ON THE MEAN SQUARE OF THE PRODUCT OF ((s) AND A
DIRICHLET POLYNOMIAL

KOHJI MATSUMOTO

1. INTRODUCTION AND STATEMENT OF RESULTS

Let s = o + it be a complex variable, ((s) the Riemann zeta-function, and

A(s)= > a(m)m™®

m<M

be a Dirichlet polynomial, where M > 1 and a(m)’s are complex coefficients
satisfying

a(m) = O(m?) (1.1)

for any € > 0. (In what follows, € is always a small positive number, not neces-
sarily the same at each occurrence.) The mean value

(T, A) = / C(+in AL +it)2de (T = 2)

has been studied by several mathematicians. Iwaniec [4] obtained an upper bound
of I(T, A), and then, Balasubramanian, Conrey and Heath-Brown [1] established
the asymptotic formula

(k, 0)>T

ZZ h e <g2’ﬂ—k€+2 1>T+E(TA)

k<M (<M (1.2)

under the assumption log M < logT (the symbol f < g means f = O(g)),
where (k, () is the greatest common divisor of k and ¢, [k,¢] = kl/(k,{) is the
least common multiple of k and ¢, a(f) is the complex conjugate of a(f), v is
Euler’s constant, and F(T, A) is the error term satisfying

E(T,A) < M*T* +T(logT)?  (for logM < logT) (1.3)

for any B > 0, where the implied constant depends on B and €. They also gave

several sharper estimates of E(T, A) under further assumptions, and mentioned

an application to the distribution of zeros of ((s). Their condition log M < log T

for (1.3) is actually not necessary (see the remark at the end of this section).
Motohashi [8] stated a different type of estimate, that is

E(T, A) <« M*311/3+¢ (1.4)
1
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with a brief sketch of the proof. His proof, different from that of [1], is a variant
of Atkinson’s method. Actually his argument is valid only for the integral from
—T to T, hence his claim should be understood as

E(T,A) < M*3TY3%  (for M < TY?(log T)~%/%), (1.5)
where E(T, A) is defined by

2/ L i) A(L +it)2dt
7 k,0)2T -
=) Z ( <0g<27ﬂ)€£ +27—1>T+E(T,A). (1.6)
k<M (<M

The left-hand side of (1.6) coincides with I(T, A) if a(m)’s are real, but it is
not true in general. Note that the condition M < T'/?(logT)~%/* is necessary,
though Motohashi did not state it, because in the proof he used a parameter
G which satisfies G < T(logT)™!, and at the last stage of the proof he chose
G = M3TY3,

The aim of the present paper is to develop another approach to this problem.

Let Ay be a sufficiently large positive number, L = Ay(logT)"?, and p, p be
non-negative numbers satisfying p < 1, 4+ p > 0. We assume
T
L<M'TP < —. 1.7
<< (1.7
We shall prove
Theorem 1. For any M > 1 and T > 2 satisfying (1.7), we have
E(T, A) < M?~H2TVY2=p/2e o ppupote, (1.8)

In particular, replacing € on the right-hand side of (1.8) by /2, and taking
=0, p=1-—¢, we obtain

Corollary 1. For any M > 1 and T > 2, we have
E(T,A) < M?T® + T2, (1.9)

This gives a slight improvement of the estimate (1.3) of Balasubramanian,
Conrey and Heath-Brown [1]. On the other hand, if M < T'?(logT)~*/%, we
can choose u = 4/3, p = 1/3 to obtain the following corollary, which recovers
Motohashi’s claim.

Corollary 2. Under the condition M < TV/?(log T)~%/%, we have
BE(T,A) < M*Y311/3%, (1.10)



MEAN SQUARE OF THE PRODUCT OF ((s) AND A DIRICHLET POLYNOMIAL 3

Our proof of the above thoerem is an analogue of the argument developed
in Katsurada and Matsumoto [5]. Therefore it is also a variant of Atkinson’s
method, and can be regarded as a generalization of the argument described in
Section 2.7 of Ivié¢ [3]. By the same method we can treat the case 1/2 < o < 1.
In this case, the integral

T
(T, A) :/ IC(o + it)A(o + it)[2dt
0
satisfies the asymptotic formula of the form

- ¥ 3 e

k<M ¢<M

i Z Z k: 4)2 20( 7T)201<(22__22;)T220

k<M (<M

+ E,(T, A), (1.11)

where E,(T, A) is the error term. We can estimate this term as follows:

Theorem 2. If p < (40 — 1)L, then for any M > 1 and T > 2 satisfying (1.7),
we have

E, (T A) < M2*(1*P)’luf(o,p)Tf(o,pHe + MHTPtE (1.12)
for1/2 < o <1, where f(o,p) = p(3 — 20) +

l\DI»—A

Remark 1. The assumption p < (40 — 1)~! implies f (o, p) > 0.

The estimates corresponding to Corollaries 1 and 2 can be stated as
E (T, A) < M?T¢ 4 T"/to-1=¢ (1.13)
(under the choice p =0, p=1/(40 — 1) — ¢) and

EU(T, A) < Ny8o/(+da) 1/ (1+40)+e (for M < T1/2L71/271/8g>
(1.14)

(under the choice p = 8¢/(1 +40), p = 1/(1 + 40)) for 1/2 < 0 < 1. The
asymptotic formula (1.11) with the estimate (1.14) is clearly a generalization of
Theorem 1 of the author [7].

Remark 2. Here we show that Theorems 1 and 2 are trivial if
M>T" (1.15)
with a sufficiently large positive constant b. In fact, since

C(o+it)Alo +it) < M©7ore(|t| + 1D)I=9B (1/2< 0 < 1),
(1.16)
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we have (T, A) < M™WT*? and I,(T, A) < M* 20+eT72(1=0)/3+1 " In case o =
1/2, by using (3.9) below, we see that the first term on the right-hand side of
(1.2) is O(M*T'log T'). Hence trivially

E(T, A) <K M1+5T4/3 +MET10gT < M1+4/3b+5’

which is clearly superseded by the right-hand side of (1.8) if b is sufficiently large.
Similarly, in case 1/2 < ¢ < 1, since the first and the second terms on the
right-hand side of (1.11) are O(T + M<T?7%7), we have

E,(T, A) < N220+07 1 (2(1-0) /3+1)+e (1.17)

Noting (1—p)~'f(o, p) < 1, we see that (1.17) implies (1.12) for sufficiently large
b.

2. THE WEIGHTED LOCAL INTEGRAL

Now we begin the proof of Theorems 1 and 2. Let A be a parameter satisfying

T
< .
LSA< o (2.1)

Moreover, in view of Remark 2 in Section 1, we may assume
M<T" (2.2)

Let u, v be complex variables, and at first assume Ru > 1, Rv > 1. Consider

I(u,v; A, A) C(u+ iy)C(v — iy) A(u+ iy) A(v — iy)e /2 dy,

A\F (2.3)

where A(s) = Y,,<ps a(m)m™*. Substituting the Dirichlet series expressions, we
have

(u v A A A\/_/ Z,r—u zyzs—v-i-zy Z ]{3 u—1iy

k<M

X Y a(l)0 e W/A)? gy
(<M

a( m-ew S a(0) | nvtive= WA gy
e L ) () e
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The part corresponding to m = n is equal to

5 (o) (S0 v

m=1 \k|lm £m
= Z ( a(k) (Z a(ﬁ)) m~ Y
m=1 \k|lm Lm
= a(k)a(l) mo
k<M (<M m=0(mod [k,£])
a(k)a(?)
—((ut0) =
k<M (<M [, £]F
Hence
I, 0: 5, A) = C(u+v) AR | 1o A, 4) 4 T w B A,
vaarizar K 0] (2.4)
where
1 - o) . . 2
Li(u,v; A A) = ZZ (Z a(k)) (Z a(g)) m U Tt o= (y/A) dy.
Aﬁ m<n k|m fn [m

Using the formula
0 1/2 A2
At — Bt?)dt = (5) il B
/_OO exp(At t%)dt 5 exp | 7 (RB > 0)

(see (A.38) of [2]), and then putting m = km; and n = km; + ny, we have

Li(u,v; A A) = ZZ (Z a(k:)) (Z@) m~n" exp (—iA2 log? (ﬁ))

m<n  \klm tn m

— Y ak) Y f:( > )@) ()~ (ke + )

k<M mi1=1n1=1 Z|(km1+n1

X exp (—iAQ log? <1 + i))

km1

=Y ak)k™ > a(f) i i my“(kmq +nq)”"

k<M <M mi=1ni=1

‘
X exp <—iA2 log? (1 + k:n—l)> ¢t Z exp (2#2’@) , 05)
f=1 2.5

my

because the innermost sum is

:{ 4 it 0|(kmy + ny),

0 otherwise.
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Let
v+ iy — s)

A\/_/ I'(v+1y)

for Rv > Rs > 0. In Section 5.2 of [3], Ivié¢ proved the following properties of
M(s,v; A).

M(s,v; A) e~ WA dy (2.6)

Lemma 1. (i) M(s,v;A) can be continued to the whole space C*, entire in v,
and meromorphic in s. The poles with respect to s are only on s =0,—1,—2,....
(ii) For Rs > 0 and any v, we have

M(s,v;A) = /OOO 21+ 7)Y exp (—iAZ log?(1 + x)) dzx. (2.7)

(i) For any fized ¢ > 0, we have M(s,v;A) < (1 + |s])7¢ as |Ss| — oo,
uniformly for bounded v and bounded Rs.

(iv) If Rv > a > 0 and x > 0, then
1
—/( | M(s,v; A)z™%ds = (1 +x) " exp (—iA2 log?(1 + m)) ,

2mi (2.8)

where the path of integration is the vertical line Rs = a.

From (2.5) and Lemma 1(iv) we have

L(w,vi AV A) = a(k)k™ > a(O) > i exp <2mkﬂzlf> my"

k<M <M F=lmi—1

= ny f 1 ny \7°
2 (& —/ M(s,v: A <—) ds,
X mglexp< i )( my) ot e (s,v;A) p— s

where 1 < a < Rv. Summation and integration can be interchanged because of
absolute convergence, hence

u—v+s I p—1
I3 8, A) = o /@KM k)k—uvt EJ“( )
X i ® (u +v—s, %) ® (s, %) M (s,v; A)ds (2.9)
f=1
for Ru > 1, Rv > «, where
o(s,z) = i exp(2minz)n~° (2.10)
n=1

is the Lerch zeta-function with the real parameter z. If z € Z, then (s, x) = ((s),
while if x ¢ Z, then ¢(s, z) is entire in s. Moreover, if 0 < x < 1, (s, x) satisfies
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the functional equation

1—
o(s,r) = (2m)*'T(1 — s) {e ( L ZL‘) (1 —s,2)
1—
+e(— 48—:6)C(1—3,1—x)}, (2.11)
where ((s,z) = >0°(n + x)~° is the Hurwitz zeta-function (see Chapter 2 of

Laurinc¢ikas and Garunkstis [6]), and e(z) = exp(2miz).

Let § > max{2, a}, and assume R(u+v) < F. We shift the path of integration
on the right-hand side of (2.9) to s = 5. Lemma 1(iii) implies that this shifting
is possible. The function ¢(u+v — s, kf/¢) has a pole at s = u+ v — 1 only when
kf/l € Z. Hence we have

I (u,v; A A) = P(u v; A A)

+ZZ Zﬁfk:ﬁ <u+v—1,i>M(u+“_1v”;A)’
k<M (<M ¢ (2.12)
where
UUAA kkuv+s a—€_1
( 27” /ﬁ) k<M ) Z;J ( )
X Z %) (u +v—s, %) ¥ (37 %) M(s,v; A)ds (2.13)
f=1
and
' [ if Uk f,
§(f1k,0) = { 0 otherwise.

Since M (s, v;A) is entire in v (by Lemma 1(i)), the expression (2.13) is valid
for any u, v satisfying R(u + v) < §+ 1. Hence (2.12) gives the meromorphic
continuation of Iy (u,v; A, A) to the region R(u + v) < [+ 1. Therefore now
we can put u = o +it, v = o — it in (2.12), where 1/2 < 0 < 1, t > 2, and
T <« t < T. Substituting the resulting expression and its complex conjugate
into (2.4), we obtain

I(oc+it,o —it; A, A) o) > Z

k<M (<M ’

+ P (A, A)+P<-A A)

—Z
+ZZ k le (fik, O)p (U—L%)M@a—l,a—it;A)

k<M (<M
k d f :
+Z Z Z (fik,O)p |20 —1,=|M(20 — 1,0 —it; A),
k<M (<M f=1 ¢ (2.14)
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where P,(t; A, A) = P(o +it,0 —it; A, A). Changing the letters k and ¢ in the
last member of the right-hand side, we obtain

I(o +it,o —it; A,A) = P, (t'A A)—i—PU(t;A,A)

+ > Z Stk 0) (2.15)
k<M (<M E
for 1/2 < o < 1, where
kt
H,(t; = 2
oAtk 0) = (20

i E(fi kO (a—l,%)M(Zo—l,a—it;A)
N
Z (f; 0, k)

(20—1,—%) M(20 — 1,0 +it; A). (2.16)

3. THE CASE ON THE CRITICAL LINE

In this section we show an expression, analogous to (2.15), for ¢ = 1/2. Let
o =1+ 6, where § is a small positive number. Then from (2.6), noting I'(28) =
(26)~! — v+ O(d), we can easily see that

M(20 — 1,0 +it; A) = %—B( A) =+ 0(5),

where

Bt A) Lti(t+y))e W dy

57/
((3.6) and (3.7) of [5]). Also,

<i loglk, (] + 7+ 0(5)>

C(QU)[k},f]_Q = 25

[, 4]

020 — 1,2) = ©(0,2) + 26¢'(0, ) + O(5?).
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Hence we have

o \26

E%é¥fkg (04)+ -%ﬁjfzk¢< -
+é£f7k7g{ <07§>—(B( tA)+v)<p<o,§>}

e e (o-1) - mesy e o1}

+(;() .

We note that
[:eg] Z&(f kO ( %) +;£(f;€, k) <o,_£> = 0. (3.2)

In fact, if (k,¢) = d, then we can write k = dk, £ = d\, (k,\) = 1. Then
E(f; k,0) = 1if and only if ¢|kf, that is A|f. Hence, putting f = jA, we have

¢ d j

Z (f:k, 0)p ( >:Z¢<0,a>. (3.3)

= j=1
When s > 1, we have

j _ gl—s
S (s2) = dcls), (3.4)
j=1
because the left-hand side is
= Z (Z exp 27mnj/d)) nt=d Y n
n=1 \j=1 n=0(mod d)

The relation (3.4) is valid, by analytic continuation, at s = 0. Hence from (3.3)
we have

DSk <i>=wmﬁ>5=—ﬂha (3.5)

The value of 21}21 E(f; 0, k)p(0,—f/k) is the same, hence (3.2) follows.
Therefore, letting 6 — 0 in (3.1), we have
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Ho(t;k7£>’0~>1/2+0 = ](_ log[k7£] +7)

P e D {w' (0’ §> (LA (O’ §>}

f=1

eyarenls (0-4) - Bes e (o) o

f=1

Kt
[k,

Differentiating the both sides of (3.4) and putting s = 0, we have
d j 1 1
N (0, 3) = —((0)dlogd +((0)d = Sdlogd — S log(2m)d.  (3.7)
j=1

Using (3.5) and (3.7), we see that the right-hand side of (3.6) is

Kl
[k, 1]

(—log[k, £] + ) + dlogd — log(2m)d + g (B(t,A) + B(—t,A) + 2v)

kl (k, ) 1 1
= 1 2 —B(t,A)+ =B(—t,A) | .
[H]<g ke+7+2(’)+2(’)>
Moreover, using Stirling’s formula we have
1 A
B(t,A) = jzim’ +logt + O (?)
((3.9) of [5]). Hence

Ho<t; ka £>’0—>1/2+0 =

4 (K, 0) A
. <log Sy, + 2y +logt + O (7)>

Welet 0 — 1/2401n (2.15), with using (3.8). The contribution of the error term
on the right-hand side of (3.8) to (2.14) is O(At~1*¢). To prove this estimate, it
suffices to show

(3.8)

P

k<M (<M ’

because M < t¢ in view of (2.2). The left-hand side of (3.9) is

<Y DY (kO TMd< > d DY D (kAT

k<M (<M d<M w<M/dA<M/d

M 15
< Y dte <7> < M,

d<M

< M-, (3.9)
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hence (3.9) follows. Therefore now we obtain

ry v ( og (l;:k);t + 27) +0 (At 1), (3.10)

k<M (<M

4. THE WEIGHTED MEAN SQUARE

Now we go back to the integral (2.3), and continue it meromorphically by a
different method. At first assume Ru > 1 and Rv > 1. Let K > max{l, Rv — 1},
and shift the path of integration on the right-hand side of (2.3) to Sy = —K.
The residue at y = i(1 — v) appears. The resulting expression

2 _
I(u,v; A A) = %C(u +v—1A(u+v— 1)14(1)6(”*1)2%2

* Ai/? PN CE RN a8 Uy iy)Alv — iy)e_(y/A)Q(dziy.l)

can be continued meromorphically to the region ®u > —K + 1, v < K + 1,
which includes D = {(u,v) | 0 < Ru < 1,0 < Rv < 1}.

Now assume (u,v) € D, and shift back the path of integration on the right-
hand side of (4.1) to Sy = 0. This time the residue at y = i(u — 1) appears,
and

I(u,v; A A) = 2\/_ (u+v—1){A(U+v—1)A() v—1)2/A2

+A( )A(u +v — 1)e VA%

(u+ iy)C(v — iy) A(u + iy) A(v — iy)e~ @2 dy

A\F (4.2)
for (u,v) € D. In particular, we can now put u = o + it, v = o — it, where
1/2<o<1,t>2and T <t < T, in (4.2). Then

I(o+it,o —it; A, A) = J,(t; A, A)
2y 1 N2 /A2
+ TQ(QU — 1){A(20 — 1)A(1) exp((c — 1 —it)* /A7)
+ A(1)A(20 — 1) exp((o — 1 +it)*/A%)}, (4.3)
where

J,(t; A, A) (0 +i(t+y))Alo +i(t +y))|2e” /2 dy.

v A
Since A < T/AoL by (2.1), the second member on the right-hand side of (4.3) is
< M1+6A—16—01L2 < T—CQ
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where C7, Cy are positive constants. Since we assume (2.2), if Ay is sufficiently
large, then C, C5 are also large. Therefore

I(o+it,o—it; A, A) = J,(t; A, A) + O(T ) (4.4)

with a large Cy for 1/2 <o < 1.

Now, combining (4.4) with the results proved in Sections 2 and 3, we obtain the
following expressions of J,(t; A, A), which are fundamental in our analysis. First,
in the case 0 = 1/2, from (3.10) and (4.4) we immediately obtain the following

Lemma 2. For T <t < T, we have

JatAA) =3 ¥ O 5( 2M ’y)

k<M ¢<M

+ Piya(t; A A) + Py (A A) + (AT 1+s). (4.5)

Next consider the case 1/2 < ¢ < 1. Since

- f
Z (f:k,0) (20—1,Z>

by (3.4), we can rewrite (2.16) as

- icp (20 —1, é) = d"7*7((20 — 1)

J=1

k¢
Hy(t; k, l) = NI ~((20)
+d*%¢(20 — ){M (20 — 1,0 —it; A) + M (20 — 1,0 +it; A)}.

(4.6)
It has been shown in the proof of Lemma 1 of [5] that

M(20—1,0—it; A)+M((20—1,0+it; A) = 2I'(20—1) {tl 27 sin(7o) + O < A )}

t20
and the functional equation of ((s) implies
2I'(20 — 1)¢(20 — 1) sin(no) = (27)*1((2 — 20).

Hnece from (4.6) we have

H,(t;k,0) =

A
QUC(20> +d2—20<2ﬂ_>20—1<<2 20 )tl 20 —|—O <d2 20 20)
Substitute this into the right-hand side of (2.15), and combine with (4.4). By
using (3.9) we see that the contribution of the error term on the right-hand side

of (4.7) is O(At=2°"¢). Hence we obtain
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Lemma 3. For1/2<o <1 andT <t < T, we have

-t A A) ZZ

k<M (<M ’

20)

(k07 (2271 (2 — 20}

Py oy

k<M (<M k€
+ Pp(t; A, A) + Po (68, A) + O (AT274)). (4.8)

We can connect J,(t; A, A) with the mean square of ((o + it)A(c +it) by the
following inequalities:

2T+ LA 2T
[ e, A= [ (o + iAo +it) Pt
T

T—LA
+0 (M2(170)+€T2(170)/3+167L2) (49)

and

2T—LA 2T
[ e a A< [ (o + i A(e + it
T+LA T

+0 (M2(1—a)+eT2(1—U)/3+16—L2) (4‘10)

for 1/2 < o < 1. These can be proved analogously to Lemma 3 of [5], so we omit
the details of the proof. We only note that, instead of (4.6) of [5], we use the
bound (1.16) to obtain the above error estimates.

On the other hand, from Lemma 2 we have

2T+ LA
/ Tt A, A)dt

TFLA
k0% OT+LA
-5 5 D (1o T gy 1)
wanicn kL 2mkt t=TFLA
s P AA)+ P AA))dt+ O (A
t; t; t T
+ TTLA ( 1/2(7 ’ )+ 1/2(7 ) )) + ( )
02 o7
=) Z <log (k. 6) + 2y — 1) t + O(LAlogT)
k<M (<M k€ 2wkl =T
2T+LA .
+ (Pl/z(t; A, A) + Pup(t; A A)) dt + O (ATF)

TF¥LA
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Comparing this with (1.2), we obtain the case ¢ = 1/2 of

E,(2T, A) — E, (T, A) = /TQT IC(o + it) Ao + it)|dt

2T+LA 2T+LA
- Jo(t: A, A)dt + (Po(t; A, A) + Po(t; A A) ) dt
TFLA TFLA
+ O(LA(T?)®), (4.11)

where E/o(T,A) = E(T, A) and w = 1 or 0 accordingas o = 1/20or 1/2 < 0 < 1.
The case 1/2 < ¢ < 1 can be shown similarly from Lemma 3 and (1.11). It is an
analogue of (4.8) and (4.9) of [5]. Combining (4.11) with (4.9) and (4.10), again
similarly to [5], we obtain

Lemma 4. For1/2 <o <1, we have

|EO'(2T7 A) - Ea(Ta A)| <

2T+LA
/ (Po(t; A, A) + Po(t; A, 4)) dt‘
T—LA

2T—LA .
P.(t;AJA)+ P, (t; A A LA(T?)%).
T (o )+ BEE) dl 4 0T

(4.12)

Therefore, now our problem is reduced to the evaluation of the integral
T//
/ (Pt A, A) + By (6 A, A)) dt, (4.13)
T/

where T" = T F LA and T” = 2T + LA. Since A, is sufficiently large (see (2.1)),
wesee thatt T < T' < T, T T"<T.

5. AN INFINITE SERIES EXPRESSION OF P, (t; A, A)
Let 1/2 < o < 1. From (2.13) we have

Po(t: A, A) % /(6) S a(b)k 2 Y a0

k<M <M
‘ k
XY (20 — s, —f> © <s, i) M(s,o —it; A)ds. (5.1)
ot 14 14
We rewrite the factor ¢(20 — s, kf/¢) by using the functional equation, that is
(2.11) if kf /¢ ¢ Z, and

((20 — 5) = 2% Sg~ 12975 o (g(l — 20 + 5)) (1 —20+s)((1—20+s)
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if kf/¢ € Z. We have

Py (t: A, A) / S a(k)k~2 S a(f) e (2m) T (1 — 20 + )

) k<M <M

{QZCOS( 1—20+s)) C(1— 20+ s)p (S’é)
o (o (2 ) oo B

f
1—20+s kf {—=kf}e /
+e<—74 —7>§<1—20+3, 7 ))ap(s,z>}
x M(s,o —it; A)ds, (5.2)

where the summation >-* runs over all f satisfying 1 < f < ¢ and f # 0(mod \),
and {z}, means the integer determined uniquely by {z}, = z(mod ¢), 0 < {z}, <
l.

From the assumption 5 > 2 it follows that R(1 — 20 + s) > 1, hence the zeta
factors on the right-hand side can be written down as Dirichlet series. Let

Ua n; SC Z e2mmm

mln
and

oq(n;x, 0, b) = > e2mime pa
m|n

n/m=b(mod ¢)

where a, x are real numbers and n, ¢, b are positive integers. We see that
C(1— 20+ 5,b/0)p(s, 2)

0o
— 6172o+s Z k71+2075 Z e2mmxm172omfl+2ofs

1<k<oo m=1
k=b(mod ¢)
= (1720ts Z 010 (n; 2, £, b)n 1205, (5.3)
n=1
and especially
C(1—20+5s) Z O1_og(n; x)n 1277, (5.4)

Applying (5.3), (5.4), and the formula

cos (g(l — 20 + s)) = % (e (%) +e (_$)>
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o (5.2), and changing the order of integration and summation (which can be
verified by absolute convergence), we obtain

ps =3 5 T
X {Zl il 01-20 (TL, f_i) (Qc—: (t7 1, k) + Q; (t’ n, k:))

e 5 () S o (s oa i) @zt vo

+§f:*€ <_%> S 01a <n; %,g, {—kf}g> Q (i, k;é)} . (55)

n=1
where
1 1—20+s
+
t: = — — |1 -2
Qi) = 5= [ e(F— )T =20+
q 1—20+s
X <%) M(s,o —it; A)ds. (5.6)

The above (5.5) is the analogue of (5.1) of [5]. (The condition ¢ < (8 + 1)/2
stated there is to be read as o < (3/2.)
Define

Sy(n; k,0) = Z#u% Ye(u/N),

wln

where the summation 3% runs over all positive integer y satisfying p|n, p='n =
k(mod d) and p # 0(mod A). Then from (5.5) we can show the following

Lemma 5. For 1/2 <o < 1, we have

P, (t; A A) = ZZ

k<M (<M ’

{dl 2"201 20 (n)(QF (t;dn, k) + Q (t;dn, k))
+ Zn 20 (di) S, (s, D)Q: (¢ dn, k)

+nzln1—2<fe( Z’;) Sy (n: k, O)QF (t; dn k:é)} (5.7)

where 01_95(n) = X, m' T2 and K is determined by Kk = 1(mod \).
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Proof. We first note that

Zal 20( n; ) Zml QUZ 2mimg/d _ Z m172o

m|n
m=0(mod d)

vanishes unless d|n. If d|n, putting n = dv and m = du, we find that the above
is
— dz<dﬂ)1720 — d27200'1,20(y>.

plv

Hence
d oo j
S5 o1as (w2 ) Q3 (tm, k) + Q; (15, )
j=1n=1

_ id”ffal_%(u)(cz:(t; dv, k) + Q; (t; dv, k). (5.8)

Next consider

Y e <—%> o1 2(,< n; ,E,{km)
f

R R

m|n

m=k f(mod ¢)

The condition m = kf(mod ¢) implies d|m, hence the above double sum vanishes
unless d|n. If d|n, we write n = dv, m = du to obtain that the right-hand side of

(5.9) is
:¥*e<—%> s (4

p=kf(mod \)

A2 5 2o 12** <<Z _ k) %) ’ (5.10)

plv H

where >** runs over all f such that 1 < f < ¢, f # O(mod \), and f =
pur(mod A). From these conditions it follows that p # 0(mod A). We see that

T

(( R P
0 otherwise.
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Hence the right-hand side of (5.10) is

= ey e (<_ - k> {ﬂ;ﬁb>
plv

I

A
_ dV172az#M2o—1e <<K _ k) )
plv H

=dv' e <%) Se(v; k, 0).

&‘1:
>

Therefore we obtain

Z*e (—%) i 01_25 (n; %,f, {k’f}g) Q. (t;n, k0)

!

— 4y e (%) S, (v K 0O (t: dv, k),
v=1

and similarly we can show that the last double sum in the curly parenthesis on
the right-hand side of (5.5) is equal to

VK

4y e <—ﬁ> S, (v; ki, O)Q7 (¢ dv, k).
v=1

Substituting these formulas and (5.8) into (5.5), and using d/kl = [k, ], we
arrive at the assertion of Lemma 5.

6. COMPLETION OF THE PROOF

Now we evaluate the integral (4.13) by using Lemma 5. Since

n'"%e <—%> Sy (1 k,E)‘ <n'7N P =0y 9,(n), (6.1)
pln

from Lemma 5 we have

/ : Bt A A)dt < S S (k) d

£ k<M (<M

x {di=% E 01-25(n) / ”Q (t; dn, k)dt| + /
‘ g , o Y ) ,

+ E 01-25(n) / ”Q (t; dn, k0)dt| + / NQ (t; dn, kl)dt
— g , o b ) , o ) ) N

1

Q; (t:dn, k:)dt| )

(6.2)

The quantity QZ(t;n,q), defined by (5.6), is exactly the same as QZ(¢;n,q)
introduced in Section 5 of [5] and studied in Sections 6, 7 and 8 of [5]. In Section
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6 of [5], by using Lemma 1(ii), it is shown that
T// 1 %)
/ QF (t;n, q)dt = —./ hy (y;n, q)dy (6.3)
T i Jo
and
T// B 1 %)
/ Q, (t;n, q)dt = —./ hy (yin, q)dy, (6.4)
T/ i Jo
where

exp (—iAQ log?(1 + yil))
y7(1+y)7log(l+y~t)

+7" +T7’
X <e log (1 - y_l) —e log (1 + y_l) e(—ny/q)
2w 27 (6 5)
(see (6.3) and (8.2) of [5]). Let N > ¢T'L>A~2 Then Lemma 7 of [5] implies

Z 0'1_20(71)

n>N

hE(yin,q) =

1

/T, Q; (t;m, q)dt‘ < gt 4 (gT) 7, (6.6)

where A is a positive constant and Cj is a large positive constant. The remaining
part n < N has been discussed in Section 8 of [5]. From Lemma 8 of [5] (and its
proof) we have

Z 01—-92¢ (n)

n<N

L71A
[ i q>dy\ < e NT(log N logT)*,
0 (6.7)

where A is a positive constant and w is as in Section 4. Also we have

/_ h(y:n, q)dy
L—1A

1/4
< (LA {% (1 i (%) ) +A3/2L1/2T_1/2} (6.8)

if n < qTyL2A™2 ((8.17) of [5]).
By k* we denote k or kf. From (5.6) it follows that Q= (¢; dn, k*) = QF (t;n, d~1k*).
Hence

o0 T/l
S 0120 (n) / Q(t; dn, k*)dt
n=1 T

< Z 01-25(n)

n>N*

L71A o9
+ Z 0'1,2(7(77/) / hi: (y; n, d_lk*)dy| + Z 01-20 <n> / hi: (yu n, d_lk*)dy‘
nN* 0 n<N* L-1A
— 21 —|— 22 —|— 23, (69)

say, where N* = d~1k*T1 L2A~2.

T//
/ Q(t;m, d‘lk*)dt‘
T/
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Applying (6.8), we have

“1avi—20 ) BT ndT\ " 3/2 71/27—1/2
23<< Z 0'1_20(71)([/ A) — ]_+ +A L T

*
n<N nd k

< (L—lA)l—ZJ{ Z 01_95(n) (% + (%) T1/4>

nN*

+A3/2L1/2T_1/2 Z 0_1_20(”)}

n<N*

1—20 ) K e\ *\1/4 3/2—1/2 a7# \ e
< A E+ 7 (TN*)* 4+ AT HEN* 3 T

< %A1/220T1/2+s’

hence the contribution of 33 to the right-hand side of (6.2) is
< 30N (k) TR AR VAV T2
k<M (<M

Using (6.6) and (6.7) we can see that the contributions of 3; and ¥, are negligible.
Hence

Tll
/ P, (£ A, A)dt < M2AY2-20Y/ 2+, (6.10)
T/
Combining (6.10) with Lemma 4, we obtain

|E,(2T, A) — E,(T, A)| < M?AY2=20m1/2%e o LA(T) (6.11)

for1/2 <o < 1.
Recall that we assume (2.2) to obtain (6.11). The inequality M < (277" is
valid for 0 < j < j;, where j; = [log(M~Y*T)/log?2]. Let

A= (max{2M, 7)) 77 (0<5 < gy),

where T; = 27T and ¢ > 0. Note that 27“M < T% for j > jp, where j, =
log(MT~¢)/(c — €)log2]. We prove that, if we choose ¢ suitably, then there
exists a constant Cy > 0 such that

TA
L <A <2 6.12
J — ]_AOLj ( )

for T; > Cy, where L; = Ag(log Tj)"/?. In fact, we see that A; > TF" > L,
which yields the first inequality of (6.12). Since p < 1, it is clear that

T
TE « 22
J Lj
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Next, if 4 > 0, we choose ¢ for which cu 4+ p = 1 holds, then

29T _ T,

Q=i N TP — 9= (eutp)i p e — 9=i \[HTP <
( ) J - AQL A()Lj

by (1.7). If 4 = 0, then clearly

. T.
(Q*CJM)HT]P = ij < L_]

J

because p < 1. Hence the second inequality of (6.12) follows.

Let j; be the largest integer for which 277 > (j holds, and put j, =
min{ji, js}. Then (6.12) implies that (2.1) and (2.2) are valid for 7; and A;
(0 < j < jo) instead of T" and A, respectively. Hence we may replace 7" and A in
(6.11) by T, and A; respectively to obtain

| Eo(Tj1,A) = Eo(T5, A)
< M2+,LL(1/2720') (27]')(c,u+p)(1/2720)+1/2+sTf(o,p)Jrs
+ Ly MH(277 )t ptewotes (6.13)
if £ >0 and 1 <j <min{jo, j2}, and
< M2<271)f(07p)+€Tf(0,p)+€ + Lj(gfj)prsTere (6.14)

if >0 and j5 < 7 < jo, orif p=0.
We sum up these inequalities for 7 = 1,2,...,j0. In case u > 0, noting
cp+p=1, f(o,p) >0and M~VeT* « 2772 < M~Y/°T* we find that
|EU(T7 A) - EO(ij A)|
J2

J
< M2+u(1/2—20')Tf(U,p)+€ Z(Z—j)l—Qa—l—e + Mqu—i—awL 22(2—]‘)1—9—5«;

j=1 j=1
Jo ‘ Jo '
+M2Tf(mﬂ)+€ Z (271)f(07p)+€+Tp+6 Z (273)p+€
Jj=jo+1 Jj=jo+1

& M2Hu/2=20)+c7 Qo) pf(op)te | | pupete
+ M2 e pflep)te ]\/[76’1/)Tp+67
hence

|E,(T, A) — E,(T;,, A)| < M?>~ 0= nflenpllopte o pupete
(6.15)

because

1 20 — 1 f(o, f(o,
u(b—20)+ —— (Cp):_ul(_;)_

From (6.14) we can easily see that (6.15) is also valid in case pu = 0.
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On the other hand, if jo = 71, from Remark 2 in Section 1 we have
[Bo (T, A)| < M0l on I e 4 s
< M2*(1*P)71ﬂf(o,p)Tf(U,pHe + MHETPrE, (6.16)

If jo = js, then T, < 1. Hence (1.15) is valid for M > 1, and in this case (6.16)
again follows from Remark 2. If T;) < 1 and M < 1 then E,(T},, A) is clearly

Jo»

bounded. Hence (6.16) is true in all the cases. Combining (6.15) and (6.16), we
obtain the assertions of Theorems 1 and 2.
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