, the flow gathers at 

the outlet of channel to increase the filter back pressure, which is observed in Fig. 7. 

 Terregrosa et al. [17] and Piscaglia et al. [30] have investigated the DPF 

backpressure with soot loading in the numerical simulation to evaluate the pressure drop 

across the filter and the soot cake formation. Konstandopoulos [38] has presented the 

following formula for total pressure drop; 

 

 

 

where total pressure drop ΔP is the sum of the pressure loss of the gas outflow from 

DPF (ΔP expansion), the pressure loss due to the flow resistance on the outlet channel 

(ΔP outlet channel), the pressure loss due to filter wall (ΔP wall), the pressure loss due 

to the flow resistance on the inlet channel (ΔP inlet channel), and the pressure loss of 

the gas inflow into DPF (ΔP contraction). Because of the accumulated soot in DPF, the 

　　　　　　　　　 )3(PPPPPP ncontractiochannelinletwallchanneloutletansionexp 
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pressure loss due to filter wall (ΔP wall) is largely increased due to the formation of the 

soot cake. 

In the case of sample B, there are four inlet sides of the wall surface, where the soot 

layer is formed. In the case of sample A, as mentioned previously, there are only three 

inlet sides of the wall surface on the initial usage. However, as the soot accumulated on 

the wall from the inlet cell to the outlet cell, making it difficult for the gas to flow, 

passing through the wall between the inlet cell and the inlet cell would make resistance 

smaller than passing through the soot layer. In this case, as seen in Fig. 12, the flow 

passing through the filter substrate wall could occur (flow 2). This tendency has been 

confirmed in the case of an octagon-square cell DPF [22]. Since there are more inlet 

areas, the thickness of the soot layer can be thinner. Therefore, the filter capacity of the 

soot accumulation is high in the case of sample A due to the larger inlet aperture ratio 

than in the case of sample B. As a result, the backpressure of sample A is lower than that 

of sample B at the same amount of soot loading. 

 Finally, we discussed the filter regeneration. Needless to say, the supply of the 

oxygen is needed for the soot oxidation. Then, it is important to consider the contact 
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area between the exhaust gas and the soot accumulation is important. As mentioned 

previously, in the case of sample A, the soot layer could be thin, which reduces the 

backpressure during soot loading. Therefore, it is considered that the regeneration rate 

of sample A is higher than that of sample B at the same regeneration temperature, 

because sample A has larger contact area with exhaust gas, and resultantly, the soot can 

be reacted with oxygen more efficiently. 

 

5. Conclusions 

 We compared characteristics between the hexagonal cell DPF and the 

conventional square cell DPF, especially the PM filtration efficiency and pressure drop 

and regeneration rate, in order to investigate of the effects of cell geometry on the DPF 

performances. The following results were obtained. 

1. In the case of the hexagonal cell DPF, the particle number concentration decreases 

more rapidly, and the filtration efficiency is higher. From SEM observation of filter 

wall, the soot layer is formed only at the inlet side of the wall surface. Then, the area 
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where the soot layer is formed is limited, and the hexagonal cell DPF has the higher 

filtration efficiency at the earlier stage of the filter usage. 

2. For both samples, the amount of the loaded soot is almost equal at the same soot 

loading time. The initial backpressure of the hexagonal cell DPF is higher than that 

of the conventional square cell DPF. However, the backpressure during soot loading 

of the hexagonal cell DPF is lower when the amount of loaded soot is over 2g/L. 

3. Independent of the inlet temperature, the regeneration rate of the hexagonal cell 

DPF is higher. This is because the contact area between the soot and the exhaust gas 

is larger. 

For further studies, it is necessary to examine the region of thick soot cake, and to make 

clear the difference between hexagonal and square cell DPFs. In addition, catalyzed 

hexagonal cell DPF for various conditions will be considered in future. 
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Fig. 1. Image of a wall-flow DPF. 
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Fig. 2. Appearance and cell designs of (a) a hexagonal cell 

DPF, (b) a square cell DPF. 
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Fig. 3. Experimental setup. 
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Fig. 4. Positions of thermocouples during the  

regeneration test. 
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Fig. 5. Number-based filtration efficiency upon initial usage 

for each sample. 
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Fig. 6. Comparison for T90 and T99 for each sample. 
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Fig. 7. Relationship between initial backpressure and air 

flow rate (no PM loading). 
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Fig. 8. Backpressure during soot loading for each sample.  
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Fig. 9. Relationship between soot loading time and the 
amount of soot loading for each sample.  
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Fig. 10. Time-variation of each temperature and backpressure during the regeneration test of 

(a) sample A and (b) sample B (test condition 3). 
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Fig. 11. Regeneration rate at different inlet temperature. 
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Fig. 12. Flow of exhaust gas in hexagonal cell DPF; (a) small soot amount at initial usage, 

(b) large soot amount with thick soot cake formation. Flow 1 is directly from inlet cell to 

outlet cell, and flow 2 is from inlet cell to outlet cell through the filter substrate wall. 
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Fig. 13. A schematic of cell structure of sample A with SEM 

image. Inlet side “a” is wall surface of the flow toward 

outlet channel. Inlet side of “b” is wall surface of the flow 

toward inlet channel. Outlet side of “c” is wall surface of 

the flow from inlet channel. 

Fig. 13. (enlarged) 
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Fig. 14. SEM images of wall surfaces at the side of “a”, “b”, 

and “c” in Fig. 13. 
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Fig. 14. (enlarged) 
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Table 1 DPF specifications  

Sample    A B  
Substrate   SiC (silicon-carbide) 
Size (mm)   D144, L153 
Cell Geometry  Hexagon Square 
Cell Density (cpsi)  300 300 
Wall Thickness (mm)  0.25 0.25 
Open Frontal Area (%)  46.2 34.2 
Open Rear Area (%)  22.6 34.2 
Porosity (%)   46.3 46.5 
Average Pore Diameter (m) 16.0 16.8 
Washcoat   none none 
Pt Loading   none none  
 
 
 
Table 2 Engine specifications  

Model  NISSAN QD32 
Engine Type  4 stroke, swirl chamber type diesel 
Cylinders  inline-4    
Valve Mechanism OHV 
Displacement 3.153 L 
Rated Power  72 kW @ 3600 rpm 
Peak Torque  216 Nm @ 2000 rpm 
EGR System  none 
Turbocharger  none (NA)  
 
 
 
Table 3 Conditions in DPF regeneration test  

Test condition 1 2 3  
Revolution per minute 3000 3000 3000 
Throttle angle (%) 65 68 70 
Torque (Nm)  100 ±5 110 ±5 120 ±5 
Exhaust gas temp (°C) 550 ±10 600 ±10 650 ±10 
DPF temp (°C) 510 ±10 550 ±10 590 ±10 
O2 concentration (%) 9.4 8.2 7.2 
Keeping time (min)  30 30 30  

 
 

 
Table 4 Comparison of test results  

Sample   A (HEX) B (SQ)  
Filtration efficiency  O 
Initial pressure loss   O 
Pressure loss during soot loading O 
Regeneration rate  O  
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