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SUMMARY 
 

  Spaceborne remote sensing sensors are able to provide global information of the 

earth’s surface and important data for evaluation of regional areas for mineral resources 

exploration in the early stage. Identification of alteration zones and alteration 

mineralogy is important for exploration of porphyry copper deposits which is a major 

copper deposit type that provides more than 50 % of copper supply. Geological mapping 

and identification of mafic to ultramafic units is important for exploration of magmatic 

deposits which provide most of nickel and platinum group elements. 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 

Japanese satelliteborne optical sensor equipped with 14 bands from the visible to near 

infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) wavelength 

regions. Digital elevation model (DEM) data is created from the stereo band 3N and 3B 

and provided as ASTER Global DEM (GDEM) data. This thesis describes the 

processing methods and applications of ASTER data for mineral resources exploration 

and geological mapping in three sections; (1) alteration mapping using ASTER VNIR 

and SWIR data, (2) geological mapping using ASTER TIR data, and (3) geological 

mapping using ASTER GDEM data. 

 

(1) Alteration mapping using ASTER VNIR and SWIR data 

Alteration zones are important features for the exploration of porphyry copper 

deposits and the ASTER sensor is able to identify the type of alteration and its alteration 

zoning. Here, the combined utilization of the following three specific images created 

from ASTER data for this purpose is described: 1) a SWIR false color image, 2) band 

ratio color composite image, and 3) a principal component analysis (PCA) color 

composite image. 

The SWIR false color image is a false color image using bands 4, 6 and 8 (R:G:B= 

4:6:8). The alteration zones appear as pink or green in the image. 

The band ratio color composite image uses the band ratio images of band 4/band 6, 

band 5/band 6 and band 5/band 8 (R:G:B=4/6:5/6:5/8). The band ratio image is able to 

provide information on the alteration zoning. Band 4/band 6 enhances the advanced 

argillic alteration, band 5/band 6 enhances the phyllic alteration and band 5/band 8 

enhances the propylitic alteration. 

The PCA image (“Crosta technique”) is also able to provide information on the 

alteration zoning. The PCA color composite image consists of PCA alteration images 

obtained from three PCA processes (R:G:B=PCA advanced argillic alteration image: 
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PCA phyllic alteration image: PCA propylitic alteration image). The advanced argillic 

alteration image is obtained from PCA of bands 1, 4, 6 and 7, the phyllic alteration 

image from PCA of bands 1, 3, 5 and 6 and the propylitic alteration image from PCA of 

band 1, 3, 5 and 8. The PCA alteration images are chosen by checking the eigenvectors. 

These methods are applied to the Meiduk area of Iran, which is known for porphyry 

copper mineralizations. We found that combinational use of the images enables 

successful identification of the hydrothermal alteration and zonings related to porphyry 

copper mineralization. 

 

(2) Geological mapping using ASTER TIR data 

Geological units are identified by using ASTER TIR data, which contains both 

surface temperature and spectral emissivity information. In ASTER L1B day time TIR 

data, bands 10, 11, and 12 contain spectral emissivity and temperature information, 

whereas surface temperature dominates the spectral emissivity information in bands 13 

and 14. Visual interpretation of the ASTER TIR false color images generated by 

assigning band 14, band 12 and band 10 (R:G:B=band 14:band 12:band 10) using L1B 

day time data allowed to identify mafic-to-ultramafic units and quartz-rich felsic units. 

Mafic-to-ultramafic units such as gabbro, dolerite, and dunite appear white in ASTER 

L1B day time TIR false color images due to their high spectral emissivities and high 

surface temperatures. Mafic-to-ultramafic units have higher surface temperatures than 

other geological units because they absorb more solar radiation due to their lower 

albedos. Quartz-rich felsic units such as granite and dry river sand appear reddish in the 

ASTER L1B day time TIR false color image because the spectral emissivity of quartz. 

Mafic-to-ultramafic and granitic units are important targets for mineral exploration 

because they are potential geological units to host or accompany mineralization.  

 

(3) Geological mapping using ASTER GDEM data 

Inverted slope images created from DEMs can be used to visualize differences in 

lithological units and provide an indication of areas of geological outcropping. Such 

images are useful for geological mapping, but when created from DEMs generated from 

remote sensing images (“image-derived DEMs”), artifacts in the DEMs are exaggerated 

and give rise to unclear noisy final images. In contrast, DEMs created from elevation 

data in the form of contour maps (“contour-derived DEMs”) contain far fewer artifacts, 

but their availability is limited. Therefore, in order to obtain clear processed DEM 

images that can be used for global geological mapping, it is necessary to develop a 

method for reducing the number of artifacts in image-derived DEMs. 
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The effectiveness of a fast Fourier transform (FFT) for artifact reduction in 

image-derived DEMs was investigated. It was clarified that for the image-derived 

DEMs, that a low-pass filter with a size of 20 to 40 % significantly reduced the number 

of artifacts without significant loss of terrain information. For the ASTER GDEM data, 

artifact reduction was found to be particularly important because the artifacts obscure 

the original topographic information in the inverted slope images. 

 

The proposed methods in this study are simple but useful and provide reproducible 

results. The images could be used widely by geologists or geophysicists involved in 

mineral resources exploration. ASTER VNIR and SWIR data have been widely used in 

exploration for alteration mapping mainly targeting hydrothermal ore deposits that 

accompany alteration minerals, and this study has also considered the ability of ASTER 

TIR and GDEM data for use in geological mapping and its effectiveness for exploration 

of magmatic ore deposits. 
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CHAPTER 1 
 

Introduction 
 
1.1 Target ore deposit types for mineral resources exploration 

1.1.1 Hydrothermal ore deposits 

  Hydrothermal ore deposits are created by the activity of fertile fluids that are rich in 

metals. Hydrothermal fluids consist of magmatic intrusion origin water and meteoric 

water in various proportions. Precipitation of the metals in the hydrothermal fluid is 

triggered by change or fluctuation of the fluid condition (mixing, cooling, boiling, etc.). 

Porphyry copper type deposits (Cu±Au±Mo), epithermal auriferous vein type deposits 

(Au-Ag), subepithermal polymetallic vein type deposits (Zn-Cu-Pb-Ag±Au), and skarn 

type deposits (Zn-Pb), are examples of hydrothermal ore deposits created in different 

geological and spatial situations from the multiphase porphyry stock (Sillitoe, 2010) 

(Figure 1.1). 

  Hydrothermal alteration is created simultaneously with the hydrothermal 

mineralization process. Porphyry copper type deposits are accompanied by extreme 

hydrothermal alteration surrounding the ore deposit over many cubic kilometers. Zoned 

alteration is created depending on the temperature and chemical condition of the fluid 

(Sillitoe, 2010) (Figure 1.2). 

 

1.1.2 Magmatic ore deposits 

  Magmatic ore deposits are created within specific magmatic intrusions. Mafic to 

ultramafic intrusions host mineralization of metals such as nickel, copper and platinum 

group elements (PGE). Mineralization occurs within the mafic to ultramafic intrusion 

(Figure 1.3 (c), Figure 1.4) and also in the feeder dykes (Barnes and Lightfoot, 2005; 

Naldrett, 2004). Precipitation of the sulfides in the magma is triggered by the feed of 

sulfur caused by contamination of the sulfur rich sedimentary host rock with mafic 

magma (Figure 1.3 (a)). Nickel, copper, and PGE in the magma create sulfides and 

settle at the base of the magma (Figure 1.3 (b)). Nickel sulfide deposits (Ni-Cu-PGE) 

and PGE deposits are typical magmatic ore deposits that are related to mafic to 

ultramafic magmas. 

 

1.2 ASTER sensor 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is 

a multiband optical scanner on board NASA’s TERRA platform that was launched in 
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December 1999. ASTER was designed by NASA and Japan's Ministry of Economy 

Trade and Industry (METI) as a next generation remote sensing sensor for earth 

observation following Landsat and JERS-1. ASTER provides optical data in 14 spectral 

bands: 3 bands from the visible to near infrared (VNIR), 6 bands from the shortwave 

infrared (SWIR) and 5 bands from the thermal infrared (TIR) wavelength regions 

(Figure 1.5). ASTER also obtains stereo data at band 3 (band 3N (nadir) and band 3B 

(backward)) for digital elevation model creation (Figure 1.6). The ASTER Global DEM 

(GDEM) was released on June 2009 and covers most of the earth’s surface and the 

updated GDEM2 was released on October 2011. 

ASTER is designed with capabilities to identify minerals and geology using VNIR, 

SWIR, TIR and GDEM data. Processing methods applicable for mineral exploration 

and geological mapping using VNIR, SWIR, TIR and GDEM data needs to be 

investigated and have been studied in this thesis. 

 

1.3 Exploration targets for ASTER 

Zoned alterations are important targets for exploration of hydrothermal ore deposits 

because alteration created by weathering effects usually does not display zoned 

alteration. ASTER data processing methods to identify hydrothermal alteration and to 

clarify the zoned alteration are needed. 

Identification of mafic to ultramafic units from remote sensing data is important for 

exploration of nickel sulfide deposits and PGE deposits. ASTER data processing 

methods for geological mapping and identification of mafic to ultramafic units are also 

needed. 
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CHAPTER 2 
 
Identification of hydrothermal alteration zones for exploration of porphyry 

copper deposits using ASTER data 
 

2.1 Introduction 

Remote sensing data have been used in mineral exploration since the launch of 

Landsat-1 in 1972. It has mainly been used for identification of alteration zones and 

geological mapping. Japan has developed the JERS-1 (Japanese Earth Resources 

Satellite-1) for mineral exploration and the ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer) sensor that has been also designed for mineral 

exploration, but data processing methods for mineral exploration using ASTER have not 

been clarified since its launch in 1999. Here we develop simple and robust processing 

methods to identify hydrothermal alteration and alteration zonings using ASTER data 

for the exploration of porphyry copper deposits through research of exploration 

programs conducted by the Japan Oil, Gas and Metals National Corporation 

(JOGMEC).  

 

2.2 Hydrothermal alteration and alteration minerals 

Porphyry copper deposits are low in ore grade (0.3 to 1.0 % Cu), but create a large 

scale ore deposit that can be developed by low cost open pit mining. More than 50 % of 

the world’s copper is presently produced from porphyry copper deposits. Porphyry 

copper deposits are created by granodioritic intrusions that intruded into the shallow 

crust. Granodioritic intrusions are accompanied by hydrothermal fluid, which creates 

the porphyry copper deposit and distinct hydrothermal alteration of the surrounding host 

rocks. 

The hydrothermal fluid creates the ore deposit and also hydrothermal alteration is 

developed in the host rocks surrounding the ore deposit, and thus the alteration zone is 

an important feature for mineral exploration. Different characteristics of the 

hydrothermal fluid such as temperature, fluid/rock ratio and also the chemical difference 

of the host rock produce diverse alteration minerals. This causes the development of 

alteration zoning and provides important information on the hydrothermal fluid and for 

exploration. The location of the ore deposit and ore deposit type can be estimated from 

the alteration mineralogy and by the mode of occurrence of the alteration zoning.  

A typical alteration zoning related to porphyry copper deposits consists of a 

granodioritic intrusion at the center accompanied by a potassic alteration (K feldspar 
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and biotite), phyllic alteration (sericite and quartz), and propylitic alteration (chlorite, 

epidote, calcite, etc.) moving outwards (Sillitoe, 2000). Also, when the deposit is hidden 

underground, an advanced argillic alteration (alunite and kaolinite) is created at the 

surface on the top of the deposit (Figure 2.1). Copper ore is generally distributed in the 

central region of the alteration zoning (potassic to phyllic alteration) where the 

hydrothermal fluid has high temperature.  

Alteration minerals that create alteration zoning have characteristic absorption 

patterns (Figure 2.2), especially in the short wave infrared (SWIR) region (2.0 to 2.5 

m). Remote sensing used in mineral exploration of hydrothermal ore deposits often use 

the spectral features of the alteration minerals at wavelength of 2.0 to 2.5 m to find 

alteration zones and identify alteration minerals. Landsat only has one band (band 7) for 

observation in the wavelength region 2.0 to 2.5 m and only can determine the presence 

of alteration, but ASTER has five bands in this region and is able to identify not only 

the presence of alteration, but differentiate the minerals in the alteration zone (Table 

2.1).  

Alunite and kaolinite, which are alteration minerals present in advanced argillic 

alteration, have absorptions at 2.16 m and 2.2 m that are created by the aluminum 

hydroxyl (Al-OH) bond (Figure 2.2 left). Sericite, which is a typical alteration mineral 

in phyllic alteration, has an absorption at 2.2 m that is also created by the Al-OH bond. 

Chlorite, epidote and calcite, which are present in propylitic alteration, have an 

absorption at 2.35 m that is created by the magnesium hydroxyl (Mg-OH) bond and 

the carbonic (CO3) bond. These alteration minerals can be identified by ASTER’s five 

spectral bands in the wavelengths of 2.0 to 2.5 m (Figure 2.2 right), but the potassic 

alteration that is located at the center of the alteration zoning of the porphyry copper 

deposit could not be identified from the spectral pattern of the visible near infrared 

(VNIR) to SWIR because K feldspar and biotite does not have a characteristic 

absorption in this wavelength region. 

 

2.3 Study area 

The Meiduk area located in the Kerman state of Iran is selected as the case study site 

because the area is associated with widespread hydrothermal alteration at the surface. 

The Meiduk area is located approximately 200 km west of the city of Kerman (Figure 

2.3) and is a mountainous area with altitudes of 2,000 to 3,000 m. The northwest to 

southeast trending mountains from Western Yazd to the southern Kerman area that 

contains the Meiduk area was an active volcanic terrain in the Paleogene when many 

granodioritic intrusions occurred. Porphyry copper deposits, being vein type deposits of 
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Zn-Pb-BaSO4, were created in the Kerman area (JOGMEC, 2005). The Meiduk 

porphyry copper deposit with an ore reserve of 145 Mt at 0.8 % Cu ore grade is located 

in the mountains of the Meiduk area. The deposit has an alteration zoning of potassic 

alteration, phyllic alteration, argillic alteration, then propylitic alteration from the center 

to the outer zones and silicification also accompanies the alteration (Tangestani and 

Moore, 2002). The Sarcheshmeh deposit, being the largest porphyry copper deposit in 

Iran, with an ore reserve of 1,250 Mt at 0.6 % Cu ore grade, is located approximately 

100 km west of the city of Kerman. It is also present on the southeast elongation of the 

same northwest to southeast trending mountains from the Meiduk deposit (MMAJ, 

2003). 

 

2.4 ASTER data processing 

Data processing methods such as false color images, band ratio images and principal 

component analysis (PCA) images using Landsat data for mineral exploration has 

already been introduced and established in past studies (Crippen, 1989; Crosta and 

Moore, 1989; Loughlin, 1991). In this study, we introduce effective false color images, 

band ratio images and PCA images using ASTER data for mineral exploration. Band 

ratio and PCA are simple data processing methods that are easily created and are 

reproducible.  

For this study, we used ortho-corrected ASTER level 3A data (granule ID; AST3A1 

0306200708410411140426) and subset the image to an approximately 40 km by 45 km 

area containing the Meiduk deposit. We also used ASTER level 2 data, which are 

atmosphere corrected surface reflectance products (granule ID; AST2B5V 

0306200708410610100027 and AST2B5S 030620070841061010 0028), to compare 

with the data processing results obtained from the ASTER L3A data. 

 

2.4.1 Preprocessing of ASTER data 

Preprocessing of ASTER data is necessary to obtain information on the slight 

difference of alteration minerals. Surface objects such as clouds, snow, ocean, lakes and 

the edges of the image need to be masked because these have significantly different 

spectral features to alteration minerals, and their removal allows visualization of the 

slight differences of alteration minerals in the alteration zone when applying band ratio 

or PCA. Areas with dense vegetation should also be masked for obtaining better 

alteration mineral identification because vegetation is sometimes identified as alteration 

when only SWIR bands are used for data processing and interpretation. 
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2.4.2 False color images 

The SWIR false color image is useful for exploration of porphyry copper deposits 

because the main alteration accompanied with porphyry copper deposits are advanced 

argillic and phyllic alteration which are clearly visualized and enhanced in this image. 

SWIR false color images created by applying ASTER bands 4, 6, and 8 to red (R), green 

(G) and blue (B) (R:G:B=4:6:8) are useful for identification of alteration. In this SWIR 

false color image, advanced argillic alteration (alunite, kaolinite) and phyllic alteration 

(sericite, smectite) are indicated in red to pink, propylitic alteration (chlorite, epidote) is 

indicated in pale green and calcareous units are indicated in yellow. Advanced argillic 

and phyllic alteration both have absorption at band 6, low reflectance at band 8, high 

reflectance at band 4 (Figure 2.2) and appear as red to pink in the R:G:B=4:6:8 image. 

Propylite alteration has absorption at band 8 caused by Mg-OH, broad absorption at 

band 4 caused by iron in chlorite or epidote, no absorption at band 6 (Figure 2.2) and 

appear as pale green in the SWIR false color image. Calcite has absorption at band 8 

caused by CO3, but does not have absorption at band 4 because calcite lacks iron and no 

absorption at band 6 (Figure 2.2) and appears as yellow in the SWIR false color image.  

VNIR false color and natural color images provide more detailed surface information 

compared to the 30 m resolution SWIR false color image and are useful as map images 

for field surveys. The most recent image with the least cloud coverage should be chosen 

for use in field surveys due to differences in the surface condition such as new roads and 

architectural structures. The image created from band operation (R:G:B=b2: 

(b1*b3+b3)/b4:b1) using only the VNIR bands also has 15 m spatial resolution and has 

similar colors to a true color image created by red, green and blue wavelength images 

(ERSDAC, 2003). The VNIR false color image created by applying ASTER RGB bands 

3, 2, and 1 to R, G, B, respectively, has 15 m spatial resolution and is useful for 

interpreting the surface. While it is not able to identify alteration from the spectral 

features, it could be used to distinguish whether the alteration is caused by hydrothermal 

activity or weathering because of its usefulness in identifying surface textures. The 

appearance of alteration caused by weathering differs from hydrothermal alteration, 

generally appearing as a uniform alteration mineral assemblage and the shape of the 

alteration is usually concordant with the distribution of the geological unit. The band 

combinations for the false color images used in this study are summarized in Table 2.2. 

 

2.4.3 Band ratio color composite image 

Alunite and kaolinite are the main alteration minerals present in the advanced argillic 

alteration. Alunite and kaolinite both have absorption at ASTER bands 5 and 6 in the 
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SWIR region. Alunite has a deep broad absorption at band 5 that also creates absorption 

at band 6. Kaolinite has separate absorptions at bands 5 and 6, and band 6 has a deeper 

absorption compared to band 5 (Figure 2.2). Alunite and kaolinite identification can be 

enhanced by band ratios of b4/b5 or b4/b6 (Figures 2.4 (a), (b)).  

Sericite is the main alteration mineral present in the phyllic alteration. Sericite has a 

single deep absorption at ASTER band 6. Sericite can be enhanced by band ratio b5/b6 

(Figure 2.4 (c)).  

Chlorite and epidote are the main alteration minerals present in the propylitic 

alteration. They have absorption at ASTER band 8. Calcite, which is a common mineral 

in marble and at the surface, also has absorption at band 8. Chlorite, epidote and calcite 

can be enhanced by band ratio b5/b8 (Figure 2.4 (d)).  

Advanced argillic alteration, phyllic alteration, propylitic alteration and calcite can be 

identified by the color composite image of band ratios by applying advanced argillic 

alliteration to red, phyllic alteration to green and propylitic alteration to blue 

(R:G:B=4/6:5/6:5/8). The alteration assemblage can be estimated from the resultant 

color combination. We choose to use the band ratio b4/b6 to enhance advanced argillic 

alteration because it is strongly enhanced compared to phyllic and propylitic alteration 

as opposed to when band ratio b4/b5 is used in the band ratio color composite image. 

 

2.4.4 Principal component analysis color composite image 

PCA is a statistical method to reorganize data into several common factors using a 

linear transformation that projects data onto a new orthogonal axes coordinate. PCA is 

also used for separating information and noise in remote sensing data processing. The 

Crosta method is known for obtaining information of alteration zones using PCA to 

Landsat data (Crosta and Moore, 1989; Loughlin, 1991). The Crosta method has been 

also applied to ASTER data (Crosta et al., 2003). The main feature of the Crosta method 

is to use only four bands for PCA to make interpretation of the PCA images easier. In 

order to obtain PCA images with information about alteration, appropriate selection of 

the four bands for the PCA is necessary. The eigenvector values need to be checked to 

determine the optimal PCA image for displaying the distribution of a specific alteration.  

We conducted PCA using ASTER data to identify the same alteration types as in our 

band ratio method. Four bands are chosen for PCA to identify advanced argillic 

alteration (alunite, kaolinite), phyllic alteration (sericite) and propylitic alteration 

(chlorite, epidote) and calcite (Table 2.3). ASTER bands 1, 4, 6, and 7 are used to 

generate a PCA image that features absorption at band 6 for indicating advanced argillic 

alteration (alunite, kaolinite). ASTER bands 1, 3, 5, and 6 are used to generate a PCA 
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image that features sharp absorption at band 6 for indicating phyllic alteration (sericite). 

ASTER bands 1, 3, 5, and 8 are used to generate a PCA image that features absorption 

at band 8 for indicating propylitic alteration (chlorite, epidote) and calcite.  

Four PCA images are created by conducting PCA using ASTER bands 1, 4, 6, and 7 

to identify advanced argillic alteration (alunite, kaolinite). The PCA image having 

absorption features at band 6 in the eigenvalues needs to be identified. The advanced 

argillic alteration image has either positive eigenvalues for bands 4 and 7 and a negative 

value for band 6, or conversely, negative eigenvalues for bands 4 and 7 and a positive 

value for band 6. To identify phyllic alteration (sericite), four PCA images are created 

by conducting PCA using ASTER bands 1, 3, 5, and 6. The PCA image having 

absorption features at band 6 in the eigenvalues needs to be identified. The PCA image 

that has a positive eigenvalue for band 5 and a negative value for band 6, or the 

converse, is the phyllic alteration image. To identify propylitic alteration (chlorite, 

epidote) or calcite, four PCA images are created by conducting PCA using ASTER 

bands 1, 3, 5, and 8. The PCA image having absorption features at band 8 in the 

eigenvalues needs to be identified. The PCA image that has a positive eigenvalue for 

band 5 and a negative value for band 8, or the converse, is the propylitic alteration 

(chlorite, epidote) or calcite image. Whether specific eigenvalues are positive or 

negative depends on the input ASTER data and when the eigenvalues have opposite 

features to the spectral absorption, the PCA image needs to be inverted. After each 

alteration image is defined, a PCA color composite alteration image applying R: G: 

B=advanced alteration image: phyllic alteration image: propylite alteration/calcite 

image can be obtained. This PCA color composite image will have similar features to 

the band ratio color composite image, displaying the three types of alteration in different 

colors. 

 

2.5 Processed image results 

2.5.1 False color images 

Examples of a natural color image and SWIR false color image are shown in Figures 

2.5 (a) and (b) for the case study site. The Meiduk deposit, two alteration zones to the 

northwest (alteration A), southeast (alteration B) and one alteration zone to the north of 

the Meiduk deposit (alteration C) appear as a pinkish color in the SWIR false color 

image. These are inferred to be hydrothermal alteration because they are not concordant 

with the lithological unit that hosts the alteration. On the other hand, the alteration zone 

to the northeast that appears as a light pinkish color (alteration D) is inferred to be 

alteration caused by weathering because it is concordant with the lithological unit 
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(probably a sedimentary unit) that hosts the alteration. Hydrothermal alteration that is 

accompanied by porphyry copper mineralization generally appear as bleached alteration 

at surface and displays a white to white yellow color in the VNIR false color image or 

natural color image. There are also areas that appear as pale green in the northern part of 

the SWIR false color image (alteration E and F), and are inferred as propylitic 

alteration. 

 

2.5.2 Band ratio color composite image 

An example of a band ratio color composite image is shown in Figure 2.5 (c). This 

image is displayed in original contrast without contrast stretching. The Meiduk deposit 

and the two alteration zones present on the NW-SE trending mountains located 

northwest (alteration A) and southeast (alteration B) of the Meiduk deposit appear as 

yellow to red in this image. This alteration is estimated as a combination of advanced 

argillic alteration and phyllic alteration from its color created as a mixture of red and 

green. A small zone of blue is present around the yellow to red area at the center of the 

image and green surrounds it across a wide area. This indicates the zonation of 

advanced argillic alteration and phyllic alteration at the center and propylitic alteration, 

and weak alteration (smectite) as surrounding alteration zones of the hydrothermal 

alteration. Thus, we have shown that the alteration types are displayed in different 

colors in the band ratio color composite image.  

Alteration C that is located to the north appears as mainly red in color and indicates 

alunite or kaolinite alteration. Alteration D that appeared as light pink in the SWIR false 

color image appear as light yellow to light blue in color in the band ratio color 

composite image and is inferred as weathering alteration (kaolinite, smectite) in a 

calcareous sedimentary unit by the shape of the alteration. The alteration zones E and F 

that are located to the north appear as pale green in the SWIR false color image and blue 

in the band ratio color composite image are estimated as chlorite, epidote alteration. 

Area G appears widely as a green color in the band ratio color composite image and 

inferred to be a weakly weathered alteration consisting of smectite. 

 

2.5.3 Principal component analysis color composite image 

An example PCA color composite image for the case study site is shown in Figure 

2.5 (d). This image is also displayed in original contrast without contrast stretching. 

This color composite image is created from the advanced argillic alteration image, 

phyllic alteration image and propylitic alteration image obtained from PCA, respectively. 
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While the green color appears weaker, the color information obtained from the PCA 

color composite image is very similar to the band ratio color composite image. 

 

2.6 Discussion 

2.6.1 False color images 

Different variations of SWIR false color images were investigated and applying 

bands 4, 6 and 8 to red, green, blue, respectively, produced the best false color 

combination for the exploration of porphyry copper deposits and geological mapping 

because absorption of important minerals occur at bands 6 and 8. Band 4 is used as a 

stable input in the SWIR false color image because most minerals do not have 

absorption at band 4 and it generally has high reflectance. The possibility of introducing 

the higher resolution VNIR image into the false color combination has been examined, 

and was not found to add value since band 6 and band 8 could not be exchanged in 

order to identify the absorption features of the alteration minerals. Additionally, as the 

reflectance of bands 1, 2 and 3 do not have higher reflectance than band 4, the 

absorption features at band 6 and band 8 could not be enhanced. Adjustment of the 

spatial resolution is also required to create a false color image combining the VNIR and 

SWIR bands. Therefore, we conclude that the SWIR false color image applying bands 4, 

6, and 8 to red, green, blue, respectively, is the optimal image for identification of 

alteration. This false color image is fast and easy to create since it uses only the bands in 

the SWIR. In the SWIR false color image, advanced argillic alteration and phyllic 

alteration appear as pink, propylitic alteration appears as green and calcareous units 

appear as yellow as distinct features identifiable without error.  

The pink color in the SWIR image may not always be hydrothermal alteration as it 

could be alteration created by weathering. Kaolinite is a common alteration mineral 

produced from weathering, aericite is produced from weathering of sedimentary units 

and gypsum is produced from evaporates. Weathering alteration appears as concordant 

with the geological unit and generally do not have a zonation of alteration. Weathering 

alteration can be distinguished by comparing the shape of alteration and the geological 

unit in the VNIR false color image or natural color image. In an ideal situation, the 

primary hydrothermal alteration appears as a circular to ovoid shape, but the shape is 

often controlled by fractures and faults and appear in various forms. The size of 

hydrothermal alteration is generally smaller depending on the scale of hydrothermal 

activity. Cross checking using the VNIR false color image or the natural color image 

having higher resolution than the SWIR false color image is recommended for accurate 

identification of hydrothermal alteration for exploration. 
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2.6.2 Band ratio color composite image 

Advanced argillic alteration tends to appear more clearly than phyllic and propylitic 

alteration in remote sensing images because alunite and kaolinite have stronger spectral 

absorption features compared to sericite, smectite, chlorite, epidote and calcite in the 

SWIR wavelength region. This is confirmed by comparing the band ratio images of 

Landsat and ASTER. The band ratio band 5/band 7 is used to identify alteration zones 

for Landsat (Figure 2.6 (a)). The band ratio image of Landsat band 5/band 7 is similar to 

the band ratio images of ASTER band 4/band 5 and band 4/band 6 (Figures 2.4 (a), (b)), 

which indicates that advanced argillic alteration is mainly identified in the band ratio 

image of Landsat (band 5/band 7). For the same reason, we choose to use the band ratio 

of band 4/band 6 to enhance advanced argillic alteration in the ASTER band ratio color 

composite image (R:G:B=4/6:5/6:5/8) instead of (R:G:B=4/5:5/6:5/8) because the 

advanced argillic alteration appear in excess when using the band ratio band 4/band 5 in 

the band ratio color composite image compared to phyllic and propylitic alteration.  

Phyllic alteration is enhanced when using the band ratio image of ASTER (band 

5/band 6), but the known porphyry copper mineralization related phyllic alteration 

zones display yellow to yellow green colors in the ASTER band ratio color composite 

image. The yellow to yellow green colors are obtained from mixing of alteration zones 

obtained from band ratios band 4/band 6 and band 5/band 6. The band ratio for 

enhancement of sericite is ASTER band 5/band 6, but green in the band ratio color 

composite image does not match with the distribution of sericite alteration. Sericite can 

be also enhanced by band ratio band 4/band 6 with regard to the spectral pattern (Figure 

2.2) and could appear in yellow to yellow green colors without mixture of advanced 

argillic alteration. Phyllic alteration is also identified in the ASTER band ratio color 

composite image (R:G:B=4/5:5/6:5/8), which enhances the advanced argillic alteration 

more efficiently. Band ratio for enhancement of kaolinite is ASTER band 4/band 6, but 

kaolinite is also enhanced by band ratio band 5/band 6 without mixture of phyllic 

alteration. It is difficult to identify whether the alteration consists of kaolinite or sericite 

only from the ASTER band ratio color composite image. In order to identify kaolinite 

and sericite accurately, interpretation of ASTER spectral data using atmosphere 

corrected reflectance data is necessary (Figure 2.2 right). Alunite in advanced argillic 

alteration always appears in red in the ASTER band ratio color composite image. The 

green color present surrounding the hydrothermal alteration is weak alteration of 

smectite that is created by weathering.  
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Propylitic alteration (chlorite, epidote) and calcareous units and alteration (calcite) 

are enhanced when using the band ratio image of ASTER band 5/band 8, but absorption 

caused by Mg-OH at band 8 is weak and unclear compared to the absorption of Al-OH 

at band 6. This occurs because rocks with propylitic alteration are green in color, which 

has lower reflectance. As a result, propylitic alteration is not identified as clearly as the 

bleached alteration of advanced argillic and phyllic alteration in the ASTER band ratio 

color composite image. Propylitic alteration is a periphery alteration zone of porphyry 

copper mineralization and the amount of alteration minerals is not abundant. The 

limited distribution of the blue color accompanying the advanced argillic and phyllic 

alteration is appropriate. Cross checking the green color in the ASTER SWIR false 

color image is necessary in order to identify propylitic alteration accurately. 

 

2.6.3 Principal component analysis color composite image 

The PCA color composite image can be used to obtain information on alteration 

similar to the ASTER band ratio color composite image and provides an additional 

method to obtain information on alteration and alteration minerals. While PCA requires 

more data processing steps, the identification results are in most cases more appropriate 

using PCA of four bands than the results obtained from a band ratio using only two 

bands. This is particularly the case for vegetated terrain because alteration and 

vegetation have similar spectral patterns in the SWIR region that cannot be 

distinguished by using two bands for the band ratio. 

It has been found that PCA color composite images created from Landsat data are 

able to identify alteration zones more clearly compared to false color images (Loughlin, 

1991; Tangestani and Moore, 2002). A Landsat PCA color composite image uses a 

combination of iron oxide and alteration images (R:G:B= alteration image: alteration + 

iron oxide image: iron oxide image). Alteration zones are identified clearly and appear 

as yellow in the Landsat PCA color composite image (Figure 2.6 (b)), but there are 

some weaknesses compared to the ASTER PCA color composite image: 1) atmospheric 

correction of Landsat data is necessary in order to obtain accurate iron oxide 

distribution; 2) alteration identified from Landsat data is mainly advanced argillic 

alteration; and 3) alteration is identified without providing information on the alteration 

zones. Therefore, the ASTER PCA color composite image is more practicable than the 

Landsat PCA color composite image because it is able to provide information on three 

alteration types (advanced argillic, phyllic and propylitic alteration) using five bands in 

the SWIR region (2.0 to 2.5 m) without atmospheric correction. 
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2.6.4 Effect of the atmosphere 

Satellite images are affected by the atmosphere between the sensor and surface 

topography (Iikura and Yokoyama, 1999). The atmosphere causes scattering effects in 

the visible wavelength region, but not in the infrared region. Spectral features at 

wavelength regions that are not largely affected by the scattering and absorption effects 

of the atmosphere maintain the spectral features in plesiomorphism (Ono et al., 2002). 

We compared ASTER level 1 data, which is radiance data, and ASTER level 2 data, 

which is atmosphere corrected surface reflectance data. ASTER band 1 and band 2 of 

level 1 data are affected by scattering compared to ASTER level 2 data (Figure 2.7). 

Bands 7 and 9 have different features between ASTER level 1 and level 2 data, but this 

difference is small and does not affect the results of band ratios band 4/band 6, band 

5/band 6 and band 5/band 8 used in this study. We created a band ratio color composite 

image and a PCA color composite image using atmosphere corrected ASTER level 2 

surface reflectance data (Figures 2.8 (a), (b)) to compare with the images obtained using 

ASTER level 1 radiance data (Figures 2.5 (c), (d)). There is not a large difference 

between the band ratio and PCA color composite images created using ASTER level 1 

and level 2 data. This result confirms that adequate band ratio and PCA color composite 

images are obtained using ASTER level 1 data, but atmosphere corrected ASTER data 

is necessary for accurate mineral identification using spectral information. It is 

recommended that band ratio and PCA color composite images are created using 

atmosphere corrected ASTER data for detailed interpretation of the image and spectral 

information. We interpreted the spectral information of the alteration zones using 

ASTER level 2 data (Figure 2.8 A to G). It has been clarified that the alteration zones 

consist of alunite, kaolinite, sericite, chlorite, etc., and that the band ratio and PCA color 

composite images are indicating advanced argillic, phyllic and propylitic alterations 

correctly.  

Vegetation has two clear spectral features in the VNIR region, being: 1) green in color, 

and 2) highly reflective in the near infrared region. The quality of atmospheric 

correction can be evaluated by checking the spectral pattern of vegetation in the ASTER 

image. The spectral pattern of vegetation from ASTER level 2 data is shown in Figure 

2.8 H. The green color of vegetation is indicated by higher reflectance of band 1 

compared to band 2, which are the green and red bands, respectively. The most 

characteristic feature of vegetation appear as extremely high reflectance at band 3 and 

low reflectance at band 2, which are the near infrared and red bands, respectively. 

Hence, ASTER level 2 data provide correct spectral information for the scene used in 

this study determined from the spectral features of vegetation. 
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We do not introduce the iron oxide image created from ASTER bands 1 and 2 

because these bands are strongly affected by the scattering effect of the atmosphere. 

Correct iron oxide distribution cannot be obtained using ASTER level 1 data and 

atmospheric correction of band 1 is difficult depending on the condition of the 

atmosphere. 

 

2.7 Conclusions 

ASTER data processing methods for exploration of porphyry copper deposits have 

been studied and we have clarified that false color images, band ratio and PCA color 

composite images made from ASTER data provide accurate information on alteration 

and geology. The ASTER images are created from simple procedures and are always 

reproducible. They provide more information of alteration zoning and minerals than 

Landsat data. 

The ASTER SWIR false color image (R:G:B=4:6:8) displays advanced argillic and 

phyllic alterations in a pinkish color, propylitic alteration in a greenish color and 

calcareous units in yellow and are easily identified from the image. The ASTER band 

ratio color composite image (R:G:B=4/6:5/6:5/8) and ASTER PCA color composite 

image (R:G:B=PCA advanced argillic alteration image: PCA phyllic alteration image: 

PCA propylitic alteration image) are able to discriminate between advanced argillic, 

phyllic and propylitic alterations and combinations by color. PCA uses four ASTER 

bands to obtain the PCA alteration band, and is able to identify alteration precisely over 

difficult terrains such as areas with vegetation compared to the band ratio image. The 

ASTER false color images, band ratio and PCA color composite images provide correct 

results using ASTER level 1 data that are not atmospherically corrected, but in order to 

conduct accurate mineral identification between kaolinite and sericite, the images 

should be created using atmospherically corrected data that have correct spectral 

information. 

Hydrothermal and weathering alteration can be discriminated by the mode of 

occurrence. Hydrothermal activity creates zoning of advanced argillic, phyllic and 

propylitic alterations due to the difference in temperature of the hydrothermal fluid. 

Weathering alteration generally does not have alteration zonation and appear 

concordantly with the lithological unit. 

In conclusion, we have shown that identification of hydrothermal alteration zones 

over wide areas is possible and detailed information on alteration for the purposes of 

exploration of porphyry copper deposits can be obtained using the proposed ASTER 

image creation methods. 
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Table 2.1 ASTER, Landsat7ETM+ band specifications. 

 

 

 

Table 2.2 ASTER bands used for false color images. 

Color Alteration image VNIR image 
Natural color image 
(ERSDAC, 2003) 

Red (R) band4 band3 band2 

Green (G) band6 band2 (band1×3+band3)/4 

Blue (B) band8 band1 band1 

 

 

Table 2.3 ASTER bands used for band ratio image and PCA image. 

Color Alteration Band ratio PCA 

R Advanced argillic band4/band6 band1, 4, 6, 7 

G Phyllic band5/band6 band1, 3, 5, 6 

B Propylitic band5/band8 band1, 3, 5, 8 

 

  

Sensor

Band Spectral range Central wave Spatial Band Spectral range Central wave Spatial
number (m) length (m) resolution (m) number (m) length (m) resolution (m)

VNIR  band1 0.452-0.514 0.485 30
 band1 0.52-0.60 0.556 15  band2 0.519-0.601 0.575 30
 band2 0.63-0.69 0.661 15  band3 0.631-0.692 0.660 30
 band3N 0.78-0.86 0.807 15  band4 0.772-0.898 0.830 30
 band3B 0.78-0.86 0.804 15  band8 0.515-0.896 0.705 15

SWIR  band4 1.60-1.70 1.656 30  band5 1.547-1.748 1.663 30
 band5 2.145-2.185 2.167 30  band7 2.065-2.346 2.193 30
 band6 2.185-2.225 2.208 30
 band7 2.235-2.285 2.266 30
 band8 2.295-2.365 2.336 30
 band9 2.360-2.430 2.400 30

TIR  band10 8.125-8.475 8.291 90  band6 10.31-12.36 60
 band11 8.475-8.825 8.634 90
 band12 8.925-9.275 9.075 90
 band13 10.25-10.95 10.657 90
 band14 10.95-11.65 11.318 90

ASTER Landsat7ETM+
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Figure 2.1 Typical alteration zoning related to porphyry copper mineralization (modified 

after Sillitoe, 2000). 
 

 
Figure 2.2 Spectral reflectance and ASTER simulated spectral patterns of alteration 

minerals related to porphyry copper mineralization. 
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Figure 2.3 The study area (Meiduk) for the ASTER data processing. 
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Figure 2.4 ASTER band ratio images for detection of alteration zones. 
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Figure 2.5 ASTER false color and color composite images for detection of alteration 

zones. 
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Figure 2.6 Landsat7 band ratio image and PCA color composite image for detection of 

alteration zones. 

 

 

Figure 2.7 Spectral patterns of alunite derived from ASTER level1 and level2 data. 
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Figure 2.8 ASTER level2 data color images for detection of alteration zones and 

ASTER representative surface reflectance data. 
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CHAPTER 3 
 
Geological mapping of the Francistown area in northeastern Botswana by 

surface temperature and spectral emissivity information derived from 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) thermal infrared data 
 

3.1 Introduction 

Remote sensing can provide valuable information about the earth surface and is 

useful for geological mapping and mineral exploration (Lyon and Lee, 1970; Goetz and 

Rowan, 1981). Spectral information in the visible and near-infrared (VNIR) region is 

useful for identifying iron-bearing minerals such as goethite and hematite (Fraser, 1991) 

and for assessing vegetation. Spectral absorption features due to the vibrations of Al–

OH, Mg–OH, and CO3
2– bonds in the shortwave infrared (SWIR) region are useful for 

identifying hydrothermal alteration and carbonate minerals (Hunt, 1977). Mineral 

mapping based on VNIR and SWIR data can be used to identify mineralization that is 

accompanied by hydrothermal alteration or magmatic intrusions related to greisen and 

hornfels alteration. However, magmatic ore deposits such as Ni-PGE sulfide deposits 

are not usually accompanied by extensive alteration. To identify magmatic ore deposits 

that are not accompanied by significant alteration, it is important to develop a method 

for identifying geological units that host or accompany mineralization (such as 

mafic-to-ultramafic and granitic units) from remote sensing data. 

Spectral emissivity features due to the lattice vibration of Si–O in the thermal infrared 

(TIR) region are useful for identifying silicate rocks and minerals. Early geological 

studies employing TIR data used a single TIR band. A difference in thermal properties 

has been used to identify geological units (Lyon, 1972; Watson, 1975; Kahle and Rowan, 

1980; Abrams et al., 1984) and the thermal inertia method has been used to distinguish 

different rock types (Kahle, 1976; Price, 1977; Kahle et al., 1984). For example, basalt, 

gabbro, alluvium, moist areas, and vegetation have been discriminated from thermal 

inertia images. However, thermal inertia imaging requires obtaining day and night 

images of the same area with a small time difference, which restricts its usefulness. 

After the development of multiband TIR sensors such as the airborne TIMS (Kahle 

and Goetz, 1983) and MASTER (Hook et al., 2001) and subsequently the spaceborne 

ASTER (Yamaguchi et al., 1998), spectral emissivity information of TIR data has been 

actively used for geological applications (Gillespie et al., 1984; Sabine et al., 1994; 

Rockwell and Hofstra, 2008; Taranik et al., 2009). Quartz, carbonate, and mafic indices 
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have been proposed to enhance the spectral features of ASTER TIR data (Ninomiya et 

al., 2005; Ninomiya and Fu, 2010). However, the quartz, carbonate, and mafic index 

images were often noisy. Moreover, we found that these indices do not always provide 

accurate distributions of carbonate and mafic units. In this paper, we propose a simple 

and effective method for generating false color composite (FCC) images from TIR data 

that allows us to identify rock units based on surface temperature and spectral 

emissivity information. In particular, this method can be used to map 

mafic-to-ultramafic units (40–45 % SiO2) and felsic units such as granite (60–80 % 

SiO2), which are important targets for mineral exploration. 

 

3.2 Data used in this study 

There are few spaceborne remote sensing systems equipped with TIR band sensors 

that acquire data with sufficiently high spatial resolutions for geological identification; 

they include ASTER and Landsat. This study uses ASTER TIR data with five spectral 

bands and a spatial resolution of 90 m. 

VNIR and SWIR sensors measure solar energy reflected from the Earth’s surface in 

the 0.4–2.4 m range, whereas the TIR sensor measures outgoing thermal IR energy 

emitted from the Earth’s surface in the 8.0–12.0 m range. Consequently, useful TIR 

data can be acquired during the day and night. We used ASTER L1B day time to create 

FCC images for identifying geological units. FCC images are also generated from night 

time data to clarify the suitability of the proposed method for geological mapping. 

TIR radiation is expressed as a function of temperature and emissivity. We used 

ASTER L2 day time data products of surface kinetic temperature (2B03) and emissivity 

(2B04), which were derived from the TIR radiance data by the temperature/emissivity 

separation algorithm (Gillespie et al., 1998). Table 3.1 lists the ASTER data used in this 

study. 

The appearance of VNIR, SWIR, and TIR data obtained from the same location 

varies with acquisition date. Surface objects are sensitive to climatic conditions such as 

rainfall, soil moisture, solar elevation, and surface temperature. The presence of dry and 

senesced vegetation with lignin and cellulose absorptions can severely affect mineral 

mapping with SWIR data (Rockwell, 2009; John et al., 2010). VNIR data display 

significant seasonal variation related to changes in the occurrence patterns of green 

vegetation. Vegetation also affects the appearance of day time and night time ASTER 

TIR images, which hinders geological interpretation. September to October is the best 

time of the year to obtain TIR images for geological interpretation in Botswana because 

it is the end of the dry season when there is less green vegetation than at other times of 
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year and the solar elevation is high. 

Another problem that affects TIR data is fire activity. Man-made fires are commonly 

used in the African savanna to clear surface vegetation for farming and pasture grazing. 

Burned areas remain hot for several weeks after a fire has been extinguished. These hot 

areas appear as saturated regions in TIR images and exhibit abnormal color balance and 

contrast. The MODIS burned area products (Roy, 2005) that visualize the distribution of 

burned areas are helpful for selecting an appropriate ASTER scene for geological 

mapping from TIR data. 

 

3.3 Geology and ore deposits of Francistown area 

The study area is located in the northeastern region of Botswana and includes 

Francistown, the second largest city in the country (Figure 3.1). Most of the land in 

Botswana is covered by Cenozoic Kalahari sand; in southwestern Botswana, there is 

unconsolidated sand whose thickness exceeds 200 m (Smith, 1984). Outcropping 

basement areas are limited to the eastern and southeastern parts of the country and are 

included in the study area. The climate of the study area is dry savanna, which is 

suitable for geological mapping and interpretation by remote sensing due to sparse 

vegetation and good outcrop conditions. 

Francistown is a mining district where nickel, copper, and gold are mined. The study 

area is located at the southwestern edge of the Zimbabwe craton (Figure 3.1), which was 

developed between ~2710 and ~2647 Ma and contains many greenstone units including 

granite and mafic-to-ultramafic units (McCourt et al., 2004). The country rocks of the 

study area include Archean gneiss, schist, and metasedimentary units. The Tati and 

Vumba greenstone belts contain amphibolite, gabbro (mafic), serpentinite (ultramafic), 

and intercalated sediments (Maier et al., 2008; Fiorentini et al., 2012). The Tati 

greenstone belt, dated ca. 2.7 Ga (Van Geffen, 2004), and the Vumba greenstone, dated 

ca. 2.7 Ga (Bagai et al., 2002) are contemporaneous with the ca. 2.7 Ga Upper 

Bulawayan greenstones in Zimbabwe (Carney et al., 1994). Both the country rocks and 

greenstone units are cut by Paleozoic mafic sills of dolerite composition. Figure 3.2 (a) 

indicates the general geology of the study area. 

The Tati greenstone unit contains operating mines, including the Tati mine (magmatic 

Ni–Cu–(PGE) sulfide) and the Mupane mine (orogenic Au). Moreover, the greenstone 

units contain many mineral occurrences (including Selkirk (magmatic Ni sulfide) and 

Somerset (orogenic Au)) (Baldock et al., 1976). Most of the ore deposits in the area are 

related to mafic-to-ultramafic and granitic magmatism. Mafic-to-ultramafic units are 

common host rocks for magmatic platinum, chromium, and nickel deposits and are 
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important targets for mineral exploration of magmatic ore deposits (Naldrett, 2010; 

Naldrett, 2004). Felsic granitic units accompany Archean orogenic Au and Cu 

mineralization, making them important targets (Partington and Williams, 2000). 

 

3.4 TIR images for geological interpretation 

3.4.1 ASTER L1B day time TIR FCC image 

To generate an ASTER L1B day time TIR FCC image for geological mapping and 

interpretation, we respectively assigned red, green, and blue (R:G:B) to band 14:band 

12:band 10. This FCC image uses the ASTER TIR bands with the shortest and longest 

center wavelengths. These bands were selected because adjacent ASTER TIR bands are 

highly correlated with each other, which results in less color contrast in the FCC image. 

Figure 3.2 (b) indicates an ASTER L1B day time TIR FCC image of the study area. It 

essentially contains six colors. Comparison with a geological map indicates that the 

light red regions match granitic units. The white regions match well with the greenstone 

units that consist of mafic-to-ultramafic units and also dolerite sills. Light green regions 

match the gneiss country rocks, whereas dark regions match lakes and water drainage 

areas. 

Caution is needed for geological interpretation using the L1B day time TIR FCC 

image. Some granites with protruding topographic features have much denser 

vegetation and are indicated by light blue. The dark red regions do not indicate the 

distribution of quartz rich felsic units; rather, they indicate agricultural or grazing areas 

where vegetation has been removed. 

 

3.4.2 ASTER L2 day time TIR temperature image 

We used ASTER L2 day time TIR surface kinetic temperature data to compare the 

surface temperatures of different geological units in the ASTER L1B day time TIR FCC 

image. Mafic-to-ultramafic units such as the Tati and Vumba greenstone and dolerite 

sills appear white in the ASTER L2 day time TIR temperature image (Figure 3.2 (c)). 

The mafic-to-ultramafic units have higher surface temperatures than the other 

geological units. Felsic units appear dark in color. The darkest color matches with lakes 

and water drainage areas. Most drainage systems in the study area are dry and filled 

with river sand, but they have low temperatures due to underflow water beneath the 

river sand throughout the year. Local inhabitants access this underflow water by digging 

wells near drainage systems. 
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3.4.3 ASTER L2 day time TIR FCC image 

We assigned R:G:B to band 14:band 12:band 10 to generate an ASTER TIR FCC 

image for geological mapping and interpretation from ASTER L2 day time emissivity 

data. Figure 3.2 (d) indicates ASTER L2 day time TIR FCC image of the study area. 

The L2 emissivity FCC image is sometimes noisy and displays less color difference 

than the L1B TIR FCC image (Figure 3.2 (b)) because of its narrower dynamic range 

 

3.4.4 ASTER L2 broadband albedo image 

To clarify the relation between the color of geological units and the temperature, a 

broadband albedo image was generated from the VNIR and SWIR bands of ASTER L2 

reflectance data using the following formula (Liang, 2000): 

 

Broadband albedo = 0.484*band 1 + 0.335*band 3 – 0.324*band 5 + 0.551*band 6 + 

0.305*band 8 – 0.367*band 9 – 0.0015 

 

The bright areas match the high-albedo quartz-rich felsic units and the dark areas 

match the low-albedo mafic-to-ultramafic units in the ASTER albedo image (Figure 3.2 

(e)). Lakes and drainage with water appear as low-albedo regions, whereas dry drainage 

areas filled with river sand appear as high-albedo regions. The country rock gneiss 

appears as a moderate-albedo region. Agricultural or grazing areas appear as 

high-albedo regions, whereas vegetation reduces the albedo. 

 

3.4.5 ASTER L2 NDVI image 

To clarify the effect of vegetation on the TIR images, NDVI images are generated 

from the VNIR bands of ASTER L2 reflectance data. The bright (white) regions with 

high NDVI values indicate vegetation (Figure 3.2 (f)). The NDVI image indicates that 

most of the study area has sparse vegetation. Dense vegetation exists along the drainage 

systems or in areas with relatively high elevations. Low-albedo regions appear white in 

the NDVI image. 

 

3.4.6 ASTER L2 day time TIR QI–CI–MI color composite image 

We used the quartz index (QI), the carbonate index (CI), and the mafic index (MI) 

proposed by Ninomiya et al. (2005) and Ninomiya and Fu (2010) and created a color 

composite image by assigning R:G:B to QI:CI:MI, respectively (Figure 3.3 (a)). The QI, 

CI, and MI are calculated using the following formulas. 
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QI = (band 11*band 11)/(band 10*band 12) 

CI = band 13/band 14 

MI = (band 12*band 143)/band 134 

 

We used ASTER L2 day time emissivity data to generate QI, CI, and MI images 

because the above formulas are mainly based on the spectral emissivity features of 

quartz, carbonate, and mafic rocks for identification. Quartz-rich units have been 

mapped using ASTER L2 day time emissivity data and quartz-rich rocks were highly 

delineated using band ratios (Hewson et al., 2005). In addition, carbonate units are well 

delineated using band ratios obtained from ASTER L2 day time emissivity data 

(Rockwell and Hofstra, 2008). We compared the day time TIR QI–CI–MI color 

composite image (R:G:B to QI:CI:MI) with the ASTER L1B day time TIR FCC image 

and interpreted these images based on spectral features in the TIR region. 

There are four main colors in the ASTER L2 day time QI–CI–MI color composite 

image of the study area (Figure 3.3 (a)). Quartz-rich units appear in red/orange regions. 

Their distribution matches those of the light red regions in the ASTER L1B day time 

TIR FCC image and the high-albedo regions in the broadband albedo image, which 

indicate granitic units. Blue is thought to indicate mafic units and is expected to match 

the mafic-to-ultramafic units in the published geological map and the distribution of 

white regions in the ASTER L1B day time TIR FCC image. However, blue is 

distributed more widely in areas near drainage systems. Green is considered to indicate 

carbonate units, but the study area does not contain many carbonate units such as 

limestone or marble. Actually, green matches gneiss country rock in the study area. In 

addition, cyan indicates high CI and MI values and should thus correspond to a mixture 

of carbonate and mafic units; it also matches gneiss country rock across the study area. 

Figures 3.3 (b)–(d) respectively shows grayscale QI, CI, and MI images. The QI and CI 

images are noisier than the MI image, which makes the QI–CI–MI color composite 

image noisy. 

 

3.4.7 ASTER L1B night time TIR FCC image 

The ASTER L1B night time TIR FCC image (R:G:B=band 14:band 12:band 10) 

displays different information from the ASTER L1B day time TIR FCC image (Figures 

3.4 (a) and (b)). Dolerite sills that appear as white streaks in the ASTER L1B day time 

TIR FCC image do not appear in the night time TIR FCC image. Dolerite sills that are 

not mapped on the published geological map also appear on the ASTER L1B day time 

TIR FCC image (Figure 3.4 (b)). White regions in the ASTER L1B night time TIR FCC 
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image match the distribution of vegetation, judging from the NDVI image generated 

from VNIR bands of ASTER L2 reflectance data (Figure 3.4 (c)). There is still a high 

vegetation density in May when the night time image was obtained of the study area. 

Vegetation is enhanced in the night time image because vegetation has a relatively high 

water content and has a small temperature change at night as surface vegetation cools 

slower than rock units at night (Price, 1977). 

Because the archived ASTER night time TIR data have a limited distribution, we 

were unable to obtain images from a season with low vegetation cover, which are more 

suitable for geological mapping. It was thus difficult to extract geological information 

from the ASTER L1B night time TIR FCC image. 

 

3.5 Discussion 

3.5.1 Temperature information in day time TIR data 

Mafic-to-ultramafic units and dolerite sills appear white in the ASTER L1B day time 

TIR FCC image (Figure 3.2 (b)). This indicates that these rock types have high digital 

values in bands 10, 12, and 14 of the ASTER L1B data. Figure 3.5 indicates the spectral 

emissivity patterns (8.0–14.0 m) of typical rock samples in the study area. A Designs 

and Prototypes Micro FT-IR spectrometer (Model 101) was used for spectral 

measurements. Rock chip samples were used directly without preparation 

(METI/MMAJ, 2001). Mafic-to-ultramafic rocks such as gabbro and dunite exhibit 

similar spectral patterns. Gabbro and dunite have low emissivities in bands 13 and 14 

(Figures 3.5 (a) and (b)). They are thus expected to appear as cyan in the spectral pattern, 

but they actually appear white in the ASTER L1B day time TIR FCC image. This 

suggests that temperature information dominates over spectral emissivity information in 

band 14. 

We generated a scatter plot using the digital values of the day time TIR bands of 

ASTER L1B data and ASTER L2 temperature data to clarify the information contained 

in the ASTER L1B day time TIR data (Figure 3.6 (a)). Another scatter plot using digital 

values of the TIR bands of ASTER L2 emissivity data and ASTER L2 temperature data 

was generated (Figure 3.6 (b)). These plots exhibit the following four characteristics. 

The first characteristic is that ASTER L1B bands 13 (0.9213) and 14 (0.93237) have 

high correlation coefficients with the L2 temperature data. This indicates that the digital 

values of L1B bands 13 and 14 are highly correlated with the surface temperature and 

that the surface temperature dominates the spectral emissivity information, as expected. 

The second characteristic is the low correlation coefficients with temperature for bands 

10 (0.54688), 11 (0.55873), and 12 (0.44682). This indicates that bands 10, 11, and 12 
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provide more spectral information than bands 13 and 14. The third characteristic is that 

L2 emissivities have no correlation with the temperature and that most of the 

temperature information is removed by the emissivity conversion (Gillespie et al., 1998). 

The fourth characteristic is that L2 emissivities in bands 13 and 14 have smaller 

dispersions than those in bands 10 to 12. 

We thus conclude that bands 10, 11, and 12 in the ASTER L1B day time TIR data 

contain both spectral emissivity and temperature information, whereas information 

about the surface temperature dominates over the spectral emissivity information in 

bands 13 and 14. 

 

3.5.2 Relation between temperature and albedo, vegetation, and water 

Another scatter plot was generated between the broadband albedos derived from the 

ASTER L2 VNIR-SWIR reflectance data and the ASTER L2 temperature data (Figure 

3.7). The data distribution in this plot exhibits the following three characteristics. 

The first characteristic is a negative correlation between the temperature and the 

albedo with regard to rock units. This trend indicates the relation between the 

temperature and the albedo of rock types. High albedos (0.28–0.36) have low maximum 

temperatures (37–41 °C), whereas low albedos (0.17–0.24) have high maximum 

temperatures (44–47 °C). High and low albedos are associated with felsic and mafic 

rocks, respectively. This plot indicates that felsic rocks generally have high albedos and 

low temperatures, whereas mafic rocks generally have low albedos and high 

temperatures. The low albedos of mafic-to-ultramafic units give rise to high surface 

temperatures. Mafic-to-ultramafic units have higher temperatures because they absorb 

more solar radiation in the day time than other geological units due to their lower 

albedos. Thus, mafic-to-ultramafic units appear white in the ASTER L2 surface 

temperature image. 

The second characteristic is the effect of vegetation density on albedo and 

temperature. The main data population for ASTER albedo and temperature forms a 

triangular shape (Figure 3.7). The high-albedo, low-temperature end member is a felsic 

unit, whereas the low-albedo, high-temperature end member is a mafic unit. The 

low-albedo, low-temperature end member indicates vegetation because dense vegetation 

has a low albedo and a low temperature. The densely vegetated area in Zimbabwe that is 

approximately 10 km north east from the Tati and Phoenix mines has the highest NDVI 

value (NDVI > 0.8) in the study area and this densely vegetated area has a low 

temperature (< 39 °C) in the L2 temperature image. 

The third characteristic is a positive correlation between the albedo and the 
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temperature for moisture and water bodies. This correlation is observed for water bodies 

containing various amounts of water and for surface moisture. Water has a low albedo 

and a low temperature. A dammed reservoir has the lowest albedo (0.08–0.12) and 

temperature (23–25 °C) in the ASTER image of the study area. Areas with some 

moisture such as river banks are also plotted on this trend. River banks have high a 

NDVI (Figure 3.2 (f)), which indicates dense vegetation and gives a low albedo (Figure 

3.2 (c)). River banks have a lower albedo and a lower temperature than densely 

vegetated areas due to the additional effect of water and moisture. 

 

3.5.3 Spectral emissivity information in day time TIR data 

Quartz exhibits a distinct spectral emissivity pattern in the TIR region due to Si–O 

stretching vibrations (Salisbury and Walter, 1989). Mafic-to-ultramafic rocks have 

gentle spectral emissivity patterns with emissivities in the range 0.70–1.00 (Figures 3.5 

(a) and (b)), whereas quartz has a more distinctive spectral emissivity pattern with 

emissivities in the range 0.30–1.00 (Figure 3.5 (c)). This Reststrahlen feature of quartz 

also appears in the spectral emissivity patterns of quartz-bearing rocks such as granite 

(Figure 3.5 (d)), gneissic granite, and chert. Quartz and quartz-bearing felsic rocks 

appear reddish in the ASTER L1B day time TIR FCC image because quartz has a lower 

spectral emissivity in bands 10 and 12 than in band 14. 

A ground truth survey confirmed that rock units that appear light red in the ASTER 

L1B day time TIR FCC image are muscovite schist and granite. The SiO2 contents of 

these quartz-bearing rock units obtained by X-ray fluorescence analysis are 82.76 and 

74.62 % SiO2 for muscovite schist and 73.34 and 66.87 % SiO2 for granite, which 

indicates the high quartz contents of these rocks. 

Dry drainage regions (e.g., Ramokgwebana River, which flows along the Botswana–

Zimbabwe border) appear bright red in the ASTER L1B day time TIR FCC image 

(Figure 3.2 (b)). Most rivers in Botswana are dry outside of the rainy season and appear 

as white or light yellow sand banks. Two river sand samples were analyzed by X-ray 

fluorescence analysis and gave SiO2 contents of 86.59 and 72.25 %, demonstrating that 

the river sand is rich in quartz. The bright red of the river sand in the ASTER L1B day 

time TIR FCC image is due to its higher quartz content than general felsic rocks. 

The quartz sand in dry drainage regions also appears red in the ASTER L2 day time 

TIR QI–CI–MI color composite image (R:G:B=QI:CI:MI), which indicates high QI 

values and low CI and MI values (Figure 3.3 (a)). The formula for QI enhances 

quartz-rich areas due to the spectral features of quartz in ASTER bands 10, 11, and 12 

(Figure 3.5 (c)). However, it is generally difficult to discern the detailed features in the 
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QI image because the image is noisy (Figure 3.3 (b)). The noise of the QI image affects 

the ASTER L2 day time TIR QI–CI–MI color composite image. In addition, the 

grayscale QI image does not match well with the red regions in the ASTER L1B day 

time TIR FCC image (Figure 3.2 (b)). Moreover, high-value regions in the QI image 

match with areas that do not contain quartz, such as the mafic units around the Mupane 

Au mine and quartz-rich areas such as the granite unit around Shashe dam in the study 

area. To enhance imaging of quartz, we generated various band ratios of ASTER L2 day 

time emissivity data and found that a combination of bands 10, 11, and 12 generates a 

noisy image; this also occurs with bands 13 and 14 (Figure 3.3 (c)). This may occur due 

to bands 10–12 and bands 13 and 14 belonging to two groups of highly correlated data. 

Rockwell and Hofstra (2008) introduced the following quartz index based on bands 10–

13 to enhance the spectral emissivity pattern of quartz: 

 

Quartz index = (band 11/(band 10+band 12))*(band 13/band 12) 

 

The QI image of Rockwell and Hofstra (2008) (Figure 3.8) generated by this formula 

using ASTER L2 day time emissivity data being less noisy than the QI image of 

Ninomiya et al. (2005), exhibits a good match with the red regions in the ASTER L1B 

day time TIR FCC image (Figure 3.2 (b)), and identifies quartz-rich fluvial sands along 

Ramokgwebana River. Using band 13 in the quartz index formula improves the quality 

of the quartz index image. 

The MI image (Figure 3.3 (c)) does not clearly match the distribution of 

mafic-to-ultramafic units in the published geological map (Figure 3.2 (a)) nor the white 

regions in the ASTER L1B day time TIR FCC image (Figure 3.2 (b)). The MI image 

overestimates the distribution of mafic units and indicates areas around drainage as 

mafic units. Mafic units are not identified well in the MI image because the MI formula 

focuses on the spectral emissivity pattern of mafic rocks, which generally have more 

gentle patterns (Figure 3.5 (a)) than quartz (Figure 3.5 (c)). Because the plot diagram of 

Figure 3.6 indicates that the information of temperature dominates the emissivity in 

bands 13 and 14 of the ASTER day time TIR data, we conclude that the 

mafic-to-ultramafic units can be better identified from the temperature information than 

the spectral emissivity information.  

Carbonate minerals have an emissivity feature caused by the vibration of CO3
2– in the 

TIR region at ASTER band 14. A CI image obtained from ASTER L2 TIR band 13/band 

14 successfully delineated carbonate minerals at Nevada (Rockwell and Hofstra, 2008), 

but the CI image (Figure 3.3 (c)) could not be used to distinguish carbonate minerals in 
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the present study area. This may be because very few exposures of carbonate units are 

present in the study area (Figure 3.2 (a)). The spectral emissivity of carbonate minerals 

is weaker than that of quartz and may be difficult to distinguish in the ASTER L1B day 

time TIR FCC image due to the effect of temperature information. 

The ASTER L1B day time TIR FCC image can be easily generated and provides a 

clearer color image for geological interpretation than the ASTER L2 TIR FCC image 

and other TIR index images (QI–CI–MI image) that have been proposed for geological 

mapping. 

 

3.5.4 Effect of vegetation and land use on TIR data 

The TIR FCC images and mineral index images are highly affected by the vegetation 

and land use of the surface. Granites with protruding topographic features and dense 

vegetation do not exhibit the features of quartz and appear light blue rather than pale red 

in the ASTER L1B TIR FCC image (Figure 3.2 (b)). The dark red regions do not 

indicate the quartz-rich unit distribution; rather they indicate agricultural areas from 

which vegetation has been removed. Agricultural areas exhibit significant spectral 

features of bare soil than untouched areas that are a mixture of rock, soil, and 

vegetation. 

It is important to clarify the surface conditions of vegetation and land use by using 

ASTER VNIR FCC image obtained by respectively assigning R:G:B to band 3:band 

2:band 1 because this image has higher spatial resolution (15 m) than the TIR image (90 

m) and depicts vegetation in red. It is expected to be possible to clarify geological 

boundaries using this image. Accurate and advanced geological interpretation can be 

conducted by combining VNIR FCC images with TIR FCC image interpretation. 

 

3.6 Conclusions 

The ASTER L1B day time TIR FCC image (R:G:B=band 14:band 12:band 10) 

provides information regarding the spectral emissivity and temperature. Scatter plots of 

the ASTER L1B day time TIR digital values and ASTER L2 temperature indicate that 

bands 10, 11, and 12 contain spectral emissivity and temperature information, whereas 

the surface temperature dominates the spectral emissivity information in bands 13 and 

14. 

Mafic-to-ultramafic units appear white in the ASTER L1B day time TIR FCC image 

because they have higher surface temperatures than other units. The mafic-to-ultramafic 

units absorb more solar radiation due to their lower albedos and have a lower thermal 

inertia than other units (Pratt et al., 1978). Felsic units appear reddish in the ASTER 
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L1B day time TIR FCC image due to the distinct spectral emissivity of quartz. These 

geological units are important targets for platinum, gold, nickel, and copper in mineral 

exploration. 

The proposed ASTER L1B day time TIR FCC images can be easily generated and 

provide a clearer color image for geological interpretation than ASTER L2 day time 

TIR FCC images and other TIR index images (QI, CI, and MI) that have previously 

been proposed for geological mapping. 
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Figure 3.2 (a) Geological map of the study area (Modified from Key, 1976; Litherland, 

1975; Aldiss, 1990). Green shows the distribution of mafic and ultramafic (M/UM) 

units and dolerite dykes. Pink shows the distribution of felsic granite units. (b) ASTER 

TIR FCC image (R:G:B = b14:b12:b10) using ASTER L1B daytime data. The M/UM 

units and dolerite dykes appear in white color. Quartz rich felsic units appear in 

a) Published geological map b) ASTER L1B daytime TIR FCC image 
R:G:B =b14:b12b10 

d) ASTER L2 daytime TIR FCC image 
R:G:B =b14:b12b10 

c) ASTER L2 surface temperature image 

e) ASTER L2 broad band albedo image f) ASTER L2 NDVI image 
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reddish color reflecting the amount of quartz. (c) ASTER surface kinetic temperature 

image using ASTER L2 temperature (2B03) data. The M/UM units and dolerite dykes 

appear white showing high surface temperature. (d) ASTER broadband albedo image 

(Liang, 2000) created from ASTER L2 reflectance data. The M/UM units and mafic 

dykes appear in dark tone due to dark color and low albedo. 

 

 

Figure 3.3 (a) ASTER TIR Quartz Index, Carbonate Index, Mafic Index color composite 

image (R:G:B = QI:CI:MI).created from ASTER L2 emissivity (2B04) data 

(Ninomiya et al., 2005). (b) QI gray scale image using ASTER L2 emissivity (2B04) 

data. The QI image contains high amount of noise. (c) MI gray scale image using 

ASTER L2 emissivity (2B04) data. (d) Band ratio (b14/b12) gray scale image using 

ASTER L2 emissivity (2B04) data to enhance quartz. 
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Figure 3.4 (a) ASTER TIR FCC image (R:G:B = b14:b12:b10) using nighttime L1B 

data. The area with white color shows the distribution of vegetation and lacks 

geological information. (b) ASTER TIR FCC image (R:G:B = b14:b12:b10) using 

daytime L1B data displays geological information. (c) NDVI image created from 

daytime ASTER L1B data showing the distribution of vegetation. 
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Figure 3.5 TIR spectral emissivity patterns of rocks and minerals. Quartz has a distinct 

spectral emissivity pattern (Modified after METI/MMAJ, 2001). 

 

 
Figure 3.6 Plot diagram of ASTER TIR L1B digital values of the bands10 to 14 / 

ASTER L2 surface temperature (2B03) data. This plot clarifies that the bands 13 and 

14 are highly correlated to temperature and the information of temperature dominates 

spectral emissivity. On the other hand, band 10, 11 and 12 are not highly correlated to 

temperature and provides information of both temperature and spectral emissivity.  
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Figure 3.7 Plot diagram of albedo values derived from ASTER L2 reflectance data / 

ASTER L2 surface temperature (2B03). Two trends appear from this plot. The first 

trend is a negative correlation between the temperature and albedo of felsic and M/UM 

rocks. The second trend is a positive correlation that indicates amount of water or 

wetness. 

 

 

Figure 3.8 Quartz index image of Rockwell and Hofstra (2008) generated from ASTER 

L2 daytime emissivity data. 
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CHAPTER 4 
 
Application of inverted slope images for geological mapping – reduction of 

artifacts in digital elevation models by filtering in the frequency domain 
 
4.1 Introduction 

Compared to other forms of remote sensing data, digital elevation models (DEMs) 

have not been used extensively for geological mapping. Rather, geological mapping has 

typically been performed using color composite images produced from multi-band 

sensor platforms, such as Landsat (Crosta and Moore, 1989) and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) data (Hewson et al., 2005). 

However, DEMs have been used as subsidiary data to clarify linear or circular relief 

patterns for tectonic and structural analysis in geology (Masoud and Koike, 2006). 

Recently, studies using DEMs have increased, and DEMs have been used for landform 

mapping (Smith and Clark, 2005) and terrain classification (Iwahashi and Pike, 2007). 

DEM images that have been processed to show shaded relief and aspect have been used 

for geological mapping (Badura and Przybylski, 2005, Singh and Dowerah, 2010). In 

this paper, we describe the application of inverted slope images created from DEM 

images for geological mapping, and also propose a method to artifacts from 

image-derived DEMs. 

A variety of spatial filtering (Brown and Bara, 1994) and frequency filtering (Hassan, 

1988; Pan, 1989) methods have been developed to reduce the number of artifacts that 

are generated when DEMs are produced from contour lines. DEMs derived from remote 

sensing image data, such as the data collected by the Shuttle Radar Topography Mission 

(SRTM) (Rabus et al., 2003; Gesch et al., 2006) and Global DEM (GDEM) of the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

(Fujisada et al., 2005; Tachikawa et al., 2011), currently almost cover the entire earth, 

and use of these image-derived DEMs currently exceeds that of contour-derived DEMs. 

Although contour- and image-derived DEMs have similar topography data, the 

processed DEM images, such as images with shaded relief and inverted slope images 

obtained from image-derived DEMs, are considerably noisier than those obtained from 

contour-derived DEMs. Consequently, reducing the artifacts in image-derived DEMs 

needs to be achieved in order to increase the potential application of image-derived 

DEMs, such as SRTM DEM and ASTER GDEM, to geological mapping. 
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4.2 Contour- and image-derived DEMs 

A DEM is an ordered array of ground elevations at regularly spaced intervals. DEM 

data is originally point data consisting of latitude, longitude and altitude, but normally 

gridded to raster data. According to Guth (1999), DEMs can be divided into two groups 

depending on whether the source of data used to generate the DEM is (1) contour lines 

(“contour-derived DEM”), or (2) remote sensing imagery (“image-derived DEM”). 

Contour-derived DEMs are created from hypsographic maps produced by aerial 

photogrammetry and triangulation surveys. The height information in a contour-derived 

DEM is ground elevation data. Examples of contour-derived DEMs include the National 

Elevation Dataset (NED) of the United States, Canadian Digital Elevation Data (CDED), 

and the Japan Profile for Geographic Information Standards (JPGIS). Relatively few 

countries have accurate contour maps for public use and the availability of 

contour-derived DEMs is limited. 

Image-derived DEMs are generated using remote sensing imagery and are not 

correlated with direct ground data. The height information in image-derived DEMs is 

canopy elevation. SRTM DEM and ASTER GDEM are typical image-derived DEMs 

with a near global coverage and are freely available. 

NED DEM (a contour-derived DEM), and SRTM DEM and ASTER GDEM 

(image-derived DEMs) were used and compared in this study. Features of each 

DEM-type are shown in Table 4.1. 

 

4.3 Study area 

Cuprite in southwestern Nevada, approximately 200 km northwest of Las Vegas, was 

selected as the study area for geological mapping as the outcrop conditions are well and 

the geology, with its diverse hydrothermal alteration mineralogy, is well defined. 

Cuprite has been used extensively as a test site for a variety of remote sensing studies; 

particularly for extensive alteration mineral mapping exercises using AVIRIS data 

(Kruse, 2002), ASTER data (Rowan et al., 2003), Hyperion data (Kruse et al., 2003) 

have been conducted. 

The regional geology of the Cuprite area has been described by Crafford (2007). 

Briefly, the area is composed of Lower Cambrian to Latest Proterozoic clastic rocks 

consisting of cross-bedded quartzite, siltstone, and phyllite (Czq) are underlain by 

Cambrian sedimentary units consisting of phyllite, schist, shale, thin-bedded limestone, 

chert, and siltstone (Ctd), which create the high northeast- to southwest-trending ridges 

that characterize the study area. Tertiary volcanic and sedimentary rocks, such as 

intermediate silicic ash flow tuff (Tt2), younger rhyolitic flows, and shallow intrusive 
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rocks (Tr3), younger silicic ash flow tuffs (Tt3), and younger tuffaceous sedimentary 

rocks (Ts3) are present over the lower sedimentary rocks and create gentle hills. 

Quaternary sediments, such as playa and floodplain deposits (Qpl) and alluvium (Qal) 

are present and cover the flat terrain (Figure 4.1). 

 

4.4 Inverted slope images for geological mapping 

A slope image is created using the steepest neighbor algorithm which is the maximum 

rate of change in value from the center to its neighbor cells (Guth, 1995). It is an 

approximate derivative of the original DEM. Gradient values in the slope image can be 

expressed in percent or degree units. The use of other algorithms, such as four or eight 

closest neighbors would change the values slightly, but would not change the resulting 

patterns. 

For shaded relief images, sun illumination is from one direction only and some 

surface features are hidden by this orientation-effect. The flanks of Stonewall Mountain 

in the southeast of the study area are invisible in the shaded relief images because the 

direction of sun illumination is from the southeast (Figures 4.2 (a), (b), (c)). There is no 

orientation dependence in the slope images (Figures 4.2 (d), (e), (f)), but the lithology of 

the original slope image is difficult to interpret because the image is dark and the 

contrast is low. Consequently, detail of the topographic features was enhanced by 

inverting the slope image (Figures 4.2 (g), (h), (i)) to display the lithological units in a 

different tone and texture with stronger contrast. 

In these inverted images, dark tones indicate outcrop areas with rigid terrain 

consisting of lithological units that are typically hard and resistant to weathering. White 

areas indicate flat or gently sloping terrain, such as talus areas covered by overburden 

and free of any outcrops. The inverted slope images provided considerable information 

on the distribution of lithological units. The clearest inverted slope image was obtained 

from contour-derived NED DEM data, while that obtained from GDEM data was 

extremely noisy. 

 

4.5 DEM artifacts  

Artifacts in the image-derived DEMs are both exaggerated and visible in the shaded 

relief and inverted slope images. Three types of artifacts were observed in the images 

used in this study (Figure 4.2, Figure 4.3). 

1) Anomalous topographic features in the shaded-relief and slope images derived 

from the ASTER GDEM data in the eastern part of the study area (Figures 4.2 (c), 

(f), (i)). These anomalous features in the ASTER GDEM data were observed in 



49 
 

areas with low ASTER scene stack numbers, i.e., in areas with relatively few 

cloud-free images. 

2) Fine-grained noise was extensive in the inverted slope images derived from SRTM 

DEM and ASTER GDEM data (Figures 4.2 (h), (i)). The random noise observed in 

the ASTER GDEM inverted slope image was more intense than that observed in 

the SRTM DEM data, and the noise obscured topographic information. However, 

these random artifacts were uniformly present in the SRTM DEM and ASTER 

GDEM data (Figures 4.3 (b), (c)). In addition, the magnitude of the random noise 

was small in the topographic section, but markedly higher in the slope sections 

(Figures 4.3 (e), (f)). 

3) Single-point spike-type errors were observed in the topographic sections of the 

ASTER GDEM data (Figure 4.3 (c)); these errors are typically difficult to perceive 

in both shaded-relief images and inverted slope images (Figures 4.3 (c), (f)). 

 

Contour-derived NED DEM images had fewer artifacts compared to the 

image-derived DEM images, but they were not completely free of artifacts. For example, 

artifacts referred to as contour “ghosts” were observed in imagery of the northwestern 

part of the study area in both the shaded-relief and inverted slope images (Figures 4.2 

(a), (d), (g)). Contour “ghosts” are associated with the contour to grid algorithm 

producing grid-node elevations with the same elevation (Guth, 1999). They are small 

artifacts and do not appear as elevation errors in the topographic and slope sections. 

Collection line artifacts, which produce stripes or aligned textures in USGS 7.5 minute 

DEM data, have been reported (Albani and Klinkenberg, 2003), but no such artifacts 

were observed in this study area. 

Image-derived DEM data contains more artifacts than the contour-derived DEMs 

generally. Reducing artifacts from image-derived DEMs is therefore considered 

important for obtaining smooth topographic information. Although SRTM DEM and 

ASTER GDEM both contain artifacts that can be attributed to topographic information, 

it is clear that ASTER GDEM contains more artifacts than SRTM DEM. 

 

4.6 Artifact reduction methods 

Spatial filters are effective for reducing spike-type errors in a DEM, but if spatial 

filtering is applied to an entire DEM, it will decrease the spatial resolution and diminish 

the detailed features of all of the original DEM information. The application of spatial 

filters should therefore be restricted to spike-type artifacts. 

When using multiband remote sensing data, valid elevation information can be 
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distinguished from artifacts by performing a principal components analysis (PCA) or 

maximum noise fraction (MNF) transformation (Green et al., 1988), which will separate 

information and artifacts into different PCA clusters (Crosta and Moore, 1989; Loughlin, 

1991) or MNF bands (Kruse et al., 2003). Artifact reduction can then be achieved by 

deleting those bands dominated by noise, and then reverting back to the PCA or MNF 

data; however, PCA and MNF analyses cannot be applied to single band data. 

Fast Fourier transformation (FFT) can reduce artifacts from single band data and FFT 

has been employed to reduce systematic artifacts from remote sensing images (e.g., de 

Souza Filho et al., 1996). Figure 4.4 shows a flow chart describing the process for 

reducing artifacts from DEMs. Briefly, spatial data is transformed into the frequency 

domain by FFT. Intrinsic image and elevation information is concentrated at low 

frequencies which are located at the center of the FFT frequency image (Figure 4.5 (a)) 

creating a peak and troughs representing the high frequency information which contains 

very fine textured information and noise (Figure 4.5 (b)). Specific high-frequency 

artifacts in the image-derived DEMs can then be removed by applying a low-pass filter 

of a specific size to the FFT frequency data (Figure 4.5 (c)). After filtering the high 

frequency components using the low-pass filter, an inverse FFT transforms the 

frequency image back to the image domain. Random artifacts are uniformly distributed 

from the low to high frequency components of the frequency image (Hassan, 1988). 

Although FFT filtering cannot entirely remove these random artifacts, the artifacts at 

low frequencies will be dominated by more signal and/or information that is intrinsic to 

the image making the artifacts less recognizable. 

 

4.7 Discussion 

Inverted slope images, such as that shown in Figure 4.2 (g), clearly show areas of 

outcrops and provide even more information of the differences in lithological units 

when compared to published geological maps (Figure 4.1). However, the inverted slope 

images created from image-derived DEMs (especially ASTER GDEM) are typically 

very noisy (Figures 4.2 (h), (i)). This happens because the image-derived DEM contains 

artifacts that do not reflect the true topography, especially since artifacts are frequently 

produced when DEMs are generated. While most of the artifacts in the original 

image-derived DEMs are difficult to recognize, they are typically exaggerated as noise 

in the inverted slope images. Detailed information of landforms and lithology is often 

hidden by this noise. 

ASTER GDEM is particularly noisy in low-relief areas because image correlation is 

more difficult to accomplish in images of flat terrains (Fujisada et al., 2005). Reducing 
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artifacts from ASTER GDEM is essential because, compared to NED and SRTM DEM, 

more noise appears in inverted slope images produced from ASTER GDEM data.  

FFT transforms the DEM data into the frequency domain, with a range of high to low 

frequency components. Although it is possible to filter specific frequencies from the 

FFT frequency image, excessive filtering will remove original topographic information. 

The optimum filter size is thus one that minimizes the loss of topographic information 

while maximizing the removal of artifacts. 

An exponential circle filter was used for low-pass filtering because an ideal circle 

filter truncates the cutoff frequency and produces ripple like phenomena (Oppenheim 

and Schafer, 1970). FFT frequency filtering at twelve low-pass filter sizes (1 %, 5 %, 

10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %, 100 %) was applied to the 

original SRTM DEM and ASTER GDEM data (Figure 4.5 (c)). Using a small low-pass 

filter size maintains the very lowest frequency components and removes the large 

residue associated with the higher frequencies (Figure 4.5 (d)). Shaded and inverted 

slope images produced using FFT-filtered SRTM DEM data (Figure 4.6) and 

FFT-filtered ASTER GDEM data (Figure 4.7). It was found that the amount of noise in 

the images decreased with the size of the low-pass filter, but the spatial resolution of the 

images also decreased and the image became smoother. Changes in noise and terrain 

resolution associated with FFT filtering were more apparent in inverted slope images 

than in shaded relief images. 

In order to determine optimum filter size, the differences between mean NED DEM, 

FFT-filtered SRTM DEM and ASTER GDEM values at different low-pass filter sizes 

was computed and plotted in Figure 4.8. A specific filter showing the minimum artifact 

size relative to the most topographic information for the filtered DEM was not obtained, 

but a trend approximating the optimal filter size was clarified. As the size of the 

low-pass filter was decreased, the number of artifacts in the DEM was reduced, but, as a 

tradeoff, some of the original topographic information was also lost. For both SRTM 

DEM and ASTER GDEM data, artifact reduction was constant when the low-pass filter 

size exceeded 40 %; at filter sizes of less than 20 %, the loss of artifact and topographic 

information increased. Thus, a filter size of 20 to 40 % was considered optimal for 

maximizing artifact reduction while reducing the loss of topographic information in this 

study. No significant difference was observed in assessments of optimum filter size in 

both SRTM DEM and ASTER GDEM data. 

Topographic and slope sections of FFT-filtered SRTM DEM and ASTER GDEM data 

transformed using a filter size of 30 % are shown in Figure 4.9. Random artifacts 

present in the original SRTM DEM and ASTER GDEM data (Figures 4.3 (b), (c)) were 
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generally reduced (Figures 4.9 (a), (b)), but the DEM artifacts associated with cloud 

occurrence in the GDEM data persisted in the flat areas. These single-spike errors need 

to be removed by selective spatial filtering. The slope sections obtained from the 

original SRTM DEM and ASTER GDEM data could not be interpreted as being the 

same terrain (Figures 4.3 (e), (f)). However, when the same slope sections of SRTM 

DEM and ASTER GDEM data were transformed using a filter size of 30 %, the 

resulting topology was comparable with the same areas in the NED DEM images 

(Figure 4.3 (d), Figures 4.9 (c), (d)). 

 

4.8 Conclusions 

Inverted slope images show differences in lithology more clearly than images of the 

same areas showing only the shaded relief. While inverted images are useful for 

geological mapping, artifacts in the image-derived DEM data give the images a noisy 

texture and obscure information related to lithological units. Although the artifacts in 

the SRTM DEM and ASTER GDEM data are typically minor and unrecognizable in the 

original topographic data, they become exaggerated in the inverted slope images and 

produce images with a noisy texture. We attempted to reduce the artifacts in 

image-derived DEMs by FFT filtering and successfully removed high to medium-low 

frequency artifacts in the frequency image. Specifically, low-pass filtering using an 

exponential circle filter with a size of 20 to 40 % effectively reduced the artifacts 

without a significant loss of terrain information from the image-derived DEMs in the 

study area. 

Compared to SRTM DEM, inverted ASTER GDEM images of flat terrain had high 

levels of noise which obscured the underlying topographical information. It is therefore 

necessary to reduce artifacts from ASTER GDEM data before creating shaded relief or 

slope images. Inverted slope images created from artifact-reduced DEM data subjected 

to FFT filtering can facilitate the accurate classification of lithological variation and 

rock composition. 
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Table 4.1 Contour-derived DEM and image-derived DEM used for the study. 

 

 

 

Figure 4.1 Geological map of the study area (modified after Crafford, 2007). 
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Figure 4.2 Shaded relief images, slope images and inverted slope images of the study 

area. 
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Figure 4.3 DEM topographic sections and DEM slope sections of line A-A’ in figure 

4.2. 
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Figure 4.4 Flow chart for reducing artifacts from DEM data. 

 

 

 
Figure 4.5 FFT frequency images and low-pass filter sizes. 
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Figure 4.6 SRTM DEM FFT filtered shaded relief images and inverted slope images of 

different low-pass filter sizes. 
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Figure 4.7 GDEM FFT filtered shaded relief images and inverted slope images of 

different low-pass filter sizes. 
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Figure 4.8 Difference of mean values between NED DEM and FFT filtered image 

derived DEM data at various low-pass filter sizes. 

 

 
Figure 4.9 Topographic section and slope section of 30 % FFT low-pass filtered DEM. 
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CHAPTER 5 
 

Conclusions 
 

The processing methods and applications of ASTER data for mineral resources 

exploration and geological mapping were studied in this thesis. 

 

(1) Alteration mapping using ASTER VNIR and SWIR data 

Alteration zones are important features for the exploration of porphyry copper 

deposits. The ASTER sensor is able to identify the types of alteration and its alteration 

zoning, which are important information for mineral resource exploration. The 

utilization of three processing methods are described, 1) SWIR false color image, 2) 

band ratio color composite image, and 3) principal component analysis (PCA) color 

composite image. 

The SWIR false color image is a false color image using band 4, band 6 and band 8 

(R:G:B=band 4:band 6:band 8). The alteration zones appear as pink or green colors in 

the alteration image. 

The band ratio color composite image uses the band ratio images of band 4/band 6, 

band 5/band 6 and band 5/band 8 (R:G:B=band 4/band 6:band 5/band 6:band 5/band 8). 

The band ratio image is able to provide information of the alteration zoning. Band 

4/band 6 enhances the advanced argillic alteration, band 5/band 6 enhances the phyllic 

alteration and band 5/band 8 enhances the propylitic alteration. 

The PCA image (“Crosta technique”) is also able to provide information of the 

alteration zoning. The PCA color composite image consists of the PCA alteration 

images that are obtained from three PCA processes (R:G:B=PCA advanced argillic 

alteration image: PCA phyllic alteration image: PCA propylitic alteration image). The 

advanced argillic alteration image is obtained from PCA of band 1, band 4, band 6 and 

band 7, the phyllic alteration image is obtained from PCA of band 1, band 3, band 5 and 

band 6 and the propylitic alteration image is obtained from PCA of band 1, band 3, band 

5 and band 8. The PCA alteration images are chosen by checking the eigen vectors. 

These methods are applied to the Meiduk area of Iran, which is known for porphyry 

copper mineralizations. Combinational use of the images enables identification of the 

hydrothermal alteration and zonings related to porphyry copper mineralization. 

 

(2) Geological mapping using ASTER TIR data 

Geological units are identified by using ASTER TIR data, which contains both 
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surface temperature and spectral emissivity information. A scatter plot of ASTER L1B 

day time TIR digital values and L2 day time temperature indicates that in the ASTER 

L1B day time TIR data, bands 10, 11, and 12 contain spectral emissivity and 

temperature information, whereas surface temperature dominates the spectral emissivity 

information in bands 13 and 14. Visual interpretation of the ASTER TIR false color 

images generated by assigning band 14, band 12 and band 10 (R:G:B=band 14:band 

12:band 10) using L1B day time data allowed to identify mafic-to-ultramafic units and 

quartz-rich felsic units. Mafic-to-ultramafic units such as gabbro, dolerite, and dunite 

appear white in ASTER L1B day time TIR false color images due to their high spectral 

emissivities in the 8–9 m region (bands 10 and 12) and high surface temperatures. 

Mafic-to-ultramafic units have higher surface temperatures than other geological units 

because they absorb more solar radiation due to their lower albedos and they have a 

lower thermal inertia. Quartz-rich felsic units such as granite and dry river sand appear 

reddish in the ASTER L1B day time TIR false color image because the spectral 

emissivity of quartz is lower in the 8–9 m region (bands 10 and 12) than in the 10–12 

m region (band 14). Mafic-to-ultramafic and granitic units are important targets for 

mineral exploration because they are potential geological units to host or accompany 

mineralization. The proposed ASTER L1B day time TIR false color images can be 

prepared very simply and they provide valuable information for geological mapping and 

mineral exploration. 

 

(3) Geological mapping using ASTER GDEM data 

Inverted slope images created from DEMs can be used to visualize differences in 

lithological units and provide an indication of areas of geological outcropping. Such 

images are useful for geological mapping, but when created from DEMs generated from 

remote sensing images (“image-derived DEMs”), artifacts in the DEMs are exaggerated 

and give rise to unclear noisy final images. Such artifacts also affect the quality of 

normal slope images and shaded relief images. In contrast, DEMs created from 

elevation data in the form of contour maps (“contour-derived DEMs”) contain far fewer 

artifacts, but their availability is limited. Therefore, in order to obtain clear processed 

DEM images that can be used for global geological mapping, it is necessary to develop 

a method for reducing the number of artifacts in image-derived DEMs. 

In the present study, the effectiveness of a fast Fourier transform (FFT) for artifact 

reduction in image-derived DEMs was investigated. The FFT converts spatial data into 

the frequency domain, and artifacts with specific frequencies are removed by low-pass 

filtering. An inverse FFT is then used to return to the spatial domain, thus producing a 
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filtered DEM with a reduced number of artifacts. The effect of the filter size on the final 

image quality was also investigated. 

The image-derived DEMs used in this study were the Shuttle Radar Topography 

Mission (SRTM) DEM and the ASTER GDEM for Cuprite, Nevada. A comparison was 

made between shaded relief and inverted slope images created following artifact 

removal from these DEMs and equivalent images produced using the contour-derived 

National Elevation Dataset (NED) DEMs. It was clarified that for the image-derived 

DEMs, that a low-pass filter with a size of 20 to 40 % significantly reduced the number 

of artifacts without significant loss of terrain information. For the ASTER GDEM data, 

artifact reduction was found to be particularly important because the artifacts obscure 

the original topographic information in the inverted slope images. 

 

Combinational use of the proposed methods is recommended for more accurate 

interpretation of remotely sensed images for the purposes of mineral exploration and 

geological mapping. When conducting alteration mapping for exploration, it is 

important to know whether the alteration information is from an outcrop area and not 

from a talus area. Inverted slope images produced from DEM data is able to provide 

information identifying outcrop areas. TIR data are affected by surface conditions such 

as vegetation or land use (agricultural or grazing areas). VNIR data are important for 

clarifying the surface conditions in TIR 14-12-10 FCC images. Accurate lithological 

mapping can be performed by combining VNIR FCC and TIR 14-12-10 FCC images. 

The proposed methods in this study are simple but useful and provide reproducible 

results. The images could be used widely by geologists or geophysicists involved in 

mineral resources exploration. ASTER VNIR and SWIR data have been widely used in 

exploration for alteration mapping mainly targeting hydrothermal ore deposits that 

accompany alteration minerals, and this study has also considered the ability of ASTER 

TIR and GDEM data for use in geological mapping and its effectiveness for exploration 

of magmatic ore deposits. 
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