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論文要旨

大気中に浮遊するダスト粒子は、太陽光の散乱と吸収を通じて直接的に、雲との相互作用を

通じて間接的に、地球の放射収支に影響を与える。ダストの気候への影響を正しく評価するた

めには、光学特性 (消散係数など)の鉛直分布の情報が必要不可欠である。受動型センサによる

ダストの衛星観測では、光学特性の鉛直分布の情報は得られない。衛星 CALIPSOに搭載され

たライダー (CALIOP)によって、2006年 6月から全球の雲とエアロゾルの鉛直分布を観測で

きるようなった。CALIOPの観測データから光学特性を導出するには、ライダー比 (消散係数

と後方散乱係数の比)が必要となる。CALIOPなどのミー散乱ライダーでは、ライダー比は未

知数となる。そのため、CALIOPで検出された層に対して、エアロゾル光学モデルから得られ

たライダー比を適切に割り当てなければならない。この時、検出された層が雲かエアロゾルな

のかを正しく判別する必要がある。雲とエアロゾルの誤判別は、ライダー比の誤った選択につ

ながるため、光学特性を正確に推定できなくなる。

CALIOPデータの雲を特定する雲マスクでは、ダストを雲と誤判別する場合がある。そのた

め、雲マスクによって特定された雲について、誤判別雲を識別する必要がある。また、光学特

性を正確に推定するために、光学モデルから得られたライダー比を地上ライダー等で検証する

必要がある。タクラマカン砂漠は主要なダストの発生源地域であるにも関わらず、これまでラ

イダー比を測定した研究事例は無かった。本論文では、ミー散乱ライダーデータからダストの

正確な光学特性の鉛直分布を推定するために、1)タクラマカン砂漠におけるダストのライダー

比を地上・衛星ライダーの同期観測から推定すること、および、2) CALIOPの雲マスクに含ま

れる誤判別雲を判別分析によって識別することを目的とした。

タクラマカン砂漠におけるライダー比を推定するため、地上／衛星ライダーによるダストの

同期観測が 2009年 3月に行われた。この時に同期測定された地上と衛星ライダーの信号から

後方散乱係数を計算し、両者の差が最も小さくなる時のライダー比を推定値とした。推定され

たライダー比は波長 532 nmに対して 42.0 sr、波長 1064 nmに対して 45.9 srだった。532 nm

のライダー比は、他のアジア域で測定された値よりも 3 ∼ 24%小さかった。ライダー比の推定

誤差は、532 nm に対して 9.5%、1064 nm に対して 41.6% だった。エラー解析の結果、1064

nmのライダー比はライダー信号の校正の誤差に強く依存することがわかった。推定したライ

ダー比を使って後方散乱係数を計算し、CALIOP level 2 プロダクトと比較した。その結果、



CALIOP level 2の後方散乱係数は本研究による結果と比べて 21%小さいことがわかった。こ

の違いは、CALIOP level 2の vertical feature mask (VFM)でダストを雲と誤判別し、ライダー

比の選択が誤っていたことが原因であると示唆された。

CALIOP の雲マスクに含まれる、誤判別された雲を識別するために判別分析を行った。判

別モデル (線形判別関数) を構築するために、雲と誤判別雲の学習データを決定した。この

時、CloudSatおよび MODISの雲マスクと相対湿度を用いた。構築した判別モデルを使って、

CALIOP の雲マスクで検出された雲の再分類を行った。その結果、昼間と夜間、そして陸上

と海上でも、誤判別雲の識別に成功した。一方、従来の判別モデルは昼間の学習データしか使

用していないので、夜間の識別がうまくいかなかった。本論文の判別モデルは、91.7% の検

出精度で誤判別雲を識別できた。雲マスクに含まれる誤判別雲の割合は北半球 (高度 1–7 km,

20◦W–120◦E, 0◦–50◦N) の夏季 (JJA) で 6% だった。誤判別雲の頻度はタクラマカン砂漠の上

空で最も高かった。タクラマカン砂漠におけるダストのプロファイルのうち、34.6%が雲マス

クで誤判別されたプロファイルだった。雲マスク改良後のダスト消散係数のプロファイルは改

良前に比べて最大 2.6倍大きかった。また、本論文で得られた消散係数は CALIOP level 3デー

タと比べて最大 2倍大きかった。先行研究との比較の結果、CALIOP level 3データの消散係数

が負のバイアスをもつことがわかった。この負のバイアスは、VFM がダストを雲と誤判別し

ていることが原因であると示唆された。

本論文の成果は、ミー散乱ライダーデータからダストの光学特性を正確に推定することに役

立つ。また、データ同化などを通じて化学輸送モデルの精度向上への貢献が期待される。



Abstract

Mineral dust suspended in the atmosphere affects the earth’s radiation budget directly through

scattering and absorbing sunlight and indirectly through their interaction with clouds. To accu-

rately predict the effect of dust on the climate system, information regarding its vertical distribu-

tion is needed. However, vertical information of dust cannot be derived from observations by most

passive sensors or sampling instruments. The Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) satellite has enabled global observation of the vertical distribution of aerosols and

clouds since June 2006. Lidar ratios (extinction-to-backscattering ratio) are needed to retrieve op-

tical properties (e.g., extinction coefficient) from CALIOP signals, and are unknown in the analysis

of Mie-scattering lidar as CALIOP.

If lidar ratios are not derived from observations, those from particle optical models are allo-

cated on the basis of layer types (i.e., clouds, aerosols, and their sub-types). CALIOP cloud mask

products, which determine whether the observed data are clouds or not, occasionally misclassify

dense dust as clouds. Since the misclassification leads to the selection of incorrect lidar ratios of

dust, the CALIOP cloud mask need to be improved. In addition, lidar ratios obtained by optical

models need to be validated by ground-based lidar. Although the Taklimakan Desert is a major

sources of the dust, no lidar ratio measurements have been conducted previously.

This thesis is designed for better estimation of the vertical profiles of dust optical properties by

Mie-scattering lidar. The purposes of this thesis are: 1) to estimate the lidar ratio of dust originated

from the Taklimakan Desert by simultaneous observations with ground-based lidar (Aksu-lidar)

and CALIOP, and 2) to discriminate misclassified clouds from clouds in the CALIOP cloud mask

with a discriminant analysis.

Simultaneous observations of dust by Aksu-lidar and CALIOP were conducted to estimate

the lidar ratio in the Taklimakan Desert on March 23, 2009. The lidar ratio is estimated from a

performance function that is defined as the square error of the backscattering coefficients between

Aksu-lidar and CALIOP. If the performance function returns the minimum value, the selected lidar

ratio is regarded as the optimal solution. The estimated lidar ratios at 532 and 1064 nm are 42.0

and 45.9 sr, respectively. The 532 nm lidar ratio is 3–24% smaller than those of Asian dust reported

previously. The errors in the lidar ratio estimation are 9.52% at 532 nm and 41.6% at 1064 nm.

The error analysis indicates that the estimation of the 1064 nm lidar ratio depended strongly on the

calibration errors at 1064 nm. A comparison of our results to the CALIOP level 2 data shows that

the backscattering coefficients of the CALIOP level 2 data are 21% smaller than those of this thesis



and that the smaller backscattering coefficients are caused by misclassification of dust as clouds in

the vertical feature mask (VFM).

A discriminant analysis is conducted to detect misclassified clouds in the CALIOP cloud mask.

A linear discriminant function (LDF) is used as the discrimination model. The training data are

collected through tests with the CloudSat cloud mask, the Moderate Resolution Imaging Spectro-

radiometer (MODIS) cloud mask, and the relative humidity. Discrimination of dust from clouds is

successful in cases over both land and water surfaces during the daytime and nighttime. In contrast,

the discrimination model of previous studies was inadequate during the nighttime since training

data were not collected during the nighttime.

The accuracy rate of the LDF classification is 91.7% for misclassified clouds. The estimated

content rate of misclassified clouds in the CALIOP cloud mask is approximately 6% in the re-

gion of 20◦W–120◦E and 0◦–50◦N during June–August 2007. The cloud mask is most frequently

misclassified in the Taklimakan Desert. The proportion of misclassified clouds to observed dust is

∼34.6% (below 2 km) in the desert. Dust extinction coefficient estimated using the improved cloud

mask is ∼2.6 times larger than that estimated using the original cloud mask. A comparison of this

thesis to the CALIOP level 3 products indicates that the extinction profile with the improved cloud

mask is ∼2 times larger than that of the CALIOP level 3. Aerosol optical depths (AOD) reported

by previous studies indicate that AODs for the CALIOP level 3 have a negative bias. This thesis

suggests that the negative bias of the CALIOP level 3 in the Taklimakan Desert is mainly caused

by misclassification of dust as clouds in the VFM.

The results of this thesis are useful for correctly estimating dust optical properties from Mie-

scattering lidar, and contribute to an improvement in the accuracy of chemical transport models.
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1 Introduction

1.1 Aerosol particles in the global climate system and their observations by

lidar instruments

Atmospheric aerosol particles (hereinafter referred to as aerosols) play an important role in the

earth’s climate system. Aerosols cool the atmosphere by scattering sunlight into space and heat

the atmosphere through the absorption of solar and terrestrial radiation. Aerosols indirectly affect

the earth’s radiation budget through modifications of cloud microphysics (e.g., effective radius

and number concentrations) by acting as cloud condensation and ice nuclei. According to the

fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), radiative

forcing caused by aerosols is totally negative (i.e., cooling of the earth). However, the radiative

forcing of tropospheric aerosols is not well understood due to aerosol characteristics as follows:

the aerosols have short residence times (from a few days to a few weeks), different emissions from

one region to another, and a variety of chemical compositions and size distributions (depending

on their species). These characteristics lead to an inadequate understanding of aerosol global

distribution [Seinfeld and Pandis, 1998]. Therefore, observational studies on tropospheric aerosols

are necessary to improve our knowledge in the aerosol characteristics.

Mineral dust is an aerosol that has a large impact on scattering and absorption of solar radiation

because of its high concentration [Li et al., 1996]. Tegen et al. [1997] reported that the optical depth

of dust accounts for 21–48% of the global aerosol optical depth (AOD). The radiative forcing (di-

rect effect) of dust is estimated at −0.1 [±0.2] W/m2 in the AR5. Dust is emitted to the atmosphere

by wind erosion in desert and arid regions [Shao, 2008]. The main source regions are located in

the northern hemisphere and extend from the west coast of North Africa, the Middle East, Central

and South Asia, to China [Prospero et al., 2002]. It has been reported that dust emissions are from

1000 to 2150 Tg/yr since 2001 [Zender et al., 2004]. Compared to other regions, the mixed layer

height is higher in arid regions since clear skies and the low soil moisture contents allow higher

surface temperatures, which can cause stronger sensible-heat fluxes to the atmosphere and deeper

turbulent mixing [Warner, 2004]. As a result, dust layer heights can develop to altitudes of 6 km in

great deserts [Liu et al., 2008a]. Dust modifies radiative heating rates in the atmosphere depending

on its vertical distribution [Meloni et al., 2005; Perrone et al., 2012], thereby changing atmospheric

stability [Zhao et al., 2004]. If dust reaches heights where the temperature is below 0◦C, they can

serve as ice nuclei. Several studies suggested that dust has the largest impact on cloud phases at

1



temperatures warmer than −40◦C [Wiacek and Peter, 2009; Wiacek et al., 2010; Choi et al., 2010].

Dust is transported over long distances by large-scale winds. Dust layers emitted from arid regions

in China have been observed in Korea, Japan, and even North American continent beyond the

Pacific Ocean [Uno et al., 2004; Husar et al., 2001]. Dust layers from the Sahara Desert are trans-

ported to the Mediterranean Sea, the North Atlantic Ocean, and the Caribbean Sea [Moulin et al.,

1998; Prospero and Carlson, 1972]. Through these dust transport processes, optical properties of

the atmosphere can be changed by mixing with anthropogenic particles [Shibata and Yang, 2010]

and/or by acting as ice nuclei [Sakai et al., 2003]. Thus, observations of dust optical properties

are important to understand the effects of dust on the climate system. This thesis focuses on dust

optical properties in the northern hemisphere.

To accurately predict the effects of dust on the climate system, information on its vertical distri-

bution is essential [Satheesh and Moorthy, 2005]. However, vertical information cannot be derived

from observations by most passive sensors (e.g., sun photometers) and sampling instruments (e.g.,

cascade impactors). For example, widely used satellite imagery has allowed the regional and global

distribution of aerosols, but it cannot provide the vertical information. Lack of aerosol vertical in-

formation causes uncertainty for the solution of the radiative transfer equation. In contrast, LIght

Detection and Ranging (lidar) is an active remote sensing instrument that emits laser pulses into the

atmosphere and receives backscattered light from aerosols, clouds, and/or atmospheric molecules

[Weitkamp, 2005]. Time intervals between emitting a laser pulse and receiving backscattered light

depend on the distance from lidar to scatterers. Analyzing backscattered echo signals enable us

to investigate the distance to scatterers. If laser pulses are emitted vertically, lidar can measure

vertical distribution of scatterers. Therefore, lidar is an effective tool for the climate research, and

this thesis uses it for the investigation of dust vertical distribution.

The Taklimakan Desert is one of the largest sources of Asian dust. It is located in the Tarim

Basin, which is surrounded by high mountains exceeding 4000 m in altitude. Local circulations

driven by the mountains can cause floating dust [Kim et al., 2009]. Dust over the Taklimakan

Desert floats in the atmosphere throughout the year due to the particular geography [Liu et al.,

2008b]. In addition, Uno et al. [2009] reported that dust originated from the Taklimakan Desert

is transported over a circuit around the globe. Taklimakan dust can have significant effects on

the climate in terms of its long residence time. However, lidar observations in the Taklimakan

Desert were not conducted before 2001. By the Aeolian Dust Experiment on Climate impact

(ADEC) project [Mikami et al., 2006], ground-based lidar was set up at Aksu (hereinafter referred

to as Aksu-lidar) located at the northern part of the desert. The project has carried out intensive

2



observations since the autumn of 2001 [Tsunematsu et al., 2005a,b; Tanaka et al., 2005; Kai et al.,

2008; Kim and Kai, 2007]. In this thesis, dust optical properties over the Taklimakan Desert are

investigated by Aksu-lidar observations.

There have been few lidar observations in most arid regions due to accessibility and power

limitations. However, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft has en-

abled us to observe the global vertical distribution of aerosols and clouds since June 2006 [Winker

et al., 2007]. For example, Liu et al. [2008b] investigated the vertical profiles of dust over the

Tibetan Plateau where it had been difficult to conduct lidar observations. Space-borne lidar can

observe aerosols globally, but their signals have large amounts of noise and no temporal continuity

at any fixed point. Conversely, ground-based lidar can measure high-quality (low noise) signals

that have temporal continuity at fixed points. By making use of the advantages of each lidar instru-

ment, scientific understanding on the role of aerosols in the climate system can be improved.
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1.2 Importance of lidar ratios for Mie-scattering lidar

Aksu-lidar and CALIOP are Mie-scattering lidar systems. This type of lidar detects light

backscattered at the same wavelength as the emitted laser. Mie-scattering lidar receives backscat-

tered light from atmospheric particles (aerosols and clouds) and molecules simultaneously. Com-

pared to High Spectral Resolution Lidar (HSRL), which receives backscattered light from atmo-

spheric particles and molecules separately, Mie-scattering lidar has a simple optical system, and

therefore it is widely used. For example, the National Institute for Environmental Studies (NIES)

has used Mie-scattering lidar for a lidar network to observe Asian dust and air pollution aerosols

over East Asia [Sugimoto et al., 2011].

Mie-scattering lidar systems used in this thesis (specifically, Aksu-lidar and CALIOP) are

equipped with a dual-wavelength laser (1064 nm and 532 nm). For each wavelength, the backscat-

tering or extinction coefficients of observed particles can be retrieved from lidar signals. Analyzing

the ratio of backscattering coefficients for aerosols at these two wavelengths (referred to as color

ratio), information related to the aerosol size distribution is derived [Sasano and Browell, 1989].

In addition, the lidar systems measure the polarization components of backscattered light at 532

nm. The ratio of polarization signals (referred to as depolarization ratio) gives us a parameter

for nonspherical particles (or particle size distribution with a mode radius smaller than 532 nm).

The depolarization ratio, in turn, allows us to identify dust from other aerosol species in the lidar

data empirically [Sassen, 2000]. In summary, optical properties derived by the lidar systems are

backscattering or extinction coefficients, color ratios, and depolarization ratios.

To retrieve backscattering or extinction coefficients from signals measured by Mie-scattering

lidar, an inverse problem must be solved. The lidar equation that describes signals measured by

lidar includes backscattering and extinction coefficients (see Chapter 2.2). These are theoretically

calculated for molecular components, but unknowns for particle components. The lidar equation

cannot be solved since it contains two unknowns. To solve the equation, lidar ratios (extinction-to-

backscattering ratios) should be introduced to reduce an unknown in the equation [Fernald et al.,

1972]. The lidar ratio ranges from 10 to 90 sr and depends on the size distribution, complex

refractive indices and shapes of particles, the wavelength of incident light, and relative humidity

[Anderson et al., 2000].

The reported lidar ratios for dust over East Asia are 42-55 sr at 532 nm [Liu et al., 2002; Sakai

et al., 2003; Murayama et al., 2004; Noh et al., 2007]. If incorrect lidar ratios are used, lidar signal

attenuations are inaccurately corrected. Such inaccurate attenuation correction causes errors in the

calculation of particle backscattering or extinction coefficients [Sasano et al., 1985]. Therefore, it

4



is important to estimate correct lidar ratios. In contrast, there is no need to assume lidar ratios for

HSRL and Raman scattering lidar systems since they can directly observe lidar ratios by measuring

particle backscattering and particle extinction coefficients independently. However, much more

studies have been conducted with Mie-scattering lidar, rather than those with the other kind of lidar

systems. Therefore, the estimation of lidar ratios has significance for studies with Mie-scattering

lidar.

This thesis attempts to estimate the lidar ratio of dust over the Taklimakan Desert by using

Aksu-lidar and CALIOP signals, and is the first attempt to estimate the lidar ratio over this desert.

The estimation can be achieved by assuming that Aksu-lidar and CALIOP observe the same atmo-

sphere column (see Chapter 3.1). An intensive observation of dust by Aksu-lidar was conducted

simultaneously with CALIOP in March 2009. Several studies have made simultaneous observa-

tions of aerosols by ground-based lidar and CALIOP. Kim et al. [2008] indicated that the extinction

profiles of daytime CALIOP data differ substantially from those of ground-based lidar data due to

the small signal-to-noise ratio (SNR) of CALIOP data. They derived lidar ratios from sun pho-

tometer data. Hara et al. [2011] investigated the temporal variations of the AOD of spherical

particles in East Asia by using CALIOP and ground-based lidar data. In that study, the lidar ratio

was set to 50 sr to calculate the AOD. However, the theoretical lidar ratio of polluted aerosols,

which are the main constituents of spherical particles in East Asia, is approximately 70 sr [Omar

et al., 2009]. Unknown lidar ratios result in uncertainty in the calculation of optical properties.

There have been few studies estimating lidar ratios from simultaneous observations.
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1.3 Misclassification issues in cloud masking processes for the CALIPSO

lidar

As explained above, it is necessary to select correct lidar ratios in order to accurately retrieve

backscattering and extinction coefficients from lidar data. However, lidar ratios are rarely estimated

by measurements, especially for CALIOP. In such cases, lidar ratios obtained from optical models

incorporating the microphysics of particles (i.e., the size distribution, complex refractive index,

and shape of particles) are used [e.g. Omar et al., 2009]. To assume the microphysics of particles,

lidar-observed layers must be classified into aerosols or clouds. The backscattering or extinction

coefficients of aerosols are calculated after screening cloud layers and determining lidar ratios.

There are two products for cloud identification (i.e., cloud masking) in CALIOP data: the vertical

feature mask (VFM) developed by the CALIPSO science team [Vaughan et al., 2009; Liu et al.,

2009] and the C2 cloud mask developed by Hagihara et al. [2010]. The latter is based on cloud

masks used in ship-borne lidar and 95 GHz cloud radar observations in the western Pacific Ocean

near Japan [Okamoto et al., 2007]. The name “C2” means the cloud mask scheme for lidar-only

(“C1” is for radar-only). These two cloud mask schemes (VFM and C2) are different in terms of

the layer detection and discrimination of aerosols and clouds. This thesis uses the C2 cloud mask

because of the better cloud detection than the VFM as described below.

The VFM discriminates between clouds and aerosols at five horizontal resolutions (333 m, 1

km, 5 km, 20 km, and 80 km) and provides the product mixed with all the resolutions. However, the

mixture state of the resolutions makes analysis complicated. For example, researchers using cloud-

resolving models are forced to estimate the distribution of cloud fraction on some horizontal scales

that are larger than the reported resolution of the VFM for comparison. In addition, the VFM layer

detection scheme makes false detections through its large horizontal averaging procedure and may

misclassify noise or aerosols as clouds [Marchand et al., 2008]. Dust layers are often misclassified

as cloud layers since the optical properties of dust are similar to those of clouds. In the Taklimakan

Desert during springtime, about 43% of dust layers are misclassified as cloud layers in the VFM

[Chen et al., 2010]. If such misclassified layers are used for the retrieval, the estimated optical

properties of aerosols and clouds will have uncertainties due to the selection of incorrect lidar

ratios.

The C2 cloud mask has a fixed horizontal resolution of 1.1 km. This scheme identifies clouds

in regions with strong signals and spatial continuity, while the VFM attempts to detect clouds even

for weak signal regions by the large horizontal average. In general, clouds have larger backscatter-
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ing cross sections than aerosols. Clouds detected by weak signals may contain aerosols in the VFM

scheme. Therefore, the C2 cloud mask produces less misclassification and identifies clouds more

certainly. The zonal mean cloud fraction obtained from the VFM is 25% larger than those from

the C2 cloud mask in low altitudes (below 2 km) due to the misclassification issues of the VFM

[Hagihara et al., 2010]. The C2 cloud mask was used for evaluating cloud microphysics from

the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) [Hashino et al., 2013]. In addition,

the C2 cloud mask scheme is planned to be used as a basis of a cloud mask for lidar that will be

on board the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite [JAXA EORC,

2012]. However, aerosol layers with strong signals (e.g., dense dust layers) are occasionally mis-

classified as cloud layers in the C2 cloud mask. As a result, further improvements are needed to

make a conclusive cloud mask product that has little misclassification.

Aerosols misclassified as clouds should be removed from cloud mask data for the reasons men-

tioned above. The vertical profiles of dust must be reevaluated after cloud mask improvements.

Several studies attempted to solve the VFM misclassification issues using discrimination analysis,

which is a method to predict the group of uncategorized data by a discriminant model (discriminant

function) [Johnson and Wichern, 2007]. The model is constructed from training data consisting of

two or more independent variables that the groups they belong to are already known. Several stud-

ies discriminated misclassified clouds (mainly dust layers) from VFM cloud data by incorporating

lidar derived optical and geometrical variables in their discriminant models [Xie et al., 2010; Chen

et al., 2010; Naeger et al., 2013]. However, these studies only applied the discriminant analysis

to the daytime data since the training data were manually determined by reference to satellite im-

agery, resulting in difficulties in the detection of misclassified clouds for the enormous CALIOP

dataset.

In this thesis, cloud layers detected by the C2 cloud mask are reclassified into clouds or misclas-

sified clouds by using discriminant analysis. The cloud masks from Moderate Resolution Imaging

Spectroradiometer (MODIS) on board Aqua and cloud profiling radar (CPR) on board CloudSat

are used to determine the training data used for the discriminant analysis (see Chapter 4.2). The

application of the MODIS cloud mask to the discriminant analysis is the first approach.
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1.4 Purposes of this thesis

This thesis is designed for better estimation of dust optical properties derived from Mie-

scattering lidar. The purposes of this thesis are: 1) to estimate the lidar ratio of dust originated

from the Taklimakan Desert by simultaneous observations with Aksu-lidar and CALIOP, and 2)

to discriminate misclassified clouds from CALIOP cloud mask data by discriminant analysis. The

first purpose is expected to lead to more accurate estimations of the optical properties of Tak-

limakan dust in the spring season. Using the estimated lidar ratio, the vertical profiles of dust

optical properties will be retrieved from Aksu-lidar data. The retrieved backscattering coefficient

will be compared to CALIOP level 2 products. The products are necessary to be validated since

they are used in many studies, such as for comparison with numerical models [e.g. Koffi et al.,

2012]. The second purpose is expected to lead to improvements of the C2 cloud mask with little

misclassification through the removal of dust, which is considered as the main source of misclassi-

fied clouds. The vertical profiles of dust extinction coefficients will be reevaluated after the cloud

mask improvement. The studies in this thesis for solving the issues of lidar ratio selection and

layer misclassification are expected to be applicable for better estimation of the vertical profiles of

dust optical properties.
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2 Description of the lidar systems and data analyzing proce-

dures

In Chapter 1, the importance of lidar ratios in the analysis of Mie-scattering lidar data and

the issues of lidar ratio selection caused by cloud mask misclassifications were pointed out. This

chapter presents basic information on the Mie-scattering lidar used in this thesis for subsequent

studies. First, the ground-based lidar system in the Taklimakan Desert and the CALIOP lidar

system are described. Second, the retrieval procedures of optical properties from the lidar equation

are described. The retrieval error caused by selecting an incorrect lidar ratio is shown.

2.1 Systems of ground/space-based lidar instruments

This section presents a description of the Aksu-lidar and CALIOP systems, which are used to

investigate the optical properties of dust. An observation of dust by Aksu-lidar was conducted at

the Aksu Water Balance Experimental Station of the Xinjiang Institute of Ecology and Geography

of the Chinese Academy of Science from March 23 to 25 in 2009. The station is located in the

northern part of the Taklimakan Desert (40.62◦N, 80.83◦E, 1028 m above sea level), as shown in

Figure 2.1. The observational data are used to estimate the dust lidar ratio by comparison with the

simultaneous CALIOP observation data.

A schematic diagram of the Aksu-lidar system is illustrated in Figure 2.2 and the specifications

of that system are summarized in Table 2.1. The lidar consists of transmitter, receiver, and data

processing systems. The transmitter system employs a Nd:YAG laser at the fundamental (1064

nm) and the second (532 nm) harmonic wavelengths. A linearly polarized and pulsed laser beam

is collimated at 0.2 mrad by a beam expander. The pulse repetition rate is 10 Hz, and the energy

per pulse is 300 mJ. The laser pulses are emitted into the atmosphere in the vertical direction. The

laser axis is set to be coincident with the field of view of the receiver’s telescope. The receiver

system employs a Schmidt-Cassegrain telescope with a 355-mm diameter. The backscattered light

collected by the telescope is separated into four optical paths through an optical system. The inci-

dent light is separated by a dichroic mirror that reflects the 532 nm wavelength light and transmits

the 1064 nm wavelength light. Each component of the separated light passes through a narrow-

band interference filter to transmit the light of the laser wavelength (i.e., the other wavelengths are

excluded). The reflected light (532 nm) is divided into perpendicular and parallel components to

the polarized plane of the emitted laser by a polarizer. The parallel component is further divided
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into 90% and 10% strengths by a beam splitter. The amount of each divided light is controlled

by a neutral density (ND) filter to reduce the background light. Since stronger lidar signals are

measured at the lower altitudes, the 10% and the 90% components are used for the lower and the

higher altitudes, respectively. Using the two components allows the dynamic range of observable

signal strength to be extended.

All components of the separated light are detected by three photomultiplier tubes (PMTs) for

532 nm, and by an avalanche photodiode (APD) for 1064 nm. To avoid signal-induced noise

caused by strong signals at lower altitudes, the detector that receives the 90% component is gated

from the lidar up to 3 km (i.e., 20 µs) by a delay generator. The detected light is converted to

an electric signal. A transient recorder that is a part of the data processing system digitizes the

converted signal. All signals are digitized by a 12 bit A/D converter, and the 532 nm signals

are also digitized by a discriminator that detects voltage pulses above a selected threshold (i.e., a

photon counting system with a maximum count rate of 250 MHz). The transient recorder records

16000 signals per shot (i.e., 120 km height) at 50 ns interval (i.e., 7.5 m vertical resolution). To

improve the SNR, the signals are averaged for every 3000 shots (5 minutes time resolution). The

processed signals are stored by a computer.
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Figure 2.2: Schematic diagram of the Aksu-lidar system.
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Table 2.1: Specification of the Aksu-lidar system.

Transmitter
Laser Nd:YAG Laser
Wavelength 532 nm, 1064 nm
Pulse Energy 300 mJ
Pulse Repetition Rate 10 Hz
Beam Divergence 0.2 mrad

(after beam expander)

Receiver
Telescope Schmidt-Cassegrain
Diameter of Telescope 355 mm
Direction of Measurement Zenith
Geometry Coaxial
Field of View 2 mrad
Digitization 50 ns
532 nm channel:
Detector Photomultiplier (HAMAMATSU R3234)
Voltage 2000 V
PMT90,// Delay 20 µs
ND Filter

PMT⊥ 1%
PMT// 10%

1064 nm channel:
Detector Avalanche Photodiode (Licel APD-3.0)
Voltage 340 V
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The CALIPSO satellite, on which the CALIOP is mounted, was launched in April 2006 as a

part of the so-called A-train satellite constellation. The satellites in the constellation are positioned

at an altitude of 705 km in a sun-synchronized polar orbit with an inclination of 98◦. They travel

14.56 orbits per day and move 24.7◦ longitude westward per orbit at the equator. The CALIPSO

mission is to improve our understanding of the role of aerosols and clouds in the climate system

[Winker et al., 2007]. In this thesis, the CALIOP data are used for the estimation of lidar ratios

and investigations of the optical properties of dust. To accurately estimate the optical properties,

misclassification in the CALIOP cloud mask is improved.

The CALIOP lidar measures backscattered signals at 1064 and 532 nm and polarization com-

ponent at 532 nm in common with Aksu-lidar. The specification of the CALIOP system is sum-

marized in Table 2.2. The laser pulse is collimated at 0.1 mrad by a beam expander, and is emitted

to the atmosphere with 3 degree off-nadir angle (0.3 degree before November 28, 2007). The rep-

etition rate of the laser pulse is 20.16 Hz, and the energy per pulse is 110 mJ. The diameter and the

field of view of the telescope are 1 m and 0.13 mrad, respectively. To eliminate the background

noise of 532 nm signals, an etalon filter with a narrow-band is used in combination with the inter-

ference filter. The CALIOP level 1B data (version 3), which are calibrated raw data, are used for

the investigation of the optical properties. The CALIOP data are downloaded from Atmospheric

Science Data Center (ASDC: https://eosweb.larc.nasa.gov). The horizontal and vertical resolutions

of the level 1B data depend on the altitude and are summarized in Table 2.3. In the data analysis

of simultaneous observations with Aksu-lidar, the vertical resolution of 532 nm signals below 8.2

km is changed into 60 m to reduce random noise. The vertical resolution of Aksu-lidar is adjusted

in accordance with the CALIOP resolution.

13



Table 2.2: Specification of the CALIOP lidar system.

Transmitter
Laser Nd:YAG Laser
Wavelength 532 nm, 1064 nm
Pulse Energy 110 mJ
Pulse Repetition Rate 20.16 Hz
Beam Divergence 0.1 mrad

(after beam expander)

Receiver
Diameter of Telescope 1 meter
Direction of Measurement off-nadir (3 degree)
Geometry Coaxial
Field of View 0.13 mrad
Digitization 100 ns
532 nm channel:

Detector Photomultiplier
Etalon Passband 37 pm
Etalon Peak Transmission 85 %
Blocking Filter 770 pm

1064 nm channel:
Detector Avalanche Photodiode
Optical Passband 450 pm
Peak Transmission 84 %

Table 2.3: Horizontal and vertical resolutions of the CALIOP level 1B data.

Altitude Horizontal 532 nm Vertial 1064 nm Vertical
Range [km] Resolution [km] Resolution [m]
30.1 to 40.0 5.0 300 —
20.2 to 30.1 1.67 180 180
8.2 to 20.2 1.0 60 60
-0.5 to 8.2 0.33 30 60
-2.0 to -0.5 0.33 300 300
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2.2 Lidar equation

A signal derived from the Mie-scattering lidar is described by the lidar equation as follows:

Pλ(z) =
K
z2 O(z)βλ(z)T 2

λ(z), (2.1)

where Pλ(z) is the observed signal at an altitude z and a wavelength λ, K is the system constant

depending on the lidar system (e.g., laser power), O(z) is the beam overlap factor, βλ(z) is the

backscattering coefficient of scatterers at λ, and T 2
λ(z) is the atmospheric transmittance at λ between

the lidar altitude z0 and z, and is given by:

T 2
λ = exp

{
−2

∫ z

z0

αλ(z′)dz′
}
, (2.2)

where αλ(z) is the extinction coefficient of scatterers at λ. This term is based on the Lambert-

Beer’s law, and represents the laser attenuation by scatterers. The coefficient 2 denotes the two-

way transmission path. The backscattering and extinction coefficients are further written as:

βλ(z) = β1,λ(z) + β2,λ, (2.3)

and

αλ(z) = α1,λ(z) + α2,λ, (2.4)

where the subscripts 1 and 2 denote particles and the atmospheric molecules, respectively.

The backscattered light from the atmospheric molecules is due to Rayleigh scattering since

the molecular size is much smaller than the laser wavelengths. The extinction cross section of

the atmospheric molecules is theoretically calculated from the molecular number density of the

standard atmosphere at the sea level (i.e., 15◦C and 1 atm). The molecular number density is

derived from U.S. Standard Atmosphere (1976). The extinction cross section, σe
2,λ, is written as:

σe
2,λ =

24π3
(
n2
λ − 1

)2

λ4N2
(
n2
λ + 2

)2

(
3 + 6δ2,λ

3 − 4δ2,λ

)
, (2.5)
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where δ2,λ is the depolarization ratio for the atmospheric molecules, and the values of 1.441%

at 532 nm and 1.400% at 1064 nm are used [Collins and Russell, 1976], and n and N are the

refractive index and the molecular number density of the standard atmosphere. The refractive

indices used in this thesis are 1.0002782 at 532 nm and 1.0002740 at 1064 nm [Bucholtz, 1995].

The molecular number density of the standard atmosphere is 2.54743 × 1025 /m3. The extinction

coefficient of the atmospheric molecules is calculated from vertical profiles of temperature. The

profiles are derived from European Re-Analysis (ERA) interim data of the European Center for

Medium-Range Weather Forecasts (ECMWF) [Simmons et al., 2007]. The extinction coefficient

at z is calculated by the following equation:

α2,λ(z) = N(z)σe
2,λ =

NAP(z)
RT (z)

σe
2,λ, (2.6)

where N(z) is the molecular number density at z, NA is the Avogadro’s constant (NA = 6.02214 ×

1023 /mol), P(z) is pressure at z, R is the gas constant (R = 8.314472 J/K·mol), and T (z) is temper-

ature at z.

The backscattering coefficient is calculated by the following equation:

β2,λ(z) =
α2,λ(z)

S 2
, (2.7)

where S 2 is the extinction-to-backscattering ratio of the atmospheric molecules and is approxi-

mated by 8π/3 [Collins and Russell, 1976].

On the other hand, the backscattered light from particles is due to Mie scattering since the

particle size is comparable to the laser wavelength. The backscattering and extinction coefficients

of particles cannot be theoretically calculated since the vertical distribution of the number density,

size distribution, complex refractive index, and shape of particles are unknown. The backscattering

and extinction coefficients of particles are expressed as follows:

β1,λ(z) =
∫ ∞

0

dn(r, z)
dr
σbk

1,λ(r, z)dr, (2.8)

and
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α1,λ(z) =
∫ ∞

0

dn(r, z)
dr
σe

1,λ(r, z)dr, (2.9)

where σbk
1,λ(r, z) and σbk

1,λ(r, z) are the backscattering and extinction cross sections of particles, re-

spectively, and dn(r,z)
dr is the particle size distribution function. The cross sections are unknown

parameter estimated by the size, complex refractive index, and shape of particles and the wave-

length of incident light.
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2.3 Retrieval of optical properties from lidar signals

As mentioned earlier, the backscattering and extinction coefficients of particles are unknown

parameters. The lidar equation cannot be solved since there are two unknown parameters in the

equation. Lidar ratios (S 1) are assumed to reduce the unknown parameters [Fernald et al., 1972],

and are expressed by:

S 1,λ(z) =
α1,λ(z)
β1,λ(z)

. (2.10)

This thesis assumes that lidar ratios are constant with altitude. In other words, the size distribution,

complex refractive index, and shape of particles are not changing with altitude, and the variation

of backscattering coefficients depends solely on the number density.

Fernald [1984] solved the lidar equation for backscattering coefficients in a simple scheme as

follows:

βλ(zi+1) =
Xλ(zi+1) exp [−A(zi, zi+1)]

Xλ(zi)
βλ(zi)
− S 1,λ

{
Xλ(zi) + Xλ(zi+1) exp [−A(zi, zi+1)]

}
∆z
, (2.11)

where A(zi, zi+1) = (S 1,λ − S 2,λ)
[
βλ(zi) + βλ(zi+1)

]
∆z, and Xλ(zi+1) is the range corrected signal

(= Pλ(zi+1)z2
i+1). The backscattering coefficient and range corrected signal at a reference altitude

zi are used to calculate the backscattering coefficient at one step forward altitude zi+1 from the

lidar. To calculate the backscattering coefficient at the next step altitude zi+2, the backscattering

coefficient and range corrected signal at zi+1 are used as those at the reference altitude. This scheme

is designed for a forward inversion in which the backscattering coefficient is calculated from the

near side to far side of the lidar.

The other scheme, the backward inversion is expressed as:

βλ(zi−1) =
Xλ(zi−1) exp [+A(zi−1, zi)]

Xλ(zi)
βλ(zi)
+ S 1,λ

{
Xλ(zi) + Xλ(zi−1) exp [+A(zi−1, zi)]

}
∆z
, (2.12)

where A(zi−1, zi) = (S 1,λ − S 2,λ)
[
βλ(zi−1) + βλ(zi)

]
∆z. In the backward inversion, the backscattering

coefficient is calculated from the far side to near side of the lidar.

The backscattering coefficient at the reference altitude is necessary for the initial condition of

the calculation both in the inversion methods. There are few aerosols above 30 km. The down-
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ward calculation (i.e., the direction from space toward the earth) is started from 30 km, where the

backscattering coefficient can be assumed to equal to the molecular backscattering coefficient. The

downward calculation corresponds to the forward and backward inversions for CALIOP and Aksu-

lidar, respectively. Aksu-lidar cannot observe the atmosphere at 30 km due to the laser attenuation

and limited dynamic range. Tropopause regions generally have low concentration of aerosols, so

the backscattering coefficient of particles is much smaller than that of the molecules. In this thesis,

the backward inversion is started from 13 km that is referred to as a calibration altitude zc,532 of

Aksu-lidar. The calibration altitude zc,1064 is set to 6 km since Aksu-lidar cannot detect 1064 nm

signals above 6 km. When simultaneous observations are conducted, the particle backscattering

coefficient at zc,λ, which is an initial value of the inversion, is derived from the CALIOP data. If the

particle backscattering coefficient at zc,λ cannot be derived, the forward inversion method should

be applied to the retrieval. The reference height of the forward inversion corresponds to the nearest

altitude from the lidar. From Equation (2.1), the backscattering coefficient at the nearest altitude

z1 is derived as follows:

βλ(z1) =
Xλ(z1)O(z1)

KT 2
λ(z1)

, (2.13)

where O(z1) is analytically estimated by the method of Dho et al. [1997], and T 2
λ(z1) is assumed

to be 1.0 because of the small laser attenuation at the height. The system constant K is the un-

known parameter in Equation (2.13). It can be estimated from the backscattering coefficient that

is calculated by the backward inversion method in another time. Substituting the estimated system

constant into Equation (2.13), the forward calculation can be started from the nearest height from

the lidar.

The effect of incorrect lidar ratios on the retrieved optical properties is examined. A certain

layer with the lidar ratio of 50 sr and a particle backscattering coefficient of 0.02 /km/sr is consid-

ered (i.e., the corresponding particle extinction coefficient is 1.0 /km). The attenuated backscatter-

ing coefficient β′λ(z) is calculated by the following equation:

β′λ(z) =
Pλ(z)z2

KO(z)
= βλ(z)T 2

λ(z). (2.14)

The attenuated backscattering coefficient is used for the inversion and corresponds to the range

corrected signals in Equation (2.11) and (2.12). The backscattering coefficient is calculated by the
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backward and forward inversion methods, selecting incorrect lidar ratios (30 and 70 sr). Figure 2.3

shows the attenuated backscattering coefficient and backscattering coefficients calculated by using

the three lidar ratios (30, 50, and 70 sr). The starting point of the calculation for the backward

and forward inversions is the farthest and nearest heights, respectively. As the range from the

starting point increases, the backscattering coefficients by the incorrect lidar ratios diverge from

the backscattering coefficient by the true lidar ratio (50 sr). Selecting the larger lidar ratio (70 sr)

for the backward inversion results in the overestimate of the backscattering coefficients, whereas

selecting the smaller lidar ratio (30 sr) results in the underestimate. In contrast to the backward

inversion, the larger and smaller lidar ratios for the forward inversion cause the underestimate and

overestimate, respectively. In addition, the results of the forward inversion have the larger margin

of errors than those of the backward inversion.

The particle backscattering and particle extinction coefficients calculated by the inversion meth-

ods are integrated from the starting point to a certain height. The integrated values of the coeffi-

cients are compared to the true values, referring to an error analysis shown in the NIES website

(http://www-lidar.nies.go.jp/AnalysisMethods/DataAnalysis1.html). The integrated extinction co-

efficient is hereafter referred to as an optical depth (τ). Here, the true particle backscattering

coefficient of the layer is newly set to 0.1 /km/sr to examine the larger optical depth. Figure 2.4

shows relative errors of the optical depth and integrated backscattering coefficient (IBC) as a func-

tion of the true optical depth calculated by the true lidar ratio. The relative errors of the IBCs in

the backward inversion increase with the true optical depth. The relative errors of the optical depth

converge on the true optical depth at the larger values of the true optical depth. The relative errors

are about ±40% at τ = 0.02, but these are within ±5% at τ = 5. In the forward inversion, the rel-

ative errors of the IBCs increase with the optical depth. The relative errors of the larger lidar ratio

are overestimated, whereas those of the smaller lidar ratio are underestimated. The errors of the

optical depth diverge rapidly with the true optical depth. The relative error of the smaller lidar ratio

is about −100% at τ = 5. The relative error of the larger lidar ratio exceeds 100% at τ = 0.4 ∼ 0.5,

and it declines rapidly at the larger values of the true optical depth. This decrease indicates that the

retrieved extinction and backscatter coefficients have negative values. Consequently, the forward

inversion method has more possibilities to cause errors of the IBCs and the optical depth than the

backward inversion method, especially in the case of optically thick layers. This is attributed to the

fact that there is a negative sign in front of S 1,λ in the denominator of Equation (2.11), so that the

solution of the forward inversion method is unstable. In contrast, there is a positive sign in front of

S 1,λ in the denominator of Equation (2.12). This simulation experiment shows that it is important
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to select the correct lidar ratio for reducing the retrieval errors, and the forward inversion method

has the higher sensitivity to the lidar ratio compared to the backward inversion method.
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Figure 2.3: A demonstration of the calculation of (a) backward and (b) forward inversions with
three lidar ratios of 30, 50(true), 70 sr.
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Figure 2.4: Relative errors of the optical depth and the integrated backscattering coefficient (IBC)
as a function of the true optical depth (S 1 = 50 sr) for (a) backward and (b) forward inversions.
The figures are depicted by reference to an error analysis shown in the NIES website (http://www-
lidar.nies.go.jp/AnalysisMethods/DataAnalysis1.html).
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The other optical properties of aerosols are also investigated in this thesis. The aerosol optical

depth (AOD, τa,λ) represents the attenuation rate of vertically incident light, and is defined as:

τa,λ =

∫ ∞

0
αa,λ(z)dz, (2.15)

where subscript a denotes aerosols. According to the Lambert-Beer’s law, the incident light inten-

sity decreases by 63.2% if AOD is 1.0.

The backscattering ratio is defined as the ratio of the total (particles plus molecules) backscat-

tering coefficient to the molecular backscattering coefficient as follows:

Rλ(z) =
β1,λ(z) + β2,λ(z)
β2,λ(z)

. (2.16)

The value of Rλ(z) − 1 is proportional to the mixing ratio of the particles.

The depolarization ratio, which is measured at 532 nm in this thesis, is a parameter for non-

spherical particles. It identifies dust from other aerosols and identifies ice crystals from water

droplets empirically. If scatterers are uniformly spherical particles, the depolarization ratio is to be

zero. The volume depolarization ratio is calculated from the ratio of the perpendicular component

to parallel component with respect to the polarized plane of the emitted laser, and is given by:

δv(z) =
β1,⊥(z) + β2,⊥(z)
β1,∥(z) + β2,∥(z)

=
P⊥(z)
P∥(z)

, (2.17)

where subscripts ⊥ and ∥ denote perpendicular and parallel, respectively. If the particle backscat-

tering coefficient is much larger than the molecular backscattering coefficient, the volume depolar-

ization ratio is close to the particle depolarization ratio δp as the following equation [Browell et al.,

1990]:

δp(z) =
β1,⊥(z)
β1,∥(z)

=
δv(z) [R(z) + R(z)δ2 − δ2] − δ2

R(z) − 1 + R(z)δ2 − δv(z)
. (2.18)

The depolarization ratio of water droplets is approximately zero, but CALIOP observes the larger

depolarization ratio for water droplets due to the multiple scattering caused by the large footprint

of CALIPSO on the earth’s surface [e.g. Yoshida et al., 2010].
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The color ratio χ is an indicator of the particle size, and is expressed by the ratio of the backscat-

tering coefficients at two wavelengths as follows:

χ(z) =
β1,1064(z) + β2,1064(z)
β1,532(z) + β2,532(z)

. (2.19)

The wavelengths of 1064 and 532 nm are used to calculate the color ratio. Dust, sea-salt aerosols,

and cloud particles have large size compared to the laser wavelengths, so that their color ratios are

around 1.0. On the other hand, the color ratio of fine particles such as sulfate aerosols is smaller

than 1.0. If the particle backscattering coefficient is much larger than the molecular backscattering

coefficient, the color ratio is close to the particle color ratio χp as the following equation:

χp(z) =
β1,1064(z)
β1,532(z)

. (2.20)
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2.4 Data processing of CALIOP products

In this section, a brief introduction of CALIOP products is presented. The optical parameters

provided by the CALIOP level 1B data are attenuated backscattering coefficients at 532 and 1064

nm and perpendicular attenuated backscattering coefficients at 532 nm. The attenuated backscat-

tering coefficient is given as:

β′S ,λ(z) = βS ,λ(z)T 2
S ,λ = βS ,λ(z) exp

{
−2

∫ zs

z
αS ,λ(z′)dz′

}
, (2.21)

where the subscript S denotes the space-borne lidar and zs is the altitude of the CALIPSO satellite.

The attenuated backscattering coefficient at 532 nm is used for the C2 cloud mask, and those at

532 and 1064 nm are used for the estimation of the lidar ratio of dust. To improve the cloud

mask, the volume depolarization ratio and attenuated color ratio are additionally used. The volume

depolarization ratio at 532 nm is given as:

δS ,v(z) =
β′S ,⊥(z)

β′S (z) − β′S ,⊥(z)
=
β′S ,⊥(z)

β′S ,∥(z)
, (2.22)

where β′S ,⊥(z) is the perpendicular attenuated backscattering coefficient. The attenuated color ratio

is derived from the attenuated backscattering coefficients at 532 and 1064 nm as follows:

χ′S (z) =
β′S ,1064(z)

β′S ,532(z)
. (2.23)

The CALIOP level 2 products provide the vertical feature mask (VFM), aerosol and cloud

layer products, and aerosol and cloud profile products. The processing algorithms consist of the

Selective Iterated BoundarY Locator (SIBYL), the Scene Classification Algorithms (SCA), and

the Hybrid Extinction Retrieval Algorithms (HERA). The SIBYL algorithm detects aerosol and

cloud layers, and determines the height of the layer base and top using attenuated backscattering

coefficients at 532 nm at the five resolutions of 333 m, 1 km, 5 km, 20 km, and 80 km [Vaughan

et al., 2009]. The identified layers by SIBYL are classified into clouds and aerosols, and sub-types

of them by SCA. The classification method in SCA utilizes a five-dimensional probability density

function [Liu et al., 2009, 2010]. The probability density functions (PDFs) of the layer-mean

attenuated backscattering coefficient at 532 nm (β′S ,532), the layer-integrated volume depolarization
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ratio (δS ,v), and the layer-integrated attenuated color ratio (χ′S ) are developed based on four months

test data. These PDFs are binned by 20 altitudes from 0 to 20 km and 18 latitudes from 90◦S to

90◦N. Using PDFs and observed variables (β′S ,532, δS ,v, and χ′S ), a confidence function ( f5D) of the

classification is calculated by the following equation:

f5D =
PDFc

(
β′S ,532, δS ,v, χ

′
S , zm, lat

)
− PDFa

(
β′S ,532, δS ,v, χ

′
S , zm, lat

)
PDFc

(
β′S ,532, δS ,v, χ

′
S , zm, lat

)
+ PDFa

(
β′S ,532, δS ,v, χ

′
S , zm, lat

) , (2.24)

where PDF is the five-dimensional probability function of the observed variables, subscripts a

and c denote aerosols and clouds, respectively, zm is the center altitude of the layer, and lat is

the latitude. For example, if the confidence function is −1, the observed layer is identified as

aerosols having the highest possibility. The cloud-aerosol discrimination (CAD) score reported in

the products is the percentage of f5D, and the score ranges from −100 to 100. The observed layer

is classified as aerosols or clouds if the CAD score is negative or more than 0, respectively. The

VFM mask, which is the data-masking product of observed signals, is based on the CAD score. It

should be noted that the classification of 333 m resolution layers is not based on the CAD score.

The 333 m resolution layers are automatically recognized as clouds. The layer detection of the 333

m resolution depends only on the backscattering intensity, causing the misclassification of aerosols

that have the strong backscattering signals as clouds.

Optimal lidar ratios are selected after the layer classification. The lidar ratios are calculated for

elevated layers if the observed backscattering signals can be assumed as the molecular backscatter-

ing coefficient just above and below the layer. The calculation method is described in Appendix A.

If the molecular backscattering cannot be assumed just above and below the layer, the lidar ratio

is given by modeled values. The aerosol optical model is based on cluster analysis of the Aerosol

Robotic NETwork (AERONET) measurements [Omar et al., 2009]. Aerosols are classified into

six categories: desert dust, biomass burning, polluted continental, marine, polluted dust, and clean

continental. The intended estimation errors is less than 30%. The retrieval of the backscattering or

extinction coefficient profiles using the selected lidar ratios is implemented by HERA.
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3 Estimation of the lidar ratio of the dust by the ground/space-

based lidar instruments

The Taklimakan Desert is a large source of Asian dust, but the lidar ratio of dust over the desert

has not been investigated in the past. In Chapter 2, issues caused by incorrectly selected lidar ratios

for Mie-scattering lidar were shown by the simulation experiment using the backward and forward

inversion methods. In order to solve the issues, this thesis attempts to estimate the lidar ratio of dust

over the Taklimakan Desert by simultaneous observations with the ground/space-based lidars. This

chapter presents the estimation method and results of the lidar ratio. Application of the estimated

lidar ratio to the calculation of optical properties retrieved from ground-based lidar data is also

shown.

3.1 Estimation method of lidar ratios using ground/space-based lidar data

The simultaneous observation by Aksu-lidar and CALIOP was conducted to estimate the dust

lidar ratio on 23 March 2009. Figure 3.1 (a) illustrates a CALIPSO ground track and distance cir-

cles from the Aksu-lidar station. The ground track passed by the Aksu-lidar station at 20:57 UTC

during the nighttime. The attenuated backscattering coefficients at 532 and 1064 nm wavelengths

(CALIOP level 1B data) are used where the distance from the Aksu-lidar station is within 100 km.

Figure 3.1 (b) shows the latitude-altitude cross section of attenuated backscattering coefficients at

532 nm used in this thesis. The discontinuity at the altitude of 8.2 km throughout the latitudes

is caused by the different spatial resolutions between above and below the altitude as described

in Chapter 2.1. From the surface level to 4.5 km, there is an aerosol layer recognized by weaker

signals just above 4.5 km. High clouds cover the aerosol layer at 7.5–11.5 km. Since some of

the clouds are optically thick, a part of the underlying aerosol layer is not visible due to the laser

attenuation (e.g., 40.2◦N–40.45◦N).

To avoid noise contamination in averaging processes, profiles having a low SNR under optically

thick clouds should be removed. First, backscatter profiles are horizontally averaged over 5 km

(15 shots) to improve the SNR. Secondly, the cloud transmittance of each profile is calculated

by the method of Platt et al. [1999], assuming that backscattering ratios just above and below

clouds are 1.0. The calculation method is described in Appendix A. Finally, profiles whose cloud

transmittance is less than 0.135 (corresponding to the optical depth of 1.0) are removed. The

remainders of the profiles are further averaged. The averaged profiles at 532 and 1064 nm are
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shown in Figure 3.1 (c). The altitudes just above and below the cloud are denoted as zt and zb,

respectively. Profiles of range-corrected signals averaged over five minutes from 20:54 to 20:59

UTC are used as the Aksu-lidar data. The averaged profiles are shown in Figure 3.1 (d). The

calibration altitudes of Aksu-lidar at 532 and 1064 nm are denoted as zc,532 and zc,1064, respectively.

Clouds are not observed by Aksu-lidar at that time. The volume depolarization ratios derived from

Aksu-lidar and CALIOP are shown in Figure 3.1 (e). The large depolarization ratio (∼0.4) of the

cloud indicates ice crystals. The depolarization ratio of the aerosol layer below 7 km is ∼0.3.

Therefore, the aerosol layer is identified as dust originated from the Taklimakan Desert.
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In order to estimate the lidar ratio of dust, two assumptions are made as follows: 1) the li-

dar ratio is constant with altitude, and 2) Aksu-lidar and CALIOP measure the same atmospheric

column except for clouds. If attenuation corrections are precisely conducted, the backscattering

coefficients retrieved from Aksu-lidar should agree with that from CALIOP. The lidar ratio is esti-

mated by using a performance function that is defined as the square error of backscattering coeffi-

cients between Aksu-lidar and CALIOP. The performance function to estimate the lidar ratio was

introduced by Tao et al. [2008a]. In this thesis, the performance function is modified to estimate

the lidar ratio under following conditions: 1) clouds covers over aerosol layers, and 2) signals of

ground-based lidar cannot be calibrated at an altitude of 30 km. The performance function Ψλ is

described by following equations:

Ψ532
(
S 1,532,RS ,532(zb)

)
=

z=7km∑
z=2km

[
βG,532(z) − βS ,532(z)

]2 , (3.1)

Ψ1064
(
S 1,1064,RG,1064(zc,1064)

)
=

z=6km∑
z=2km

[
βG,1064(z) − βS ,1064(z)

]2 , (3.2)

where the subscripts G and S denote the ground-based and space-borne lidar systems, respectively.

The backscattering coefficients of Aksu-lidar and CALIOP data are calculated by the backward and

forward inversion methods, respectively. Therefore, their calculation directions are identical with

each other (i.e., from the higher to lower altitudes). The integral ranges of the right side of the

equations are set to the altitude ranges where the signals of dust are available both from the Aksu-

lidar and CALIOP data. The 1064 nm signals of Aksu-lidar cannot be used above 6 km due to the

laser attenuation.

The unknowns of the equations are: 1) the 532 nm lidar ratio, 2) the 532 nm backscattering

ratio of CALIOP at zb, 3) the 1064 nm lidar ratio, 4) the 1064 nm backscattering ratio of Aksu-lidar

at zc,1064. The 532 nm backscattering ratio of CALIOP at zb is needed to calculate the cloud lidar

ratio. The details of the calculation method of cloud lidar ratios are described in Appendix A. The

1064 nm backscattering ratio of Aksu-lidar at zc,1064 is necessary for the particle backscattering

coefficient of the initial value of the inversion as described in Chapter 2.3. The performance func-

tions are calculated by changing the lidar ratios and the backscattering ratios. If the performance

function returns a minimum value, the unknowns are regarded as the optimal solution. Therefore,

the lidar ratio can be estimated.
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3.2 Estimation results of the lidar ratio of dust over the Taklimakan Desert

Results of the lidar ratio estimated by the performance functions are shown in this section.

Figure 3.2 shows the result of the performance functions, as a function of the lidar ratio and the

backscattering ratio. The performance function returns small values if the difference of backscat-

tering coefficients between Aksu-lidar and CALIOP is small. The deep blue regions in the figure

represent the small values. The minimum point of the performance function represents the optimal

solution of the lidar ratio and backscattering ratio. The estimated lidar ratios are 42.0 sr at 532 nm

and 45.9 sr at 1064 nm. The estimated backscattering ratios are 1.48 at 532 nm and 9.92 at 1064

nm. In Figure 3.2 (a), the region of the local minimal values changes from the higher to lower

lidar ratio as the backscattering ratio increases. This result denotes that the lidar ratio estimation at

532 nm is sensitive to the backscattering ratio of CALIOP at zb. Therefore, it is influenced by the

presence of clouds. In Figure 3.2 (b), the 1064 nm lidar ratio at the local minimal values increases

with the 1064 nm backscattering ratios of Aksu-lidar at zc,1064.

The decrease (532 nm) and increase (1064 nm) of the lidar ratio at the local minimal values are

illustrated in Figure 3.3. The backscattering coefficients are calculated on the assumption of the

constant lidar ratio and selected backscattering ratios. The constant lidar ratios at 532 and 1064

nm are 40 and 45 sr, respectively. The selected backscattering ratios at 532 nm are 1.0 and 2.0, and

those at 1064 nm are 2.0 and 50.0.

In the 532 nm case of the smaller backscattering ratio (RS ,532(zb) = 1.0), the backscattering co-

efficients of CALIOP are lower than those of Aksu-lidar. To minimize the performance function,

the lidar ratio should be larger than the selected one. The reason is illustrated by the demonstration

of the inversion shown in Figure 2.3. Again, the backward and forward inversions are applied

to Aksu-lidar and CALIOP, respectively. The backscattering coefficients calculated by using the

larger lidar ratio are underestimated in the backward inversion and are overestimated in the forward

inversion. In the case of the larger backscattering ratio (RS ,532(zb) = 2.0), the backscattering coef-

ficients of CALIOP are larger than those of Aksu-lidar. The 532 nm lidar ratio should be smaller

than the selected one to minimize the performance function. Therefore, the lidar ratio at the local

minimal values of the performance function decreases with the backscattering ratio.

The 1064 nm backscattering coefficients of Aksu-lidar in Figure 3.3 (b) vary depending on the

selected backscattering ratio. In the case of the smaller backscattering ratio (RG,1064(zc) = 2.0), the

backscattering coefficients of Aksu-lidar are smaller than those of CALIOP. According to Figure

2.3, the lidar ratio should be smaller than the selected one to minimize the performance function.

In the case of the larger backscattering ratio (RG,1064(zc) = 50.0), the lidar ratio should be larger
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than the selected one in the same way. Therefore, the 1064 nm lidar ratio at the local minimal

values of the performance function increases with the backscattering ratio.

The profiles of backscattering coefficients calculated by using the estimated lidar ratio are

shown in Figure 3.4. Two profiles at each wavelength agree with each other except for the cloud.

The random noise contamination of CALIOP decreases with altitude. In contrast, the noise con-

tamination of Aksu-lidar increases with altitude. The direction of the increasing contamination

corresponds to the direction of the laser propagation. A scatter plot of backscattering coefficients

is shown in the lower left of Figure 3.4. The solid line in the scatter plot is the regression line. The

correlation coefficients are 0.98 at 532 nm and 0.95 at 1064 nm. The profile agreement with the

high correlation coefficient indicates that the estimated lidar ratio is an accurate value. In addition,

it indicates that dust over the Taklimakan Desert distributes homogeneously since the distance

between the CALIPSO ground track and Aksu-lidar station is more than 60 km (see Figure 3.1

(a)).

Estimation errors of the lidar ratio are investigated. Table 3.1 shows errors caused by the

random noise and signal calibration. The estimation procedure of errors caused by the random

noise is described in Appendix B. The estimated errors of the random noise are 7.2% at 532 nm

and 21.1% at 1064 nm. The calibration error is examined by changing the calibration constant

of CALIOP. The uncertainty of the 532 nm calibration constant is approximately 3.5% [Hostetler

et al., 2006]. The corresponding error of the lidar ratio is ∼6.3%. The uncertainty of the 1064 nm

calibration constant is approximately 5.0%. In the algorithm of the CALIPSO science team, the

1064 nm signal is calibrated by assuming that the color ratio of ice clouds is 1.0. The calibration

constant depends on the latitude and existence or non-existence of solar insolation in this method

[Hunt et al., 2009]. Moreover, it is reported that the color ratio for ice clouds is less than 1.0 [Bi

et al., 2009; Tao et al., 2008b]. According to Okamoto et al. [2010], the 1064 nm correction factor

calculated by the water cloud calibration is approximately 0.85 at the northern mid-latitudes. The

corresponding error of the lidar ratio is 35.8%. The total errors (root sum square) are 9.5% at

532 nm and 41.6% at 1064 nm. The other variation factors of the lidar ratio estimation are the

relative humidity, internal or external mixtures of dust and other aerosols, and the variation of size

distribution with altitude. The relative humidity at the simultaneous observation is less than 50%

according to the ECMWF data. The dry air condition has small effects on the lidar ratio of dust

[Sakai et al., 2003].

The lidar ratio estimated by this thesis is compared with those reported in previous studies in

Table 3.2. This is the first study of the estimation of the dust lidar ratio over the Taklimakan Desert.
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The 532 nm lidar ratio in this thesis is 3 ∼ 24% smaller than those of Asian dust reported previ-

ously. Since the investigation of 1064 nm lidar ratios is rarely conducted, this result contributes to

the reduction of the uncertainty of the 1064 nm lidar ratio.

34



0

20

40

60

80

S
1
,1

0
6
4

6 7 8 9 10 11 12 13 14

RG,1064(zc,1064)

[a.u.]

S1,532=42.0

R=1.48

b

S1,1064=45.9

R=9.92

S
1
,5

3
2

(a) λ=532 nm (b) λ=1064 nm

Figure 3.2: Performance function at (a) 532 nm and (b) 1064 nm as a function of the lidar ratio and
backscattering ratio. The estimated lidar ratio and backscattering ratio are shown. The depicted
color means the magnitude of the performance function (blue: small, red: large).

(a) λ=532 nm (S1,532=40) (b) λ=1064 nm (S1,1064=45)

CALIOP

Aksu-lidar

molecular

CALIOP

Aksu-lidar

molecular

2

3

4

5

6

7

A
lt

it
u
d
e 

(k
m

)

10−3 10−2 10−1

Backscattering Coefficient (/km/sr)

2

3

4

5

6

7

A
lt

it
u
d
e 

(k
m

)

10−4 10−3 10−2

Backscattering Coefficient (/km/sr)

RS,532(zb)=2

RS,532(zb)=1

RG,1064(zc)=2

RG,1064(zc)=50

Figure 3.3: Backscattering coefficients at (a) 532 nm and (b) 1064 nm, calculated by changing the
backscattering ratio.

35



B
ac

k
sc

at
te

ri
n

g
 C

o
ef

fi
ci

en
t 

(/
k

m
/s

r)

Altitude (km)

B
ac

k
sc

at
te

ri
n

g
 C

o
ef

fi
ci

en
t 

(/
k

m
/s

r)
Altitude (km)

(
)

()

z
=
2
k
m
-6
k
m

r
=
0
.9
5

(
)

()

z
=
2
k
m
-7
k
m

r
=
0
.9
8

(a
) 

5
3
2
 n

m
(b

) 
1
0
6
4
 n

m

Fi
gu

re
3.

4:
C

A
L

IO
P

an
d

A
ks

u-
lid

ar
ba

ck
sc

at
te

ri
ng

co
effi

ci
en

ts
at

(a
)

53
2

nm
an

d
(b

)
10

64
nm

,
re

tr
ie

ve
d

by
us

in
g

es
tim

at
ed

lid
ar

ra
tio

s.
T

he
do

tte
d

lin
e

in
di

ca
te

s
th

e
m

ol
ec

ul
ar

ba
ck

sc
at

te
ri

ng
co

effi
ci

en
ts

.T
he

sc
at

te
rp

lo
tb

et
w

ee
n

th
e

ba
ck

sc
at

te
ri

ng
co

effi
ci

en
ts

is
sh

ow
n

at
th

e
lo

w
er

le
ft

of
th

e
fig

ur
es

.

36



Table 3.1: Estimated Error in S 1,532 and S 1,1064 in Parcent.

Error Source S 1,532 S 1,1064

Random Noise 7.2 21.1
Calibration 6.3 35.8

Total (root sum square) 9.5 41.6

Table 3.2: Comparison of lidar ratios and color ratios observed in the present study with those of
previous studies.

Lidar Ratio
Dust Type 532 nm 1064 nm Reference

Saharan Dust 26±4.8 35±18.3 Vaughan [2004]
41±3.0 52±5.0 Liu et al. [2008]

Asian Dust 45.5±8.6 Noh et al. [2007]
47±18 Sakai et al. [2003]
42-55 Liu et al. [2002]

43.1±7.0 Murayama et al. [2004]
42.0±4.0 45.9±19.1 Present Study

Desert Dust 40±20 55±17 CALIOP (version 3)
Particle Color Ratio

Dust Type 1064 nm/532 nm Reference
Saharan Dust 0.86±0.01 Vaughan [2004]

0.74±0.07 Liu et al. [2008]
Asian Dust 0.79±0.12 This Thesis
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3.3 Dust optical properties from ground-based lidar data with the estimated

lidar ratio

The lidar ratio estimated by the performance function is applied to the inversion of the Aksu-

lidar data. Figure 3.5 shows time-altitude cross sections of backscattering ratios, volume depolar-

ization ratios, and particle color ratios on 23-25 March 2009. The arrows in the top of the figures

are the profile used in the simultaneous observation with CALIOP. The backscattering ratio shows

no cloud by chance at only that time. Commonly, cloud backscattering ratios are much lager than

aerosol one because of the larger particle size. There is a dust layer below 5 km and cloud layers

above 5 km. The depolarization ratio and color ratio of dust are 0.25∼0.30 and 0.5∼1.0, respec-

tively. In this case, a floating dust is observed throughout the observation period. Since the dust

occurrence frequency over the Taklimakan Desert is close to 1.0 during springtime [Liu et al.,

2008b], dust can be observed at any time.

There are two-layered dust structures from 4 to 6 km altitudes at 13–22 LST on 23 and 24

March. The lower dust layer sinks to 1 km below the top most layers. Dust with small backscatter-

ing ratios (R532 < 3.0) extends to 7 km from 22 LST on 23 March to 09 LST on 24 March. A local

circulation can cause the downward and upward movements of the dust layer height during the

afternoon and morning. Kim et al. [2009] investigated the influence of meteorological conditions

on the variation of dust layer heights at Aksu in April 2002 by a numerical simulation and lidar ob-

servations. They suggested that dust layer heights are decreased during the daytime by descending

flows from the Tianshan Mountains, and it rises rapidly due to surface convergence in the evening.

Clouds are observed at the height where weak dust layers exist. For example, they are seen at

02 and 08 LST on 24 March, 00–12 LST on 25 March (Figure 3.5 (c)). It can be expected that

the dust aerosols are mixed with the clouds and/or serve as the cloud nuclei. For the clouds at 02

and 08 LST on 24 March, and 09 LST on 25 March, the cloud top temperatures are from −25◦C to

−30◦C. The cloud top temperature is derived from the ECMWF-interim data. These clouds would

contain ice crystals because of the high depolarization ratio. There is a low depolarization (near

zero) of the clouds formed at the top of the boundary layer (∼4.5 km) at 09–12 LST on 25 March.

The cloud top temperature is about −10◦C, and plate-like ice crystals (2D-plate) or water droplets

can be expected for these clouds. The 2D-plate ice is frequently confirmed at this temperature

according to lidar and in-situ observations [e.g. Yoshida et al., 2010].

The particle color ratio of dust decreases rapidly from 0.7 to 0.5 after 10 LST on 25 March.

The decrease of the color ratio indicates that the size of observed aerosol particles becomes smaller.
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The possible causes of the decrease are: 1) the concentration of large particles decreases due to the

dry deposition, and 2) fine particles are transported from the surrounding regions. The deposition

of large particles is reasonable since the 1064 nm backscattering ratio decreases after 10 LST on

25 March. However, there is a small difference of the 532 nm backscattering ratios before and after

10 LST on 25 March although the coarse particles may settle. This can be explained by advections

of fine particles that are less sensitive to the backscattering at 1064 nm than that at 532 nm.

Using the backscattering ratio and volume depolarization ratio, the particle depolarization ratio

of dust is investigated. Figure 3.6 shows a scatter plot of the volume depolarization ratio versus the

532 nm backscattering ratio. The depicted theoretical lines (δp = 0.25, 0.3, 0.35, 0.4) are calculated

by Equation (2.18). The particle depolarization ratio of the relatively dense dust (R532 > 4.0)

decreases gradually through the observation from 0.38 to 0.3. Since the external or internal mixture

with dust and spherical particles can cause the decrease of the particle depolarization ratio, the

spherical particles may be advected from the surrounding regions.
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(d)

Figure 3.5: Time-altitude cross section of backscattering ratios at (a) 532 nm and (b) 1064 nm,
(c) volume depolarization ratios at 532 nm, and (d) particle color ratios observed by Aksu-lidar in
March 2009. The backscattering ratio is masked in the white color if the optical depth is larger
than 1.0.
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δp=0.4

δp=0.35

δp=0.3

δp=0.25

Figure 3.6: Scatter plot of the volume depolarization ratio versus the backscattering ratio. The
theoretical lines of δp from 0.25 to 0.4 are depicted.
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3.4 Comparison with CALIOP level 2 products

The backscattering coefficients from the simultaneous observation by Aksu-lidar and CALIOP

are compared with the CALIOP level 2 products. Figure 3.7 (a) shows the time-altitude cross

section of the 532 nm particle backscattering coefficients of aerosols on 23 March 2009, derived

from the CALIOP profile products. The broken line of the red rectangle is the region where the

profiles are used in the simultaneous observation. There are missing data in the red rectangle region

since the missing areas (black color) are classified as clouds. The time-altitude cross section of the

vertical feature mask (VFM) is shown in Figure 3.7 (b). Most of the data in the red rectangle is

identified as clouds, followed by aerosols. As shown in Figure 3.1 (b), there are no cloud layers

below 7 km. Dust is presumably misclassified as clouds in the VFM result. The misclassification

appears mainly at higher than 40◦N. The probability density functions in the VFM are binned by

10◦ latitude as described in Chapter 2.4. This thesis suggests that the latitudes of higher than 40◦N

have an issue in the discrimination between clouds and aerosols.

The aerosol sub-type arrayed in the Tarim Basin is desert dust. The lidar ratio selected from

the aerosol model is 40 sr at 532 nm. The selected lidar ratio is little different from the lidar ratio

estimated by this thesis. However, the averaged values of aerosol backscattering coefficients in

the red rectangle region are smaller than those estimated by this thesis as shown in Figure 3.7 (c).

The averaged profile of the CALIOP level 2 data is 21% smaller than our results. The difference

of the backscattering coefficients is large below 3 km. It is caused by the underestimates of the

attenuation corrections above 3 km. The lidar ratio of clouds is selected approximately 20 sr from

the theoretical studies [Pinnick et al., 1983]. The misclassified clouds are assigned to the cloud

lidar ratio. As demonstrated in Figure 2.3, the smaller lidar ratio causes the underestimates of

backscattering coefficients in the forward inversion used in the CALIOP analysis. Since the cloud

lidar ratio (≈ 20 sr) is smaller than the dust lidar ratio (> 40 sr), the backscattering coefficient of

dust misclassified as clouds is expected to be smaller. This thesis indicates that the accuracy of

the cloud-aerosol discrimination is important to select the appropriate lidar ratio below the cloud

layers.
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4 Improvement of CALIOP cloud masks by a discriminant anal-

ysis

The lidar ratio of aerosol or cloud layers observed by CALIOP is rarely estimated by the

method shown in Chapter 3.2. If the lidar ratio cannot be estimated by measurements, the modeled

value is used according to the layer types (i.e., clouds, aerosols, and their sub-types). The misclas-

sification in CALIOP cloud masks leads to the selection of the incorrect lidar ratio of aerosols. This

thesis tries to solve the misclassification issues by a discriminant analysis. This chapter presents a

new determination method of training data and the applicability of the discrimination model. The

profiles of dust extinction coefficients after the improvement of cloud masks are also shown.

4.1 Description of cloud mask products used in this thesis

Prior to the introduction of the discriminant analysis, the descriptions of CALIOP cloud mask,

CloudSat cloud mask, and MODIS cloud mask products are presented. The CALIOP cloud mask

to be improved is the C2 cloud mask. The CloudSat (C1) cloud mask and MODIS cloud mask are

used to determine misclassified clouds in the C2 cloud mask. This section describes the schemes

of the C1, C2, and MODIS cloud masks.

4.1.1 C1 and C2 cloud masks

The C1 and C2 cloud masks are included in a CloudSat-CALIPSO merged dataset developed

by Hagihara et al. [2010]. These cloud masks are derived from Cloud Profiling Radar (CPR) and

CALIOP. The cloud mask schemes are based on cloud masks used in observations by a ship-borne

95 GHz cloud radar and a lidar in the western Pacific Ocean near Japan [Okamoto et al., 2007].

The 94 GHz CPR is onboard CloudSat, which was launched simultaneously with CALIPSO as a

part of the A-train constellation. CloudSat and CALIPSO had passed the same ground track within

15 seconds until CloudSat dropped out of the orbit in April 2011.

The C1 cloud mask scheme uses a cloud mask product of the CPR level 2B GEOPROF data.

The CloudSat data are downloaded from the data processing center (http://www.cloudsat.cira.

colostate.edu/index.php). The CPR cloud mask product is constructed by the signal-to-noise ra-

tio (SNR), spatial continuity test, and horizontal averaging [Marchand et al., 2008]. The product

consists of a confidence level ranging between 0 and 40. If the confidence level is higher than

20, the estimated false detection is < 5%. An observed bin (i.e., a data point at an altitude at a
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certain time) whose confidence level of the cloud mask is higher than 20 is identified as a cloud

bin in this thesis. In a provisional cloud mask, cloud bins are labeled as 1, and others are labeled

as 0. The weighted average of the provisional cloud mask is vertically calculated. Each profile has

the same altitude registration with respect to the geoid data. The altitude registrations from 0 to

20 km include 83 vertical bins with a vertical resolution of 240 m. The averaged cloud mask has

fractional values ranging from 0 to 1. If the averaged cloud mask of a bin is more than 0.5, the bin

is identified as cloud bins in this thesis. In the C1 cloud mask, the identified cloud bin is labeled as

1, and others are labeled as 0. The lower bins below the height of 1 km above the surface elevation

are eliminated since surface clutter is dominated.

The C2 cloud mask scheme uses 532 nm attenuated backscattering coefficients β′S ,532 of the

CALIOP Level 1B data (version 3). To detect a cloud bin in a lidar-observed bin, two criterions

are applied to the attenuated backscattering coefficient.

The first criterion is constructed by threshold values of the attenuated backscattering coefficient

at 532 nm. The threshold values βth are determined by a background noise and the molecular sig-

nals. The first criterion is passed if the attenuated backscattering coefficients exceed the threshold

values. Figure 4.1 (a) is an example of the threshold values at a snap shot from Hagihara et al.

[2010]. The attenuated backscattering coefficients in Figure 4.1 (a) exceed the threshold values

from 10.5 to 12.5 km where there is a cirrus layer. There are strong attenuated backscattering co-

efficients due to an aerosol layer below 5 km, but most of them are less than the threshold values.

This example demonstrates the successful discrimination of the cloud and the aerosol layers.

The second criterion is constructed by a spatial continuity test using the surrounding bins.

Figure 4.1 (b) shows a graphical representation of the second criterion. The test considers a sliding

data window centered at the bin where the first criterion has been passed. The window sizes are

5 × 5 bins (horizontal by vertical) at altitudes < 5 km and are 9 × 9 bins at altitudes > 5 km.

The selection of the larger window size at altitudes > 5 km is to reduce noise contamination and

to detect weak signals due to thin cirrus clouds. If more than half of bins in the window pass

the first criterion, the target bin (center bin) pass the second criterion. A bin that has passed the

second criterion is identified as the cloud bin. According to the window size at altitude < 5 km,

this scheme cannot detect clouds having a horizontal dimension < 0.8 km and a vertical dimension

< 75 m. In a provisional cloud mask, cloud bins are labeled as 1, and others are labeled as 0.

Results of the provisional cloud mask have the original resolution of CALIOP as shown in

Table 2.3. To compare the cloud masking results with the C1 cloud mask, the cloud fraction is

calculated from the provisional cloud mask within ±0.55 km along track from the center of the
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CloudSat footprint. In addition, the weighted average of cloud fractions is vertically calculated

within the vertical range of the CPR resolution (240 m). The averaged cloud fraction is defined as

the ratio of the number of cloud bins to the number of data bins in the CPR grid box. Since the

provisional cloud mask is 0 (no cloud) or 1 (cloud), the averaged cloud fraction ranges from 0 to 1

at the common grid with the C1 cloud mask. In this thesis, if the averaged cloud fraction is more

than 0.5, the bin is identified as the cloud bin at the CPR grid box. In the C2 cloud mask, identified

cloud bins are labeled as 1, and others are labeled as 0. The C2 cloud mask has the horizontal

resolution of 1.1 km and the vertical resolution of 240 m. These resolutions are identical to the

resolutions of the C1 cloud mask. Further information of the C1 and C2 cloud mask schemes are

described in Hagihara et al. [2010].
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(a) (b)

Figure 4.1: (a) A profile of the attenuated backscattering coefficient at 532 nm from CALIOP
(green) and the threshold profile βth used in the C2 scheme as the first criterion (red) on 8 October
2006 (∼20◦N latitude and ∼27◦W longitude). The resolutions are identical to those of the original
CALIOP level 1B. (b) A graphical representation of the second criterion (i.e., spatial continuity
test) used in the C2 scheme. Although the (left) first target bin is not considered to be cloud
because less than half of the bins located in the (right) corresponding data window satisfied the
first criterion, the second target bin is considered to be cloud. The resolutions are identical to those
of the original CALIOP level 1B; the data window sizes are 5× 5 bins at altitude < 5 km and 9× 9
bins at altitude > 5 km (from Hagihara et al. [2010]).
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4.1.2 MODIS cloud mask (MOD35) in MODIS level 2 products

MODIS measures radiance at 36 spectral bands including the infrared and visible bands with

spatial resolutions from 0.25 to 1 km. The algorithm of the MODIS cloud mask for collection

5 uses several cloud detection tests with the spectral band data and surface temperatures of the

Global Data Assimilation System (GDAS) model output [Frey et al., 2008]. The individual cloud

test threshold is based on the radiative transfer theory. Each test gives a confident level that is an

indicator of clear skies. The confident level ranges in value from 0 (very low confidence of clear or

high confidence of cloud) to 1 (high confidence of clear). The thresholds of tests are summarized

in Appendix C. These detecting tests are grouped into five categories in accordance with similar

cloud conditions. As described by Ackerman et al. [1998], the final cloud mask confidence (Q) is

determined by the following equation:

Q = N

√√√ N∏
j=1

G j, (4.1)

where

G j = min
(
Fi, j

)
i=1,m
, (4.2)

where Fi, j is the confidence level of each test, subscripts i and j are the test index and group index,

respectively, m is the number of tests for a given group, and N is the number of groups (= 5).

The term G j denotes the minimum confidence for each group. The following four confident levels

are determined for the output of the cloud mask: 1) confident clear (Q > 0.99), 2) probably clear

(0.99 > Q > 0.95), 3) uncertain/probably cloudy (0.95 > Q > 0.66), 4) cloudy (Q > 0.66). This

is a clear-sky conservative approach in the sense of detecting cloud pixels as many as possible by

each test. This thesis relies on only the confident clear scene, and does not use the other scenes.

To compare the cloud mask results with the CloudSat and CALIOP cloud masks, the cloud mask

data of MODIS on board the Aqua satellite, which is part of the A-Train constellation, are used.

The CloudSat MODIS-AUX product is the MODIS cloud mask data collocated in the CloudSat

footprint. The product consists of the 1-km MODIS resolution data at a 3-pixel (across-track) by

5-pixel (along-track) grid. In this thesis, 9 pixels (i.e., a 3- by 3-pixel grid) from the pixel nearest

to the CloudSat footprint are used to determine whether the misclassified cloud is included in the

48



CALIOP cloud mask. If all the pixels are labeled as confident clear, the MODIS cloud mask of the

nearest pixel is regarded as the clear sky scene.
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4.2 Discriminant analysis for detecting misclassified clouds in CALIOP cloud

masks

This section describes the new method to discriminate misclassified clouds from the C2 cloud

mask. Discriminant problems of two groups are solved by a discriminant analysis. As described in

Chapter 2.4, the VFM cloud mask was developed based on the probability density function (PDF)

algorithm [Liu et al., 2004, 2009, 2010]. The observed layers are classified into clouds or aerosols

depending on the possibility in the pre-established PDF. Basically, higher dimensional data make

better classification, but the VFM mask has a limitation in regard to the classification of dust and

clouds. Chen et al. [2010] incorporated brightness temperature differences from Imaging Infrared

Radiometer (IIR) onboard CALIPSO into a discrimination model. Dust layers were successfully

discriminated from cloud layers by the method. The BTD method using MODIS was also de-

veloped by the other studies [Xie et al., 2010; Naeger et al., 2013]. Ma et al. [2011] presented

successful discrimination between dust and clouds by using a nonlinear support vector machine

(SVM). The discriminant model was made based on a small number of training data at the lim-

ited area, and therefore the applicability of the model to the large amount of the CALIOP data is

unclear. In addition, most of the studies introduced above selected the training data by the visual

determination from satellite imagery, resulting in a lack of the objectivity and repeatability. More-

over, since the satellite imagery is available only in the daytime, training data cannot be derived

from the nighttime data. Therefore, the true PDF of a statistical population cannot be obtained.

This thesis makes a discriminant analysis to discriminate misclassified clouds form the C2

cloud mask. Cloud layers detected by the C2 cloud mask are reclassified into clouds and mis-

classified clouds. Figure 4.2 illustrates the flow chart of the analysis. The reclassification in this

method consists of two steps: 1) to make the discrimination model from training data and 2) to

calculate the discriminant function for new cloud data. In the first step, the training data are deter-

mined by using the CloudSat cloud mask, MODIS cloud mask, and relative humidity (RH) from

the ECMWF data. Here, the training data consist of two groups: 1) clouds and 2) misclassified

clouds, and are extracted during a year from June 2006 to May 2007. Next, a linear discriminant

function (LDF) is made as the discriminant model based on the training data. In the second step,

the new cloud data detected by the CALIOP cloud mask are reclassified into clouds and misclassi-

fied clouds by the LDF test.
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Step 1 : make a discrimination model

Extract cloud layers 

from CALIOP cloud mask

(June 2006 ~ May 2007)

Cloud test by 

CloudSat

Clear sky test by

CloudSat and MODIS

+ RH test

Misclassified clouds Clouds

Make a discrimination model (LDF)

Calculate the LDF

Step 2 : calculate the discriminant function

New CALIOP cloud data

(June 2007 ~)

Clouds Misclassified clouds

LDF < 0

Training data

CALIOP cloud data

Others

Figure 4.2: A flow chart of the discriminant analysis for the C2 cloud mask.
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The LDF is derived from the ratio of the multi-dimensional PDFs of the two groups at the

minimum misclassification rate [Johnson and Wichern, 2007]. The derivation of LDF is described

in Appendix D. The LDF is described by variables x and coefficients C as follows:

LDF = C0 +

k∑
i=1

Cixi


≥ 0 =⇒ G1

< 0 =⇒ G2

, (4.3)

where subscript i denotes the index of the variables, k is the dimension number of the variables,

and G1 and G2 are the group 1 and 2, respectively. The superscript of the coefficients denotes the

different types of the involved variables. The coefficients are umambiguously calculated by the

averages and variance-covariance matrices of the PDFs of the two groups. If the LDF score is

greater than 0 (below 0), the observed data are classified as G1 (G2). Here, the group 1 and 2 are

clouds and misclassified clouds, respectively. This thesis uses five variables from CALIOP and

IIR: 1) layer-mean attenuated backscattering coefficients (log10

(
β′S ,532

)
, 2) layer-integrated volume

depolarization ratios (δS ,v), 3) layer-integrated attenuated color ratios (χ′S ), 4) layer top altitudes

(zlt), and 5) brightness temperature differences between 10.6 and 12.05 µm (BT D). The CALIOP

and IIR data are averaged to have the same spatial resolutions as the C2 cloud mask prior to

the calculation of the variables. The vertical and horizontal resolutions are 240 m and 1.1 km,

respectively (the vertical resolution is only for the CALIOP data). The LDF score in Equation

(4.3) is calculated for the observed data after the determination of the coefficients. The PDFs of

the variables are determined by the training data.

The determination procedure of the training data is described below. The CALIOP cloud mask

used in this section is the C2 cloud mask. The training data of clouds and misclassified clouds

are referred to as cloud data and misclassified cloud data, respectively. The conclusive clouds

and certainly misclassified clouds should be selected as the training data. The cloud data are

determined by a cloud test using the C1 cloud mask. If the C1 cloud mask detects cloud bins

within a cloud layer detected by the C2 cloud mask, the cloud layer is regarded as the cloud data.

The misclassified cloud data are determined by a clear sky test using the C1 cloud mask, MODIS

cloud mask, and relative humidity. The C1 and MODIS cloud masks are used to detect clear sky

conditions. The clear sky in the C1 cloud mask means that the C1 cloud mask does not detect

any cloud bins through the profile. If both the C1 and MODIS cloud masks return the clear sky

condition, cloud layers detected by the C2 cloud mask are possibly misclassified. These cloud

layers are regarded as a first candidate of misclassified clouds (hereafter referred to as FCMC).
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Figure 4.3 shows the latitude-altitude cross section of the sample size (N) of FCMC data col-

lected from June 2006 to May 2007. The altitude of FCMC data is derived from the layer top

altitude. The high latitude regions (> 50◦) are excluded from the analysis due to two reasons: 1)

the cloud identification in the polar regions is difficult for MODIS [Ackerman et al., 2008], and 2)

optically thick aerosols are rarely observed at the high latitudes. The FCMC data below the height

of 1 km above the surface elevation are excluded since surface clutter would affect the C1 cloud

mask.

There are large amounts of sample sizes above 8 km for all seasons in Figure 4.3. These FCMC

data may be considered as optically thin clouds that the CloudSat and MODIS cloud masks cannot

detect. Stephens et al. [2002] reported that cirrus clouds having an optical thickness of 0.1 ∼ 0.3

are not detectable with CloudSat. Ackerman et al. [2008] showed that the limitation of the cloud

optical thickness in the MODIS cloud mask is approximately 0.4. On the other hand, CALIOP can

detect clouds having optical thickness of 0.01 [McGill et al., 2007]. Another notable point is that

sample sizes in the northern hemisphere are larger than those in the southern hemisphere below

8 km. The larger sample size is clearly recognized in the March–May (MAM) and June–August

(JJA) seasons, when dust is frequently observed in the northern hemisphere. In this thesis, the

southern hemisphere is excluded from the discriminant analysis because of the small sample size.

Optically thin clouds should be removed from FCMC data. A relative humidity test is addition-

ally examined. The ECMWF data interpolated to each CloudSat bin are provided as an ancillary

data of the standard CloudSat products. The relative humidity is calculated from the water vapor

density and temperature data. If the temperature is below 0◦C, the relative humidity with respect

to ice is calculated. Figure 4.4 shows the vertical profiles of the sample size of FCMC data. The

samples are the integrated value from 0◦ to 50◦N. Three cases of the profiles have relative humidity

below thresholds of 50%, 30%, and 10%.

The sample sizes decrease with the lower threshold of relative humidity. These thresholds

result in the smaller sample sizes above 7 km than those below 3 km. It indicates that FCMCs

with the lower relative humidity have the smaller influence from thin clouds compared to FCMC

without the relative humidity test. To use the large sample size with minimum contamination from

thin clouds, this thesis selects the profile whose relative humidity is less than 30%. In addition, the

samples above 7 km in the selected profile are excluded from the FCMC data. The content rate of

thin clouds is calculated by dividing the sample size at 7–8 km by the sample size at 1–7 km. The

calculated content rate is approximately 4%, and the result has small effect on the form of the PDF.

To make misclassified cloud data more strictly, the horizontal distribution of FCMC data is
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examined. The FCMC sample sizes for the four cases are shown in Figure 4.5. The conditions of

sample sizes are the same as those in Figure 4.4, but the samples above 7 km are excluded. The

samples of FCMC decrease with the lower threshold of the relative humidity. The samples are

mainly distributed over arid regions in all the figures, and therefore dust is considered as the main

source of misclassified clouds. This thesis restricts FCMC data to the dust region denoted by the

red rectangle in Figure 4.5 (c). The FCMC data are finally selected as misclassified cloud data

(i.e., 1 km < zlt < 7 km, RH < 30%, 20◦W < longitude < 120◦E, and 0◦ < latitude < 50◦N).
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Figure 4.3: Latitude-altitude cross sections (5◦ × 1 km) of logarithmic sample number of the
first candidate of misclassified clouds (FCMC) identified by the C2 cloud mask scheme dur-
ing (a) March–May (MAM), (b) June–August (JJA), (c) September–November (SON), and (d)
December–February (DJF) from June 2006 to May 2007. The high-latitude regions (> 50◦) and
altitudes lower than 1 km are not shown.
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Figure 4.4: Vertical profiles of the sample number of FCMC. The green, red, and blue lines are
additionally tested results by the relative humidity of 50%, 30%, and 10%, respectively. The
samples are collected at each 1 km in altitude.
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Figure 4.5: Longitude-latitude cross sections (5◦×5◦) of the logarithmic sample number of FCMC.
The conditions of relative humidity are same as those in Figure 4.4. The sample number at each
pixel is the integral value from 1 km to 7 km. The red rectangle in Panel (c) is the region used for
the training data.
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The collected training data is used to make the discrimination model (i.e., LDF). Table 4.1

shows the sample size of clouds, misclassified clouds (MC), and the others collected from June

2006 to May 2007. The others mean cloud layers detected by the C2 cloud mask, but not including

clouds and misclassified clouds. The sample size of misclassified clouds is much smaller than that

of clouds and the others. It should be noted that misclassified clouds would be partially included

in the others. Although the sample size of misclassified clouds is relatively small, it is enough to

form the PDF.

Figure 4.6 shows the PDF of the five variables (log10

(
β′S ,532

)
, δS ,v, χ′S , zlt, and BT D) incorpo-

rated in LDF. The variables of misclassified clouds are smaller than those of clouds except for the

variable δS ,v. The PDF of the variable δS ,v of clouds has two peaks at 0 and 0.2 (blue line in Figure

4.6 (b)). The peak at 0 would attribute to plate-like ice crystals (2D-plate), and the other would be

caused by water droplets. The cloud and misclassified cloud data have the positive and the negative

values of BTD, respectively. It can be explained by their inverse spectral dependence of refractive

indices [Gu et al., 2003; Zhang et al., 2006].

The dotted lines in the figure denote the misclassified cloud data (MC′) collected without using

the MODIS cloud mask. The notable difference between the MC and the MC′ is seen in the PDF

of log10

(
β′S ,532

)
. The PDF of the MC′ clearly includes the clouds since there is a peak at −1.0 of

log10

(
β′S ,532

)
. Therefore, the MODIS cloud mask is needed to collect the training data of certainly

misclassified clouds. The PDFs of the others are similar to those of clouds. The PDF of the

variable log10

(
β′S ,532

)
of the others has a peak at −2.1, which may be caused by misclassified clouds.

Among the five variables, the variable log10

(
β′S ,532

)
has the smallest overlap between clouds and

misclassified clouds. In contrast, the variable δS ,v has the largest overlap. The LDF is made based

on the PDFs of clouds and misclassified clouds with minimum misclassification. The averages and

common variance-covariance matrices of the five variables are summarized in Appendix E.

The coefficients of LDF in Equation (4.3) are estimated from the PDF results. The estimated

coefficients and normalized coefficients by the standard deviations are shown in Table 4.2. Since

the ranges of the values are different among the variables, the normalization is needed to understand

the contribution of the variables to the LDF score. According to the normalized coefficients, the

variables log10

(
β′S ,532

)
and zlt have a large effect on the LDF score, whereas the variable δS ,v has

small effect. These results are consistent with the PDF results. The negative value of the variable

δS ,v reflects the smaller PDF of clouds as described above.
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Table 4.1: Sample size of clouds, misclassified clouds (MC), and the others collected from June
2006 to May 2007. The others mean cloud layers detected by the C2 cloud mask, but not including
clouds and misclassified clouds.

Sample N (×102) Percentage (%)
Clouds 19010 59.3

MC 181.04 0.57
Others 12841 40.1

Total 32032
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Figure 4.6: Probability density functions (PDF) of (a) layer-mean attenuated backscattering coeffi-
cients, (b) layer-integrated volume depolarization ratios, (c) layer-integrated total color ratios, (d)
layer top altitudes, and (e) brightness temperature differences between 10.6 and 12.05 µm (BTD).
The term MC denotes misclassified clouds, and MC′ denotes misclassified clouds determined with-
out the MODIS cloud mask.
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Table 4.2: Coefficients of the linear discriminant function (LDF) and values normalized by the
standard deviations. The coefficients C1, C2, C3, C4, and C5 are for log10

(
β′S ,532

)
, δS ,v, χ′S , zlt, and

BT D, respectively.

Coefficient C0 C1 C2 C3 C4 (km−1) C5 (K−1)
Value −0.6654 4.9686 −2.8791 4.5227 1.3460 0.4775

Value*SD 2.1165 −0.4035 1.2746 2.2959 0.8372

59



4.3 Reclassification of cloud layers in CALIOP cloud masks

The constructed LDF is applied to new CALIOP cloud data that are independent from the

training data. Two demonstrations and statistical results of the discriminant analysis for detecting

misclassified clouds in the C2 cloud mask are presented in this section. First, a case of dust

diffused over East Asia during the daytime on 31 March 2007 is shown in Figure 4.7. The sand

storms were widely observed from 30 to 31 March at the ground stations in Mongolia and the

northwest of China. From the Yellow Sea to the Chinese Continent, dust is recognized from the

desert sand colors in the MODIS true color image. The negative BTD values over the Chinese

Continent also confirm the existence of dust.

Along with the CloudSat/CALIPSO ground track (gray line in Figure 4.7 (a) and (b)), clouds

are recognized in the latitudes of 38◦N–39.5◦N and the north of 42◦N. The latitude-altitude cross

section of the attenuated backscattering coefficient at 532 nm (Figure 4.7 (c)) shows that there

are strong signals (β′S ,532 > 0.01 /km/sr) throughout the latitudes. A data mask makes based on

the C2 cloud mask is shown in Figure 4.7 (d). Dust regions labeled in the figure are determined

by the volume depolarization ratio and attenuated color ratio. The determination method of dust

is described in Appendix F. The detected clouds embedded in the dust layers below the altitudes

of 5 km are considered as misclassified clouds from the MODIS images. The relative humidity

(contours in Figure 4.7 (d)) also shows the dry air in the regions of misclassified clouds.

The result of the LDF score for the cloud layers is shown in Figure 4.8 (a). The positive (red)

and negative (blue) values indicate clouds and misclassified clouds, respectively. The misclassified

regions are successfully detected by LDF even though the BTD values differ depending on the

underlying surfaces (i.e., the Chinese Continent and the Yellow Sea). This demonstration indicates

that the method incorporating the BTD for the discrimination of dust from clouds is effective even

for dust above water surfaces. The corrected data mask after the calculation of LDF is shown in

Figure 4.8 (b). If the layer-integrated volume depolarization ratio of misclassified clouds (negative

LDF) is larger than 0.06, misclassified clouds are identified as dust. The corrected data mask

agrees with the results in the MODIS images.
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Figure 4.7: An example of dust misclassification as clouds during the daytime on 31 March 2007.
Panels (a) and (b) are the brightness temperature difference (BTD) and true color image, respec-
tively, derived from the MODIS/Aqua at 0500 UTC. Latitude-altitude cross sections of (c) attenu-
ated backscattering coefficients at 532 nm, (d) data mask based on the C2 cloud mask. The contour
lines in Panel (d) denote the relative humidity. The data mask classifies the observed bins into four
categories: clear, dust, cloud, and subsurface.
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Figure 4.8: A demonstration of the refinement of the C2 cloud mask in the case of Figure 4.7. (a)
Linear discriminant function (LDF) scores for the detected clouds and (b) modified data mask after
the cloud screening.
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The other case of misclassified clouds during the nighttime on 22 June 2007 is shown in Figure

4.9. The MODIS cloud mask (Figure 4.9 (b)) shows clear sky conditions over the west of North

Africa. Although the cloudy conditions are reported in the latitudes from 10◦N to 12◦N along

with the ground track, dust would exist there because of the negative BTD values. In Figure 4.9

(c), there is a layer having large attenuated backscattering coefficients from 3 to 6 km through

the latitudes. The data mask shows that clouds are embedded in the dust layer. According to the

MODIS results and low relative humidity in the cloud regions, clouds above 3 km at the latitudes

from 7.5◦N to 16.5◦N are possibly misclassified.

The result of the LDF score is shown in Figure 4.10 (a). The possible misclassified regions are

successfully reclassified as misclassified clouds that have the negative LDF scores. The corrected

data mask also agrees with the BTD values of MODIS. For comparison of the LDF applicability,

LDF results developed by Chen et al. [2010] (referred to as LDF′ hereafter) are shown in Figure

4.10 (c). Most of the possible misclassified regions have the positive values of LDF′. The corre-

sponding data mask is rarely different from the data mask before the LDF correction. It indicates

that LDF′ is less effective than LDF in this thesis. The reason of the false detection by LDF′ is

that the training data during the nighttime are not collected in Chen et al. [2010], resulting in the

uncertainty of true PDFs which are needed for making the greatest discrimination model. The two

demonstrations of the discriminant analysis result in the successful reclassification of dust over

land and sea during the daytime and nighttime.
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Figure 4.9: An example of dust misclassification as clouds during the nighttime on 22 June 2007.
The figures are the same as Figure 4.7, but the MODIS cloud mask is shown in Panel (b) instead
of the true color image.
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Figure 4.10: Demonstrations of the refinement of the C2 cloud mask in the case of Figure 4.9.
(a) Linear discriminant function (LDF) scores by the method of this thesis, (b) modified data mask
after the cloud screening from the results of Panel (a), (c) LDF′ scores by the method of Chen et al.
[2010], and (d) modified data mask after cloud screening from the results of Panel (c).
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In order to investigate the LDF accuracy, a statistical analysis is conducted. Table 4.3 shows

reclassification results of cloud layers in the C2 cloud mask during June–August 2007. The cloud

layers are divided into clouds, misclassified clouds, and the others data by the same procedure as

the collection of training data. The accuracy rates of the LDF classification are 96.5% and 91.7%

for clouds and misclassified clouds, respectively. The others data are reclassified as misclassified

clouds by 12.1%. The number of clouds classified as misclassified clouds by LDF (LDF < 0)

accounts for 25.8% of total misclassified clouds. On the other hand, the number of misclassified

clouds classified as clouds by LDF (LDF > 0) accounts for 0.4% of total clouds. The estimated

content rate of misclassified clouds in the C2 cloud mask is approximately 6%. Here, the misclas-

sification by LDF (i.e., clouds but having negative LDF scores) is excluded.

The accuracy rates of the LDF classification for different variables are calculated to derive

optimal LDF. Table 4.4 shows the accuracy rates of optimal variables at the number of variables

changing from 1 to 5. If only log10

(
β′S ,532

)
is used for making LDF, the accuracy rates are 87.9%

and 95.5% for clouds and misclassified clouds, respectively. The accuracy rates increase with the

additional variables. The highest accuracy rates are derived from the four variables except for δS ,v.

It indicates that δS ,v is not the effective parameter for the LDF classification. The possible reason

is that the depolarization ratio of clouds differs depending on the cloud particle types. Randomly

oriented ice crystals (3D-ice) have a larger depolarization ratio (∼0.5) than misclassified clouds,

but plate-like ice crystals (2D-plate) and water droplets have the lower depolarization ratio than

misclassified clouds. Therefore, it is difficult to discriminate misclassified clouds from all the

cloud particle types. The LDF coefficients that exclude δS ,v are presented in Appendix G. The

exclusion of the depolarization ratio enables us to use LDF for cloud layers even after a change

of the view angle of CALIPSO from 0.3◦ to 3.0◦ on 28 November 2007. The view angle change

decreases (increases) the observation frequency of 2D-plate (3D-ice) [Hu et al., 2009], resulting in

the change of the depolarization ratio.
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Table 4.3: Summary of the accuracy rate of linear discriminant function (LDF). The reclassification
of the cloud layers in the C2 cloud mask is performed during June–August 2007. The cloud layers
are divided into clouds, misclassified clouds (MC), and the others data by the same procedure as
the collection of training data, and are compared to the classification results by LDF.

LDF Clouds MC Others SumClassification
LDF > 0 444009 (96.5%) 275 (8.3%) 317396 (87.9%) 761680
LDF < 0 16260 (3.5%) 3031 (91.7%) 43835 (12.1%) 63126

Total 460269 3306 361231 824806

Table 4.4: Accuracy rates of optimal variables at the number of variables changing from 1 to 5.
Clouds and misclassified clouds (MC) data are determined by the same procedure as the collection
of training data.

Variables Accuracy rate (%)
Clouds MC

log10

(
β′S ,532

)
87.9 95.5

log10

(
β′S ,532

)
, zlt 93.1 91.4

log10

(
β′S ,532

)
, zlt, BT D 95.8 92.0

log10

(
β′S ,532

)
, χ′S , zlt, BT D 96.6 92.1

log10

(
β′S ,532

)
, δS ,v, χ′S , zlt, BT D 96.5 91.7
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4.4 Effect of misclassifications in CALIOP cloud masks on vertical profiles

of dust extinction coefficients

Dust extinction coefficients are retrieved after screening of clouds detected by the cloud mask

in the CALIOP data analysis. If dust in practice is misclassified as clouds, the misclassified regions

are eliminated from the retrieval, causing the sampling bias. Since dust misclassified as clouds is

expected to have a large extinction coefficient, the retrieved dust extinction coefficient without the

misclassified regions result in smaller. The dust extinction coefficient should be reevaluated after

the improvement of the CALIOP cloud mask.

In this thesis, dust extinction coefficients are retrieved by the following procedure. First, the

nighttime CALIOP signals are averaged to have the vertical and horizontal resolutions as the C2

cloud mask. Secondly, dust is detected by the method described in Appendix F. Thirdly, the av-

erage of signals are calculated for every five profiles. The horizontal resolution of the averaged

profiles results in 5.5 km. The averaged profiles are used in the retrieval only if dust bins are

detected in all the five profiles. The signals below the top of clouds are excluded. The sky condi-

tions of the averaged profiles corresponds to a combination of the “cloud-free” and “above cloud”.

Finally, the retrieval of the dust extinction coefficient is performed.

To eliminate signals below the top of clouds, two cloud masks are used for the cloud detection.

One of the cloud masks is the C2 cloud mask, and the other is a C2′ cloud mask that is improved by

LDF. The clouds detected by the C2′ cloud mask have the positive LDF values. If clouds detected

by the C2 cloud mask have the negative LDF values and the volume depolarization ratio of larger

than 0.06, the clouds are regarded as dust in the C2′ cloud mask. The LDF calculation is also

applied to clouds below 1 km from the ground level. The dust extinction profiles using the two

cloud masks are compared each other.

The lidar ratio used in the retrieval is 40 sr at 532 nm. This value is identical to an initial lidar

ratio in the CALIOP products. Since the solution of the forward inversion is unstable as shown

in Chapter 2.3, the lidar ratio should be adjusted to retrieve the true extinction coefficients. If the

retrieved extinction coefficients are diverged in the positive direction, the lidar ratio is reduced, and

the retrieval is restarted using the reduced lidar ratio. The divergence in the positive direction is

detected by testing if the successive extinction coefficients are not converging [Young and Vaughan,

2009].

The profiles of dust extinction coefficients are calculated at arid regions. Figure 4.11 (a) shows

the frequency of misclassified clouds (negative LDF values) in the 5◦ × 5◦ grid scale from March
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2007 to August 2007. The misclassification number is the largest at the Taklimakan Desert, fol-

lowed by the west of North Africa. The extinction profiles are investigated in three regions de-

noted by the red rectangles: 1) the Sahara Desert (5◦W–5◦E and 15◦N–25◦N), 2) the Middle East

(37.5◦E–55◦E and 17.5◦N–32.5◦N), and 3) the Taklimakan Desert (75◦E–90◦E and 35◦N–42.5◦N).

The results of extinction profiles are shown in Figure 4.11 (b)–(d). In all the regions, the ex-

tinction coefficients using the C2′ cloud mask are clearly larger than those using the C2 cloud

mask especially below 3 km from the ground level. The maximum ratios of the C2′ to C2 pro-

files are factors of 1.55, 1.77, and 2.6 in the Sahara Desert, the Middle East, and the Taklimakan

Desert, respectively. Therefore the effect of cloud misclassifications on the extinction profile is the

largest in the Taklimakan Desert. The fraction of the misclassified cloud profiles in the calculated

extinction profiles is 34.6% (below 2 km) in the Taklimakan Desert. The errors caused by the

misclassification of clouds as dust are ∼3.0% below 2 km.

The retrieved extinction profile is compared to the CALIOP level 3 products. The CALIOP

level 3 products provide the monthly averaged data that are applied to several quality checks before

the averaging of the level 2 products [Winker et al., 2013]. The combined (cloud-free + above

cloud) sky condition and nighttime product is used for the CALIOP level 3. Only the extinction

profiles classified as dust are used. Figure 4.12 shows the extinction profiles from the C2′ cloud

mask and the CALIOP level 3 in the Taklimakan Desert. The extinction profile of the C2′ cloud

mask below 2 km is approximately 2 times larger than that of the CALIOP level 3. The extinction

profile of the CALIOP level 3 is based on VFM. In order to confirm the correctness of the retrieval

process in this thesis, the retrieval of the extinction profile using the VFM cloud mask is performed.

The extinction profile using the VFM cloud mask (dotted line in the figure) agrees with that of the

CALIOP level 3 even though the finally selected lidar ratios in the CALIOP level 3 may be different

from those in this thesis. Therefore the difference of the C2′ and the CALIOP level 3 profiles is

mainly due to the difference of the cloud screening processes.

69



−20˚ 0˚ 20˚ 40˚ 60˚ 80˚ 100˚ 120˚

0˚

10˚

20˚

30˚

40˚

50˚
(a)

0

500

1000

1500

2000

2500

3000

M
is

c
la

s
s
if
ic

a
ti
o

n
 F

re
q

u
e

n
c
y

0

2

4

6

8

A
lt
it
u

d
e

 (
k
m

)

0.0 0.2 0.4 0.6 0.8

Extinction Coefficient (αp) (/km)

(b)

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8

Extinction Coefficient (αp) (/km)

(c)

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8

Extinction Coefficient (αp) (/km)

(d)

C2´

C2

Figure 4.11: (a) A longitude-latitude cross section of the misclassification frequency (negative lin-
ear discriminant function (LDF) scores) and (b)–(d) profiles of dust extinction coefficients before
(C2) and after (C2′) the refinement of the C2 cloud mask in the regions of the Sahara Desert, the
Middle East, and the Taklimakan Desert denoted by the red rectangles in Panel (a). The error bar
denotes the standard deviation.
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Aerosol optical depth (AOD) calculated from the extinction profiles using the C2′ cloud mask

and the CALIOP level 3 are 1.03 and 0.63, respectively. Ma et al. [2013] revealed that AOD

of the CALIOP level 3 aerosol products are ∼0.25 smaller than that of MODIS in Northwest

China during the dust season in 2007. The AOD reported at the center of the Taklimakan Desert

(Tazhong, 83.7◦E and 39◦N) are approximately 0.7 during March–August from 2004 to 2008 [Che

et al., 2013]. The morning and evening AOD at Tazhong was ∼0.1 larger than daytime AOD. AOD

of the CALIOP level 3 has the smaller values (negative bias) compared to reported AOD although

AOD of our study may be too large.

The misclassification of dust as clouds can affect the extinction profiles since the misclassified

regions have the strong backscattering. An example of the misclassification in the VFM cloud

mask on 18 May 2007 is shown in Figure 4.13. Yumimoto et al. [2009] analyzed this dust event and

revealed that a long-range transportation of dust from the Taklimakan Desert to North American

Continent. The data mask using the C2′ cloud mask (Figure 4.13 (b)) shows correct discriminations

between dust and clouds even at the strong signal regions from 38◦N to 40.5◦N. On the other hand,

the data mask using the VFM cloud mask (Figure 4.13 (c)) shows the significant misclassification

of dust as clouds through the latitudes.

The horizontal resolutions of the cloud layers in VFM are shown in Figure 4.13 (d). Most of

the misclassified regions from 38◦N to 40.5◦N have the resolution of 333 m. The 333 m resolution

is not applied to the cloud-aerosol discrimination (CAD) test in the CALIOP products (i.e., the

layers detected at 333 m resolution are automatically classified as clouds). Therefore, the misclas-

sifications at the 333 m resolution can cause smaller extinction coefficients. The dust regions at

higher than 41◦N are mostly misclassified as clouds. As pointed out in Chapter 3.4, dust in VFM

is frequently misclassified at higher than 40◦N. Clouds embedded in the dust layer are shown at

higher than 42.5◦N from the C2′ cloud mask (Figure 4.13 (b)). The top of the clouds in the VFM

cloud mask is at higher than 6 km in altitude. The dust above the clouds is misclassified as clouds

at the 1 km and coarser resolutions. The CALIOP products identify these mixed layers (aerosols +

clouds) as clouds to avoid cloud contamination of the aerosol dataset [Winker et al., 2009], but the

misclassified dust in the mixed layers can cause the negative bias in the dust extinction coefficients.

Schuster et al. [2012] suggested that the negative bias of AOD from the CALIOP products is

caused by the small values of the dust lidar ratio in the Sahara regions. However, smaller AOD from

the CALIOP products in the Taklimakan Desert is unclear whether it is caused by the small lidar

ratio or not due to an extreme lack of the observation of the lidar ratio. The dust lidar ratio estimated

by the simultaneous observation with the ground-based lidar is 42.0 sr at 532 nm in the Taklimakan
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Desert (Chapter 3). The smaller AOD is not explained even if the lidar ratio of 42.0 sr is used in the

retrieval using the VFM cloud mask. This thesis suggests that the dust misclassifications as clouds

in the C2 and VFM cloud masks have a significant effect on the retrieved extinction coefficients

especially in the Taklimakan Desert and suggests that cloud layers at 333 m resolution in the VFM

cloud mask should be reclassified into cloud or aerosol layers to avoid the negative bias of the dust

extinction coefficient.
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Figure 4.13: An example of the dust misclassifications as clouds in the VFM cloud mask. Latitude-
altitude cross sections of (a) attenuated backscattering coefficients at 532 nm, (b) data mask based
on the C2′ cloud mask, (c) data mask based on the VFM cloud mask, and (d) horizontal resolution
in the VFM cloud mask.
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5 Conclusion

This thesis presents a study for better estimation of the vertical profiles of dust optical proper-

ties by Mie-scattering lidar.

First, the extinction-to-backscattering ratio (lidar ratio) of dust is estimated in the Taklimakan

Desert, where the lidar ratio has not been investigated. This thesis estimates the lidar ratio by

simultaneous observations with Aksu-lidar and CALIOP on 23 March 2009. The estimated lidar

ratios at 532 and 1064 nm are 42.0 and 45.9 sr, respectively. The 532 nm lidar ratio is 3–24%

smaller than those of Asian dust reported previously. The errors in the lidar ratio estimation are

9.5% at 532 nm and 41.6% at 1064 nm. Error analysis shows that the estimation of the 1064 nm

lidar ratio strongly depends on signal calibration errors at 1064 nm.

Using the estimated lidar ratios, dust optical properties are retrieved from the Aksu-lidar data.

The particle depolarization ratio of dust is from 0.3 to 0.38, and the particle color ratio of dust

is from 0.5 to 1.0. The small depolarization and color ratios on March 25 suggest that spherical

and fine particles are advected from the surrounding regions (and/or that coarse particles settle

due to the dry deposition). A comparison of Aksu-lidar to CALIOP level 2 data shows that the

backscattering coefficients of the CALIOP level 2 data are 21% smaller than those of this thesis.

The smaller backscattering coefficients are caused by the misclassification of dust as clouds in the

VFM.

Secondly, the C2 cloud mask is improved by discriminant analysis. This thesis tries to dis-

criminate misclassified clouds (mainly dust) from clouds detected by the C2 cloud mask. LDF is

used as the discriminant model. The training data are collected by tests with the C1 cloud mask,

MODIS cloud mask, and relative humidity. Five variables log10

(
β′S ,532

)
, δS ,v, χ′S , zlt, and BT D are

used in LDF.

The reclassifications of the C2 cloud mask are demonstrated in two cases over land and wa-

ter surfaces during day and night. The discriminations of dust from clouds are successfully per-

formed in every case, even though the BTD varies depending on surface characterization [Ack-

erman, 1997]. The discrimination model of Chen et al. [2010] worked inadequately during the

nighttime since the training data were not collected during the nighttime due to satellite imagery

limitations. The LDF of this thesis makes based on training data collected during both night and

day, resulting in the better discrimination even during the nighttime.

The accuracy rates of the LDF classification are 96.5% and 91.7% for clouds and misclassified

clouds, respectively. The estimated content rate of misclassified clouds in the C2 cloud mask is ap-
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proximately 6% in the region of 20◦W–120◦E and 0◦–50◦N during June–August 2007. An analysis

changing the combinations of variables in the LDF reveals that the depolarization ratio δS ,v is not

effective for discrimination and can be excluded from LDF. The exclusion of the depolarization

ratio enables us to use modified LDF (i.e., using remained four variables) for clouds even after

view angle of CALIPSO changed from 0.3◦ to 3.0◦ on 28 November 2007.

Vertical profiles of dust extinction coefficients before and after the improvement of the C2

cloud mask are investigated. Extinction coefficients using the improved cloud mask (C2′) are

clearly larger than those using the C2 cloud mask, especially below 3 km from ground level. The

maximum ratios of the C2′ to C2 profiles of extinction coefficients are factors of 1.55, 1.77, and

2.6 in the Sahara Desert, the Middle East, and the Taklimakan Desert, respectively. The fraction

of misclassified clouds in observed dust is 34.6% (below 2 km) in the Taklimakan Desert.

A comparison of our resutls to CALIOP level 3 products indicates that the extinction profile

using the C2′ cloud mask is ∼2 times larger than that of the CALIOP level 3 in the Taklimakan

Desert. The difference between the C2′ and the CALIOP level 3 profiles is mainly due to the

different cloud screening processes. AODs calculated from the extinction profiles using the C2′

cloud mask and the CALIOP level 3 are 1.03 and 0.63, respectively. AOD reported by previous

studies using the MODIS and the ground-based measurements in the Taklimakan Desert indicates

that AOD of the CALIOP level 3 has negative bias.

This thesis suggests that the negative bias of AOD in the Taklimakan Desert is mainly caused

by misclassifications of dust as clouds in the VFM cloud mask. This thesis also suggests that cloud

layers at 333 m resolution in the VFM cloud mask should be reclassified into cloud or aerosol lay-

ers to avoid the negative bias of dust extinction coefficients. In addition, measurements of dust

lidar ratios are needed to reduce uncertainty in the extinction retrieval. Although the Taklimakan

Desert is the one of the major sources of dust, long-term measurements of dust lidar ratios have

not been conducted. This thesis provides information on dust lidar ratios in the Taklimakan Desert.

Furthermore, the improvement of the CALIOP cloud mask reduces uncertainty in the retrieval of

dust extinction coefficients. These results would contribute to improvements in accuracy of chem-

ical transport models.

Further studies will be continued to refine the vertical profiles of dust optical properties. Opti-

cally thin clouds that are not detected by the C2 cloud mask should be detected in order to avoid

cloud contamination in the aerosol dataset. Optically thin clouds tend to be misclassified as dust

due to the large depolarization ratio. The high spectral resolution lidar that will be on board the
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EarthCARE satellite can measure extinction and backscattering coefficients independently (i.e.,

lidar ratios can be derived). Since dust lidar ratios are two times larger than cloud lidar ratios

[Sakai et al., 2003], discrimination between dust and clouds would improve. In addition, the cloud

profiling radar (CPR) that will be on board the EarthCARE satellite is more sensitive than the CPR

on board CloudSat, and therefore misclassified clouds would be more detectable.
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Koffi, B., Schulz, M., Bréon, F., Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S., Berntsen,

T., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R., Ghan, S., Ginoux, P., Gong, S.,

Horowitz, L., Iversen, T., Kirkevåg, A., Koch, D., Krol, M., Myhre, G., Stier, P., and Takemura,

T., 2012: Application of the caliop layer product to evaluate the vertical distribution of aerosols

estimated by global models: Aerocom phase i results. J. Geophys. Res., 117, D10201.

Li, X., Maring, H., Savole, D., Voss, K., and Prospero, M., 1996: Dominance of mineral dust in

aerosol light-scattering in the north atlantic trade winds. Nature, 380, 416–419.

Liu, D., Wang, Z., Liu, D., winker, D., and Trepte, C., 2008a: A height resolved global view of

dust aerosols from the first year calipso lidar measurements. J. Geophys. Res., 113, D16214,

doi:10.1029/2007JD009776.

Liu, Z., Kuehn, R., Vaughan, M., Winker, D., Omar, A., Powell, K., Trepte, C., Hu, Y., and

Hostetler, C., 2010: The calipso cloud and aerosol discrimination: Version 3 algorithm and test

results. Proc. 25th ILRC, 2, 1245–1248.

Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., Kittaka, C., Trepte, C., Hostetler,

C., and Winker, D., 2008b: Airborne dust distributions over the tibetan plateau and surrounding

areas derived from the first year of calipso lidar observations. Atmos. Chem. Phys., 8, 5045–

5060.

Liu, Z., Sugimoto, N., and Murayama, T., 2002: Extiction-to-backscattering ratio of asian dust ob-

served by high-spectral-resolution lidar and raman lidar. J. Atmos. Ocean. Tech., 20(10), 1388–

1402.

Liu, Z., Vaughan, M., Winker, D., Hostetler, C., Poole, L., Hlavka, D., Hart, W., and McGill, M.,

2004: Use of probability distribution functions for discriminating between cloud and aerosol in

lidar backscatter data. J. Geophys. Res., 109, D15202.

Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R., Omar, A., Powell, K.,

Trepte, C., and Hostetler, C., 2009: The calipso lidar cloud and aerosol discrimination: Version

2 algorithm and initial assessment of performance. J. Atmos. Ocean. Tech., 26, 1198–1213.

Ma, X., Bartlett, K., Harmon, K., and Yu, F., 2013: Comparison of aod between calipso and modis:

significant difference over major dust and biomass burning regions. Atmos. Means. Tech., 6,

2391–2401.

82



Ma, Y., Gong, W., Wang, P., and Hu, X., 2011: New dust aerosol identification method for space-

borne lidar measurements. J. Quant. Spectrosc. Radiat. Transfer, 112, 338–345.

Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G., 2008: Hydrometeor detection using

cloudsat-an earth-orbiting 94-ghz cloud radar. J. Atmos. Ocean. Tech., 25, 519–533.

McGill, M. J., Vaughan, M. A., Trepte, C. R., Hart, W. D., Hlavka, D. L., Winker, D. M., and

Kuehn, R., 2007: Airborne validation of spatial properties measured by the calipso lidar. J.

Geophys. Res., 112, D20201.

Meloni, D., Sarra, A., Iorio, T., and Fiocco, G., 2005: Influence of the vertical profile of saharan

dust on the visible direct radiative forcing. J. Quant. Spectrosc. Radiat. Transfer, 93, 397–413.

Mikami, M., Shi, G., Uno, I., Yabuki, S., Iwasaka, Y., Yasui, M., Aoki, T., Tanaka, T., Kurosaki,

Y., Masuda, K., Uchiyama, A., Matsuki, A., Sakai, T., Takemi, T., Nakawo, M., Seino, N.,

Ishizuka, M., Satake, S., Fujita, K., Hara, Y., Kai, K., Kanayama, S., Hayashi, M., Du, M.,

Kanai, Y., Zhang, Y. Y. X., Shen, Z., Zhou, H., Abe, O., Nagai, T., Tsutsumi, Y., Chiba, M., and

Suzuki, J., 2006: Aeolian dust experiment on climate impact: An overview of japan-china joint

project adec. Global and Planetary Change, 52, 142–172.

Moulin, C., Lambert, C., Dayan, U., Masson, V., Ramonet, M., Bousquet, P., Legrand, M., Balka-

nski, Y., Guelle, W., Marticorena, B., Bergametti, G., and Dulac, F., 1998: Satellite climatology

of african dust transport in the mediterranean atmosphere. J. Geophys. Res., 20, 13137–13144.

Murayama, T., Müller, D., Wada, K., Shimizu, A., Sekiguchi, M., and Tsukamoto, T., 2004: Char-

acterization of asian dust and siberian smoke with multi-wavelength raman lidar over tokyo,

japan in spring 2003. Geophys. Res. Lett., 31, L23103, doi:10.1029/2004GL021105.

Naeger, A. R., Christopher, S. A., Ferrare, R., and Liu, Z., 2013: A new technique using in-

frared satellite measurements to improve the accuracy of the calipso cloud-aerosol discrimina-

tion method. IEEE Trans. Geosci. Rem. Sens., 51, 642–653.

Noh, Y. M., Kim, Y. J., Choi, B. C., and Murayama, T., 2007: Aerosol lidar ratio characteristics

measured by a multi-wavelength raman lidar system at anmyeon island, korea. Atmos. Res., 86,

76–87, doi:10.1016/j.atmosres.2007.03.006.

Okamoto, H., Kumaoka, N., Nishizawa, T., Sugimoto, N., and Hagihara, Y., 2010: Calibration of

1064 nm channel and retrieval of aerosol extinction from calop. Proc. 25th ILRC, 1, 636–639.

83



Okamoto, H., Nishizawa, T., Takemura, T., Kumagai, H., Kuroiwa, H., Sugimoto, N., Matsui,

I., Shimizu, A., Emori, S., Kamei, A., and Nakajima, T., 2007: Vertical cloud structure ob-

served from shipborne radar and lidar: Midlatitude case study during the mr01/k02 cruise of the

research vessel mirai. J. Geophys. Res., 112, D08216.

Omar, A., Winker, D., Kittaka, C., Vaughan, M., Liu, Z., Hu, Y., Trepte, C., Rogers, R., Ferrare,

R., Lee, K., Kuehn, R., and Hostetler, C., 2009: The calipso automated aerosol classification

and lidar ratio selection algorithm. J. Atmos. Ocean. Tech., 26, 1994–2014.

Perrone, M., Tafuro, A., and Kinne, S., 2012: Dust layer effects on the atmospheric radiative

budget and heating rate profiles. Atmos. Env., 59, 344–354.

Pinnick, R. G., Jennings, S. G., Chylek, P., Ham, C., and Grandy, W. T., 1983: Backscatter and

extinction in water clouds. J. Geophys. Res., 88, 6787–6796.

Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30,

1191–1204.

Platt, C. M. R., Winker, D. M., Vaughan, M. A., and Miller, S. D., 1999: Backscattering-to-

extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus

from lite observations. Amer. Meteor. Soc., 38, 1330–1345.

Prospero, J., and Carlson, T., 1972: Vertical and areal distribution of saharan dust over the western

equatorial north atlantic ocean. J. Geophys. Res., 77, 5255–5265.

Prospero, J., Ginoux, P., Torres, O., Nicholson, S., and Gill, T., 2002: Environmental characteriza-

tion of global source of atmospheric soil dust identified with the nimbus 7 total ozone mapping

spectrometer (toms) absorbing aerosol product. Rev. Geophys., 40, doi:10.1029/2000RG000095.

Reba, M. N. M., Rocadenbosch, F., Sicard, M., noz, C. M., and Tomás, S., 2007: Piece-wise

variance method for signal-to-noise ratio estimation in elastic/raman lidar signals. Proc. IEEE,

3158–3161, doi:10.1109/IGARSS.2007.4423515.

Sakai, T., shibata, T., Iwasaka, Y., Nagai, T., Nakazato, M., Matsumura, T., Ichiki, A., Kim, Y. S.,

Tamura, K., Troshkin, D., and Hamdi, S., 2003: Ice clouds and asian dust studied with lidar

measurements of particle extinction-to-backscattering ratio, particle depolarization, and water-

vapor mixing ratio over tsukuba. Appl. Opt., 42(36), 7103–7116.

84



Sasano, Y., and Browell, E., 1989: Light scattering characteristics of various aerosol types derived

from multiple wavelength lidar observations. Appl. Opt., 28, 1670–1679.

Sasano, Y., Browell, E., and Ismail, S., 1985: Error caused by using a constant extinc-

tion/backscattering ratio in the lidar solution. Appl. Opt., 24, 3929–3932.

Sassen, K., 2000: Lidar backscatter depolarization technique for cloud and aerosol research.

Light Scattering by Particles and Surfaces: Theory, Measurements, and Applications edited

by Mishchenko M., J. Hovenier, and L. Travis, Academic Press, chap. 14, 393–416.

Satheesh, S. K., and Moorthy, K. K., 2005: Radiative effects of natural aerosols: A review. Atmos.

Env., 39, 2089–2110.

Schuster, G., Vaughan, M., MacDonnell, D., Su, W., Winker, D., Dubovik, O., Lapyonok, T., and

Trepte, C., 2012: Comparison of calipso aerosol optical depth retrievals to aeronet measure-

ments, and climatology for the lidar ratio of dust. Atmos. Chem. Phys., 12, 7431–7452.

Seinfeld, J., and Pandis, S., 1998: Atmospheric Chemistry and Physics. Wiley, 1st edn., 1326 pp.

Shao, Y., 2008: Physics and Modelling of Wind Erosion. Springer, 2nd revised and expanded edn.,

452 pp.

Shibata, T., and Yang, Y., 2010: Decrease in depolarization of dust over populated areas of eastern

asia observed by the space-borne lidar caliop. Earozoru Kenkyu, 25, 62–76.

Simmons, A., Uppala, S., Dee, D., and Kobayashi, S., 2007: Era-interim: New ecmwf reanalysis

products from 1989 onwards. ECMWF Newsletter 110, European Centre for Medium-Range

Weather Forecasts (ECMWF), Winter 2006/2007.

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J.,

O’Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., and

Mitrescu, C., 2002: The cloudsat mission and the a-train. Bull. Amer. Meteor. Soc., 83, 1771–

1790.

Sugimoto, N., Hara, Y., Shimizu, A., Yumimoto, K., Uno, I., and Nishikawa, M., 2011: Compar-

ison of surface observations and a regional dust transport model assimilated with lidar network

data in asian dust event of march 29 to april 2, 2007. Scientific Online Letters on the Atmosphere

(SOLA), 7A, 13–16.

85



Tanaka, T., Kurosaki, Y., Chiba, M., Matsumura, T., Nagai, T., Yamazaki, A., Tsunematsu, A.

U. N., and Kai, K., 2005: Possible transcontinental dust transport from north africa and the

middle east to east asia. Atmos. Env., 39, 3901–3909.

Tao, Z., Liu, Z., Wu, D., McCormick, M. P., and Su, J., 2008a: Determination of aerosol extinction-

to-backscattering ratios from simultaneous ground-based and spaceborne lidar measurements.

Opt. Lett., 33, 2986–2988.

Tao, Z., McCormick, M. P., Wu, D., Liu, Z., and Vaughan, M. A., 2008b: Measurement of cirrus

cloud backscatter color ratio with a two-wavelength lidar. Appl. Opt., 47, 1478–1485.

Tegen, I., Hollring, P., Chin, M., Fung, I., Jacob, D., and Penner, J., 1997: Contribution of different

aerosol species to the global aerosol extinction optical thickness: Estimates from model results.

J. Geophys. Res., 102, 23895–23915.

Tsunematsu, N., Kai, K., and Matsumoto, T., 2005a: The influence of synoptic-scale air flow and

local circulation of the dust layer height in the north of the taklimakan desert. Water, Air, and

Soil Pollution Focus, 5, 175–193.

Tsunematsu, N., Sato, T., Kimura, F., Kai, K., Kurosaki, Y., Nagai, T., Zhou, H., and Mikami, M.,

2005b: Extensive dust outbreaks following the morning inversion breakup in the taklimakan

desert. J. Geophys. Res., 110, D21207.

Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang., Z.,

Hara., Y., and Sugimoto, N., 2009: Asian dust transported one full circuit around the globe.

Nature Geoscience, 2, 557–560.

Uno, I., Satake, S., Carmichael, G. R., Tang, Y., Wang, Z., Takemura, T., Sugimoto, N., Shimizu,

A., Murayama, T., Cahill, T. A., Cliff, S., Uematsu, M., Ohta, S., Quinn, P. K., and Bates, T. S.,

2004: Numerical study of asian dust transport during the springtime of 2001 simulated with the

chemical weather forecasting system (cfors) model. J. Geophys. Res., 109, D19S24.

Vaughan, M., Powell, A., Kuehn, R. E., Young, S. A., Winker, D. M., Hostetler, C. A., Hunt,

W. H., Liu, Z., McGill, M. J., and Getzewich, B. J., 2009: Fully automated detection of cloud

and aerosol layers in the calipso lidar measurements. J. Atmos. Ocean. Tech., 26, 2034–2050.

Warner, T., 2004: Desert Meteorology. Cambridge University Press, 595 pp.

86



Weitkamp, C., 2005: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer,

455 pp.

Wiacek, A., and Peter, T., 2009: On the availability of uncoated mineral dust ice nuclei in cold

cloud regions. Geophys. Res. Lett., 36, L17801.

Wiacek, A., Peter, T., and Lohmann, U., 2010: The potential influence of asian and african mineral

dust on ice, mixed-phase and liquid water clouds. Atmos. Chem. Phys., 10, 8649–8667.

Winker, D. M., Hunt, W. H., and McGill, M. J., 2007: Initial performance assessment of caliop.

Geophys. Res. Lett., 34, L19803.

Winker, D. M., Tackett, J., Getzewich, B., Liu, Z., Vaughan, M., and Rogers, R., 2013: The global

3-d distribution of tropospheric aerosols as characterized by caliop. Atmos. Chem. Phys., 13,

3345–3361.

Winker, D. M., Vaughan, M., Omar, A., Hu, Y., Powell, K., Liu, Z., Hunt, W., and Young, S., 2009:

Overview of the calipso mission and caliop data processing algorthms. J. Atmos. Ocean. Tech.,

26, 2310–2323.

Xie, Y., Qu, J. J., and Xiong, X., 2010: Improving the calipso vfm product with aqua modis

measurements. Rem. Sen. Lett., 1, 195–203.

Yoshida, R., Okamoto, H., Hagihara, Y., and Ishimoto, H., 2010: Global analysis of cloud phase

and ice crystal orientation from cloud-aerosol lidar and infrared pathfinder satellite observation

(calipso) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115,

D00H32.

Young, S., and Vaughan, M., 2009: The retrieval of profiles of particulate extinction from cloud-

aerosol lidar infrared pathfinder satellite observations (calipso) data: Algorithm description. J.

Atmos. Ocean. Tech., 26, 1105–1119.

Yumimoto, K., Eguchi, K., Takemura, T., Liu, Z., Shimizu, A., and Sugimoto, N., 2009: An

elevated large-scale dust veil from the taklimakan desert: Intercontinental transport and three-

dimensional structure as captured by calipso and regional and global models. Atmos. Chem.

Phys., 9, 8545–8558.

Zender, C., Miller, R., and Tegen, I., 2004: Quantifying mineral dust mass budgets: terminology,

constraints, and current estimates. Eos Trans. Amer. Geophys. Union, 85, 509–512.

87



Zhang, P., Lu, N., Hu, X., and Dong, C., 2006: Identification and physical retrieval of dust storm

using three modis thermal ir channels. Global Planetary Change, 52, 197–206.

Zhao, C., Ruby, L., and Hagos, S., 2004: Radiative impact of mineral dust on monsoon precipita-

tion variability over west africa. Eos Trans. Amer. Geophys. Union, 11, 1879–1893.

88



Appendix

A Calculation of lidar ratios for elevated cloud layers

According to Platt [1973], a cloud lidar ratio S c,λ is given as:

S c,λ =
1 − T 2

c,λ

2γ′λ
, (A.1)

where γ′λ is the value of the integral of attenuated backscattering coefficients from the cloud base

altitude to the cloud top altitude. The cloud transmittance T 2
c,λ is estimated by a method of Platt

et al. [1999] and is given as:

T 2
c,λ =

R′λ(zb)Rλ(zt)
R′λ(zt)Rλ(zb)

, (A.2)

where zt is the altitude just above the cloud top altitude and R′λ(z) is the attenuated backscatter-

ing ratio that is derived from observed attenuated backscattering coefficients and the molecular

backscattering coefficient as follows:

R′λ(z) =
β′λ(z)
β2,λ(z)

=
βλ(z)T 2

λ(z)
β2,λ(z)

. (A.3)

In Equation (A.2), the term Rλ(zt) is derived from calculated backscattering coefficients assuming

a lidar ratio, but the term Rλ(zb) cannot be derived unless the cloud lidar ratio is known. Since

the CALIOP backscattering ratio RS ,532(zb) is unknown, we must determine RS ,532(zb) in order to

calculate the cloud transmittance, resulting in the cloud lidar ratio at 532 nm. The cloud trans-

mittance at 1064 nm is assumed to be the same as that at 532 nm since the extinction coefficient

is wavelength-independent for large particles with respect to the laser wavelengths [Bohren and

Huffman, 1983]. The cloud lidar ratio at 1064 nm is calculated by the cloud transmittance at 532

nm and the integrated attenuated backscattering coefficient at 1064 nm.

89



B Analysis of errors caused by random noise in the lidar ratio estimation

An error analysis is conducted to investigate the effects of random errors in the lidar ratio esti-

mation from the simultaneous observation by Aksu-lidar and CALIOP. First, lidar signals with the

arbitrary backscattering ratios shown in Figure B.1 (a) and (b) are constructed. This thesis presup-

poses a thin cloud layer above 7.5 km and a dust layer below 7.5 km. The dust lidar ratios at 532

and 1064 nm are assumed to be 40 and 45 sr, respectively. Using the backscattering and extinc-

tion backscatter coefficients of the atmospheric molecules, attenuated backscattering coefficients

are virtually calculated. A stochastic noise generated by normal Gaussian white noise is added to

the attenuated backscattering coefficient. The stochastic noise is generated based on the standard

deviation calculated from the signal-to-noise ratio (SNR), which is calculated at each altitude by a

smoothing method described by Reba et al. [2007]. An example of the attenuated backscattering

coefficients contaminated by this random noise is shown in Figure B.1 (c) and (d). The lidar ratios

at 532 and 1064 nm are then estimated using the performance function in Equations (3.1) and (3.2).

The estimation is conducted in 1000 cases changing the stochastic noise. The statistical results of

the error are 7.2% at 532 nm and 21.1% at 1064 nm, respectively.
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Backscattering Ratio Backscattering Ratio

(a)

(c) (d)

(b)

Attenuated Backscattering Coefficient (/km/sr) Attenuated Backscattering Coefficient (/km/sr)

CALIOP
Aksu-lidar

CALIOP
Aksu-lidar

R=5
S1=19.47

R=100
S1=23.7

R=6
S1=40

R=2
S1=40

R=10
S1=45

R=60
S1=45

Figure B.1: An example of simulated signals in the case of the simultaneous lidar observation by
Aksu-lidar and CALIOP. Panels (a) and (b) illustrate the vertical profiles of the arbitrary backscat-
tering ratios at 532 and 1064 nm wavelengths, respectively. Panels (c) and (d) show the attenuated
backscattering coefficients, which are added the random noise in accordance with the signal-to-
noise ratio (SNR). The blue, green, and red lines denote Aksu-lidar, CALIOP at 532 nm, and
CALIOP at 1064 nm, respectively.
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C Tables of cloud test thresholds in the MODIS cloud mask

Table C.1: holds of the infrared (IR) cloud test used in the MODIS cloud mask and the scene types
that are applied to the test (from Frey et al. [2008]). The term LI denotes the linear interpolation,
and the term VZA denotes the viewing zenith angle.

MODIS IR cloud test thresholds
Thresholds for confidence limits

IR test (0.0, 0.5, 1.0, or low, middle, high) Scenes
11µm (freezing test) 267, 270, 273 K All ocean
13.9µm 222, 224, 226 K All nonpolar
6.7µm 215, 220, 225 K All except Antarctic night
Surface temperature−11 µm 6 K modified by VZA and 11− 12-µm BTD Day, night deep ocean

+1 K/−2 K low/high
Surface temperature−11 µm Same as above, but base threshold=10 K Day, night shallow ocean
Surface temperature−11 µm 12 K modified by VZA and 11− 12-µm BTD Nonarid night land

±2 K low/high
Surface temperature−11 µm 20 K modified by VZA and 11− 12-µm BTD Arid, semiarid night land

±2 K low/high
11− 12-µm BTD Function of VZA and 11-µm BT All except Antarctica

Confidence limits vary by scene type, latitude
11, 12, 8.6-µm (trispectral test) 8.6− 11-µm BTD threshold based on All ocean

11− 12-µm BTD,±0.5 K low/high
11− 3.9-µm BTD −14,−12,−10 K Nonarid day land
11− 3.9-µm BTD −20,−18,−16 K Arid, semiarid day land

11-µm BT≤320 K
11− 3.9-µm BTD 10, 7, 4 K Day snow/ice

14, 10, 6 K for elevations>2000 m
11− 3.9-µm BTD 11− 12-µm> +1.00 :−2.0,−2.5,−3.0 K Night land

11− 12-µm> −1.00 :+5.0,+4.5,+4.0 K
−1 ≤ 11− 12-µm BTD≤ +1
LI between−2.5 and
+4.5 K, ±0.5 K low/high

11− 3.9-µm BTD 0.7, 0.6, 0.5 K Night snow/ice
11− 3.9-µm BTD −10,−8,−6 K Day ocean
11− 3.9-µm BTD 1.25, 1.00,−1.00 K Night ocean
11− 3.9-µm BTD 11-µm BT<235 K:−0.1,−0.2,−0.3 K Polar night land, snow/ice

11-µm BT>265 K:+1.1,+1.0,+0.0 K
235 K≤ 11-µm BT≤265 K
LI between−0.2 and+1.0 K, ±0.1 K low/high

11− 3.9-µm BTD 11-µm BT<230 K:−17.5,−14.5,−11.5 K
11-µm BT>245 K:−10,−7,−4 K Polar day, snow/ice
230 K≤ 11-µm BT≤245 K 11-µm BT>230 K
LI between−14.5 and−7 K, ±3 K low/high

3.9− 12-µm BTD 15 K, 10 K, 5 K Night land
3.9− 12-µm BTD 4.5 K, 4.0 K, 3.5 K Night snow
3.9− 12-µm BTD 11-µm BT<235 K: 4.5, 4.0, 3.5 K

11-µm BT>265 K: 2.5, 2.0, 1.5 K Polar night, snow/ice
235 K≤ 11-µm BT≤265 K (Elevation≤2000 m)
LI between 4.0 and 2.0 K, ±0.5 K low/high

7.2− 11-µm BTD −8 K, −10 K,−11 K Night land, 11− 3.9µm ≤ −2 K
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Table C.1: (Continued)

MODIS IR cloud test thresholds
Thresholds for confidence limits

IR test (0.0, 0.5, 1.0, or low, middle, high) Scenes
7.2− 11-µm BTD 11-µm BT<220 K:−1, 0, 1 K Polar night land, night snow

220 K<11-µm BT<245 K
LI between 0 K and−4.5 K, ±1 K low/high
245 K≤11-µm BT<255 K
LI between−4.5 K and−10.5 K, ±1 K low/high
255 K≤11-µm BT≤265 K
LI between−10.5 K and−20 K,±1 K low/high
11-µm BT>265 K:−21,−20,−19 K

7.2− 11-µm BTD 11-µm BT<265 K: 0, 1, 2 K Night ice
220 K≤11-µm BT<245 K
LI between 1 K and−7 K, ±1 K low/high
245 K≤11-µm BT<255 K
LI between−7 K and−16.5 K, ±1 K low/high
255 K≤11-µm BT<265 K
LI between−16.5 K and−20 K,±1 K low/high
11-µm BT>265 K:−21,−20,−19 K

8.6− 7.2-µm BTD 16, 17, 18 K Night ocean
11µm BT≥280 K
for polar night ocean

11-µm BT variability 3, 6, 7 Night ocean
No. surrounding pixel BTs
minus center pixel BT≤0.5 K
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Table C.2: Thresholds of the visible (VIS) and near-infrared (NIR) cloud tests used in the MODIS
cloud mask and the scene types that are applied to the tests (from Frey et al. [2008]). The abbrevi-
ations are identical to those used in Table C.1, but the term REF denotes the reflectance.

MODIS VIS/NIR cloud test thresholds
Thresholds for confidence limits

VIS/NIR test (0.0, 0.5, 1.0, or low, middle, high) Scenes
0.86-µm REF Aqua 0.065, 0.045, 0.030 Nonglint unfrozen day ocean

Terra 0.055, 0.040, 0.030
0.86-µm REF 0.34, 0.30, 0.26 Arid, semiarid day land (no snow)
0.86-µm REF Glint angle 0◦-10◦: 0.115, 0.105, 0.095 Sun glint

Glint angle 10◦-20◦

LI between 0.105 and 0.075,
±0.01 low/high
Glint angle 20◦-36◦

LI between 0.075 and 0.045,
±0.01 low/high (Aqua)
LI between 0.075 and 0.040,
±0.01 low/high (Terra)

0.66-µm REF 0.22, 0.18, 0.14 Nonsnow, nonarid day land
1.38-µm REF 0.040, 0.035, 0.030 Day scenes except snow/ice

Elevation≤2000 m
1.38-µm REF 0.0600, 0.0525, 0.0450 Day snow/ice

Elevation≤2000 m
0.86/0.66-µm REF ratio 0.95, 0.90, 0.85 Nonglint unfrozen day ocean
0.86/0.66-µm REF ratio 1.05, 1.00, 0.095 Sun glint
0.86/0.66-µm REF ratio 1.85, 1.90, 1.95 Noncoastal, nonarid day land (nosnow)
[Modified Global Environment
Monitoring Index (GEMI)]
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Table C.3: Thresholds of the clear-sky restoral (CSR) test used in the MODIS cloud mask and the
scene types that are applied to the test (from Frey et al. [2008]). The abbreviations are identical to
those used in Tables C.1 and C.2.

MODIS clear-sky restoral test thresholds
test Threshold Scenes

11-µm BT Aqua:>295.0 K,>300.0 K,>305.0 K Day land, no snow, original confidence≤0.95
Terra:>292.5 K,>297.5 K,>302.5 K No IR cloud tests positive
Assign probably cloudy, probably clear,
clear (thresholds adjusted for elevation)

11-µm BT Aqua:>290.0 K,>295.0 K,>305.0 K Nonvegetated land, no snow, original
Terra:>287.5 K,>292.5 K,>302.5 K confidence≤0.95, no IR cloud
Assign probably cloudy, probably clear, tests positive
clear (thresholds adjusted for elevation)

0.55/1.24-µm, 0.55/1.24µm>3.0 and 3.7− 3.9-µm Day land, no snow, original confidence
3.9− 3.9-µm BTD, BTD<11 K and 3.9− 11-µm BTD<15 K, ≤0.95, no IR cloud tests positive,
3.9− 11-µm BTD assign probably clear above CSR tests negative
11-µm BT >287.5 K,>292.5 K,>297.5 K Nonpolar night land, no snow, original

Assign probably cloudy, probably clear, confidence≤0.95 no high- or middle-cloud
clear (thresholds adjusted for elevation) tests positive

Normalized difference NDVI≤ −0.18 or NDVI≥ 0.40 Coast and shallow water
vegetation index Assign clear No high- or middle-cloud tests positive
3.9− 11-µm BTD ≥13 K, assign probably cloudy Sun glint, original confidence<0.95, no high-

middle-, or surface temperature cloud tests
positive

0.895/0.935-µm >3.0, assign probably clear Same as above, positive 3.7− 11-µm BTD test
0.86-µm REF σ mean<0.001 over 3×3 pixel region, Same as above, positive 3.7− 11-µm BTD test

assign probably clear
11-µm BT 8 surrounding pixels BTs minus center Ocean, 0.66<original confidence≤0.95

pixel BT≤0.5 K, assign probably clear
11-µm BT 8 surrounding pixels BTs minus center Ocean, 0.05<original confidence≤0.66

pixel BT≤0.5 K, assign probably cloudy
6.7− 11-µm BTD > +10 K, assign clear Night snow
13.3− 11-µm BTD > +3 K, assign clear Polar night snow
7.2− 11-µm BTD > +5 K, assign clear Polar night snow
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D Equations of the discriminant function

In this section, a derivation of the equation of the discriminant function used in this thesis is

described. Here, two groups of classification categories are defined: clouds (G1) and misclassified

clouds (G2). The probability density function (PDF) of each group is assumed to be a multivariate

normal distribution as follows:

fi(x) =
1(√

2π
)k √
|Si|

exp
[
−1

2
(x − xi)T S−1

i (x − xi)
]
, (D.1)

where i is the group number (1 or 2), k is the number of variables, x is the variable from obser-

vations, xi is the sample average of the variables in the i group, and Si is the variance-covariance

matrix of the i group. The superscript T denotes a transposed matrix. If observed values x exist

within a dot product space (Ri), the values that are attributed to group i are identified. R1 and R2

are mutually exclusive events, and the summation of these regions corresponds to the total region

Rt. The total misclassification rate (PM) is written as:

PM =
1
2

[∫
R2

f1(x)dx +
∫

R1
f2(x)dx

]
=

1
2

{
1 +

∫
R1

[
f2(x) − f1(x)

]
dx

}
. (D.2)

The term PM will be minimum if R1 is set to f2(x) − f1(x) ≤ 0. The discriminant equation is then

written by the logarithm of the ratio of f1 to f2:

LDF(x) = ln
f1(x)
f2(x)

=
(
x1 − x2

)T S−1x − 1
2

(x1 − x2)T S−1(x1 − x2)


≥ 0 =⇒ G1

< 0 =⇒ G2

, (D.3)

where S is the common covariance-variance matrix given as:

S =
1

n1 + n2 − 2
[(n1 − 1)S1 + (n2 − 1)S2] , (D.4)

where n1 and n2 are the sample sizes of G1 and G2, respectively. If LDF(x) returns a positive

value (negative value), the observed object is classified as G1 (G2).The second term in Equation

(D.3) corresponds to C0 in Equation (4.3). The coefficient of x in the first term in Equation (D.3)

corresponds to Ci in Equation (4.3).
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E Table of the average and variance-covariance of the variables

Table E.1: The average of the variables of clouds and misclassified clouds (MC), and their common
variance-covariance matrix.

Statistic log10

(
β′S ,532

)
δS ,v χ′S zlt BT D

Average
MC −2.0655 0.3156 0.8746 2.5080 −0.0869

Clouds −1.3532 0.2005 1.1892 4.6452 1.8485

S

log10

(
β′S ,532

)
0.1815 0.0018 0.0490 −0.2796 −0.0618

δS ,v 0.0018 0.0196 0.0055 −0.0506 −0.0507
χ′S 0.0490 0.0055 0.0794 −0.1850 −0.0489
zlt −0.2796 −0.0506 −0.1850 2.9094 0.6311

BT D −0.0618 −0.0507 −0.0489 0.6311 3.0745
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F Determination method of dust in CALIOP data

The purpose of the method described here is to determine the presence of dust in the CALIOP

data whose horizontal and vertical resolutions are 1.1 km and 240 m, respectively. The vertical

feature mask (VFM) provides cloud detection at the five horizontal resolutions of 333 m, 1 km,

5 km, 20 km, and 80 km. The presence of dust is determined after clouds are screened at each

horizontal resolution. Random noise is removed from weak signals by the averaging processes.

On the other hand, since cloud detection in the C2 cloud mask is only implemented at the 1.1

km horizontal resolution, aerosol signals remaining after cloud screening are noisy. In order to

detect dust at the horizontal resolution, a different method from the VFM should be developed. In

this thesis, dust is detected by thresholds and continuity tests that were used to remove the noise

effect in the previous studies [Marchand et al., 2008; Hagihara et al., 2010].

The volume depolarization ratio and attenuated color ratio are used in the determination method

of dust. The detection procedure consists of four steps including two threshold tests and two

continuity tests, and is illustrated by a demonstration in Figure F.1. The ultimate goal of this

method is to detect the dust as shown in Figure F.1 (d). First, a threshold test of the volume

depolarization ratio is conducted. If the volume depolarization ratio of an observed bin is within

a range from 0.06 to 0.35, the result of the threshold test (TT1) is 1. If the C2 cloud mask detects

the cloud in the observed bin, the TT1 of the bin is forced to be 0. Figure F.1 (e) shows the results

of the TT1 in the data window that is denoted by the red rectangle in Figures F.1 (a)–(d).

Secondly, a continuity test of the depolarization ratio is conducted by using the data window.

The data window sizes are 15 × 3 bins (horizontal by vertical) and correspond to 16.5 km (hori-

zontal) and 720 m (vertical). The continuity test (CT1) is defined as the ratio of the summation

of the TT1 in a data window to the total number of bins (= 45). Figure F.1 (f) shows the results

of the CT1 in the data window. The CT1 at each bin in the data window is calculated in the data

window centered at each bin. The CT1 of the target bin, which is the center of the data window in

the figure, is 0.44 (20/45).

Thirdly, a threshold test of the attenuated color ratio is conducted in the same manner as the

volume depolarization ratio. If the attenuated color ratio of an observed bin is within a range from

0.3 to 1.3, the result of the threshold test (TT2) is 1. If the C2 cloud mask detects clouds in the

observed bin, the TT2 of the bin is forced to be 0. Figure F.1 (g) shows the results of the TT2 in the

data window. Finally, a continuity test of the attenuated color ratio is conducted. The continuity

test (CT2) is defined as the ratio of the summation of the TT2 in a data window to the total number

of bins. Here, the bins whose CT1 are less than 0.5 are excluded from the summation of the TT2.
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Figure F.1 (h) shows the results of the CT2 in the data window. The CT2 of the target bin is 0.38

(17/45).

Dust is detected by using the results of CT2. Bins whose CT2 are more than 0.25 are regarded

as dust bins in this thesis. The threshold values in the TT1 and the TT2 are determined by the

reference to a probability density function (PDF) reported by Liu et al. [2008b]. The data window

size and the threshold values in the CT1 (0.5) and the CT2 (0.25) are determined by a trial and

error step.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Threshold Test (TT1) (0.06 < δS,v < 0.35 → TT1 = 1)

TT1 = 1

TT1 = 0

Continuity Test (CT1)

Target bin

CT1 = 20/45 = 0.44

C
C

Threshold Test (TT2) (0.3 < χS < 1.3 → TT2 = 1)

TT2 = 1

TT2 = 0

CT1 < 0.5

Continuity Test (CT2) CT2 = 17/45 = 0.38

Dust
(CT2 > 0.25)

Clear

Data window

Figure F.1: A demonstration of the dust detection procedure in the CALIOP observation on April
1, 2007. Time-height cross sections of (a) the attenuated backscattering coefficient, (b) volume
depolarization ratio, (c) attenuated color ratio, and (d) dust mask. The red rectangle denotes an
example of the sliding data window. Panels (e), (f), (g), and (h) are the results of the threshold test
(TT1), continuity test (CT1), threshold test (TT2), and continuity test (CT2) in the data window.
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G Coefficients of LDF derived from the four variables

Table G.1: Coefficients of the linear discriminant function (LDF). The coefficients C1, C2, C3, and
C4 are for log10

(
β′S ,532

)
, χ′S , zlt, and BT D, respectively.

Coefficient C0 C1 C2 C3 (km−1) C4 (K−1)
Value −1.3117 5.0528 4.3918 1.3874 0.5160
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