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Chapter 1

INTRODUCTION

1.1 Research Background

Engineering systems such as buildings, bridges, piping systems, gas treatment systems

and power distribution systems usually have a large number of components with com-

plex relationship among the components. The failure of an engineering system could

have catastrophic effects involving loss of life and property. For example, in the 2008

Wenchuan Earthquake, the collapses and damages of a large number of buildings and

bridges resulted the huge loss to the lives and properties1,2).

There are a lot of uncertainties such as the uncertainty in material properties,

statistical data, mathematical analysis models, etc. in the engineering system. With

the effect of those uncertainties, the performance of engineering systems would be not

deterministic. Then, the failure of an engineering system would be probabilistic. In

the last decades, engineers have recognized the importance of the analysis of the failure

probability of engineering systems, and the related research has become one of the most

important research area in the engineering systems.

In general, a system consists of a number of interrelated and interdependent com-

ponents. Also, a system with a set of components can be considered as a component

in a large system. There could be many different types of systems such as a cell, a

bridge, a galaxy. Engineering systems considered in this research have two important

states, i.e., functional state and failure state, and the probability that a system is in

its functional state (design purpose) during a specified period of time is the reliability

1



2 CHAPTER 1. INTRODUCTION

of the systems. The failure probability of a system is the complement of the reliability

of the system.

Many analysis methods have been developed to estimate system reliability; they

can generally be categorized into: either analytical methods or simulation based meth-

ods3–16). The analytical methods such as Dunnet-sobel class correlation matrix method17)

and product of conditional marginals18) is often based on some assumptions such as an

ideal mathematical models of the system. Even though the analytical methods present

elegant approaches of handling system reliability problems, each of them has its own

assumptions which limited its application.

Monte Carlo (MC) simulations provide an estimate of the failure probability by

simulating a large number of samples of the random variables related to the failure

of the system19–21). It is a simple method which is applicable to a wide range of

systems including realistic and precise representations of engineering systems with a

large number of components. However, for practical structural systems with high-

reliability, a large number of simulations have to be performed, and thus, MC simulation

can be computationally expensive and inefficient.

Because estimation of the failure probability of a system usually is difficult or time

consuming especially when there exists a dependency among the component states and

when the number of components is large. Researchers are trying to find the upper and

lower bounds on the exact failure probability of the system, such as simple bounds and

Ditlevsen bounds4). Among those, there are some methods that use linear programming

(LP) for efficiency. Hailperin first explored LP to estimate the best possible inequalities

for the probability of a logical function (Boolean function) of events22). Because the

number of design variables in the LP problem increases rapidly with the number of

events, Hailperin’s method is only applicable to a small size of logical function of

events. The accuracy of some theoretical bounds has been examined by use of the

LP estimating the best possible inequalities by Kounias and Marin23). Song and Der

Kiureghian proposed the linear programming (LP) bounds method for computing the

bounds on the failure probability of general systems based on the information of the

joint failure probabilities of k components (when k = 1, these joint probabilities become

the individual component state probabilities, and the different k represents the different
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level of information)24). The LP bounds method has a number of advantages such as

providing the narrowest possible result of bounds on the system failure probability for

any level of information and having a wide applicability for many systems25–27).

There exists, however, a critical drawback in the LP bounds method. The size

of the LP problem, which is usually related to the number of design variables and

the number of constraints, increases exponentially with the number of components.

For a system with n components, the number of design variables in the LP bounds

method is Nd = 2n. When n = 18, Nd = 262144 and the problem can barely be solved

with common LP programs on a personal computer. When n = 100, this number

becomes Nd ≈ 1.27×1030, which is enormously large. The number of constraints, which

depends on the number of design variables and the level of joint failure probabilities,

also becomes enormously large in the application of the LP bounds method to a large

system. This size issue—both the number of design variables and constraints—would

be a hindrance if one wants to use the LP bounds method to estimate the bounds on

the failure probabilities of a large system.

In order to overcome the size issue of the LP bounds method, Der Kiureghian and

Song propose a multi-scale system reliability analysis, whereby the system is decom-

posed into subsystems and a hierarchy of analysis is performed by considering each

subsystem or set of subsystems “separately”28). The decomposition facilitates solution

of the system reliability by the LP bounds method, whereby the large LP problems

for the entire system is replaced by several LP problems of much smaller size. This

facility, however, comes at a cost; the system bounds computed for the decomposed

system can be wider than the bounds computed for the intact system with the same

level of probability information. Also, the best way to decompose the entire system is

difficult to find.

Although the above system reliability analysis methods have been developed to

estimate the reliability of the system, they are still limited in dealing with a system

with small number of components. Therefore, there are pressing needs for developing

efficient and accurate system reliability methods.
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1.2 Research Objective and Content

As described in the above section, researchers have paid attention to the system relia-

bility analysis, and a lot of methods evaluating the reliability of the system has been

proposed in the last decades. All of these methods faced the challenges related to com-

putation burdens in the system reliability analysis, and it also motivated this Ph.D.

research, and the goal of this research is to propose new system reliability analysis

methods that can estimate the reliability of a large system efficiently and accurately.

Among the methods of the system reliability analysis, the LP bounds method shows

some important advantages such as only depending on the information of the joint

failure probabilities of a small set of components and providing the narrowest possible

result of bounds on the system failure probability for any level of formation of the joint

failure probabilities. However, the main drawback of the LP bounds method, i.e., the

size issue of the LP problem, limits its application. Based on the LP bounds method,

this research will first propose a new method to overcome the size issue of the LP

problem for a pure series system and a pure parallel system, and then extend the new

method to the system of the combination of a series and parallel subsystems.

The organization of this thesis consists of the following chapters and the purpose

of each chapter is depicted.

Chapter 2:

Chapter 2 gives an outline of the past research on system reliability. First, the details of

the method of the reliability analysis such as the first order reliability method (FOSM)

and the MC simulation are reviewed. Second, the details of the LP bounds method

including its advantages and disadvantages has been reviewed. Finally, as an extension

of the LP bounds method, the details of the multi-scale system reliability analysis are

reviewed.

Chapter 3:

As an efficient reliability tool for a system with a large number of components, the

relaxed linear programming (RLP) bounds method is introduced in Chapter 3. First,

the universal generating function (UGF) that would be used in the RLP bounds method

has been described. Second, the details of the RLP bounds method are explained.
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Third, the RLP bounds method has been improved by its variations such as RLP2 and

RLP3. Finally, applications of the RLP bounds method to pure series systems as well

as pure parallel systems are demonstrated.

Chapter 4:

Chapter 4 will introduce the extended RLP bounds method based on failure modes as

an extension of the RLP bounds method. The new approach is developed for a general

system consisting of both series and parallel subsystems. Applications of this approach

to a general system are demonstrated.

Chapter 5:

Summaries of major findings of this study and the future research topics are provided

in this Chapter.





Chapter 2

PAST RESEARCH ON SYSTEM

RELIABILITY

2.1 Overview

Reliability of the system has shown its importance in the analysis, design, and plan-

ning of the systems especially for the engineering systems, and many researchers have

achieved a lot of achievement in the system reliability analysis in the last decades.

In order to acquire the systematic knowledge of reliability analysis, this chapter

provide a wide and fundamental introduction, from the basic definition such as compo-

nent state to estimation method of system reliability such as the linear programming

(LP) bounds method. The importance of this chapter is to review the LP bounds

method and multi-scale system reliability analysis, their advantages and disadvantages

are also summarized.

In section 2.2, some basic concepts of reliability analysis is reviewed.

In section 2.3, the linear programming (LP) bounds method is reviewed.

In section 2.4, the multi-scale system reliability analysis is reviewed.

In section 2.5, the reliability analysis of a system subjected to common source of

hazard is reviewed.

In section 2.6, the summary of this chapter is proposed.

7
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2.2 Reliability Analysis Method

2.2.1 Component State

In engineering, it is generally assumed that a component can be in one of two possible

states, i.e., functional or failure, and the vector of a component states can be expressed

as

E = (F, F ) (2.1)

where F denotes the failure state of a component and F denotes its complement (func-

tional state).

2.2.2 System Reliability State

In system reliability, it is generally assumed that each component of a system, as well

as the entire system, can be in one of two possible states, i.e., functional or failure.

The vectors of the component states can be expressed as

Ei = (Fi, Fi), i = 1, 2, . . . , n (2.2)

where Fi denotes the failure state of component i and Fi denotes its complement

(functional state).

The failure state of a system, Fsystem, will be expressed as

Fsystem = f(E1,E2, . . . ,En) (2.3)

where f(•) is the function of failure states of the components or their complements.

A series system fails if any of its component fails. It is typified by a chain, and also

called a “weakest link” system. An example of a simple series system is shown in Figure

2.1. The load performed at the system is denoted as S. Failure of any component,

such as the failure of the component with resistance R1, will cause the failure of the

system. Thus, the f(•) function have only union operations in a series system, i.e.

Fseries system = F1 ∪ F2 ∪ F3 ∪ · · · ∪ Fn

= ∪
i
Fi (2.4)
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Figure 2.1: An Example of Series Systems

Figure 2.2: An Example of Parallel Systems

A parallel system is a system that fails only when all of the components fail. An

example of a simple parallel system is shown in Figure 2.2, in which the load performed

at the system is denoted as S. The failure of all components corresponding to the

resistance forces R1, R2, and R3 will cause the failure of the system. Thus, the f(•)

function have only intersection operations in a parallel system, i.e.

Fparallel system = F1 ∩ F2 ∩ F3 ∩ · · · ∩ Fn

= ∩
i
Fi (2.5)

In general, a general system is a system consists of series and parallel subsystems.

Therefore, the function f(•) includes both union and intersection operations. There

are two basic formations of the general systems, i.e., a system represented by a series

of parallel subsystems and by a parallel of series subsystems. The system represented
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by a series of parallel system can be expressed in terms of “weakest link”, i.e.

Fsystem = ∪
k

∩
i∈Ck

Fi (2.6)

where Ck is the set of component indices of which corresponding components constitute

the kth “weakest link”.

The system represented by a parallel of series subsystems can be expressed in terms

of “link sets”, i.e.

Fsystem = ∩
l
∪

i∈Ll

Fi (2.7)

where Ll is the set of component indices of which corresponding components constitute

the lth “link set”. The complementary system state F system consist of the combination

of all unions of the complementary component states Fi, i ∈ Ll. Using De Morgan’s

rule one can obtain the formulation as the form in Equation (2.7).

2.2.3 Limit State Function

The limit state function an important function relative to the failure of a system, also is

a function connecting the variables represented the system state and the corresponding

component states that are relative to the failure of the system.

In engineering system, a system is in a “safe state” if it can fulfill the design

requirements. It is in a “failure state” if it fails to fulfill the design requirements.

If the system is on the point of failure to fulfill the design requirements, it is at the

“limit state”. In general, the state of the system can be either the “safe state” or the

“failure state”.

In order to distinguish the state of a system, the following limit state function is

often considered

g(X) = g(X1, X2, . . . , Xn)


> 0 safe state

= 0 limit state

< 0 failure state

(2.8)

where X = (X1, X2, . . . , Xn) are the basic variables of the system such as resistances

and loads. The surface g(X) = 0 is called the limit state surface.
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2.2.4 Conventional Reliability Analysis Methods

As some of the conventional reliability analysis methods, the first order reliability

method (FORM), product of conditional marginals (PCM), Dunnet-Sobel class corre-

lation matrix method, Monte Carlo (MC) simulation, and bounds on system reliability

are outlined in the following.

1) First Order Reliability Method

The first order reliability method (FORM) is one of the most important estimation

method for the reliability of engineering systems, and researchers of the engineering

systems have paid great attention to the FORM in the last decades. The FORM has

a wide application in the practical engineering system.

The “first order” in FORM means that the limit state function g(X) is linearly

approximated by use of the first order term in its Taylor expansion. The procedure of

FOSM can be expressed as

a) Consider a limit state function as

g(X) = g(X1, X2, . . . , Xn) (2.9)

where Xi are uncorrelated random variables.

b) The random variable Xi (X space) is transformed into standard normal random

variable Ui (U space) as follows

Ui = Φ−1(FX(xi)) (2.10)

where FX(•) is the marginal cumulative distribution function of X, and Φ(•) is

the cumulative distribution function of the standard normal random variable.

Then, the limit state function in X space is transformed to U space

G(U ) = G(U1, U2, . . . , Un) (2.11)

c) Reliability index in U space

From the simple geometric meaning in U space, one can find that the smallest

distance (β) from the limit state surface G(U) = 0, u∗ = (u1
∗, u2

∗, . . . , un
∗) is
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the point on the limit state surface closest to the origin, and called design point.

β can be expressed as

β =

−
n∑

i=1

∂G(u)

∂ui

∣∣∣∣
u∗

· ui
∗

√
n∑

i=1

(
∂G(u)

∂ui

∣∣∣∣
u∗

)2
(2.12)

Let

αi =
−∂G(u)

∂ui

∣∣
u∗√

n∑
i=1

(
∂G(u)

∂ui

∣∣∣∣
u∗

)2
(2.13)

Then,

ui
∗ = αi · β (2.14)

β can be obtained by solving the simultaneous nonlinear Equations (2.11), (2.12),

and (2.13).

d) The failure probability can be expressed as

Pf = Φ(−β) (2.15)

β is called reliability index.

The details of the FORM can be found in the reference3,10,29).

2) Product of Conditional Marginals

Pandey M.D. proposed the product of conditional marginals (PCM), which is an ap-

proach to estimate the multinormal distribution function effectively. The PCM method

obtained the advantages of calculation by estimating the joint normal distribution of

two variables based on the conditional fractile and conditional correlation coefficient,

and could be reasonably accurate up the 20 dimensional multinormal integrals.

In PCM method, instead of conducting the multinormal integral, the integral is

estimated by a product of conditional probability as follows18):

Φm(c, R) = P

[
(Xm ≤ cm)|

m−1
∩
k=1

(Xk ≤ ck)

]
× P

[
(Xm−1 ≤ cm−1)|

m−2
∩
k=1

(Xk ≤ ck)

]
× · · · × P (X1 < c1)

≈
m∏
k=1

Φ(ck|(k−1)) (2.16)
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where Xi, i = 1, 2, . . . ,m are normal random variables. ck|(k−1) denotes a conditional

normal fractile, and its conditional normal variable can be obtained as30)

Φ(ck|(k−1)) ≈ P

[
(Xk ≤ ck)|

k−1
∩
i=1

(Xi ≤ ci)

]
(2.17)

The general form of the conditional correlation betweenXk andXj can be expressed

as31)

r(k+1)(j+1)|k =
r(k+1)(j+1)|(k−1) − rk(k+1)|(k−1)rk(j+1)|(k−1)Bk|(k−1)√
[1− r2k(k+1)|(k−1)Bk|(k−1)][1− r2k(j+1)|(k−1)Bk|(k−1)]

(2.18)

Based on the PCM method, Yuan and Pandey32) proposed an improved PCM

(IPCM) version to improve its accuracy. The details of PCM and IPCM can be found

in the reference18,32).

3) Dunnet-Sobel Class Correlation Matrix Method

Dunnett and Sobel proposed a Dunnet-Sobel (DS) class correlation matrix, which

is specified as33)

ρij = rirj

i ̸= j, ρii = 1. (2.19)

Suppose a system consisting of k components with reliability index βi, i = 1, 2, . . . , k

and correlation matrix R≡[ρij]. Based on the DS class correlation matrix, Dunnett

and Sobel proposed an approach to estimate the joint probabilities of k variates by the

one-dimensional integral as follows17)

P12...k = P

(
k
∩
i=1

Fi

)
= Φk (β1, . . . , βk;R)

=

∫ ∞

−∞

[
ϕ(t)

k∏
i=1

Φ

(
βi − rit√
1− r2i

)]
dt (2.20)

where Φk(u1, . . . , uk;R) is the k-variate standard normal cumulative distribution func-

tion with correlation matrix R≡[ρij], and ϕ(•) denotes the one-dimensional standard

normal probability density function. The details can be found in reference17,33).

4) Monte Carlo Simulation

Monte Carlo (MC) simulation is an important tool in the pricing of derivative se-

curities in financial, project management, the risk management, and other forecasting
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fields. The essence of the MC simulation is a mathematical algorithm that involves of

repeated random or pseudorandom numbers (sampling) for the solution of the forecast-

ing model. In the system reliability analysis, the MC simulation has widely application

to the estimation of the failure probability of the system, and it provides an unique

estimate of the failure probability of the system.

In engineering system, the failure probability of the system, Pf , can be expressed

as

Pf = P (g(X) ≤ 0)

=

∫
. . .

∫
g(X)≤0

fX(x)dx (2.21)

where g(X) = g(X1, X2, . . . , Xn) is the limit state function of the system, and fX(x)

is the joint probability density function of the random vectors X = (X1, X2, . . . , Xn).

Obviously, the direct numerical integration of Equation (2.21) is usually impossible

when n is large.

In the application of MC simulation, a lot of repeated experiments with randomly

generated samples x̂i of random vectors X = (X1, X2, . . . , Xn) are performed many

times. Then the number of the samples with value of the limit state function g(x̂) less

than 0, i.e., in the failure state, are counted. Suppose N trials have been performed,

the failure probability of the system can be approximately expressed as

Pf ≈ n(g(x̂i) < 0)

N
(2.22)

where n(g(x̂i) < 0) is the number of trails with g(x̂i) < 0. It is obvious that the larger

number of experiments, N , will be required when the higher accuracy of the system

failure probability is desired.

The efficiency of the MC simulation can be improved by considering the variance

reduction techniques such as the importance sampling, the details can be found in the

reference10,19,34). However, for the practical high reliability structural systems, MC

simulation can be computationally expensive and inefficient.

5) Bounds on System Reliability

As described in Chapter 1, the computation of the probability of the system could

be an extremely difficult task, particularly when there exists a dependency among
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the component states and when the number of components is large. Usually, the

probabilities of the intersections of all combinations of components states is necessary.

For example, for a series system with two-state components, Equation (2.4) can be

written as

P (Fseries system) = P (F1) + P (F2)− P (F1 ∩ F2) + P (F3)− P (F1 ∩ F3)

−P (F2 ∩ F3) + P (F1 ∩ F2 ∩ F3) + . . . (2.23)

=
∑
i

P (Fi)−
∑
i<j

P (Fi ∩ Fj) +
∑
i<j<k

P (Fi ∩ Fj ∩ Fk)− . . .

Similarly, the expressions corresponding to Equations (2.6) and (2.7) can be obtained.

Because the computation of the system failure probability is difficult, an alterna-

tive approach is to develop upper and lower bounds on the system failure probability.

Many researchers are interesting in developing bounds on the system failure probability

that employ the individual component failure probabilities, Pi = P (Fi), and the joint

probabilities of a small number of component states, i.e., the joint failure probabilities

of two components, Pij = P (Fi) ∩ P (Fj), i < j, the joint failure probabilities of three

components, Pijk = P (Fi) ∩ P (Fj) ∩ P (Fk), i < j < k, etc.

Based on the individual component failure probabilities, Boole developed the prob-

ability bounds on a series system as35)

maxPi ≤ P (
n
∪
i=1

Fi) ≤ min(1,
n∑

i=1

Pi) (2.24)

These bounds are called as Boole bounds, and it is the narrowest possible bounds if

the given information is limit to the individual component failure probabilities36). Un-

fortunately, the bounds developed by Boole are usually too wide to be useless for the

realistic application. Based on the information of individual component failure prob-

abilities and the joint failure probabilities of two components, Kounias37), Hunter38),

and Ditlevsen39) proposed the following widely used bounds for series systems:

P1 +
n∑

i=2

max(0, Pi −
i−1∑
j=1

Pij) ≤ P (
n
∪
i=1

Fi) ≤ P1 +
n∑

i=2

(Pi −max
j<i

Pij) (2.25)

The accuracy of the bounds by Equation (2.25) depends on the ordering of the compo-

nent states, and there are n! possible ordering alternatives. The order maximizing the
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lower bound could be different from the order minimizing the upper bound40). Since

it is practically impossible to find an ordering rule that can make sure to obtain the

narrowest bounds of Equation (2.25), one have to consider all the possible n! order-

ing alternatives in order to obtain the narrowest bounds of Equation (2.25). Also,

the bounds obtained from Equation (2.25) can not guarantee the narrowest possible

bounds. These bounds are called as “KHD bounds”.

Based on the concept of KHD bounds, Hohenbichler and Rackwitz41) and Zhang42)

proposed the formula of lower bounds and upper bounds using the joint failure prob-

abilities of three components, the joint failure probabilities of four components, etc,

for series system. These bounds are called as “Zhang bounds”. Zhang’s bounds also

have the order-dependency problem similar to KHD bounds. The formulas of lower

bounds and upper bounds of Zhang’s bounds using the information up to the joint fail-

ure probabilities of three components can be expressed in Equations (2.26) and (2.27),

respectively.

P (
n
∪
i=1

Fi) ≤ P1 + P2 − P12 +
n∑

i=3

[Pi − max
k∈(2,3,...,i−1),j<k

(Pik + Pij − Pijk)] (2.26)

P (
n
∪
i=1

Fi) ≥ P1 + P2 + P12 +
n∑

i=3

max(0, Pi −
i−1∑
j=i

Pij + max
k∈(1,2,...,i−1)

i−1∑
j=1,j ̸=k

Pijk) (2.27)

For the parallel systems, based on the individual component failure probabilities,

Boole proposed the narrowest possible bounds as35,36)

max(0,
n∑

i=1

Pi − (n− 1)) ≤ P (
n
∩
i=1

Fi) ≤ minPi (2.28)

However, the bounds obtained from Equation (2.28) are usually too wide and useless

for the realistic application. There does not exist the theoretical bounds for parallel

systems using the individual component failure probabilities, the joint failure prob-

abilities of two components, and the joint failure probabilities of three components.

However, the complement of a parallel system can be converted to a series system by

use of De Morgan’s rule, and then the bounds can be obtained by using Equations

(2.25), (2.26), and (2.27).

For a general system, there does not exist the theoretical bounds formulas. One can

decompose a general system into a series system of parallel sub-systems or a parallel
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system of series subsystems, and then use the combination of the Equations (2.25),

(2.26), (2.27), and (2.28) to obtain the relaxed bounds. However, these bounds usually

are too wide and unacceptable.

2.2.5 Multi-state System Reliability

Because the methods that proposed in this research is applicable to multi-state system,

the related concepts will introduce in this section.

1) Multi-state Component

In engineering system, a component could have more than two levels of performance,

i.e., two state (perfect functioning and complete failure), during a specified period of

time. A component having only two state can be called as a two-state component, and

a component having more than two state can be called a multi-state component, which

can be expressed as

E=(E1, E2, . . . , El), j = 1, 2, . . . , l (2.29)

where l is the number of states of the component. The event that the component being

in the jth state can be expressed as Ej.

Similar to the reliability of the two-state component, the probability that a multi-

state component being in its functional states (design purpose) during a specified period

of time is the reliability of the component. The failure probability of the multi-state

component is the complement of its reliability.

2) Multi-state System

If the components of the system, as well as the entire system, only could be in

one of two possible states, i.e., functional or failure, this system is called the binary

system. If any of the components of the system or the entire system could have more

than two states, this system is called the multi-state system. Consider a system with

n multi-state components. The vectors of the states of the multi-state components can

be expressed as

Ei = (Ei1, Ei2, . . . , Eili), i = 1, 2, . . . , n j = 1, 2, . . . , li (2.30)

where Eij denotes the event that the component i being in the jth state.
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A particular state of the system can be denoted as Esystem, then, Esystem can be

written as

Esystem = f(E1,E2, . . . ,En) (2.31)

where the f(•) function consists of the combination of the events of each component,

i.e., the unions of the events of the components and/or the intersections of the events

of the components.

Similar to the binary system reliability, the probability that a multi-state system

being in its functional states (design purpose) during a specified period of time is the

reliability of the component. The failure probability of the multi-state system is the

complement of its reliability.

Multi-state system reliability models allow both the system and its components

to assume more than two levels of performance, and more realistic and more precise

representations of engineering systems can be obtained by use of multi-state reliability

models. Multi-state system reliability models are much more complex and present

major difficulties in system definition and performance evaluation. MC simulations is

one of the conventional reliability analysis method of the multi-state system.

2.3 Linear Programming Bounds Method

Linear Programming (LP) is the analysis of problems in which a linear function of a

number of variables is to be minimized or maximized when those variables are subject to

a number of restraints in the form of linear equalities and inequalities43–45). The feasible

region of the solution of the LP is a convex polyhedron, which is a set defined as the

intersection of finitely many half spaces, each of which is defined by a linear inequality.

Its objective function is real-valued affine function defined on this polyhedron. An

LP algorithm finds a point in the polyhedron where this function has the smallest (or

largest) value if such a point exists43–45).

Song and Der Kiureghian proposed the linear programming (LP) bounds method

for computing the bounds on the failure probability of general systems based on the

information of the joint failure probabilities of k components. The design variables of
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LP in the linear programming (LP) bounds method is the probabilities of the mutually

exclusive and collectively exhaustive (MECE) events of the system.

2.3.1 Mutually Exclusive and Collectively Exhaustive Events

If not any of events intersect another event in a sample space, i.e., the intersection of

two events is empty, those events are mutually exclusive. If the union of those events

cover all the events in a sample space, those events are collectively exhaustive. It is

possible that the events in a sample space are both mutually exclusive and collectively

exhaustive (MECE).

Considering a system with n two-state components, Hailperin22) divided the sam-

ple space of component states into 2n MECE events. Each MECE event consists of

a distinct intersection of the failure events Fi and their complements Fi (functional

events), i = 1, 2, . . . , n. They are called the basic MECE events and denoted by er,

r = 1, 2, . . . , 2n. For example, for a system with n = 3 two-state components, there are

23 = 8 basic MECE events (see Figure 2.3)

e1 = F1 ∩ F2 ∩ F3, e2 = F1 ∩ F2 ∩ F3,

e3 = F1 ∩ F2 ∩ F3, e4 = F1 ∩ F2 ∩ F3,

e5 = F1 ∩ F2 ∩ F3, e6 = F1 ∩ F2 ∩ F3,

e7 = F1 ∩ F2 ∩ F3, e8 = F1 ∩ F2 ∩ F3. (2.32)

2.3.2 Linear Programming Bounds Method

After Dantzig developed the simplex method in 194746), the LP has became a practical

tool. Based on an LP model of the plastic analysis, Nafday et al.47) proposed an

approach for identifying the mechanism failure modes of building frames. Corotis

and Nafday48) proposed a combined approach of the MC simulation and the LP to

estimate the system reliability of the complex structural system. The approach has

the advantage when the traditional MC simulation is inefficient for the practical high

reliability structural systems. Although the LP has been introduced for the estimation

of system reliability of the structural systems, it has not been used to estimate the
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Figure 2.3: Basic MECE event er for a system with 3 two-state components.

system failure probability directly. Developing a linear programming (LP) bounds

method, Song and Der Kiureghian first show that the LP is useful for estimating

bounds on the system failure probability based on the MECE events24,49).

Because that the basic MECE events are mutually exclusive, the probability of

any union of events can be obtained by the sum of the corresponding probabilities.

Particularly, the probability of any failure event Fi can be obtained by the sum of

the probabilities of the basic MECE events that constitute the event Fi. Similarly,

any joint failure probability can be obtained by the sum of the basic MECE events

that constitute the intersection events. For example, for a system with three two-state

components as shown in Figure 2.3, the component failure probability is expressed as

P (F1) = P1 = pm1 + pm3 + pm4 + pm7

P (F2) = P2 = pm1 + pm2 + pm4 + pm6 (2.33)

P (F3) = P3 = pm1 + pm2 + pm3 + pm5

The joint failure probabilities of two components can be expressed as

P (F1 ∩ F2) = P12 = pm1 + pm4

P (F1 ∩ F3) = P13 = pm1 + pm3 (2.34)

P (F2 ∩ F3) = P23 = pm1 + pm2
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The joint failure probability of three components can be expressed as

P (F1 ∩ F2 ∩ F3) = P123 = pm1 (2.35)

More generally, we write

P (Fi) = Pi =
∑

mr:er⊆Fi

pmr

P (Fi ∩ Fj) = Pij =
∑

mr:er⊆Fi∩Fj

pmr (2.36)

P (Fi ∩ Fj ∩ Fl) = Pijl =
∑

mr:er⊆Fi∩Fj∩Fl

pmr , etc.

It should be noted that only the joint failure probability of up to k components

such as P (Fi) and P (Fi∩Fj), i, j = 1, 2, . . . , n, and i ̸= j, is known, but any probability

of the basic MECE event er, pmr = P (er), is not known in advance.

Based on the basic axioms of probability, the above probabilities pm = {pm1 , pm2 ,

. . . , pm2n
} have the following linear constraints:

2n∑
mr=1

pmr = 1 (2.37)

pmr ≥ 0; r = 1, 2, . . . , 2n (2.38)

The lower bound and the upper bound of the system failure probability can be

obtained as the minimum and the maximum of the objective function of the LP, re-

spectively. We can formulate the LP for this analysis as follows:

minimize (maximize) cTpm

subject to A1pm = b1 (2.39)

A2pm ≥ b2

where pm = {pm1 , pm2 , . . . , pm2n
} is the vector of design variables and represents the

probabilities of the basic MECE events; c is a vector that relates the system failure

event to the component failure events; cTpm is the linear objective function; and A1

and A2 and b1 and b2 are the coefficient matrices and vectors respectively, which

represent the information given in terms of joint failure probabilities of k components.

A1 and b1 are obtained from Equation (2.36). A2 and b2 are also obtained from
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Equation (2.36), but when one has information of the form P (Fi) ≥ x or P (Fi) ≤ x

rather than P (Fi) = x. Also, there are additional linear constraints based on the

axioms of probability (Equations (2.37) and (2.38))24).

For the above three-component system, if one knows P (F1) = 0.01, P (F2) = 0.02,

and P (F3) = 0.03, and the objective function is P (F1 ∩ F2 ∩ F3) = pm1 , then A1 and

b1 based on Equation (2.36) and cT are expressed as

A1 =


1 0 1 1 0 0 1 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0

 (2.40)

b1 =


0.01

0.02

0.03

 (2.41)

cT =
[
1 0 0 0 0 0 0 0

]
(2.42)

2.3.3 Size of Linear Programming Problem

The size of LP problem would increase rapidly with the increase of the number of design

variables and constraints. For a system with n two-state components, the number of

design variables (Nd) can be expressed as

Nd = 2n (2.43)

There are also one equality and 2n inequality constraints resulting from the probability

axioms (Equation (2.37) and Equation (2.38)), respectively, and there are
(
n
1

)
+
(
n
2

)
+

· · · +
(
n
k

)
equality or inequality constraints resulting from Equation (2.36) when the

complete set of joint failure probabilities of each combination of k components, i.e., the

joint failure probabilities of all combinations up to each combination of k component,

is available. Thus, the total number of constraints of the LP bounds method, Nc, can

be expressed as

Nc = 2n + 1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

k

)
(2.44)

Note that we do not need to know the all set of joint failure probabilities of k compo-

nents at a particular level. Any partial set of joint failure probabilities of k components

can be used.
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Kiureghian and Song28) mentioned that the LP bounds method developed for two-

state systems is equally applicable to multi-state systems. For example, consider a

system with n components, and the ith component having mi states, i = 1, 2, . . . , n.

The number of basic MECE events of the system (the number of design variables) can

be expressed as

Nds =
n∏

i=1

mi (2.45)

From the Equations (2.43) and (2.44), one can find that the number of design

variables, Nd, grows exponentially with the number of components, and the number of

constraints, Nc, would also be enormously large when a system is large. For a system

with n two-state components and the complete set of joint failure probabilities up to

k components, k = 3, then Nd = 262144 and Nc = Nd + 987 + 1 when n = 18. When

n = 100, Nd ≈ 1.27 × 1030 and Nc = Nd + 166750 + 1. Also, for the same number

of components, the number of design variables, Nds , as shown in Equation (2.45) will

rapidly grow with the increasing number of component states when the LP bounds

method is extended to multi-state systems.

2.3.4 Advantages and Disadvantages of the Linear Program-

ming Bounds Method

The advantages and disadvantages of the LP bounds method are summarized as follows:

1) Advantages

The LP bounds method has a number of important advantages over other existing

methods (e.g., Boole bounds35) or Zhang bounds41,42)). They include:

a) any “level,” i.e., the number (k) of components considered in the joint probabil-

ities of the states, of information can be used, in the form of both in equalities

and inequalities;

b) the statistical dependency among component states is easily accounted for in

terms of their joint probabilities;

c) since the LP approach can obtain the optimal solution, the method guarantees the

narrowest possible bounds for the given information of the individual component
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probabilities and the joint probabilities of component states;

d) the method is applicable to a general system, including a system that is nei-

ther pure series nor pure parallel and a system for which no theoretical formula

exists25–28,50).

There are two advantages of the LP bounds method over the MC simulation. One

is that the MC simulation can be impractical when the failure probability is very

small, whereas the LP bounds method is unaffected by the magnitude of the failure

probability. Also, the MC simulation is not applicable when the information on the

statistical characteristics of one component or on the correlation between one compo-

nent and another is missing; however, the LP bounds method is still applicable under

such circumstances.

2) Disadvantages

Obviously, the main shortcoming of the LP bounds method is that the size of

LP problem grows rapidly with the number of components as shown in Section 2.3.3.

Even though there are many advanced algorithms for solving the large size of LP

problems, e.g., the column generation method by Jaumard et al.51), the size issue of

LP problem of the LP bounds method would still be a hindrance if one want to use

the LP bounds method to estimate the bounds on the failure probabilities of a large

system. Suppose one has an LP solver that can barely handle 218 = 262144 design

variables and all the constraints of up to the complete set of joint failure probabilities

of each combination of up to 3 components, then in theory the limitation of the number

of two-state components in the LP bounds method is 18. Clearly, the size issue of LP

problem limited the extension of the LP bounds method for the multi-state systems to

a system with a very small number of components.

2.4 Multi-scale System Reliability Analysis

In order to extend the applicability of the LP bounds method, a multi-scale approach

has been proposed by Der Kiureghian and Song to deal with a system with a larger

number of components. The system is decomposed into subsystems and a hierarchy
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Figure 2.4: Diagram of the multi-scale system reliability analysis.

of analysis is performed by considering each subsystem or set of subsystems “sepa-

rately”28).

2.4.1 Outline of Multi-scale System Reliability Analysis

In multi-scale system reliability analysis, a subset of (a group of) components of the

system is considered as a single “super-component”52). If a system with n components

has only 1 “super-component” consisting of k components, then this system can be

considered as a system with 1 “super-component” and the n−k remaining components.

The size of LP problem can be reduced by a factor of 2k−1 in this system. Similar to a

system with 1 “super-component”, the above approach can be proceeded again when

a system has more than one “super-component”, then the size of LP problem for the

entire system can be reduced.

The diagram of multi-scale system reliability analysis is shown in Figure 2.4, where

a single “super-component” denoted by the bracket number [i], i = 1, 2, . . . , nsc, and nsc

is the number of “super-components”. Each “super-component” consists of a group
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of components, and of course each “super-component” is a system itself. In order

to obtain the bounds on the entire system, it is necessary to compute bounds on

each “super-component” and the joint failure probabilities of a “super-component”

with other components or “super-components”. The bounds on failure probability of

“super-component” [i] (the bounds on the failure probabilities of subsystem [i]), P[i],

can be obtained by the LP bounds method. The bounds on the joint failure probability

of “super-components” such as P[i,j] (the bounds on the joint failure probabilities of

“super-components” [i] and [j]), and the bounds on the joint failure probabilities of

“super-components” and components such as P[i],j (the bounds on the joint failure

probabilities of “super-component” [i] and component j) can also be obtained by the LP

bounds method. Since each “super-component” is treated as a component at the system

level, these bounds on the failure probabilities of the “super-components” and the joint

failure probabilities of “super-components” with “super-components” or components

can be treated as the constraints in solving the LP problem for the entire system. Then

the bounds on the entire system can be obtained by the LP bounds method.

Similar to the idea of the “super-components”, a subset of the “super-components”

can be considered as a “super-super-components”. Also, a subset of the “super-super-

components” can be considered as a “super-super-super-components” again. Then the

size of LP problem for the entire system can be reduced to a manageable size. In

essence, instead of solving a single large size of LP problem, the multi-scale system

reliability analysis turns to solve a number of smaller size of LP problem by using the

LP bounds method.

2.4.2 Guidelines for Effective Selection of “Super-components”

In the multi-scale system reliability analysis, the decomposition of the entire system

into subsystems would cause the loss of the information on the components for the

entire system level such as the relationship among the “super-components”. Such a

loss of information leads to the relaxation of the feasible domain that could lead to the

wider bounds of the sytem reliability.

There are two factors contribute to the relaxation of the feasible domain by us-

ing multi-scale system reliability analysis: the decomposition approach of the entire
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system (the selection of the “super-components”) and the accuracy of the bounds

on the failure probability of each “super-component”. The different decomposition

approaches will lead to the different “super-compnents” in which the number of com-

ponents and correlation coefficients among compoents are different. Then, different

decomposition approaches would cause the different relaxtion of the fesible domain

and different accuracy of the failure probability of the entire system. The bounds on

the failure probability of each “super-component” that estimated by the LP bounds

methods such as bounds on the failure probability of the “super-component” [1] as

shown in Figure 2.4, will be used as the information of the failure probabilities of the

“super-components”. Then, different accuracy of the bounds on the failure probability

of each “super-component” could cause the different relaxtion of the fesible domain

and a direct effect to the accuracy of the failure probability of the entire system.

Obviously, the selection of the “super-components” is the first step and have im-

portant effect on the the accuracy of system failure probabilities of the entire system,

thus a set of guidelines for the effective selection of the “super-components” have been

listed by Song and Der kiureghian as follows28):

1) Ideally, no components can belong to more than one “super-component”.

2) It is desirable that each “super-component” has as few external states as possible,

preferably only two.

3) If the selected “super-components” have identical probabilistic characteristics,

there is a significant advantage.

4) If the failure probabilities of the selected “super-components” are statistically

independent of each other, the significant advantage can be obtained.

5) If the selected “super-components” are disjoint, i.e., the joint failure probabilities

of the “super-components” are zero, the advantage can be gained.

6) The most natural candidates for the “super-components” are series and parallel

subsystems with the physical representation of the system.

7) Since there could be a lot of decomposition schemes, the decomposition that

yields the narrowest bounds is the best scheme.



28 CHAPTER 2. PAST RESEARCH ON SYSTEM RELIABILITY

2.4.3 Advantages and Disadvantages of Multi-scale System

Reliability Analysis

The multi-scale system reliability analysis decomposes the entire system into smaller

size of the subsystems denoted as the “super-components”, then the large size of LP

problem on the system failure probabilities can be obtained by solving a number of

smaller size of LP problem.

1) Advantages

The multi-scale system reliability analysis provides an approach that allows the

determination of the bounds on the reliability of a system with a large number of

components by using the LP bounds method. Like the LP bounds method, the wide

applicability for many systems is one of the advantages of the multi-scale system re-

liability analysis. Also like the LP bounds method, the multi-scale system reliability

analysis have the same advantages over the MC simulation as shown in Section 2.3.4.

The advantages and disadvantages of the LP bounds method are summarized as fol-

lows:

2) Disadvantages

There are three obvious disadvantages for the multi-scale system reliability analysis.

First, ideally each component of the system should belong to at most one “super-

component” for the multi-scale system reliability analysis. Since there are many cases

in which numerous components are common in different failure modes, it could be

difficult or impossible to select the “super-components” under such circumstances.

Second, the size of any “super-component” will still be limited by the restriction on

the LP bounds method, which means the limitation of the number of components in

each “super-component” is the same with the limitation of the number of components

of the LP bounds method. Finally, even though guidelines for the effective selection of

the subsystems have been enumerated, the selection might still be difficult or impossible

for a general system, rendering the multi-scale approach difficult to apply.
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2.5 Reliability Analysis of A System Subjected to

Common Source of Hazard

Consider a system subjected to a common source of hazard such as earthquake, and

assume that there are several critical failure modes. The correlation among failure

modes of the system could be strong because of the common source of hazard. When

the extended RLP bounds method based on failure modes is applied, a system with

strong correlation among failure modes usually requires values of kf and k(i) larger than

those for a system with weaker correlations in order to achieve comparable accuracy.

Such strong correlation among failure modes can be avoided by considering conditional

failure probability of the system53).

Suppose that X is a random variable causing the statistical dependence among

failure modes, which we call a common source random variable (CSRV). Let fX(x)

be the probability density function (PDF) of X. Then, using the theorem of total

probability and applying Gaussian integration, we may estimate the system failure

probability (P (Fs)) by

P (Fs) =

∫ ∞

0

P (Fs|X = x)fX(x)dx (2.46)

where P (Fs|X = x) is the conditional system failure probability given that X = x.

The integration of Equation (2.46) can be conducted by using Gaussian integration

P (Fs) ≈
∫ xmax

xmin

P (Fs|X = x)fX(x)dx (2.47)

≈
N∑
i=1

wiP (Fs|X = x)fX(xi)

where [xmin, xmax] is the range of x used for Gaussian integration. N is the number of

points in the Gaussian integration, the xi (i = 1, 2, . . . , N) are abscissas, and wi is the

corresponding weight factor for xi.

The values of xmin and xmax can be determined based on the expected order of the

accuracy of P (Fs). Since P (Fs|X = x) is a monotonically increasing function, the

center of gravity of the product P (Fs|X = x)fX(x) shifts to the right of the mean

of X. In Equation (2.47), because the area under this product to the left of xmin
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and to the right of xmax is neglected, the range should be wide enough so that the

neglected area does not cause a significant error in the estimate. One might consider

P (X ≤ xmin) = 10−β+2 and P (X ≥ xmax) = 10−β−2 where the expected order of

accuracy is 10−β. For example, if P (Fs) ≈ 10−4, xmin and xmax was determined so that

P (X ≤ xmin) ≈ 10−2 and P (X ≥ xmax) ≈ 10−6.

The number N used in the Gaussian integration is considered acceptable if the

differences between the lower bounds and the upper bounds of system failure probability

by two Gaussian integration with N − 1 and N are negligible.

2.6 Summary

In this chapter, some basic concepts of reliability analysis and conventional reliability

analysis method are reviewed. The details of the LP bounds method and the multi-

scale system reliability analysis have been introduced. The advantages and disadvan-

tages of the LP bounds method have been summarized, respectively. Even though the

multi-scale system reliability analysis have extended the applicability of the LP bounds

method, the main drawback of the LP bounds method, i.e., the size of LP problem

grows rapidly with the number of components, has not been solved. Also, the multi-

scale system reliability analysis has its own disadvantages as shown in Section 2.4.3.

The challenge of solving the size of LP problem has been remained, which lead to the

new method of this research that could solve this size problem of LP.



Chapter 3

RELAXED LINEAR

PROGRAMMING BOUNDS

METHOD

3.1 Overview

This chapter will introduce a new method named the relaxed linear programming

(RLP) bounds method in order to estimate efficiently and accurately the bounds of the

reliability of the pure series systems as well as pure parallel systems. The chapter is

composed of the following sections:

In section 3.2, the concept of universal generating function (UGF) and the LP

bounds method using UGF is introduced.

In section 3.3, the relaxed linear programming (RLP) bounds method and the

details of the formulation of constraints of the RLP bounds method is introduced.

In section 3.4, the variation of the RLP bound method (reduction of constraints)

are proposed. Numerical examples have been used to demonstrate its application.

In section 3.5, the variation of the RLP bounds method (incomplete information)

are introduced. Numerical examples have been used to demonstrate its application.

In section 3.6, the advantages and disadvantages of the RLP bounds method is

summarized.

31



32 CHAPTER 3. RELAXED LINEAR PROGRAMMING BOUNDS METHOD

3.2 Universal Generating Function and Reliability

Analysis

3.2.1 Introduction to Universal Generating Function

The universal generating function (UGF) is an important tool in discrete mathematics

fields, by which various problems can be solved in terms of an uniform program54).

Because the failure state and safe state of the system are two discrete states in discrete

mathematics fields taking advantage of UGF is considered in this research. A brief

introduction of the UGF provided in the following; the further details of the UGF can

be found in APPENDIX.

The basic ideas of using the UGF technique in the engineering systems analysis were

proposed by Ushakov55,56). In the last decades, Lisniaski and Levitin developed and

completed the application of the UGF technique for evaluating and optimizing relia-

bility indices of systems15,57–59). The UGF technique allows one to formulate the entire

system states based on the states of its components by using algebraic procedures60).

Consider a discrete random variable X with a sampling space x and the corre-

sponding probability mass function (pmf), pj, which can be expressed as

x = (x1, x2, . . . , xm)

pj = P (X = xj); j = 1, 2, . . . ,m (3.1)

p = (p1, p2, . . . , pm)

Similar to a moment generating function ofX(details of moment generating function

can be found in APPENDIX), another function related to X that determines its pmf

can be expressed as

uX(z) = E(zX)

= p1z
x1 + p2z

x2 + · · ·+ pnz
xmi

=
m∑
j=1

pjz
xj (3.2)

in which E(zX) denotes the expectation of zX .
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This function is usually called the z-transform of X. The more properties and de-

tails about the generating function and z-transform is referred to the books by Grim-

mentt and Strizaker61) and Ross62).

Consider n independent discrete random variables X1, X2, . . . , Xn with respective

sample space xi = (xi,1, xi,2, . . . , xi,m), and the corresponding pmf pi = (pi,1, pi,2, . . . ,

pi,m). The z-transform of each random variable Xi can be expressed as

uXi
(z) =

mi∑
j=1

pi,jz
xi,j (3.3)

and the z-transform of the sum of Xi is the product of the individual z-transform of

these variables as follows:

u n∑
i=1

Xi

(z) = E

(
z

(
n∑

i=1
Xi

))

= E

(
n∏

i=1

zXi

)

=
n∏

i=1

uXi
(z) (3.4)

=

m1∑
j1=1

m2∑
j2=1

· · ·
mn∑
jn=1

[(
n∏

i=1

pi,ji

)
z(x1,j1

+x2,j2
+···+xn,jn )

]

Note that when random variables X and Y are independent of each other, E(XY ) =

E(X) · E(Y ).

Levitin60) defined the UGF of the function by replacing (x1,j1 + x2,j2 + · · · + xn,jn)

in Equation (3.4) with f(x1,j1 , x2,j2 , . . . , xn,jn), which denotes an arbitrary function of

X1, X2, . . . , Xn, as

U(z) =

m1∑
j1=1

m2∑
j2=1

· · ·
mn∑
jn=1

[(
n∏

i=1

pi,ji

)
zf(x1,j1

,x2,j2
,...,xn,jn )

]
(3.5)

Then, the UGF of a random variable can simply be defined by Equation (3.3).

For example, consider two random variables X1 and X2 with a sample space x1 =

(1, 2) and pmf p1 = (0.3, 0.7), and x2 = (1, 2, 4) and p2 = (0.2, 0.3, 0.5). In order to

obtain the pmf of the function Y = X1
X2 , all of the possible combinations of the values

of X1 and X2 should be considered. The UGF corresponding to this pmf takes the
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form:

UY (z) = uX1(z)⊗
f
uX2(z)

= (0.3z1 + 0.7z2)⊗
f
(0.2z1 + 0.3z2 + 0.5z4)

= 0.06zf(1,1) + 0.14zf(2,1) + 0.09zf(1,2) + 0.21zf(2,2)

+0.15zf(1,4) + 0.35zf(2,4)

= 0.06z(1
1) + 0.14z(2

1) + 0.09z(1
2) + 0.21z(2

2) + 0.15z(1
4) + 0.35z(2

4)

= 0.06z1 + 0.14z2 + 0.09z1 + 0.21z4 + 0.15z1 + 0.35z16 (3.6)

where f(X1, X2) = X1
X2 and ⊗

f
is an operation based on the function f .

By collecting the like terms in Equation (3.6), one can obtain

UY (z) = 0.30z1 + 0.14z2 + 0.21z4 + 0.35z16 (3.7)

The sample space and pmf of the variable Y is y=(1, 2, 4, 16) and py=(0.30, 0.14, 0.21,

0.35), respectively.

Note that all of the combinations of the values of variables X1, X2, . . . , Xn are

MECE and the total number of possible combinations is

N =
n∏

i=1

mi (3.8)

3.2.2 LP Bounds Method using UGF

This section will propose an approach to introduce the UGF into the LP bounds

method. The number of design variables in the LP of this approach is still the same

with that of the LP bounds method; however, it will be extend further in the next

section.

Consider a system consisting of n statistically dependent components and suppose

that the ith component has mi possible states, i = 1, 2, . . . , n, then the UGF of the

component can be defined as

ui(z) =

mi∑
j=1

pi,jz
xi,j ; i = 1, . . . , n (3.9)

where the exponent xi,j of z
xi,j encodes the state that the ith component is in state j,

pi,j denotes the probability corresponding to that state63).
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For example, an UGF of a component with two states, F and F , has two terms:

u(z) = p1z
0 + p2z

x (3.10)

where the 0 of z0 encodes the state that the component fails, while the x of zx encodes

the state that this component survives; p1 and p2, are the failure probability of this

component and its complement, respectively.

By extending Equation (3.5), the UGF of the system with statistically dependent

components can be expressed as

U(z) =

m1∑
j1=1

m2∑
j2=1

· · ·
mn∑
jn=1

(
pj1,j2,...,jnz

f(x1,j1
,x2,j2

,...,xn,jn )
)

(3.11)

where the exponents f(x1,j1 , x2,j2 , . . . , xn,jn) of zf(x1,j1
,x2,j2

,...,xn,jn ) encode the system

states consisting of its components states (each system state corresponds to one basic

MECE events), pj1,j2,...,jn denote the probabilities corresponding to its system states.

Because all of the combinations of the values of X1, X2, . . . , Xn are MECE, the

number of possible combinations of the values of statistically dependent X1, X2, . . . , Xn

is also expressed by Equation (3.8).

In the system with 3 two-state components as shown in Figure 3.1, the UGF of the

system can be expressed as

U(z) = p1,1,1z
0 + p2,1,1z

f(x1) + p1,2,1z
f(x2) + p1,1,2z

f(x3)

+p2,2,1z
f(x1,x2) + p2,1,2z

f(x1,x3) + p1,2,2z
f(x2,x3) (3.12)

+p2,2,2z
f(x1,x2,x3)

where the 0 of z0 encodes the state that no component survives, and p1,1,1 is the

probability corresponding to the state encoded by the 0 of z0; the f(x1) of z
f(x1), f(x2)

of zf(x2), and f(x3) of zf(x3), respectively, encodes the state that only component 1,

only component 2, and only component 3 survives, and p2,1,1, p1,2,1, and p1,1,2 is the

probability corresponding to the state encoded by the f(x1) of z
f(x1), f(x2) of z

f(x2),

and f(x3) of zf(x3), respectively; the f(x1, x2) of zf(x1,x2) encodes the state that only

both components 1 and 2 survive, and p2,2,1 is the probability corresponding to the

state encoded by the f(x1, x2) of zf(x1,x2); the f(x1, x2, x3) of zf(x1,x2,x3) encodes the
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Figure 3.1: Basic MECE event er for a system with 3 two-state components.

state that all components survive, and p2,2,2 is the probability corresponding to the

state encoded by the f(x1, x2, x3) of z
f(x1,x2,x3), and so on.

The UGF of the system expressed by Equation (3.12) has 23 = 8 terms, each of

which corresponds to one of the basic MECE events of the system and its corresponding

probability as described in Section 2.3.2. Taking the definition of the probability of

basic MECE events described in the Section 2.3.2 into account, the failure probabilities

of the basic MECE events of this system can be described as

pm1 = p(e1), pm2 = p(e2),

pm3 = p(e3), pm4 = p(e4),

pm5 = p(e5), pm6 = p(e6), (3.13)

pm7 = p(e7), pm8 = p(e8).

Let e(zf(•)) denote the event that the system is in the state encoded by f(•) of

zf(•). Comparing f(•) with Figure 2.3, one can find the following relationships.

e(z0) = e1, e(zf(x1)) = e2,

e(zf(x2)) = e3, e(zf(x3)) = e4,

e(zf(x1,x2)) = e5, e(zf(x1,x3)) = e6, (3.14)

e(zf(x2,x3)) = e7, e(zf(x1,x2,x3)) = e8.
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Then, the following probability relationships can be obtained.

p1,1,1 = pm1 , p2,1,1 = pm2 ,

p1,2,1 = pm3 , p1,1,2 = pm4 ,

p2,2,1 = pm5 , p2,1,2 = pm6 , (3.15)

p1,2,2 = pm7 , p2,2,2 = pm8 .

Similarly, one can find that the number of terms of the UGF for a system with

n two-state components is 2n, each of which corresponds to one of the basic MECE

events of the system and its corresponding probability. Obviously, the probabilities

pmr ’s serve as the design variable in LP similar to Equation (2.39). Thus, we still have

the same hindrance in the application of the UGF to a large system as the LP bounds

method. Yet, the UGF allows one to reduce considerably the computational burden

by using simple algebraic procedures as described in the following section.

3.3 Relaxed Linear Programming Bounds Method

3.3.1 Introduction to Relaxed Linear Programming Bounds

Method

1) UGF for Relaxed LP Bounds Method

Consider a system consisting of n components, and suppose that the component

i has two possible states, for i = 1, 2, . . . , n. A conceptually simplified UGF of the

system can be expressed as

U(z) = p1z
0 + p2z

x1 + p3z
x2 + · · ·+ pn+1z

xn

+pn+2z
2x1 + pn+3z

2x2 + · · ·+ p2n+1z
2xn

+p2n+2z
3x1 + p2n+3z

3x2 + · · ·+ p3n+1z
3xn + . . . (3.16)

+p(n−2)n+2z
(n−1)x1 + p(n−2)n+3z

(n−1)x2 + · · ·+ p(n−1)n+1z
(n−1)xn

+pn2−n+2z
nx

where the 0 of z0 encodes the subset of the state in which no component survives,

and p1 is the probability corresponding to the state encoded by the 0 of z0; the x1
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of zx1 encodes the subset of the state in which only component 1 survives, and p2 is

the probability corresponding to the state encoded by the x1 of zx1 ; the 2x1 of z2x1

encodes the portion of the subsets of the states in which only two components including

component 1 survive, and pn+2 is the probability corresponding to the state encoded

by the 2x1 of z2x1 ; the union of all states encoded by the 2xi of z
2xi , i = 1, 2, . . . , n, is

the subset of the states in which only two components survive, the sum of associated

probabilities is the probability corresponding to the states that only two components

survive; the nx of znx encodes the subset of the state in which all components survive,

and pn2−n+2 is the probability corresponding to the state encoded by the nx of znx,

and so on64,65).

Note that these events, like the one encoded by z2xi , are not the basic MECE

events. However, the union of all events encoded by zjxi for i = 1, 2, . . . , n, (Ej),

is mutually exclusive with z0, znx, and the union of all events encoded by zkxi (Ek),

(j, k=1,2,. . . , n − 1, k ̸= j). Note that Ej is the event that exactly j component

survives. Then, clearly z0, znx, and Ej (j = 1, 2, . . . , n− 1) are collectively exhaustive.

2) LP Problem

Similar to the LP bounds method, the linear objective function can be obtained

by the corresponding matrix related to the system failure based on Equation (3.16).

p = {p1, p2, . . . , pn2−n+2} in Equation (3.16) can serve as the design variables of LP in

Equation (2.39). The component failure probabilities and the joint failure probabilities

of components are also the equality constraints or inequalities constraints but not the

same with that of the LP bounds method. The details is expressed as follows:

a) Objective Function

From Equation (3.16), one can easily find the objective function of the LP for a

series system, cTpr, and the vector c that relates the system failure event can be

expressed as

cT = [1 1 . . . 1 0] (3.17)

Also, one can easily find the objective function of the LP for a parallel system, cTpr,

and the vector c that relates the system failure event can be expressed as

cT = [1 0 0 . . . 0] (3.18)



3.3. RELAXED LINEAR PROGRAMMING BOUNDS METHOD 39

b) Design Variables

Similar to Equation (2.39), the probabilities pr’s in the UGF of the system serve as

the design variables in the LP, and the number of design variables can be expressed as

Nd = n2 − n+ 2 (3.19)

Also, the given information are component failure probabilities, the joint failure proba-

bilities of components, and the probabilities of design variables is unknown in advance.

c) Constraints

Based on the basic axioms of probability, the probabilities pr’s in Equation (3.16)

have the following linear constraints:

n2−n+2∑
r=1

pr = 1 (3.20)

pr ≥ 0; r = 1, . . . , n2 − n+ 2 (3.21)

Similar to the LP bounds method, the constraints of the above approach is usually

based on the component failure probabilities and the joint failure probabilities of two

components or three components; however, the formulation of constraints in this ap-

proach is much different from that of the LP bounds method. The constraints of this

approach consisting of equalities and inequalities are based on the relaxed bounds on

the component failure probabilities and relaxed bounds on the joint failure probabilities

of components, which could cause a relaxed bounds on the failure probability of the

system. We called the above approach for bounds on the system reliability based on

Equation (3.16) as the Relaxed Linear Programming (RLP) bounds method, and the

constraints of the RLP bounds method will be introduced in the following Subsection.

3.3.2 Formulation of Constraints

The given information, i.e., the component failure probabilities and the joint failure

probabilities of two components or three components, will take the expression of the

relaxed bounds in the RLP bounds method. The details of these relaxed bounds will

be introduced step by step in this Section.
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Figure 3.2: MECE event er for a three-event sample space.

Relaxed Bounds on Component Failure Probability

Using a system with 3 two-state components as shown in Figure 3.1, the concept of the

relaxed bounds on the component failure probabilities is introduced first. The UGF of

the 3 two-state components system can be expressed as

U(z) = p1z
0 + p2z

x1 + p3z
x2 + p4z

x3

+p5z
2x1 + p6z

2x2 + p7z
2x3 + p8z

3x (3.22)

The MECE events corresponding to the above system states are shown in Figure 3.2.

Comparing Figure 3.1 with Figure 3.2, the following relationships among the events

encoded by z0, z3x, zjxi (i = 1, 2, 3, j = 1, 2), and the basic MECE events can be

expressed as

e(z0) = e1, e(zx1) = e2,

e(zx2) = e3, e(zx3) = e4,

e(z3x) = e8, e(z2x1) ⊂ (e5 ∪ e6) , (3.23)

e(z2x2) ⊂ (e5 ∪ e7) , e(z2x3) ⊂ (e6 ∪ e7) .
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The corresponding probability relationships can be expressed as

p1 = pm1 , p2 = pm2 ,

p3 = pm3 , p4 = pm4 ,

p8 = pm8 , p5 < pm5 + pm6 , (3.24)

p6 < pm5 + pm7 , p7 < pm6 + pm7 .

The relationships among the union of the events encoded by zjxi (i = 1, 2, 3, j =

1, 2), and the basic MECE events can be find as

(e(zx1) ∪ e(zx2) ∪ e(zx3)) = (e2 ∪ e3 ∪ e4) ,(
e(z2x1) ∪ e(z2x2) ∪ e(z2x3)

)
= (e5 ∪ e6 ∪ e7) . (3.25)

The corresponding probability relationships can be expressed as

p2 + p3 + p4 = pm2 + pm3 + pm4 ,

p5 + p6 + p7 = pm5 + pm6 + pm7 . (3.26)

The constraints of this system can be derived as follows:

1) The bounds of component failure probabilities can be expressed as

P (F1) = P1

 > p1 + p3 + p4

< p1 + p3 + p4 + p6 + p7

P (F2) = P2

 > p1 + p2 + p4

< p1 + p2 + p4 + p5 + p7

(3.27)

P (F3) = P3

 > p1 + p2 + p3

< p1 + p2 + p3 + p5 + p6

p1+p3+p4 corresponds to the probabilities of states that no component survives

and only one component except component 1 survives. p5 + p6 + p7 corresponds

to the probabilities of states that only two components survive. One can easily

find that P1 is greater than p1 + p3 + p4, and smaller than p1 + p3 + p4 + p5 +

p6 + p7. Furthermore, because p5 is the probability corresponding to the state

encoded by the 2x1 of z2x1 , i.e., the part of the states that only two components
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including component 1 survive, p5 can be excluded from the inequality. The other

inequalities can be derived similarly.

2) The joint failure probabilities of two components can be expressed as

P (F1 ∩ F2) = P12

= p1 + p4

P (F1 ∩ F3) = P13

= p1 + p3 (3.28)

P (F2 ∩ F3) = P23

= p1 + p2

p1+p4 corresponds to the probabilities of states that no component survives and

only component 3 survives. One can easily find that P12 equals to p1 + p4 in this

system. The other inequalities can be derived similarly.

3) Obviously the joint failure probability of three components is the failure proba-

bility of all components in this system, and it can be expressed as

P (F1 ∩ F2 ∩ F3) = P123

= p1 (3.29)

4) From Equation (2.33), one can find that the sum of P (F1), P (F2), and P (F3) can

be expressed as

P (F1) + P (F2) + P (F3)

= P1 + P2 + P3

= 3pm1 + 2(pm2 + pm3 + pm4) + pm5 + pm6 + pm7

=

(
3

1

)
pm1 +

(
2

1

)
(pm2 + pm3 + pm4) +

(
1

1

)
(pm5 + pm6 + pm7) (3.30)

Comparing the relationships shown in Equations (3.24), (3.26), and (3.30), the

sum of P (F1), P (F2), and P (F3) can also be expressed as

P (F1) + P (F2) + P (F3)

=

(
3

1

)
p1 +

(
2

1

)
(p2 + p3 + p4) +

(
1

1

)
(p5 + p6 + p7) (3.31)
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Note that when one has information such as P (Fi) ≥ x or P (Fi) ≤ x rather than

P (Fi) = x, the equalities (Equations (3.30) and (3.31)) will also change to the

inequalities.

From this simple example, we have shown the basic concept of the relaxed bounds on

the component failure probabilities (Equations (3.27) and (3.31)) in the RLP bounds

method. From Equations (3.28) and (3.29), one can also find that the joint failure

probabilities of two components or three components in the RLP bounds method are

still equalities in a system with three two-state components. However, when the num-

ber of components of the system is greater than 3, the joint failure probabilities of

two components will take the expression of the bounds in the RLP bounds method.

Since the bounds on system reliability based on the component failure probabilities

is often unacceptably wide, we will introduce the relaxed bounds on the joint failure

probabilities of two components in the following example.

Relaxed Bounds on Joint Failure Probability of Two Components

Second, let us consider a system with four two-state components. Then, the UGF of

the system can be expressed as

U(z) = p1z
0 + p2z

x1 + p3z
x2 + p4z

x3 + p5z
x4

+p6z
2x1 + p7z

2x2 + p8z
2x3 + p9z

2x4 (3.32)

+p10z
3x1 + p11z

3x2 + p12z
3x3 + p13z

3x4 + p14z
4x

This system consists of 24 = 16 basic MECE events, they can be expressed as

e1 = F1 ∩ F2 ∩ F3 ∩ F4, e2 = F1 ∩ F2 ∩ F3 ∩ F4,

e3 = F1 ∩ F2 ∩ F3 ∩ F4, e4 = F1 ∩ F2 ∩ F3 ∩ F4,

e5 = F1 ∩ F2 ∩ F3 ∩ F4, e6 = F1 ∩ F2 ∩ F3 ∩ F4,

e7 = F1 ∩ F2 ∩ F3 ∩ F4, e8 = F1 ∩ F2 ∩ F3 ∩ F4,

e9 = F1 ∩ F2 ∩ F3 ∩ F4, e10 = F1 ∩ F2 ∩ F3 ∩ F4,

e11 = F1 ∩ F2 ∩ F3 ∩ F4, e12 = F1 ∩ F2 ∩ F3 ∩ F4,

e13 = F1 ∩ F2 ∩ F3 ∩ F4, e14 = F1 ∩ F2 ∩ F3 ∩ F4,
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e15 = F1 ∩ F2 ∩ F3 ∩ F4, e16 = F1 ∩ F2 ∩ F3 ∩ F4.

From the the definition of the events encoded by z0, z4x, zjxi (i = 1, 2, 3, 4, j =

1, 2, 3), the following relationships among the events encoded by z0, z4x, zjxi (i =

1, 2, 3, 4, j = 1, 2, 3), and the basic MECE events can be expressed as

e(z0) = e1, e(zx1) = e2,

e(zx2) = e3, e(zx3) = e4,

e(zx4) = e5, e(z4x) = e16,

e(z2x1) ⊂ (e6 ∪ e7 ∪ e8) , e(z2x2) ⊂ (e6 ∪ e9 ∪ e10) , (3.33)

e(z2x3) ⊂ (e7 ∪ e9 ∪ e11) , e(z2x4) ⊂ (e8 ∪ e10 ∪ e11) ,

e(z3x1) ⊂ (e12 ∪ e13 ∪ e14) , e(z3x2) ⊂ (e12 ∪ e13 ∪ e15) ,

e(z3x3) ⊂ (e12 ∪ e14 ∪ e15) , e(z3x4) ⊂ (e13 ∪ e14 ∪ e15) .

The corresponding probability relationships can be expressed as

p1 = pm1 , p2 = pm2 ,

p3 = pm3 , p4 = pm4 ,

p5 = pm5 , p6 < pm6 + pm7 + pm8 ,

p7 < pm6 + pm9 + pm10 , p8 < pm7 + pm9 + pm11 , (3.34)

p9 < pm8 + pm10 + pm11 , p10 < pm12 + pm13 + pm14 ,

p11 < pm12 + pm13 + pm15 , p12 < pm12 + pm14 + pm15 ,

p13 < pm13 + pm14 + pm15 , p14 = pm16 .

The relationships among the union of the events encoded by zjxi (i = 1, 2, 3, 4,

j = 1, 2, 3), and the basic MECE events can be find as

(e(zx1) ∪ e(zx2) ∪ e(zx3) ∪ e(zx4)) = (e2 ∪ e3 ∪ e4 ∪ e5) ,(
e(z2x1) ∪ e(z2x2) ∪ e(z2x3) ∪ e(z2x4)

)
= (e6 ∪ e7 ∪ e8 ∪ e9 ∪ e10 ∪ e11) , (3.35)(

e(z3x1) ∪ e(z3x2) ∪ e(z3x3) ∪ e(z3x4)
)
= (e12 ∪ e13 ∪ e14 ∪ e15) .
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The corresponding probability relationships can be expressed as

p2 + p3 + p4 + p5 = pm2 + pm3 + pm4 + pm5 ,

p6 + p7 + p8 + p9 = pm6 + pm7 + pm8 + pm9 + pm10 + pm11 , (3.36)

p10 + p11 + p12 + p13 = pm12 + pm13 + pm14 + pm15 ,

The constraints of this system can be derived as follows:

1) The bounds of component failure probabilities can be expressed as

P (F1) = P1

 > p1 + p3 + p4 + p5

< p1 + p3 + p4 + p5 + p7 + p8 + p9 + p11 + p12 + p13

P (F2) = P2

 > p1 + p2 + p4 + p5

< p1 + p2 + p4 + p5 + p6 + p8 + p9 + p10 + p12 + p13

P (F3) = P3

 > p1 + p2 + p3 + p5

< p1 + p2 + p3 + p5 + p6 + p7 + p9 + p10 + p11 + p13

(3.37)

P (F4) = P4

 > p1 + p2 + p3 + p4

< p1 + p2 + p3 + p4 + p6 + p7 + p8 + p10 + p11 + p12

Similar to the system with 3 two-state components, p1+ p3+ p4+ p5 corresponds

to the probabilities of states that no component survives and only one component

except component 1 survives. p6+p7+p8+p9 corresponds to the probabilities of

states that only two components survive. p10 + p11 + p12 + p13 corresponds to the

probabilities of states that only three components survive. One can easily find

that P1 is greater than p1+p3+p4+p5, and smaller than p1+p3+p4+p5+p6+p7+

p8+ p9+ p10+ p11+ p12+ p13. Furthermore, because p6 and p10 is the probability

corresponding to the state encoded by the 2x1 of z2x1 and the 3x1 of z3x1 , i.e.,

the part of the states that only two components including component 1 survive

and the part of the states that only three components including component 1

survive, respectively, p6 and p10 can be excluded from the inequality. The other

inequalities can be derived similarly.
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2) The bounds of joint failure probabilities of two components can be expressed as

P (F1 ∩ F2) = P12

 > p1 + p4 + p5

< p1 + p4 + p5 + p8 + p9

P (F1 ∩ F3) = P13

 > p1 + p3 + p5

< p1 + p3 + p5 + p7 + p9

P (F1 ∩ F4) = P14

 > p1 + p3 + p4

< p1 + p3 + p4 + p7 + p8

P (F2 ∩ F3) = P23

 > p1 + p2 + p5

< p1 + p2 + p5 + p6 + p9

(3.38)

P (F2 ∩ F4) = P24

 > p1 + p2 + p4

< p1 + p2 + p4 + p6 + p8

P (F3 ∩ F4) = P34

 > p1 + p2 + p3

< p1 + p2 + p3 + p6 + p7

p1+p4+p5 corresponds to the probabilities of states that no component survives

and only components 3 or 4 survives. Since p6 + p7 + p8 + p9 corresponds to the

probabilities of states that only two components survive, one can easily find that

P12 is greater than p1+p4+p5, and smaller than p1+p3+p4+p5+p6+p7+p8+p9.

Furthermore, because p6 and p7 is the probability corresponding to the state

encoded by the 2x1 of z
2x1 and by the 2x2 of z

2x2 , i.e., the part of the states that

only two components including component 1 survive and the part of the states

that only two components including component 2 survive, respectively, p6 and

p7 can be excluded from the inequality. The other inequalities can be derived

similarly.

3) The joint failure probabilities of three components can be expressed as

P (F1 ∩ F2 ∩ F3) = P123

= p1 + p5

P (F1 ∩ F2 ∩ F4) = P124

= p1 + p4



3.3. RELAXED LINEAR PROGRAMMING BOUNDS METHOD 47

P (F1 ∩ F3 ∩ F4) = P134 (3.39)

= p1 + p3

P (F2 ∩ F3 ∩ F4) = P234

= p1 + p2

p1+p5 corresponds to the probabilities of states that no component survives and

only components 4 survives. One can easily find that P123 equals to p1 + p5 in

this system. The other inequalities can be derived similarly.

4) Obviously the joint failure probability of three components is the failure proba-

bility of all components in this system, and it can be expressed as

P (F1 ∩ F2 ∩ F3 ∩ F4) = P1234

= p1 (3.40)

5) From Equation (2.33), one can find that the sum of P (F1), P (F2), P (F4), and

P (F4) can be expressed as

P (F1) + P (F2) + P (F3) + P (F4)

= P1 + P2 + P3 + P4

= 4pm1 + 3(pm2 + pm3 + pm4 + pm5)

+2(pm6 + pm7 + pm8 + pm9 + pm10 + pm11)

+(pm12 + pm13 + pm14 + pm15)

=

(
4

1

)
pm1 +

(
3

1

)
(pm2 + pm3 + pm4 + pm5)

+

(
2

1

)
(pm6 + pm7 + pm8 + pm9 + pm10 + pm11) (3.41)

+

(
1

1

)
(pm12 + pm13 + pm14 + pm15)

Comparing the relationships shown in Equations (3.36), (3.46), and (3.41), the
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sum of P (F1), P (F2), P (F4), and P (F4) can also be expressed as

P (F1) + P (F2) + P (F3) + P (F4)

=

(
4

1

)
p1 +

(
3

1

)
(p2 + p3 + p4 + p5)

+

(
2

1

)
(p6 + p7 + p8 + p9) (3.42)

+

(
1

1

)
(p10 + p11 + p12 + p13)

6) Similarly, from Equation (2.34), one can find that the sum of P (F12), P (F13),

P (F14), P (F23), P (F24), and P (F34) can be expressed as

P (F12) + P (F13) + P (F14) + P (F23) + P (F24) + P (F34)

= P12 + P13 + P14 + P23 + P24 + P34

= 6pm1 + 3(pm2 + pm3 + pm4 + pm5)

+pm6 + pm7 + pm8 + pm9 + pm10 + pm11

=

(
4

2

)
pm1 +

(
3

2

)
(pm2 + pm3 + pm4 + pm5)

+

(
2

2

)
(pm6 + pm7 + pm8 + pm9 + pm10 + pm11) (3.43)

Comparing the relationships shown in Equations (3.36), (3.46), and (3.43), the

sum of P (F12), P (F13), P (F14), P (F23), P (F24), and P (F34) can also be expressed

as

P (F12) + P (F13) + P (F14) + P (F23) + P (F24) + P (F34)

=

(
4

2

)
p1 +

(
3

2

)
(p2 + p3 + p4 + p5) +

(
2

2

)
(p6 + p7 + p8 + p9) (3.44)

Similar to bounds on component failure probability, one can easily find the formu-

lation of the bounds on the joint failure probabilities of two components in the RLP

bounds method Equations (3.38) and (3.43). Also, from Equations (3.39) and (3.40),

one can find that the joint failure probabilities of three components or four compo-

nents in the RLP bounds method are still equalities in a system with four two-state

components. Generally, the acceptable bounds on system reliability is based on the

given information of the joint failure probabilities of two components or three compo-

nents, we will introduce the relaxed bounds on the joint failure probabilities of three

components in the following example.
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Relaxed Bounds on Joint Failure Probability of Three Components

Third, let us consider a system with five two-state components. Then, the UGF of the

system can be expressed as

U(z) = p1z
0 + p2z

x1 + p3z
x2 + p4z

x3 + p5z
x4 + p6z

x5

+p7z
2x1 + p8z

2x2 + p9z
2x3 + p10z

2x4 + p11z
2x5

+p12z
3x1 + p13z

3x2 + p14z
3x3 + p15z

3x4 + p16z
3x5 (3.45)

+p17z
4x1 + p18z

4x2 + p19z
4x3 + p20z

4x4 + p21z
4x5 + p22z

5x

This system consists of 25 = 32 basic MECE events, they can be expressed as

e1 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e2 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e3 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e4 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e5 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e6 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e7 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e8 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e9 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5 e10 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e11 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e12 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e13 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e14 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e15 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e16 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e17 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e18 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e19 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e20 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e21 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e22 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e23 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e24 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e25 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e26 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e27 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e28 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e29 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e30 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5,

e31 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5, e32 = F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5.

From the the definition of the events encoded by z0, z5x, zjxi (i = 1, 2, 3, 4, 5,

j = 1, 2, 3, 4), the following relationships among the events encoded by z0, z5x, zjxi
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(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4), and the basic MECE events can be expressed as

e(z0) = e1, e(zx1) = e2,

e(zx2) = e3, e(zx3) = e4,

e(zx4) = e5, e(zx5) = e6,

e(z5x) = e32,

e(z2x1) ⊂ (e7 ∪ e8 ∪ e9 ∪ e10) , e(z2x2) ⊂ (e7 ∪ e11 ∪ e12 ∪ e13) ,

e(z2x3) ⊂ (e8 ∪ e11 ∪ e14 ∪ e15) , e(z2x4) ⊂ (e9 ∪ e12 ∪ e14 ∪ e16) ,

e(z2x5) ⊂ (e10 ∪ e13 ∪ e15 ∪ e16) ,

e(z3x1) ⊂ (e17 ∪ e18 ∪ e19 ∪ e20 ∪ e21 ∪ e22) ,

e(z3x2) ⊂ (e17 ∪ e18 ∪ e19 ∪ e23 ∪ e24 ∪ e25) ,

e(z3x3) ⊂ (e17 ∪ e20 ∪ e21 ∪ e23 ∪ e24 ∪ e26) ,

e(z3x4) ⊂ (e18 ∪ e20 ∪ e22 ∪ e23 ∪ e25 ∪ e26) ,

e(z3x5) ⊂ (e19 ∪ e21 ∪ e22 ∪ e24 ∪ e25 ∪ e26) ,

e(z4x1) ⊂ (e27 ∪ e28 ∪ e29 ∪ e30) , e(z4x2) ⊂ (e27 ∪ e28 ∪ e29 ∪ e31) ,

e(z4x3) ⊂ (e27 ∪ e28 ∪ e30 ∪ e31) , e(z4x4) ⊂ (e27 ∪ e29 ∪ e30 ∪ e31) ,

e(z4x5) ⊂ (e28 ∪ e29 ∪ e30 ∪ e31) . (3.46)

The corresponding probability relationships can be expressed as

p1 = pm1 , p2 = pm2 ,

p3 = pm3 , p4 = pm4 ,

p5 = pm5 , p6 = pm6 ,

p7 < pm7 + pm8 + pm9 + pm10 , p8 < pm7 + pm11 + pm12 + pm13 ,

p9 < pm8 + pm11 + pm14 + pm15 , p10 < pm9 + pm12 + pm14 + pm16 ,

p11 < pm10 + pm13 + pm15 + pm16 ,

p12 < pm17 + pm18 + pm19 + pm20 + pm21 + pm22 ,

p13 < pm17 + pm18 + pm19 + pm23 + pm24 + pm25 , (3.47)

p14 < pm17 + pm20 + pm21 + pm23 + pm24 + pm26 ,
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p15 < pm18 + pm20 + pm22 + pm23 + pm25 + pm26 ,

p16 < pm19 + pm21 + pm22 + pm24 + pm25 + pm26 ,

p17 < pm27 + pm28 + pm29 + pm30 , p18 < pm27 + pm28 + pm29 + pm31 ,

p19 < pm27 + pm28 + pm29 + pm31 , p20 < pm27 + pm29 + pm30 + pm31 ,

p21 < pm27 + pm29 + pm30 + pm31 , p22 = pm32 .

The relationships among the union of the events encoded by zjxi (i = 1, 2, 3, 4, 5,

j = 1, 2, 3, 4), and the basic MECE events can be expressed as

(e(zx1) ∪ e(zx2) ∪ e(zx3) ∪ e(zx4) ∪ e(zx5))

= (e2 ∪ e3 ∪ e4 ∪ e5 ∪ e6) , (3.48)(
e(z2x1) ∪ e(z2x2) ∪ e(z2x3) ∪ e(z2x4) ∪ e(z2x5)

)
= (e7 ∪ e8 ∪ e9 ∪ e10 ∪ e11 ∪ e12 ∪ e13 ∪ e14 ∪ e15 ∪ e16) , (3.49)(
e(z3x1) ∪ e(z3x2) ∪ e(z3x3) ∪ e(z3x4) ∪ e(z3x5)

)
= (e17 ∪ e18 ∪ e19 ∪ e20 ∪ e21 ∪ e22 ∪ e23 ∪ e24 ∪ e25 ∪ e26) , (3.50)(
e(z4x1) ∪ e(z4x2) ∪ e(z4x3) ∪ e(z4x4) ∪ e(z4x5)

)
= (e27 ∪ e28 ∪ e29 ∪ e30 ∪ e31) . (3.51)

The corresponding probability relationships can be expressed as

p2 + p3 + p4 + p5 + p6

= pm2 + pm3 + pm4 + pm5 + pm6 , (3.52)

p7 + p8 + p9 + p10 + p11

= pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16 , (3.53)

p12 + p13 + p14 + p15 + p16

= pm17 + pm18 + pm19 + pm20 + pm21 + pm22 + pm23 + pm24 + pm25 + pm26 ,(3.54)

p17 + p18 + p19 + p20 + p21

= pm27 + pm28 + pm29 + pm30 + pm31 . (3.55)

The constraints of this system can be derived as follows:
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1) The bounds of component failure probabilities can be expressed as

P (F1) = P1


>p1 + p3 + p4 + p5 + p6

<p1 + p3 + p4 + p5 + p6

+ p8 + p9 + p10 + p11 + p13 + p14 + p15 + p16 + p18 + p19 + p20 + p21

P (F2) = P2


>p1 + p2 + p4 + p5 + p6

<p1 + p2 + p4 + p5 + p6

+ p7 + p9 + p10 + p11 + p12 + p14 + p15 + p16 + p17 + p19 + p20 + p21

P (F3) = P3


>p1 + p2 + p3 + p5 + p6

<p1 + p2 + p3 + p5 + p6

+ p7 + p8 + p10 + p11 + p12 + p13 + p15 + p16 + p17 + p18 + p20 + p21

(3.56)

P (F4) = P4


>p1 + p2 + p3 + p4 + p6

<p1 + p2 + p3 + p4 + p6

+ p7 + p8 + p9 + p11 + p12 + p13 + p14 + p16 + p17 + p18 + p19 + p21

P (F5) = P5


>p1 + p2 + p3 + p4 + p5

<p1 + p2 + p3 + p4 + p5

+ p7 + p8 + p9 + p10 + p12 + p13 + p14 + p15 + p17 + p18 + p19 + p20

Similar to the system with 3 two-state components, p1 + p3 + p4 + p5 + p6

corresponds to the probabilities of states that no component survives and only one

component except component 1 survives. p7 + p8 + p9 + p10 + p11 corresponds

to the probabilities of states that only two components survive. p12 + p13 + p14

+ p15 + p16 corresponds to the probabilities of states that only three components

survive. p17 + p18 + p19 + p20 + p21 corresponds to the probabilities of states

that only four components survive. One can easily find that P1 is greater than

p1 + p3 + p4 + p5 + p6, and smaller than p1 + p3 + p4 + p5 + p6 + p7 + p8

+ p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 +

p21. Furthermore, because p7, p12, and p17 is the probability corresponding to the

state encoded by the 2x1 of z2x1 , by the 3x1 of z3x1 , and by the 4x1 of z4x1 , i.e.,

the part of the states that only two components including component 1 survive,

the part of the states that only three components including component 1 survive,
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and the part of the states that only four components including component 1

survive, respectively, p7, p12, and p17 can be excluded from the inequality. The

other inequalities can be derived similarly.

2) The bounds of joint failure probabilities of two components can be expressed as

P (F1 ∩ F2) = P12

 > p1 + p4 + p5 + p6

< p1 + p4 + p5 + p6 + p9 + p10 + p11 + p14 + p15 + p16

P (F1 ∩ F3) = P13

 > p1 + p3 + p5 + p6

< p1 + p3 + p5 + p6 + p8 + p10 + p11 + p13 + p15 + p16

P (F1 ∩ F4) = P14

 > p1 + p3 + p4 + p6

< p1 + p3 + p4 + p6 + p8 + p9 + p11 + p13 + p14 + p16

P (F1 ∩ F5) = P15

 > p1 + p3 + p4 + p5

< p1 + p3 + p4 + p5 + p8 + p9 + p10 + p13 + p14 + p15

P (F2 ∩ F3) = P23

 > p1 + p2 + p5 + p6

< p1 + p2 + p5 + p6 + p7 + p10 + p11 + p12 + p15 + p16

(3.57)

P (F2 ∩ F4) = P24

 > p1 + p2 + p4 + p6

< p1 + p2 + p4 + p6 + p7 + p9 + p11 + p12 + p14 + p16

P (F2 ∩ F5) = P25

 > p1 + p2 + p4 + p5

< p1 + p2 + p4 + p5 + p7 + p9 + p10 + p12 + p14 + p15

P (F3 ∩ F4) = P34

 > p1 + p2 + p3 + p6

< p1 + p2 + p3 + p6 + p7 + p8 + p11 + p12 + p13 + p16

P (F3 ∩ F5) = P35

 > p1 + p2 + p3 + p5

< p1 + p2 + p3 + p5 + p7 + p8 + p10 + p12 + p13 + p15

P (F4 ∩ F5) = P45

 > p1 + p2 + p3 + p4

< p1 + p2 + p3 + p4 + p7 + p8 + p9 + p12 + p13 + p14

p1 + p4 + p5 + p6 corresponds to the probabilities of states that no component

survives and only components 3, 4, or 5 survives. Since p7 + p8 + p9 + p10 +

p11 and p12 + p13 + p14 + p15 + p16 correspond to the probabilities of states
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that only two components survive and the probabilities of states that only three

components survive, respectively, one can easily find that P12 is greater than p1

+ p4 + p5 + p6, and smaller than p1 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11

+ p12 + p13 + p14 + p15 + p16. Furthermore, because p7 and p8 is the probability

corresponding to the state encoded by the 2x1 of z
2x1 and by the 2x2 of z

2x2 , i.e.,

the part of the states that only two components including component 1 survive

and the part of the states that only two components including component 2

survive, respectively, p7 and p8 can be excluded from the inequality. Similarly,

p12 and p13 can also be excluded from the inequality. The other inequalities can

be derived similarly.

3) The bounds of joint failure probabilities of three components can be expressed as

P (F1 ∩ F2 ∩ F3) = P123

 > p1 + p5 + p6

< p1 + p5 + p6 + p10 + p11

P (F1 ∩ F2 ∩ F4) = P124

 > p1 + p4 + p6

< p1 + p4 + p6 + p9 + p11

P (F1 ∩ F2 ∩ F5) = P125

 > p1 + p4 + p5

< p1 + p4 + p5 + p9 + p10

(3.58)

P (F1 ∩ F3 ∩ F4) = P134

 > p1 + p3 + p6

< p1 + p3 + p6 + p8 + p11

P (F1 ∩ F3 ∩ F5) = P135

 > p1 + p3 + p5

< p1 + p3 + p5 + p8 + p10

P (F1 ∩ F4 ∩ F5) = P145

 > p1 + p3 + p4

< p1 + p3 + p4 + p8 + p9

P (F2 ∩ F3 ∩ F4) = P234

 > p1 + p2 + p6

< p1 + p2 + p6 + p7 + p11

P (F2 ∩ F3 ∩ F5) = P235

 > p1 + p2 + p5

< p1 + p2 + p5 + p7 + p10
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P (F2 ∩ F4 ∩ F5) = P245

 > p1 + p2 + p4

< p1 + p2 + p4 + p7 + p9

P (F3 ∩ F4 ∩ F5) = P345

 > p1 + p2 + p3

< p1 + p2 + p3 + p7 + p8

p1 + p5 + p6 corresponds to the probabilities of states that no component sur-

vives and only components 4 or 5 survives. Since p7 + p8 + p9 + p10 + p11

corresponds to the probabilities of states that only two components survive, one

can easily find that P123 is greater than p1 + p5 + p6, and smaller than p1 +

p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11. Furthermore, because p7, p8 and

p9 is the probability corresponding to the state encoded by the 2x1 of z2x1 , by

the 2x2 of z2x2 , and by the 2x3 of z2x3 , i.e., the part of the states that only two

components including component 1 survive, the part of the states that only two

components including component 2 survive, and the part of the states that only

two components including component 3 survive, respectively, p7, p8, and p9 can

be excluded from the inequality. The other inequalities can be derived similarly.

4) The joint failure probabilities of four components can be expressed as

P (F1 ∩ F2 ∩ F3 ∩ F4) = P1234

= p1 + p6

P (F1 ∩ F2 ∩ F3 ∩ F5) = P1235

= p1 + p5

P (F1 ∩ F2 ∩ F4 ∩ F5) = P1245 (3.59)

= p1 + p4

P (F1 ∩ F3 ∩ F4 ∩ F5) = P1345

= p1 + p3

P (F2 ∩ F3 ∩ F4 ∩ F5) = P2345

= p1 + p2

p1+p6 corresponds to the probabilities of states that no component survives and

only components 5 survives. One can easily find that P1234 equals to p1 + p6 in
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this system. The other inequalities can be derived similarly.

5) Obviously the joint failure probability of five components is the failure probability

of all components in this system, and it can be expressed as

P (F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5) = P12345

= p1 (3.60)

6) From Equation (2.33), one can find that the sum of P (F1), P (F2), P (F3), P (F4),

and P (F5) can be expressed as

P (F1) + P (F2) + P (F3) + P (F4) + P (F5)

= P1 + P2 + P3 + P4 + P5

= 5pm1 + 4(pm2 + pm3 + pm4 + pm5 + pm6)

+3(pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16)

+2(pm17 + pm18 + pm19 + pm20 + pm21 + pm22 + pm23 + pm24 + pm25 + pm26)

+pm27 + pm28 + pm29 + pm30 + pm31

=

(
5

1

)
pm1 +

(
4

1

)
(pm2 + pm3 + pm4 + pm5 + pm6)

+

(
3

1

)
(pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16)

+

(
2

1

)
(pm17 + pm18 + pm19 + pm20 + pm21 + pm22 + pm23 + pm24 + pm25 + pm26)

+

(
1

1

)
(pm27 + pm28 + pm29 + pm30 + pm31) (3.61)

Comparing the relationships shown in Equations (3.47), (3.52), (3.53),(3.54),(3.55),

and (3.61), the sum of P (F1), P (F2), P (F3), P (F4), and P (F5) can also be ex-

pressed as

P (F1) + P (F2) + P (F3) + P (F4) + P (F5)

=

(
5

1

)
p1 +

(
4

1

)
(p2 + p3 + p4 + p5 + p6)

+

(
3

1

)
(p7 + p8 + p9 + p10 + p11)

+

(
2

1

)
(p12 + p13 + p14 + p15 + p16)

+

(
1

1

)
(p17 + p18 + p19 + p20 + p21) (3.62)
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7) Similarly, from Equation (2.34), one can find that the sum of P (F12), P (F13),

P (F14), P (F15), P (F23), P (F24), P (F25), P (F34), P (F35), and P (F45) can be

expressed as

P (F12) + P (F13) + P (F14) + P (F15) + P (F23)

+P (F24) + P (F25) + P (F34) + P (F35) + P (F45)

= P12 + P13 + P14 + P15 + P23 + P24 + P25 + P34 + P35 + P45

= 10pm1 + 6(pm2 + pm3 + pm4 + pm5 + pm6)

+3(pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16)

+pm17 + pm18 + pm19 + pm20 + pm21 + pm22 + pm23 + pm24 + pm25 + pm26

=

(
5

2

)
pm1 +

(
4

2

)
(pm2 + pm3 + pm4 + pm5 + pm6) (3.63)

+

(
3

2

)
(pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16)

+

(
2

2

)
(pm17 + pm18 + pm19 + pm20 + pm21 + pm22 + pm23 + pm24 + pm25 + pm26)

Comparing the relationships shown in Equations (3.47), (3.52), (3.53),(3.54),(3.55),

and (3.63), the sum of P (F12), P (F13), P (F14), P (F15), P (F23), P (F24), P (F25),

P (F34), P (F35), and P (F45) can also be expressed as

P (F12) + P (F13) + P (F14) + P (F15) + P (F23)

+P (F24) + P (F25) + P (F34) + P (F35) + P (F45)

=

(
5

2

)
p1 +

(
4

2

)
(p2 + p3 + p4 + p5 + p6) +

(
3

2

)
(p7 + p8 + p9 + p10 + p11)

+

(
2

2

)
(p12 + p13 + p14 + p15 + p16) (3.64)

8) Similar to the bounds on the joint failure probabilities of two components, one

can easily find the formulation of the bounds on the joint failure probabilities of
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three components can be expressed as

P (F123) + P (F124) + P (F125) + P (F134) + P (F135)

+P (F145) + P (F234) + P (F235) + P (F245) + P (F345)

= P123 + P124 + P125 + P134 + P135 + P145 + P234 + P235 + P245 + P345

= 10pm1 + 4(pm2 + pm3 + pm4 + pm5 + pm6)

+(pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16)

=

(
5

3

)
pm1 +

(
4

3

)
(pm2 + pm3 + pm4 + pm5 + pm6) (3.65)

+

(
3

3

)
(pm7 + pm8 + pm9 + pm10 + pm11 + pm12 + pm13 + pm14 + pm15 + pm16)

Comparing the relationships shown in Equations (3.47), (3.52), (3.53),(3.54),(3.55),

and (3.65), the sum of P (F123), P (F124), P (F125), P (F134), P (F135), P (F145),

P (F234), P (F235), P (F245), and P (F345) can also be expressed as

P (F123) + P (F124) + P (F125) + P (F134) + P (F135)

+P (F145) + P (F234) + P (F235) + P (F245) + P (F345) (3.66)

=

(
5

3

)
p1 +

(
4

3

)
(p2 + p3 + p4 + p5 + p6) +

(
3

3

)
(p7 + p8 + p9 + p10 + p11)

Similar to the bounds on the joint failure probabilities of two components, one

can easily obtain the formulation of bounds on the joint failure probabilities of three

components in the RLP bounds method (Equations (3.59) and (3.66)). Also, from

Equations (3.59) and (3.60), one can find that the joint failure probabilities of four

components and five components in the RLP bounds method are equalities. Based on

the above examples and formulation of bounds on the component failure probabilities,

bounds on the joint failure probabilities of two components, and the bounds on the

joint failure probabilities of three components the general formulation of constraints

can be generalized as show in the following Section.
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General Formulation of Constraints

For a system with n two-state components, one can generalize the formulation of bounds

on the component failure probabilities, P (Fi), i = 1, 2, . . . , n, as

P (Fi) = Pi



>p1 +
n+1∑
j=2

pj − pi+1

<p1 +
n+1∑
j=2

pj − pi+1

+
2n+1∑
j=n+2

pj − pn+i+1 + . . .

+

(n−1)n+1∑
j=(n−2)n+2

pj − p(n−2)n+i+1

(3.67)

The sum of the component failure probabilities, P (Fi), i = 1, 2, . . . , n, can be expressed

as

n∑
i=1

P (Fi)

=

(
n

1

)
p1 +

(
n− 1

1

)
(p2 + p3 + · · ·+ pn+1)

+

(
n− 2

1

)
(pn+2 + pn+3 + · · ·+ p2n+1) (3.68)

+

(
n− 3

1

)
(p2n+2 + p2n+3 + · · ·+ p3n+1) + . . .

+

(
1

1

)
(p(n−2)n+2 + p(n−2)n+3 + · · ·+ p(n−1)n+1)

The formulation of bounds on the joint failure probabilities of two components,

P (Fi ∩ Fj), i = 1, 2, . . . , n− 1, j = 2, 3, . . . , n, i < j, can be expressed as

P (Fi ∩ Fj) = Pij



>p1 +
n+1∑
k=2

pk − pi+1 − pj+1

<p1 +
n+1∑
k=2

pk − pi+1 − pj+1

+
2n+1∑
k=n+2

pk − pn+i+1 − pn+j+1 + . . .

+

(n−2)n+1∑
k=(n−3)n+2

pk − p(n−3)n+i+1 − p(n−3)n+j+1

(3.69)
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The sum of the all combination of the joint failure probabilities of two components,

P (Fi ∩ Fj), i = 1, 2, . . . , n− 1, j = 2, 3, . . . , n, i < j, can be expressed as

n−1∑
i=1

n∑
j=2

P (Fi ∩ Fj)

=

(
n

2

)
p1 +

(
n− 1

2

)
(p2 + p3 + · · ·+ pn+1)

+

(
n− 2

2

)
(pn+2 + pn+3 + · · ·+ p2n+1) (3.70)

+

(
n− 3

2

)
(p2n+2 + p2n+3 + · · ·+ p3n+1) + . . .

+

(
2

2

)
(p(n−3)n+2 + p(n−3)n+3 + · · ·+ p(n−2)n+1)

The formulation of bounds on the joint failure probabilities of three components,

P (Fi ∩ Fj ∩ Fk), i = 1, 2, . . . , n− 2, j = 2, 3, . . . , n− 1, k = 3, 4, . . . , n, i < j < k, can

be expressed as

P (Fi ∩ Fj ∩ Fk) = Pijk



>p1 +
n+1∑
l=2

pl − pi+1 − pj+1 − pk+1

<p1 +
n+1∑
l=2

pl − pi+1 − pj+1 − pk+1

+
2n+1∑
l=n+2

pl − pn+i+1 − pn+j+1 − pn+k+1 + . . .

+

(n−3)n+1∑
l=(n−4)n+2

pl − p(n−3)n+i+1 − p(n−3)n+j+1 − p(n−3)n+k+1

(3.71)

The sum of the all combination of the joint failure probabilities of three components,

P (Fi ∩ Fj ∩ Fk), i = 1, 2, . . . , n− 2, j = 2, 3, . . . , n− 1, k = 3, 4, . . . , n, i < j < k, can
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be expressed as

n−2∑
i=1

n−1∑
j=2

n∑
k=3

P (Fi ∩ Fj ∩ Fk)

=

(
n

3

)
p1 +

(
n− 1

3

)
(p2 + p3 + · · ·+ pn+1)

+

(
n− 2

3

)
(pn+2 + pn+3 + · · ·+ p2n+1) (3.72)

+

(
n− 3

3

)
(p2n+2 + p2n+3 + · · ·+ p3n+1) + . . .

+

(
3

3

)
(p(n−4)n+2 + p(n−4)n+3 + · · ·+ p(n−3)n+1)

The formulation of bounds on the joint failure probabilities of k components and its

sum can be derived similarly.

From Equation (3.28), one can find that the joint failure probabilities of two com-

ponents is not the bounds when n = 2 + 1 = 3, and it can be expressed as

P (Fi ∩ Fj)

= p1 +
n+1∑
k=2

pk − pi+1 − pj+1 (3.73)

Similarly, from Equation (3.39), one can find that the joint failure probabilities of three

components is not the bounds when n = 3 + 1 = 4, and it can be expressed as

P (Fi ∩ Fj ∩ Fk)

= p1 +
n+1∑
l=2

pl − pi+1 − pj+1 − pk+1 (3.74)

In conclusion, the joint failure probabilities of k components can be expressed as equal-

ities in then RLP bounds method when n = k + 1.

In general, when the complete set of joint failure probabilities of each k components

is available, the number of inequalities similar to Equations (3.67), (3.69), and (3.71)

is

2

((
n

1

)
+

(
n

2

)
+ · · ·+

(
n

k

))
(3.75)

Also similar to Equations (3.68), (3.70), and (3.72), one can find k equalities when

the complete set of joint failure probabilities of each k component are available. Because

the number of the constraints based on the axioms of probability is n2−n+3 (Equations
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(3.20) and (3.21)), the total number of constraints of the RLP bounds method is given

by

Nc = (n2 − n+ 3) + 2

((
n

1

)
+

(
n

2

)
+ · · ·+

(
n

k

))
+ k (3.76)

3.4 Variation of RLP: Reduction of Constraints

3.4.1 Basic RLP

In the application of the RLP bounds method, one would simply consider the con-

straints of all equalities and inequalities (such as Equations (3.67) and (3.68)) and

those resulting from the probability axioms (Equations (3.20) and (3.21)) in the RLP

bounds method; we denoted this method as RLP1. For RLP1, the number of con-

straints is shown in Equation (3.76).

3.4.2 RLP2

When some of the joint failure probabilities of k components are identical, the inequal-

ity constraints based on these joint failure probabilities have the same effect in the

calculation of the RLP bounds method. For such a case, one can sum up each side of

these constraints, respectively, and thereby reduce the number of constraints without

losing any accuracy. When some of the joint failure probabilities of k components are

not identical but close to each other in value, one can still sum up each side of the in-

equality constraints with only a slight loss of accuracy. Thus, we sum up the inequality

constraints related to the components whose joint failure probabilities are close to each

other, and denoted this method as RLP2.

3.4.3 RLP3

If some of the inequality constraints in the RLP bounds method are redundant, they

would have the same effect in the calculation. One can only remain one of the redundant

inequality constraints for the RLP bounds method without losing any accuracy. If all

of the constraints are redundant for the joint failure probabilities of any identical k

components, for example, each component have the same failure probability (k=1), all
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of inequality constraints such as Equation (3.67) can be represented by one equality

constraint such as Equation (3.68).

On the course of this research, we also found that the equality constraints such

as Equation (3.68) and the probability axioms seem to be much important than the

constraints of inequalities, and to be the “stronger” constraints in the LP algorithem.

Thus, one could delete all of the inequalities, and consider only remain the constraints

of equalities such as Equation (3.68) and those resulting from the probability axioms

(Equations (3.20) and (3.21)) as constraints of the RLP bounds method. We called

this method as RLP3, and the number of constraints can be expressed as

Nc = n2 − n+ k + 3 (3.77)

Note the number of design variables of RLP1, RLP2, and RLP3 is the same each

other as expressed by Equation (3.19). The rule for decreasing the number of con-

straints in RLP2 will further discussed in Section 3.4.6. The accuracy of RLP1, RLP2,

and RLP3 are investigated later using numerical examples.

3.4.4 Size of Linear Programming Problem

For a system with n two-state components, the number of design variables (Nd) for

all RLP1, RLP2, and RLP3 are identical as shown in Equation (3.19). However, the

number of constraints (Nc) for RLP1, RLP2, and RLP3 are different, and then, the

relative size of LP problem are different. The size of LP problem of RLP1 is determined

by Equations (3.19) and (3.76), and that of RLP3 is determined by Equations (3.19)

and (3.77).

Suppose one has the same LP solver described in Section 2.3.3 that can solve an

LP problem with Nd = 262144 and Nc = Nd+987+1 in the LP bounds method when

n = 18. The theoretical limitation of the number of components in RLP1 and RLP3

that can be solved by the LP solver are shown in Table 3.1, in which k means that the

complete set of the joint failure probabilities up to k components in the RLP bounds

method is available.

Note that the estimation of the joint failure probabilities of k components requires

additional computational effort. Most of the constraints in the LP bounds method,
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Table 3.1: Theoretical limitation of the number of components.

k RLP1 RLP3

1 512 512

2 362 512

3 91 512

i.e., the part determined by 2n + 1 in Equation (2.44), is the one only based on the

basic axioms of probability (Equations (2.37) and (2.38)). Because the number of

components (n) is usually small in the LP bounds method, the computational effort

for the remaining part of the constraints (
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
k

)
), i.e., the joint failure

probabilities of k component, is also small.

On the contrary, most of the constraints in the RLP bounds method, i.e., the part

determined by Equation (3.75), require additional computational effort. When the

number of components (n) is large, a lot of CPU times is required for the calculation

of the joint failure probabilities of k components. Thus, when the estimation of the

joint failure probabilities of k components require additional computational effort, the

RLP bounds method usually takes most of CPU times to estimate the joint failure

probabilities of k components not for the LP.

3.4.5 Numerical Examples 1

Example 1: Truss with Seven Components as a Series System

Consider a truss as shown in Figure 3.3, which was used by Song and Der Kiureghian24)

as a series system example. One can easily find that this truss is a statically deter-

minate structure, and the failure of any component will cause the failure of the truss.

Therefore, this truss can be considered as a series system. The load performed at the

truss is denoted as S. For the sake of simplicity, we neglect the buckling failure mode.

Let Xi, i = 1, 2, . . . , 7, denote either tensile strength for a component in tension or

compressive strength for a component in compression. From the distribution of inter-

nal forces shown in Figure 3.3, one can find that the failure states of the individual

components are Fi = {Xi ≤ S/(2
√
3)} for i = 1 and 2 and Fi = {Xi ≤ S/

√
3} for
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Figure 3.3: A statically determinate truss as a series system.

(t: intension, c: compression)

i = 3, 4, . . . , 7. Suppose the intensity of the load is deterministic,i.e., S = 100, and the

component strengths, i.e., the random variables Xi, i = 1, 2, . . . , 7, are jointly normally

distributed. Let X1 and X2 have the means of 100 and the standard deviations of 20,

and X3–X7 have the means of 200 and the standard deviations of 40. Based on the

above conditions, the component failure probabilities are equal, and it can be expressed

as

Pi = P (Fi) = Φ

(
100/2

√
3− 100

20

)
= 1.88× 10−4; i = 1, 2

Pi = P (Fi) = Φ

(
100/

√
3− 200

40

)
= 1.88× 10−4; i = 3, . . . , 7 (3.78)

where Φ(•) denotes the standard normal cumulative distribution function. Further, let

the Xi’s have a Dunnet-Sobel (DS) class correlation matrix (See Section 2.2.4), then

the joint failure probabilities can be estimated by Equation (2.20).

1) A system with complete information

First consider the case r1 = 0.90, r2 = 0.96, r3 = 0.91, r4 = 0.95, r5 = 0.92,

r6 = 0.94, and r7 = 0.93. The joint probabilities of two components Pij computed using

Equation (2.20) are P12 = 5.73 × 10−5, P13 = 4.35 × 10−5, P14 = 5.42 × 10−5, P15 =

4.59×10−5, P16 = 5.13×10−5, P17 = 4.85×10−5, P23 = 6.08×10−5, P24 = 7.79×10−5,

P25 = 6.47 × 10−5, P26 = 7.42 × 10−5, P27 = 6.87 × 10−5, P34 = 5.75 × 10−5, P35 =

4.86×10−5, P36 = 5.43×10−5, P37 = 5.14×10−5, P45 = 6.10×10−5, P46 = 6.88×10−5,

P47 = 6.48× 10−5, P56 = 5.76× 10−5, P57 = 5.44× 10−5, and P67 = 6.11× 10−5.
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The joint probabilities of three components Pijl computed using Equation (2.20)

are P123 = 2.81 × 10−5, P124 = 3.58 × 10−5, P125 = 2.99 × 10−5, P126 = 3.37 × 10−5,

P127 = 3.17 × 10−5, P134 = 2.66 × 10−5, P135 = 2.25 × 10−5, P136 = 2.52 × 10−5,

P137 = 2.38 × 10−5, P145 = 2.82 × 10−5, P146 = 3.18 × 10−5, P147 = 2.99 × 10−5,

P156 = 2.67 × 10−5, P157 = 2.52 × 10−5, P167 = 2.83 × 10−5, P234 = 3.80 × 10−5,

P235 = 3.17 × 10−5, P236 = 3.58 × 10−5, P237 = 3.37 × 10−5, P245 = 4.04 × 10−5,

P246 = 4.58 × 10−5, P247 = 4.30 × 10−5, P256 = 3.80 × 10−5, P257 = 3.58 × 10−5,

P267 = 4.04 × 10−5, P345 = 2.99 × 10−5, P346 = 3.37 × 10−5, P347 = 3.18 × 10−5,

P356 = 2.83 × 10−5, P357 = 2.67 × 10−5, P367 = 3.00 × 10−5, P456 = 3.58 × 10−5,

P457 = 3.37× 10−5, P467 = 3.81× 10−5, and P567 = 3.18× 10−5.

Song and Der Kiureghian24) used the above probability information as the exact

results which is a little different from the results estimated by Equation (2.20). For the

purpose of comparison, the above information is also used to estimate the bounds by

the LP bounds method, RLP1, and RLP3 (RLP2 is not considered in this example),

and the results are shown in Table 3.2, in which LP denotes the LP bounds method.

Note that the narrower bounds can be obtained by considering a higher level of joint

failure probability (i.e., large k).

The LP bounds method involves 27 = 128 design variables whereas RLP1 and

RLP3 involve 72 − 7 + 2 = 44 design variables, and 1 equality and 27 = 128 inequality

constrains in the LP bounds method and 1 equality and 72 − 7 + 2 = 44 inequality

constrains in the RLP bounds method result from the basic axioms of probability

(Equations (2.37) and (2.38), Equations (3.20) and (3.21)), respectively. The number

of equality and inequality constrains for each method resulted from Equations (2.44)

and (3.76) is shown in Table 3.3.

In Table 3.2 the bounds by the LP bounds method, RLP1, and RLP3 are found

to be identical when k = 1. When k = 2 and k = 3, the bounds of the LP bounds

method are found to be a little narrower than the bounds of RLP1 and RLP3, and

the bounds of RLP1 are also found to be a little narrower than the bounds of RLP3,

but the difference is not notable. Note that the narrower bounds can be obtained by

considering a higher level of joint failure probability.

2) A series equireliable and equicorrelated system
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Table 3.2: Bounds on the series system failure probability with equal component failure

probabilities.

Bounds (×10−3) LP RLP1 RLP3

k = 1 0.188–1.316 0.188–1.316 0.188–1.316

k = 2 0.477–0.912 0.469–0.934 0.469–0.966

k = 3 0.631–0.796 0.613–0.796 0.576–0.796

Table 3.3: The number of constraints.

LP RLP1 RLP3

Equalities Inequalities Equalities Inequalities Equalities Inequalities

k = 1 8 128 2 58 2 44

k = 2 29 128 3 100 3 44

k = 3 64 128 4 170 4 44

As another example, consider the case where ri =
√
ρ in the DS correlation model,

such that ρij = ρ for i ̸= j and ρii = 1. This is the case of a series equireliable and

equicorrelated system. The bounds of system failure probability estimated by the LP

bounds method, RLP1, and RLP3 are shown in Table 3.4 for k = 2 and in Table 3.5

for k = 3. It is assumed that ρ = 0.2, 0.4, 0.6, 0.8, or 0.9. These bounds are found to

be identical for all different ρ and k; in fact, the difference of the bounds by the LP

bounds method, RLP1, and RLP3 is very small.

3) A system with inequality information

Finally, consider the case where the information of probabilities includes not only

equalities but also inequalities. Suppose that for the equicorrelated system with ρ =

0.9, the inequalities Pijl ≤ 5 × 10−5, instead of equalities Pijl = 4.47 × 10−5, (1 ≤

i < j < l ≤ 7), are available. The bounds for LP bounds method, RLP1, and RLP3

for this case can be obtained by simply replacing the equality constraints with the

corresponding inequality constraints. The result is shown in Table 3.6. One can easily

find that these bounds are wider than the bounds (k = 3 and ρ = 0.9) in Table 3.5.

The bounds of the LP bounds method, RLP1, and RLP3 are also found to be identical
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Table 3.4: Bounds on the series system failure probability with equal component failure

probabilities and correlations (k = 2).

ρ Pij (1 ≤ i < j < l ≤ 7)

Bounds (×10−3)

LP RLP1 RLP3

0.2 4.11×10−7 1.307–1.314 1.307–1.314 1.307–1.314

0.4 2.56×10−6 1.262–1.301 1.262–1.301 1.262–1.301

0.6 1.10×10−5 1.085–1.250 1.085–1.250 1.085–1.250

0.8 3.87×10−5 0.606–1.084 0.606–1.084 0.606–1.084

0.9 7.20×10−5 0.406–0.884 0.406–0.884 0.406–0.884

Table 3.5: Bounds on the series system failure probability with equal component failure

probabilities and correlations (k = 3).

ρ Pij (1 ≤ i < j < l ≤ 7)

Bounds (×10−3)

LP RLP1 RLP3

0.2 3.86×10−7 1.307–1.308 1.307–1.308 1.307–1.308

0.4 1.68×10−6 1.265–1.268 1.265–1.268 1.265–1.268

0.6 2.26×10−5 1.119–1.163 1.119–1.163 1.119–1.163

0.8 1.72×10−5 0.761–0.928 0.761–0.928 0.761–0.928

0.9 4.47×10−5 0.516–0.722 0.516–0.722 0.516–0.722

Table 3.6: Bounds on the series system failure probability with equal component failure

probabilities and correlations (k = 3).

ρ Pij (1 ≤ i < j < l ≤ 7)

Bounds (×10−3)

LP RLP1 RLP3

0.9 ≤ 5× 10−5 0.406–0.759 0.406–0.759 0.406–0.759
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Table 3.7: Bounds on the series system failure probability with equal correlations.

ρ k

Bounds (×10−2)

LP RLP1 RLP2 RLP3

0.1 2 1.275–1.281 1.275–1.285 1.275–1.286 1.275–1.287

0.5 2 1.070–1.174 1.070–1.218 1.070–1.225 1.070–1.235

0.9 2 0.641–0.707 0.621–0.847 0.621–0.878 0.403–0.927

to each other.

Example 2: General Series Systems

1) An equicorrelated series system

Consider an equicorrelated series system with n=8 components and ρ = 0.1, 0.5, or

0.9, β’s of the component are assumed to be 2.5, 3.0, 3.0, 3.1, 3.1, 3.2, 3.2, and 3.2. It

is assumed that the performance function of each component is normally distributed.

Then the joint failure probability of a small number of components can be estimated

by the product of conditional marginal (PCM) method,18)32) which is an easy and fast

method with a reasonable accuracy for the joint normal distribution function with small

dimensions. Note that the PCM method is just used to demonstrate the efficiency and

applicability of the RLP bounds method. The other reliability calculation methods can

also be used. The system failure probabilities estimated by the LP bounds method,

RLP1, RLP2, and RLP3 are shown in Table 3.7 for k = 2 and in Table 3.8 for k = 3.

Since the failure probability of component with β=2.5 is much different from the others,

we only consider the constraints related to this component as the important constraints

in RLP2.

As expected, the bounds of the LP bounds method are found to be narrower than

the bounds of RLP1, RLP2, and RLP3, and the bounds of RLP2 are also found to

be narrower than the bounds of RLP3. The difference between the bounds by RLP1

and those by RLP2 is not notable. The difference between the bounds by LP bounds

method and those by RLP1 will slightly increase with an increase of ρ, but the bounds

of RLP1 and RLP2 are still close to the bounds of the LP bounds method.
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Table 3.8: Bounds on the series system failure probability with equal correlations.

ρ k

Bounds (×10−2)

LP RLP1 RLP2 RLP3

0.1 3 1.275–1.276 1.275–1.276 1.275–1.276 1.275–1.276

0.5 3 1.111–1.136 1.101–1.140 1.097–1.140 1.096–1.140

0.9 3 0.661–0.673 0.621–0.760 0.621–0.760 0.522–0.760

2) An equireliable series system

Consider an equireliable system with n = 8 components and β = 3.5. Assume that

the correlation matrix R≡[ρij] has the following form:

R =



1 0.9 0.8 0.8 0.7 0.7 0.5 0.5

1 0.9 0.8 0.8 0.7 0.7 0.5

1 0.9 0.8 0.8 0.7 0.7

1 0.9 0.8 0.8 0.7

1 0.9 0.8 0.8

sym. 1 0.9 0.8

1 0.9

1



The system failure probabilities estimated by the LP bounds method, RLP1, RLP2,

and RLP3 are shown in Table 3.9. In RLP2 only the constraints related to the compo-

nents having the correlation coefficient of 0.5 are considered to be important and taken

into account in the LP problem. As expected, the bounds of the LP bounds method

are found to be narrower than the bounds of RLP1, RLP2, and RLP3, and the bounds

of RLP2 are also found to be narrower than the bounds of RLP3.

3) A system with 8 components

Consider an series system with n=8 components and the correlation matrix R≡[ρij]
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Table 3.9: Bounds on the series system failure probability with equal component failure

probabilities.

k

Bounds (×10−3)

LP RLP1 RLP2 RLP3

2 0.775–1.145 0.771–1.384 0.771–1.408 0.771–1.508

3 1.068–1.089 0.969–1.201 0.960–1.201 0.867–1.201

has the following form

R =



1 0.9 0.8 0.8 0.7 0.7 0.7 0.5

1 0.9 0.8 0.8 0.7 0.7 0.7

1 0.9 0.8 0.8 0.7 0.7

1 0.9 0.8 0.8 0.7

1 0.9 0.8 0.8

sym. 1 0.9 0.8

1 0.9

1


β’s of the components are assumed to be 2.5, 3.0, 3.0, 3.1, 3.1, 3.2, 3.2, and 3.2. The

system failure probabilities estimated by the LP bounds method, RLP1, RLP2, and

RLP3 are shown in Table 3.10. In RLP2(1) only the constraints related to the compo-

nent with β=2.5 are considered as important constraints, whereas in RLP2(2) only the

constraints related to the components having a correlation coefficient of 0.5 are consid-

ered important. As expected, it is found that the bounds of the LP bounds method are

the smallest, and that the bounds of RLP2(1) and RLP2(2) are also narrower than the

bounds of RLP3. Because the system considered here is a little complex, the important

constraints are not easy to find out. The rules for decreasing the number of constraint

will be discussed in Section 3.4.6.

4) An equireliable and equicorrelated system with 15 components

Consider an equireliable and equicorrelated system with n=15 components, β = 3,

and ρ = 0.1, 0.5, or 0.9. It is also assumed that the performance function of each

component is normally distributed. The joint failure probability of k components can
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Table 3.10: Bounds on the series system failure probability with equal component

failure probabilities.

k

Bounds (×10−2)

LP RLP1 RLP2(1) RLP2(2) RLP3

2 0.719–0.847 0.621–0.954 0.621–0.965 0.535–1.025 0.535–1.047

3 0.772–0.806 0.717–0.876 0.691–0.876 0.667–0.876 0.650–0.876

Table 3.11: Bounds on the series system failure probability with equal component

failure probabilities and correlations.

ρ k

Bounds (×10−2)

LP RLP1 RLP3 MC

0.1 2 1.973–2.018 1.973–2.018 1.973–2.018 1.976

0.5 2 1.167–1.910 1.167–1.910 1.167–1.910 1.524

0.9 2 0.271–1.148 0.271–1.148 0.271–1.148 0.554

0.9 3 0.360–0.816 0.360–0.816 0.360–0.816 0.554

be estimated by the PCMmethod. The failure probabilities for series systems estimated

by the LP bounds method, RLP1, RLP3, and the Monte Carlo (MC) method are

shown in Table 3.11. MC simulations are conducted with 107 samples. As expected,

the results of the LP bounds method, RLP1, and RLP3 are identical to each other; the

difference of the bounds found by the LP bounds method, RLP1, and RLP3 is usually

very smaller. The CPU time required for each analysis is shown in Table 3.12; one

can find that the RLP bounds method is much faster than other methods. Note that

RLP2 is not considered because the bounds of RLP2 will also identical to each other.

5) An equireliable and equicorrelated system with 100 components

Consider the case of an equireliable and equicorrelated system with n=100 compo-

nents, β = 3, and ρ = 0.1, 0.3, or 0.5. It is also assumed that the performance function

of each component is normally distributed. Then the joint failure probability of two or

three components can be estimated by the PCM method. The failure probabilities for

the series system estimated by RLP3 and MC method are shown in Table 3.13. MC
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Table 3.12: CPU times for the series system failure probability with equal component

failure probabilities and correlations.

ρ k

CPU times (s)

LP RLP1 RLP3 MC

0.1 2 10.617 1.265 0.406 6.748

0.5 2 10.074 1.213 0.430 6.814

0.9 2 10.117 1.173 0.453 6.771

0.9 3 1647.210 4.693 0.529 6.771

Table 3.13: Bounds on the failure probability of a series system with 100 components

and equal component correlations (β = 3).

ρ k Bounds of RLP3 MC

0.1 2 0.111–0.135 0.115

0.3 2 0.051–0.133 0.086

0.5 2 0.019–0.127 0.056

0.5 3 0.022–0.094 0.056

simulations are conducted with 107 samples. The CPU time required for each analysis

is shown in Table 3.14.

The bounds of RLP3 is getting narrower with the increase of k; however,one can

see that when k = 3 the CPU time of RLP3 is much longer than the others. In

fact, the linear programming in RLP3 takes only 0.482 s to calculate the bounds of

the system failure probability, whereas the PCM method takes 115.027 s to calculate

the joint failure probability of up to k components (k = 3). Because the number of

combinations would increase rapidly with an increase of k and n, one needs longer and

longer CPU times to calculate the joint failure probability of these combinations.

6) A series system with 100 components

Consider a series system with 100 components in which the correlation coefficient

among components is considered in a product form, ρij = rirj for i ̸= j, ρii = 1, and

ri =
√

(101− i)/100, i, j = 1, 2, . . . , 100. The component reliability indices varied as
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Table 3.14: CPU times for a series system failure probability with 100 components and

equal component correlations (β = 3).

ρ k

CPU times (s)

RLP3 MC

0.1 2 1.346 57.239

0.3 2 1.331 57.785

0.5 2 1.290 57.767

0.5 3 115.509 57.767

Table 3.15: Bounds on the failure probability of a series system with 100 components.

k Bounds of RLP3 (×10−3) MC

1 0.084–8.390

2 6.611–8.354 7.878

3 6.891–8.189

βi = 3.0 + 1.5 × ri, i = 1, 2, . . . , 100. The failure probabilities for the series system

estimated by RLP3 and MC method are shown in Table 3.15. MC simulations are

conducted with 107 samples. The CPU time required for each analysis is shown in

Table 3.16.

As expected, the bounds of RLP3 is getting narrower with the increase of k, and one

can see that when k = 3 the CPU time of RLP3 is much longer than the others. During

the computation, the linear programming in RLP3 takes only 0.863 s to calculate the

bounds of the system failure probability, whereas the PCM method takes 115.759 s to

calculate the joint failure probability of up to 3 components (k = 3).

Example 3: A Parallel System with 6 Components

Consider a parallel system with six components, which was used by Pandey18) as a

parallel system example. The correlation coefficient is considered in a product form,

ρij = rirj for i ̸= j, ρii = 1, and ri =
√

(13− 2i)/12, i, j = 1, 2, . . . , 69).

1) An equireliable parallel system
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Table 3.16: CPU times for a series system failure probability with 100 components.

k

CPU times (s)

RLP3 MC

1 0.903

2 1.680 58.280

3 116.622

Table 3.17: Bounds on the parallel system failure probability with equal component

failure probabilities.

β k
Numerical

Bounds

integration LP RLP1 RLP3

3 4 0.704×10−7 (0–1.035)×10−7 (0–1.035)×10−7 (0–3.271)×10−6

2 4 0.528×10−4 (0–0.733)×10−4 (0–0.733)×10−4 (0–4.372)×10−4

1 4 0.593×10−2 (0.100–0.767)×10−2 (0–0.767)×10−2 (0–1.363)×10−2

0 3 0.117 (0.171–1.778)×10−1 (0.071–1.778)×10−1 (0–2.113)×10−1

Assume all six components having the identical β. The system failure probabilities

that estimated by the LP bounds method, RLP1, RLP3, and numerical integration are

reported for β ranging from 0 to 3 as shown in Table 3.17.

2) A unequireliable and unequicorrelated parallel system

Consider a second case in which the component reliability indices varied as βi = β+

(7−2i)/5, but the correlation matrix is the same as in the first case. The system failure

probabilities estimated by the LP bounds method, RLP1, and RLP3 are presented in

Table 3.18. As expected, the bounds of the LP bounds method are found to be narrower

than the bounds of RLP1 and RLP3, and the bounds of RLP1 are also found to be

narrower than the bounds of RLP3.

In the numerical examples in this Subsection, only multivariate normal random

variables are considered in order to compare the efficiency of the proposed method

with the other methods. However, it should be noted that the RLP bounds method

can handle any kind of distribution.
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Table 3.18: Bounds on the parallel system failure probability.

β k
Numerical

Bounds

integration LP RLP1 RLP3

3 4 0.322×10−6 (0–0.950)×10−6 (0–0.950)×10−6 (0–1.905)×10−6

2 4 0.112×10−3 (0.023–0.189)×10−3 (0–0.231)×10−3 (0–0.337)×10−3

1 4 0.699×10−2 (0.640–0.780)×10−2 (0.106–1.023)×10−2 (0–1.365)×10−2

0 3 0.990×10−1 (0.946–1.043)×10−1 (0.479–1.212)×10−1 (0–1.614)×10−1

3.4.6 Strategy for RLP2

From examples presented in Section 3.4.5, one can find that the RLP bounds method

is more efficient and can solve problems involving larger systems than the LP bounds

method by decreasing the number of design variables and constraints. Also, one can

find that RLP2 as described in Section 3.4 would have a wide applicability. However,

the rule for decreasing the number of constraints is not quite clear; the number of

constraints may still be enormously large for a large system. In this Section, we will

improve the guideline for RLP2 by introducing a strategy to decrease the number of

constraints.

Based on observations of examples of the RLP bounds method, it is proposed to

divide the range of the joint failure probabilities of k components (i.e., from their

minimum value to the maximum value) into tk ·n, (in which tk is an arbitrary selected

natural number for each k) intervals evenly using a log scale, and to sum up the

inequality constraints of the joint failure probabilities of k components in the same

interval. The border of the i-th interval, Pbi , is expressed as

lnPbi = lnPmin + (lnPmax − lnPmin) ·
i

tk · n
i = 1, 2, . . . , tk · n (3.79)

where Pmin and Pmax are the minimum of the joint failure probabilities of k components

and maximum of them, respectively. Note that the left border of the first interval is

lnPmin not lnPb1 . By using this procedure, the maximum of the total number of
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constraints can be reduced from that given by Equation (3.76) to

nc = (n2 − n+ 3) + 2 ·
k∑

i=1

ti · n+ k (3.80)

Because that the probabilities are scattered, some of the internal would be empty,

i.e., no probabilities fails into those intervals, and those intervals can be easily excluded.

Note that if each probabilities for any identical k are the same as described in the

RLP3 (Section 3.9), the sum of those probabilities can represent each of them, i.e.,

only one equality remains. Comparing Equation (3.76) and (3.80), one can obtain the

controllable number of constraints by controlling the number of tk.

For example, for a system with 3 two-state components as shown in Equation (3.22),

when k = 1 and tk = 1, each of component failure probability can be expressed as two

inequalities in the RLP bounds method as shown in Equation (3.27). If P (F1) and

P (F2) are in the same interval, one of the intervals would be empty. Because that

P (F1) and P (F2) can be replaced by P (F1) + P (F2), and the four constraints relative

to P (F1) and P (F2) can be decreased to two constraints relative to P (F1) + P (F2).

Thus, the number of inequality constraints in the RLP bounds method for k = 1 may

be reduced from 6 to 4.

Take another example, consider a system with 20 two-state components and suppose

tk = k. Then, the number of constraints of RLP1, and the maximum of the number

of constraints of the method based on the proposed strategy can be obtained as shown

in Table 3.19. The RLP2 in Table 3.19 denotes the RLP bounds method with the

proposed strategy. Because there could exist some empty intervals, the number of

constraints of RLP2 is the maximum. Clearly, the efficiency increases rapidly with an

increase in the value of n and k.

There could be the cases that two joint failure probabilities are close to each other

but not in the same internal. To cope with such cases, we propose to consider another

set of internals whose border is given by

lnPbi = lnPmin + (lnPmax − lnPmin) ·
(i− 0.5)

(tk · n)
i = 1, 2, . . . , tk · (n− 1) (3.81)

The selection of tk depends on the dispersion degree of the joint failure probabilities
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Table 3.19: The number of constraints.

RLP1 RLP2

Equalities Inequalities Equalities Inequalities

k = 1 2 422 2 422

k = 2 3 802 3 462

k = 3 4 2700 4 502

of k components. A large dispersion requires a correspondingly large tk. The accu-

racy of the RLP bounds method using this procedure is investigated in the following

numerical example.

3.4.7 Numerical Example 2

1) A Truss with 7 component

Consider the same truss as shown in Figure 3.3, to see the effect of the reduction of

the number of constraints in the RLP bounds method by considering the the proposed

strategy.

In Tables 3.20 and 3.21, LP denotes the LP bounds method, RLP1 denotes the

RLP bounds method considering all equalities and inequalities, RLP2 denotes the

RLP bounds method with the strategy proposed in Section 3.4.6 when tk = 1, and k

is the number of components up to which considered in the joint failure probability.

The failure probabilities and the number of equality and inequality constrains for each

method are shown in Tables 3.20 and 3.21. Note that the number of constraints of

RLP2 shown in Table 3.21 is the realistic number not the maximum shown in Equation

(3.80).

Table 3.20: Bounds on the truss system failure probability.

Bounds (×10−3) LP RLP1 RLP2

k = 1 0.188–1.316 0.188–1.316 0.188–1.316

k = 2 0.477–0.912 0.469–0.934 0.469–0.936

k = 3 0.631–0.796 0.613–0.796 0.607–0.796



3.4. VARIATION OF RLP: REDUCTION OF CONSTRAINTS 79

Table 3.21: The number of constraints of the truss system.

LP RLP1 RLP2

Equalities Inequalities Equalities Inequalities Equalities Inequalities

k = 1 8 128 2 58 2 44

k = 2 29 128 3 100 3 70

k = 3 64 128 4 170 4 96

In Table 3.20, the bounds estimated by the LP bounds method, RLP1, and RLP2,

are identical when k = 1. When k = 2 and k = 3, the bounds of RLP1 and RLP2

are found to be somewhat wider than those of LP. The bounds of RLP2 are also

slightly wider than those of RLP1; however, the difference between RLP1 and RLP2

is negligible, and the number of constraints in RLP2 is smaller than that of RLP1.

The CPU times for all cases are found to be less than 0.5s, and the CPU times using

RLP2 is the shortest among them. Note that the CPU times for the LP algorithm are

determined by the number of design variables and constraints.

2) A series system with 20 components

Consider a series system with 20 components in which the correlation coefficient

among components is considered in a product form, ρij = rirj for i ̸= j, ρii = 1,

and ri =
√
(21− i)/20, i, j = 1, 2, . . . , 20. The component reliability indices varied as

βi = 3.0 + 1.5× ri, i = 1, 2, . . . , 20.

The failure probabilities and the CPU times estimated by RLP1 and RLP2 are

shown in Tables 3.22 and 3.23, in which RLP1 denotes the RLP bounds method con-

sidering all equalities and inequalities, RLP2 denotes the RLP bounds method with

the strategy proposed in Section 3.4.6 when tk = k, and k is the number of components

up to which considered in the joint failure probability. The number of constraints of

RLP1, and the maximum of the number of constraints of RLP2 are shown in Table

3.19. The failure probability estimated by MC simulations conducting with 107 samples

is 1.312× 10−3, and the CPU times is 9.8 s.

In Table 3.22, the bounds of RLP2 are slightly wider than those of RLP1; however,

the difference between RLP1 and RLP2 is negligible. The number of constraints in
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Table 3.22: Bounds on the failure probability of a series system.

Bounds (×10−3) RLP1 RLP2

k = 1 0.426–1.366 0.426–1.366

k = 2 1.295–1.357 1.295–1.358

k = 3 1.308–1.338 1.307–1.338

Table 3.23: CPU times for a series system with 20 components.

k

CPU times (s)

RLP1 RLP2

1 0.091 0.090

2 5.610 1.231

3 73.226 3.627

RLP2 is smaller than that of RLP1 as shown in Table 3.19, and as expected the CPU

times for RLP2 are shorter than that of RLP1.

3.5 Variation of RLP: Incomplete Information

3.5.1 LP+RLP Approach

Sometimes one can only have the joint failure probability of not all of but only some

of the k components, i.e., incomplete set of failure probability, still the RLP bounds

method can be applied with less accuracy. In such a case, one take the n1 components

that the complete set of joint failure probabilities of each k components are available as

a subsystem, of which can be bounds on reliability by the RLP bounds method. Because

this subsystem have (n1
2−n1+2) design variables in the RLP bounds method, it also

can be considered as a (n1
2 − n1 + 2)-state component.

Combining the subsystem with the (n − n1) remaining components having the

incomplete set of joint failure probability of k components, the system now consists of

(n−n1) two-state components and one (n1
2−n1+2)-state component. The bounds on

system reliability is estimated using LP bounds method; the number of design variables
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in the LP bounds method is

Nd = (n1
2 − n1 + 2) · 2n−n1 (3.82)

This kind of combination of the LP bounds method and RLP bounds method is denoted

here as LP+RLP. Obviously, the size of design variables will increase quickly, which

will limit its application.

Since there are three types of RLP bounds methods, i.e., RLP1, RLP2, and RLP3,

there are three combinations of the LP bounds method and RLP bounds method (de-

noted as LP+RLP1, LP+RLP2, and LP+RLP3, respectively). For example, suppose

a system consists of seven components while only six components having the complete

set of joint failure probabilities of each k components. Then these six components

form a subsystem formulated by the RLP bounds method with 62 − 6 + 2 = 32 design

variables, this subsystem serves as a 32-state component in the LP bounds method,

and the number of design variables is 64 in the LP+RLP approach. The accuracy of

the LP+RLP approaches is investigated later using numerical examples.

3.5.2 Numerical Examples for Variation 2

1) A Truss with 7 component

Consider the same truss as shown in Figure 3.3, to investigate the accuracy of the

LP+RLP approach based on the incomplete information. Suppose the information of

the joint failure probabilities involving component 1 are not available, i.e., P12, P13, P14,

P15, P16, P17, P123, P124, P125, P126, P127, P134, P135, P136, P137, P145, P146, P147, P156,

P157, and P167 are unknown. For the LP bounds method, this problem can be solved by

simply removing 6 constraints (6 joint failure probabilities of two components) for k =

2 and 15 constraints (15 joint failure probabilities of three components) for k = 3. For

the LP+RLP approaches, one can take components 2–7 as a subsystem, which can be

formulated by RLP1 and RLP3, respectively, and then take the subsystem as a 32-state

component in the LP bounds method. The number of design variables of the LP+RLP

approaches is 2 · (62 − 6 + 2) = 64 resulted from Equation (3.82), whereas that of the

LP bounds method is 27 = 128 resulted from Equation (2.43). For the correlation

model shown in the example, i.e., 1) A system with complete information), the result
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Table 3.24: Bounds on the series system failure probability with equal component

failure probabilities and incomplete probability information.

Bounds (×10−3) LP LP+RLP1 LP+RLP3

k = 2 0.443–0.970 0.443–0.982 0.443–1.007

k = 3 0.585–0.877 0.579–0.879 0.553–0.879

is shown in Table 3.24. These bounds are wider than the corresponding bounds shown

in Table 3.2 because of the incomplete information. The bounds of the LP+RLP1 and

LP+RLP3 are also found to be a little wider than that of the LP bounds method, and

the bounds of the LP+RLP1 are also found to be narrower than that of the LP+RLP3.

2) An equireliable and equicorrelated system with 100 components

Consider the case of an equireliable and equicorrelated system with n=100 com-

ponents, β = 3, and ρ = 0.1, 0.3, or 0.5. It is also assumed that the performance

function of each component is normally distributed. Then the joint failure probabil-

ity of two or three components can be estimated by the PCM method. Suppose the

information of the joint failure probabilities involving one component are not avail-

able. For the LP+RLP approach, one can take 99 components which have complete

sets of information to form a subsystem formulated by the RLP bounds method with

992 − 99 + 2 = 9704 design variables resulted from Equation (3.19). This subsystem

serves as a 9704-state component in the LP bounds method, and the number of design

variables is 19408 resulted from Equation (3.82) in the LP. The failure probabilities

for the series system estimated by LP+RLP3 are also shown in Table 3.25. The CPU

time required for each analysis is shown in Table 3.26.

The bounds of LP+RLP3 shown in Table 3.25 are wider than that of RLP3 shown

in Table 3.13 because of the missing information. Similar to the result of RLP3, one

can see that when k = 3 the CPU time of LP+RLP3 is much longer than the others. In

fact, the linear programming in LP+RLP3 takes only 2.064 s to calculate the bounds

of the system failure probability, whereas the PCM method takes 109.113 s to calculate

the joint failure probability of up to k components (k = 3). Because the number of

combinations would increase rapidly with an increase of k and n, one needs longer and
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Table 3.25: Bounds on the failure probability of a series system with 100 components

and equal component correlations (β = 3).

ρ k Bounds of LP+RLP3

0.1 2 0.110–0.143

0.3 2 0.051–0.141

0.5 2 0.019–0.136

0.5 3 0.022–0.103

Table 3.26: CPU times for a series system failure probability with 100 components and

equal component correlations (β = 3).

ρ k

CPU times (s)

LP+RLP3

0.1 2 3.197

0.3 2 3.050

0.5 2 2.879

0.5 3 111.177

longer CPU times to calculate the joint failure probability of these combinations.

3.6 Summary of Relaxed Linear Programming Bounds

Method

As an efficient reliability tool for a system with a large number of components, the

relaxed linear programming (RLP) bounds method is introduced in this chapter. The

RLP bounds method can be used to estimate the bounds for a series system as well as

a parallel system.

3.6.1 Advantages

The most important advantage of the RLP bounds method over the LP bounds method

is that the RLP bounds method can handle a system with much larger number of
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components than the LP bounds method. For example, suppose authors have the

same LP solve described in Section 2.3.4, then in theory the limitation of the number

of components for RLP3 is 512, whereas that of the LP bounds method is 18.

Similar to the LP bounds method, the RLP bounds method has a lot of advantages

over other existing methods (e.g., Boole bounds35) or Zhang bounds41,42)). The main

advantages include: (a) any “level,” i.e., the number (k) of components considered in

the joint probabilities of the states, of information can be used, including equalities and

inequalities; (b) the statistical dependency among component states is easily accounted

for in terms of their joint probabilities; (c) the method provides the result comparable

to the LP bounds method for the given information of individual and joint component

states probabilities; (d) the method is applicable to a pure series system as well as a

pure parallel system.

Like the LP bounds method, there are also two advantages of the RLP bounds

method over the MC simulation. One is that the RLP bounds method is unaffected by

the magnitude of the failure probability, whereas the MC simulation is not. Another

advantage is that the RLP bounds method is still applicable when the information is

not incomplete, whereas MC simulation is not.

3.6.2 Disadvantages

The main drawback of the RLP bounds method is that the method is only applicable

to a pure series system and a pure parallel system, not for a general system.

In this chapter, as an efficient reliability tool, the RLP bounds method has been

developed. The RLP bounds method is applicable to a pure large series system and a

pure large parallel system. The number of design variables can be decreased from 2n to

n2−n+2 by employing the UGF, and the number of constraints has also been decreased

extremely by considering the decreasing strategy as described in Section 3.4.6. The

RLP bounds method is efficient than the LP bounds method, and it can provide a

result comparable to that of the LP bounds method. The RLP bounds method has

also a lot advantages similar to the LP bounds method. However, the RLP bounds

method is not applicable to the combination system of series subsystem and parallel

subsystem. In order to extend the RLP bounds method a general system, an new
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approach will be introduced in the next chapter.





Chapter 4

EXTENDED RLP BOUNDS

METHOD BASED ON FAILURE

MODES

4.1 Overview

Although the RLP bounds method is more efficient and can solve problems involving

larger systems than the LP bounds method, the method can still be improved to handle

a general system consisting of both series and parallel subsystem66–69). This chapter will

introduce the extended RLP bounds method based on failure modes to the reliability

analysis of the general system. The chapter is composed of the following sections:

In section 4.2, the outline of the extended RLP bounds method based on failure

modes is introduced.

In section 4.3, the procedure of the extended RLP bounds method based on failure

modes is introduced.

In section 4.4, the limitation of size of the extended RLP bounds method based on

failure modes is introduced.

In section 4.5, numerical examples have been used to prove the application of the

extended RLP bounds method based on failure modes.

In section 4.6, the advantages and disadvantages of the extended RLP bounds

method based on failure modes is summarized.

87
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4.2 Outline of Extended RLP Bounds Method Based

on Failure Modes

Since the RLP bounds method is not applicable to a general system that consists of

both series subsystems and parallel subsystems, in this section, we propose an approach

to extend the applicability of the combination of the RLP bounds method and the LP

bounds method to handle a general system by decomposing the entire system into

subsystems based on the failure modes.

A system with multi-failure modes can be modeled as a series system if it fails

whenever any of its critical failure modes occur. Many methods have been introduced

and used to determine the critical failure modes of a system27,70). In such a system

each critical failure mode or so called cut set can be considered as a “component”.

Each critical failure mode is also a system (subsystem) itself. The bounds on its

failure probability can be computed by the RLP bounds method if it is a series or

parallel system, and the bounds on its joint failure probability can also be computed

by the RLP bounds method. These bounds estimated by the RLP bounds method

are then used as constraints in solving the LP problem in order to estimate the failure

probability of the entire system. Since this approach is based on the failure modes of

the system, we called it as extended RLP bounds method based on failure modes.

4.3 Procedure of Extended RLP Bounds Method

Based on Failure Modes

The extended RLP bounds method based on the failure modes takes the following

procedure (see Figure 4.1).

1) The first step is to define the components which is related to the failure of the

system.

2) The critical failure modes for the system are identified. Each critical failure mode

can be considered as a “component” in the entire system. It should be noted that

unlike the multi-scale system reliability analysis, a component can belong to more
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Figure 4.1: Diagram of extended RLP bounds method based on failure modes.

than one critical failure mode. Then, the extended RLP bounds method based

on failure modes can do better than the multi-scale system reliability analysis for

maintaining the correlation among the components, i.e., provides a more realistic

model.

Since the system can be modeled as a series system based on the critical failure

modes, the failure probabilities of the system can be expressed as

Pf = P (F1 ∪ F2 ∪ F3 ∪ · · · ∪ Fnf
) (4.1)

where nf is the number of the critical failure modes, and Fi, i = 1, 2, . . . , nf , is

the event that ith failure mode occurs.

When the number of critical failure modes is large, a group of failure modes is

treated as a subsystem. The grouping is made based on the degree of correlation;

failure modes having a strong correlation can be combined into a group. The
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Equation (4.1) can be rewritten as

Pf = P (F(1) ∪ F(2) ∪ F(3) ∪ · · · ∪ F(nS)) (4.2)

where nS, nS ≤ nf , is the number of the subsystems, and F(j), j = 1, 2, . . . , nS,

is the event that jth subsystem fails.

3) Based on the component failure probabilities and the joint failure probabilities

of the components, the bounds on the subsystem failure probabilities and the

joint failure probabilities of the subsystems can be estimated by the RLP bounds

method.

The failure probabilities of the subsystem i, P(i), can be expressed as

P(i) = P (F(i))

i = 1, 2, ..., nS (4.3)

Note that (i) in P(i) denotes subsystem i. The bounds on failure probability of

the subsystem (i) can be estimated by the RLP bounds method if it is a series

or parallel system. In fact, the subsystem transformed from the critical failure

mode is usually a parallel system.

The joint failure probabilities of the subsystem i and j, P(i,j), can be expressed

as

P(i,j) = P (F(i) ∪ F(j))

i = 1, 2, ..., nS − 1, j = 1, 2, ..., nS, i ̸= j (4.4)

The bounds on the joint failure probability of the subsystem i and j can also be

estimated by the RLP bounds method because a new parallel subsystem consists

of those two subsystems.

The joint failure probabilities of the subsystem i, j, and k, P(i,j,k), can be ex-
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pressed as

P(i,j,k) = P (F(i) ∪ F(j) ∪ F(k))

i = 1, 2, ..., nS − 2,

j = 1, 2, ..., nS − 1,

k = 1, 2, ..., nS,

i ̸= j ̸= k (4.5)

4) Based on the bounds on the subsystem failure probabilities estimated by the RLP

bounds method and the joint failure probabilities of the subsystems estimated

by the RLP bounds method, the bounds on the failure probabilities of the entire

system can be estimated by the LP bounds method.

On the course of this research, we found that the equalities have an important

effect to the accuracy of the RLP bounds method. When the information for

many of the probabilities is given by inequalities, the bounds for the entire system

could be wide using the RLP bounds method. Therefore, the LP bounds method

is preferred for determining the bounds for the entire system.

When a system has a very large number of failure modes, sub-subsystems below

each subsystem are considered again, i.e., a group of sub-subsystems are grouped

together as a single subsystem. Also, if a subsystem is not a pure series system

or a pure parallel system, the diagram shown in Figure 4.1 is applied to estimate

the bounds of its failure probability.

4.4 Limitation of Size of Extended RLP Bounds

Method Based on Failure Modes

Since the bounds of the entire system and subsystems are obtained by using the LP

bounds method and the RLP bounds method, the application of the failure mode

analysis method is limited by the size of the LP problem of the entire system and of

each subsystem.
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1) Size of LP Problem for Subsystem i

The number of design variables for subsystem i is

Nd(i) = n(i)
2 − n(i) + 2 (4.6)

where n(i) denotes the number of components in subsystem i.

If the complete set of joint failure probabilities of each k(i) components is available,

the constraints for subsystem i have the form of the RLP bounds method, and

the number of constraints for subsystem i is

Nc(i) = (n(i)
2 − n(i) + 3) + 2

((
n(i)

1

)
+

(
n(i)

2

)
+ · · ·+

(
n(i)

k(i)

))
+ k(i) (4.7)

2) Size of LP Problem for Entire System

The number of design variables for the entire system is

Nd = 2nS (4.8)

If the complete set of joint failure probabilities of each kf subsystems is available,

the constraints for the entire system have the form of the LP bounds method,

and the number of constraints for the entire system is

Nc = (2nS + 1) + 2

((
nS

1

)
+

(
nS

2

)
+ · · ·+

(
nS

kf

))
(4.9)

Note that the failure probabilities of subsystems and the joint failure probabilities

of subsystems are usually given as the bounds on the failure probabilities, leading

to inequality constraints.

Suppose we have the same LP solver described in Section 2.3.4. Then, in theory

the bounds for the system failure probability can be obtained using the extended RLP

bounds method based on failure modes when nS ≤ 18, kf ≤ 3, n(i) ≤ 512, and k(i) ≤ 3.

4.5 Numerical Examples

4.5.1 Example 1: Rigid-plastic Structure as a General System

As a general system example, consider an ideally elastic-plastic cantilever beam in-

cluding an ideally rigid-brittle bar as shown in Figure 4.224). It is assumed that the
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Figure 4.2: Cantilever beam-bar system.

Table 4.1: The mean and standard deviation of normal distribution M, T, and X.

Mean Standard Deviation

M 1000 300

T 110 20

P 150 30

moment capacity of the beam, M , the tensile strength of the bar, T , and the load ap-

plied at the midspan of the beam, P , are uncorrelated normal random variables with

statistical characteristics shown in Table 4.1. For the sake of simplicity, we assume in

this example that, the length of the beam, l, is deterministic and equals 5. Ignoring

shear failure, there are three possible paths, or cut sets, for the failure of this structural

system as follows:

1) Cut set 1: The rigid-brittle bar failed first (failure event F1), then the cantilever

beam failed after forming a hinge at the fixed end of the beam (failure event F2).

2) Cut set 2: A hinge forms at the fixed end of the beam first (failure event F3),

then another hinge forms at the midspan of the beam (failure event F4).

3) Cut set 3: A hinge forms at the fixed end of the beam first (failure event F3),

then the rigid-brittle bar failed (failure event F5).

The procedure of the extended RLP bounds method based on the failure modes

can be described by the following.

[1] Considering the sequence of the failure events within the above cut sets, there are

five different failure events, that can be considered as the failure of five virtual
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Table 4.2: Bounds on the failure probability of the cantilever beam-bar system.

Bounds proposed method

(×10−3) kf=1 kf=2 LP

km = 1 0–9.24 0–9.24 0–9.24

km = 2 6.83–8.01 7.75–7.79 7.75–7.75

components forming a virtual system. Three cut sets in the structural system

correspond to three subsystems in the virtual system. The failure events of the

subsystem i, F(i), i = 1, 2, 3, can be defined as

F(1) = F1 ∩ F2, F(2) = F3 ∩ F4, F(3) = F3 ∩ F5

Then, the system failure event, Fs, can be expressed as

Fs = F(1) ∪ F(2) ∪ F(3)

= (F1 ∩ F2) ∪ (F3 ∩ F4) ∪ (F3 ∩ F5) (4.10)

[2] After the structural analysis of the structural system, the failure events of the

virtual components can be expressed as follows:

a) The failure event F1: the rigid-brittle bar failed first,

F1 =

{
X1 = T − 5P

16
< 0

}
(4.11)

b) The failure event F2: the cantilever beam failed as the result of forming a

hinge at the fixed end of the beam after the failure event F1,

F2 = {X2 = M − lP < 0} (4.12)

c) The failure event F3: a hinge forms at the fixed end of the beam first,

F3 =

{
X3 = M − 3lP

8
< 0

}
(4.13)

d) The failure event F4: another hinge forms at the midspan of the beam after

the failure event F3,

F4 =

{
X4 = M − lP

3
< 0

}
(4.14)
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e) The failure event F5: the rigid-brittle bar failed after the failure event F3,

F5 = {X5 = M + 2lT − lP < 0} (4.15)

Because M , T , and P are normal random variables, Xi’s in Equations (4.11) -

(4.15) are jointly normally distributed. The failure probabilities of the virtual

component and the joint failure probabilities of the virtual components can be

computed from the standard normal cumulative distribution function (CDF) and

the joint normal CDF, respectively, using the PCM.

[3] Based on the failure probabilities of the virtual component and the joint failure

probabilities of the two virtual components estimating in step [1], the bounds

on the failure probabilities of the subsystem and the joint failure probabilities of

the subsystems can be estimated by the RLP bounds method. Note that when

the information of the joint failure probabilities of the two virtual components

is available, the failure probability of each subsystem is an exact value in this

structural system.

[4] Based on the information of the failure probabilities of the subsystem and the

joint failure probabilities of the subsystems estimated in step [3], the bounds on

the failure probability of the entire system can be estimated by the LP bounds

method.

The bounds on the failure probability of the system estimated by the extended RLP

bounds method based on failure modes and the LP bounds method are shown in Table

4.2. Their km denotes the number of components considered to calculate the bounds of

the subsystem failure probability. By MC simulation with 107 simulations, the system

failure probability is estimated as 7.75× 10−3.

In Table 4.2, one can find that when km = 1 the bounds determined by the extended

RLP bounds method based on failure modes are rather wide, but identical to those

resulting from the LP bounds method. When km = 2 and kf = 1, the bounds estimated

by the extended RLP bounds method based on failure modes are found to be acceptable.

The difference between the bounds is negligible, particularly when km = 2 and kf = 2.

The CPU times of the extended RLP bounds method based on failure modes and the
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Figure 4.3: Four substation power network.

LP bounds method are both less than 1 second in this example; however, the extended

RLP bounds method based on failure modes can handle a much larger system efficiently,

while the LP bounds method cannot, as shown in the next section.

4.5.2 Example 2: Seismic reliability of a substation power

network

Consider the four substation power network system shown in Figure 4.3, which is

designed based on the hypothetical substation example71,72). Equipment items of the

system of the substation power network are shown in Table 4.3.

Assume that the substation power network is located in an earthquake-prone re-

gion. Let A denote the bedrock peak ground acceleration (PGA) in the region of the

substations, and let Si denote a factor representing the local site response of equipment

item i, such that A ·Si is the actual peak acceleration experienced by the ith equipment

item. Assume that A is a lognormal random variable with mean 0.15g (in units of
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Table 4.3: The mean and coefficient of variation of equipment capacities.

Equipment Items Mean c.o.v.

Disconnect Switch (DS) 0.7g 0.3

Circuit Breaker (CB) 0.6g 0.3

Tie Breaker (TB) 1.0g 0.3

Power Transformer (PT) 1.5g 0.5

gravity acceleration, g) and a coefficient of variation (c.o.v.) equal to 0.5. Assume

also that the Si, i = 1, 2, . . . , n, are lognormal random variables independent of each

other and also independent of A, with means 1.0 and c.o.v. ’s 0.2. Let Ri denote the

capacity of the ith equipment item with respect to the base acceleration in units of g,

and assume that Ri are lognormally distributed with statistics as shown in Table 4.3.

Assume that the tie breakers have an equal correlation coefficient of 0.5, and that the

other equipment items have an equal correlation coefficient of 0.3. The capacities of

equipment items in different categories are assumed to be statistically independent of

each other.

The ability of the substation power network to supply power from the input line

of Substation 1 (Input) to the output line of Substation 4 (Output) is assumed to be

the performance criterion. For this criterion, there are 54 components in the system of

the substation power network as shown in Figure 4.3. For example, (1 ∼ 2) DS means

that there are components 1 and 2, and that they are a Disconnect Switch.

The failure events of the individual equipment items are formulated as Fi = lnRi−

lnA− lnSi ≤ 0, i = 1, 2, . . . , 54. Let Vi = lnRi − lnA− lnSi. Because Ri, A, and Si

are lognormally distributed, Vi is normally distributed.

The system has 22 cut sets which are expressed using component identification

numbers shown in Figure 4.3 as follows: Fn1 = {1, 2}, Fn2 = {3, 4, 5, 6, 7, 8}, Fn3 =

{3, 4, 13}, Fn4 = {5, 6, 7, 8, 9, 10, 11, 12}, Fn5 = {9, 10, 11, 12, 13}, Fn6 = {14, 15}, Fn7

= {16, 17, 18, 19, 20, 21}, Fn8 = {16, 17, 26}, Fn9 = {18, 19, 20, 21, 22, 23, 24, 25}, Fn10 =

{22, 23, 24, 25, 26}, Fn11 = {27, 28}, Fn12 = {29, 30, 31, 32, 33, 34}, Fn13 = {29, 30, 39},

Fn14 = {31, 32, 33, 34, 35, 36, 37, 38}, Fn15 = {35, 36, 37, 38, 39}, Fn16 = {40, 41}, Fn17 =
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Table 4.4: Bounds calculated by the extended RLP bounds method based on failure

modes.

Bounds Case 1 Case 2

(×10−3) kf=1 kf=2 kf=1

km = 1 2.90–37.88 2.90-37.88 2.90-43.71

km = 2 2.90-9.55 2.92-9.54 2.90-10.13

km = 3 2.90-7.27 3.53-7.19 2.90-7.38

{42, 43, 44, 45, 46, 47}, Fn18 = {42, 43, 52}, Fn19 = {44, 45, 46, 47, 48, 49, 50, 51}, Fn20 =

{48, 49, 50, 51, 52}, Fn21 = {53}, Fn22 = {54}. Because the number of components is

large and the relationships among the components are complex in this system, the LP

bounds method is not applicable and a multi-scale approach is also difficult to apply.

For the extended RLP bounds method based on failure mode, the failure probability

can be obtained from Equation (2.47) by replacing X by A. The failure events of the

individual equipment items are formulated as Fi = {lnRi − ln a − lnSi ≤ 0|A = a},

i = 1, 2, . . . , 54, where a is the value of A. Then, Vi = lnRi− ln a− lnSi, and the failure

probabilities information is given by the product of the conditional marginal (PCM)

method18,32). Since authors want to obtain an accuracy of approximately 10−4, amin and

amax are determined to be 0.045g and 1.2g, respectively, so that P (A ≤ amin) ≈ 10−2

and P (A ≥ amax) ≈ 10−6. The number N in the Gaussian integration is set equal to

11. In this example, because the number of failure modes is larger than 18, the set of

failure modes is divided into 7 subsystems as follows: ( Fn1 , Fn6 , Fn11 , Fn16 , Fn21), (

Fn2 , Fn3 , Fn5), (Fn7 , Fn8 , Fn10), ( Fn12 , Fn13 , Fn15), ( Fn17 , Fn18 , Fn20), ( Fn4 , Fn9 , Fn14 ,

Fn19), (Fn22).

The failure probabilities and the CPU times of the extended RLP bounds method

based on failure modes are shown in Tables 4.4 and 4.5, respectively, as Case 1. Using

MC simulations with 107 simulations, the system failure probability is estimated as

4.57× 10−3 and the corresponding CPU time is 39.7 s.

Furthermore, suppose that the information for the statistics of component 52 is

missing; in this case, the probabilities involving this equipment item are not available.
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Table 4.5: CPU times (seconds) of the extended RLP bounds method based on failure

modes.

Bounds Case 1 Case 2

(×10−3) kf=1 kf=2 kf=1

km = 1 8.9 8.9 7.7

km = 2 9.0 84.2 9.9

km = 3 20.8 630.7 20.8

With the extended RLP bounds method based on failure modes, the relative constraints

are removed. The failure probabilities and the CPU times of the extended RLP bounds

method based on failure modes are also shown in Tables 4.4 and 4.5, respectively, as

Case 2. Note that with incomplete probability information, MC simulations cannot be

performed.

From Tables 4.4 and 4.5, one finds that the accuracy of the extended RLP bounds

method based on failure modes is acceptable when km ≥ 2 and kf ≥ 1, and that

narrower bounds can be obtained by increasing km and kf .

4.6 Summary of Extended RLP Bounds Method

Based on Failure Modes

As an efficient reliability tool for a general system with a large number of components,

the extended RLP bounds method based on failure modes is introduced in this chapter.

4.6.1 Advantages

The main advantage of the extended RLP bounds method based on failure modes over

the multi-scale approach is that each component of the system can belong to more than

one subsystem in the extended RLP bounds method based on failure modes because the

subsystems are based on the failure modes. In the multi-scale approach, any component

of the system can belong to only one subsystem because it is not possible to define the

system failure event (the union of failure modes) when one component belongs to more
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than one subsystem. There are many cases in which many components are common in

different failure modes. In such cases, the multi-scale approach is difficult or impossible

to apply, while the extended RLP bounds method based on failure modes is applicable.

In addition, an advantage of the RLP bounds method over the LP bounds method is

that a subsystem with a much larger number of components can be handled, while the

limitation on the number of components in each subsystem remains the same as that

of the RLP bounds method.

Like the LP bounds method, there are also two advantages of the extended RLP

bounds method based on failure modes over the MC simulation. One is that the

extended RLP bounds method based on failure modes is unaffected by the magnitude

of the failure probability, whereas the MC simulation is not. Another advantage is that

the extended RLP bounds method based on failure modes is still applicable when the

information is not incomplete, whereas MC simulation is not.

4.6.2 Disadvantages

The system failure probability is often determined by the failure probability of some

important failure modes or components, and the extended RLP bounds method based

on failure modes shows a big advantage if only the important failure modes is consid-

ered. However, finding failure modes of the large and complex systems is difficult, and

it is a very important research topic.

4.6.3 Summary

As an efficient reliability tool for a general system with a large number of components,

the extended RLP bounds method based on failure modes is developed in this chapter.

It is based on the information of a few probabilities, and can provide the bounds of the

failure probability of the large system especially when the other method, such as the

multi-scale system reliability analysis, is not applicable. The extended RLP bounds

method based on failure modes provides a result comparable to that of the LP bounds

method when the LP bounds method is applicable. It is found to show a big advantage

if only important failure modes are considered.



Chapter 5

CONCLUSION

5.1 Summary

The present study proposed the system reliability analysis methods using linear pro-

gramming based on the individual component failure probabilities and the joint failure

probabilities of a small set of components (usually two or three). The original point of

this study is to propose new system reliability analysis methods that can estimate the

system reliability efficiently and accurately. The important findings and engineering

contributions of this research are summarized as follows.

Chapter 1

In this chapter, the background and objective of this research was introduced. The

estimation of the system reliability is difficult when the number of components of

the system is large or the system is complex. Researchers are trying to find out the

bounds on the system failure probability based on the information of the individual

component failure probabilities and the joint failure probabilities of a small set of

components. There are no theoretical bounds for the general systems. The challenges

related to computation burdens in the system reliability analysis constitutes the focus

of the present research.

101
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Chapter 2

This chapter reviewed the past research concerning the existing formulation of bounds

on system reliability, the LP bounds method, and the multi-scale system reliability

analysis. The LP bounds method was proposed as a general method to estimate the

system failure probability. It can provide the most narrowest possible bounds based on

the information of the individual component failure probabilities and the joint failure

probabilities of components. However, the drawback of the LP bounds method is that

the size of LP problem grows rapidly with the number of components. This is the

hindrance in the application of the LP bounds method to a system with large number

of components. In theory, the limitation of the number of components in the LP bounds

method is 18. In order to solve the above drawback, the multi-scale system reliability

analysis has been proposed, The multi-scale system reliability analysis decomposed the

entire system into smaller size of the subsystems, then the large size of LP problem

can be obtained by solving a number of smaller size of LP problem. However, the

selection of subsystem in the multi-scale system reliability analysis could difficult or

impossible in some systems. Also, the limitation of the number of components is the

same with that of the LP bounds method in each subsystem. Therefore, the more

efficient reliability methods are required.

Chapter 3

In this chapter, as an efficient reliability tool for a system with a large number of

components, the RLP bounds method has been introduced. The RLP bounds method

is still based on the information that the individual components failure probabilities

and the joint failure probabilities of components, and the information both including

equalities and inequalities can be used. Like the LP bounds method, there are also

two advantages of the RLP bounds method over the MC simulation. One is that the

RLP bounds method is unaffected by the magnitude of the failure probability, whereas

the MC simulation is not. Another advantage is that the RLP bounds method is still

applicable when the information is not incomplete, whereas MC simulation is not. The

most important contribution of the RLP bounds method is that the size of LP problem

can be well solved, e.g., the number of design variables can be decreased from 2n to
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n2 − n+ 2 by employing the UGF, and the number of constraints can also be reduced

by using the decreasing strategy. The RLP bounds method can provide the result

comparable to that of the LP bounds method. The main drawback of the RLP bounds

method is only applicable to a pure series system as well as a pure parallel system.

Chapter 4

In order to extend the applicability of the RLP bounds method, the extended RLP

bounds method based on failure modes has been proposed in this chapter. It is appli-

cable to a general system insisting of series subsystems and parallel subsystems. The

main advantage over the multi-scale approach is that each component of the system can

belong to more than one subsystem in the proposed approach because the subsystems

are based on the failure modes. In the multi-scale approach, because any component

of the system can belong to only one subsystem, it is not possible to define the system

failure event (the union of failure modes) when one component belongs to more than

one subsystem. In some cases, the multi-scale system reliability analysis approach

is difficult or impossible to apply, while the extended RLP bounds method based on

failure modes is applicable.
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5.2 Expectation

System Reliability Analysis with Multi-state Components

1) Reliability Analysis with Brittle Components

Because a component is usually considered as a ductile component in engineering

system, the brittle state can be considered as a special state of multi-state component.

After one component fails, the load transfers to or redistributes among the remaining

components, thus changing and, in general, increasing the demand on the remaining

components, this behavior and process of the whole system is very complex.

The ideal structure from the safety point of view is a statically indeterminate struc-

ture with nothing but ductile components. The designer will in general strive to design

his structure in that way. Yet even then the possibility that one of the components

will display brittle behavior must be taken into account. The brittle behaviors lie

in imperfections of construction, in damage that occurs during the service life of the

structure, or in fatigue phenomena. Among a structure system, one of its subsystems

may collapse when it breaks abruptly, moreover, the whole system will be disordered

and it can collapse consequently. However, the estimation of the reliability of system

with brittle components is very difficult.

Because the UGF technique can formulate the entire system states based on the

states of its components by using algebraic procedures as describe in this research,

authors have some clues to estimate the reliability of the system with brittle compo-

nents63). Consequently, finding an appreciate approach by using the UGF technique

and linear programming to estimate the reliability of the system with brittle compo-

nents would be an interesting research topic in the future.

2) Reliability Analysis with multi-state Components

In real world problems, a realistic model of the engineering systems usually needs to

consider a lot of system states, and the idea of multi-state systems was first introduced

by Hirsch, Meisner and Boll73). Equation (2.31) can be considered as the formulation

of the state of the multi-state system. Increasingly high requirements for accurate re-

liability evaluation of multi-state system make the calculation of system reliability is

extremely difficult or impossible by use of the classical binary reliability theory. There-
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fore, the theory and methods of multi-state system reliability is highly needed. In the

last decades, more and more people joined the research of the multi-state system reli-

ability74–79). The early advances in multi-state system reliability theory and methods

were summarized by Lisnianski and Levitin15).

In reality, any realistic system would be the multi-state system, then the evaluation

of the reliability of multi-state systems would be very important. However, the multi-

state system reliability analysis would be very complex. Since the UGF technique

have been used to define the states of the multi-state system and to estimate the

reliability60), the computational burden is the crucial factor when one solves reliability

analysis. Since the methods proposed in this research have proved that the bounds on

the system reliability can be estimate efficiently and accurately by using the UGF and

the LP, it would be important research area to extend the application of methods by

use of the UGF and the LP.





APPENDIX A

UNIVERSAL GENERATING

FUNCTION AND ITS

PROPERTIES

A.1 Overview

In this appendix, the concept of universal generating function (UGF) is reviewed and

its properties is specifically described.

In section A.2, the concepts of the generating function, the moment generating

function, and the universal generating function are described.

In section A.3, the important properties of the universal generating function are

depicted.

107



108APPENDIX A. UNIVERSAL GENERATING FUNCTION AND ITS PROPERTIES

A.2 Concept of Universal Generating Function

A.2.1 Concept of Generating Function

Generating functions54) are one of the most surprising and useful inventions in discrete

mathematics, and it become a bridge between discrete mathematics and continuous

analysis by transforming problems about sequences into problems about functions.

This mathematical machinery can be apply to problems about sequences, for example,

all sorts of counting problems can be solved by use of generating functions.

The concept of generating functions can be considered as a powerful tool and tech-

nique for solving discrete problems. The general idea of generating function is as fol-

lows. In counting problems, an infinite sequence an of real numbers can be expressed

as

a0, a1, a2, . . . (A.1)

where an represents different values for different n. A formal power series G(x) can be

defined as

G(x) = a0 + a1x+ a2x
2 + . . .

=
∞∑
n

anx
n (A.2)

The above G(x) is the generating function for the infinite sequence a0, a1, a2, . . . . This

G(x) is also called ordinary generating function60).

Let us take a simple example. Consider a sequence as

1, 1, 1, , 1, 1, 1, 0, 0, 0, 0, . . . (A.3)

The corresponding generating function is

G(x) = 1 + 1x+ 1x2 + 1x3 + 1x4 + 1x5 + 0x6 + 0x7 + . . .

= 1 + x+ x2 + x3 + x4 + x5 (A.4)

For the sum of the above geometric series, we can write

G(x) = 1 + x+ x2 + x3 + x4 + x5

=
1− x6

1− x
(A.5)
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A.2.2 Concept of Moment Generating Function

In probability theory and statistics, the moment generating function of a discrete ran-

dom variable is an alternative specification of its probability distribution. The moment

generating function60) associated with a discrete random variable X is a function m(t)

defined by

m(t) = E(etX)

=
k∑

i=0

etxipi (A.6)

where the vector x = (x0, x1, . . . , xk) consisting of the possible values of X and the

vector p = (p0, p1, . . . , pk) consisting of the corresponding probabilities pi = P{X = xi}

represent the probabilistic distribution of variable X.

The expected values E(X), E(X2), E(X3), . . . , and E(Xr) are called moments.

Sometimes the moments are difficult to find. However, all of the moments of discrete

random variable X can be obtained by successively differentiating m(t). For this

reason, the function m(t) is called the moment generating function. For example, the

first derivative of m(t) can be expressed as

m′(t) =
d

dt
(

k∑
i=0

etxipi)

=
k∑

i=0

xie
txipi (A.7)

Then, the first moment can be obtained as

m′(0) =
k∑

i=0

xipi

= E(X) (A.8)

The second derivative of m(t) can be expressed as

m′′(t) =
d

dt
(m′(t))

=
d

dt
(

k∑
i=0

xie
txipi)

=
k∑

i=0

xi
2etxipi (A.9)
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Then, the second moment can be obtained as

m′′(0) =
k∑

i=0

xi
2pi

= E(X2) (A.10)

The nth derivative of m(t) is equal to E(Xn) at t = 0.

The one of most important property of the moment generating function is that the

moment generating function of the sum of the independent discrete random variables

can be expressed as the product of the individual moment generating functions of the

these variables. For example, consider two independent discrete random variables X

and Y , the moment generating function of X and Y can be expressed as

mX(t) = E(etX)

=
kx∑
i=0

etxipxi
(A.11)

where the vector x = (x0, x1, . . . , xkx) consisting of the possible values of X and the

vector p = (p0, p1, . . . , pkx) consisting of the corresponding probabilities pxi
= P{X =

xi} represent the probabilistic distribution of variable X.

mY (t) = E(etY )

=

ky∑
j=0

etyjpyj (A.12)

where the vector y = (y0, y1, . . . , yky) consisting of the possible values of Y and the

vector p = (p0, p1, . . . , pky) consisting of the corresponding probabilities pyj = P{Y =

yj} represent the probabilistic distribution of variable Y . Then, the moment generating

function of X + Y , mX+Y (t), can be expressed as

mX+Y (t) = mX(t)mY (t)

=
kx∑
i=0

etxipxi

ky∑
j=0

etyjpyj

=
kx∑
i=0

ky∑
j=0

etxietyjpxi
pyj

=
kx∑
i=0

ky∑
j=0

et(xi+yj)pxi
pyj (A.13)
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Generally, the moment generating function of the sum of the independent discrete

random variables, X1, X2, . . . , Xn, can be expressed as

m∑n
i=1

Xi(t) =
n∏

i=1

mXi
(t) (A.14)

A.2.3 z-transform

The z-transform60), which can be considered as the discrete-time counterpart of the

Laplace transform, is an essential mathematical tool for the design, analysis and moni-

toring of systems. The general idea of the z-transform is as follows. Consider a simpler

expression of Equation (A.6) by replacing the function et by the variable z. A function

corresponding to discrete random variable X and its probability mass function (pmf)

can be obtained as

τ(z) = E(zX)

=
k∑

i=0

zxipi (A.15)

The above function is called the z-transform of discrete random variable X.

Some basic properties of the moment generating function of discrete random vari-

able X are similar to that of the z-transform of discrete random variable X. For

example, the first derivative of τ(z) can be expressed as

τ ′(z) =
d

dt
(

k∑
i=0

zxipi)

=
k∑

i=0

xiz
xi−1pi (A.16)

Then, the first moment can be obtained as

τ ′(1) =
k∑

i=0

xipi

= E(X) (A.17)

From the above Equation, one can easily find that the first moment of discrete random

variable X is equal to the first derivative of τ(z) at z = 1.

Also, the z-transform preserves the most important property of the moment gen-

erating function, i.e., the z-transform of the sum of the independent discrete random
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variables can be expressed as the product of the individual z-transform of the these

variables. For example, consider two independent discrete random variables X and Y ,

the z-transform of X and Y can be expressed as

τX(z) = E(zX)

=
kx∑
i=0

zxipxi
(A.18)

and

τY (z) = E(zY )

=

ky∑
j=0

zyjpyj (A.19)

Then, the moment generating function of X + Y , τX+Y (t), can be expressed as

τX+Y (z) = τX(z)τY (z)

=
kx∑
i=0

zxipxi

ky∑
j=0

zyjpyj

=
kx∑
i=0

ky∑
j=0

zxizyjpxi
pyj

=
kx∑
i=0

ky∑
j=0

z(xi+yj)pxi
pyj (A.20)

Generally, the z-transform of the sum of the independent discrete random variables,

X1, X2, . . . , Xn, can be expressed as

τ∑n
i=1

Xi(z) =
n∏

i=1

mXi
(z) (A.21)

The more details of z-transform can be found at the book by Grimmett and Stirza-

ker61) and Ross62).

A.2.4 Definition of Universal Generating Function

Consider n independent discrete random variables X1, X2, . . . , Xn and assume that

each variable Xi has a pmf represented by the vectors xi = (xi,0, xi,1, . . . , xi,ki), pi =

(pi,0, pi,1, . . . , pi,ki). Let f(X1, X2, . . . , Xn) denotes the pmf of an arbitrary function of
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X1, X2, . . . , Xn. All of the combinations are mutually exclusive, and the total number

of combinations of the possible values of the function f(X1, X2, . . . , Xn) is

N =
n∏

i=1

(ki + 1) (A.22)

where ki+1 is the number of possible values of Xi. The probability of the jth possible

value of X1, X2, . . . , Xn can be expressed as

qj =
n∏

i=1

pi,ji (A.23)

By introduce a general composition operator ⊗
f
over z-transform, the z-transform

of the arbitrary function f(X1, X2, . . . , Xn) can be obtained

⊗
f
(

ki∑
ji=0

pijiz
xiji ) =

k1∑
j1=0

k2∑
j2=0

· · ·
kn∑

jn=0

(
n∏

i=0

pi,jiz
f(xi,j1

,...,xn,jn )) (A.24)

By replacing the z-transform of random variable Xi by the ui(z), the above Equation

can be expressed as

U(z) = ⊗
f
(u1(z), u2(z), . . . , un(z)) (A.25)

The above technique using z-transform and composition operators ⊗
f

is called the

universal z-transform or universal (moment) generating function (UGF) technique,

and U(z) represents the UGF of X1, X2, . . . , Xn.

A.3 Properties of Universal Generating Function

The main interested property of UGF is the properties of composition operator ⊗
f
, and

the properties of the function f(X1, X2, . . . , Xn) decide the properties of composition

operator ⊗
f
. There are four main properties60):

• Consecutive property:

If

f(X1, X2, . . . , Xn) = f(f(X1, X2, . . . , Xn−1), Xn) (A.26)

then the corresponding UGF can be expressed as

U(z) = ⊗
f
(u1(z), u2(z), . . . , un(z))

= ⊗
f
(⊗
f
(u1(z), u2(z), . . . , un−1(z)), un(z)) (A.27)
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By assuming Uj(z) = ⊗
f
(u1(z), u2(z), . . . , uj(z)), the above Equation can be expressed

as

Uj(z) = ⊗
f
(Uj−1(z), uj(z))

2 ≤ j ≤ n (A.28)

• Associative property:

If

f(X1, X2, . . . , Xj, Xj+1, . . . , Xn)

= f(f(X1, X2, . . . , Xj), f(Xj+1, . . . , Xn)) (A.29)

then the corresponding UGF can be expressed as

⊗
f
(u1(z), u2(z), . . . , un(z))

= ⊗
f
(⊗
f
(u1(z), u2(z), . . . , uj−1(z)),⊗

f
(uj(z), . . . , un(z))) (A.30)

• Commutative property:

If

f(X1, X2, . . . , Xj, Xj+1, . . . , Xn)

= f(f(X1, X2, . . . , Xj+1, Xj, . . . , Xn) (A.31)

then the corresponding UGF can be expressed as

⊗
f
(u1(z), u2(z), . . . , uj(z), uj+1(z), . . . , un(z))

= ⊗
f
(u1(z), u2(z), . . . , uj+1(z), uj(z), . . . , un(z)) (A.32)

• Recursive property:

If a function takes the recursive form

f(f1(X1, . . . , Xj), f2(Xj+1, . . . , Xh), . . . , fm(Xl, . . . , Xn)) (A.33)

then the corresponding UGF can be expressed as

⊗
f
(⊗
f1
(u1(z), . . . , uj(z)),⊗

f2
(uj+1(z), . . . , uh(z)), . . . , ⊗

fm
(ul(z), . . . , un(z)))

(A.34)
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Let us take a simple example, consider the variables X1, X2, X3 with pmf x1 = (3,

6, 9), p1 =(0.4, 0.3, 0.3), x2 = (6, 10), p2 =(0.6, 0.4), and x3 = (0, 1), p3 =(0.5, 0.5),

respectively. The UGF of X1, X2, X3 can be expressed as

u1(z) = 0.4z3 + 0.3z6 + 0.3z9

u2(z) = 0.6z6 + 0.4z10

u3(z) = 0.5z0 + 0.5z1

The function Y = min(X1, X2, X3) having both commutative and associative prop-

erties can be expressed as

min(X1, X2, X3) = min(min(X1, X2), X3) (A.35)

then,

u4(z) = u1(z) ⊗
min

u1(z)

= (0.4z3 + 0.3z6 + 0.3z9) ⊗
min

(0.6z6 + 0.4z10)

= 0.24zmin(3,6) + 0.18zmin(6,6) + 0.18zmin(9,6) +

0.16zmin(3,10) + 0.12zmin(6,10) + 0.12zmin(9,10)

= 0.40z3 + 0.48z6 + 0.12z9 (A.36)

UY (z) = u4(z) ⊗
min

u3(z)

= (0.40z3 + 0.48z6 + 0.12z9) ⊗
min

(0.5z0 + 0.5z1)

= 0.20zmin(3,0) + 0.24zmin(6,0) + 0.06zmin(9,0) +

0.20zmin(3,1) + 0.24zmin(6,1) + 0.06zmin(9,1)

= 0.50z0 + 0.50z1 (A.37)

The function Y = min(X1, X2, X3) can also be expressed as

min(X1, X2, X3) = min(min(X1, X3), X2) (A.38)
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then,

u4(z) = u1(z) ⊗
min

u3(z)

= (0.4z3 + 0.3z6 + 0.3z9) ⊗
min

(0.5z0 + 0.5z1)

= 0.20zmin(3,0) + 0.15zmin(6,0) + 0.15zmin(9,0) +

0.20zmin(3,1) + 0.15zmin(6,1) + 0.15zmin(9,1)

= 0.50z0 + 0.50z1 (A.39)

UY (z) = u4(z) ⊗
min

u2(z)

= (0.5z0 + 0.5z1) ⊗
min

(0.6z6 + 0.4z10)

= 0.30zmin(0,6) + 0.30zmin(1,6)

0.20zmin(0,10) + 0.20zmin(1,10)

= 0.50z0 + 0.50z1 (A.40)
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