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Abstract. This is a continuation of our previous result, in which prop-
erties of multiple zeta-functions associated with simple Lie algebras of Ar type
have been studied. In the present paper we consider more general situation,
and discuss the Lie theoretic background structure of our theory. We show a
recursive structure in the family of zeta-functions of sets of roots, which can
be explained by the order relation among roots. We also point out that the
recursive structure can be described in terms of Dynkin diagrams. Then we
prove several analytic properties of zeta-functions associated with simple Lie
algebras of Br, Cr, and Dr types.

1. Introduction.

Let g be a complex semisimple Lie algebra, s = σ+ it a complex variable, and
define

ζW (s; g) =
∑
ϕ

(dimϕ)−s, (1.1)

where the summation runs over all finite dimensional irreducible representations
ϕ of g. Special values of this Dirichlet series were first studied by Witten [22] in
connection with quantum gauge theory, and Zagier [23] called (1.1) as the Witten
zeta-function associated with g. Some evaluation formulas of ζW (s; g) at positive
even integral arguments were given by Mordell [18], Zagier [23] and Gunnells and
Sczech [5].

A more explicit expression of (1.1) can be obtained by using Weyl’s dimension
formula. Let r be the rank of g. Denote by ∆ = ∆(g) the set of all roots of g, by
∆+ = ∆+(g) the set of all positive roots of g, and by Ψ = Ψ(g) = {α1, . . . , αr} the
fundamental system of ∆. For any α ∈ ∆, we denote by α∨ the associated coroot.
Let λ1, . . . , λr be the fundamental weights satisfying 〈α∨i , λj〉 = λj(α∨i ) = δij

(Kronecker’s delta).
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Let N be the set of positive integers, N0 the set of non-negative integers, and
C the set of complex numbers. Any dominant weight can be written as

λ = n1λ1 + · · ·+ nrλr (n1, . . . , nr ∈ N0), (1.2)

and especially the lowest strongly dominant form is ρ = λ1 + · · ·+ λr. Let dλ be
the dimension of the representation space corresponding to the dominant weight
λ. By Weyl’s dimension formula (see, for example, Section 3.8 of Samelson [19]),
we have

dλ =
∏

α∈∆+

〈α∨, λ + ρ〉
〈α∨, ρ〉

=
∏

α∈∆+

〈α∨, (n1 + 1)λ1 + · · ·+ (nr + 1)λr〉
〈α∨, λ1 + · · ·+ λr〉 . (1.3)

Hence, putting mj = nj + 1, we have

ζW (s; g) =
∑

λ

∏

α∈∆+

( 〈α∨,m1λ1 + · · ·+ mrλr〉
〈α∨, λ1 + · · ·+ λr〉

)−s

= K(g)s
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

〈α∨,m1λ1 + · · ·+ mrλr〉−s, (1.4)

where the sum on the second member of the above runs over all dominant weights
of the form (1.2), and

K(g) =
∏

α∈∆+

〈α∨, λ1 + · · ·+ λr〉. (1.5)

The analytic behaviour of ζW (s; g) is determined essentially by the multiple series
part of the right-hand side of (1.4). To analyze this multiple series closely, it is
more flexible to introduce the following multi-variable version of the series:

ζr(s; g) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆+

〈α∨,m1λ1 + · · ·+ mrλr〉−sα , (1.6)

where s = (sα)α∈∆+ ∈ Cn. (Here n = |∆+| is the number of positive roots of g.)
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In particular, the recursive structure (which will be discussed in Sections 3 to 5)
cannot be described without the above multi-variable version. We note that the
relation

ζW (s; g) = K(g)sζr(s, . . . , s; g) (1.7)

holds.
When g = sl(3), the series (1.6) is nothing but the classical Tornheim double

series (see (2.5)). For more general g, (1.6) was first introduced by the second-
named author [15] in the case g = so(5), and then, for any Ar type Lie algebra
sl(r + 1) (r ∈ N) by the second and the third-named authors [17].

In [17], we have studied the analytic properties, such as the analytic con-
tinuation, location of singularities, recursive formulas, and functional relations for
ζr(s; g) when g is of Ar type. In the present paper we will discuss in a more general
framework, and especially discuss the Lie theoretic background structure lying in
the theory of ζr(s; g). Series (1.6) is convergent absolutely when <sα > 1 for any
α ∈ ∆+. Hence hereafter, except for the final section, we assume this condition.
Also hereafter we frequently use the notation ζr(s;Xr), K(Xr) etc. if g is of Xr

type (where X = A, B, C or D). The empty product is to be understood as 1.
In Section 2, we will prepare explicit expressions of ζr(s; g) when g is of Br,

Cr, or Dr type. The main body of the present paper is Sections 3 to 5, in which
we will discuss the recursive structure in the family of those zeta-functions which
can be described in terms of Mellin-Barnes integrals (Theorems 3.1, 4.2, 4.3). For
this purpose we will introduce the notion of multiple zeta-functions of root sets,
which includes (1.6) as special cases. To state the recursive structure we will use
the notation

ζ(·;X) → ζ(·;Y ), (1.8)

which implies that the zeta-function of a root set X can be expressed as an inte-
gral of Mellin-Barnes type whose integrand includes the zeta-function of another
root set Y . We will observe that this recursive structure of those zeta-functions
corresponds to an inclusion relation among certain sets of roots (Remarks 3.2, 4.1,
4.4). Moreover we will show that this correspondence can be explained in terms
of Dynkin diagrams. The most general statement will be embodied in Theorems
5.3 and 5.4.

An important application of the recursive structure (1.8) is that it allows a
detailed study of analytic properties (such as the meromorphic continuation and
the determination of singularities) of ζ(·;X) if the corresponding information is
available for ζ(·;Y ). As an example of this principle, in the final section we will
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study the meromorphic continuation and location of singularities of zeta-functions
of C2, B3 and C3. Functional relations will be studied in subsequent papers ([9],
[10]).

A part of the results proved in the present paper and [10] has been announced
in [7], [8].

The case of exceptional algebras can be treated similarly, but we will devote
a separate paper to this matter (see [11]).

2. Explicit forms.

First of all we note that if g is the direct sum of two Lie algebras g1⊕g2, then

ζW (s; g) = ζW (s; g1)ζW (s; g2). (2.1)

In fact, it is well known that any irreducible representation ϕ of g is equivalent to
the tensor product of two irreducible representations ϕ1 of g1 and ϕ2 of g2, and
conversely if ϕi is an irreducible representation of gi (i = 1, 2) then ϕ1 ⊗ ϕ2 is an
irreducible representation of g1 ⊕ g2 (Section 3.4 of [19]). Hence

ζW (s; g) =
∑
ϕ1

∑
ϕ2

(dimϕ1 ⊗ ϕ2)−s

=
∑
ϕ1

(dimϕ1)−s
∑
ϕ2

(dimϕ2)−s = ζW (s; g1)ζW (s; g2).

Therefore without loss of generality we may restrict our consideration to the case
of simple g.

Hereafter we assume that g is simple. First consider the Ar type of algebra
g = sl(r+1) (r ∈ N). Let εj be the j-th coordinate function which assigns to each
vector its j-th coordinate. It is known that the fundamental system is {α1, . . . , αr}
with αj = εj − εj+1 (1 ≤ j ≤ r), and positive roots are

εi − εj =
∑

i≤k<j

αk (1 ≤ i < j ≤ r + 1) (2.2)

(see, for example, the list at the end of Bourbaki [2]). The corresponding coroots
are

(εi − εj)∨ = ei − ej =
∑

i≤k<j

α∨k (1 ≤ i < j ≤ r + 1),
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where ej is the standard j-th coordinate vector. In the Ar case we have 〈α∨, λ〉 =
〈α, λ〉, hence we have

〈
(εi − εj)∨,m1λ1 + · · ·+ mrλr

〉

= 〈εi − εj ,m1λ1 + · · ·+ mrλr〉

=
∑

i≤k<j

〈αk,m1λ1 + · · ·+ mrλr〉 = mi + · · ·+ mj−1.

This implies

ζr(s;Ar) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

1≤i<j≤r+1

(mi + · · ·+ mj−1)−sij , (2.3)

where s = s(Ar) = (sij) ∈ Cr(r+1)/2, and

K(Ar) =
∏

1≤i<j≤r+1

(j − i). (2.4)

This (2.3) coincides with (1.5) of [17]. In particular, ζ1(s; sl(2)) is the Riemann
zeta-function ζ(s), and ζ2(s; sl(3)) coincides with the Tornheim double series

ζMT,2(s1, s2, s3) =
∞∑

m1=1

∞∑
m2=1

m−s1
1 m−s2

2 (m1 + m2)−s3 , (2.5)

with s1 = s12, s2 = s23, and s3 = s13. This series was first introduced by Tornheim
[20] when s1, s2 and s3 are positive integers, and then, independently, Mordell
[18] studied the further special case s1 = s2 = s3 ∈ N . The analytic behaviour of
(2.5) as a function of three complex variables is discussed in second-named author’s
paper [12].

Similarly as above, we can find explicit forms of ζr(s; g) for other simple Lie
algebras. For our later purpose, here we prepare the explicit forms of ζr(s; g) in
the case when g is of Br, Cr and Dr type.

Let g = so(2r + 1) (r ∈ N), that is, Br type. The list of Bourbaki [2] shows
that the fundamental system is

Ψ(Br) = {αj = αj(Br) = εj − εj+1 (1 ≤ j ≤ r − 1), αr = αr(Br) = εr}, (2.6)
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and the list of positive roots is





εi =
∑

i≤k≤r

αk (1 ≤ i ≤ r),

εi − εj =
∑

i≤k<j

αk (1 ≤ i < j ≤ r),

εi + εj =
∑

i≤k<j

αk + 2
∑

j≤k≤r

αk (1 ≤ i < j ≤ r).

(2.7)

The fundamental coroots are α∨1 = e1 − e2, . . . , α
∨
r−1 = er−1 − er and α∨r = 2er.

Positive coroots are 2ei (1 ≤ i ≤ r), ei ± ej (1 ≤ i < j ≤ r). Hence the list (2.7)
can be modified to the following list of positive coroots:





2ei = (εi)∨ = 2
∑

i≤k<r

α∨k + α∨r (1 ≤ i ≤ r),

ei − ej = (εi − εj)∨ =
∑

i≤k<j

α∨k (1 ≤ i < j ≤ r),

ei + ej = (εi + εj)∨ =
∑

i≤k<j

α∨k + 2
∑

j≤k<r

α∨k + α∨r (1 ≤ i < j ≤ r).

(2.8)

Therefore we have

Proposition 2.1.

ζr(s;Br) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

1≤i≤r

(
2(mi + · · ·+ mr−1) + mr

)−si

×
∏

1≤i<j≤r

(mi + · · ·+ mj−1)−s−ij

×
∏

1≤i<j≤r

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−1) + mr

)−s+
ij (2.9)

where s = s(Br) = ((si), (s−ij), (s
+
ij)) ∈ Cr2

, and

K(Br) =
∏

1≤i≤r

(2r − 2i + 1)
∏

1≤i<j≤r

(j − i)(2r − i− j + 1). (2.10)

For example, we have ζ1(s; so(3)) = ζ(s),
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ζ2(s; so(5)) =
∞∑

m1=1

∞∑
m2=1

(2m1 + m2)−s1m−s2
2 m

−s−12
1 (m1 + m2)−s+

12 (2.11)

which was introduced as (4.3) in [15], and

ζ3(s; so(7)) =
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

(2m1 + 2m2 + m3)−s1(2m2 + m3)−s2m−s3
3

×m
−s−12
1 (m1 + 2m2 + m3)−s+

12(m1 + m2)−s−13

× (m1 + m2 + m3)−s+
13m

−s−23
2 (m2 + m3)−s+

23 . (2.12)

In the case g = sp(r) (Cr type), the fundamental system is

Ψ(Cr) =
{
αj = αj(Cr) = εj − εj+1 (1 ≤ j ≤ r − 1), αr = αr(Cr) = 2εr

}
,

(2.13)

positive roots are 2εi (1 ≤ i ≤ r) and εi ± εj (1 ≤ i < j ≤ r), the fundamental
coroots are α∨1 = e1 − e2, . . . , α

∨
r−1 = er−1 − er and α∨r = er, hence the list of

positive coroots is





ei =
∑

i≤k≤r

α∨k (1 ≤ i ≤ r),

ei − ej =
∑

i≤k<j

α∨k (1 ≤ i < j ≤ r),

ei + ej =
∑

i≤k<j

α∨k + 2
∑

j≤k≤r

α∨k (1 ≤ i < j ≤ r).

(2.14)

Therefore we have

Proposition 2.2.

ζr(s;Cr) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

1≤i≤r

(mi + · · ·+ mr)−si

×
∏

1≤i<j≤r

(mi + · · ·+ mj−1)−s−ij

×
∏

1≤i<j≤r

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr)

)−s+
ij , (2.15)
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where s = s(Cr) = ((si), (s−ij), (s
+
ij)) ∈ Cr2

, and

K(Cr) =
∏

1≤i≤r

(r − i + 1)
∏

1≤i<j≤r

(j − i)(2r − i− j + 2). (2.16)

We see that

ζ2(s; sp(2)) =
∞∑

m1=1

∞∑
m2=1

(m1 + m2)−s1m−s2
2 m

−s−12
1 (m1 + 2m2)−s+

12 (2.17)

which is equal to ζ2(s+
12, s

−
12, s2, s1; so(5)), if we change m1 and m2 in the above.

This is the natural consequence of the isomorphism B2 ' C2. The reverse order
of variables reflects the fact that the direction of arrows of Dynkin diagrams of B2

and C2 are opposite. The case r = 3 gives

ζ3(s; sp(3)) =
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

(m1 + m2 + m3)−s1(m2 + m3)−s2m−s3
3

×m
−s−12
1 (m1 + 2m2 + 2m3)−s+

12(m1 + m2)−s−13

× (m1 + m2 + 2m3)−s+
13m

−s−23
2 (m2 + 2m3)−s+

23 . (2.18)

Lastly, in the case g = so(2r) (Dr type), the fundamental system is

Ψ(Dr) =
{
αj = αj(Dr) = εj − εj+1 (1 ≤ j ≤ r − 1), αr = αr(Dr) = εr−1 + εr

}
,

(2.19)

positive roots are εi ± εj (1 ≤ i < j ≤ r), the fundamental coroots are α∨1 =
e1−e2, . . . , α

∨
r−1 = er−1−er and α∨r = er−1 +er, hence the list of positive coroots

is





ei + er =
∑

i≤k≤r−2

α∨k + α∨r (1 ≤ i < r),

ei − ej =
∑

i≤k<j

α∨k (1 ≤ i < j ≤ r),

ei + ej =
∑

i≤k<j

α∨k + 2
∑

j≤k≤r−2

α∨k + α∨r−1 + α∨r (1 ≤ i < j < r).

(2.20)
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From this list we have

Proposition 2.3.

ζr(s;Dr) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

1≤i<r

(
(mi + · · ·+ mr−2) + mr

)−s+
ir

×
∏

1≤i<j≤r

(mi + · · ·+ mj−1)−s−ij

×
∏

1≤i<j<r

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−2) + mr−1 + mr

)−s+
ij

(2.21)

for r ≥ 2, where s = s(Dr) = ((s−ij), (s
+
ij)) ∈ Cr(r−1), and

K(Dr) =
∏

1≤i≤r

(r − i)
∏

1≤i<j≤r

(j − i)
∏

1≤i<j<r

(2r − i− j). (2.22)

We find that

ζ2

(
(s1, s

−
12); so(4)

)
= ζ(s1)ζ(s−12).

Since D2 ' A1 ⊕ A1, this agrees with (2.1). Also we see that ζ3(s; so(6)) is equal
to ζ3(s; sl(4)) (under the suitable renaming of variables), which agrees with the
fact D3 ' A3.

3. The recursive structure for Ar.

In several papers of the second-named author, it has been pointed out that
there are recursive structures in the family of various multiple zeta-functions, which
can be described by Mellin-Barnes type of integrals ([13], [14], [15], [16]).

In [17], it has been shown that such a recursive structure exists in the family
of zeta-functions attached to Lie algebras of Ar type. In fact, Theorem 2.2 of [17]
gives a formula which expresses ζr+1(s; sl(r + 2)) as a multiple integral involving
ζr( · ; sl(r + 1)).

In the present paper we will study this recursive structure, not only for Ar type
but also for Br, Cr and Dr types, more closely. For this purpose, we introduce the
notion of multiple zeta-functions of root sets. Let ∆∗ be a subset of ∆+ = ∆+(g).
We call ∆∗ a root set if the condition

(∗) for any λj (1 ≤ j ≤ r), there exists an element α ∈ ∆∗ such that 〈α, λj〉 6= 0
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is satisfied. Under this condition, we can define the multiple zeta-function of ∆∗

by

ζr(s;∆∗) =
∞∑

m1=1

· · ·
∞∑

mr=1

∏

α∈∆∗
〈α∨,m1λ1 + · · ·+ mrλr〉−sα , (3.1)

where s = s(∆∗) = (sα)α∈∆∗ ∈ Cn∗ with n∗ = |∆∗|.
We formulate our recursive structure in terms of these zeta-functions. In this

section we consider the case when g = sl(r + 1) (r ≥ 2). By (2.2) we see that

∆+ = ∆+(Ar) =
{

εi − εj =
∑

i≤k<j

αk

∣∣∣∣ 1 ≤ i < j ≤ r + 1
}

. (3.2)

Hence

∆∗
h(Ar) = {ε1 − εj | 2 ≤ j ≤ h} ∪ {εi − εj | 2 ≤ i < j ≤ r + 1} (2 ≤ h ≤ r + 1)

(3.3)

is a subset of ∆+(Ar) satisfying condition (∗). Then there is the relation

∆∗(Ar) ⊂ ∆∗
2(Ar) ⊂ · · · ⊂ ∆∗

r(Ar) ⊂ ∆∗
r+1(Ar) = ∆+(Ar), (3.4)

where

∆∗(Ar) = {εi − εj | 2 ≤ i < j ≤ r + 1}.

The vector s(∆∗
h(Ar)) can be written as

s
(
∆∗

h(Ar)
)

= (s12, . . . , s1h, s2(Ar)), (3.5)

where s2(Ar) = (sij)2≤i<j≤r+1.
We now show that this relation gives the Mellin-Barnes recursive structure in

the family of zeta-functions of root sets in the Ar case. The classical Mellin-Barnes
integral formula is

(1 + λ)−s =
1

2π
√−1

∫

(c)

Γ(s + z)Γ(−z)
Γ(s)

λzdz, (3.6)

where s, λ are complex numbers with <s > 0, | arg λ| < π, λ 6= 0, c is real with
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−<s < c < 0, and the path (c) of integration is the vertical line <z = c.
Let 3 ≤ h ≤ r + 1. The set ∆∗

h(Ar) includes the root

ε1 − εh =
∑

1≤k<h

αk,

which produces the term (m1 + · · ·+mh−1)−s1h on the right-hand side of (3.1) for
∆∗ = ∆∗

h(Ar). We apply formula (3.6) to the above term to obtain

(m1 + · · ·+ mh−1)−s1h

= (m1 + · · ·+ mh−2)−s1h

(
1 +

mh−1

m1 + · · ·+ mh−2

)−s1h

= (m1 + · · ·+ mh−2)−s1h
1

2π
√−1

∫

(ch)

Γ(s1h + zh)Γ(−zh)
Γ(s1h)

×
(

mh−1

m1 + · · ·+ mh−2

)zh

dzh, (3.7)

where −<s1h < ch < 0. Hence

ζr

(
s(∆∗

h(Ar));∆∗
h(Ar)

)

=
∞∑

m1=1

· · ·
∞∑

mr=1

∏

2≤i<j≤r+1

(mi + · · ·+ mj−1)−sij

×
∏

2≤j<h

(m1 + · · ·+ mj−1)−s1j
1

2π
√−1

∫

(ch)

Γ(s1h + zh)Γ(−zh)
Γ(s1h)

× (m1 + · · ·+ mh−2)−s1h−zhmzh

h−1dzh

=
1

2π
√−1

∫

(ch)

Γ(s1h + zh)Γ(−zh)
Γ(s1h)

×
∞∑

m1=1

· · ·
∞∑

mr=1

∏
2≤i<j≤r+1

(i,j)6=(h−1,h)

(mi + · · ·+ mj−1)−sij m
−sh−1,h+zh

h−1

×
∏

2≤j≤h−2

(m1 + · · ·+ mj−1)−s1j (m1 + · · ·+ mh−2)−s1,h−1−s1h−zhdzh

=
1

2π
√−1

∫

(ch)

Γ(s1h + zh)Γ(−zh)
Γ(s1h)

ζr

(
s∗(Ar, zh);∆∗

h−1(Ar)
)
dzh, (3.8)
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where

s∗(Ar, zh) =
(
s12, . . . , s1,h−2, s1,h−1 + s1h + zh, s∗2(Ar, zh)

)

and s∗2(Ar, zh) is almost the same as s2(Ar) but sh−1,h is replaced by sh−1,h− zh.
Formula (3.8) is an integral expression of ζr(s;∆∗

h(Ar)) whose integrand includes
ζr(· ;∆∗

h−1(Ar)) (3 ≤ h ≤ r + 1). Repeating this procedure, we find the recursive
structure

ζr(· ;Ar) = ζr

(· ;∆∗
r+1(Ar)

) → ζr

(· ;∆∗
r(Ar)

) →
· · · → ζr

(· ;∆∗
3(Ar)

) → ζr

(· ;∆∗
2(Ar)

)
(3.9)

(where we use the notation (1.8)).
In particular, when h = 3, the second product on the third member of (3.8)

is an empty product (hence is equal to 1), hence the sum with respect to m1 can
be separated, which produces the Riemann zeta factor. That is, we have

ζr

(
s∗(Ar, z3);∆∗

2(Ar)
)

= ζr−1

(
s∗2(Ar, z3);∆∗(Ar)

)
ζ(s12 + s13 + z3). (3.10)

The first factor on the right-hand side is not ζr but ζr−1, because this is defined
by an (r − 1)-ple sum. Hence

ζr

(
s;∆∗

3(Ar)
)

=
1

2π
√−1

∫

(c3)

Γ(s13 + z3)Γ(−z3)
Γ(s13)

× ζr−1

(
s∗2(Ar, z3);∆∗(Ar)

)
ζ(s12 + s13 + z3)dz3. (3.11)

This implies that the last step of (3.9) can be rewritten as

ζr

(· ;∆∗
3(Ar)

) → ζr−1

(· ;∆∗(Ar)
)
, (3.12)

by neglecting the Riemann zeta factor.
Renaming εi as εi−1 (2 ≤ i ≤ r+1), we find that ∆∗(Ar) is equal to ∆+(Ar−1).

Hence we now observe that ζr(s;Ar) can be expressed as an (r − 1)-ple integral
involving ζr−1(· ;Ar−1), which is exactly the assertion of Theorem 2.2 of [17].

Summarizing the above argument, we obtain the following refinement of The-
orem 2.2 of [17].

Theorem 3.1. Between ζr(· ;Ar) and ζr−1(· ;Ar−1) (for r ≥ 2) there is
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the recursive relation given by (3.9) and (3.12), which can be expressed as the
Mellin-Barnes integrals (3.8) and (3.11). This further gives the recursive relation

ζr(· ;Ar) → ζr−1(· ;Ar−1) → · · · → ζ2(· ;A2) = ζMT,2 → ζ. (3.13)

Remark 3.2. Among the coroots of Ar listed in the preceding section, the
coroot e1 − er+1 is the highest, and there is the order relation

e1 − er+1 > e1 − er > · · · > e1 − e2. (3.14)

The recursive relations (3.9) and (3.12) correspond to this order relation. In fact,
we see that

(i) in each step (3.8) we apply the Mellin-Barnes formula to the sum m1 +
· · ·+ mh−1 corresponding to the coroot e1 − eh,
and

(ii) the sum is divided into m1 + · · ·+mh−2 and mh−1, where the former sum
corresponds to the next coroot e1 − eh−1.

In the next section we will show that order relations among coroots similar to
(3.14) also give the recursive structures among zeta-functions in the Br, Cr and
Dr cases.

4. The recursive structure for Br, Cr and Dr.

In this section we consider the Mellin-Barnes recursive structure in the Br,
Cr, and Dr cases. First treat the Br case (r ≥ 2). From (2.7) we have

∆+(Br) = {εi | 1 ≤ i ≤ r} ∪ {εi ± εj | 1 ≤ i < j ≤ r}. (4.1)

We write the vector s(Br) as

s(Br) =
(
s1, . . . , sr, s(Br)−, s(Br)+

)
,

where s(Br)± = (s±ij)1≤i<j≤r. The highest coroot is 2e1, and there is the order
relation

2e1 > e1 + e2 > e1 + e3 > · · · > e1 + er

> e1 − er > e1 − er−1 > · · · > e1 − e3 > e1 − e2 (4.2)
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among the coroots involving α∨1 .
We give the Mellin-Barnes recursive structure according to this relation. Let

∆∗
h(Br) = {εi | 2 ≤ i ≤ r} ∪ {ε1 − εj | 2 ≤ j ≤ h} ∪ {εi − εj | 2 ≤ i < j ≤ r}

∪ {εi + εj | 2 ≤ i < j ≤ r} (2 ≤ h ≤ r) (4.3)

and

∆∗∗
h (Br) = {εi | 2 ≤ i ≤ r} ∪ {εi − εj | 1 ≤ i < j ≤ r} ∪ {ε1 + εj | h ≤ j ≤ r}

∪ {εi + εj | 2 ≤ i < j ≤ r} (2 ≤ h ≤ r). (4.4)

Then there is the relation

∆∗(Br) ⊂ ∆∗
2(Br) ⊂ · · · ⊂ ∆∗

r(Br)

⊂ ∆∗∗
r (Br) ⊂ · · · ⊂ ∆∗∗

2 (Br) ⊂ ∆+(Br), (4.5)

where

∆∗(Br) = {εi | 2 ≤ i ≤ r} ∪ {εi ± εj | 2 ≤ i < j ≤ r}. (4.6)

First, the root ε1 (or the coroot 2e1) corresponds to the term

(
2(m1 + · · ·+ mr−1) + mr

)−s1

which is, by using (3.6), equal to

1
2π
√−1

∫

(c′)

Γ(s1 + z′)Γ(−z′)
Γ(s1)

mz′
1

(
m1 + 2(m2 + · · ·+ mr−1) + mr

)−s1−z′
dz′

with −<s1 < c′ < 0. Hence

ζr(s;Br) =
1

2π
√−1

∫

(c′)

Γ(s1 + z′)Γ(−z′)
Γ(s1)

×
∞∑

m1=1

· · ·
∞∑

mr=1

∏

2≤i≤r

(
2(mi + · · ·+ mr−1) + mr

)−si
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×m
z′−s−12
1

∏
1≤i<j≤r
(i,j)6=(1,2)

(mi + · · ·+ mj−1)−s−ij

× (
m1 + 2(m2 + · · ·+ mr−1) + mr

)−s1−s+
12−z′

×
∏

1≤i<j≤r
(i,j)6=(1,2)

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−1) + mr

)−s+
ij dz′

=
1

2π
√−1

∫

(c′)

Γ(s1 + z′)Γ(−z′)
Γ(s1)

ζr

(
s′(Br, z

′);∆∗∗
2 (Br)

)
dz′, (4.7)

where

s′(Br, z
′) =

(
s2, . . . , sr, s′(Br, z

′)−, s′(Br, z
′)+

)
,

s′(Br, z
′)− is almost the same as s(Br)− but s−12 is replaced by s−12 − z′, and

s′(Br, z
′)+ is almost the same as s(Br)+ but s+

12 is replaced by s1 + s+
12 + z′. This

implies the recursive relation

ζr(· ;Br) → ζr

(· ;∆∗∗
2 (Br)

)
. (4.8)

Next consider ∆∗∗
h (Br). The corresponding vector can be written as

s
(
∆∗∗

h (Br)
)

=
(
s2, . . . , sr, s(Br)−, s+

1h, . . . , s+
1r, s2(Br)+

)
,

where s2(Br)+ = (s+
ij)2≤i<j≤r. When 2 ≤ h ≤ r − 1, we apply (3.6) to the term

(
m1 + · · ·+ mh−1 + 2(mh + · · ·+ mr−1) + mr

)−s+
1h

=
(
m1 + · · ·+ mh + 2(mh+1 + · · ·+ mr−1) + mr

)−s+
1h

×
(

1 +
mh

m1 + · · ·+ mh + 2(mh+1 + · · ·+ mr−1) + mr

)−s+
1h

(4.9)

which corresponds to the root ε1 + εh. Then

ζr

(
s(∆∗∗

h (Br));∆∗∗
h (Br)

)

=
1

2π
√−1

∫

(c+
1h)

Γ(s+
1h + z+

1h)Γ(−z+
1h)

Γ(s+
1h)
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×
∞∑

m1=1

· · ·
∞∑

mr=1

∏

2≤i≤r

(
2(mi + · · ·+ mr−1) + mr

)−si

×m
z+
1h

h

∏

1≤i<j≤r

(mi + · · ·+ mj−1)−s−ij

×
∏

h<j≤r

(
m1 + · · ·+ mj−1 + 2(mj + · · ·+ mr−1) + mr

)−s+
1j

× (
m1 + · · ·+ mh + 2(mh+1 + · · ·+ mr−1) + mr

)−s+
1h−z+

1h

×
∏

2≤i<j≤r

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−1) + mr

)−s+
ij dz+

1h, (4.10)

where −<s+
1h < c+

1h < 0. This is equal to

1
2π
√−1

∫

(c+
1h)

Γ(s+
1h + z+

1h)Γ(−z+
1h)

Γ(s+
1h)

ζr

(
s∗∗(Br, z

+
1h);∆∗∗

h+1(Br)
)
dz+

1h, (4.11)

where

s∗∗
(
Br, z

+
1h

)
=

(
s2, . . . , sr, s∗∗(Br, z

+
1h)−,

s+
1h + s+

1,h+1 + z+
1h, s+

1,h+2, . . . , s
+
1r, s2(Br)+

)
,

and s∗∗(Br, z
+
1h)− is almost the same as s(Br)− but s−h,h+1 is replaced by s−h,h+1−

z+
1h. When h = r, we apply (3.6) to

(m1 + · · ·+ mr)−s+
1r = (m1 + · · ·+ mr−1)−s+

1r

(
1 +

mr

m1 + · · ·+ mr−1

)−s+
1r

.

Then we have

ζr

(
s(∆∗∗

r (Br));∆∗∗
r (Br)

)

=
1

2π
√−1

∫

(c+
1r)

Γ(s+
1r + z+

1r)Γ(−z+
1r)

Γ(s+
1r)

ζr

(
s∗∗(Br, z

+
1r);∆

∗
r(Br)

)
dz+

1r, (4.12)

where
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s∗∗
(
Br, z

+
1r

)
=

(
s2, . . . , sr−1, sr − z+

1r, s
∗∗(Br, z

+
1r)

−, s2(Br)+
)

and s∗∗(Br, z
+
1r)

− is almost the same as s(Br)− but s−1r is replaced by s−1r+s+
1r+z+

1r.
Therefore we now find the recursive relation

ζr

(· ;∆∗∗
2 (Br)

) → ζr

(· ;∆∗∗
3 (Br)

) →
· · · → ζr

(· ;∆∗∗
r (Br)

) → ζr

(· ;∆∗
r(Br)

)
. (4.13)

Lastly we consider ∆∗
h(Br) (3 ≤ h ≤ r), with the corresponding vector

s
(
∆∗

h(Br)
)

=
(
s2, . . . , sr, s

−
12, . . . , s

−
1h, s2(Br)−, s2(Br)+

)
,

where s2(Br)− = (s−ij)2≤i<j≤r. Apply (3.6) to the term

(m1 + · · ·+ mh−1)−s−1h = (m1 + · · ·+ mh−2)−s−1h

(
1 +

mh−1

m1 + · · ·+ mh−2

)−s−1h

to obtain

ζr

(
s(∆∗

h(Br));∆∗
h(Br)

)

=
1

2π
√−1

∫

(c−1h)

Γ(s−1h + z−1h)Γ(−z−1h)
Γ(s−1h)

×
∞∑

m1=1

· · ·
∞∑

mr=1

∏

2≤i≤r

(
2(mi + · · ·+ mr−1) + mr

)−si

×
∏

2≤j≤h−1

(m1 + · · ·+ mj−1)−s−1j

× (m1 + · · ·+ mh−2)−s−1h−z−1h m
z−1h

h−1

∏

2≤i<j≤r

(mi + · · ·+ mj−1)−s−ij

×
∏

2≤i<j≤r

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−1) + mr

)−s+
ij dz−1h

=
1

2π
√−1

∫

(c−1h)

Γ(s−1h + z−1h)Γ(−z−1h)
Γ(s−1h)

× ζr

(
s∗(Br, z

−
1h);∆∗

h−1(Br)
)
dz−1h,

(4.14)
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where −<s−1h < c−1h < 0,

s∗(Br, z
−
1h) =

(
s2, . . . , sr, s

−
12, . . . , s

−
1,h−2, s

−
1,h−1 + s−1h + z−1h,

s∗2(Br, z
−
1h)−, s2(Br)+

)

and s∗2(Br, z
−
1h)− is almost the same as s2(Br)− but s−h−1,h is replaced by s−h−1,h−

z−1h. When h = 3, the sum with respect to m1 on the right-hand side of (4.14) can
be separated, which implies

ζr

(
s∗(Br, z

−
13);∆

∗
2(Br)

)
= ζr−1

(
s∗2(Br, z

−
13);∆

∗(Br)
)
ζ(s−12 + s−13 + z−13), (4.15)

where

s∗2
(
Br, z

−
13

)
=

(
s2, . . . , sr, s∗2(Br, z

−
13)

−, s2(Br)+
)
.

Hence we have the recursive relation

ζr

(· ;∆∗
r(Br)

) → ζr

(· ;∆∗
r−1(Br)

) →
· · · → ζr

(· ;∆∗
3(Br)

) → ζr−1

(· ;∆∗(Br)
)

(4.16)

by neglecting the Riemann zeta factor on the right-hand side of (4.15).

Remark 4.1. The situation similar to (i), (ii) in Remark 3.2 also holds
in the Br case. In fact, the recursive relations (4.8), (4.13) and (4.16) exactly
correspond to the order relation (4.2), and in each step, the term corresponding to
the coroot is divided into two parts, one of which corresponds to the next coroot
in the relation (4.2).

Renaming εi as εi−1 (2 ≤ i ≤ r), we see that ∆∗(Br) coincides with
∆+(Br−1). Therefore, collecting the results of the above argument, we now arrive
at the following

Theorem 4.2. Between ζr(· ;Br) and ζr−1(· ;Br−1) (for any r ≥ 2) there
is the recursive relation given by (4.8), (4.13) and (4.16), which can be expressed
as the Mellin-Barnes integrals (4.7), (4.11), (4.12) and (4.14). This further gives
the recursive relation

ζr(· ;Br) → ζr−1(· ;Br−1) → · · · → ζ2(· ;B2) → ζ. (4.17)
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The treatment in the Cr case (r ≥ 2) is similar. In this case

∆+(Cr) = {2εi | 1 ≤ i ≤ r} ∪ {εi ± εj | 1 ≤ i < j ≤ r}, (4.18)

and the order relation is

e1 + e2 > e1 + e3 > · · · > e1 + er > e1

> e1 − er > e1 − er−1 > · · · > e1 − e3 > e1 − e2. (4.19)

Define the set ∆∗∗
h (Cr) (2 ≤ h ≤ r) by replacing {εi | 2 ≤ i ≤ r} in the

definition of ∆∗∗
h (Br) by {2εi | 1 ≤ i ≤ r}, the sets ∆∗

h(Cr) and ∆∗(Cr) (2 ≤ h ≤ r)
by replacing {εi | 2 ≤ i ≤ r} in the definitions of ∆∗

h(Br) and ∆∗(Br) respectively
by {2εi | 2 ≤ i ≤ r}, and

∆∗∗(Cr) = {2εi | 1 ≤ i ≤ r} ∪ {εi − εj | 1 ≤ i < j ≤ r}
∪ {εi + εj | 2 ≤ i < j ≤ r}. (4.20)

Then we find

∆∗(Cr) ⊂ ∆∗
2(Cr) ⊂ · · · ⊂ ∆∗

r(Cr) ⊂ ∆∗∗(Cr)

⊂ ∆∗∗
r (Cr) ⊂ · · · ⊂ ∆∗∗

2 (Cr) ⊂ ∆+(Cr). (4.21)

Guided by the same principle as in Remark 4.1, we can easily find the correspond-
ing Mellin-Barnes recursive structure

ζr(· ;Cr) → ζr

(· ;∆∗∗
2 (Cr)

) → ζr

(· ;∆∗∗
3 (Cr)

) → · · · → ζr

(· ;∆∗∗
r (Cr)

)

→ ζr

(· ;∆∗∗(Cr)
) → ζr

(· ;∆∗
r(Cr)

) → ζr

(· ;∆∗
r−1(Cr)

) → · · ·
→ ζr

(· ;∆∗
3(Cr)

) → ζr−1

(· ;∆∗(Cr)
)
. (4.22)

In the Dr case (r ≥ 3), we have

∆+(Dr) = {εi ± εj | 1 ≤ i < j ≤ r}. (4.23)

Hence the vector s(Dr) is to be written as

s(Dr) =
(
s(Dr)−, s(Dr)+

)
,
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where s(Dr)± = (s±ij)1≤i<j≤r. Define s2(Dr)± = (s±ij)2≤i<j≤r,

∆∗
h(Dr) = {ε1 − εj | 2 ≤ j ≤ h} ∪ {εi ± εj | 2 ≤ i < j ≤ r} (2 ≤ h ≤ r), (4.24)

∆∗(Dr) = {εi ± εj | 2 ≤ i < j ≤ r} and

∆∗∗
h (Dr) = {εi − εj | 1 ≤ i < j ≤ r} ∪ {ε1 + εj | h ≤ j ≤ r}

∪ {εi + εj | 2 ≤ i < j ≤ r} (2 ≤ h ≤ r). (4.25)

Then, corresponding to the order relation

e1 + e2 > e1 + e3 > · · · > e1 + er > e1 − er > · · · > e1 − e3 > e1 − e2, (4.26)

we have

∆∗(Dr) ⊂ ∆∗
2(Dr) ⊂ · · · ⊂ ∆∗

r(Dr)

⊂ ∆∗∗
r (Dr) ⊂ · · · ⊂ ∆∗∗

2 (Dr) ⊂ ∆+(Dr). (4.27)

According to this relation, we give the Mellin-Barnes recursive structure.
First, by using

(
m1 + · · ·+ mh−1 + 2(mh + · · ·+ mr−2) + mr−1 + mr

)−s+
1h

=
(
m1 + · · ·+ mh + 2(mh+1 + · · ·+ mr−2) + mr−1 + mr

)−s+
1h

×
(

1 +
mh

m1 + · · ·+ mh + 2(mh+1 + · · ·+ mr−2) + mr−1 + mr

)−s+
1h

(2 ≤ h ≤ r − 2)

and

(m1 + · · ·+ mr−2 + mr−1 + mr)−s+
1,r−1

= (m1 + · · ·+ mr−2 + mr)−s+
1,r−1

(
1 +

mr−1

m1 + · · ·+ mr−2 + mr

)−s+
1,r−1

,

we have
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ζr

(
s(∆∗∗

h (Dr));∆∗∗
h (Dr)

)

=
1

2π
√−1

∫

(c+
1h)

Γ(s+
1h + z+

1h)Γ(−z+
1h)

Γ(s+
1h)

ζr

(
s∗∗(Dr, z

+
1h);∆∗∗

h+1(Dr)
)
dz+

1h (4.28)

for 2 ≤ h ≤ r − 1, where

s∗∗
(
Dr, z

+
1h

)
=

(
s∗∗(Dr, z

+
1h)−, s+

1h + s+
1,h+1 + z+

1h, s+
1,h+2, . . . , s

+
1r, s2(Dr)+

)

and s∗∗2 (Dr, z
+
1h)− is almost the same as s2(Dr)− but s−h,h+1 is replaced by s−h,h+1−

z+
1h.

Next, the term corresponding to the coroot e1 + er is

(
(m1 + · · ·+ mr−2) + mr

)−s+
1r

= (m1 + · · ·+ mr−2)−s+
1r

(
1 +

mr

m1 + · · ·+ mr−2

)−s+
1r

. (4.29)

Applying (3.6) to the above, we obtain

ζr

(
s(∆∗∗

r (Dr));∆∗∗
r (Dr)

)

=
1

2π
√−1

∫

(c+
1r)

Γ(s+
1r + z+

1r)Γ(−z+
1r)

Γ(s+
1r)

×
∏

2≤i≤r−2

(
(mi + · · ·+ mr−2) + mr

)−s+
irm

−s+
r−1,r+z+

1r
r

×
∏

1≤i<j≤r

(mi + · · ·+ mj−1)−s−ij (m1 + · · ·+ mr−2)−s+
1r−z+

1r

×
∏

2≤i<j<r

(
mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−2) + mr−1 + mr

)−s+
ij dz+

1r

=
1

2π
√−1

∫

(c+
1r)

Γ(s+
1r + z+

1r)Γ(−z+
1r)

Γ(s+
1r)

ζr

(
s∗∗(Dr, z

+
1r);∆

∗
r(Dr)

)
dz+

1r, (4.30)

where

s∗∗(Dr, z
+
1r) =

(
s∗∗(Dr, z

+
1r)

−, s∗∗2 (Dr, z
+
1r)

+
)
,
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s∗∗(Dr, z
+
1r)

− is almost the same as s(Dr)− but s−1,r−1 is replaced by s−1,r−1 +s+
1r +

z+
1r, and s∗∗2 (Dr, z

+
1r)

+ is almost the same as s2(Dr)+ but s+
r−1,r is replaced by

s+
r−1,r − z+

1r.
Finally, similarly to (4.14) we obtain

ζr

(
s(∆∗

h(Dr));∆∗
h(Dr)

)

=
1

2π
√−1

∫

(c−1h)

Γ(s−1h + z−1h)Γ(−z−1h)
Γ(s−1h)

ζr

(
s∗(Dr, z

−
1h);∆∗

h−1(Dr)
)
dz−1h

(3 ≤ h ≤ r), (4.31)

where

s∗
(
Dr, z

−
1h

)
=

(
s−12, . . . , s

−
1,h−2, s

−
1,h−1 + s−1h + z−1h, s∗2(Dr, z

−
1h)−, s2(Dr)+

)

and s∗2(Dr, z
−
1h)− is almost the same as s2(Dr)− but s−h−1,h is replaced by s−h−1,h−

z−1h. When h = 3, we further find

ζr

(
s∗(Dr, z

−
13);∆

∗
2(Dr)

)
= ζr−1

(
s∗2(Dr, z

−
13);∆

∗(Dr)
)
ζ
(
s−12 + s−13 + z−13

)
(4.32)

with

s∗2
(
Dr, z

−
13

)
=

(
s∗2(Dr, z

−
13)

−, s2(Dr)+
)
.

Therefore, we now find the recursive structure

ζr(· ;Dr) → ζr

(· ;∆∗∗
2 (Dr)

) → ζr

(· ;∆∗∗
3 (Dr)

) →
· · · → ζr

(· ;∆∗∗
r (Dr)

) → ζr

(· ;∆∗
r(Dr)

) → ζr

(· ;∆∗
r−1(Dr)

) →
· · · → ζr

(· ;∆∗
3(Dr)

) → ζr−1

(· ;∆∗(Dr)
)
. (4.33)

Summarizingly, we obtain

Theorem 4.3. In the Cr and Dr cases, there are recursive structures (4.22)
and (4.33), which can be expressed as Mellin-Barnes integrals. These further give
recursive relations

ζr(· ;Cr) → ζr−1(· ;Cr−1) → · · · → ζ2(· ;C2) → ζ (4.34)

and
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ζr(· ;Dr) → ζr−1(· ;Dr−1) → · · · → ζ2(· ;D2). (4.35)

Remark 4.4. The situation described in Remarks 3.2 and 4.1 also holds in
the Cr case. On the other hand, it is to be noted that in the Dr case, the principle
of type (ii) is no longer valid at the step e1 + er → e1 − er. In fact, (4.29) shows
that the sum (m1 + · · · + mr−2) + mr, corresponding to e1 + er, is divided into
m1 + · · ·+ mr−2 and mr, and m1 + · · ·+ mr−2 corresponds not to e1 − er but to
e1 − er−1.

5. Recursive structures and Dynkin diagrams.

Theorems 3.1, 4.2 and 4.3, proved in the previous sections, give certain recur-
sive structures among our zeta-functions (1.6). In this section we discuss that we
can find many other recursive relations among those zeta-functions.

In order to describe the situation, it is better to introduce here the viewpoint
of Dynkin diagrams. Let Γ(Xr) be the Dynkin diagram of the root system of type
Xr. Theorems 3.1, 4.2 and 4.3 give the recursive relations of the form

ζr(· ;Xr) → ζr−1(· ;Xr−1) (5.1)

for X = A,B, C and D, by separating m1 which corresponds to the coroot α∨1 . In
terms of Dynkin diagrams, this is the procedure of cutting off the leftmost edge,
that is the edge joining the vertices corresponding to α∨1 and α∨2 , of Γ(Xr) (see
Fig. 1).

(Ar)
α1c α2c c ¤£¡¢¤£¡¢ c c c αrc

(Br, Cr) c c c ¤£¡¢¤£¡¢ c c c c

(Dr) c c c ¤£¡¢¤£¡¢ c c c c
c

Figure 1.

However it is also possible to cut off the rightmost edge(s) of Γ(Xr). This can
be realized by separating mr corresponding to the coroot α∨r . In the case when
Xr = Br, the coroots involving α∨r are 2ei (1 ≤ i ≤ r) and ei + ej (1 ≤ i < j ≤ r).
For each i (1 ≤ i ≤ r − 1), we can construct the Mellin-Barnes recursive relation
by following

2ei > ei + ei+1 > ei + ei+2 > · · · > ei + er > ei − er, (5.2)
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similarly to the argument in the previous sections. The consequence is that we
have a multiple integral expression of ζr(s;Br) involving ζr−1(· ;Ar−1) and ζ.
That is, we find the recursive relation

ζr(· ;Br) → ζr−1(· ;Ar−1). (5.3)

Similarly, we can obtain the relation

ζr(· ;Cr) → ζr−1(· ;Ar−1), (5.4)

by using

ei + ei+1 > ei + ei+2 > · · · > ei + er > ei > ei − er, (5.5)

and

ζr(· ;Dr) → ζr−1(· ;Ar−1), (5.6)

by using

ei + ei+1 > ei + ei+2 > · · · > ei + er > ei − er−1 (5.7)

(see Fig. 2).

(Br, Cr) c c c ¤£¡¢¤£¡¢ c c c c

(Dr) c c c ¤£¡¢¤£¡¢ c c c c
c

Figure 2.

In the cases of Br and Cr, we can also cut off only one of the doubled rightmost
edges of the diagram, which gives the relation

ζr(· ;Br) → ζr(· ;Ar), ζr(· ;Cr) → ζr(· ;Ar). (5.8)

Consider the Br case. The sum mi + · · ·+mr, corresponding to the coroot ei +er,
exists as one of the factors of ζ(s;Ar). Hence the final step of (5.2) is not necessary
this time, and we obtain the first relation of (5.8) by following

2ei > ei + ei+1 > ei + ei+2 > · · · > ei + er. (5.9)
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Similarly, by following

ei + ei+1 > ei + ei+2 > · · · > ei + er > ei, (5.10)

which is (5.5) without the last step, we can obtain the second relation of (5.8) (see
Fig. 3).

(Br, Cr) c c c ¤£¡¢¤£¡¢ c c c c
Figure 3.

In general, we can cut off any edge of the diagram and reduce a zeta-function
for a root system to that for another root system. To state our assertion, we recall
the definition concerning root systems and construct embeddings in a non-standard
sense (that is, embeddings which do not preserve the inner products).

Let ∆ be a reduced root system which may not be irreducible, Γ its Dynkin
diagram and Ψ = {α1, . . . , αr} its fundamental system. (The j-th vertex from the
left on Γ corresponds to αj .) By Q∨ we denote the coroot lattice generated by
Ψ∨. Let Γ′ be a Dynkin diagram obtained by cutting off some edges from Γ. Let
∆′, Ψ′ = {α′1, . . . , α′n} and (Q′)∨ be the corresponding root system, fundamental
system and coroot lattice, respectively. Then we see that the map f : (Ψ′)∨ → Ψ∨

defined by f : (α′j)
∨ 7→ α∨j is Z-linearly extended to an isomorphism f : (Q′)∨ →

Q∨ as Z-modules.
For β∨ =

∑
j cjα

∨
j ∈ Q∨, we denote its height by

ht β∨ =
∑

j

cj . (5.11)

Lemma 5.1. f((∆′)∨+) ⊂ ∆∨
+.

Proof. We show the statement by induction on their heights. We denote
by β∨ ∈ Q∨ the image f((β′)∨) of (β′)∨ ∈ (∆′)∨. We first note that 〈α′i, (α′j)∨〉 ≥
〈αi, α

∨
j 〉 because the value of 〈αi, α

∨
j 〉 is only 0,−1,−2 or −3 for i 6= j and cutting

off some edges of the diagram only produces the effect of increasing the value.
Hence in general, we have

〈
α′i, (β

′)∨
〉 ≥ 〈αi, β

∨〉 (5.12)

for (β′)∨ ∈ (∆′)∨+.
Because (β′)∨ ∈ (∆′)∨+ with ht (β′)∨ = 1 implies (β′)∨ = (α′i)

∨ ∈ (Ψ′)∨, for
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some i, it follows that β∨ = α∨i ∈ Ψ∨ by definition.
Let m ≥ 1, and assume β∨ ∈ ∆∨

+ for (β′)∨ ∈ (∆′)∨+ with ht (β′)∨ ≤ m.
Let (β′)∨ =

∑
j c′j(α

′
j)
∨ ∈ (∆′)∨+ with ht (β′)∨ = m + 1. It is known that there

exists a decomposition (β′)∨ = (α′)∨ + (α′i)
∨ with (α′)∨ ∈ (∆′)∨+, ht (α′)∨ = m

and (α′i)
∨ ∈ (Ψ′)∨ (see, e.g., Lemma A in Section 10.2 of [6] or Proposition A in

Section 2.11 of [19]).
If 〈α′i, (α′)∨〉 < 0, then 〈αi, α

∨〉 < 0 by (5.12). By the assumption of induction
we have α∨ ∈ ∆∨

+ and the simple reflection

ri(α∨) = α∨ − 〈αi, α
∨〉α∨i

is also ∈ ∆∨
+. Hence β∨ = α∨ + α∨i ∈ ∆∨

+ since all the roots in the α∨i -string
through α∨ belong to ∆∨.

If 〈α′i, (α′)∨〉 ≥ 0, we consider (γ′)∨ = r′i((β
′)∨), where r′i is the simple reflec-

tion with respect to α′i. Then (γ′)∨ ∈ ∆∨ because (β′)∨ ∈ ∆∨. We see that

(γ′)∨ = r′i
(
(α′)∨ + (α′i)

∨)
= (α′)∨ − (〈α′i, (α′)∨〉+ 1

)
(α′i)

∨

which implies that ht (γ′)∨ ≤ m − 1. Moreover we see that (γ′)∨ ∈ ∆∨
+; in fact,

since ht (β′)∨ = m+1 ≥ 2, there exists a j 6= i for which c′j is positive, and so the
coefficient of (α′j)

∨ in (γ′)∨ is also positive, which implies (γ′)∨ ∈ (∆′)∨+. Hence
by the assumption of induction we have α∨ ∈ ∆∨

+, γ∨ ∈ ∆∨
+ and

ri(γ∨) = α∨ +
(〈α′i, (α′)∨〉 − 〈αi, α

∨〉+ 1
)
α∨i ∈ ∆∨

+.

Hence β∨ = α∨ + α∨i ∈ ∆∨
+. ¤

Theorem 5.2. Let ∆,∆′ be reduced root systems and Γ,Γ′ be their Dynkin
diagrams. Then there exists an isomorphism f : (Q′)∨ → Q∨ such that f((∆′)∨+) ⊂
∆∨

+ and f : (α′j)
∨ 7→ α∨j if and only if Γ′ is obtained from Γ by cutting off some

edges.

Proof. By Lemma 5.1, we have only to show 〈α′i, (α′j)∨〉 ≥ 〈αi, α
∨
j 〉 if

such f exists. Because 〈α′i, (α′j)∨〉 = 〈αi, α
∨
j 〉 = 2 if i = j, we assume i 6= j.

Since (∆′)∨+ 3 r′i(α
′
j)
∨ = (α′j)

∨ − 〈α′i, (α′j)∨〉(α′i)∨, we have ∆∨
+ 3 f(r′i(α

′
j)
∨) =

α∨j − 〈α′i, (α′j)∨〉α∨i .
On the other hand, we have ∆∨ 3 riα

∨
j = α∨j − 〈αi, α

∨
j 〉α∨i . Since the length

of the α∨i -string through α∨j is 〈αi, α
∨
j 〉, it follows that the string consists of {α∨j +

hα∨i | 0 ≤ h ≤ −〈αi, α
∨
j 〉}. Therefore we have 0 ≥ 〈α′i, (α′j)∨〉 ≥ 〈αi, α

∨
j 〉. ¤
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Since f is injective, we identify (∆′)∨+ and its image by f , and denote the
image by the same symbol (∆′)∨+.

Let (∆∗)∨ = ∆∨
+ \ (∆′)∨+ and k = |∆∗|. We fix an order

(∆∗)∨ =
{
β∨1 , β∨2 , . . . , β∨k

}
(5.13)

by their heights

ht β∨1 ≤ ht β∨2 ≤ · · · ≤ ht β∨k . (5.14)

For 0 ≤ j ≤ k, define

(
∆∗

j

)∨ = (∆′)∨+ ∪
{
β∨1 , . . . , β∨j

}
(5.15)

so that

(∆′)∨+ =
(
∆∗

0

)∨ ⊂ (
∆∗

1

)∨ ⊂ · · · ⊂ (
∆∗

k−1

)∨ ⊂ (
∆∗

k

)∨ = ∆∨
+. (5.16)

Then for 1 ≤ j ≤ k we have a decomposition β∨j = α∨l + γ∨ with some α∨l ∈ Ψ∨

and γ∨ ∈ (∆∗
j−1)

∨ since the order is determined by their heights. Then, again by
the Mellin-Barnes argument, we have

ζr

(
s;∆∗

j

)
=

∑

λ

∏

α∨∈(∆∗j )∨
〈α∨, λ〉−sα

=
∑

λ

( ∏

α∨∈(∆∗j−1)
∨
〈α∨, λ〉−sα

)〈
α∨l + γ∨, λ

〉−sβj

=
∑

λ

∏

α∨∈(∆∗j−1)
∨\{α∨l ,γ∨}

〈α∨, λ〉−sα

× 1
2π
√−1

∫

(c)

Γ(sβj
+ z)Γ(−z)

Γ(sβj )
〈α∨l , λ〉−sαl

+z〈γ∨, λ〉−sβj
−sγ−zdz,

(5.17)

where ∆∗
j is the set of positive roots corresponding to (∆∗

j )
∨. This implies the

following theorem.
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Theorem 5.3. We have

ζr(s;∆∗
j ) =

1
2π
√−1

∫

(c)

Γ(sβj
+ z)Γ(−z)

Γ(sβj )

× ζr

(
. . . , sαl

− z, . . . , sβj + sγ + z, . . . ;∆∗
j−1

)
dz, (5.18)

and, repeating this procedure k times, we obtain the recursive relation

ζr(· ;∆+) → ζr(· ;∆′
+). (5.19)

This general result includes all examples discussed above. Let Γ = Γ(Xr),
X = A,B, C or D. When X = B or C and Γ′ is obtained by removing only one of
the doubled rightmost edges of Γ, then Γ′ is irreducible. These cases are described
as (5.8).

Except for those cases, any Γ′ which is obtained by cutting off edge(s) of Γ is
not irreducible, hence the corresponding zeta-function ζr(· ;∆′

+) is the product of
two (or more) zeta-functions.

If we cut off the leftmost edge, then ζr(· ;∆′
+) is the product of ζr−1(· ;Xr−1)

and the Riemann zeta-function. These cases are discussed in detail in Sections 3
and 4. The cases of cutting off the rightmost edge(s) are presented as (5.3), (5.4)
and (5.6).

More generally, we can cut off the edge which joins two vertices corresponding
to α∨`−1 and α∨` (2 ≤ ` ≤ r for X = A, 2 ≤ ` ≤ r − 1 for X = B or C, and
2 ≤ ` ≤ r − 2 for X = D). Then (5.18) implies that ζr(· ;Xr) can be written as a
multiple integral involving ζ`−1(· ;A`−1) and ζr−`+1(· ;Xr−`+1) (see Fig. 4).

(Ar) c ¤£¡¢¤£¡¢ c α`−1c αc̀ c ¤£¡¢¤£¡¢ c c

(Br, Cr) c ¤£¡¢¤£¡¢ c c c c ¤£¡¢¤£¡¢ c c

(Dr) c ¤£¡¢¤£¡¢ c c c c ¤£¡¢¤£¡¢ c c
c

Figure 4.

We can summarize the above argument as follows.

Theorem 5.4. By cutting off any edge of a Dynkin diagram, we find that
the zeta-function of the corresponding root system can be written as a (multiple)
integral, whose integrand includes zeta-functions of each connected components of
the resulting Dynkin diagram.
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The following diagrams show the hierarchy of Lie algebras whose zeta-
functions are connected with each other by Mellin-Barnes recursive formulas as
above. The number attached to each algebra is the number of positive roots, that
is, the number of variables of the associated zeta-function. The number written
in the middle of each arrow is the number of iteration of integrals. The horizontal
arrow implies that, in the corresponding process, the Dynkin diagram is not di-
vided into two separate parts. Note that the following diagrams include the cases
of exceptional Lie algebras.

Br
r2

r(r−1)/2 //

(`−1)(4r−3`+2)/2

²²

Ar
r(r+1)/2

(`−1)(r−`+1)

²²

Cr
r2

r(r−1)/2oo

(`−1)(4r−3`+2)/2

²²
A`−1

`(`−1)/2

⊕ Br−`+1
(r−`+1)2

A`−1
`(`−1)/2

⊕ Ar−`+1
(r−`+2)(r−`+1)/2

A`−1
`(`−1)/2

⊕ Cr−`+1
(r−`+1)2

Dr
r(r−1)

(r+1)(r−2)/2

²²
(`−1)(4r−3`)/2

PPPPPPP

((PPPP

Ar−1
r(r−1)/2

⊕A1
1

A`−1
`(`−1)/2

⊕ Dr−`+1
(r−`+1)(r−`)

E8
120

91
jjjjjjjjjjjj

ttjjjjjjjjj 77
uuu

uuu

zzuuu
u

96
©©

©©
©©

©©
©

¤¤©©
©©

©©
©©

© 100

²²

94
66

66
66

66
6

¾¾6
66

66
66

66

81
III

III

$$III
I 56

TTTTTTTTTTTT

**TTTTTTTTT

A7
28
⊕A1

1
D7
42
⊕A1

1
E6
36
⊕A2

3
E7
63
⊕A1

1

A2
3
⊕A6

21
A4
10
⊕A4

10
D5
20
⊕A3

6

E7
63

41
jjjjjjjjjjjj

ttjjjjjjjjj 32
uuu

uuu

zzuuu
u

45
©©

©©
©©

©©
©

¤¤©©
©©

©©
©©

© 47

²²

40
66

66
66

66
6

¾¾6
66

66
66

66

26
III

III

$$III
I

A6
21
⊕A1

1
D6
30
⊕A1

1
E6
36
⊕A1

1

A2
3
⊕A5

15
A4
10
⊕A3

6
D5
20
⊕A2

3
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E6
36

20
uuu

uuu

zzuuu
u 15

²²
23

III
III

$$III
I

A5
15
⊕A1

1
D5
20
⊕A1

1
A2
3
⊕A4

10

F4
24

14 //

14

²²
14

III
III

$$III
I

A4
10

B3
9
⊕A1

1
C3
9
⊕A1

1

G2
6

2 // C2
4

6. The analytic continuation and the location of singularities.

The definition (1.6) of multi-variable Witten zeta-functions, or more generally,
the definition (3.1) of zeta-functions of root sets, shows that the denominators of
these zeta-functions are finite products of linear forms of m1, . . . , mr. Therefore,
applying Theorem 3 of [15], we immediately obtain the following

Theorem 6.1. The zeta-function ζr(s;∆∗) of any root set ∆∗ (defined at
the beginning of Section 3) can be continued meromorphically to the whole space
Cn∗ .

This type of result is actually a special case of Essouabri’s more general result
[3], [4], which was published earlier than [15]. However, the proof of Theorem 3
of [15] gives a method of obtaining more analytic information on ζr(s;∆∗). For
example, in [17], we express ζ3(s;A3) as a double integral involving ζ2(s;A2), and
analyzing the process of integration carefully, we deduce the information on the
location of singularities of ζ3(s;A3) from that of ζ2(s;A2). Note that in [17], on
the line next to (4.12), z5 = 0, 1, . . . , N is to be read as z5 = −s5 − l (0 ≤ l ≤ N).

The same analysis is possible for any zeta-functions of Lie algebras (or, more
generally, of root sets), by going upstream the arrows in the diagrams at the end
of the preceding section. This is one of the motivations of the study of recur-
sive structures (Sections 3 to 5), though the actual procedure will become very
complicated when the number of iteration of integrals becomes large.

In this section, we prove some information on the location of singularities
of zeta-functions of C2, B3 and C3 by this method. This is because these three
zeta-functions play the leading part in the subsequent paper [9]. The argument is
similar to that for A3 developed in [17], so some details will be omitted.

First consider the zeta-function of C2, which is (2.17). Here we change the
notation of variables to write
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ζ2(s1, s2, s3, s4;C2) =
∞∑

m=1

∞∑
n=1

m−s1n−s2(m + n)−s3(m + 2n)−s4 . (6.1)

Note that this can be obtained by an arrangement of (2.11). In fact, in [15], [21],
[7], the series (6.1) is called the zeta-function of so(5), that is, of B2.

At first we assume <sj > 1 (1 ≤ j ≤ 4). Then we have

ζ2(s1, s2, s3, s4;C2)

=
1

2π
√−1

∫

(c)

Γ(s4 + z)Γ(−z)
Γ(s4)

ζMT,2(s1, s2 − z, s3 + s4 + z)dz, (6.2)

where −<s4 < c < 0 ((4.4) of [15]). Let L be a large positive integer, and put

Φ(s1, s2, s3, s4) = (s1 + s2 + s3 + s4 − 2)
L∏

`=0

(s2 + s3 + s4 − 1 + `).

Then

ζ2(s1, s2, s3, s4;C2) = Φ(s1, s2, s3, s4)−1I, (6.3)

where

I =
1

2π
√−1

∫

(c)

Γ(s4 + z)Γ(−z)
Γ(s4)

× ζMT,2(s1, s2 − z, s3 + s4 + z)Φ(s1, s2, s3, s4)dz. (6.4)

We shift the path of integration to <z = M−ε, where M is a large positive integer
and ε is a small positive number. Counting the residues at z = m (0 ≤ m ≤ M−1),
we obtain

ζ2(s1, s2, s3, s4;C2)

=
M−1∑
m=0

(−s4

m

)
ζMT,2(s1, s2 −m, s3 + s4 + m) + Φ(s1, s2, s3, s4)−1I ′, (6.5)

where I ′ is defined by replacing (c) in the definition of I by (M − ε).
The singularities of ζMT,2 have already been determined in Theorem 1 of [12];

the singularities of ζMT,2(s1, s2 − z, s3 + s4 + z) are
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s1 + s3 + s4 + z = 1− k (k ∈ N0),

s2 + s3 + s4 = 1− k (k ∈ N0),

s1 + s2 + s3 + s4 = 2,

(6.6)

and all of those are true singularities. Hence the integral I ′ is holomorphic in the
region DM,L, which is a subset of C4 defined by the conditions <s4 > −M + ε,
<(s1 + s3 + s4) > 1 − M + ε, and <(s2 + s3 + s4) > −L. Therefore (6.5) gives
the meromorphic continuation of ζ2(s1, s2, s3, s4;C2) to DM,L, and candidates of
singularities in this region are

s1 + s3 + s4 = 1− ` (` ∈ N0), (6.7)

s2 + s3 + s4 = 1− ` (` ∈ N0), (6.8)

and

s1 + s2 + s3 + s4 = 2. (6.9)

Note that, since DM,L tends to the whole space C4 when M and L tend to infinity,
the above argument gives the meromorphic continuation of ζ2(s1, s2, s3, s4;C2) to
C4.

Now we prove the following.

Theorem 6.2. The list of singularities of ζ2(s1, s2, s3, s4;C2) is given by
(6.7), (6.8) and (6.9).

To complete the proof of this theorem, we have only to check that the candi-
dates (6.7), (6.8) and (6.9) are indeed singularities.

Consider the case (6.7). Since I ′ is holomorphic in DM,L, the singularity (6.7)
is coming only from the sum part on the right-hand side of (6.5). For each m

satisfying 0 ≤ m ≤ `, the singularity of ζMT,2(s1, s2 − m, s3 + s4 + m) of the
form s1 + (s3 + s4 + m) = 1− k with k + m = ` gives the singularity of the form
(6.7). These singularities are not cancelled each other, as can be easily proved by
the “change of variables” technique, originally introduced in Akiyama, Egami and
Tanigawa [1] (see Section 4 of [17]).

Next consider (6.9). We go back to the situation (6.3) with (6.4), which is
valid when (s1, s2, s3, s4) is in the region of absolute convergence D0. Formula
(5.3) of [12] is
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ζMT,2(s1, s2, s3) =
Γ(s2 + s3 − 1)Γ(1− s2)

Γ(s3)
ζ(s1 + s2 + s3 − 1)

+
M−1∑
m=0

(−s3

m

)
ζ(s1 + s3 + m)ζ(s2 −m)

+
1

2π
√−1

∫

(M−ε)

Γ(s3 + z′)Γ(−z′)
Γ(s3)

ζ(s1 + s3 + z′)ζ(s2 − z′)dz′,

(6.10)

where M is a large positive integer satisfying M > <s2 − 1 + ε. Therefore from
(6.4) we have

I =
1

2π
√−1

∫

(c)

Γ(s4 + z)Γ(−z)
Γ(s4)

(
S1 +

M−1∑
m=0

S2(m) + S3

)
Φ(s1, s2, s3, s4)dz,

(6.11)

where

S1 =
Γ(s2 + s3 + s4 − 1)Γ(1− s2 + z)

Γ(s3 + s4 + z)
ζ(s1 + s2 + s3 + s4 − 1),

S2(m) =
(−s3 − s4 − z

m

)
ζ(s1 + s3 + s4 + z + m)ζ(s2 − z −m),

and

S3 =
1

2π
√−1

∫

(M−ε)

Γ(s3 + s4 + z + z′)Γ(−z′)
Γ(s3 + s4 + z)

× ζ(s1 + s3 + s4 + z + z′)ζ(s2 − z − z′)dz′.

Singularity (6.9) is coming from the Φ(s1, s2, s3, s4)−1 factor on the right-hand
side of (6.3). Hence what we have to check is that I (or rather, the analytic
continuation of I) does not vanish identically on the hyperplane

H : s1 + s2 + s3 + s4 = 2.

We first take a point s∗ = (s∗1, s
∗
2, s

∗
3, s

∗
4) on the hyperplane H , and choose a

positive number a such that the point s0 = (s0
1, s

0
2, s

0
3, s

0
4), where s0

j = s∗j + a, is
included in D0. Then (6.11) is valid at s = s0. We continue (6.11) to the point s∗
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with keeping the imaginary part of each variable sj .
Define

In =
1

2π
√−1

∫

(c)

Γ(s4 + z)Γ(−z)
Γ(s4)

SnΦ(s1, s2, s3, s4)dz

for n = 1, 3, and also define I2(m) by replacing Sn in the above by S2(m). Consider
I2(m). The poles of the integrand are z = −s4− `, z = `, z = 1− s1− s3− s4−m,
z = s2 − 1 −m (` ∈ N0). We may choose s∗ for which imaginary parts of these
four types of poles

−=s4, 0, 1−=(s1 + s3 + s4), =s2 − 1 (6.12)

are all different. Then we can deform the path (c) to a new contour C (similarly
to C in Section 3 of [17]) which does not cross the poles when the variables are
moved from s0 to s∗. Hence

I2(m) =
1

2π
√−1

∫

C

Γ(s4 + z)Γ(−z)
Γ(s4)

S2(m)Φ(s1, s2, s3, s4)dz

around s = s∗. Since Φ(s1, s2, s3, s4) = 0 on H , I2(m) vanishes identically around
s∗. Similarly we can show that I3 vanishes identically around s∗.

On the other hand,

I1 =
Γ(s2 + s3 + s4 − 1)

Γ(s4)
ζ(s1 + s2 + s3 + s4 − 1)Φ(s1, s2, s3, s4)J, (6.13)

where

J =
1

2π
√−1

∫

(c)

Γ(s4 + z)Γ(−z)
Γ(1− s2 + z)
Γ(s3 + s4 + z)

dz.

We have assumed that (s0
1, s

0
2, s

0
3, s

0
4) ∈ D0, but J is independent of s1, hence (6.13)

is valid in a wider region D1 which has no restriction on the value of <s1. Now
choose s∗∗2 = 2c + 1 and s∗∗3 = 0. If <s∗∗4 is sufficiently large and s∗∗1 is such that
s∗∗1 + 2c + 1 + s∗∗4 = 2, then

s∗∗ =
(
s∗∗1 , 2c + 1, 0, s∗∗4

) ∈ D1 ∩H ,

and at this point we have
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J =
1

2π
√−1

∫

(c)

Γ(−z)Γ(1− s∗∗2 + z)dz

=
1
2π

∫ ∞

−∞
|Γ(−c + it)|2dt > 0.

The point s∗∗ itself does not satisfy the condition that (6.12) are all different. But
from the above inequality we can find a point s∗ ∈ D1 ∩H near s∗∗, where J > 0
and (6.12) are all different. Then around s∗, we find that I1 does not vanish while
I2(m) ≡ I3 ≡ 0.

This implies that I does not vanish identically on H , hence (6.9) is really
singular.

The argument for (6.8) is almost the same as in the case of (6.9), so we omit
it. The proof of Theorem 6.2 is complete. ¤

Next we consider the singularities of zeta-functions of B3 and C3. In the
diagrams at the end of Section 5, we find two ways of arriving at B3 (or C3), that
is, from A3, or from A1⊕B2. Here we choose the way from A3, because the number
of iteration of integrals is smaller, and also, this way is along the horizontal arrow
(see Remark 6.4 below).

The zeta-function of B3 = so(7) is given as (2.12) explicitly, but here we
change the notation of variables as follows:

ζ3(s1, s2, s3, s4, s5, s6, s7, s8, s9;B3)

=
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

m−s1
1 m−s2

2 m−s3
3 (m1 + m2)−s4(m2 + m3)−s5

× (2m2 + m3)−s6(m1 + m2 + m3)−s7(m1 + 2m2 + m3)−s8

× (2m1 + 2m2 + m3)−s9 . (6.14)

Similarly, we write

ζ3(s1, s2, s3, s4, s5, s6, s7, s8, s9;C3)

=
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

m−s1
1 m−s2

2 m−s3
3 (m1 + m2)−s4(m2 + m3)−s5

× (m2 + 2m3)−s6(m1 + m2 + m3)−s7(m1 + m2 + 2m3)−s8

× (m1 + 2m2 + 2m3)−s9 . (6.15)
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As for B3, we follow the way indicated by (5.9), that is,

2e1 > e1 + e2 > e1 + e3 and 2e2 > e2 + e3.

Let ∆′ = ∆+(B3) \ {ε1}, and ∆′′ = ∆′ \ {ε1 + ε2}. Then the zeta-function of B3

(resp. ∆′, ∆′′) is expressed as an integral involving the zeta-function of ∆′ (resp.
∆′′, A3) in the integrand. Theorem 5.3 with ∆∗

j = ∆′′ and ∆∗
j−1 = A3 shows that

ζ3(s1, s2, s3, s4, s5, s6, s7;∆′′)

=
1

2π
√−1

∫

(c)

Γ(s6 + z)Γ(−z)
Γ(s6)

ζ3(s1, s2 − z, s3, s4, s5 + s6 + z, s7;A3)dz.

(6.16)

The singularities of the zeta-function of A3 have been completely determined
in [17], which implies that the singularities of the zeta-function ζ3(s1, s2 −
z, s3, s4, s5 + s6 + z, s7;A3) in the integrand on the right-hand side of (6.16) are
on

s1 + s4 + s7 = 1− `, (6.17)

s2 + s4 + s5 + s6 + s7 = 1− `, (6.18)

s3 + (s5 + s6 + z) + s7 = 1− `, (6.19)

s1 + s2 + s4 + s5 + s6 + s7 = 2− `, (6.20)

s1 + s3 + s4 + (s5 + s6 + z) + s7 = 2− `, (6.21)

s2 + s3 + s4 + s5 + s6 + s7 = 2− `, (6.22)

s1 + s2 + s3 + s4 + s5 + s6 + s7 = 3, (6.23)

where ` ∈ N0. Hence the poles of the integrand with respect to z are (6.19),
(6.21), and z = −s6−m and z = m (m ∈ N0), both of which are coming from the
gamma-factors. When we shift the path of integration to <z = M − ε, the only
relevant poles are z = m (0 ≤ m ≤ M − 1), and we have
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ζ3(s1, s2, s3, s4, s5, s6, s7;∆′′)

=
M−1∑
m=0

(−s6

m

)
ζ3(s1, s2 −m, s3, s4, s5 + s6 + m, s7;A3)

+
1

2π
√−1

∫

(M−ε)

Γ(s6 + z)Γ(−z)
Γ(s6)

× ζ3(s1, s2 − z, s3, s4, s5 + s6 + z, s7;A3)dz. (6.24)

The singularities of the sum part on the right-hand side of (6.24) is the same as
(6.17)–(6.23), only with replacing z in (6.19) and (6.21) by m. Therefore the list
of possible singularities of ζ3(s1, s2, s3, s4, s5, s6, s7;∆′′) is (6.17), (6.18), (6.20),
(6.22), (6.23) and

s3 + s5 + s6 + s7 = 1− `, (6.25)

s1 + s3 + s4 + s5 + s6 + s7 = 2− `, (6.26)

where ` ∈ N0.
Similarly, we can express the zeta-function of ∆′ as in integral involving

ζ3(· ;∆′′). Shifting the path to the right, and using the above data on the sin-
gularities of ζ3(· ;∆′′), we obtain the following list of possible singularities of
ζ3(s1, s2, s3, s4, s5, s6, s7, s8;∆′):





s1 + s4 + s7 + s8 = 1− `,

s3 + s5 + s6 + s7 + s8 = 1− `,

s2 + s4 + s5 + s6 + s7 + s8 = 1− `,

s1 + s2 + s4 + s5 + s6 + s7 + s8 = 2− `,

s1 + s3 + s4 + s5 + s6 + s7 + s8 = 2− `,

s2 + s3 + s4 + s5 + s6 + s7 + s8 = 2− `,

s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 = 3.

(6.27)

Finally, applying the same argument to the integral expression of ζ(· ;B3),
we obtain the B3 part of the following theorem.

Theorem 6.3. The possible singularities of zeta-functions of B3, and also of
C3, are located only on the subsets of C9 defined by one of the following equations:
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s1 + s4 + s7 + s8 + s9 = 1− `,

s3 + s5 + s6 + s7 + s8 + s9 = 1− `,

s2 + s4 + s5 + s6 + s7 + s8 + s9 = 1− `,

s1 + s2 + s4 + s5 + s6 + s7 + s8 + s9 = 2− `,

s1 + s3 + s4 + s5 + s6 + s7 + s8 + s9 = 2− `,

s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 = 2− `,

s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 = 3,

(6.28)

where ` ∈ N0.

The case of C3 can be proved similarly, by following (5.10) instead of (5.9).
It is plausible that all of the possible singularities listed above are true sin-

gularities, and probably it can be proved by the method described in Section 4 of
[17]. However such a study would require further pages, so this time we will not
discuss it.

Remark 6.4. In the proof of Theorem 6.3 for B3, we have shifted the path
of integration to the right three times, and at each time the only relevant poles
are z = m (m ∈ N0) coming from the factor Γ(−z). This is because the arrow
between A3 and B3 in the diagram in Section 5 is horizontal, that is, the Mellin-
Barnes integral expression includes only one zeta factor in the integrand. When
the arrow is not horizontal, this situation is no longer valid, and then the shift
to the right is, in general, not sufficient for the continuation. A more delicate
deformation of the path (such as those given in [15] and Section 3 of [17]) is
necessary, and hence, the discussion of finding the possible singularities will become
more complicated.
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pp. 497–512.

http://dx.doi.org/10.1215/S0012-7094-03-11822-0
http://dx.doi.org/10.3792/pjaa.84.57
http://dx.doi.org/10.1016/S0022-314X(03)00041-6
http://dx.doi.org/10.1112/jlms/s1-33.3.368
http://dx.doi.org/10.2307/2372034
http://dx.doi.org/10.1007/s00013-003-4809-7
http://dx.doi.org/10.1007/BF02100009


394 Y. Komori, K. Matsumoto and H. Tsumura

Yasushi Komori

Graduate School of Mathematics

Nagoya University

Chikusa-ku

Nagoya 464-8602, Japan

E-mail: komori@math.nagoya-u.ac.jp

Current Address (From April 2010):

Department of Mathematics

Rikkyo University

Nishi-Ikebukuro, Toshima-ku

Tokyo 171-8501, Japan

E-mail: komori@rikkyo.ac.jp

Kohji Matsumoto

Graduate School of Mathematics

Nagoya University

Chikusa-ku

Nagoya 464-8602, Japan

E-mail: kohjimat@math.nagoya-u.ac.jp

Hirofumi Tsumura

Department of Mathematics and Information Sciences

Tokyo Metropolitan University

1-1, Minami-Ohsawa, Hachioji

Tokyo 192-0397, Japan

E-mail: tsumura@tmu.ac.jp


