Enantioselective Diels-Alder Reaction Catalyzed by Chiral Ammonium Salts: The Synthetic Applications and the Design of New Dienophiles

Hiroki Yamada

Graduate School of Engineering, Nagoya University

Nagoya, 2014

Contents

Chapter 1 Introduction and General Summary 1
Chapter 2 The First Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridines with α-Acyloxyacrolein Catalyzed by Chiral Primary Ammonium Salt 23
Chapter 3α-Heterosubstituted β-Alkylacroleins as Useful Multisubstituted Dienophiles for Enantioselective Diels-Alder Reactions 55
Chapter 4 Enantioselective Diels-Alder Reaction with β-Substituted/Unsubstituted α-(Acylthio)acroleins 81
Publication List 114
Ackowledgments 115

Chapter 1

Introduction and General summary

1-1. General Summary

Enantioselective organocatalysis is an important field in the asymmetric synthesis of chiral molecules. Over the past 10 years, this field has grown at an extraordinary pace. Our laboratory has developed an enantioselective cyclization with α-heterosubstituted acroleins catalyzed by a chiral ammonium catalyst (Figure 1.1). ${ }^{1}$ These reactions are useful for constructing a chiral hetero-substituted quaternary carbon moiety, but the substrates have been limited to β-unsubstituted α-(oxy or amino)acroleins.

In this thesis, we describe the Diels-Alder reaction with α-heterosubstituted acroleins catalyzed by a chiral primary ammonium salt. Chapter 1 describes that a new asymmetric synthesis of chiral isoquinuclidine (2-azabicyclo[2.2.2]octane), which is a key skeleton of natural products via the enantioselective DA reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins. Chapters 2 and 3 describe new syn methods for the synthesis of β-substituted α-heteroacroleins and the enantioselective DA reaction with β-substituted α-heteroacroleins.

Figure 1.1. Enantioselective cycloaddition catalyzed by a chiral ammonium catalyst

1-2. Introduction

Chiral compounds with heteroatom-substituted quaternary carbons are valuable and versatile synthetic intermediates, particularly in the synthesis of complex molecules like drugs and natural products. Therefore, there is a strong need for the development of methods for the synthesis of a chiral heteroatom-substituted quaternary carbon moiety in organic synthesis.

One of the most powerful methods for constructing a chiral heteroatom-substituted quaternary carbon moiety is the enantioselective Diels-Alder (DA) reaction with α-heterosubstituted acroleins. For example, α-bromoacrolein is well known to be a useful dienophile. In 1991, Corey and co-workers reported the chiral Lewis acid-catalyzed enantioselective DA reaction with α-bromoacrolein (Scheme 1.1). ${ }^{2,3}$ The corresponding bromide DA adducts could be converted to cyanohydrine, which is a key intermediate for bioactive compounds such as prostaglandin E2, under basic conditions with high enantioselectivity. ${ }^{4}$

Scheme 1.1. Enantioselective Diels-Alder Reaction with α-Bromoacrolein

α-(Acyloxy)acroleins are also useful as synthetic equivalents of α-haloacroleins. In 1996, Funk and Yost reported the first example of the DA reaction with α-(acyloxy)acroleins, which represents an exceptionally facile synthesis of Taxol A-ring synthons (Scheme 1.2). ${ }^{5}$

Scheme 1.2. Synthesis of Taxol A-Ring Synthons via the Diels-Alder Reaction

Although α-haloacroleins have high reactivity and utility, they are irritants and are unstable at ambient temperature. In contrast, α-(acyloxy)acrolein is relatively stable, and its reactivity can be controlled by switching the acyloxy group (Figure 1.2).

Figure 1.2. α-Heterosubstituted acroleins

The DA reaction of dienes with α-(acyloxy)acroleins is considered to be useful and versatile because the adducts can be converted to α, α-disubstituted α-hydroxycarbonyl compounds. However, there have been no reports on the enantioselective version of the DA reaction.

In 2000, MacMillan and co-workers developed an enantioselective DA reaction with α, β-unsaturated aldehydes catalyzed by chiral secondary amines derived from L-phenylalanine and Brønsted acid (Scheme 1.3). ${ }^{6}$

Scheme 1.3. MacMillan's Secondary Amine-Catalyzed Diels-Alder Reaction

MacMillan's catalysts are effective for α-nonsubstituted acroleins, and activate them via the formation of iminium ions. According to our preliminary experimental results and other reports, ${ }^{7}$ it is difficult for secondary amines to activate α-substituted acroleins. This is probably due to poor generation of the corresponding iminium ion, although the secondary amines have relatively strong basicity. It is assumed that the difficulty of the formation of iminium ion is due to steric hindrance between substituents adjacent to the secondary amine in the catalyst and the α-substituent of acroleins. Otherwise, a primary ammonium salt can activate the acrolein because of less steric hindrance (Figure 1.3).

Figure 1.3. Activation of α-substituted acroleins with primary vs. secondary amine

Thus, our laboratory developed the first catalytic enantioselective DA reaction with α-substituted acroleins catalyzed by primary ammonium salts (Scheme 1.4). We succeeded in the enantioselective synthesis of the key intermediate of prostaglandin E2 (PG E2) through the DA reaction with α-(acyloxy)acroleins catalyzed by a chiral triammonium salt. ${ }^{8}$ (S)-1,1'-Binaphthyl-2,2'-diammonium salt was a useful catalyst for the DA reaction of cyclic dienes. ${ }^{9,10}$

Scheme 1.4. Enantioselective Diels-Alder Reacion with α-(Acyloxy)acroleins Catalyzed by Chiral Primary Ammonium Salts

The DA reaction with α-acylaminoacroleins also has significant synthetic versatility, because the corresponding DA adducts are optically active cyclic α-quaternary α-amino acid precursors (Scheme 1.5). ${ }^{11}$

Scheme 1.5. Enantioselective Diels-Alder Reaction with α-(N, N^{\prime}-Diacylamino)acroleins Catalyzed by Chiral Primary Ammonium Salts

A proposed transition-state assembly is shown in Figure 1.4. α-Substituted acroleins are activated through the corresponding aldimines by the use of primary amines and Brønsted acids as ammonium salt catalysts. Furthermore, it seems that the
formation of strong hydrogen bonding between the acyl group and an ammonium proton of the catalyst stabilizes the conformation of the transition state. Therefore, the basicity and structure of the acyl group are important for inducing good enantioselectivity.

Figure 1.4. Proposed transition-state assembly

1-3. Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridines with α-(Acyloxy)acroleins Catalyzed by a Chiral Primary Ammonium Salt

The 2-Azabicyclo[2.2.2]octane structure is called isoquinuclidine. This structure can be found in a wide range of natural products like $(+)$-catharanthine among the Iboga family ${ }^{12}$ and (-)-dioscorine, which is a toxic central nervous system depressant and a modulator of the nicotinic acetylcholine receptor (Figure 1.5). ${ }^{13}$ Moreover, isoquinuclidine compounds are not only useful in themselves but can also be converted to other optically active compounds.

Figure 1.5. Isoquinuclidine moiety in natural products

Some methods for the synthesis of chiral isoquinuclidine derivatives have already been reported. In particular, the enantioselective DA reaction of 1,2-dihydropyridine ${ }^{14}$ with dienophile is one of the most efficient methods (Scheme 1.6).

Scheme 1.6. Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridines

In 1988, Marazano and coworkers described the diastereoselective DA reaction of chiral N-substituted 1,2-dihydropyridine, but the diastereoselectivity was moderate (Figure 1.6). Two years later, they improved the diastereoselectivity by using sugar derivatives as chiral auxiliaries. ${ }^{15}$ In 2000, Matsumura et al. synthesized a new chiral 1,2-dihydropyridine that originated from L-lysine, and the corresponding adducts could be obtained with high diastereoselectivity. ${ }^{16}$

Figure 1.6. Chiral 1,2-dihydropyridines for asymmetric Diels-Alder reaction

Recently, Oguri and coworkers reported a biogenetically inspired synthesis of (-)-catharantine with in situ-generated chiral 1,2-dihydropyridine (Scheme 1.7). ${ }^{17}$

Scheme 1.7. Diastereoselective Diels-Alder Reaction of In Situ-Generated 1,2-Dihydropyridine

In 1990, Langlois and co-workers proved that α, β-unsaturated oxazolines activated with trifluoroacetic anhydride were useful as chiral dienophiles for the construction of chiral isoquinuclidines (Figure 1.7). ${ }^{18}$ Campbell et al. also demonstrated a total synthesis of (-)-homogabaculinate via the diastereoselective DA reaction with a chiral dienophile. ${ }^{19}$

Langlois, 1990

Campbell, 1992

Figure 1.7. Chiral dienophiles for the asymmetric Diels-Alder reaction

The first enantioselective DA reaction with a chiral catalyst was reported by Rawal and co-workers (Scheme 1.8). ${ }^{20}$ In the presence of a chiral Cr (III) salen complex catalyst, the DA reaction of 1,2-dihydropyridine with N -acryloyloxazolidinone proceeded in excellent yield and with good ee. Since then, some Lewis acid catalysts have been reported. ${ }^{21,22}$

Scheme 1.8. Enantioselective Diels-Alder Reaction with Chiral $\mathrm{Cr}(\mathrm{III})$ Catalyst

Chiral organocatalysts are also useful for the DA reaction. In 2007, Fukuyama and co-workers synthesized $(-)$-oseltamivir phosphate, widely known as Tamiflu ${ }^{\circledR}$, via the enantioselective DA reaction of 1,2-dihydropyridine with acrolein with MacMillan's catalyst (Scheme 1.9). ${ }^{23}$ Enantiopure bromolactone could be obtained in moderate yield from pyridine (26% yield, 4 steps). Due to the use of mild conditions, this
synthetic method has potential for a bulk-scale operation. To improve this reaction, some new organocatalysts have been investigated. ${ }^{23,24}$

Scheme 1.9. Total Synthesis of (-)-Oseltamivir (Tamiflu ${ }^{\mathbb{B}}$) via the Enantioselective Diels-Alder Reaction

While there are many methods available for the construction of chiral isoquinuclidines, to the best our knowledge there have been no reports on the enantioselective DA reaction with α-hydrosubstituted dienophiles.

The DA reaction with α-hydrosubstituted dienophiles is a powerful tool for the construction of stereoselective hydrosubstituted isoquinuclidines. In 1980, Wender et al. synthesized (\pm)-reserpine via the DA reaction of 1,2-dihydropyridine with an α-acetoxy acrylic acid methyl ester (Scheme 1.10). ${ }^{25}$ The corresponding exo and endo isomeric mixture of DA adducts was obtained in moderate yield. However, the exo/endo ratio was low, and only the endo-adduct could be used for synthesis.

Scheme 1.10. Wender's Method for the Synthesis of (\pm)-Reserpine

Based on this result, Mariano and co-workers focused on the DA reaction with α-acetoxy acrylonitrile ${ }^{26}$ and described a total synthesis of (\pm)-deserpidine (Scheme
1.11). The exolendo mixture could be converted to isoquinuclidin-7-one in good yield via Oku's procedure. ${ }^{27}$ In contrast, the yield of the DA reaction step was low.

Scheme 1.11. Mariano's Method for the synthesis of (\pm)-Deserpidine

Chiral isoquinuclidin-7-one is also a key intermediate for natural products. Doris and co-workers reported a formal synthesis of (+)-catharantine from L-serine derivative through a chiral isoquinuclidin-7-one intermediate (Scheme 1.12). ${ }^{28}$ The intermediate was synthesized from N -Cbz-L-serine in 15 steps.

Scheme 1.12. Formal Synthesis of (+)-Catharanthine

Based on our strategy, we developed a catalytic enantioselective DA reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins for the synthesis of chiral isoquinuclidine derivatives. As a result, the corresponding DA adducts were successfully obtained in good yields and with high enantioselectivities, and the adducts were converted to key intermediates of natural products (Scheme 1.13).

Scheme 1.13. Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridines with α-(Acyloxy)acroleins

1-4. Enantioselective Diels-Alder Reaction of β-Substituted α-(Acyloxy/Acylamino)acroleins

With respect to the synthesis of multisubstituted chiral cyclohexenes, α-heterosubstituted β-alkylacroleins are useful dienophiles for the enantioselective Diels-Alder reaction, since the corresponding adducts are useful chiral building blocks for the synthesis of a variety of bioactive natural compounds (Scheme 1.14).

Scheme 1.14. Enantioselective Diels-Alder Reaction with β-Substituted α-Heteroacroleins

Cativiela Díaz-de-Villegas reported an interesting DA reaction with a multisubstituted dienophile for the construction of a phenylalanine derivative (Scheme $1.15) .{ }^{29}$ Readily available (Z$)$-2-phenyl-4-benzylidene-5-(4 H)-oxazolone was used as a dienophile, and the dienophile was activated by Lewis acid. The corresponding adducts were spirooxazolone compounds, which could be easily converted to an amino acid structure. Especially, the β-phenyl moiety of the adducts is oriented on the same side as the amino moiety. This result indicates that two enantiomeric centers can be controlled by one reaction with a stereopure multisubstituted dienophile.

Scheme 1.15. Synthesis of a Phenylalanine Derivertive via Diels-Alder Reaction

To the best of our knowledge there have been no reports on the synthesis of stereopure β-substituted α-(acyloxy/acylamino)acroleins syntheses. Therefore, we primarily focused on new efficient methods for the synthesis of these acroleins.

First, we synthesized β-substituted α-(benzyloxy)acroleins by a modification of Funk's method ${ }^{30}$ and tried an enantioselective DA reaction with an ammonium catalyst. The corresponding adduct was obtained in low yield and with moderate ee (Scheme 1.16).

Scheme 1.16. Enantioselective Diels-Alder Reaction with β-Substituted α-(Benzoxy)acroleins

We expected that the electron-donating nature of the O-acyl groups might be very important for obtaining high enantioselectivity in the DA reaction of α-(acyloxy)acroleins. Thus, we planned a method for the synthesis of α-(carbamoyloxy)acroleins with a more basic acyl moiety as a directing group (Figure 1.8).

Figure 1.8. Comparison of a carbamoyl moiety to an acyl moiety

Hoppe and co-workers developed an interesting N, N-diisopropyl carbamate chemistry. In their reports, allylic carbamates successfully gave the corresponding Z-vinyl carbamates as single stereoisomers with a titanium reagent. Moreover, the proton α-position of carbamate could be converted to iodine with an alkyl lithium reagent (Scheme 1.17). ${ }^{31}$

Scheme 1.17. Stereoselective Carbon-Carbon Double Bond Migration and Iodation

According to this result, we planned a retrosynthesis of β-substituted α-(acyloxy)acroleins by $\mathrm{C}-\mathrm{C}$ bond formation between anionic Z-vinyl carbamates and formyl cations (Figure 1.9).

Figure 1.9. Retrosynthesis of β-substituted α-(acyloxy)acroleins

Subsequently, we tried to synthesize β-substituted α-(acylamino)acroleins. N-Arylcarbonylglycine methyl ester was chosen as a starting material. According to the method reported by Burk and co-workers, ${ }^{32}$ a variety of β-alkyl and β-aryl derivatives could be synthesized with complete Z-selectivity with changes in the starting aldehyde. However, the corresponding HWE reaction products could not be converted to aldehydes (Scheme 1.18). Other strategies were needed.

Scheme 1.18. First Approaching to Synthesize β-Substituted α-(Acylamino)acroleins

Next, we focused on a strategy of N-protection by changing from Boc to Bz (Figure 1.10). A method for the synthesis of Z-selective β-substituted α-(tert-butoxycarbonylamino)acroleins has already reported. ${ }^{32}$ From this known compound, we expected that the N-Boc group could be converted to an N-benzoyl group by a modification of Martin's method, ${ }^{33}$ and removed only the N-Boc group with acid.

Figure 1.10. Retrosynthesis of β-substituted α-(acylamino)acroleins

With these dienophiles in hand, we investigated the chiral triammonium salt-catalyzed DA reaction (Scheme 1.19). ${ }^{34}$ As a result, the corresponding DA adducts were successfully obtained in good yields with high enantioselectivities.

Scheme 1.19. Enantioselective Diels-Alder Reaction of β-Substituted α-(Acyloxy/Acylamino)acroleins with a Chiral Ammonium Catalyst

1-5. Enantioselective Diels-Alder Reaction with α-(Acylthio)acroleins

Chiral quaternary carbons bearing sulfur atoms can be widely found in bioactive compounds (Figure 1.11).

(+)-Leinamycin

Thiotetromycin

Sarcophin-derived material

Figure 1.11. Bioactive compounds containing quaternary carbons bearing sulfur atoms
Considerable effort has been devoted to the development of methods for their construction including stereoselective reactions such as (a) the alkylation of chiral thioenolates, ${ }^{35}$ (b) the alkylation of chiral thioalkyllithiums, ${ }^{36}$ (c) the $\mathrm{S}_{\mathrm{N}} 2$ reaction of chiral tert-alcohols, ${ }^{37}$ and (d) the rearrangement of chiral thiooxazolines (Figure 1.12). ${ }^{38,39}$ Although some catalytic reactions have also been reported, phenyl or benzyl thiol is often used as a nucleophile. The corresponding adduct cannot be converted from benzyl or alkyl thioether to thiol. ${ }^{40}$
(a)

(b)

(c)

(d)

Figure 1.12. Stereoselective synthesis of chiral tert-thiols

In 2011, a rare example was reported (Scheme 1.20). ${ }^{41} \quad \mathrm{Fu}$ and Fujiwara developed the enantioselective [3+2] cycloaddition of α-heterosubstituted acrylic acid ester derivatives with a chiral phosphine catalyst. In their report, they described the reaction of α-(tert-butylthio)acrylic acid methyl ester as a substrate. The tert-butyl group of a cyclized product could be deprotected, and chiral tert-thiol was obtained in good yield.

Scheme 1.20. tert-Thiol Synthesis via [3+2] Cyclization

The enantioselective DA reaction of α-(acylthio)acroleins is a useful method for the construction of sulfur-containing quaternary carbons. We expected that the acyl group of the corresponding adducts could be easily removed with base reagents (Scheme 1.21).

Scheme 1.21. Enantioselective Diels-Alder Reaction with α-(Acylthio)acroleins

Based on our previous results, the enantioselectivity depends on the acyl moiety. Therefore, we planned methods for the synthesis of two types of α-(acylthio)acroleins. For the synthesis of α-(benzoylthio)acroleins, the reaction between nucleophilic thiirane and acyl chloride or carboxylic anhydride was examined. ${ }^{42,43}$ After the acetal was converted to aldehyde with acid, the desired α-(benzoylthio)acroleins were obtained (Figure 1.13).

Figure 1.13. Retrosynthesis of α-(benzoylthio)acroleins

As another acyl candidate of α-(acylthio)acroleins, we focused on thiocarbamate which is a stronger electron donor than benzoyl groups (Figure 1.14). Since bis(carbamoyl)disulfide ${ }^{44}$ was expected to be an S-carbamoyl synthon, we planned to combine a cationic synthon and a vinyl anion synthon from acroleins. Compared with the synthesis of α-(benzoylthio)acroleins, β-substituted acroleins also could be synthesized in a regiospecific manner.

Figure 1.14. Retrosynthesis of α-(carbamoylthio)acroleins

We developed an organocatalytic and enantioselective DA reaction with α-(carbamoylthio) acroleins to provide chiral tertiary thiol precursors for the first time. β-Unsubstituted or β-substituted α-(carbamoylthio)acroleins were designed and synthesized as new sulfur atom-containing dienophiles (Scheme 1.22). ${ }^{45}$

Scheme 1.22. Enantioselective DA Reaction with α-(Carbamoylthio)acroleins catalyzed by a Chiral Ammonium Catalyst

References and Notes

1. For a review reaction catalyzed by chiral ammonium catalyst; Sakakura, A.; Ishihara, K. Bull. Chem. Soc. Jpn. 2010, 83, 313.
2. Corey, E. J.; Loh, T. -P. J. Am. Chem. Soc. 1991, 113, 8966.
3. (a) Marshall, J. A.; Xie, S. J. Org. Chem. 1992, 57, 2987. (b) Corey, E. J.; Cywin, C. L. J. Org. Chem. 1992, 57, 7372. (c) Corey, E. J.; Loh, T.-P. Tetrahedron Lett. 1993, 34, 3979. (d) Ishihara, K.; Qingzhi, G.; Yamamoto, H. J. Org. Chem. 1993, 58, 6917. (e) Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 1561. (f) Corey, E. J.; Guzman-Perez, A.; Loh, T.-P. J. Am. Chem. Soc. 1994, 116, 3611. (g) Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 3049. (h) Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto, H. J. Am. Chem. Soc. 1998, 120, 6920. (i) Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc. 2002, 124, 3808.
4. Corey, E. J.; Schaaf, T. K.; Huber, W.; Koelliker, U.; Weinshenker, N. M. J. Am. Chem. Soc. 1970, 92, 397.
5. Funk, R.L.; Yost, K. J. III J. Org. Chem. 1996, 61, 2598.
6. (a) Ahrendt, K. A.; Borths, C. J. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. (b) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458. (c) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta 2006, 39, 79.
7. Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3240.
8. Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504. Additions and corrections: Ishihara, K; Nakano, K. J. Am. Chem. Soc. 2005, 127, 13079.
9. Sakakura, A.; Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457.
10. Sakakura, A.; Suzuki, K.; Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229.
11. Ishihara, K.; Nakano, K.; Akakura, M. Org. Lett. 2008, 10, 2893.
12. Sundberg, R. J.; Smith, S. Q. The Alkaloids 2002, 59, 281.
13. (a) Page, C. B.; Pinder, A. R. J. Chem. Soc. 1964, 4811. (b) Fruk Khan, M. O.; Levi, M. S.; Clark, C. R.; Ablordeppey, S. Y. Stud. Nat. Prod. Chem. 2008, 34, 753.
14. (a) Fowler, F. W. J. Org. Chem. 1972, 37, 1321. (b) For a recent review of 1,2-dihydropyridine syntheses: Silva, E. M.; Varandas, P. A. M. M.; Silva, A. M. S. Synthesis 2013, 45, 3053.
15. (a) Mehmandoust, M.; Marazano, C.; Singh, R.; Gillet, B.; Ce'sario, M.; Fourrey, J.-L.; Das, B. C. Tetrahedron Lett. 1988, 29, 4423. (b) Marazano, C.; Yannic, Y.;Mehmandoust, M.; Das, B. C. Tetrahedron Lett. 1990, 31, 1995.
16. Matsumura, Y.; Nakamura, Y.; Maki, T.; Onomura, O. Tetrahedron Lett. 2000, 41, 7685.
17. Mizoguchi, H.; Oikawa, H.; Oguri, H. Nature Chem. 2014, 6, 57.
18. Kouklovsky, C.; Pouilhès, A.; Langlois, Y. J. Am. Chem. Soc. 1990, 112, 6672.
19. Campbell, M. M.; Sainsbury, M.; Searle, P. A. Tetrahedron Lett. 1992, 33, 3181.
20. Takenaka, N.; Huang, Y.; Rawal, V. H. Tetrahedron 2002, 58, 8299.
21. (a) Nakano, H.; Tsugawa, N.; Fujita, R. Tetrahedron Lett. 2005, 46, 5677. (b) Nakano, H.; Tsugawa, N.; Takahashi, K.; Okuyama, Y.; Fujita, R. Tetrahedron 2006, 62, 10879.
22. Seki, C.; Hirama, M.; Hutabarat, N. M. D. R.; Takada, J.; Suttibut, C.; Takahashi, H.; Takaguchi, T.; Kohari, Y.; Nakano, H.; Uwai, K.; Takano, N.; Yasui, M.; Okuyama, Y.; Takeshita, M.; Matsuyama, H. Tetrahedron 2012, 68, 1774.
23. (a) Satoh, N.; Akiba, T.; Yokoshima, S. and Fukuyama, T. Angew. Chem., Int. Ed., 2007, 46, 5734. (b) Satoh, N.; Akiba, T.; Yokoshima S.; Fukuyama, T. Tetrahedron, 2009, 65, 3239.
24. (a) Nakano, H.; Osone, K.; Takeshita, M.; Kwon, E.; Seki, C.; Matsuyama, H.; Takano, N.; Kohari, Y. Chem. Commun. 2010, 46, 4827. (b) Suttibut, C.; Kohari, Y.; Igarashi, K.; Nakano, H.; Hirama, M.; Seki, C.; Takeshita, M.; Kwon, E. Tetrahedron Lett. 2011, 52, 4745. (c) Okuyama, Y.; Osone, K.; Nakano, H.; Takeshita, M. Heterocycles 2012, 84, 1209. (d) Nakano, H.; Okuyama, Y.; Kwon, E. Heterocycles 2014, 89, 1.
25. (a) Wender, P. A.; Schaus, J. M.; White, A. W. J. Am. Chem. Soc. 1980, 102, 6157. (b) Wender, P. A.; Schaus, J. M.; White, A. W. Heterocycles 1987, 25, 263.
26. (a) Baxter, E. W.; Labaree, D.; Chao, S.; Mariano, P. J. Org. Chem. 1989, 54, 2893. (b) Baxter, E. W.; Labaree, Ammon, H. L.; Mariano, P. J. Am. Chem. Soc. 1990, 112, 7682.
27. (a) Oku, A.; Hasegawa, H.; Shimazu, H.; Nishimura, J.; Harada, T. J. Org. Chem. 1981, 46, 4152. (b) Magee, D. I.; Lee, M. Synlett 1997, 7, 786.
28. Moisan, L.; Thuéry, P.; Nicolas, M.; Doris, E.; Rousseau, B. Angew. Chem., Int. Ed. 2006, 45, 5334.
29. Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron 1993, 49, 10987.
30. Aungst, R. A. Jr.; Funk, R. L. Org. Lett. 2001, 3, 3553.
31. (a) Chedid, R. B.; Brümmer, M. Wibbeling, B.; Fröhlich, R.; Hoppe, D. Angew. Chem., Int. Ed. 2007, 46, 3131.; (b) Chedid, R. B.; Fröhlich, R.; Wibbeling, B.; Hoppe, D. Eur. J. Org. Chem. 2007, 3179.
32. Burk, M. J.; Johnson, N. B.; Lee, J. R. Tetrahedron Lett. 1999, 40, 6685.
33. Hernández, J. N.; Martin,V. S. J. Org. Chem. 2004, 69, 3590.
34. Sakakura, A.; Yamada, H.; Ishihara, K. Asian J. Org. Chem. 2012, 1, 133.
35. Strijtveen, B.; Kellogg, R. M. Tetrahedron 1987, 43, 5039.
36. (a) Stratmann, O.; Kaiser, B.; Fröhlich, R.; Meyer, O.; Hoppe, D. Chem. Eur. J. 2001, 7, 423. (b) Marr, F.; Hoppe, D. Org. Lett. 2002, 4, 4217. (c) For an example of the arylation of chiral thioalkyllithiums: MacLellan, P.; Clayden J. Chem. Commun. 2011, 47, 3395.
37. Ikegai, K.; Pluempanupat, W.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2006, 79, 780.
38. Palomo, C.; Oiarbide, M.; Dias, F.; Lopez, R. T.; Gonzalez, P. B.; Gomez-Bengoa, E.; Saa, J. M.; Linden, A. J. Am. Chem. Soc. 2006, 128, 15236.
39. MacLellan, P.; Clayden, J. Chem. Commun. 2011, 47, 3395.
40. Recent examples: (a) Lu, H.; Zhang, F.; Meng, X.; Duan, S.; Xiao, W. Org. Lett. 2009, 11, 3946. (b) Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T. C.; Jørgensen, K. A. Chem. Eur. J. 2005, 11, 5689.
41. Fujiwara, Y.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 12293.
42. Pederson, R. L.; Liu, K. K.-C.; Rutan, J. F.; Chen, L.; Wong, C.-H. J. Org. Chem. 1990, 55, 4897.
43. Silvestri, M. G.; Wong, C.-H. J. Org. Chem. 2001, 66, 910.
44. (a) Barany, G.; Schroll, A. L.; Mott, A. W.; Halsrud, D. A. J. Org. Chem. 1983, 48, 4750. (b) Kobayashi, N.; Osawa, A.; Fujisawa, T. Chem. Lett. 1973, 2, 1315.
45. Sakakura, A.; Yamada, H.; Ishihara, K. Org. Lett. 2012, 14, 2972.

Chapter 2

The First Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridines with α-Acyloxyacrolein Catalyzed by Chiral Primary Ammonium Salt

Abstract

: We have developed the first example of a catalytic and highly enantioselective Diels-Alder reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins catalyzed by the chiral ammonium catalyst, and their derivatization to some key synthetic intermediates of biologically active compounds. Furthermore, a plausible mechanism via an aqua complex can explain all previous results with the use of the chiral ammonium catalyst.

2-1. Introduction

The isoquinuclidine skeleton is found in a wide range of alkaloids, and optically active functionalized isoquinuclidines, as chiral synthons, can be transformed to versatile alkaloids. ${ }^{1}$ The enantioselective Diels-Alder reaction of 1,2-dihydropyridines with acryloyl derivatives is one of the most straightforward methods for the construction of optically active isoquinuclidines.

For example, in 1980, Wender et al. achieved the total synthesis of (\pm)-reserpine from $\quad \pm$)-endo-Diels-Alder adduct 1 of N-methoxycarbonyl-1,2-dihrdropyridine with methyl α-acetoxyacrylate (Scheme 1). ${ }^{2}$

In 1990, Mariano et al. achieved the formal total synthesis of (\pm)-deserpidine from

$$
(\pm) \text {-Diels-Alder adduct }
$$

$$
2
$$

of
N-(2,2,2-trichloroethoxycarbonyl)-1,2-dihydropyridine with α-acetoxyacrylonitrile. However, these Diels-Alder reactions were very slow and the endo-selectivity was low (Scheme 1). ${ }^{3}$

Scheme 2.1. Total Synthesis of (\pm)-Reserpine ${ }^{2}$ and (\pm)-Deserpidine ${ }^{3}$

In 2006, Doris et al. reported the formal synthesis of (+)-catharanthine using optically active isoquinuclidine 4 as a key intermediate, which was derived from N -benzyloxycarbonyl-L-serine (3) in 7\% overall yield over 12 steps (Scheme 2.2). ${ }^{4,5}$

Scheme 2.2. Doris's Formal Total Synthesis of (+)-Catharanthine ${ }^{4}$

In 2002, Rawal et al. reported the first catalytic enantioselective Diels-Alder reaction of 1,2-dihydropyridine with N-acryloyloxazolidinone. ${ }^{6 a}$ Since then, Nakano et al. have intensively studied on the development of an asymmetric catalysis. ${ }^{66-\mathrm{k}}$ In 2005, Fukuyama et al. reported that MacMillan's catalyst ${ }^{7}$ was also effective for the enantioselective Diels-Alder reaction of N-benzyloxycarbonyl-1,2-dihydropyridine with acrolein to give optically active isoquinuclidine. ${ }^{8}$

Against this backgroud, we expected that we could prepare optically active synthons 1, 2 and 4 through the enantioselective Diels-Alder reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins as a key step. However, there have been no reports on the highly enantioselective Diels-Alder reaction of dihydropyridines with α-substituted acryloyl derivatives. ${ }^{9}$ Along these lines, we have developed the enantioselective Diels-Alder reaction of simple dienes with α-heterosubstituted acroleins catalyzed by chiral primary ammonium salts. ${ }^{10}$ In this report we describe the first enantioselective Diels-Alder reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins catalyzed by $\mathbf{6} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$, and their derivatization to endo-1, 7, 4, and 5 (Scheme 2.3).

Scheme 2.3. This work

2-2 Results and discussion

First, the Diels-Alder reaction of N-phenoxycarbonyl-1,2-dihydropyridine (9a) with α-(benzoyloxy)acrolein (10a) was examined in the presence of $10 \mathrm{~mol} \%$ of $7 \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$ in nitroethane (Table 2.1).

Table 2.1. Enantioselective Diels-Alder Reaction of 9a with $\mathbf{1 0}$

		 9	$\xrightarrow[\mathrm{EtNO}_{2}]{\substack{6\left(10 \mathrm{~mol}_{2} \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO} \mathrm{SO}_{3} \mathrm{H} \\\left(27.5 \mathrm{~mol}_{3}\right)\right.}}$	 endo-10, >95\% endo
entr	9	conditions		
y	(Ar)		yield (\%)	ee (\%) ${ }^{\text {b }}$
$1^{\text {c }}$	$\begin{gathered} \text { 9a } \\ (\mathrm{Ph}) \end{gathered}$	$\begin{gathered} -78^{\circ} \mathrm{C}, 5 \text { min to } \\ 0^{\circ} \mathrm{C}, 3 \text { days } \end{gathered}$	to 10aa, 58	88
2^{c}	$\begin{gathered} \mathbf{9 b} \\ \left(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OMe})-p\right) \end{gathered}$	$\begin{gathered} -78{ }^{\circ} \mathrm{C}, 5 \text { min to } \\ 0^{\circ} \mathrm{C}, 1.5 \text { days } \end{gathered}$	to $\mathbf{1 0 a b}, 88$	91
$3^{\text {c }}$	${ }^{\mathbf{9 b}}$	$0^{\circ} \mathrm{C}, 12 \mathrm{~h}$	10ab, 88	69
$4^{\text {a }}$	9 b	$\begin{aligned} & -78^{\circ} \mathrm{C}, 5 \text { min to } \\ & -20^{\circ} \mathrm{C}, 4 \text { days } \end{aligned}$	to 10ab, 61	95
5^{e}	9b	$\begin{gathered} -20^{\circ} \mathrm{C}, 5 \mathrm{~min} \text { to } \\ 0^{\circ} \mathrm{C}, 2.5 \text { days } \end{gathered}$	to 10ab, 81	92

[a] See the experimental section in detail. [b] Ee of endo-10. [c] 0.1 mmol scale of 9 $(0.8 \mathrm{M})$ in EtNO_{2}. [d] 0.1 mmol scale of $\mathbf{9 b}(0.4 \mathrm{M})$ in EtNO_{2}. 1.5 equiv of $\mathbf{8 a}$ was used. [e] 2.4 mmol scale of $\mathbf{9 b}(0.8 \mathrm{M})$ in EtNO_{2}.

The reaction temperature was gradually increased from $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, and the reaction mixture was further stirred at $0^{\circ} \mathrm{C}$ for 3 days. The desired isoquinuclidine 10aa was obtained in 58% yield with $>95 \%$ endo-selectivity. The enantioselectivity of endo-10aa was 88% ee (entry 1). Since a hydrogen-bonding interaction between an α-acyl moiety of 9 and an ammonium proton of the catalyst was expected, α-(p-methoxybenzoyloxy)acrolein (9b) was examined as a dienophile under the same conditions. Interestingly, $\mathbf{9 b}$ was much more reactive than $\mathbf{9 a}$. Endo-10ab was obtained in 88% yield with 91% ee (entry 2). When the reaction was started at $0^{\circ} \mathrm{C}$, the enantioselectivity was reduced to 69% ee (entry 3). Actually, the reaction proceeded slowly even at $-20^{\circ} \mathrm{C}$, and the enantioselectivity was 95% ee (entry 4). The reaction of $\mathbf{8 a}$ with $\mathbf{9 b}$ was scalable, and could be increased up to 2.4 mmol scale without reducing chemical yield and enantioselectivity of $\mathbf{1 0 a b}$ (entry 5).

Scheme 2.4. Derivatation of endo-10ab to endo-1

Endo-10ab was transformed to $\mathbf{1 2}$ in 56% yield under basic oxidation conditions (Scheme 2.4). This is a one-pot 4-step sequence of three different functional groups. ${ }^{11}$ Deprotection of the p-methoxybenzoyl group of $\mathbf{1 0 a b}$ was promoted by the adjacent oxyanion (Step 2 in Scheme 2.4). ${ }^{12}$ The generation of 11 was detected by ${ }^{1} \mathrm{H}$ NMR analysis. The subsequent acetylation of $\mathbf{1 2}$ gave endo- $\mathbf{1}$ in 88\% yield.

Scheme 2.5. Derivatization of endo-11ab to (-)-4

Endo-adduct 10ab (91% ee) was converted to a key synthetic intermediate 4 of (+)-catharanthine in good yield by selective reduction of the formyl group of 10ab, selective methanolysis of the ester moiety of $\mathbf{1 3}$, oxidative cleavage of the vicinal diol moiety of $\mathbf{7}$, and acetalization of $\mathbf{1 4}$ (scheme 2.5). ${ }^{13}$ The absolute configuration of $\mathbf{4}$ was determined to be $(-)-(1 R, 4 R)$ by comparison of its optical rotation $\left(91 \%\right.$ ee, $[\alpha]_{\mathrm{D}}{ }^{26}$ $=-65(c=0.4, \mathrm{MeOH}){ }^{4} \quad$ Spiroacetal 4 can be transformed to 2-(2-(1H-indol-3-yl)acetyl)-2-azabicyclo[2.2.2]oct-7-en-6-one (5) by Doris's synthetic method (Scheme 2.2). ${ }^{4} \quad$ Thus, $(+)-(1 R, 4 R)-5$ can be synthesized from 7 in 49% overall yield over 5 steps. As a new and more concise synthetic route to $(+)-(1 R, 4 R)-5$, we developed a 4 -step sequence from diol 7 which included the acetalization of 7 , N-deprotection/acylation of 15, the hydrolysis of 16, and the oxidative cleavage of 17 (Scheme 6). The overall yield of $(+)-5\left(91 \%\right.$ ee, $[\alpha]_{\mathrm{D}}{ }^{24}=+88\left(c=1.2, \mathrm{CHCl}_{3}\right)$ from 7 was 65%. ${ }^{4}$

Scheme 2.7. Derivatization of 7 to (+)-5


```
\(\mathrm{NaIO}_{4}\) (1.3 equiv.)
\(\xrightarrow[\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(2: 1 \mathrm{v} / \mathrm{v})]{\mathrm{Na}_{2} \mathrm{HPO}_{4}(2.0 \text { equiv. }}(+)-585 \%\)
\(0^{\circ} \mathrm{C}, 12 \mathrm{~h}\)
```

The substrate scope of the Diels-Alder reaction of 4-substituted N-phenoxycarbonyl-1,2-dihydropyridines ($\mathbf{8 b} \mathbf{-} \mathbf{e}$) with $\mathbf{9 b}$ was investigated under the optimized conditions (entry 2 in Table 2.1). The results are shown in Table 2.2. The reactions proceeded smoothly at $-20 \sim 0{ }^{\circ} \mathrm{C}$ to give desired endo-adducts $\mathbf{1 0}$ in good to high yield with high enantioselectivity.

Table 2.2. Enantioselective Diels-Alder Reaction of $\mathbf{8}$ with 9b

Entry	8 (R)	10	
		Yield[\%]	ee[\%]
$1^{[a]}$	8b (Me)	10bb, 95	88
2	8c (i-Pr)	10cb, 86	80
3	8d $\left(\mathrm{OCOC}_{6} \mathrm{H}_{4}-\mathrm{OMe}-p\right)$	10db, 84	90
$4^{[b]}$	8d $\left(\mathrm{OCOC}_{6} \mathrm{H}_{4}-\mathrm{OMe}-p\right)$	10db, 81	95
$5^{[b]}$	8e ($\mathrm{CH}_{2} \mathrm{OTBS}$)	10eb, 82	93

[a] 2.2 equiv. of $\mathbf{8}$ was used. [b] the reaction was carried out at $-20^{\circ} \mathrm{C}$, for 3 days.

To understand the reaction mechanism, the optimized geometry of iminium salt 18 prepared from $\mathbf{6} \cdot 3 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$ and $\mathbf{9 a}$ was calculated using B3LYP/6-31G(d). ${ }^{14,15}$ However, no reasonable geometries that could explain the enantioface selectivity were obtained. When a key intermediate was postulated to be an aqua complex $18 \cdot \mathrm{H}_{2} \mathrm{O}$, the desired optimized geometry was obtained as shown in Figure 2.1.

Figure 2.1. Optimized geometry (B3LYP/6-31G(d)) of iminium salt $\mathbf{1 8} \cdot \mathrm{H}_{2} \mathrm{O}$ prepared from $6 \cdot 3 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$ and 9 a in situ

One water molecule stabilizes the (Z)-iminium geometry through three hydrogen bonds. In this geometry, the $r e$-face of the dienophile is effectively shielded by the benzyl moiety of $6 \cdot 3 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$. Thus, 1,2 -dihydropyridine can approach the $s i$-face of the dienophile to give $(1 R, 4 R)$-adduct enantioselectively. While this mechanism is plausible, it is not supported by any experimental evidence. Nevertheless, some water molecules may contribute to the construction of key intermediates or transition-state assemblies. Further mechanistic studies are in progress and will be reported in the near future.

3-3 Summary

In summary, we have developed the first example of a catalytic and highly enantioselective Diels-Alder reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins catalyzed by $\mathbf{6 \cdot 2 . 7 5} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$, and their derivatization to some key synthetic intermediates of biologically active compounds. Furthermore, a plausible mechanism via an aqua complex such as $\mathbf{1 8} \cdot \mathrm{H}_{2} \mathrm{O}$ can explain all previous results with the use of $6 \cdot \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$. ${ }^{10}$

References and Notes

1. a) Farunk Khan, M. O.; Levi, M. S.; Clark, C. R.; Ablordeppey, S. Y.; Law, S.-J.; Wilson, N. H.; Borne, R. F. Stud. Nat. Prod. Chem. 2008, 34, 753-787; b) Silva, E. M. P.; Varandas, P. A. M. M.; Silva, A. M. S. Synlett 2013, 3053-3089.
2. a) Wender, P. A.; Schaus, J. M.; White, A. W. J. Am. Chem. Soc. 1980, 102, 61576159; b) Wender, P. A.; Schaus, J. M.; White, A. W. Heterocycles 1987, 25, $263-$ 270.
3. Baxter, E. W.; Labaree, D.; Ammon, H. L.; Mariano, P. S. J. Am. Chem. Soc. 1990, 112, 7682-7692.
4. Moisan, L.; Thuéry, P.; Nicolas, M.; Doris, E.; Rousseau, B. Angew. Chem. Int. Ed. 2006, 45, 5334-5336. According to this report, the specific rotations $\left([a]_{\mathrm{D}}{ }^{20}\right)$ of $(+)-(1 S, 4 S)-4(>99 \%$ ee $)$ and $(-)-(1 S, 4 S)-5(>99 \%$ ee $)$ are $+70(c=0.4, \mathrm{MeOH})$ and $-61\left(c=1.2, \mathrm{CHCl}_{3}\right)$, respectively.
5. Büchi, G.; Kulsa, P.; Ogasawara, K.; Rosati, R. L. J. Am. Chem. Soc. 1970, 92, 999-1005.
6. a) Takenaka, N.; Huang, Y.; Rawal, V. H. Tetrahedron 2002, 58, 8299-8305; b) Nakano, H.; Tsugawa, N.; Fujita, R. Tetrahedron Lett. 2005, 46, 5677-5681; c) Nakano, H.; Tsugawa, N.; Takahashi, K.; Okuyama, Y.; Fujita, R. Tetrahedron, 2006, 62, 10879-10887; d) Nishiuchi, Y.; Nakano, H.; Araki, Y.; Sato, R.; Fujita, R.; Uwai, K.; Takeshita, M. Heterocycles 2009, 77, 1323-1331; e) Nakano, H.; Osone, K.; Takeshita, M.; Kwon, E.; Seki, C.; Matsuyama, H.; Takano, N.; Kohari, Y. Chem. Commun. 2010, 46, 4827-4829; f) Hirama, M.; Kato, Y.; Seki, C.; Nakano, H.; Takeshita, M.; Oshikiri, N.; Iyoda, M.; Matsuyama, H. Tetrahedron 2010, 66, 7618-7624; g) Stuttibut, C.; Kohari, Y.; Igarashi, K.; Nakano, H.; Hirama, M.; Seki, C.; Matsuyama, H.; Uwai, K.; Takano, N.; Okuyama, Y.; Osone, K.; Takeshita, M.; Kwon, E. Tetrahedron Lett. 2011, 52, 4745-4748; h) Seki, C.; Hirama, M.; Hutabarat, H. D. M. R.; Takada, J.; Stuttibut, C.; Takahashi, H.; Takaguchi, T.; Kohari, Y.; Nakano, H.; Uwai, K.; Takano, N.; Yasui, M.; Okuyama, Y.; Takeshita, M.; Matsuyama, H. Tetrahedron 2012, 68, 1774-1781; i) Okuyama, Y.; Osone, K.; Nakano, H.; Takeshita, M. Heterocycles 2012, 84, 12091016; j) Hutabarat, N. D. M. R.; Seki, C.; Shimizu, T.; Hirama, M.; Kohari, Y.; Nakano, H.; Uwai, K.; Takano, N.; Kwon, E.; Matsuyama, H. Heterocycles 2012,

86, 203-217; k) Sakuta, Y.; Kohari, Y.; Hutabarat, N. D. M. R.; Uwai, K.; Kwon, E.; Okuyama, Y.; Seki, C.; Matsuyama, H.; Takano, N.; Tokiwa, M.; Takeshita, M.; Nakano, H. Heterocycles 2012, 86, 1379-1389.
7. a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243; b) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta 2006, 39, 79.
8. a) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama T.; Angew. Chem. Int. Ed. 2007, 46, 5734-5736; b) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Tetrahedron 2009, 65, 3239-3245.
9. According to ref. 6a, Rawal et al. obtained endo-adduct in 89% yield with 67% ee through the enantioselective Diels-Alder reaction of N phenyloxycarbonyldihydropyridine with methacrolein catalyzed by chiral $\mathrm{Cr}(\mathrm{III})$ Lewis acid.
10. a) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504 (13079 correction); b) Sakakura, A.; Suzuki, K.; Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229; c) Sakakura, A.; Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457; d) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2007, 129, 8930; e) Ishihara, K.; Nakano, K.; Akakura, M. Org. Lett. 2008, 10, 2893; f) Sakakura, A.; Ishihara, K. Bull. Chem. Soc. Jpn. 2010, 83, 313; g) Sakakura, A.; Yamada, H.; Ishihara, K. Org. Lett. 2012, 14, 2972; h) Sakakura, A.; Yamada, H.; Ishihara, K. Asian J. Org. Chem. 2012, 1, 133-137.
11. For the oxidation of aldehydes with $\mathrm{I}_{2} / \mathrm{KOH}$, see: (a) Yamada, S.; Morizono, D.; Yamamoto, K. Tetrahedron Lett. 1992, 33, 4329-4332. (b) Jones, B. D.; Clair, J. L.; Moore, C. E.; Rheingold, A. L.; Burkart, M. D. Org. Lett. 2010, 12, 4516.
12. After the formyl group of 10ab was oxidized to a methoxycarbonyl group, we failed to achieve selective deprotection of the p-methoxybenzoyl group to produce 12 under basic conditions.
13. a) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357-1358; b) Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron 1981, 37, 3899-3910.
14. Frisch, M. J. et al., Gaussian 09, Revision C01, Gaussian, Inc., Wallingford, CT, 2009.
15. a) Becke, A. D. J. Chem. Phys. 1993, 96, 5648; b) Stevens, P. J.; Devlin, J. F.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627; c) Tirado-Rives, J.; Jørgensen, W. L. J. Chem. Theory Comput. 2008, 4, 297-306.

Experimental Section

General Methods. Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (400 MHz) at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity ($\mathrm{s}=\operatorname{singlet} ; \mathrm{d}=\operatorname{doublet} ; \mathrm{t}=$ triplet; $q=$ quartet, $m=$ multiplet $)$, coupling constant (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.00 ppm). High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-MA-10A-VP and chiral column of Daicel CHIRALCEL OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALCEL OZ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK AD-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK OD-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK IA-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$). Optical rotations were measured on a RUDOLPH AUTOPOL IV digital polarimeter. The reactions were carried out under an atmosphere of dry nitrogen. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254} 0.25 \mathrm{~mm}$) were used. The products were purified by column chromatography on silica gel (E. Merck Art. 9385). High-resolution mass spectral analysis (HRMS) was performed at Chemical Instrumentation Facility, Nagoya University on JEOL JMS-700 spectrometer (for FAB) or JEOL JMS-T100GCV spectrometer (for EI). In experiments that required dry solvent, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purchased from Kanto, TCI or Wako as the "anhydrous." Nitroethane $\left(\mathrm{EtNO}_{2}\right)$, and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were freshly distilled from calcium hydride. Other simple chemicals were analytical-grade and obtained commercially.

Synthesis of 4-substituted 1-phenoxycarbonyl-1,2-dihydropyridines (8) ${ }^{1}$

4-Methyl-1-phenoxycarbonyl-1,2-dihydropyridines (8b): To a solution of 4-methyl pyridine ($4.7 \mathrm{~g}, 50 \mathrm{mmol}$) in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.9 \mathrm{~g}, 50$ $\mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, the mixture was stirred for 30 min . Phenylchloroformate $(7.8 \mathrm{~g}, 50$ mmol) was slowly introduced to the mixture, and stirred for 3 h at the same temperature. The reaction was quenched by the successive addition of ice water and the solution was stirred until H_{2} bubble stopped and then warmed up to ambient temperature. The mixture was extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine ($100 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give 4-methyl- N-phenoxycarbonyl-1,2-dihydropyridines in 70% yield ($7.5 \mathrm{~g}, 35 \mathrm{mmol}$). 8b: IR $\left(\mathrm{CHCl}_{3}\right) 1726,1359,1204,1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (3/2): $\delta 1.75(\mathrm{~s}, 3 \mathrm{H}), 4.34-4.43(\mathrm{~m}, 1.3 \mathrm{H}), 4.48-4.58(\mathrm{~m}, 0.7 \mathrm{H}), 5.12(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 0.6 \mathrm{H}), 5.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.22-5.28(\mathrm{~m}, 0.4 \mathrm{H}), 5.28-5.33(\mathrm{~m}, 0.6 \mathrm{H}), 6.80(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 0.4 \mathrm{H}$), 6.87 (d, $J=7.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.13$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.27$ (m, 1H), $7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.5,44.0$ and 44.4, 109.4 and $109.6,113.54$ and $114.1,121.6$ (2C), 124.8, 125.5 and 125.6, 129.3 and 129.4 (2C), 129.7 and 130.2, 150.9 and 151.5; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 216.1019, found 216.1015.

4-Isopropyl-1-phenoxycarbonyl-1,2-dihydropyridines (8c): Compound $\mathbf{8 c}$ was prepared from 4-isopropylpyridine according to the procedure for the synthesis of $\mathbf{8 b} .56 \%$ yield. IR $\left(\mathrm{CHCl}_{3}\right) 1727,1359,1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
mixture of rotamers (3/2): $\delta 1.05$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.29(\mathrm{~h}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (d, $J=$ $3.7 \mathrm{~Hz}, 1.3 \mathrm{H}$), $4.55(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1.3 \mathrm{H}), 5.19-5.33(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 21.1 (2C), 32.4, 44.0 and 44.3, 107.3 and 107.6, 110.8 and 111.3, 121.6 (2C), 125.1, 125.6, 125.7 and 125.9, 129.3 (2C), 139.7 and 140.1, 150.9 and 151.4; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$244.1332, found 244.1333.

4-(p-Methoxybenzoyloxy)-1-phenoxycarbonyl-1,2-dihydropyridines
Compound 8d was prepared from 4-(p-methoxybenzoyloxy)pyridine ${ }^{2}$ according to the procedure for the synthesis of $\mathbf{8 b} .30 \%$ yield. white solid; IR (KBr) 1732, 1718, $1602,1510,1333,1283,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (3/2): $\delta 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.66(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1.2 \mathrm{H}), 4.81(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.19(\mathrm{dd}, J=$ $2.3,8.7 \mathrm{~Hz}, 0.6 \mathrm{H}$), $5.21(\mathrm{dd}, J=2.3,8.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.32-5.40(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.98(\mathrm{~m}$, 2.6 H), 7.02 (d, $J=8.2 \mathrm{~Hz}, 0.4 \mathrm{H}$), 7.15 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 44.0$ and 44.4, $55.5,103.8$ and 104.1, 104.6 and 105.0, 113.8 (2C), 112.3 and 121.5 (2C), 125.9, 127.6, $128.5,129.4(2 \mathrm{C}), 132.2(2 \mathrm{C}), 144.1$ and $144.5,150.8$ and $151.3,152.0,152.3,163.9$ and 164.3 ; HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}] 351.1107$, found 351.1111.

4-(tert-Butyldimethylsilyloxy)methyl-1-phenoxycarbonyl-1,2-dihydropyridines (8e): Compound 8e was prepared from

 4-[(tert-butyldimethylsilyloxy)methyl]pyridine ${ }^{3}$ according to the procedure for the synthesis of $\mathbf{8 b} .47 \%$ yield. white participate; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1731,1353,1204 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (2/1): $\delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$,$4.12(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.62(\mathrm{~m}, 0.4 \mathrm{H}), 4.38-4.48(\mathrm{~m}, 0.6 \mathrm{H}), 5.19(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-$ $5.55(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta-5.37$ (2C), 18.3, 25.9 (2C), 43.9 and 44.3, 105.3 and, 105.4, 112.5 and 113.1, 121.5 (2C), 125.4, 125.6 and 126.1, 129.3 (2C), 133.5 and $133.9,150.7$ and 150.8, 151.4 and 152.5 ; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$346.1833, found 346.1834 .

General procedure for the enantioselective Diels-Alder reaction of 1,2-dihydropyridines with α-(acyloxy)acroleins: α-(benzoyloxy)acrolein (9, 0.1 mmol) was added to a solution of chiral triamine $(6,3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$ $(6.8 \mathrm{mg})$ in $\mathrm{EtNO}_{2}(0.125 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After the mixture was stirred at the same temperature for 5 min , 1-phenoxycarbonyl-1,2-dihydropyridine ($8,0.15 \mathrm{mmol}$) was added in one portion. After the reaction mixture was stirred for 1.5 days at $0^{\circ} \mathrm{C}$ or 3.0 days at $-20^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, the crude mixture was directly purified by chromatography on a silica gel column (hexane/EtOAc 10:1 to 5:2) to give Diels-Alder adducts $\mathbf{1 0}$.

Typical Procedure for the Enantioselective Diels-Alder Reaction of 8a with 9b on

 Large Scale (Table 1 (entry 5).α-(p-Methoxybenzoyloxy)acrolein $(\mathbf{9 b}, 500 \mathrm{mg}, 2.43 \mathrm{mmol}$) was added to a solution of $6(73.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(165 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(3.0 \mathrm{~mL})$ at -20 ${ }^{\circ} \mathrm{C}$ and stirred for 5 min at same temperature. After the mixture was stirred at the $0^{\circ} \mathrm{C}$ for 10 min , and cooled to $-20^{\circ} \mathrm{C}$ again. The diene $\mathbf{8}(536 \mathrm{mg}, 2.67 \mathrm{mmol})$ was added in one portion at same temperature. After 5 min , the reaction was stirred for 2.5 days at 0 ${ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$, the crude product was purified directly by chromatography on a silica gel column (hexane/EtOAc 10:1 to 5:2) to give 10ab in 81% yield, 92% ee ($800 \mathrm{mg}, 1.97 \mathrm{mmol}$).
PhOOC

(-)-(1R,4R,7S)-7-Formyl-1-phenoxycarbonyl-2-azabicyclo[2.2.2]oct-5-ene-7-yl
Benzoate (10aa, endo isomer, Table 2.1, entry 1): Colorless oil; $[\alpha]^{19}{ }^{\mathrm{D}}-27.6$ (c 1.00,
CHCl_{3}) for 88% ee; HPLC (Daicel CHIRALPAK OD-3 column, hexane- $i-\mathrm{PrOH}=9: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t \mathrm{R}=23.7$ (major) and 28.4 (minor) min; IR $\left(\mathrm{CHCl}_{3}\right) 17.16$, 1404, 1290, $1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers ($1 / 1$): $\delta 1.78$ (dd, $J=14.6,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 1.85 (dd, $J=14.6,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.54 (dt, $J=14.6,3.2 \mathrm{~Hz}$, 0.5 H), 2.62 (dt, $J=14.6,3.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.03-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dt}, J=10.5,2.3 \mathrm{~Hz}$, 0.5 H), 3.31 (dt, $J=10.1,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.58 (dd, $J=10.6,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.69 (dd, $J=$ $10.3,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), $5.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.30(\mathrm{dd}, J=$ $7.1,6.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 6.39 (dd, $J=7.3,7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.69(\mathrm{dd}, J=14.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (d, $J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), $7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37$ (dd, $J=8.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=7.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, $J=7.6,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.51(\mathrm{~s}, 0.5 \mathrm{H}), 9.55(\mathrm{~s}, 0.5 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.5$ and 30.9, 32.0 and 32.4, 46.8 and 47.0, 49.3 and $50.1,86.1$ and $86.6,121.4$ and 121.7 (2C), 125.3 and $125.5,127.4$ and $127.8,128.6$ (2C), 129.2 and 129.3 (2C), 130.0 and 130.2 (2C), 133.9 and 133.9, 137.8 and 137.8, 151.0 and 151.2, 153.3, 154.4, 166.0 and 166.1, 195.3 and 195.5; HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 378.1336$, found 378.1340.

(-)-(1R,4R,7S)-7-Formyl-1-phenoxycarbonyl-2-azabicyclo[2.2.2]oct-5-ene-7-yl p-Methoxybenzoate (10ab, endo isomer, Table 2.1, entry 2-4): Colorless oil; $[\alpha]^{21}{ }_{D}$ -22.4 (c 1.00, CHCl_{3}) for 95% ee; HPLC (Daicel CHIRALPAK OD-H column, hexane $-i-\operatorname{PrOH}=4: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t \mathrm{R}=19.3$ (minor) and 22.2 (major) min; IR ($\left.\mathrm{CHCl}_{3}\right) 1716,1605,1404,1258 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (1/1): $\delta 1.76$ (dd, $J=14.2,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.82$ (dd, $J=14.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (d, $J=14.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.61(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, 0.5 H), $3.30(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.68(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 0.5 \mathrm{H})$, $5.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.38$ (dd, $J=6.9,6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.62-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.6,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}$,
$J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 0.5 \mathrm{H}), 9.55(\mathrm{~s}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.5$ and $30.9,32.0$ and $32.5,46.8$ and $47.0,49.3$ and 50.2, 55.5, 85.8 and $86.3,113.9$ and 113.9 (2C), 120.8 and 121.1, 121.5 and 121.7 (2C), 125.3 and $125.5,127.4$ and 127.9, 129.2 and 129.3 (2C), 132.2 and 132.3 (2C), 137.7, 151.0 and 151.2, 153.3 and 154.4, 164.0 and 164.1, 165.7 and $165.9,195.5$ and 195.6; HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 408.1442$, found 408.1441.

(-)-(1R,4R,7S)-7-Formyl-6-methyl-1-phenoxycarbonyl-2-azabicyclo[2.2.2]oct-5-ene -7-yl p-Methoxybenzoate (10 bb , endo isomer, Table 2.2, entry 1): Colorless oil; $[\alpha]^{21}{ }_{D}-41.7\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right.$) for 88% ee; HPLC (Daicel CHIRALPAK OZ-H column, hexane $-i-\operatorname{PrOH}=4: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t \mathrm{R}=40.8$ (major), 67.5 (minor) min; IR $\left(\mathrm{CHCl}_{3}\right) 1715,1606,1403,1259,1206,1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers ($1 / 1$): $\delta 1.73$ (dd, $J=14.6,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), $1.80(\mathrm{dd}, J=14.2,2.3 \mathrm{~Hz}$, 0.5 H), $1.96(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dt}, J=14.2,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.63(\mathrm{dt}, J=14.2,2.8 \mathrm{~Hz}, 0.5 \mathrm{H})$, $2.73-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dt}, J=10.5,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.32(\mathrm{dt}, J=10.5,2.3 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.54(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.65(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.86(\mathrm{~s}, 1.5 \mathrm{H}), 3.87(\mathrm{~s}$, 1.5 H), 5.10 (d, $J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 5.21 (d, $J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.86$ (d, $J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H})$, 5.96 (d, $J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.89$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=$ $7.6,7.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 7.23 (dd, $J=7.8,7.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 7.05 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 0.5 \mathrm{H}), 9.53(\mathrm{~s}, 0.5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 19.7$ and 19.8, 31.4 and 32.0, 36.0 and 36.4, 46.4 and 46.6, 50.2 and 51.0, 55.5, 86.0 and $86.6,113.8$ (2C), 119.7 and $120.2,121.5$ and 121.8 (2C), 125.2 and 125.4, 129.2 and 129.3 (2C), 132.1 and 132.3 (2C), 147.7 and $147.9,151.1$ and 151.3, 153.2, 154.3, 164.0 and 164.1, 165.8 and 165.9, 195.5 and 195.8; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 422.1598$, found 422.1598 .

(-)-(1R,4R,7S)-7-Formyl-6-isopropyl-1-phenoxycarbonyl-2-azabicyclo[2.2.2]oct-5-e ne-7-yl p-Methoxybenzoate (10cb, endo isomer, Table 2.2, entry 2): Colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}-45.6$ (c 1.00, CHCl_{3}) for 80% ee; HPLC (Daicel CHIRALPAK AD-3 column, hexane $-i-\mathrm{PrOH}=4: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t \mathrm{R}=21.6$ (minor), 38.2 (major) min ; IR $\left(\mathrm{CHCl}_{3}\right) 1716,1605,1403,1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (1/1): $\delta 1.11$ (d, $J=1.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.13 (d, $J=1.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.75 (dd, $J=14.2,2.3$ $\mathrm{Hz}, 0.5 \mathrm{H}), 1.82(\mathrm{dd}, J=14.2,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.44-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.15$ (dt, $J=10.5,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.25(\mathrm{dt}, J=10.1,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.58(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}$, 0.5 H), $3.69(\mathrm{dd}, J=10.1,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.86(\mathrm{~s}, 1.5 \mathrm{H}), 3.87(\mathrm{~s}, 1.5 \mathrm{H}), 5.15(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $0.5 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=9.8$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (dd, $J=8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (d, $J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 9.47(\mathrm{~s}, 0.5 \mathrm{H}), 9.52(\mathrm{~s}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.0,32.1$ and 32.5 , 33.4 and $33.8,47.3$ and $47.4,50.3$ and 51.1, 55.5, 86.1 and 86.7, 113.8 (2C), 116.3 and $116.8,121.0$ and 121.1, 121.5 and 121.8 (2C), 125.2 and $125.4,128.3,129.2$ and 129.3 (2C), 132.2 and 132.3 (2C), 151.1 and 151.3, 153.2 and $154.3,156.8$ and $157.1,164.0$ and 164.1, 165.8 and 165.9, 195.4 and 195.7; HRMS (FAB) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 450.1911$, found 450.1915 .

(-)-(1R,4R,7S)-7-Formyl-6-(p-methoxybenzoyl)oxy-1-phenoxycarbonyl-2-azabicycl o[2.2.2]oct-5-ene-7-yl p-Methoxybenzoate (10db, endo isomer, Table 2, entry 3 and 4): Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}-47.8$ (c $0.95, \mathrm{CHCl}_{3}$) for 95% ee; HPLC (Daicel CHIRALPAK IA-3 column, hexane $-i-\mathrm{PrOH}=1: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=44.1$ (minor), 60.2 (major) min; IR (CHCl_{3}) 1718, 1605, 1511, 1402, 1259, $1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (2/1): $\delta 1.87$ (dd, $\left.J=14.4,2.3 \mathrm{~Hz}, 0.3 \mathrm{H}\right)$, 1.94 (dd, $J=14.2,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.98 (dt, $J=10.5,2.3 \mathrm{~Hz}, 0.3 \mathrm{H}$), 3.02 (dd, $J=11.0,2.8$ $\mathrm{Hz}, 0.7 \mathrm{H}$), $3.12-3.17$ (m, 1H), 3.62-3.66 (m, 1H), 3.71 (d, $J=2.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.74$ (d, $J=$ $1.8 \mathrm{~Hz}, 0.7 \mathrm{H}$), $3.81(\mathrm{dd}, J=2.3,2.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.84(\mathrm{dd}, J=2.5,2.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.87$ (s, $1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.3 \mathrm{H})$, 5.93 (dd, $J=7.1,2.8 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.06(\mathrm{dd}, J=7.1,2.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.90(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $0.7 \mathrm{H}), 6.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1.3 \mathrm{H}), 6.98(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.7 \mathrm{H})$, 7.11 (d, $J=7.4 \mathrm{~Hz}, 1.3 \mathrm{H}), 7.19$ (dd, $J=7.6,7.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.7 \mathrm{H})$, 7.34 (dd, $J=6.0,6.0 \mathrm{~Hz}, 0.7 \mathrm{H}$), 7.38 (dd, $J=7.8,7.4 \mathrm{~Hz}, 1.3 \mathrm{H}$), 9.59 (s, 0.7 H), 9.65 (s, $0.3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 32.1$ and $32.7,35.1$ and $35.4,47.1$ and $47.3,50.9$ and 51.7, $55.5(2 \mathrm{C}), 85.9$ and $86.4,109.7$ and 110.1, 113.9 and 113.9 (4C), 120.6 and $120.8,121.5$ and 121.8 (2C), 125.3 and 125.5129 .2 and 129.3 (2C), 132.2 and 132.3 (4C), 151.0 and 151.2, 153.0, 154.3, 156.6 and $156.8,164.1$ and 164.2, 165.7, 195.4 and 195.7; HRMS (FAB) calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{H}]^{+} 558.1759$, found 558.1761 .

(-)-(1R,4R,7S)-6-(tert-Butyldimethylsilyloxy)methyl-7-formyl-1-phenoxycarbonyl-2 -azabicyclo[2.2.2]oct-5-ene-7-yl p-Methoxybenzoate (10eb, endo isomer, Table 2, entry 5): Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}-28.8$ (c $1.00, \mathrm{CHCl}_{3}$) for 93% ee; HPLC (Daicel CHIRALPAK OD-3 column, hexane- $i-\operatorname{PrOH}=20: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=32.3$ (minor), 40.7 (major) min; IR ($\left.\mathrm{CHCl}_{3}\right) 1606,1404,1259, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) mixture of rotamers ($1 / 1$): $\delta 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.76(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 0.5 \mathrm{H}$), 1.84 (d, $J=14.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.52 (d, $J=14.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.60 (d, $J=14.2$ $\mathrm{Hz}, 0.5 \mathrm{H}$), $2.94(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.30(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.58(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.68(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.86(\mathrm{~s}, 1.5 \mathrm{H}), 3.87(\mathrm{~s}, 1.5 \mathrm{H}), 4.31(\mathrm{~s}$, $2 \mathrm{H}), 5.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0.5 \mathrm{H})$, 6.17 (d, $J=5.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.23(\mathrm{dd}, J=8.0,8.7 \mathrm{~Hz}$, 0.5 H), 7.33 (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 0.5 \mathrm{H}), 9.53(\mathrm{~s}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.5$ and
-5.4 (2C), 18.3, 25.8 (3C), 31.8 and 31.8, 32.2 and $32.4,46.8$ and $46.9,50.1$ and 50.9, 55.5, 62.6 and $62.7,86.1$ and $86.6,113.8$ (2C), 118.8 and $119.2,120.9$ and 121.1, 121.5 and 121.8 (2C), 125.2 and $125.4,129.2$ and 129.3 (2C), 132.2 and 132.3 (2C), 150.5 and 150.7, 151.1 and $151.2,153.2$ and 154.3, 164.0 and $164.1,165.7$ and 165.8, 195.3 and 195.6; HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 552.2412$, found 552.2409.

Derivatation of endo-10ab to endo-1 ${ }^{4}$

To a solution of endo- $\mathbf{1 1 a b}(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(0.25 \mathrm{~mL})$ was added sodium methoxide ($26 \mathrm{mg}, 0.48 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min. $\mathrm{KOH}(0.25 \mathrm{~mL}$ of 1.9 M solution in $\mathrm{MeOH}, 0.96 \mathrm{mmol})$ and $\mathrm{I}_{2}(122 \mathrm{mg}, 0.48$ mmol) were added sequentially to the mixture, and stirred for 1 h at same temperature. The reaction was quenched by the successive addition of aqueous sodium thiosulfate, and then reaction mixture was warmed up to ambient temperature. The mixture was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc $1: 1$ to $0: 1$) to give $\mathbf{1 2}$ ($14 \mathrm{mg}, 0.057$ mmol).

To a solution of $12(28 \mathrm{mg}, 0.12 \mathrm{mmol})$, DMAP ($21 \mathrm{mg}, 0.17 \mathrm{mmol}$) and triethylamine $(48 \mu \mathrm{~L}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added acetic anhydride (22 $\mu \mathrm{L}, 0.23 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred for 12 h at same temperature. The resultant mixture was directly purified by chromatography on a silica gel column (hexane/EtOAc 1:1) to give endo-1 ($29 \mathrm{mg}, 0.10 \mathrm{mmol}$) in 88% yield.

PhOOC

OMe Intermediate (11): $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1714,1605,1510,1408$, 1259, 1209, $1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (4/3) and stereoisomer $(2 / 1) \delta 1.48-1.71(\mathrm{~m}, 1.3 \mathrm{H}), 1.74-1.89(\mathrm{~m}, 0.7 \mathrm{H}), 2.76-2.93(\mathrm{~m}, 1.3 \mathrm{H})$, $2.61-2.71(\mathrm{~m}, 0.7 \mathrm{H}), 3.11-3.16(\mathrm{~m}, 0.4 \mathrm{H}), 3.22-3.28(\mathrm{~m}, 0.6 \mathrm{H}), 3.44-3.51(\mathrm{~m}, 3 \mathrm{H})$, $3.51-3.60(\mathrm{~m}, 0.5 \mathrm{H}), 3.64-3.72(\mathrm{~m}, 0.5 \mathrm{H}), 3.82-3.90(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.3 \mathrm{H})$, $4.76(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.1 \mathrm{H}), 4.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.71-$ $5.78(\mathrm{~m}, 1 \mathrm{H}), 6.38-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.42(\mathrm{~m}$, 2H), 7.98-8.12 (m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.6$ and $30.9,33.4$ and 33.5 and $34.8,46.7$ and $47.1,52.2$ and 52.9 and $53.8,55.5,55.5,57.0$ and 57.1 and 57.8, $78.8,99.1$ and $99.7,113.7$ and $113.8(2 C), 121.7$ and $121.8(2 C), 125.0$ and 125.1 and $125.2,129.1(2 \mathrm{C}), 129.2$ and 130.0 and 130.5 and $132.1,135.6(2 \mathrm{C}), 136.3$ and 136.7, 151.3, 155.2 and $155.5,164.1$; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}$440.1704, found 440.1700 .

MeOOC

(1R,4R,7S)-Dimethyl
7-Hydroxy-2-azabicyclo[2.2.2]oct-5-ene-2,7- dicarboxylate (12): IR (CHCl_{3}) 1737, 1684, 1457, 1399, 1273, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers $(2 / 1) \delta 1.50-1.60(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.08(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2.1 \mathrm{H}), 3.72(\mathrm{~s}, 0.9 \mathrm{H}), 3.74(\mathrm{~s}, 2.1 \mathrm{H}), 3.75(\mathrm{~s}, 0.9 \mathrm{H}), 4.73(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.27(\mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.29(\mathrm{dd}$, $J=7.8,7.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.5$ and $30.7,34.7$ and $35.1,46.4$ and $46.8,52.6$ and $52.7,52.6$ and $52.7,53.3$ and 53.8, 78.1 and $78.2,129.2$ and $129.5,136.1$ and $136.2,156.4$ and 157.4, 173.2; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO} 5[\mathrm{M}+\mathrm{H}]^{+} 242.1023$, found 242.1026.

(1R,4R,7S)-Dimethyl 7-Acetoxy-2-azabicyclo[2.2.2]oct-5-ene-2,7dicarboxylate (endo-1): $\quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1750,1702,1451,1395,1245, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers $(1 / 1) \delta 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.33-$ $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1.5 \mathrm{H})$, $3.69(\mathrm{~s}, 1.5 \mathrm{H}), 3.71(\mathrm{~s}, 1.5 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 5.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.16(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 0.5 \mathrm{H}), 6.23-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.43-6.53(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.5$ and 20.6, 30.1 and $30.4,34.4$ and $34.4,46.1$ and $46.4,50.0$ and $50.4,52.3,52.4,81.8$ and $81.8,128.6$ and 129.0, 135.3 and 135.7, 155.7 and 156.2, 170.2 and 170.3; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$284.1129, found 284.1128.

Derivatization of endo-10ab to (-)-4 (Scheme 7)

To a solution of Diels-Alder adduct (10ab, $615 \mathrm{mg}, 1.51 \mathrm{mmol}$) in $\mathrm{MeOH}(10$ mL) was added $\mathrm{NaBH}_{4}(57 \mathrm{mg}, 1.7 \mathrm{mmol})$ portion wise at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h at same temperature. The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and the solution was stirred until H_{2} bubble stopped and then warmed up to ambient temperature. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine ($100 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1) to give ($1 R, 4 R, 7 S$)-7-Hydroxymethyl-1-phenoxycarbonyl-2-azabicyclo[2.2.2]oct-5-ene-7-yl p-Methoxybenzoate (13) in 82% yield ($507 \mathrm{mg}, 1.24 \mathrm{mmol}$).

To a solution of alcohol $13(460 \mathrm{mg}, 1.12 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added sodium methoxide ($240 \mathrm{mg}, 4.5 \mathrm{mmol}$) at ambient temperature and stirred for 1 h . The resultant mixture was concentrated and the crude product was purified by chromatography on a silica gel column (hexane/EtOAc 1:1 to 0:1) to give diol 7 in 96% yield ($229 \mathrm{mg}, 1.06 \mathrm{mmol}$).
($1 R, 4 R, 7 S$)-7-Hydroxymethyl-1-phenoxycarbonyl-2-azabicyclo-[2.2.2]-oct-5-ene-7yl p-Metho- xybenzoate (13): IR $\left(\mathrm{CHCl}_{3}\right) 1710,1606,1409,1257 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, a mixture of rotamers (5/1)) $\delta 1.49(\mathrm{dt}, J=13.8,2.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 1.58$ (d, $J=8.3 \mathrm{~Hz}, 0.2 \mathrm{H}$), 1.66 (d, $J=7.4 \mathrm{~Hz}, 0.2 \mathrm{H}$), 1.74 (dd, $J=12.2,2.3 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.67$ (s, 0.2 H), 2.71 ($\mathrm{s}, 0.8 \mathrm{H}), 2.87-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.30(\mathrm{dt}, J=$ $10.5,2.8 \mathrm{~Hz}, 0.8 \mathrm{H}$), 3.57 (dd, $J=10.5,1.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.74(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 0.8 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.128(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.130(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 0.8 \mathrm{H}$), 4.19 (d, $J=5.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.88$ (d, $J=6.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.90(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 0.8 \mathrm{H}), 6.44-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.3 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 8.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1.7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, major rotamer) $\delta 31.0,34.8,47.0,52.8,55.4,69.1$, $76.2,113.7$ (2C), 121.8 (2C), 125.3, 129.2 (2C), 130.7, 131.7, 131.8 (2C), 135.3, 151.3, 155.6, 163.6, 165.9; HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 410.1598$, found 410.1596.

Methyl ($1 R, 4 R, 7 S$)-7-Hydroxy-7-(hydroxymethyl)-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylate (7): colorless oil, $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1683,1458,1400, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $400 \mathrm{MHz})$ mixture of rotamers (1/1) $\delta 1.33(\mathrm{dt}, J=4.6,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.37(\mathrm{dt}, J=4.6$, $2.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 1.47 (dd, $J=4.6,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.44(\mathrm{dd}, J=4.8,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.79-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=8.7,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.06(\mathrm{dt}, J=8.7,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.31-3.32$ (m, 2H), 3.42 (dt, $J=10.3,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.45(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.71(\mathrm{~s}$, 1.5 H), 3.72 (s, 1.5 H), 4.66 (dd, $J=4.1,3.7 \mathrm{~Hz}, 0.5 \mathrm{H}$), 4.70 (dd, $J=5.5,1.6 \mathrm{~Hz}, 0.5 \mathrm{H}$), 6.39-6.48 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 32.2$ and $32.4,35.5$ and $35.6,47.8$ and 48.2, 53.0 and 53.0, 53.7 and 54.1, 68.9, 78.0 and $78.3,132.2$ and 132.3, 135.9 and 135.9, 158.3 and 158.8; HRMS (FAB) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 214.1074$, found 214.1071.

To a solution of diol $7(250 \mathrm{mg}, 1.17 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{HPO}_{4}(400 \mathrm{mg}, 2.34 \mathrm{mmol})$ in EtOH $(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(330 \mathrm{mg}, 1.52 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred for 2 h at same temperature. The reaction mixture was quenched by the successive addition of aqueous sodium thiosulfate (20 mL), and then reaction mixture was warmed up to
ambient temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine ($30 \mathrm{~mL} \times 2$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 20:1) to give 14 in 80% yield ($170 \mathrm{mg}, 0.94 \mathrm{mmol}$).

Methyl (1R,4R)-7-oxo-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylate (14): IR (CHCl_{3})

 1736, 1699, 1448, 1889, 1283, $1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) mixture of rotamers $(3 / 2) \delta 2.22(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.85$ (d, $J=6.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.02(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.38-6.48(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.72(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 32.0$ and $32.2,36.4$ and $36.5,46.0$ and $46.4,52.8,57.2$ and 57.8, 127.7 and 128.3, 139.1 and 139.7, 155.2, 202.8 and 202.9; HRMS (FAB) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$204.0631, found204.0633.

To a solution of ketone $\mathbf{1 4}$ ($22 \mathrm{mg}, 0.12 \mathrm{mmol}$) and ethylenedioxybis(trimethylsilane) ($177 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added a solution of $\mathrm{TfOH}(10 \mu \mathrm{l}, 0.01$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ dropwise at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h at same temperature. ${ }^{5}$ The solution was warmed to $-20^{\circ} \mathrm{C}$ and stirred for 1 d . The reaction mixture was quenched by a saturated NaHCO_{3} aqueous solution (3 mL) and then warmed up to ambient temperature. The mixture was extracted with EtOAc $(50 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine ($100 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1) to give acetal 4 in $>99 \%$ yield ($27 \mathrm{mg}, 0.12 \mathrm{mmol}$). (-)-Methyl 2-azaspiro[bicyclo[2.2.2]oct[5]ene-7,2'-[1,3]dioxolane]-2-carboxylate (4): ${ }^{6}$ Colorless oil; $[\alpha]^{26}{ }_{D}-65\left(c \quad 0.40, \mathrm{CHCl}_{3}\right)$ for 91% ee; $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 1696,1455$, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers (2/1) $\delta 1.78-1.93(\mathrm{~m}, 2 \mathrm{H})$, 2.80-2.89 (m, 1H), 3.00 (dd, $J=11.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.36(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$, 3.72 (s, 1H), 3.91-4.01 (m, 2H), 4.01-4.12 (m, 2H), 4.27 (d, $J=5.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.69$ (d, $J=5.9 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.34-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 31.1$ and $31.3,37.8,45.9$ and $46.3,49.8$ and $50.5,52.4,64.1$ and $64.3,64.8,111.0$,
130.1 and 130.7, 135.3 and 135.8, 155.9 and 156.5; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$226.1074, found 226.1077.

Derivatization of 7 to (+)-5 (Scheme 7)

To a solution of diol 7 ($190 \mathrm{mg}, 0.89 \mathrm{mmol}$) and 2,2-dimethoxy propane ($560 \mu \mathrm{~L}, 4.45$ mmol) in THF (5 mL) was added TsOH ($15.2 \mathrm{mg}, 0.09 \mathrm{mmol}$) at ambient temperature and stirred for 1 h at same temperature. The reaction mixture was quenched with a saturated NaHCO_{3} aqueous solution $(10 \mathrm{~mL})$. The mixture was extracted with EtOAc $(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1) to give $\mathbf{1 5}$ in 86% yield (195 $\mathrm{mg}, 0.77 \mathrm{mmol}$). methyl(1R,2S,4R)-2',2'-dimethyl-6-azaspiro[bicyclo[2.2.2]octane-2,4'-[1,3] dioxolan]-7-ene-6-carboxylate (15): $\quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1699,1451,1397 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers $(1 / 1) \delta 1.33(\mathrm{~s}, 1.5 \mathrm{H}), 1.35(\mathrm{~s}, 1.5 \mathrm{H}), 1.46(\mathrm{~s}$, 1.5 H), 1.53 (s, 1.5 H), $1.57-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=5.3,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.84$ (dd, $J=$ $5.0,2.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.75-2.84(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=10.5,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.07(\mathrm{dt}, J=10.5$, $2.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.44 (dd, $J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), $3.82(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.31-6.38$ $(\mathrm{m}, 1 \mathrm{H}), 6.38-6.48(\mathrm{~m}, 1 \mathrm{H}), ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 26.0$ and 26.2, 27.1 and $27.5,30.1$ and $31.2,36.1$ and $36.3,46.5$ and $46.7,52.0$ and 52.2, 52.4 and 53.1, 73.3 and $73.3,83.7$ and $83.8,109.4$ and $109.5,130.5$ and $131.1,136.1$ and $136.7,155.9$ and 156.3; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 254.1387$, found 254.1385 .

To a solution of $\mathbf{1 5}(65 \mathrm{mg}, 0.26 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added MeLi $\left(0.56 \mathrm{~mL}, 1.14 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min at same temperature. The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (2 mL) and then warmed up to ambient temperature. To the mixture was added 1 M NaOH aqueous solution untile hydrogen ion concentration reached higher than pH 7 . The resultant mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated.

To a solution of the crude product, N, N-diisopropylethylamine ($88 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$), HOBt ($35 \mathrm{mg}, 0.26 \mathrm{mmol}$) and 3-indole acetic acid ($45 \mathrm{mg}, 0.26 \mathrm{mmol}$) in THF (2 mL) was added EDAC ($49 \mathrm{mg}, 0.26 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and stirred for 3 h at same temperature. The resultant mixture was poured a saturated NaHCO_{3} aqueous solution (15 mL) and washed with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1 to 0:1) to give 16 in 89% yield (81 $\mathrm{mg}, 0.23 \mathrm{mmol})$.

1-((1R,2S,4R)-2',2'-dimethyl-6-azaspiro[bicyclo[2.2.2]octane-2,4'-[1,3]dioxolan]-7-e n-6-yl)-2-($\mathbf{1 H}$-indol-3-yl)ethan-1-one (16): IR $\left(\mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ mixture of rotamers $(3 / 2) \delta 1.36(\mathrm{~s}, 1.8 \mathrm{H}), 1.38(\mathrm{~s}, 1,2 \mathrm{H}), 1.51(\mathrm{~s}, 1.2 \mathrm{H}), 1.54(\mathrm{~s}, 1.8 \mathrm{H})$, 1.62 (dt, $J=13.8,2.8 \mathrm{~Hz}, 0.6 \mathrm{H}$), 1.71 (dt, $J=13.3,2.8 \mathrm{~Hz}, 0.4 \mathrm{H}$), 1.82 (dd, $J=13.7,2.8$ $\mathrm{Hz}, 0.6 \mathrm{H}$), 1.91 (dd, $J=13.7,2.3 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.81-2.88(\mathrm{~m}, 0.4 \mathrm{H}), 2.74-2.81(\mathrm{~m}, 0.6 \mathrm{H})$, $3.14-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.58(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 0.6 \mathrm{H}$), 3.61 (d, $J=1.8 \mathrm{~Hz}, 0.6 \mathrm{H}$), 3.72-3.74 (m, 1H), 3.78 (d, $J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.81 (d, $J=17.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 0.4 \mathrm{H}$), 5.34 (dd, $J=6.0,1.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.04(\mathrm{t}, J=6.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.32-6.45(\mathrm{~m}$, $1.6 \mathrm{H}), 6.96(\mathrm{~s}, 0.4 \mathrm{H}), 7.07-7.20(\mathrm{~m}, 2.6 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
0.4 H), $7.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 25.7$ and 26.5, 27.3 and 27.6, 31.0, 31.6 and 31.8, 36.4 and 38.5, 46.9 and 47.5, $50.3,56.3,73.4$ and $74.4,83.5$ and 83.7, 108.9 and 109.7, 109.9 and 111.1, 118.6, 119.2 and $119.4,121.8$ and $121.9,122.6$ and $122.8,127.2$ and $127.4,129.6$ and 131.3, 136.1, 136.3 and 137.7, 170.3 and 170.7; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 353.1860 , found 353.1860 .

To a solution of $16(67 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added trifluoroacetic acid $(0.5 \mathrm{~mL})$ dropwised at ambient temperature and stirred for 1 h at same temperature. The resultant mixture was quenched with a saturated NaHCO_{3} aqueous solution. The mixture was washed with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine ($50 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (EtOAc-MeOH $1: 0$ to $5: 1$) to give $\mathbf{1 7}$ in $>99 \%$ yield ($59 \mathrm{mg}, 0.19 \mathrm{mmol}$). 1-((1R,4R,7S)-7-hydroxy-7-(hydroxymethyl)-2-azabicyclo[2.2.2]oct-5-en-2-yl)-2-(1
\boldsymbol{H}-indol-3-yl)ethan-1-one (17): yellow participate IR (KBr) 3397, 1606, $1458 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ mixture of rotamers $(3 / 2) \delta 1.29(\mathrm{t}, J=2.8 \mathrm{~Hz}, 0.3 \mathrm{H})$, 1.33 (t, $J=2.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.43$ (d, $J=2.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.46$ (d, $J=2.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.78-$ $2.83(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dt}, J=11.4,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.21-3.28(\mathrm{~m}, 2.5 \mathrm{H}), 3.47(\mathrm{dd}, J=11.7$, $1.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.63(\mathrm{dd}, J=10.8,1.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.72(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.76(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (d, $J=15.6 \mathrm{~Hz}, 0.6 \mathrm{H}$), 4.66 (d, $J=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}$), 5.21 (dd, $J=5.3,1.8$ $\mathrm{Hz}, 0.4 \mathrm{H}$), 6.05 (ddd, $J=7.8,6.4,1.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 6.33 (t, $J=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 6.38 (dt, $J=$ $5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 (dd, $J=7.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (dd, $J=8.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (s, 0.4 H), 7.14 (s, 0.6 H), 7.32 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 (d, $J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 7.58 (d, $J=7.8$ $\mathrm{Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 32.0$ and $32.2,32.7,35.5$ and $35.8,48.1$, 51.9, 56.4, 68.8 and $68.9,77.9$ and 78.1, 109.5, 112.2, 119.4 and 119.6, 119.8, 122.5 and $122.6,124.1$ and $124.2,128.5,131.4$ and 132.0, 136.4 and 138.0, 174.0; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 313.1547$, found 313.1549.

$\xrightarrow{\mathrm{Na}_{2} \mathrm{HPO}_{4} \text { (2.0 equiv.) }}$
 $0^{\circ} \mathrm{C}, 12 \mathrm{~h}$

To a solution of $17(35 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(32 \mathrm{mg}, 0.22 \mathrm{mmol})$ in EtOH $(0.26 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.52 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(31 \mathrm{mg}, 0.15 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 12 h at same temperature. The reaction mixture was quenched by the successive addition of aqueous sodium thiosulfate, and then reaction mixture was warmed up to ambient temperature. The mixture was washed with EtOAc $(20 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1 to $0: 1)$ to give 5 in 85% yield $(27 \mathrm{mg}, \quad 0.10 \mathrm{mmol})$. (+)-(1R,4R)-2-(2-(1H-indol-3-yl)acetyl)-2-azabicyclo[2.2.2]oct-7-en-6-one (5): ${ }^{6}$ yellow participate; $[\alpha]^{24}{ }_{\mathrm{D}}+88\left(\mathrm{c} 1.20, \mathrm{CHCl}_{3}\right)$ for 91% ee; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3349,1716$, $1655,1389,1229 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right)$ mixture of rotamers $(3 / 2) \delta 2.12-$ 2.24 (m, 2H), 3.14-3.21 (m, 1H), 3.23 (d, $J=11.5 \mathrm{~Hz}, 0.4 \mathrm{H}$), 3.35 (d, $J=9.2 \mathrm{~Hz}, 0.6 \mathrm{H}$), $3.55-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.87$ (d, $J=15.6 \mathrm{~Hz}, 0.5 \mathrm{H})$, 4.74 (d, $J=6.4 \mathrm{~Hz}, 0.4 \mathrm{H}$), 5.45 (d, $J=6.4 \mathrm{~Hz}, 0.6 \mathrm{H}$), 6.26 (dd, $J=7.1,6.9 \mathrm{~Hz}, 0.4 \mathrm{H}$), $6.41(\mathrm{dd}, J=7.1,6.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.67(\mathrm{dt}, J=6.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17$ (dd, $J=7.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (s, 1H), 7.36 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (d, $J=8.2$ $\mathrm{Hz}, 0.5 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right) \delta 31.1$ and 31.4 , 31.7 and $32.3,36.1$ and $36.2,45.9$ and $46.6,55.2,59.8,108.1$ and $108.5,110.8$ and $110.8,118.2$ and $118.4,119.0,121.6$ and 121.7, 122.4 and $122.5,126.8$ and 127.8 , 135.8, 139.0 and 140.0, 169.8 and 169.8, 202.2 and 202.4; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$281.1285, found 218.1289.

Computational Methods

The quantum chemical calculations were performed using the Gaussian 09^{7} suites of programs. The structure in Figure 2.1 was optimized using density functional theory (DFT) methods employing three nonlocal functionals (B3LYP). ${ }^{8}$ The standard $6-31 \mathrm{G}(\mathrm{d})$ basis set was used for geometry optimizations of the stable structures. The optimized geometries are also subjected to full frequency analyses at the same level of
theory to verify the nature of the stationary points. Equilibrium geometries are characterized by the absence of imaginary frequencies.

$19 \cdot \mathrm{H}_{2} \mathrm{O}$

```
Method: B3LYP/6-31+G(d)
SCF Done: E(RB3LYP) = -5576.27621811 A.U. after 6 cycles
Imaginary frequencies: 0
Zero-point correction= 0.897512
(Hartree/Particle)
Thermal correction to Energy= 0.976990
Thermal correction to Enthalpy= 0.977934
Thermal correction to Gibbs Free Energy= 0.770864
Sum of electronic and zero-point Energies= -5575.378706
Sum of electronic and thermal Energies= -5575.299228
Sum of electronic and thermal Enthalpies= -5575.298284
Sum of electronic and thermal Free Energies= -5575.505355
```

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	2.567748	-1.775695	$5-4.681694$
2	6	0	1.570473	-2.670595	$5-3.956805$

3	6	0	1.940984	-0.366249	-4.574032
4	16	0	-5.375720	0.243593	-0.647843
5	6	0	1.041754	-0.408596	-3.315924
6	7	0	1.164878	-1.822482	-2.775032
7	8	0	-2.309146	0.065240	-2.427135
8	6	0	-0.031899	-2.386106	-2.061311
9	6	0	-0.147601	-2.048382	-0.565949
10	6	0	-1.013021	-3.075459	0.193611
11	7	0	-0.609438	-0.606857	-0.368349
12	6	0	-2.524572	-3.198166	-0.121529
13	6	0	-3.238952	-3.813232	1.094828
14	6	0	-2.834167	-4.035897	-1.374119
15	6	0	-1.002026	-0.242908	1.032387
16	6	0	-1.207647	1.269092	1.215193
17	6	0	-1.230901	1.597218	2.741434
18	7	0	-2.488893	1.668196	0.610934
19	6	0	-1.465418	3.057771	3.045771
20	6	0	-2.853258	2.804730	0.111647
21	8	0	-4.470795	-0.180410	0.482223
22	6	0	-2.736046	3.518569	3.419907
23	6	0	-2.958694	4.874822	3.664643
24	6	0	-1.908995	5.786499	3.537647
25	6	0	-0.635703	5.333557	3.179005
26	6	0	-0.411126	3.979072	2.935214
27	6	0	-2.065424	3.989427	-0.197571
28	8	0	-0.706049	3.912887	-0.474313
29	6	0	-2.664345	5.187929	-0.198468
30	6	0	-0.382285	3.392835	-1.717942
31	8	0	-5.585652	1.706523	-0.668879
32	6	0	0.975548	3.756330	-2.154641
33	8	0	-1.195425	2.752637	-2.357694
34	6	0	1.306022	3.528381	-3.500146
35	6	0	2.570247	3.867841	-3.970318
36	6	0	3.510359	4.425333	-3.098502
37	6	0	3.183507	4.648209	-1.758404
38	6	0	1.916924	4.321100	-1.281376
39	6	0	-6.964426	-0.532373	-0.255474
40	8	0	-4.981664	-0.347927	-1.953809
41	16	0	2.360709	1.088784	0.758291
42	8	0	1.550840	1.057209	-0.517217
43	6	0	-7.051320	-1.928818	-0.270051
44	6	0	-8.236814	-2.593550	0.021359
45	6	0	-9.375055	-1.855938	0.339556
46	6	0	-9.314075	-0.467220	0.365944
47	6	0	-8.116752	0.188585	0.073423
48	9	0	-5.980544	-2.677472	-0.562132
49	9	0	-8.289230	-3.929079	0.000569
50	9	0	-10.518479	-2.481183	0.621234
51	9	0	-10.405626	0.240232	0.675476
52	9	0	-8.135498	1.520204	0.129022
53	8	0	2.224293	2.384294	1.458590
54	6	0	4.097489	1.001450	0.234733
55	8	0	2.116017	-0.115895	1.586551
56	6	0	4.529697	0.970051	-1.092699

57	6	0	5.885111	0.906476	-1.410445
58	6	0	6.838512	0.873515	-0.400389
59	6	0	6.434357	0.906064	0.931527
60	6	0	5.078445	0.966868	1.232617
61	9	0	3.684047	1.018204	-2.130523
62	9	0	6.269281	0.885338	-2.693158
63	9	0	8.136158	0.817709	-0.704534
64	9	0	7.345613	0.877797	1.907261
65	9	0	4.732598	0.979667	2.525319
66	16	0	3.584262	-3.411522	-0.854326
67	8	0	3.474450	-2.007762	-1.419190
68	8	0	2.282558	-4.115169	-0.983658
69	6	0	3.833334	-3.097763	0.927312
70	8	0	4.769685	-4.148490	-1.297993
71	6	0	5.026790	-2.495933	1.335845
72	6	0	5.273570	-2.170596	2.664606
73	6	0	4.312529	-2.449936	3.631521
74	6	0	3.116331	-3.046345	3.253929
75	6	0	2.883494	-3.357854	1.915348
76	9	0	5.975188	-2.182184	0.443513
77	9	0	6.419612	-1.570834	3.010965
78	9	0	4.536455	-2.141893	4.911176
79	9	0	2.179756	-3.307897	4.176280
80	9	0	1.685065	-3.894666	1.635042
81	1	0	2.726718	-2.094603	-5.715062
82	1	0	3.526049	-1.810527	-4.155640
83	1	0	1.972852	-3.609694	-3.573804
84	1	0	0.670457	-2.861839	-4.551952
85	1	0	2.705935	0.407241	-4.481733
86	1	0	1.335910	-0.139530	-5.457722
87	1	0	-0.011764	-0.235411	-3.546211
88	1	0	1.367950	0.277941	-2.536831
89	1	0	2.016351	-1.856869	-2.130577
90	1	0	-3.283372	-0.100571	-2.359775
91	1	0	-1.365911	-0.360781	-1.059637
92	1	0	-2.198053	1.015184	-2.608736
93	1	0	0.085750	-3.467209	-2.115278
94	1	0	-0.918635	-2.083262	-2.622037
95	1	0	0.847315	-2.087539	-0.119710
96	1	0	-0.885812	-2.866344	1.261158
97	1	0	-0.515498	-4.041366	0.046738
98	1	0	0.222205	0.006906	-0.567809
99	1	0	-2.955088	-2.199861	-0.273455
100	1	0	-4.313951	-3.892010	0.909728
101	1	0	-3.099418	-3.202998	1.995338
102	1	0	-2.853727	-4.818241	1.310116
103	1	0	-3.917338	-4.112238	-1.513431
104	1	0	-2.432872	-5.052789	-1.274485
105	1	0	-2.425975	-3.602768	-2.292138
106	1	0	-0.175992	-0.550738	1.675078
107	1	0	-1.909794	-0.786930	1.298251
108	1	0	-0.400261	1.835966	0.753151
109	1	0	-1.994015	0.975447	3.225247
110	1	0	-0.252693	1.282320	3.120295

111	1	0	-3.268898	0.960131	0.678020
112	1	0	-3.919387	2.857656	-0.119175
113	1	0	-3.554340	2.809855	3.529714
114	1	0	-3.946993	5.215719	3.961522
115	1	0	-2.077539	6.842162	3.733635
116	1	0	0.188152	6.037553	3.096730
117	1	0	0.578452	3.627024	2.653132
118	1	0	-2.095158	6.091517	-0.385187
119	1	0	-3.722295	5.281321	0.019427
120	1	0	0.560838	3.097843	-4.161089
121	1	0	2.824640	3.700840	-5.012928
122	1	0	4.499848	4.684657	-3.464955
123	1	0	3.919159	5.070489	-1.080505
124	1	0	1.673686	4.455433	-0.234929

References and Notes

1. (a) Fowler, F. W. J. Org. Chem. 1972, 37, 1321. (b) For a recent review of 1,2-dihydropyridine syntheses: Silva, E. M.; Varandas, P. A. M. M.; Silva, A. M. S. Synthesis 2013, 45, 3053. (c) Sundberg, R. J.; Amat, M.; Fernando, A. M. J. Org. Chem. 1987, 52, 3151.
2. Effenberger, F.; Mück, A. O.; Bessey, E. Chem. Ber. 1980, 113, 2086.
3. Borak, J. B.; Falvey, D. E. J. Org. Chem. 2009, 74, 3894.
4. For the oxidation of aldehydes with $\mathrm{I}_{2} / \mathrm{KOH}$, see: (a) Yamada, S.; Morizono, D.; Yamamoto, K. 1992, 33, 4329. (b) Jones, B. D.; Clair, J. L.; Moore, C. E.; Rheingold, A. L.; Burkart, M. D. Org. Lett. 2010, 12, 4516.
5. a) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357-1358; b) Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron 1981, 37, 3899-3910.
6. Moisan, L.; Thuéry, P.; Nicolas, M.; Doris, E.; Rousseau, B. Angew. Chem. Int. Ed. 2006, 45, 5334-5336.
7. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, A~.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. GAUSSIAN 09 Revision C01, Gaussian, Inc., Wallingford, CT, 2009.
8. (a) Becke, A. D. J. Chem. Phys. 1993, 96, 5648. (b) Stevens, P. J.; Devlin, J. F.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627. (c) Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory Comput. 2008, 4, 297-306.

Chapter 3

α-Heterosubstituted $\boldsymbol{\beta}$-Alkylacroleins as Useful Multisubstituted Dienophiles for Enantioselective Diels-Alder Reactions

Abstract

We synthesized the dienophiles α-(N, N-diisopropylcarbamoyloxy)-β-alkylacroleins and α-(acylamino) crotonaldehydes. The enantioselective Diels-Alder reaction of these dienophiles gave the corresponding multisubstituted adducts with high enantioselectivity (up to 92% ee). The present method provides a facile route to structurally complicated chiral building blocks that contain a quaternary carbon atom substituted with an oxygen- or nitrogencontaining moiety.

3-1 Introduction

The development of efficient, short-step syntheses of highly functionalized bioactive natural compounds is currently one of the most important issues in organic synthesis. The enantioselective Diels-Alder reaction is a powerful method for the short-step synthesis of complicated organic compounds, as this reaction forms two carbon-carbon single bonds with the construction of multiple stereogenic centers. ${ }^{1}$ We previously synthesized β-unsubstituted α-(acyloxy)acroleins ${ }^{2}$ and α-(phthalimido)acroleins ${ }^{3}$ according to the known procedure (Scheme 3.1). We developed an organoammonium salt catalyzed enantioselective Diels-Alder reaction and $[2+2]$ cycloaddition reaction of these dienophiles. ${ }^{4}$

Scheme 3.1. Syntheses of β-Unsubstituted α-(Acyloxy)acroleins and α-(Phthalimido)acroleins

These β-unsubstituted α-heterosubstituted acroleins are useful dienophiles for the synthesis of chiral building blocks that contain quaternary carbon atoms substituted with heteroatoms. With respect to the synthesis of multisubstituted chiral cyclohexenes, α-heterosubstituted β-alkylacroleins should be useful dienophiles for the enantioselective Diels-Alder reaction, as the corresponding adducts are useful chiral building blocks for the synthesis of a variety of bioactive natural compounds. ${ }^{5,6}$ For example, the Diels-Alder adducts would be promising candidates as chiral building blocks for the synthesis of artemisinin 7 (for $\mathrm{Y}=\mathrm{O}$) and tetrodotoxin ${ }^{8}$ (for $\mathrm{Y}=\mathrm{NH}$) (Figure 3.1).

Figure 3.1. α-Heterosubstituted β-alkylacroleins as useful multisubstituted dienophiles for enantioselective Diels-Alder reactions

However, the Diels-Alder reaction of α-(acyloxy)- and α-(acylamino) $-\beta$-alkylacroleins has not yet been reported. Herein, we describe the synthesis of α-heterosubstituted β-alkylacroleins as highly functionalized dienophiles, and the enantioselective Diels-Alder reaction of these compounds catalyzed by the chiral triammonium salt of $\mathbf{1}$.

3-2 Results and discussion

The present study gives new entries to multisubstituted chiral cyclohexenes, which are potential chiral building blocks for the synthesis of bioactive natural compounds. From our previous results showed that the electron-donating nature of the O-acyl groups is very important for obtaining high enantioselectivity in the DielsAlder reaction of α-(acyloxy)acroleins. ${ }^{4}$ We expected that an N, N-diisopropylcarbamoyl group should be an efficient protecting group for the α-oxygen of the substituted β-alkylacroleins. We began our study with the synthesis of α-(N, N-diisopropylcarbamoyloxy)- β-alkylacroleins 3. As the method used to synthesize β-unsubstituted α-(acyloxy)acroleins could not be applied to the synthesis of $\mathbf{3}$, a new route to $\mathbf{3}$ had to be developed. The most important issue in the synthesis of $\mathbf{3}$ was the selective formation of the carbon-carbon double bond. We planned to use stereoselective carbon-carbon double bond migration ${ }^{9}$ of allylic carbamates for the synthesis of this unsaturated bond. The synthesis of $\mathbf{3}$ began with carbamoylation of
allylic alcohols 2 with diisopropylcarbamic chloride $\left(i \mathrm{Pr}_{2} \mathrm{NCOCl}\right)$ in the presence of a catalytic amount of 4-dimethylaminopyridine (DMAP, Scheme 3.2).

Scheme 3.2. Synthesis of α-(N, N-Diisopropylcarbamoyloxy)- β-Alkylacroleins. 3

As expected, the carbon-carbon double bond migration of the allylic carbamates successfully gave the corresponding Z-vinyl carbamates as single stereoisomers. Formylation of the vinyl carbamates ${ }^{10}$ with t - BuLi and N, N-dimethylformamide (DMF) gave (Z)- α-(N, N-diisopropylcarbamoyloxy)- β-alkylacroleins 3 as single stereoisomers in overall yields of $28-64 \%$ from 2 With the desired α-(N, N-diisopropylcarbamoyloxy)- β-alkylacroleins $\mathbf{3}$ in hand, we investigated the chiral triammonium salt-catalyzed Diels-Alder reaction of $\mathbf{3}$ (Table 1).

Table 3.1. Enantioselective Diels-Alder Reaction of α-(N, N-Diisopropylcarbamoyloxy)- β-alkylacroleins $3^{[a]}$

θ		$3 \quad \frac{\mathbf{1} \cdot \mathrm{HX}_{2.75}(10 \mathrm{~mol} \%)}{\mathrm{EtNO}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~d}}$			
Entry	3	HX	Yield [\%]	exolendo	ee [\%] ${ }^{[\text {b] }}$
1	3a	$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$	37	97:3	92
2	3a	TfOH	56	96:4	87
$3^{[\mathrm{cc]}}$	3a	TfOH	85	95:5	83
4	3b	$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$	55	91:9	86
5	3b	TfOH	93	93:7	89
6	3c	TfOH	70	91:9	84
7	3d	TfOH	51	93:7	81

[a] The reaction of cyclopentadiene (4 equiv) with $\mathbf{3}(0.1 \mathrm{mmol})$ was conducted in the presence of $\mathbf{1} \cdot \mathrm{HX}_{2.75}(10 \mathrm{~mol} \%)$ in EtNO_{2} at $0{ }^{\circ} \mathrm{C}$ for 4 days. [b] ee Value of the major diastereomer. [c] The reaction was conducted on a 3.5 mmol

The reaction of $\mathbf{3}$ with cyclopentadiene (4 equiv) was conducted in EtNO_{2} at 0 ${ }^{\circ} \mathrm{C}$. When the reaction of 3a $\left(\mathrm{R}^{1}=\mathrm{H}\right)$ was conducted in the presence of $\mathbf{1} \cdot\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}\right)_{2.75}(10 \mathrm{~mol} \%)$, the corresponding exo adduct $\mathbf{4 a}$ was obtained in 92% ee, although the yield was low (37\%, Table 1, entry 1). The use of trifluoromethansulfonic acid (TfOH), which is more acidic than $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$, improved the yield of $\mathbf{4 a}$ to 56% without a significant decrease in enantioselectivity (87% ee, Table 1, entry 2). The present protocol could be conducted on a submillimole scale (Table 1, entry 3). For the reaction of $\mathbf{3 b}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$, the use of TfOH again gave better results than $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$ (93% yield, 89% ee, Table 1, entries 4 and 5). The Diels-Alder reaction of 3c and 3d gave the corresponding exo adducts $\mathbf{4 c}$ and $\mathbf{4 d}$ with good enantioselectivity (Table 1, entries 6 and 7). A tert-butyldiphenylsilyl (TBDPS) group in $\mathbf{3 c}$ was compatible under the present reaction conditions. The configuration of the carbon-carbon double bond in 3d was retained during the reaction. Despite the good
reactivity of $\mathbf{3}$ for the reaction with cyclopentadiene, compound $\mathbf{3}$ reacted poorly with other dienes, such as cyclohexadiene and 2,3-dimethylbutadiene ($<5 \%$ yield).

The carbamoyl group in the Diels-Alder adducts $\mathbf{4}$ can removed by reductive cleavage. For example, the treatment of $\mathbf{4 b}$ with LiAlH_{4} (6 equiv) and ZnCl_{2} (3 equiv) ${ }^{11}$ gave diol 5 in 76% yield (Scheme 3.3).

Scheme 3.3. Deprotection of the Carbamoyl Group of 4b

We next focused on the synthesis of α-nitrogen-substituted β-alkylacroleins as dienophiles for the enantioselective Diels-Alder reaction. According to our previous results, ${ }^{4 \mathrm{e}}$ we first synthesized (Z)- α-phthalimidocrotonaldehyde $\mathbf{8}$ starting from (Z)-tert-butyl(1-oxobut-2-en-2-yl)carbamate $6\left(\mathrm{R}^{3}=\mathrm{Me}\right)^{12}$ (Scheme 3.4).

Scheme 3.4. Synthesis of (Z)- α-(Acylamino)crotonaldehydes 7 and (Z)- α-(Phthalimido)crotonaldehyde 8.

According to the method reported by Burk et al, a variety of β-alkyl and β-aryl derivatives of $\mathbf{6}$ can be synthesized with complete Z-selectivity by changing the starting aldehyde $\left(\mathrm{R}^{3} \mathrm{CHO}\right)$. The acylation of the carbamoyl nitrogen atom ${ }^{13}$ of $\mathbf{6}$ with methyl 2-(chlorocarbonyl) benzoate and subsequent removal of the tert-butyloxycarbonyl (Boc) group gave 7a. Treatment of 7a with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, $13 \mathrm{~mol} \%$) gave $\mathbf{8}$ in an overall yield of 46%.

When the reaction of cyclopentadiene with $\mathbf{8}$ was conducted in the presence of $\mathbf{1} \cdot \mathrm{TfOH}_{2.75}(10 \mathrm{~mol} \%)$, the corresponding adduct $\mathbf{9}$ was obtained in only 17% yield with poor distereo- and enantioselectivity (Table 3.2, entry 1).

Table 3.2. Enantioselective Diels-Alder Reaction of α-(Phthalimido)crotonaldehyde 8 and α-(Acylamino)crotonaldehydes 7. ${ }^{[a]}$

	\Rightarrow	7 or 8	$\xrightarrow[\mathrm{EtNO}_{2}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~d}]{\mathbf{1} \cdot \mathrm{TfOH}_{2.5}(10 \mathrm{~mol} \%)}$		
Entry	7 or 8	Adduct	Yield [\%]	exo/endo	ee [\%]
1	8	9	17	66:34 ${ }^{[\mathrm{c]}}$	54
$2^{[d]}$	7b	10b	67	84:16	72
3	7c	10c	52	84:16	72
4	7d	10d	75	98:2	70
5	7e	10e	85	97:3	77
$6^{[\mathrm{c}]}$	7e	10e	47	97:3	80
7	7f	10 f	81	96:4	79

[a] The reaction of cyclopentadiene (4 equiv) with $\mathbf{7}$ or $\mathbf{8}(0.1 \mathrm{mmol})$ was conducted in the presence of $1 \cdot \mathrm{TfOH}_{2.75}(10 \mathrm{~mol} \%)$ in EtNO_{2} at $0^{\circ} \mathrm{C}$ for 1.5 days. [b] ee Value of the major diastereomer. [c] The relative configuration of $\mathbf{9}$ was not determined. [d] The reaction was conducted for 4 days. [e] The reaction was conducted at $-20^{\circ} \mathrm{C}$ for 5 days.

To improve the reactivity and enantioselectivity, we next synthesized α-(acylamino)crotonaldehydes 7 according to the method used for the synthesis of $\mathbf{8}$. When the reaction of (Z) - α-(benzoylamino)crotonaldehyde $\mathbf{7 b}$ was conducted under the
same conditions described above, the corresponding exo adduct $7 \mathbf{b}$ was obtained in 67% yield, and the diastereo- and enantioselectivity were improved (Table 2, entry 2). Based on our previous results, ${ }^{4}$ we next examined the effect of substituting the benzoyl group with an electron-donating moiety. Although the introduction of a methoxy group at the 4 -position did not improve the enantioselectivity (Table 2.2, entry 3), the use of a 2-methoxybenzoyl group was associated with higher reactivity (75% yield) and excellent diastereoselectivity (dr 98:2) (Table 2, entry 4). The hydrogen bonding between the 2-methoxy group and the NH proton might have a beneficial effect and increase the diastereoselectivity. Indeed, the 1 H NMR chemical shift of the NH proton of $7 \mathbf{d}$ was shifted downfield by 1.88 ppm ($\mathbf{7 d}: \delta=9.59 \mathrm{ppm}, \delta=7 \mathrm{c}: 7.71 \mathrm{ppm}$). Furthermore, the use of $7 \mathbf{e}$ and $\mathbf{7 f}$ bearing a bicyclic benzoyl group improved both the yields and enantioselectivity (Table 2.2, entries 5 and 6). When the reaction of 7 e with cyclopentadiene was conducted at $-20^{\circ} \mathrm{C}$, the corresponding adduct $\mathbf{1 0 e}$ was obtained in 80% ee. The reactivity of β-substituted α-(acylamino)acroleins is highly dependent on the β substituent. Thus, the β-phenyl derivative of $7 \mathbf{f}$ did not react with cyclopentadiene.

3-3. Conclusion

| We synthesized | the | dienophiles |
| :---: | :---: | :---: | ---: |
| α-(N, N-diisopropylcarbamoyloxy)- β-alkylacroleins | $\mathbf{3}$ | and | α-(acylamino)crotonaldehydes 7. The enantioselective Diels-Alder reaction of these dienophiles gave the corresponding multisubstituted adducts with high enantioselectivity (up to 92% ee). The present method provides a facile route to structurally complicated chiral building blocks that contain a quaternary carbon atom substituted with an oxygen- or nitrogencontaining moiety. Although β-unsubstituted α-(acyloxy)acroleins, α-(phthalimido)acroleins are highly reactive with a variety of dienes, the introduction of an alkyl group on their β positions significantly decreased their reactivity. The α-heterosubstituted β-alkylacroleins react well with cyclopentadiene, but they did not react with other dienes, such as cyclohexadiene and 2,3-dimethylbutadiene.

References and Notes

1. (a) Ishihara, K.; Sakakura, A. In Stereoselective Synthesis; Evans, P. A., Ed.; George Thieme Verlag KG: Stuttgart, 2011; Vol. 3, pp. 67 -123.; (b) Corey, E. J. Angew. Chem. Int. Ed. 2009, 48, 2100; (c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668; (d) Oppolzer, W. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Ed.s.; Pergamon: Oxford, 1991; Vol. 5, pp. 315-399.
2. Funk, R. L.; Yost, K. J. III. J. Org. Chem. 1996, 61, 2598.
3. Harada, H.; Morie, T.; Hirokawa, Y.; Kato, S.; Chem. Pharm. Bull. 1996, 44, 2205.
4. Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504. Additions and corrections: Ishihara, K; Nakano, K. J. Am. Chem. Soc. 2005, 127, 13079.; (b) Sakakura, A.; Suzuki, K.; Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229.; (c) Sakakura, A.; Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457.; (d) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2007, 129, 8930.; (e) Ishihara, K.; Nakano, K.; Akakura, M. Org. Lett. 2008, 10, 2893.
5. For recent examples of diastereoselective Diels-Alder reactions of α-heterosubstituted β-alkyldienophiles, see: (a) Maeng, J.-H.; Funk, R. L. Org. Lett. 2002, 4, 331. (b) He, Y.; Funk, R. L. Org. Lett. 2006, 8, 3689; (c) Mondal, S.; Yadav, R. N.; Ghosh, S. Org. Lett. 2011, 13, 6078. (d) Funk, R. L.; Belmar, J. Tetrahedron Lett. 2012, 53, 176.
6. For the asymmetric Diels -Alder reaction of (Z)-olefinic azalactones, see: H. Jiang, B. Gschwend, Ł. Albrecht, S. G. Hansen, K. A. Jørgensen, Chem. Eur. J. 2011, 17, 9032.
7. Avery, M. A.; Fan, P.; Karle, J. M.; Bonk, J. D.; Miller, R.; Goins, D. K. J. Med. Chem. 1996, 39, 1885.
8. (a) Kang, S. H.; Kang, S. Y.; Lee, H.-S.; Buglass, A. J. Chem. Rev. 2005, 105, 4537. (b) Chau, J.; Ciufolini, M. A.; Mar. Drugs 2011, 9, 2046.
9. (a) Hoppe, D.; Hanko, R.; Brönneke, A.; Lichtenberg, F.; Hülsen, E. Chem. Ber. 1985, 118, 2822.; (b) Behrens, K.; Fröhlich, R.; Meyer, O.; Hoppe, D. Eur. J. Org. Chem. 1998, 2397.
10. Bou Chedid, R.; Brümmer, M.; Wibbeling, B.; Fröhlich, R.; Hoppe, D. Angew. Chem. Int. Ed. 2007, 46, 3131.
11. Marr, F.; Hoppe, D. Org. Lett. 2002, 4, 4217.
12. Burk, M. J.; Johnson, N. B.; Lee, J. R. Tetrahedron Lett. 1999, 40, 6685.
13. Hernández, J. N.; Martín, V. S. J. Org. Chem. 2004, 69, 3590.

Experimental Section

General Methods. Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (400 $\mathrm{MHz})$ at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity ($\mathrm{s}=\operatorname{singlet} ; \mathrm{d}=\operatorname{doublet} ; \mathrm{t}=$ triplet; $q=$ quartet, $m=$ multiplet $)$, coupling constant (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.00 ppm). High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-MA-10A-VP and chiral column of Daicel CHIRALCEL OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALCEL OZ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK AD-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK AS-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$). Optical rotations were measured on a RUDOLPH AUTOPOL IV digital polarimeter. The reactions were carried out under an atmosphere of dry nitrogen. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254} 0.25 \mathrm{~mm}$) were used. The products were purified by column chromatography on silica gel (E. Merck Art. 9385). High resolution mass spectral analysis (HRMS) was performed at Chemical Instrumentation Facility, Nagoya University on JEOL JMS-700 spectrometer (for FAB) or JEOL JMS-T100GCV spectrometer (for EI). In experiments that required dry solvent, tetrahydrofuran (THF), N, N-dimethylformamide (DMF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purchased from Kanto, TCI or Wako as the "anhydrous." Nitroethane (EtNO2), $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) and triethylamine ($\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}$) were freshly distilled from calcium hydride. ZnCl_{2} was dried before use by heating under reduced pressure. Other simple chemicals were analytical-grade and obtained commercially.

Synthesis of α-carbamoyl- β-alkylacroleins 3

(Z)-1-Oxobut-2-en-2-yl Diisopropylcarbamate (3a):

To a solution of allyl alcohol $(0.41 \mathrm{~mL}, 6.0 \mathrm{mmol})$ and DMAP $(73.3 \mathrm{mg}, 0.60$ mmol) in pyridine ($0.61 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added N, N-diisopropylcarbamic chloride $(0.82 \mathrm{~g}, 5.0 \mathrm{mmol})$ at ambient temperature, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 3 h . After the reaction mixture was cooled to ambient temperature, 1 M aqueous $\mathrm{HCl}(15$ mL) was added, and the mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with water ($20 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 20:1) to give allyl diisopropylcarbamate ${ }^{[1]}$ in 84% yield (0.78 $\mathrm{g}, 4.2 \mathrm{mmol})$. According to the Hoppe's procedure, ${ }^{[2]}$ to a solution of TMEDA (0.75 $\mathrm{mL}, 5.1 \mathrm{mmol}$) in THF (15 mL) was added a solution of $n-\mathrm{BuLi}$ in hexane ($1.6 \mathrm{M}, 3.2$ $\mathrm{mL}, 5.1 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . A solution of allyl diisopropylcarbamate ($0.78 \mathrm{~g}, 4.2 \mathrm{mmol}$) in THF (3 mL) was slowly introduced to the mixture, and stirred for 1 h at the same temperature. To the resultant mixture was added a solution of $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(1.61 \mathrm{~mL}, 5.5 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ dropwise, and the mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched by the successive addition of $\mathrm{MeOH}(3 \mathrm{~mL})$ and saturated aqueous Rochelle salt (5 mL), and then the reaction mixture was warmed to ambient temperature. The mixture was extracted with EtOAc (20 mL $\times 2$). The combined organic layers were washed with water $(20 \mathrm{~mL} \times$ 2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 20:1) to give (Z)-prop-1-en-1-yl
diisopropylcarbamate ${ }^{[1]}$ in 84% yield $(0.65 \mathrm{~g}, 3.5 \mathrm{mmol})$. To a solution of t-BuLi (1.6 M, $6.6 \mathrm{~mL}, 10.5 \mathrm{mmol}$) in THF (10 mL) was added a solution of (Z)-prop-1-en-1-yl diisopropylcarbamate $(0.65 \mathrm{~g}, 3.5 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirred for 30 min , DMF ($0.80 \mathrm{~mL}, 10.5 \mathrm{mmol}$) was added to the reaction mixture. After stirred for additional 30 min at the same temperature, the reaction was quenched with saturated aqueous NH 4 Cl aq (5 mL), and the reaction mixture was allowed to warm to ambient temperature. The mixture was extracted with EtOAc $(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with water $(20 \mathrm{~mL} \times 2)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give 3a in 91% yield ($0.66 \mathrm{~g}, 3.2 \mathrm{mmol}$). 3a: Colorless amorphous powder; IR (KBr) 1710, 1437, 1367, 1284, 1210, 1125, $1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.20-1.37(\mathrm{~m}, 12 \mathrm{H}), 1.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.07$ (br s, 1 H$), 6.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.1$, 20.3 (2C), 21.4 (2C), 46.2, 47.0, 136.2, 149.1, 152.1, 186.0; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$214.1443, found 214.1470.

(Z)-1-Oxo-4-phenylbut-2-en-2-yl Diisopropylcarbamate (3b): Compound $\mathbf{3 b}$ was prepared from cinnamyl alcohol according to the procedure for the synthesis of 3a. 3b: Colorless oil; IR (CHCl_{3}) 1700, 1438, 1370, 1281, 1211, 1148, $1042 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.20-1.43(\mathrm{~m}, 12 \mathrm{H}), 3.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.93 (br s, 1H), 4.06 (br s, 1H), $6.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.3(2 \mathrm{C}), 21.4(2 \mathrm{C}), 32.5$, 46.3, 47.0, 126.8, 128.6 (2C), 128.8 (2C), 137.5, 138.6, 148.0, 152.0, 186.1; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$290.1756, found 290.1751.

Diisopropylcarbamate (3c): Compound 3c was prepared from
(E)-5-[(tert-butyldiphenylsilyl)oxy]pent-2-en-1-ol ${ }^{[3]}$ according to the procedure for the synthesis of 3a. 3c: Colorless oil; IR (CHCl_{3}) 1701, 1429, 1281, $1111 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.32(\mathrm{~m}, 12 \mathrm{H}), 1.75(\mathrm{tt}, J=6.4,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.12(\mathrm{~m}, 1 \mathrm{H})$, 6.27 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34-7.46 (m, 6H), 7.66 (dd, $J=1.4,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H})$; ${ }_{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 19.1, 20.3 (2C), 21.4 (2C), 23.1, 26.8 (3C), 31.0, 46.2, 46.9, 63.1, 127.6 (4C), 129.6 (2C), 133.6, 135.5 (4C), 140.9 (2C), 148.1, 152.1, 186.2; HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO} 4 \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 496.2883$, found 496.2880 .

(2Z,7E)-1-Oxo-8-phenylocta-2,7-dien-2-yl

Diisopropylcarbamate (3d):

Compound 3d was prepared from (2E,6E)-7-phenylhepta-2,6-dien-1-ol ${ }^{[4]}$ according to the procedure for the synthesis of 3a. 3d: Colorless solid; $\operatorname{IR}(\mathrm{KBr}) 1716,1687,1439$, 1370, 1284, 1210, 1146, $1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19-1.33(\mathrm{~m}, 12 \mathrm{H})$, 1.70 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.10(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{td}, J=7.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 4 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.3$ (2C), 21.3 (2C), 25.8, 27.8, 32.5, 46.2, 46.9, 125.9 (2C), 127.0, 128.4 (2C), 129.5, 130.7, 137.5, 140.4, 148.4, 152.1, 186.1; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 344.2226$, found 344.2203 .

General Procedure for the Enantioselective Diels-Alder Reaction of α-Carbamoyloxy- β-Alkylacroleins 3.

To a solution of chiral triamine $\mathbf{1}(3.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $\mathrm{TfOH}(2.4 \mathrm{mg}$, $0.0275 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(0.125 \mathrm{~mL})$ was added α-carbamoyloxy- β-alkylacrolein $\mathbf{3}$ (0.10 $\mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After being stirred at same temperature for 15 min , a diene $(0.40$ mmol) was added in one portion. The reaction mixture was stirred for several hours at $0{ }^{\circ} \mathrm{C}$. Upon consumption of the dienophile, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using hexane-EtOAc as the eluent.

(1S,2S,3S,4R)-2-Formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl
Diisopropylcarbamate (4a, exo isomer): Colorless oil; $[\alpha]^{25}{ }_{D}-36.8$ (c 1.00, CHCl_{3}) for 92% ee; HPLC (Daicel CHIRALPAK AD-3 column $\times 3$, hexane $-i-\operatorname{PrOH}=100: 1$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=64.2$ (major enantiomer of exo isomer), 85.3 (minor enantiomer of exo isomer), 81.8 (major enantiomer of endo isomer), 104.9 (minor enantiomer of endo isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1731,1684,1473,1337,1308,1131,1059$ $\mathrm{cm}-1 ; 1 \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.37(\mathrm{td}, J=1.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{dq}, J=3.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.88-4.12(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 14.6, 20.3, 20.4, $21.2(2 \mathrm{C}), 40.7,44.7,45.9$, 46.6, 48.3, 49.4, 91.6, 133.9, 138.6, 154.9, 197.4; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$280.1913, found 280.1910. The exolendo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.47$ (s, 1H, CHO, endo isomer) and 9.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$, exo isomer). The relative configuration of major diastereomer was determined by NOE as shown below.

(1S,2R,3S,4R)-3-Benzyl-2-formylbicyclo[2.2.1]hept-5-en-2-ylDiisopropylcarbamate (4b, exo isomer): Colorless oil; $[\alpha]^{27}{ }_{\mathrm{D}}-61.0\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right)$ for 89% ee; HPLC (Daicel CHIRALCEL OZ-H column $\times 2$, hexane $-i-\mathrm{PrOH}=200: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=46.9$ (major enantiomer of exo isomer), 55.0 (major enantiomer of endo isomer), 61.7 (minor enantiomer of endo isomer), 68.8 (minor enantiomer of exo isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1731,1684,1437,1330,1308,1134 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H})$, $2.80(\mathrm{dd}, J=4.6,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{td}, J=4.1,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.88$ $(\mathrm{m}, 1 \mathrm{H}), 3.90-4.03(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=4.0,5.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 100 \mathrm{MHz}\right) ~$ $\delta 20.3,20.4,21.2,21.3,35.6,44.5,45.1,46.0,46.7,48.1,49.7,91.0,126.0,128.4$ (2C), 128.8 (2C), 134.3, 138.4, 140.6, 154.8, 197.1; HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{NO}_{3}$
$[\mathrm{M}+\mathrm{H}]^{+} 356.2226$, found 356.2220 . The exolendo ratio was determined by ${ }_{1} \mathrm{H}$ NMR analysis: $\delta 9.51$ (s, 1H, CHO, endo isomer) and 9.67 (s, 1H, CHO, exo isomer).

(1S,2R,3S,4R)-3-(3-(tert-Butyldiphenylsilyloxy)propyl)-2-formylbicyclo[2.2.1]hept-5-en-2-yl Diisopropylcarbamate (4c, exo isomer): Colorless oil; $[\alpha]^{27}{ }_{D}-7.8$ (c 1.00, CHCl_{3}) for 84% ee; HPLC (Daicel CHIRALCEL OZ-H column $\times 2$, hexane $-i-\mathrm{PrOH}=$ 200:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=60.9$ (major enantiomer of exo isomer), 66.7 (major enantiomer of endo isomer), 90.2 (minor enantiomer of endo isomer), 115.0 (minor enantiomer of exo isomer) min ; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1732,1681,1429,1329,1308,1111 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.13-1.20(\mathrm{~m}, 13 \mathrm{H}), 1.32-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.61(\mathrm{~m}$, $1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.78(\mathrm{~m}$, $1 \mathrm{H}), 3.86-3.97(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{dd}, \mathrm{J}=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=2.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.45 (m, 6H), 7.61-7.67 (m, 4H), $9.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$
19.1, 20.3, 20.4, 21.2 (2C), 25.8, 26.8 (3C), 31.5, 44.7, 45.4, 45.9, 46.5, 46.9, 49.5, 63.9, $91.3,127.6$ (4C), 129.5 (2C), 133.9 (2C), 134.3, 135.5 (4C), 138.0, 154.8, 197.8; HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{NO} 4 \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$562.3353, found 562.3361. The exolendo ratio was determined by ${ }_{1} \mathrm{H}$ NMR analysis: $\delta 9.45$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$, endo isomer) and 9.62 (s, 1H, CHO, exo isomer).

(1S,2R,3S,4R)-2-Formyl-3-((E)-6-phenylhex-5-en-1-yl)bicyclo[2.2.1]hept-5-en-2-yl Diisopropylcarbamate (4d, exo isomer): Colorless oil; $[\alpha]^{24}{ }^{\mathrm{D}}$-6.8 (c 1.00, CHCl_{3}) for 81% ee; HPLC (Daicel CHIRALCEL OZ-H column, hexane $-i$ - $\mathrm{PrOH}=100: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=18.8$ (major enantiomer of exo isomer), 22.6 (major enantiomerof endo isomer), 28.1 (minor enantiomer of endo isomer), 32.5 (minor enantiomer of exo isomer) min; IR (CHCl_{3}) 1731, 1685, 1436, 1330, 1308, 1134, 1105 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.11-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.69$ $(\mathrm{m}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.95(\mathrm{~m}, 1 \mathrm{H}), 6.11-6.21(\mathrm{~m}$, $1 \mathrm{H}), 6.16(\mathrm{td}, J=6.9,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=2.8,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 4 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 20.2,20.4,21.1$ (2C), 28.1, 29.0, 33.4, 44.6, 45.4, 46.0, 46.5, 46.7, 49.4, 91.4, 125.9 (2C), 126.8, 128.4 (2C), 130.0, 130.5, 134.3, 137.7, 138.0, 154.8, 197.6; HRMS (FAB) calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 410.2695$, found 410.2699. The exolendo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.47$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$, endo isomer) and 9.63 ($\mathrm{s}, 1 \mathrm{H}$, CHO , exo isomer).

Deprotection of Diels-Alder Adduct 4b.

(1S,2R,3S,4R)-3-Benzyl-2-(hydroxymethyl)bicyclo[2.2.1]hept-5-en-2-ol (5): To a solution of $\mathbf{4 b}(36 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ were added $\mathrm{ZnCl}_{2}(41 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(23 \mathrm{mg}, 0.60 \mathrm{mmol})$ at ambient temperature, and the mixture was stirred for 1 h . The reaction was quenched by the successive addition of EtOAc (1 mL) and saturated aqueous Rochelle salt (5 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (5 mL). The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give 5 in 76% yield ($17.5 \mathrm{mg}, 0.076 \mathrm{mmol}$). 5: Colorless oil; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3407,1495,1453,1131$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{~s}, 1 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.74(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H})$, $3.64(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }_{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 36.1, 45.7, 47.2, 49.9, 50.2, 69.4, 81.7, 125.9, 128.4 (2C), 128.8 (2C), 134.7, 138.9, 141.5; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}_{+}\right]$231.1385, found 231.1363.

Synthesis of α-(Acylamino)crotonaldehydes 7 and 8.

ArCOCI, LiHMDS
$\xrightarrow{\text { b. TFA, } \mathrm{CH}_{2} \mathrm{Cl}_{2}}$

$\mathrm{Ar}=\mathrm{Ph}(7 \mathrm{~b})$
4-OMe (7c)
2-OMe (7d)

(7e)

(7f)

(\boldsymbol{Z})-N-(1-Oxobut-2-en-2-yl)benzamide (7b): To a solution of (Z)-tert-butyl (1-oxobut-2-en-2-yl)carbamate (6) ${ }^{[5]}(0.28 \mathrm{~g}, 1.5 \mathrm{mmol})$ and HMPA (0.52 $\mathrm{mL}, 3.0 \mathrm{mmol}$) in THF (5 mL) was added a solution of LiHMDS in hexane ($1.6 \mathrm{M}, 1.2$ $\mathrm{mL}, 2.0 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . To the reaction mixture was added benzoyl chloride ($0.23 \mathrm{~mL}, 2.0 \mathrm{mmol}$), and the mixture was stirred at the same temperature for 1 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and the mixture was allowed to warm to ambient temperature. The mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined organic layers were washed with water ($20 \mathrm{~mL} \times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give (Z)-tert-butyl benzoyl(1-oxobut-2-en-2-yl)carbamate in 75% yield $(0.33 \mathrm{~g}, \quad 1.1 \mathrm{mmol})$. To a solution of (Z)-tert-butyl benzoyl(1-oxobut-2-en-2-yl)carbamate ($0.33 \mathrm{~g}, 1.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added TFA (5 mL) at ambient temperature, and the mixture was stirred for 30 min . The reaction mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ and extracted with EtOAc $(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(30 \mathrm{~mL} \times 2\right.$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 4:1) to give 7b in 70% yield ($0.15 \mathrm{~g}, 0.8 \mathrm{mmol}$). 7b: Colorless oil; IR (KBr) 1698, 1656, $1515,1485,1292 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.91(\mathrm{~m}, 2 \mathrm{H})$, $9.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.5,127.5(2 \mathrm{C}), 128.7(2 \mathrm{C}), 132.3,133.6$,
136.6, 142.3, 165.1, 189.3; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$190.0868, found 190.0841 .

(Z)-4-Methoxy-N-(1-oxobut-2-en-2-yl)benzamide (7c):

Compound 7c was prepared from 6 and 4-methoxybenzoyl chloride according to the procedure for the synthesis of 7b. 7c: pale brown solid; IR (KBr) 1692, 1640, 1603, 1499, 1316, 1259, 1183, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{q}, ~ J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.4,55.4,113.9$ (2C), 125.8, 129.4 (2C), 136.7, 142.1, 162.8, 164.7, 189.5; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}[\mathrm{M}]^{+} 219.0895$, found 219.0894.

(Z)-2-Methoxy-N-(1-oxobut-2-en-2-yl)benzamide (7d):

Compound 7d was prepared from $\mathbf{6}$ and 2-methoxybenzoyl chloride according to the procedure for the synthesis of 7b. 7d: Colorless solid; IR (KBr) 1685, 1661, 1644, 1507, 1481, 1292, 1241, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $4.06(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}$, 1 H), $7.50(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}), 9.59(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.4,56.2,111.6,121.0,121.3,132.5,133.5,137.3$, 142.1, 157.6, 162.9, 189.5; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}[\mathrm{M}]^{+} 219.0895$, found 219.0897 .

(Z)-N-(1-Oxobut-2-en-2-yl)-2,3-dihydrobenzo $[b][1,4]$ dioxine-5-carboxamide (7e):

Compound $7 \mathbf{e}$ was prepared from 6 and 2,3-dihydrobenzo[b][1,4]dioxine-5-carbonyl chloride ${ }^{[6]}$ according to the procedure for the synthesis of 7b. 7e: Colorless solid; IR (KBr) 1671, 1652, 1526, 1472, 1287, 1255, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 2.06 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.34-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.54(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96$ (dd, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, $J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (dd, $J=1.4,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 9.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.35(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.4,63.6,65.1$, 121.3, 121.4, 121.5, 124.4, 137.2, 142.3, 142.5, 143.7, 162.3, 189.5; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}[\mathrm{M}]^{+} 247.0845$, found 247.0876 .

(Z)-N-(1-Oxobut-2-en-2-yl)benzo[d][1,3]dioxole-4-carboxamide (7f): Compound $7 f$ was prepared from 6 and benzo $[d][1,3]$ dioxole-4-carbonyl chloride ${ }^{[6]}$ according to the procedure for the synthesis of 7b. 7f: Colorless solid; IR (KBr) 1675, 1534, 1459. 1245, 1194, $1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}$, $2 \mathrm{H}), 6.56(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 16.4,101.7,112.1,115.2,122.1,122.5,136.7,143.0,145.5,147.8,161.0$, 189.2; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4}[\mathrm{M}]^{+} 233.0688$, found 233.0666.

(Z)-2-(1,3-Dioxoisoindolin-2-yl)but-2-enal (8): Compound 7a was prepared from 6 and methyl 2-(chlorocarbonyl)benzoate according to the procedure for the synthesis of 7b. To a solution of $7 \mathbf{a}(0.24 \mathrm{~g}, 0.976 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added DBU (20 $\mu \mathrm{L}, 0.13 \mathrm{mmol}$) at ambient temperature, and the mixture was stirred for 10 min . The reaction was quenched by the addition of 1 M aqueous $\mathrm{HCl}(0.5 \mathrm{~mL})$, and the reaction mixture was poured into water $(5 \mathrm{~mL})$. The solution was extracted with $\mathrm{CHCl}_{3}(5 \times 3$ mL), and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated.

The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give 8 in 78% yield (0.17 g 0.77 mmol). 8: Colorless solid; IR (KBr) 1721, 1411, 1369, 1306, 1114, $1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.03(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $7.21(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=3.2,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{dd}, \mathrm{J}=3.2,5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $9.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.0,123.9(2 \mathrm{C}), 132.0,134.1,134.4(2 \mathrm{C})$, 151.9 (2C), 166.3 (2C), 186.7; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$216.0661, found 216.0686.

Diels-Alder Adducts 9 and 10: The enantioselective Diels-Alder reaction of cyclopentadiene with α-(acylamino)crotonaldehydes $\mathbf{7}$ and $\mathbf{8}$ was conducted according to the procedure for the reaction of α-carbamoyloxy- β-alkylacroleins 3 . The relative configuration of adduct $\mathbf{9}$ was not determined.

2-(1,3-Dioxoisoindolin-2-yl)-3-methylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (9, major diastereomer): Colorless oil; $[\alpha]^{28}{ }_{\mathrm{D}}+29.9$ (c $0.30, \mathrm{CHCl}_{3}$) for 54% ee; HPLC (Daicel CHIRALPAK IA column, hexane $-i-\mathrm{PrOH}=100: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=$ 25.2 (major isomer), 35.6 (minor isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1712,1644,1367,1119 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=3.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, $J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.87(\mathrm{~m}, 2 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.4,47.8,48.8,49.6,50.1,77.2,123.1$ (2C), 131.8, 131.9 (2C), 134.1 (2C), 140.5, 169.5 (2C), 200.8; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}]^{+}$281.1052, found 281.1053. The diastereo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.18$ ($\mathrm{s}, 1 \mathrm{H}$, CHO , major diastereomer) and 9.68 (s, 1H, CHO, minor diastereomer).

\boldsymbol{N}-((1S,2S,3S,4R)-2-Formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl)benzamide (10b, exo isomer): Colorless solid; $[\alpha]^{27}{ }_{D}-3.8$ (c 1.00, CHCl_{3}) for 72% ee; HPLC (Daicel CHIRALPAK AD-3 column $\times 2$, hexane $-i-\mathrm{PrOH}=20: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=108.4$ (major enantiomer of exo isomer), 113.5 (minor enantiomer of exo isomer), 130.0 (major enantiomer of endo isomer), 145.9 (minor enantiomer of endo isomer) min; IR (CHCl_{3}) 1725, 1638, 1514, 1482, $1134 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 0.82(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.87$ (s, 1H), 3.08-3.18 (m, 2H), $6.10(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=2.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (dd, $J=2.8$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=6.9,1 \mathrm{H}), 7.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 9.69$ (s, 1 H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.7,39.9,45.5,49.0,49.2,71.8,126.9$ (2C), 128.7 (2C), 131.8, 132.0, 143.0, 167.8, 197.9; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 256.1338$, found 256.1340 . The exolendo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.69$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$, exo isomer) and 9.77 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$, endo isomer).

\boldsymbol{N}-((1S,2S,3S,4R)-2-Formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl)-4-methoxybenza mide (10c, exo isomer): Colorless oil; $[\alpha]^{26}{ }_{D}-13.7$ (c $0.60, \mathrm{CHCl}_{3}$) for 72% ee; HPLC (Daicel CHIRALCEL AS-3 column, hexane $-i-\operatorname{PrOH}=20: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) t_{R} $=26.1$ (major enantiomer of exo isomer), 29.2 (minor enantiomer of exo isomer), 31.4 (major enantiomer of endo isomer), 34.0 (minor enantiomer of endo isomer) min; IR (CHCl_{3}) $1725,1640,1606,1489,1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.80(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 3.09-3.17$ (m, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=3.2,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $9.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.7,39.9,45.5,49.0,49.2,55.5,71.7,113.9$ (2C), 125.2, 128.8 (2C), 131.8, 143.0, 162.6, 167.3, 197.9; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}]^{+}$
285.1365, found 285.1369. The exolendo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.67$ (s, 1H, CHO, exo isomer) and 9.76 (s, 1H, CHO, endo isomer).

N-((1S,2S,3S,4R)-2-Formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl)-2-
methoxybenzamide (10d, exo isomer): Colorless oil; $[\alpha]^{28}{ }_{D}-14.3$ (c 1.00, CHCl_{3}) for 70% ee; HPLC (Daicel CHIRALCEL OD-H column, hexane $-i$ - $\mathrm{PrOH}=20: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=37.0$ (major enantiomer of exo isomer), 70.5 (minor enantiomer of exo isomer) min; IR $\left(\mathrm{CHCl}_{3}\right) 1726,1648,1600,1518,1482,1305,1240,1129 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 3.03-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 6.25(\mathrm{dd}, J=$ $2.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=2.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=$ $7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.9,39.7,45.3,48.9,49.2,56.1,71.7$, 111.3, 120.1, 121.5, 132.3, 132.5, 133.3, 141.8, 157.6, 165.5, 198.3; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}]^{+}$285.1365, found 285.1379. The exo/endo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.69$ (s, 1H, CHO, exo isomer) and 9.77 (s, 1H, CHO, endo isomer).

N-((1S,2S,3S,4R)-2-formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl)-2,3-dihydrobenzo $[\boldsymbol{b}][1,4]$ dioxine-5-carboxamide (10e, exo isomer): Colorless oil: $\quad[\alpha]^{27}{ }_{D}-21.1$ (c 1.00, CHCl_{3}) for 77% ee; HPLC (Daicel CHIRALCEL OD-H column, hexane $-i-\mathrm{PrOH}=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=52.9$ (major enantiomer of exo isomer), 74.3 (minor enantiomer of exo isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1720,1645,1585,1517,1464,1285,1254$, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=3.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H})$, $4.35(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.46(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{dd}, J=2.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=$ $2.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=$ $1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.9,39.7$, $45.3,48.8,49.2,63.5,65.1,71.8,120.6,121.3,121.5,124.2,132.4,141.9,142.2,143.5$, 165.0, 198.2; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}]^{+} 313.1341$, found 313.1349. The exo/endo ratio was determined by 1 H NMR analysis: $\delta 9.67$ (s, $1 \mathrm{H}, \mathrm{CHO}$, exo isomer) and 9.77 (s, 1H, CHO, endo isomer).

N-((1S,2S,3S,4R)-2-formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl)benzo[d][1,3]dioxo le-4-carboxamide (10f, exo isomer): Colorless oil; $[\alpha]^{26}{ }_{D}-25.8$ (c 1.00, CHCl_{3}) for 79% ee; HPLC (Daicel CHIRALCEL OD-H column, hexane $-i$ - $\mathrm{PrOH}=20: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=27.8$ (major enantiomer of exo isomer), 40.9 (minor enantiomer of exo isomer) min; IR (KBr) 1720, 1649, 1593, 1523, 1456, 1248, $1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=3.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 6.24$ (dd, $J=3.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=3.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J$ $=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.7,39.8,45.3,48.8,49.3,71.8,101.5,112.0,114.6,122.2,122.4$, 132.3, 142.2, 145.3, 147.4, 163.7, 198.1; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}]^{+}$ 299.1158 , found 299.1150.

The exolendo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.67$ (s, 1H, CHO, exo isomer) and 9.77 (s, 1H, CHO, endo isomer). The relative configuration of major diastereomer was determined by NOE as shown below.

References and Note

1. D. Hoppe, R. Hanko, A. Brönneke, F. Lichtenberg, E. Hülsen, Chem. Ber. 1985, 118, 2822.
2. K. Behrens, R. Fröhlich, O. Meyer, D. Hoppe, Eur. J. Org. Chem. 1998, 2397.
3. R. K. Boeckman, Jr., M. R. del Rosario Ferreira, L. H. Mitchell, P. Shao, M. J. Neeb, Y. Fang, Tetrahedron 2011, 67, 9787.
4. A. Johns, J. A. Murphy, M. S. Sherburn, Tetrahedron 1989, 45, 7835.
5. M. J. Burk, N. B. Johnson, J. R. Lee, Tetrahedron Lett. 1999, 40, 6685.
6. Z. Huang, Y. Liu, Y. Li, L. Xiong, Z. Cui, H. Song, H. Liu, Q. Zhao, Q. Wang, J. Agric. Food Chem. 2011, 59, 635.

Chapter 4

Enantioselective Diels-Alder Reaction with $\boldsymbol{\beta}$-Substituted/Unsubstituted α-(Acylthio)acroleins

Abstract

A catalytic and enantioselective Diels-Alder reaction of α-(carbamoylthio)acroleins induced by an organoammonium salt of chiral triamine is described. α-(Carbamoylthio)acroleins are designed and synthesized as new sulfur-containing dienophiles for the first time. The Diels-Alder reaction affords chiral tertiary thiol precursors with up to 91% ee.

4-1 Introduction

α-(Acylthio)acroleins would also be useful dienophiles for the construction of sulfur-containing quaternary carbons. The corresponding adducts are potential chiral intermediates for the synthesis of sulfur-containing bioactive natural products. ${ }^{1}$ For example, the Diels-Alder adduct of an α-(acylthio)acrolein with isoprene would be readily converted to a key synthetic intermediate of leinamycin ${ }^{2}$ (Scheme 4.1).

Scheme 4.1. Diels-Alder Reaction of α-(Acylthio)acroleins for the Synthesis of Sulfur-Containing Quaternary Carbons

Although some methods for the synthesis of sulfur-containing quaternary stereogenic centers have been reported, ${ }^{3}$ most of these methods produce chiral thioethers and only a few can give tertiary thiols. ${ }^{3 b, e}$ We report here the catalytic and enantioselective Diels-Alder reaction of α-(acylthio)acroleins to give optically active tertiary thiol precursors.

4-2 Results and discussion

On the basis of our previous results, benzoyl groups were considered to be promising candidates as protecting groups for the α-mercapto group. We first
synthesized β-unsubstituted α-(benzoylthio)acroleins 2 based on the acylation ${ }^{4}$ of 2-(diethoxymethyl)thiirane (Scheme 4.2). ${ }^{5}$

Scheme 4.2. Synthesis of α-(Acylthio)acroleins

The Diels-Alder reaction of 2,3-dimethylbutadiene (4 equiv) with 2a-d was conducted in the presence of $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ in EtNO_{2} at $0{ }^{\circ} \mathrm{C}$ (Table 4.1). As a result, the enantioselectivities of the corresponding adducts $\mathbf{3}$ highly depended on the benzoyl groups. The introduction of an electron-donating dialkylamino group at the 4-position increased the enantioselectivity, and dienophile 2d bearing a pyrrolidinyl group gave the highest enantioselectivity (entry 4). However, the enantioselectivity of 2d (72\%ee) was still lower than those of α-(4-methoxybenzoyloxy)acrolein (92% yield, 92% ee) $)^{6 \mathrm{a}}$ and α-(phthalimido)acrolein (82% yield, 96% ee) ${ }^{6 \mathrm{~b}}$ in the $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5}$ $\mathrm{SO}_{3} \mathrm{H}$-catalyzed Diels-Alder reaction of 2,3-dimethylbutadiene.

Table 4.1. Enantioselective Diels-Alder Reaction of α-(Benzoylthio)acroleins $\mathbf{2}^{\text {a }}$

${ }^{a}$ Reaction of 2 (0.1 mmol) with 2,3-dimethylbutadiene (4 equiv) was conducted in the presence of $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ in EtNO_{2} at $0{ }^{\circ} \mathrm{C}$ for $36 \mathrm{~h} .{ }^{b}$ Determined by HPLC analysis.

It is conceivable that the formation of stronger hydrogen bonding between the acyl group and an ammonium proton of the catalyst might stabilize the conformation of the transition state to increase the enantioselectivity.

The lower basicity of thioesters compared to esters and imides resulted in the lower enantioselectivity of α-(benzoylthio)acroleins 2a-d than α-(4-methoxybenzoyloxy)acrolein and α-(phthalimido)acrolein. In addition, although the α-benzoylacroleins 2c and 2d gave good enantioselectivities, the yields of the corresponding adducts $\mathbf{3 c}$ and $\mathbf{3 d}$ were low (entries 3 and 4). The low yields were mainly attributed to the low solubilities of $\mathbf{2 c}$ and $\mathbf{2 d}$ in EtNO_{2}. Therefore, both the solubility and the basicity of the acyl group of $\mathbf{2}$ had to be improved to achieve high yield and enantioselectivity.

Thus, we next designed α-(carbamoylthio)acroleins 11a-d ($\mathrm{R}^{1}=\mathrm{H}$, Scheme 4.3) as new α-sulfur-substituted acroleins to overcome the above problems. The carbamoyl groups were expected to have a stronger electron-donating ability than the benzoyl groups. However, it would be very difficult to promote the carbamoylation of 2-(diethoxymethyl) thiirane with dialkylcarbamoyl chlorides, since the dialkylcarbamoyl chlorides were much less electrophilic than the carboxylic chlorides.

Thus, we developed a new synthetic route for 11 based on the umpolung strategy: C-S bond formation between a "carbamoylthio cation $\mathrm{R}_{2} \mathrm{NCOS}$ " and a "vinyl anion $\mathrm{RCH}=\mathrm{C}^{C} \mathrm{CHO}$ ".

According to this strategy, bis(carbamoyl)disulfides 10, synthetic equivalents of a carbamoylthio cation, were prepared from bis(chlorocarbonyl)disulfide ${ }^{7}$ and secondary amines. Lithiation ${ }^{8}$ of α-bromoacrolein diethylacetals 4^{9} generated the corresponding vinyl anion. The reaction of the vinyl anion with $\mathbf{1 0}$ followed by acid hydrolysis of the acetal moiety gave 11a-d in yields of $30-50 \%$.

Scheme 4.3. Synthesis of α-(Carbamoylthio)acroleins

As expected, α-(carbamoylthio)acroleins 11a-d were readily soluble in EtNO_{2} under the reaction conditions, and showed high reactivities and enantioselectivity in the $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}$-catalyzed Diels-Alder reaction with 2,3-dimethylbutadiene (entries 1-4, Table 4.2).

Table 4.2. Enantioselective Diels-Alder Reaction of 2,3-Dimethylbutadiene with β-Unsubstituted α-(Carbamoylthio)acroleins ${ }^{\text {a }}$

entry	Dienophile	R^{2}	Adduct	Yield[\%]	ee[\%] ${ }^{\mathrm{b}}$
1	$\mathbf{1 1 a}$	$i-\mathrm{Pr}$	$\mathbf{1 7 a}$	65	74
2	$\mathbf{1 1 b}$	$\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{4}$	$\mathbf{1 7 b}$	20	76
3	$\mathbf{1 1 c}$	$n-\mathrm{Bu}$	$\mathbf{1 7 c}$	67	48
4	$\mathbf{1 1 d}$	Bn	$\mathbf{1 7 d}$	66	66

${ }^{\text {a }}$ Reactions of 2,3-dimethylbutadiene (4 equiv) with 11a-11d (0.1 mmol) were conducted in the presence of $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ in EtNO 2 at $0{ }^{\circ} \mathrm{C}$ for 1.5 days.
${ }^{\mathrm{b}}$ Determined by HPLC analysis.

Although 11b bearing a pyrrolidinecarbonylthio group gave the highest enantioselectivity (76% ee), the yield of the corresponding adduct $\mathbf{1 7 b}$ was low (20%) because 11b was labile under the reaction conditions (entry 2). Dienophile 11a bearing an N, N-diisopropylaminocarbonylthio group was stable and gave the adduct $\mathbf{1 7 a}$ in 65% yield with 74% ee (entry 1).

With the optimized dienophile 11a in hand, we next examined the enantioselective Diels-Alder reaction with representative dienes (Table 4.3).

Table 4.3. Enantioselective Diels-Alder Reaction of Various Dienes with β-Unsubstituted α-(Carbamoylthio)acroleins ${ }^{\text {a }}$
entry
${ }^{\text {a }}$ Reactions of diene $(4$ equiv) with $\mathbf{1 1 a}(0.1 \mathrm{mmol})$ were conducted in the presence of $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ in EtNO2 at $0{ }^{\circ} \mathrm{C}$ for 1.5 days. ${ }^{\mathrm{b}}$ Determined by HPLC analysis.

2-Alkyl-substituted dienes such as isoprene, myrcene, and (E)- β-farnesene smoothly reacted with 11a to give the corresponding 4-alkyl-substituted adducts 18-20 with $>99 \%$ regioselectivity and $67-81 \%$ ee (entries $1-4$). In contrast, the reaction of 11a with cyclopentadiene gave the corresponding adduct 21 in racemic form (entry 4).

According to the synthetic method for $\mathbf{1 1}$ desribed in Scheme 4.3, β-substituted α-(carbamoylthio)acroleins 12a-16a ($\mathrm{R}^{1} \neq \mathrm{H}$) were synthesized in $41-60 \%$ yields. In this reaction sequence, the bromination of β-substituted acroleins followed by acetalization selectively afforded cis- β-substituted α-bromoacrolein diethylacetals 5-9 despite the fact that the starting β-substituted acroleins were isomeric mixtures. ${ }^{10}$ The Diels-Alder reactions of β-substituted α-(carbamoylthio)acroleins 12a-16a with
cyclopentadiene were also catalyzed by $1 \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ and gave the corresponding adducts 22-26 with high enantioselectiv enantioselectivities (Table 4.4).

In particular, β-aryl-substituted dienophiles 14a-16a showed more than 90% ee (entries 3-5). The absolute configuration of the major diastereomer of the adduct 26 was determined to be $(2 R, 3 R)$ by X-ray crystallographic analysis (Figure 4.1.).

Table 4.4. Enantioselective Diels-Alder Reaction of cyclopentadiene with β-Substituted α-(Carbamoylthio)acroleins ${ }^{\text {a }}$

Entry	dienophile	R	Adduct	Yield[\%]	exolendo $^{\mathrm{b}}$	ee[\%] $^{\text {c }}$
1	$\mathbf{1 2 a}$	Me	$\mathbf{2 2}$	88	$87: 13$	88
2	$\mathbf{1 3 a}$	n-Bu	$\mathbf{2 3}$	83	$91: 9$	84
3	$\mathbf{1 4 a}$	Ph	$\mathbf{2 4}$	68	$75: 25$	91
4	$\mathbf{1 5 a}$	$4-\left({\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}}^{25}\right.$	$\mathbf{2 5}$	42	$78: 22$	90
5	$\mathbf{1 6 a}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathbf{2 6}$	67	$75: 25$	90

${ }^{\text {a }}$ Reactions of cyclopentadiene (4 equiv) with 12a-16a were conducted in the presence of $\mathbf{1} \cdot 2.75 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ in EtNO_{2} at $0{ }^{\circ} \mathrm{C}$ for 3 days. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{\text {c }}$ Determined by HPLC analysis.

Figure 4.1. X-ray single-crystal structure of exo-26 with thermal ellipsoids drawn at a 50\% probability level.

The stereochemical outcome of exo-26 was consistent with those of the DielsAlder adducts of α-(acyloxy)acroleins and α-(phthalimido)acroleins. The carbamoyl group in the Diels-Alder adducts could be removed by reductive cleavage. For example, the treatment of $\mathbf{2 2}$ with LiAlH_{4} (6 equiv) and ZnCl_{2} (3 equiv.) ${ }^{11}$ followed by acetylation of the resultant hydroxyl group and mercapto group gave 27 in 71% yield (Scheme 4.4).

Scheme 4.4. Derivatization of 22

4-3 Conclusion

We have developed an organocatalytic and enantioselective Diels-Alder reaction of α-(carbamoylthio)acroleins to provide chiral tertiary thiol precursors for the first time. β-Unsubstituted or β-substituted α-(carbamoylthio)acroleins 11-16 were designed and synthesized as new sulfur-containing dienophiles.

References and Notes

1. For representative examples of bioactive compounds bearing sulfur-containing quaternary carbons, see: (a) Hofmeister, H.; Hoyer, G.-A.; Cleve, G.; Laurent, H.; Wiechert, R. Chem. Ber. 1976, 109, 185. (b) Costa, M. d. C.; Teixeira, S. G.; Rodrigues, C. B.; RybergFigueiredo, P.; Marcelo Curto, M. J. Tetrahedron 2005, 61, 4403. (c) Asthana, R. K.; Srivastava, A.; Singh, A. P.; Deepali; Singh, S. P.;Nath, G.; Srivastava,R.; Srivastave, B. S. J. Appl. Phycol. 2006, 18, 33. (d) Sawant, S.; Youssef, D.; Mayer,A.; Sylvester, P.; Wali,V.; Arant, M.; El Sayed, K. A. Chem. Pharm. Bull. 2006, 54, 1119. (e) Dormann, K. L.; Brückner, R. Angew. Chem., Int. Ed. 2007, 46, 1160.
2. Pattenden, G.; Shuker, A. J. Tetrahedron Lett. 1991, 32, 6625.
3. (a) Aggarwal, V. K.; Jones, D. E.; Martin-Castro, A. M. Eur. J. Org. Chem. 2000, 2939. (b) Sobhani, S.; Fielenbach, D.; Marigo, M.; Wabnitz, T. C.; Jørgensen, K. A. Chem. Eur. J. 2005, 11, 5689. (c) Jereb, M.; Togni, A. Org. Lett. 2005, 7, 4041. (d) Lu, H.; Zhang, F.; Meng, X.; Duan, S.; Xiao,W. Org. Lett. 2009, 11, 3946. (e) Fujiwara, Y. Fu, G. C. J. Am. Chem. Soc. 2011, 133, 12293.
4. (a) Sander, M. Chem. Rev. 1966, 66, 297. (b) Silvestri, M. G.; Wong, C.-H. J. Org. Chem. 2001, 66, 910.
5. Pederson, R. L.; Liu, K. K.-C.; Rutan, J. F.; Chen, L.; Wong, C.-H. J. Org. Chem. 1990, 55, 4897.
6. (a) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504; correction 2005, 127, 13079. (b) Ishihara, K.; Nakano, K.; Akakura, M. Org. Lett. 2008, 10, 2893.
7. Barany, G.; Schroll, A. L.; Mott, A. W.; Halsrud, D. A. J. Org. Chem. 1983, 48, 4750.
8. Takahashi, T.; Yokoyama, H.; Haino, T.; Yamada, H. J. Org. Chem. 1992, 57, 3521.
9. Barlow, A. j.; Compton, B. J.; Weavers, R. T. J. Org. Chem. 2005, 70, 2470.
10. (a) Kowalski, C. J.; Weber, A. E.; Fields, K. W. J. Org. Chem. 1982, 47, 5088. (b) Gilly, C. B.; Buller, M. J.; Kobayashi, Y. Org. Lett. 2007, 9, 3631.
11. Marr, F.; Hoppe, D. Org. Lett. 2002, 4, 4217.

Experimental Section

General Methods. Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (400 $\mathrm{MHz})$ at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity ($\mathrm{s}=\operatorname{singlet} ; \mathrm{d}=\operatorname{doublet} ; \mathrm{t}=$ triplet; $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.00 ppm). High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-MA-10A-VP and chiral column of Daicel CHIRALCEL OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK AD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALCEL AS-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK OZ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK AS-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$). Optical rotations were measured on a RUDOLPH AUTOPOL IV digital polarimeter. GC analysis was performed with Shimadzu 17A instruments with a flame-ionization detector and a capillary column of PEG-HT Bonded ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$) using nitrogen as carrier gas. The reactions were carried out under an atmosphere of dry nitrogen. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254} 0.25$ mm or silica gel $\mathrm{NH}_{2} \mathrm{~F}_{254 \mathrm{~S}} 0.25 \mathrm{~mm}$) were used. The products were purified by column chromatography on silica gel (E. Merck Art. 9385 or Fuji Silysia Chemical Ltd. Cromatorex ${ }^{\circledR}$ NH-DM1020 or Fuji Silysia Chemical Ltd. Cromatorex ${ }^{\circledR}$ DIOL-MB100). High resolution mass spectral analysis (HRMS) was performed at Chemical Instrumentation Facility, Nagoya University on JEOL JMS-700 spectrometer. In experiments that required dry solvent, ether, N, N-dimethylformamide (DMF) and tetrahydrofuran (THF) were purchased from TCI or Wako as the "anhydrous" and stored over MS 4A. Carbon tetrachloride, Chloroform, and dichloromethane were freshly distilled from calcium hydride. Other simple chemicals were analytical-grade and obtained commercially.

Synthesis of α-(Benzoylthio)acroleins 10a-d.

The acylation ${ }^{1}$ of 2-(diethoxymethyl)thiirane ${ }^{2}$ with benzoic anhydride or a carboxylic chloride followed by hydrolysis with formic acid gave the corresponding α-(benzoylthio)acroleins $\mathbf{2}$. The rather low yields of $\mathbf{2}$ were mainly attributed to the low reactivity in the acylation of the thiirane.

S-3-Oxoprop-1-en-2-yl Benzothioate (2a): A solution of benzoic anhydride ($0.68 \mathrm{~g}, 3.0 \mathrm{mmol})$, DMAP ($73 \mathrm{mg}, 0.60 \mathrm{mmol}$), 2-(diethoxymethyl)thiirane ${ }^{2}(0.49 \mathrm{~g}, 3.0 \mathrm{mmol})$ and activated MS 4A (powder, 1.0 g) in toluene (10 mL) was refluxed for 12 h . After being cooled to ambient temperature, the reaction mixture was poured into saturated aqueous NaHCO_{3}, and extracted with EtOAc ($3 \mathrm{~mL} \times 2$). The combined organic layer was dried over anhydrous MgSO_{4}, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane). The product was dissolved in formic acid (1 mL), and stirred for 1.5 h at ambient temperature. The reaction mixture was diluted with EtOAc (20 mL) and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 4:1) to give 10a in 30\% yield. Colorless solid; IR (KBr) 1700, 1671, 1579, 1448, 1211, $1177 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 127.7,128.8$, 134.1 (2C), 135.9, 138.7, 142.2 (2C), 188.2, 188.4; HRMS (FAB) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O} 2 \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$193.0323, found 193.0325.

\boldsymbol{S}-3-Oxoprop-1-en-2-yl 4-Methoxybenzothioate (2b): A solution of p-anisic acid ($0.46 \mathrm{~g}, 3.0 \mathrm{mmol}$), dimethylformamide (2 drops) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added oxalyl chloride $(0.52 \mathrm{~mL}, 6.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at ambient temperature. The reaction mixture was concentrated in vacuo to give a crude 4-methoxybenzoyl chloride. A solution of the 4-methoxybenzoyl chloride, DMAP ($0.44 \mathrm{~g}, 4.2 \mathrm{mmol}$), 2-(diethoxymethyl)thiirane ($0.49 \mathrm{~g}, 3.0 \mathrm{mmol}$) in DMF (15 mL) was refluxed for 12 h . After being cooled to ambient temperature, the reaction mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and extracted with EtOAc ($3 \mathrm{~mL} \times 2$). The combined organic layer was dried over anhydrous MgSO_{4}, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane). The product was dissolved in formic acid (1 mL), and stirred for 1.5 h at ambient temperature. The reaction mixture was diluted with EtOAc (20 mL) and quenched with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 4:1) to give 10b in 30\% yield. Colorless solid; IR (KBr) 1703, 1654, 1600, 1508, 1314, 1268, 1215, 1169, $1019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.02(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 55.6,114.0(2 \mathrm{C}), 128.6,130.0$ (2C), 138.8, 141.8, 164.3, 186.6, 188.6; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 222.0347$, found 222.0351.

\boldsymbol{S}-3-Oxoprop-1-en-2-yl 4-(Dimethylamino)benzothioate

(2c): 10c was synthesized from 4-(N,N-dimethylamino)benzoic acid according to the same manner with 10b. 15% yield. Yellow solid; IR (KBr) 1707, 1638, 1604, 1381, 1316, 1247, $1184 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.08(\mathrm{~s}, 6 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 2H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.0$ (2C), 110.6 (2C), 123.1, 130.0 (2C), 139.2, 140.7, 154.1, 185.6, 189.1; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 236.0745$, found 236.0717.

S-3-Oxoprop-1-en-2-yl 4-(Pyrrolidin-1-yl)benzothioate
(2d): Compound 3d was synthesized from 4-(Pyrrolidin-1-yl)benzoic acid according to the same manner with 1c 10% yield. Yellow solid; IR (KBr) 1708, 1640, 1601, 1527, 1402, 1243, $1175 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.00-2.10(\mathrm{~m}, 4 \mathrm{H}), 3.32-$ $3.42(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}$ $1 \mathrm{H}), 9.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.4$ (2C), 47.6 (2C), $110.8(2 \mathrm{C})$, 122.6 (2C), 130.2 (2C), 139.3, 140.6, 151.7, 185.4, 189.2; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right] 261.0824$, found 262.0827.

Synthesis of α-Bromoacrolein Diethylacetals 4-9.

2-Bromo-3,3-diethoxyprop-1-ene (4): ${ }^{3}$ To a solution of acrolein ($\mathrm{R}^{1}=$ $\mathrm{H}, 7.42 \mathrm{~mL}, 100 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{Br}_{2}(5.4 \mathrm{~mL}, 105 \mathrm{mmol})$ at -78 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred at ambient temperature for 1 h . To the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}(16.7 \mathrm{~mL}, 120 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at ambient temperature for 0.5 h . To the resulting reaction mixture was added saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The organic layers were dried over anhydrous
MgSO_{4}, filtrated and concentrated to give a crude α-bromoacrolein. A solution of the crude product, $(\mathrm{EtO})_{3} \mathrm{CH}(16.6 \mathrm{~mL}, 100 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}(0.40 \mathrm{~g}, 5 \mathrm{mmol})$ in EtOH $(5 \mathrm{~mL})$ was refluxed for 2 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and extracted with EtOAc ($15 \mathrm{~mL} \times 2$). The organic layers were dried over anhydrous MgSO_{4}, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane) to give 4 ($10.4 \mathrm{~g}, 50 \%$ yield). Yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1444,1374,1108,1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.25(\mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}, 6 \mathrm{H}$), $3.54(\mathrm{qd}, \mathrm{J}=6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{qd}, \mathrm{J}=2.3,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.74(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, \mathrm{J}=1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }_{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 15.0 (2C), 61.8 (2C), 101.5, 119.5, 129.9; HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{BrO}_{2}{ }^{+}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$ 209.0177, found 209.0151.

(Z)-2-Bromo-1,1-diethoxybut-2-ene (5): ${ }^{4}$ To a solution of crotonaldehyde $\left(\mathrm{R}^{1}=\mathrm{Me}, 4.14 \mathrm{ml}, 50 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{Br} 2(2.7$ $\mathrm{mL}, 53 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at ambient temperature for 1 h . To the reaction mixture was added pyridine $(16.2 \mathrm{~mL}, 200 \mathrm{mmol})$ and stirred at ambient temperature for 0.5 h . To the resulting reaction mixture was added saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The organic layers were dried over anhydrous MgSO_{4}, filtrated and concentrated to give α-bromocrotonaldehyde. A solution of the crude product, $(\mathrm{EtO})_{3} \mathrm{CH}(8.3 \mathrm{~mL}, 50 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}(0.20 \mathrm{~g}, 2.5 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was refluxed for 10 h . The reaction mixture poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and extracted with EtOAc ($15 \mathrm{~mL} \times 2$). The organic layers were dried over anhydrous MgSO_{4}, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane) to give 5 ($7.8 \mathrm{~g}, 70 \%$ yield) as a single diastereomer. Yellow oil; IR $\left(\mathrm{CHCl}_{3}\right) 1660,1444,1373,1335,1269,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta} 1.24$ $(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{qd}, \mathrm{J}=6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{qd}, \mathrm{J}=$ $6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.32(\mathrm{qd}, \mathrm{J}=6.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 13 \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 15.0(2 \mathrm{C}), 16.2,61.8(2 \mathrm{C}), 102.5,125.2,127.2$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{BrO}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$223.0334, found 223.0315.

(Z)-2-Bromo-1,1-diethoxyhept-2-ene (6): Compound 6 was synthesized from trans-2-heptenal $\left(\mathrm{R}^{1}=n-\mathrm{Bu}\right)$ according to the same manner with $\mathbf{5}$. Yellow oil; IR (CHCl_{3}) 1654, 1457, 1371, 1329, 1270, 1119, 1057, $1011 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.30-1.47(\mathrm{~m}$, 4 H), 2.24 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51(\mathrm{qd}, J=6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{qd}, J=6.9,9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9,15.0$ (2C), 22.3, 30.3 (2C), 61.8 (2C), 102.4, 123.9, 132.6; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$287.0623, found 287.0620.

(Z)-(2-Bromo-3,3-diethoxyprop-1-enyl)benzene (7): ${ }^{5}$ Compound 7 was synthesized from cinnamaldehyde $7 \mathbf{c}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ according to the same manner with 5.

(Z)-1-(2-bromo-3,3-diethoxyprop-1-enyl)-4-methoxybenzene (8): Compound 8 was synthesized from (E)-3-(4-methoxyphenyl)acrylaldehyde $\left(\mathrm{R}^{1}=4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}\right)$ according to the same manner with 5. Yellow oil; IR (CHCl_{3}) 1607, 1501, 1251, 1178, $1123,1112,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.59(\mathrm{qd}$, $J=6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (qd, $J=7.3,9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.84 (s, 3H), 4.95 ($\mathrm{s}, 1 \mathrm{H}), 6.90$ (d, J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.1(2 \mathrm{C}), 55.2$, 61.9 (2C), 103.3, 113.5 (2C), 120.5, 127.0, 129.3, 130.8 (2C), 159.6; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{3}[\mathrm{M}]^{+} 314.0518$, found 314.0522 .

(Z)-1-(2-Bromo-3,3-diethoxyprop-1-enyl)-4-fluorobenzene (9):

Compound 9 was synthesized from (E)-3-(4-fluorophenyl)acrylaldehyde 7e $\left(\mathrm{R}^{1}=\right.$ $\left.4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$ according to the same manner with 5. Yellow oil; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1603,1508$, 1232, 1160, 1123, 1099, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.29(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 3.59(\mathrm{qd}, J=6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{qd}, J=6.9,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 7.06$ (dd, $J=8.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=5.5,8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }_{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 15.0 (2C), $61.9(2 \mathrm{C}), 103.0,115.1$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 122.5,128.7,130.7,131.1$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 162.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247 \mathrm{~Hz}\right)$; $\mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrFO}_{2}[\mathrm{M}]+$ 302.0318, found 314.0320.

Synthesis of Bis(carbamoyl)disulfides 10 .

$\operatorname{Bis}(\mathbf{N}, \boldsymbol{N}$-diisppropylcarbamoyl)disulfide (10a): To a solution of N, N-diisopropylamine ($7.0 \mathrm{~mL}, 50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added bis(chlorocarbonyl)disulfide ${ }^{6}(1.9 \mathrm{~g}, 10 \mathrm{mmol})$ slowly at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at ambient temperature for 1 h . The reaction mixture was poured into 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$, and extracted with chloroform $(10 \mathrm{~mL} \times 2)$. The combined organic layers were dried over anhydrous MgSO_{4}, filtrated and concentrated. The residue was purified by recrystallization from a mixture of hexane and acetone to give 10a (2.2 g , 68\% yield). Colorless solid; IR (KBr) 1678, 1460, 1418, 1370, 1268, 1209, 1152, $11101031 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 1.33$ (br s, 24 H), 3.52 (br s, 2H), 4.33 (br s, 2H); 13C NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.7$ (8C), 48.0 (br, 2C), 50.5 (br, 2C), 160.8 (2C); HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 321.1670$, found 321.1673.

Bis(pyrrolidinylcarbonyl)disulfide (10b): ${ }^{7}$ Compound 10b was synthesized from pyrrolidine according to the same manner with 10a. Colorless solid; IR (KBr) 1678, 1459, 1361, 1293, 1250, 1222, $1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 1.84-2.09(\mathrm{~m}, 8 \mathrm{H}), 3.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 24.4 (2C), 25.8 (2C), 46.0 (2C), 48.3 (2C), 161.2 (2C); HRMS (FAB) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$261.0731, found 261.0734.

$\operatorname{Bis}(\mathbf{N}, \mathrm{N}$-dibutylcarbamoyl)disulfide (10c): Compound 10c was synthesized from dibutylamine according to the same manner with 10 c . The crude product was purified by flash column chromatography on silica gel (hexaneEtOAc 10:1). Yellow oil; $R_{f}=$
0.45 (hexane-EtOAc 5:1); IR (CHCl_{3}) 1683, 1466, 1406, 1374, 1253, 1202, $1120 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.84-1.02(\mathrm{~m}, 12 \mathrm{H}), 1.24-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.74(\mathrm{~m}$, 8 H), 3.39 (br s, 8 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8$ (4C), 20.1 (4C), $29.8(2 \mathrm{C})$, 30.8 (2C), 48.4 (2C), 48.8 (2C), 163.2 (2C); HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{3} 7 \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 377.2296$, found 377.2301.

$\operatorname{Bis}(N, N$-dibenzylcabamoyl)disulfide (10d): Compound 10d was synthesized from dibenzylamine according to the same manner with 10a. Colorless solid; IR (KBr) 1673, 1496, 1455, 1405, 1362, 1264, 1174, $1078 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 4.62(\mathrm{~s}, 8 \mathrm{H}), 7.22-7.30(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.26-7.43$ (br s, 16H); 13C NMR (CDCl_{3}, $100 \mathrm{MHz}) \delta 50.4$ (2C), 50.6 (2C), 127.6 (4C), 127.7 (2C), 128.0(2C), 128.4 (4C), 128.7 (4C), 128.9 (4C), 135.0 (2C), 135.8 (2C), 164.6 (2C); HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 513.1670$, found 513.1668.

Synthesis of α-(Carbamoylthio)acroleins 11-16.

S-3-Oxoprop-1-en-2-yl Diisopropylcarbamothioate (11a): To a solution of $\mathbf{4}(0.25 \mathrm{~g}, 1.2 \mathrm{mmol})$ in THF (3 mL) was added 1.6 M solution of $n-\mathrm{BuLi}$ in hexane ($0.68 \mathrm{~mL}, 1.1 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h . The reaction mixture was added to a solution of $\mathbf{1 0 a}(0.32 \mathrm{~g}, 1 \mathrm{mmol})$ in THF (3 mL) via cannula at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and the mixture was allowed to warm to ambient temperature. The layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1). To a solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added formic acid (1 mL), and the mixture was stirred at ambient temperature for 1.5 h . The reaction mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(20$ $\mathrm{mL})$. The layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL} \times$ 2). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 5:1) to give $11 \mathrm{a}\left(0.11 \mathrm{~g}, 50 \%\right.$ yield). Colorless solid; $\mathrm{Rf}_{\mathrm{f}}=0.29$ (hexane-EtOAc 5:1); IR (KBr) 1696, 1661, 1419, 1367, 1279, 1209, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.28 (br s, 6H), 1.35 (br s, 6H), 3.52 (br s, 1H), 4.07 (br s, 1H), 6.52 ($\mathrm{s}, 1 \mathrm{H}), 6.68$ (s ,
 139.4, 161.6, 189.0; HRMS (FAB) calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+216.1058$, found 216.1081.

S-3-Oxoprop-1-en-2-yl Pyrrolidine-1-carbothioate (11b):
Compound 11b was synthesized from 4 and 10b according to the same manner with 11a. Colorless solid; $R_{f}=0.32$ (hexane-EtOAc 1:1); $\operatorname{IR}(\mathrm{KBr})$ 1707, 1663, 1458, 1372, 1337, 1224, $1167 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.92(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}$, $1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.5,25.5,46.3,47.3,139.3,139.8$, 161.8, 189.1; HRMS (FAB) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 186.0589$, found 186.0592.

S-3-Oxoprop-1-en-2-yl Dibutylcarbamothioate (11c):
Compound 11c was synthesized from 4 and 10c according to the same manner with 11a. Pale yellow oil; $R_{f}=0.31$ (hexane-EtOAc 5:1); IR (CDCl_{3}) 1733, 1650, 1458, 1409, 1375, 1206, 1125, $1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.77(\mathrm{~m} 4 \mathrm{H}), 3.32(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.7(2 \mathrm{C}), 20.0$ (2C), 29.9, 30.5, 47.6, 48.5, 138.7, 139.4, 163.9, 189.0; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$244.1371, found 244.1362.

S-3-Oxoprop-1-en-2-yl Dibenzylcarbamothioate
Compound 11d was synthesized from 4 and 10d according to the same manner with 11a. Colorless solid; $\operatorname{IR}(\mathrm{KBr}) 1708,1661,1496,1454,1404,1362,1185,1078 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.51(\mathrm{~s}, 4 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 8 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 49.3,50.9,127.4$ (2C), 127.7, 128.0, 128.3 (2C), 128.7 (2C), 128.9 (2C), 135.2, 135.9, 139.5, 139.8, 165.3, 188.6; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 312.1058$, found 312.1052.

(Z)-S-1-Oxobut-2-en-2-yl Diisopropylcarbamothioate (12a):

Compound 12a was synthesized from 5 and 10a according to the same manner with 11a. Pale yellow solid; IR (KBr) 1692, 1657, 1616, 1423, 1371, 1282, 1214, 1177, $1038 \mathrm{~cm}^{-}$
 3.47 (br s, 1H), $4.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 16.9,20.5$ (4C), 47.4 (br), 50.5 (br), 134.9, 156.4, 160.9, 189.9; HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 230,1215$, found 230.1214 .

(Z)-S-1-Oxohept-2-en-2-yl Diisopropylcarbamothioate (13a):

Compound 13a was synthesized from 6 and 10a according to the same manner with 11a. Pale yellow oil; $R_{f}=0.36$ (hexane-EtOAc 4:1); IR (CHCl_{3}) 1701, 1668, 1609, 1457, $1420,1372,1276,1209,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H), 1.20-1.45 (m, 14H), 1.51 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.55(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.47 (br $\mathrm{s}, 1 \mathrm{H}), 4.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.46(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 13.8,20.6(4 \mathrm{C}), 22.4,30.2,30.6,47.5$ (br), 50.6 (br), 133.8, 161.1, 161.2, 190.1; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 272.1684$, found 272.1690.

(Z)-S-3-Oxo-1-phenylprop-1-en-2-yl

Diisopropylcarbamothioate (14a): Compound 14a was synthesized from 7 and 10a according to the same manner with 11a. Pale yellow solid; IR (KBr) $1695,1657,1596$, 1378, 1280, 1208, 1122, $\left.1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31$ (br s, 12H), 3.49 (br s, 1H), $4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H})$, $9.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)} \delta 20.6(4 \mathrm{C}), 47.6,50.8,128.4(2 \mathrm{C}), 130.7$, $130.9,131.1$ (2C), 133.9, 151.4, 161.0, 190.5; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 292.1371$, found 292.1370 .

(Z)-S-1-(4-Methoxyphenyl)-3-oxoprop-1-en-2-yl

Diisopropylcarbamothioate (15a): Compound 15a was synthesized from 8 and 10a according to the same manner with 11a. Pale yellow solid; IR (KBr) 1686, 1655, 1596, $1508,1421,1307,1278,1261,1175,1131,1108,1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.32(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.33(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 3.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }_{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.7$ (4C), 47.7 (br), 50.8 (br), 55.5, 114.1 (2C), 126.7, 128.0, 133.6 (2C), 152.7, 161.1, 161.9, 190.9; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{2} 4 \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 322.1477, found 322.1469 .

(Z)-S-1-(4-Fluorophenyl)-3-oxoprop-1-en-2-yl

Diisopropylcarbamothioate (16a): Compound 16a was synthesized from 9 and 10a according to the same manner with 11a. Pale yellow solid; $\operatorname{IR}(\mathrm{KBr}) 1699,1651,1591$, 1506, 1420, 1373, 1281, 1227, 1206, 1192, 1121, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.32$ (br s, 6H), 1.33 (br s, 6H), 3.50 (br s, 1H), 4.24 (br s, 1H), 7.12 (dd, J = 8.7, $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.855(\mathrm{dd}, \mathrm{J}=6.0,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.863(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.7$ (4C), 47.8 (br), 50.9 (br), 115.8 (d, $\left.J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 130.2$, $130.5,133.4$ (d, JC-F = $8.6 \mathrm{~Hz}, 2 \mathrm{C}$), 150.2, 160.8, 164.0 (d, JC-F = 250 Hz), 190.5; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{SF}[\mathrm{M}+\mathrm{H}]^{+} 310.1277$, found 310.1267.

General Procedure for the Enantioselective Diels-Alder Reaction of α-(Acylthio)acroleins.

To a solution of chiral triamine $1(3.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ and pentafluorobenzenesulfonic acid $(6.8 \mathrm{mg}, 0.0275 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(0.125 \mathrm{~mL})$ was added α-(acylthio)acrolein (0.10 $\mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred at same temperature for 15 min , a diene $(0.40$ mmol) was added in one portion. The reaction mixture was stirred for several hours at $0^{\circ} \mathrm{C}$. Upon consumption of α-(acylthio)acrolein, the reaction was quenched with $E t_{3} \mathrm{~N}$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using hexane-EtOAc as the eluent. The corresponding physical and spectroscopic data for adducts 3, 17-26 are as follows.

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl Benzothioate (3a): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-33.9$ (c 1.0, CHCl_{3}) for 43% ee; HPLC (Daicel Chiralcel OD-H column, hexane- $i-\operatorname{PrOH} 200: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=14.6$ (minor enantiomer), 17.2 (major enantiomer) min; IR (CHCl_{3}) 1726, 1656, 1447, 1209, $1176 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.98-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~d}, J=17.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.7,19.1,27.3,28.7$, 36.4, 58.9, 122.4, 125.2, 127.4 (2C), 128.7 (2C), 133.8, 136.2, 191.3, 199.2; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}+]$ 275.1106, found 275.1100.

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl

4-Methoxybenzothioate(3b): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-17.2$ (c 1.8, CHCl_{3}) for 44% ee; HPLC (Daicel Chiralcel OD-H column, hexane- $i-\mathrm{PrOH} 40: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) t_{R} $=14.9$ (minor enantiomer), 19.2 (major enantiomer) min; IR (CHCl_{3}) 1725, 1650, 1600, $1508,1262,1217,1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$, $1.97-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{br} \mathrm{d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br} \mathrm{d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (s,
$3 \mathrm{H}), 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=9.2 \mathrm{~Hz} 2 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.8,19.1,27.3,28.7,36.5,55.5,58.7,113.8$ (2C), 122.5, 125.1, 129.1, 129.7 (2C), 164.1, 189.7, 199.4; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$305.1211, found 305.1224.

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl

4-(Dimethylamino)benzothioate (3c): Pale yellow solid; $[\alpha]^{22}{ }_{\mathrm{D}}$-33.2 (c 1.0, CHCl_{3}) for 68% ee; HPLC (Daicel Chiralcel AD-H column, hexane- i-PrOH 20:1, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=35.8$ (major enantiomer), 42.5 (minor enantiomer) min; IR (KBr) 1721, $1638,1596,1525,1372,1242,1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.63-1.70$ (br $\mathrm{s}, 6 \mathrm{H}), 1.96-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}$, $6 \mathrm{H}), 6.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.8,19.1,27.4,28.8,36.7,40.0(2 \mathrm{C}), 58.3,110.5$ (2C), 122.6, 123.6, 125.0, 129.6 (2C), 153.9, 188.8, 199.9; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 318.1528, found 318.1543.

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl

4-(Pyrrolidin-1-yl)benzothioate (3d): Pale yellow solid; $[\alpha]^{22}{ }_{\mathrm{D}}-34.8$ (c 1.4, CHCl_{3}) for 72% ee; HPLC (Daicel Chiralcel AD-H column, hexane- i-PrOH 40:1, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=57.9$ (major enantiomer), 71.1 (minor enantiomer) min; IR (KBr) 1719, $1638,1592,1525,1395,1216,1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55-1.64(\mathrm{~m}$, $6 \mathrm{H}), 1.94-2.22(\mathrm{~m}, 8 \mathrm{H}), 2.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.41$ (m, 4H), $6.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.8,19.2,25.5$ (2C), 27.5, 28.9, 36.8, 47.6 (2C), 58.3, 110.7, 122.7, 123.2, 125.1, 129.9 (2C), 151.6, 188.7, 200.0; HRMS (FAB) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ 344.1684, found 344.1674 .

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl

Diisopropylcarbamothioate (17a): $[\alpha]^{23}{ }_{\mathrm{D}}-13.7$ (c 1.6, CHCl_{3}) for 74% ee; HPLC (Daicel Chiralcel AS-3 and AS-H $\times 2$, hexane $-i-\mathrm{PrOH}=100: 1$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=64.5$ (major, (-)-enantiomer), 67.1 (minor, (+)-enantiomer) min; IR $\left(\mathrm{CHCl}_{3}\right)$ 1723, 1648, 1422, 1371, 1285, 1211, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10-1.44(\mathrm{~m}$, $12 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=$ $18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,19.2$, 20.7 (4C), 27.7, 29.0, 37.1, 47.4 (br), 50.7 (br), $58.2,122.8,125.1,164.1,200.3$; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NS}^{+}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$ 298.1841, found 298.1865 .

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl Pyrrolidine-1-carbothioate (17b): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-29.5$ (c 0.50, CHCl_{3}) for 76% ee; HPLC (Daicel Chiralcel AS-H column, hexane- i - $\mathrm{PrOH}=20: 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}) t_{\mathrm{R}}=18.5$ (major enantiomer), 24.1 (minor enantiomer) min; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1718$, 1647, $1373 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J$ $=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=6,4 \mathrm{~Hz} 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 18.7,19.0,24.5,25.7,27.7,28.7,37.1,46.5,46.9,58.3,122.7$, 125.0, 164.3, 200.0; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$268.1371, found 268.1368.

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl

Dibutylcarbamothioat (17c): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-30.0$ (c 1.16, CHCl_{3}) for 66% ee; HPLC (Daicel Chiralcel AS-3 and AS-H column, hexane $-i-\mathrm{PrOH}=100: 1$, flow rate $=$
$0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=40.3$ (major enantiomer) min, 42.8 (minor enantiomer) min; IR (CHCl_{3}) $1724,1643,1409,1206,1124 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{tt}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.55(\mathrm{tt}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.34(\mathrm{~m}, 4 \mathrm{H}), 9.58(\mathrm{~s}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.8$ (2C), 18.7, 19.0, 20.1 (2C), 27.6, 28.8, 29.8, 30.4, 37.0, 46.9, 48.5, 58.3, 122.7, 124.9, 165.9, 200.0; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 326.2154$, found 326.2170 .

(S)-S-1-Formyl-3,4-dimethylcyclohex-3-enyl

Dibenzylcarbamothioate (17d): Colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-2.56$ (c $0.72, \mathrm{CHCl}_{3}$) for 48% ee; HPLC (Daicel Chiralcel OZ-H column, hexane- i - $\mathrm{PrOH}=20: 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=14.5$ (major enantiomer), 11.1 (minor enantiomer) min; IR $\left(\mathrm{CHCl}_{3}\right) 1724$, 1643, 1495, 1454, 1406, 1186, $1078 \mathrm{~cm}-1$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.63(\mathrm{~s}, 3 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35-4.65 (m, 4H), 7.11-7.51 (m, 10H), $9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.7, 19.1, 27.5, 28.8, 36.9, 48.5, 50.8, 59.0, 122.5, 125.1, 127.4, 127.7 (2C), 127.9, 128.3 (2C), 128.7 (2C), 128.8 (2C), 135.4, 136.2, 167.4, 199.7; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$394.1841, found 394.1843.

(S)-S-1-Formyl-4-methylcyclohex-3-enyl

Diisopropylcarbamothioate (18): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-32.5$ (c 1.48, CHCl_{3}) for 81% ee; HPLC (Daicel Chiralcel OZ-H column, hexane-i-PrOH $=100: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}) t_{\mathrm{R}}=22.1$ (major enantiomer), 24.6 (minor enantiomer) min; IR ($\left.\mathrm{CHCl}_{3}\right) 1721$, 1647, 1422, 1371, 1285, 1210, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12-1.43(\mathrm{~m}$, $12 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 20.50$ (2C), 20.53 (2C), 23.3, 27.35, 27.40, 31.1, 47.3 (br),
50.6 (br), 57.2, 117.8, 133.4, 163.8, 200.2; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$284.1684, found 284.1692 .

(S)-S-1-Formyl-4-(4-methylpent-3-enyl)cyclohex-3-enyl

Diisopropylcarbamothioate (19): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}-5.6$ (c 1.00, CHCl_{3}) for 81% ee; HPLC (Daicel Chiralcel OZ-H column, hexane-i-PrOH $=500: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}) t_{\mathrm{R}}=97.6$ (major enantiomer), 117.1 (minor enantiomer) min ; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1722$, 1647, 1422, 1373, 1285, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.13-1.44(\mathrm{~m}, 12 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.04-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=17.9 \mathrm{~Hz}$, 1 H), 2.77 (d, J = $17.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (br s, 1H), $3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.05-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.39$ $(\mathrm{s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }_{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,20.5(4 \mathrm{C}), 25.7,26.2,27.4$, 31.1, 37.2, 47.2 (br), 50.6 (br), 57.4, 117.5, 123.9, 131.6, 137.0, 163.9, 200.3; HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+352.2310$, found 352.2328.

(S,E)-S-4-(4,8-Dimethylnona-3,7-dienyl)-1-formylcyclohex-3-enyl
Diisopropylcarbamothioate (20): Colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}-9.2$ (c 1.04, CHCl_{3}) for 67% ee; HPLC (Daicel Chiralcel OZ-H column, hexane- $i-\mathrm{PrOH}=500: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}) t_{\mathrm{R}}=76.0$ (major enantiomer) min, 93.1 (minor enantiomer) min; IR $\left(\mathrm{CHCl}_{3}\right)$ $1723,1648,1422,1372,1285,1036 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04-1.44$ (m, 12 H), $1.60(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.89-2.02(\mathrm{~m}, 6 \mathrm{H}), 2.02-2.20(\mathrm{~m}, 6 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=18.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75$ (d, J = $17.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (br s, 1H), 3.98 (br s, 1H), 5.09 (s, 3H), 5.10 (s, $3 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 16.0, 17.7, 20.5 (4C), 25.7 (2C), 26.1, 26.7, 27.4, 31.1, 37.2, 39.7, 47.2 (br), 50.5 (br), 57.4, 117.5, 123.9, 124.3, 131.3, 135.2, 137.0, 163.9, 200.3; HRMS (FAB) calcd for $\mathrm{C}_{2} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 420.2936, found 420.2925.

2-Formylbicyclo[2.2.1]hept-5-en-2-yl Diisopropylcarbamothioate

(21, ca. 1:1 diastereomer mixture): Colorless oil; HPLC (Daicel Chiralcel OD-H $\times 3$ column, hexane $-i-\mathrm{PrOH}=100: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=59.2,62.3 \mathrm{~min}$; IR (CHCl_{3}) 1718, 1651, 1636, $1284 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10-1.46(\mathrm{~m}$, $13 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.96(\mathrm{~s}, 0.5 \mathrm{H}), 1.99(\mathrm{dd}, \mathrm{J}=3.6,12.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.14$ (dd, J = 2.8, $12.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.75 (dd, J = 3.6, $12.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.98 ($\mathrm{s}, 1 \mathrm{H}$), 3.13 (s , 0.5 H), $3.27(\mathrm{~s}, 0.5 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.04-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{dd}, \mathrm{J}=$ $3.2,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.36(\mathrm{dd}, \mathrm{J}=3.2,5.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 9.60(\mathrm{~s}, 0.5 \mathrm{H}), 9.64(\mathrm{~s}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.5$ (4C), 36.6 (0.5 C), 38.6 (0.5 C), 42.4 (0.5 C), 43.1 (0.5 C), 46.2 (0.5C), 47.2 (br), 48.2 (0.5 C), 48.5 (0.5 C), 49.3 (0.5 C), 50.9 (br), 63.5 (0.5 C), 65.3 (0.5 C), 132.6 (0.5 C$), 133.5$ (0.5 C$), 139.9$ (0.5 C), 140.2 (0.5 C), 164.4 (0.5 C$), 164.5$ (0.5 C), 199.0 (0.5 C), 200.5 (0.5 C); HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 282.1526, found 282.1531 .

\boldsymbol{S}-(1S,2S,3S,4R)-2-Formyl-3-methylbicyclo[2.2.1]hept-5-en-2-yl Diisopropylcarbamothioate (22, exo isomer): Colorless oil; $[\alpha]^{24}{ }_{D} 105.5$ (c 0.95, CHCl_{3}) for 88% ee; HPLC (Daicel Chiralcel AS-H column $\times 2$, hexane $-i-\mathrm{PrOH}=100: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=30.3$ (major enantiomer of exo isomer), 33.3 (minor enantiomer of exo isomer), 36.3 (major enantiomer of endo isomer), 44.0 (minor enantiomer of endo isomer) min; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1726,1647,1452,1425,1373,1287,1211$, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.46(\mathrm{~m}, 13 \mathrm{H})$, $1.68(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, \mathrm{J}=3.2,6.9,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.41 (br s, 1H), 4.00 (br s, 1H), 6.12 (dd, J = 2.8, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.35 (dd, J = 2.8, 5.5 Hz , $1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\boldsymbol{\delta} 16.5,20.5$ (4C), 38.0, 45.4, 47.0 (br), 48.7, 50.0, 50.8 (br), 70.8, 133.8, 139.2, 165.9, 198.7; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$296.1684, found 296.1688. The exo/endo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.50$ (s,1H, CHO, endo isomer) and 9.54 (s, 1H, CHO, exo isomer).

S-(1S,2R,3S,4R)-3-Butyl-2-formylbicyclo[2.2.1]hept-5-en-2-yl
Diisopropylcarbamothioate (23, exo isomer): Colorless oil; $[\alpha]^{24}{ }_{D} 151.0$ (c 1.20, CHCl_{3}) for 88% ee; HPLC (Daicel Chiralcel AD-H column $\times 2$, hexane $-i-\mathrm{PrOH}=$ $500: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=34.3$ (major enantiomer of exo isomer), 52.9 (minor enantiomer of exo isomer), 57.6 (major enantiomer of endo isomer), 87.0 (minor enantiomer of endo isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1718,1636,1457,1422,1371,1285,1211$, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-1.48(\mathrm{~m}, 18 \mathrm{H})$, $1.63(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-3.06(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J$ $=2.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=2.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,20.5(4 \mathrm{C}), 22.9,30.7,30.9,43.4,44.9,45.4,47.1$ (br), 49.6, 50.7, 70.6, 134.0, 138.7, 165.0, 198.5; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 338.2154$, found 338.2159. The exo/endo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.51$ (s, $1 \mathrm{H}, \mathrm{CHO}$, endo isomer) and 9.53 (s, 1H, CHO , exo isomer).

\boldsymbol{S}-(1S,2R,3R,4R)-2-Formyl-3-phenylbicyclo[2.2.1]hept-5-en-2-yl Diisopropylcarbamothioate (24, exo isomer): Colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}} 155.9$ (c 1.55, CHCl_{3}) for 91% ee; HPLC (Daicel Chiralcel AD-H column $\times 2$, hexane $-i$ - $\mathrm{PrOH}=$ 100:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=30.5$ (major enantiomer of exo isomer), 34.8 (minor enantiomer of exo isomer), 44.2 (major enantiomer of endo isomer), 59.4 (minor enantiomer of endo isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1718,1647,1452,1422,1370,1285,1210$, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.71(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.12$ (s, 3H), 1.45 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (br s, 1H), 3.10 (s, 1H), $3.16(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.61 (dd, $J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.19$ (m, 2H), 7.19-7.26 (m, 1H), 7.28-7.35 (m, 2H), $9.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 19.9$ (4C), 46.9, 47.1, 49.5, 49.8, 49.9, 50.5, 73.1, 126.1, 127.0 (2C), 130.9 (2C), 134.5, 139.5, 140.5, 162.9, 197.6; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 358.1841$, found 358.1830. The exo/endo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.58$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$, exo isomer) and 9.66 ($\mathrm{s}, 1 \mathrm{H}$, CHO , endo isomer).

\boldsymbol{S}-(1S,2R,3R,4R)-2-Formyl-3-(4-methoxyphenyl)bicyclo[2.2.1]hept-5-en-2-yl
Diisopropylcarbamothioate (25, exo isomer): Colorless oil; $[\alpha]^{23}{ }_{D} 133.6$ (c 1.60, CHCl_{3}) for 90% ee; HPLC (Daicel Chiralcel AD-H column $\times 2$, hexane- i - $\mathrm{PrOH}=$ 100:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=31.7$ (major enantiomer of exo isomer), 33.2 (minor enantiomer of exo isomer), 46.8 (major enantiomer of endo isomer), 92.2 (minor enantiomer of endo isomer) min ; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1715,1646,1513,1458,1422,1370,1284$, $1249,1037 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.77(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $1 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.39-4.43(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=3.2,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), 9.58 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.0$ (4C), 46.8, 47.1, 48.8, 49.76, $49.79,50.5,55.1,73.2,112.4$ (2C), 131.9 (2C), 132.6, 134.6, 139.4, 157.9, 163.0, 197.8; HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 388.1946$, found 388.1942. The exo/endo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}$, exo isomer) and 9.67 (s, $1 \mathrm{H}, \mathrm{CHO}$, endo isomer).

\boldsymbol{S}-(1S,2R,3R,4R)-2-Formyl-3-(4-fluorophenyl)bicyclo[2.2.1]hept-5-en-2-yl
Diisopropylcarbamothioate (26, exo isomer): Colorless solid; $[\alpha]^{24}{ }_{D} 170.8$ (c 1.00, CHCl_{3}) for 90% ee; HPLC (Daicel Chiralcel AD-H column $\times 2$, hexane- i - $\mathrm{PrOH}=$ 100:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=31.6$ (major enantiomer of exo isomer), 34.3 (minor enantiomer of exo isomer), 48.2 (major enantiomer of endo isomer), 61.1 (minor enantiomer of endo isomer) min; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1716,1646,1509,1423,1371,1285,1225$, $1211,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.76(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$, $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $1 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, ~ J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{dd}, J=3.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=5.5,8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $9.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\delta 20.0$ (4C), 46.9, 47.0, 48.6, 49.8 (2C), 50.6,
$73.1,113.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.0 \mathrm{~Hz}, 2 \mathrm{C}\right), 132.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 136.2,139.2,161.5(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}$), 162.7, 197.3; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{2} 7 \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 376.1747$, found 376.1750. The exolendo ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis: $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}$, CHO , exo isomer) and 9.63 (s, 1H, CHO, endo isomer).

X-ray Crystallographic Analysis of exo-26.

Bruker SMART APEX diffractometer with CCD detector (graphite monochromator, MoKa radiation, $1=0.71073 \AA$). The structure was solved by direct methods and expanded using Fourier techniques. Formula $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FNO}_{2} \mathrm{~S}$, colorless, crystal dimensions $0.20 \AA \sim 0.20 \AA \sim 0.15 \mathrm{~mm} 3$, monoclinic, space group P21 (\#4), a $=$ $8.1417(17) \AA, \mathrm{b}=14.590(3) \AA, \mathrm{c}=17.092(4) \AA, \beta=102.781(4)^{\circ}, \mathrm{V}=1980.0(7) \AA 3, \mathrm{Z}$ $=4$, and $\mathrm{D}_{\text {calc }}=1.260 \mathrm{~g} \mathrm{~cm}-3, \mathrm{~F}(000)=800, \mu=0.187 \mathrm{~mm}-1, \mathrm{~T}=173(2) \mathrm{K} .9250$ reflections collected, 8067 independent reflections with $\mathrm{I}>2 \sigma(\mathrm{I})\left(2 \theta_{\max }=28.35^{\circ}\right)$, and 493 parameters were used for the solution of the structure. The non-hydrogen atoms were refined anisotropically. $\mathrm{R}_{1}=0.0711$ and $\mathrm{wR} 2=0.1946$, GOF $=0.922$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code +44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk]. Supplementary publication no. CCDC874912.

Derivatization of 22.

To a solution of $22(29.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{Et} 2 \mathrm{O}(3 \mathrm{~mL})$ was added ZnCl_{2} $(41 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{LiAlH}_{4}(23 \mathrm{mg}, 0.60 \mathrm{mmol})^{8}$ at ambient temperature, and the mixture was stirred for 1 h . The reaction was quenched by the successive addition of EtOAc (1 mL) and saturated aqueous solution of Rochelle salt (5 mL). The layers were separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(5 \mathrm{~mL} \times 2)$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added immediately under an atmosphere of nitrogen. To this solution were added pyridine (1 mL), DMAP ($24.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) and Ac 2 O $(28.4 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ at ambient temperature, and the mixture was stirred for 1 h . The reaction was quenched with 6 M aqueous $\mathrm{HCl}(2.5 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($15 \mathrm{~mL} \times 2$). The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo, and the residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give 27 (17.9 mg , 71% yield).
((1S,2S,3S,4R)-2-(Acetylthio)-3-methylbicyclo[2.2.1]hept-5-en-2-yl)methyl Acetate (27): $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1743,1685,1377,1232,1109 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.89(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97-6.17 (m, 1H), 6.17-6.35 (m, 1H; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.1,21.0,31.1$, 42.7, 46.3, 48.2, 49.3, 63.1, 69.4, 135.5, 137.1, 170.9, 196.2; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$255.1055, found 255.1037.

References and Notes

1. (a) Sander, M. Chem. Rev. 1966, 66, 297. (b) Silvestri, M. G.; Wong, C.-H. J. Org. Chem. 2001, 66, 910.
2. Pederson, R. L.; Liu, K. K.-C.; Rutan, J. F.; Chen, L.; Wong, C.-H. J. Org. Chem., 1990, 55, 4897.
3. (a) Barlow, A. J.; Compton, B. J.; Weavers, R. T. J. Org. Chem. 2005, 70, 2470; (b) Smith, A. B., III; Levenberg, P. A.; Jerris, P. J.; Scarborough, R. M., Jr.; Wovkulich, P. M. J. Am. Chem. Soc. 1981, 103, 1501.
4. Takahashi, T.; Yokoyama, H.; Haino, T.; Yamada, H. J. Org. Chem. 1992, 57, 3521.
5. Gilley, C. B.; Buller, M. J.; Kobayashi, Y. Org. Lett. 2007, 9, 3631.
6. (a) Barany, G.; Schroll, A. L.; Mott, A. W.; Halsrud, D. A. J. Org. Chem. 1983, 48, 4750; (b) Pattenden. G,; Shuker. A. J. Tetrahedron Lett. 1991, 32, 6625.
7. Kobayashi, N.; Osawa, A.; Fujisawa, T. Chem. Lett. 1973, 2, 1315.
8. Marr, F.; Hoppe, D. Org. Lett. 2002, 4, 4217.

Publication List

1) Sakakura, A.; Yamada, H.: Ishihara, K.
"Enantioselective Diels-Alder Reaction of α-(Acylthio)acroleins: a New Entry to Sulfur-containing Chiral Quaternary Carbons"

Organic Letters 2012, 14, 2972-2975.
2) Sakakura, A.; Yamada, H.: Ishihara, K.
" α-Heterosubstituted β-Alkylacroleins as Useful Multi-substituted Dienophiles for the Enantioselective Diels-Alder Reaction"

Asian Journal of Organic Chemistry 2012, 1, 133-137.
(Inside cover article)
3) Ishihara, K.; Yamada, H.; Akakura, M.
"The First Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridines with α-Acyloxyacrolein Catalyzed by Chiral Primary Ammonium Salt" In preparation.

Acknowledgement

I would like to express my grateful acknowledgment to my supervisors, Professor Kazuaki Ishihara and Professor Akira Sakakura (Okayama University). Their encouragement and helpful suggestions have been indispensable in the completion of the present thesis. The excitement with which they approach synthesis and their dedication to the goal of producing good science is inspiring. Their teaching style in the laboratory and positive attitude for the research work motivated me to be engaged in chemistry. It has been a privilege to work under tutelage of them. I am indebted to Associate Professor Manabu Hatano and Assistant Professor Muhammet Uyanik for their practical and fruitful discussions.

I am also very grateful to Associate Professor Matsujiro Akakura (Aichi University of Education). It is pleasant to express my appreciation to the former and present colleagues in Ishihara's group, especially Drs. Rei Kondo, Takafumi Asai, Mikimoto Katsukawa, Atsushi Ukai, Shuhei Umemura, Shinji Suzuki, Yoshiki Koshikari, Katsuhiko Moriyama, Atsuto Izumiseki, Hidefumi Nakatsuji, Takahiro Horibe, Tomokazu Mizuno, Takeshi Yasui, Masayuki Sakuma, Keisuke, Nishikawa and Messrs. Masahiro Hori, Yasuhiro Sawamura, Daisuke Suzuki, Niiha Sasakura, Yoshihiro Ogura, Hiroki Hayashi and and all of my colleagues in Ishihara group.

I would like to express my gratitude to Professor Michael J. Krische, who kindly gave me an opportunity for working at the University of Texas at Austin. I am also grateful to the support of my colleagues in Krische group, in particular Takahiko Ito and Patrick Montgomery.

I would like to thank Professors Hiroyuki Asanuma, Takashi Ooi and Toshio Nishikawa for serving on my discussion committee.

I am very grateful to the Fellowships from the Grobal COE Program "Elucidation and Design of Materials and Molecular Functions" and from the Program for Leading Graduate Schools "Integrative Graduate Education and Research in Green Natural Sciences", MEXT, Japan.

Finally, I would like to thank my friends and especially my parents for their true regard and unwavering support during my Ph.D study. Thank you.

January 2014
Hiroki Yamada

＜発表論文＞

1）Sakakura，A．；Yamada，H．：Ishihara，K．
＂Enantioselective Diels－Alder Reaction of α－（Acylthio）acroleins：a New Entry to Sulfur－containing Chiral Quaternary Carbons＂

Organic Letters 2012，14，2972－2975．

2）Sakakura，A．；Yamada，H．：Ishihara，K．
＂α－Heterosubstituted β－Alkylacroleins as Useful Multi－substituted Dienophiles for the Enantioselective Diels－Alder Reaction＂

Asian Journal of Organic Chemistry 2012，1，133－137．
（Inside cover article）

3）Ishihara，K．；Yamada，H．；Akakura，M．
＂The First Enantioselective Diels－Alder Reaction of 1，2－Dihydropyridines with α－Acyloxyacrolein Catalyzed by Chiral Primary Ammonium Salt＂ In preparation．
＜国内学会発表＞
（1）○山田浩貴，坂倉 彰，石原一彰
「キラル有機アンモニウム塩触媒を用いた α－（アシルチオ）アクロレインのエナ ンチオ選択的 Diels－Alder 反応」
日本化学会第 90 回春季年会，4F6－37，大阪（平成 22 年 3 月），口頭 A 講演
（2）○山田浩貴，坂倉 彰，石原一彰
「キラル有機アンモニウム塩触媒を用いた $\alpha-($ カルバモイルチオ）アクロレイン のエナンチオ選択的 Diels－Alder 反応」
日本化学会第 91 回春季年会，2C2－06，神奈川（平成 23 年 3 月），口頭 A 講演
（3）○山田浩貴，坂倉 彰，石原一彰
「キラル有機アンモニウム塩触媒を用いた β－アルキル－α－ヘテロ置換型アクロレ インのエナンチオ選択的 Diels－Alder 反応」

日本化学会第 92 回春季年会，3K3－35，神奈川（平成 24 年 3 月），口頭 B 講演
（4）○山田浩貴，石原一彰
「キラル有機アンモニウム塩触媒を用いる 1,2 －ジヒドロピリジンと α－ヘテロ置換アクロレインによるエナンチオ選択的 Diels－Alder 反応」
日本化学会第 93 回春季年会， $3 \mathrm{E} 5-08$ ，滋賀（平成 25 年 3 月），口頭 A 講演
（5）○山田浩貴，石原一彰
「キラル有機アンモニウム塩触媒を用いる 1,2 －ジヒドロピリジンと α－ヘテロ置換アクロレインによるエナンチオ選択的 Diels－Alder 反応とその合成的応用」日本化学会第 94 回春季年会，名古屋（平成 26 年 3 月），口頭 B 講演
＜受賞＞
日本化学会第 92 回春季年会 学生講演賞（平成 24 年 3 月）
＜研究留学＞
平成 25 年 6 月 1 日 ~ 8 月 31 日
Prof．Michael J．Krische
The department of Chemistry and Biochemistry，
The University of Texas at Austin

