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Abstract 

This thesis focuses on the route choice behavior of car drivers. Modeling route choice is 

essential when modeling travel demand. In the macroscopic travel demand models, such 

as the classical four steps model, we only need apply the simple route choice models that 

assume the drivers are homogeneous. However, in the recent years, the activity-based 

travel demand models attract increasing attentions. Since these models are agent based, it 

becomes necessary and possible to incorporate heterogeneity in route choice modeling. 

Therefore, the main objective of this study is to explore the heterogeneity in route choice 

behavior. Particularly, in this thesis, we investigate the incorporations of three kinds of 

heterogeneity in route choice modeling: the heterogeneity in perceptions, the 

heterogeneity in processes and the heterogeneity in tastes.  

Heterogeneity in perceptions allows travelers’ different perceptions of the same 

observed route attributes. To consider the heterogeneity in perceptions, especially drivers’ 

en-route experiences, a Bayesian network (BN) based model is proposed and applied in a 

small network of Beijing, China, with the GPS data collected by taxis. In this model, 

drivers’ dynamic travel time perception process is described by the inference problem of 

BN. 

Heterogeneity in processes means that although the manifested path observations are 

the same, travelers’ really choice processes will be different. To consider the 

heterogeneity in processes is in fact to consider the en-route choices. We propose a 

process-based method for analyzing dynamic route choice behavior. The dynamic choice 

process is defined as the sequence of choices during a trip, including the route choices 

(both pre-trip and en-route choices) and the choices of making a route choice again at 

every decision node. The model is estimated and compared with conventional models 

using probe vehicle data. The results confirm that drivers do not tend to make route 

choice decisions at all decision nodes. The probability of making an en-route choice is 

related to a driver’s sensitivity to benefit and the cost of making the decision, which is 

positively correlated with distance to the origin and negative correlated with the spatial 

scale of the intersection at the decision node. 
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The differences of tastes on the same observed attributes are referred as 

heterogeneity in tastes. We at first explore the taste heterogeneity which is related to 

some observed attributes. Particularly, we explore the effect of familiarity on route choice 

behavior. Familiarity considered here is both individual and OD pair specific, different 

from previous researches which only consider the individual specific familiarity. Three 

methods are applied: class specific parameters, structured scale parameter and structured 

parameters of explanation variables. The effect of familiarity to O-D pairs on route choice 

behavior is proved to be statistically significant using the data collected in Toyota by 

private cars. The model with structured parameters of explanation variables has a better 

performance than the structured scale parameter model. It is found that drivers will be 

more easy affected by some unobserved factors and less sensitive to the count of 

intersections than free travel time when travel between more familiar OD pairs.  

At last, we propose a multi-level mixed logit model to incorporate both observed and 

unobserved characteristics. In the proposed model, the taste coefficients are treated as 

random and structured as observed characteristics. Further, to deal with the panel data 

problem, random taste is divided to three components: traveler specific, O-D pair specific 

and choice situation specific. Models with various assumptions about heterogeneity are 

estimated and compared using the GPS data collected in Toyota. Beside some behavioral 

findings, empirical analysis suggests that, to enhance the performance of route choice 

models, it is more efficient to add more observed characteristics relating to travelers and 

O-D pairs than to increase the complexity of the specification. It is also proved that the 

incorporation of O-D pair specific unobserved taste heterogeneity can enhance the 

performance of a route choice model significantly. 
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Chapter 1 

Introduction 

1.1 Background 

Clothing, food, housing, and travel are the four basic elements for life, and we cannot live 

without one of them. Compared with the past, in this modern society, travel becomes 

much easier because of the advanced transportation system. Numerous trips are made for 

going to work, going shopping, meeting friends, attending activities and so forth. Many 

of these trips are made by car which has led to a lot of problem, such as congestion and 

pollution. These problems have a negative impact on peoples’ everyday lives. In order to 

decrease the negative impact of travel, it is essential to first understand travel behavior. 

Travel behavior is about all the choices during the process that people make trips, 

which will raise the questions as following: 

 Whether do they have a trip for some purposes? 

 Where do they go? 

 When do they departure? 

 Which transportation mode is used? 

 Which route is used? 

Actually, the core part of travel demand modeling is to answer these five questions. 

This research focused on the last question, i.e. the route choice behavior given a trip. 

More precisely, we are interested in identifying which route a given traveler would take 

to drive from one location to another in an urban road network. 

Route choice models play a crucial role in many transport applications. The modeling 

of route choice behavior is essential if we are to appraise travelers’ perception of route 

characteristics, to forecast travelers’ behavior under hypothetical scenarios, to predict 
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future traffic conditions on transportation networks and to understand travelers’ reaction 

and adaptation to sources of information (Prato, 2009).  

As the core of traffic assignment and simulation procedures, route choice modeling is 

essential in both macroscopic transport planning software (e.g. TransCAD) and 

microscopic traffic simulation tools (e.g. the dynamic traffic assignment module of 

VISSIM).  Route choice models are also required in the dynamic traffic management 

systems, which aim at improving traffic conditions by controlling the supply of network 

and by providing real time information to travelers to help them make better route choice 

decisions. As a core part of these systems is to adjust drivers’ route choice decisions 

using different ways (e.g. restricted passage and real time information), so that the traffic 

network will be at an optimal state. Therefore the understanding of travelers’ route choice 

behavior will be essential in these systems. 

As a representation of individual behavior, route choice models allow for the 

understanding of travelers’ choices under different scenarios. Therefore, route choice 

modeling is also essential when analyzing the effect of policies (e.g. congestion pricing). 

For example, the city planners will be interested in this question: which kind of people 

will pay 500 yen more for driving on a congestion charging route, instead of using 

another free charge but 5 kilometers longer route? 

After this general introduction to route choice analysis, we give a more detailed 

overview of the modeling process in the following section. 

1.2 Route Choice Modeling Overview 

People often confuse the route choice modeling problem and the route finding problem. 

The route finding problem is to find an optimum path for the traveler, according to a pre-

set objective.  For example, if you want to drive from home to a shopping mall, the route 

finding algorithms can tell you which route is the shortest, or which route is the most 

reliable. 

The route choice modeling is to identify which route a given traveler would take. For 

example, there are two routes: 

Route 1: 3 kilometers, 30% on the arterial road; 

Route 2: 5 kilometers, 70% on the arterial road. 



3 
 

If you ask different people to choose a route, you will get different answers. The 

route choice modeling is to answer the question whether a given traveler will choose 

route 1, or route 2. 

A good review of the route choice modeling problem can be found in Prato (2009). 

As summarized by Frejinger (2008), Figure 1.1 gives an overview of the modeling 

process. 

 

 

Network

Choice Sets
Path 

Observations

Trips

Route Choice Model

Description of 

Correlation

 

Figure 1.1 Route Choice Modeling Process 

 

 

As a standard choice modeling problem, before specifying and estimating a choice 

model, we need obtain the choice sets (i.e. the sets of alternatives that are considered by 

the decision makers) and the choice observations (i.e. which alternative is chosen by each 

decision maker).  

If the study is based on the state preference (SP) survey data, which is like to ask 

people to choose route 1 or 2 in the example above, it will be not difficult to get the 

choice sets and observed path observations. However, for practical applications, at most 

of the time, the path observations are based on the trips really taken by travelers. Trip 
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observations can be obtained by either asking travelers to describe chosen routes, or by 

passive monitoring using the Global Positioning System (GPS). In those cases, since the 

description from the travelers are often ambiguous, and the GPS data have limited 

accuracy, at first, we need identify which route is really used by the driver, based on both 

the trip observations and network data.  

In a route choice context, the alternatives considered by each traveler are in general 

unknown to the analyst, except the analysis based on SP survey data. It is therefore 

necessary to generate a choice set for each path observation. For each origin-destination 

pair, the number of physically feasible routes is huge, actually unbounded if paths with 

loops are considered.  Therefore choice set generation algorithms are used to define 

subsets of alternatives as the choice sets for route choice modeling. A review and 

comparisons on choice set generation methods can be find in Bekhor et al. (2006). 

The alternative routes in a choice set often share some same links with each other. 

This is the so-called “overlapping problem” in route choice analysis. Because of the 

overlapping problem, the alternatives are highly correlated. Therefore, when modeling 

route choice, a necessary step is to describe the correlation among alternatives. 

The last step of route choice modeling is to specify and estimate the route choice 

model. The most widely used approach is the random utility model framework. Within 

this framework, it is assumed that a traveler n associates a utility Uin with each route i in 

the generated choice set Cn. The utility is defined as in in inU V    . inV  is the 

deterministic (systematic) term which is a function of the observed attributes of the 

alternatives, while in  is the random term to capture the unobserved utility. In general, a 

linear formulation is used to specify the deterministic term: in inV x . inx  is a vector of 

observed route attributes.   is a vector of unknown coefficients to be estimated, which 

can be interpreted as travelers’ tastes on the observed route attributes. Travelers are 

assumed to maximize utility. Therefore the probability that route i is chosen by traveler n 

from Cn is ( | ) ( , )n in jn nP i C P U U j C    . The detail specifications of ( | )nP i C  depend 

on the assumptions on the random term. In next chapter, we will give a further review 

about this issue. 
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1.3 Heterogeneity in Route Choice Modeling 

In this section, we will give an introduction about the heterogeneity in route choice 

modeling. 

Heterogeneity is opposite to homogeneity. In the context of choice modeling, an 

assumption on homogeneity means that some differences in different choice scenarios are 

ignored. To consider heterogeneity is to relax the assumption on homogeneity and 

consider the ignored differences. 

We use the following example to give explicit explanations on the heterogeneity in 

route choice modeling. 

As shown in Figure 1.2, it is assumed that there are only two available routes from 

node O to node D. The road segments 1 and 2 are composed of main roads, while the 

road segment 3 is composed of side streets. There are two travelers, A-san and B-san, 

who are assumed to have a trip from O to D. We consider the following possible 

scenarios: 

 

D

O

1
3

T2

Route 1

Route 2

 

Figure 1.2 An Illustrative Example 
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 A: I think Route 1 will take 5 minutes; 

B: I think Route 1 will take 10 minutes, because I just traveled on road segment 

1, and find it is congested. 

 

In the conventional route choice models, the deterministic part of utility in inV x is a 

function of the route attributes inx  observed by the analyst. In this scenario, we assume 

that, route travel time is the only route attribute. If A-san and B-san make route choices at 

the same time, the travel time of Route 1 observed by the analyst will be the same for 

both A-san and B-san. The conventional route choice models will give the same predicted 

route shares for A-san and B-san. However, the travelers will make route choices 

according to their perceived route attributes, not the attributes observed by the analyst. In 

this case, A-san and B-san have different perceptions on the travel time of Route 1 

because of the different experiences. Therefore, the probability that Route 1 is chosen by 

A-san should be different from that of B-san. The conventional route choice models give 

wrong predictions because of not considering travelers’ different perceptions of the same 

observed route attributes, which is referred as heterogeneity in perceptions in this thesis. 

 

 A: Yesterday, I chose Route 1 at node O, but I found Route 1 is congested, then I 

switched to Route 2 at node T; 

B: Yesterday, I chose Route 2 at node O, and didn’t change my mind during the 

trip. 

 

In this scenario, the path observations for A-san and B-san are both Route 2. We can 

find that, in route choice modeling, although the manifested path observations are the 

same, the really choice processes will be different. In the conventional route choice 

models, the differences in choice processes with the same path observation are ignored. 

These differences are referred as heterogeneity in processes in this thesis. Usually, the 

conventional route choice models will be assumed that travelers will only make decisions 

at the origin, and then the choice process of A-san is wrong described as the same as B-

san. 
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 A: I prefer to drive on the side streets, because there are not so many cars; 

B: I hate to drive on the side streets, because there are too many intersections. 

 

The deterministic part of utility in inV x  is related to the parameters  .  can be 

interpreted as travelers’ tastes on observed attributes. In this scenario, the rate of side 

streets can be seemed as an observed attribute. We can find that, for the same observed 

attribute, travelers have different tastes. For A-san, the tastes on the rate of side streets 

will be positive, while for B-san, the tastes on the rate of side streets will be negative. The 

differences of tastes on the same observed attributes are referred as heterogeneity in 

tastes. The taste heterogeneity problem is well studied in the field of choice modeling, 

but not be considered in most of the previous studies on route choice modeling.  

In conclusion, there are at least three types of heterogeneity in route choice 

modeling: heterogeneity in perceptions, heterogeneity in processes, and heterogeneity in 

tastes. The words “at least” means that there are also other types of heterogeneity in route 

choice modeling, such as the heterogeneity in choice sets and the heterogeneity in 

behavioral assumptions. But in this thesis, we only consider the three types of 

heterogeneity mentioned above. It also should be noted that, there have already some 

previous studies on the heterogeneity in route choice modeling. A literature review will 

be given in the next chapter. 

1.4 The Objective of This Research 

This research has are two main objectives. The first objective of this research is to 

develop methodologies which explicitly consider the three types of heterogeneity 

described in last section: heterogeneity in perceptions, heterogeneity in processes, and 

heterogeneity in tastes. The second objective is to explore travelers’ route choice behavior 

using trip observations extract from GPS data, based on the route choice models 

incorporating heterogeneity. 

Four heterogeneity related problems will be focused in this research: 

 How to consider the dynamic perceptions on route attributes? 

 How to consider the heterogeneity in processes with path observations? 
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 How to consider the observed taste heterogeneity? 

 How to consider both observed and unobserved taste heterogeneity which is 

multi-level?  

1.5 Outline of This Dissertation 

This dissertation is composed of 7 chapters. The outline of this dissertation is 

presented in the following and for each chapter we give the reference to the publication 

on which it is based. 

 Chapter 2 reviews the literature. We focus on both route choice modeling 

techniques and methodologies to incorporate heterogeneity. 

 Chapter 3 deals with the heterogeneity in perceptions. A Bayesian Networks based 

method is proposed to consider travelers’ en-route experiences and dynamic 

information explicitly. The GPS data collected in Beijing by taxis are used for a 

case study. 

Li, D., Miwa, T. and Morikawa, T. (2012) Modeling travelers’ perception of travel 

time for dynamic route choice behavior analysis (scientific paper), Proceedings of 

the 19th ITS World Congress. 

 Chapter 4 deals with the heterogeneity in processes. A choice process based route 

choice model is proposed to consider travelers’ en-route choices. The route choice 

problem is divided to two choice problems: route choice and decision making 

choice. Combined with the method proposed in Chapter 3, we do a case study 

using the data collected in Beijing. 

Li, D., Miwa, T., Morikawa, T. (2013) Dynamic Route Choice Behavior Analysis 

Considering En Route Learning and Choices. Transportation Research Record: 

Journal of the Transportation Research Board XXXX, XX-XX. 

 Chapter 5 deals with the heterogeneity in tastes. This chapter uses the GPS data 

collected in Toyota. We first explore the effect of familiarity to origin-destination 

pairs on the tastes on observed route attributes. Then two models which can 

consider the observed heterogeneity are proposed and compared. 

Li, D., Miwa, T., Morikawa, T. (2013) Use of private probe data in route choice 

analysis to explore heterogeneity in drivers' familiarity with origin-destination 
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pairs. Transportation Research Record: Journal of the Transportation Research 

Board 2338, 20-28. 

 Chapter 6 also deals with heterogeneity in tastes. This chapter proposes a multi-

level mixed logit method to consider both observed and unobserved heterogeneity. 

The unobserved heterogeneity is further divided to 3 parts: individual specific 

term, origin-destination pair specific term and observation specific term. This 

chapter also used the GPS data collected in Toyota for case study. 

(Submitted to Journal) Li, D., Miwa, T., Morikawa, T. incorporating observed and 

unobserved heterogeneity in route choice analysis. Transportation Research Part 

B. 

 Chapter 7 provides conclusions and future research perspectives. 

 

References 

Bekhor, S., Ben-Akiva, M.E., Ramming, M.S. (2006) Evaluation of choice set generation 

algorithms for route choice models. Annals of Operations Research 144, 235-247. 

Frejinger, E. (2008) Route choice analysis: Data, models, algorithms and applications. 

École Polytechnique Federale de Lausanne. 

Prato, C.G. (2009) Route choice modeling: Past, present and future research directions. 

Journal of Choice Modelling 2, 65-100. 

 

 



10 
 

Chapter 2 

Literature Review 

 

 

Modeling route choice is a particular discrete choice modeling problem. Although there 

are some other behavioral assumptions about choice making, most of the route choice 

models are based on the random utility theory (RUT). The basic knowledge about RUT 

can be found in  Ben-Akiva and Lerman (1985), an excellent textbook about RUT based 

discrete choice modeling. 

Formally, modeling route choice is, given a scenario (observation) n, to predict the 

probability that a traveler will choose a given route ni C  . Cn is a set of routes that will 

be considered by the traveler under this scenario. This probability is denoted by ( | )nP i C . 

The RUT based choice models assume that the traveler will choose the route with 

maximized utility. The utility of each route ni C , which is denoted by iU , usually has 

the following formulation: 

'

i i i i iU V X       (2.1) 

where iV  is the systematic part the is a linear function of  iX , a vector of some 

observed route attributes (e.g. length and travel time). i is a route specific error term.   

is a vector of parameters should be estimated. 

Then, ( | )nP i C  is 

\
( | ) ( max( ) | )

n

n i j n
j C i

P i C P U U C


   (2.2) 
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With different assumptions about i , many RUT based route choice models have 

been proposed in the literature. In the following section, we will give a summary of route 

choice models. 

2.1 Route choice models 

2.1.1 Logit structures 

In route choice models with logit structures, error terms i  are assumed to follow a 

Gumbel distribution. The simplest one is the multinomial logit (MNL) model, in which 

error terms are assumed to be identically and independently distributed (i.i.d.): 

exp( )
( | )

exp( )
n

i
n

j

j C

V
P i C

V





 
(2.3) 

However, this i.i.d. assumption cannot hold in the context of route choice due to the 

well-known overlapping problem: since the alternative routes often share some road links 

with each other, their utilities cannot be independent. 

To address the overlapping problem while keep a simple logit structure, researchers 

have proposed several route choice models with deterministic correction of the utility for 

overlapping paths. The most popular two models are the C-logit model (Cascetta et al., 

1996) and the Path-size logit model (Ben-Akiva and Bierlaire, 1999). 

These two models have similar formulations. In C-logit model, a commonality factor 

( iCF ) is added in the utility function to measure the degree of similarity of each route 

with the other routes in the choice set: 

exp( )
( | )

exp( )
n

i CF i
n

j CF j

j C

V CF
P i C

V CF










 

(2.4) 

In path-size model, the commonality factor is replaced by a term called path-size 

(PS): 

exp( ln )
( | )

exp( ln )
n

i PS i
n

j PS j

j C

V PS
P i C

V PS










 

(2.5) 
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Although these two models have similar formulations, they are based on different 

interpretations about the correction terms: The commonality factor reduces the utility of a 

path because of its similarity with respect to other routes, while the path size indicates the 

fraction of the path that constitutes a “full” alternative. Different formulations for the path 

size and commonality factors can be found in the literature. A summary can be found in 

(Prato, 2009). 

2.1.2 GEV structures 

Different from the models with logit structures, the GEV models account for the 

overlapping problem within the stochastic part of the utility function. Two route choice 

models in this category are combinatorial logit (PCL) model and cross nested logit (CNL) 

model. 

Prashker and Bekhor (1998) first apply the PCL model in the context of route choice. 

Then they present a mathematical formulation for the SUE problem with PCL 

model(Prashker and Bekhor, 2000). In the PCL, the routes are chosen among a pair of 

alternatives within the choice set, and the choice probability is defined accordingly: 
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where ( )P ij is the marginal probability of choosing the pair among the n(n-1)/2 

possible pairs, and ( | )P i ij  is the conditional probability of choosing route given the 

chosen binary pair. 
ij is the similarity coefficient between route i and j, which is similar 

to PS and CF in path-size logit and C-logit model. 

The CNL model is also first proposed by Prashker and Bekhor (1998), and then 

apply it in the SUE problem (Prashker and Bekhor, 2000). Bekhor and Prashker (2001) 

further generalize this model to be the generalized nested logit (GNL) model. The 

assumption of CNL model is that routes are chosen within nests, which physically 

correspond to the links in the network, and the choice probability is: 

( | ) ( ) ( | )n

m
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where im  are inclusion coefficients and m are nesting coefficients. Inclusion 

coefficients represent the percentage of the generic link m used by the generic alternative 

route i. 

The PCL model and CNL model can be applied in the SUE model, however because 

of some computational and behavioral issues, they are difficult to be applied in the route 

choice analysis on a large real road network. 

2.1.3 Non-GEV structures 
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In all of route choice models described above assume that, the error terms follow Gumbel 

distributions. However, there are some route choice models in the literature, the error 

terms are assumed to follow other distributions. 

In the multinomial probit (MNP) model, the errors terms are assumed to be normal 

distributed. Daganzo and Sheffi (1977) first use this model in the context of route choice. 

The MNP model can directly address the overlapping problem by covariance matrix of 

the error terms, with the assumption that utilities are link additive. However, it does not 

have a closed form. Although some efforts are done to decrease the computational cost 

(Yai et al., 1997), MNP models are still take much more computational time than the logit 

models. Therefore, they are rarely to be applied in practice. 

Another Non-GEV model is the logit kernel (LK) model with a factor analytic 

specification where some structure is explicitly specified in the model to decrease its 

complexity. Bekhor et al. (2002) apply this structure in route choice modeling. In this 

model, the utilities are assumed to have both normal and Gumbel distributed error terms. 

Then a flexible correlation structure can therefore be defined while keeping the form of a 

MNL model. Different from Eq. (2.1), in this specification, the utility function is defined 

by 

'

i i i i iU X FT      (2.12) 

i iFT  is the added normal distributed term. iF  is a link-path incidence matrix, i  is 

the normal distributed i.i.d. vector with zero mean and unit variance. T  is the link factors 

variance matrix. With the assumption that link-specific factors are i.i.d. normal and that 

variance is proportional to link length, 
1 2diag( , , , )

nMT l l l . l is the length of 

links in the choice set, nM  is the total number of unique links in the choice set.  is a 

parameter to be estimated. 

LK model is in factor a case of mixed logit model, and have been used in several 

studies on real size networks. The estimation of this kind of models need some simulation 

methods(Train, 2003). 

In the Chapter 6, we will propose some other mixed logit based specifications for 

route choice modeling. 
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2.2 Choice Set Generation 

According to the review in last section, we can find that, for each observation, before 

modeling route choice ( | )nP i C , we must generate a choice set nC  at first.  

Figure 2.1 gives an overview of the choice set generation process. Given a network 

and a origin-destination (O-D) pair (so ,sd), there is a set of all available paths which is 

referred to as the universal set U. 

If we only study drivers’ route choice behavior on a small test network (e.g. the 

example shown in last chapter), and not try to apply the estimated models on a real large 

network, we can enumerate U, and assume the choice set nC   is U. 

However, from the aspect of application, the developed route choice models must be 

feasible to be applied in a large real network. On a real network, e.g. the road network of 

Nagoya City, there will be a very large number of available paths between an O-D pair. 

Actually, the size of U will be infinitely if the paths contains loops are also considered. 

Then it is not computationally feasible to replace nC  by U. On the other hand, from the 

behavioral perspective, it is not reasonable to assume that the travelers can consider too 

many available paths when they are making choices. 

A directly solution for this problem is to generate a subset of U by some algorithms, 

which is assumed to be the set of paths that may be considered by the travelers. This 

subset is called a master set and denoted by M. The choice set generation algorithms can 

be categorized to two classes: deterministic algorithms and stochastic algorithms. For a 

given O-D pair, deterministic algorithms will give a unique M for different observations, 

while the stochastic algorithms will generate an observation (or individual) specific 

master set Mn. 

The choice set for observation n, Cn, can be defined based on the master set in either 

a deterministic way to assume =nC M (or n nC M ), or by using a probabilistic model 

( )nP C where all non-empty subsets of M (or Mn) are considered. More detail about the 

probabilistic model can be found in Manski (1977), Swait and Ben-Akiva (1987),  

Morikawa (1996), and Kaplan and Prato (2012). The probabilistic choice models are 

complex due to the large number of non-empty subsets, and have never been used in 

route choice modeling on a real size network. Therefore, in this study, we only use the 
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deterministic choice set generation models. In the following part of this section, we will 

give a review of existing deterministic and stochastic path generation algorithms. 
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 Figure 2.1 Choice Set Generation Overview 

 

2.2.1 Deterministic methods 

Deterministic methods can be divided to two categories: shortest path-based methods and 

constrained enumeration methods. 

The shortest path-based methods are based on the repeated shortest path search. The 

most used algorithms in this category are link elimination methods, link penalty methods, 

and the labeling method. 

The first link elimination algorithm is proposed by Azevedo et al. (1993). The link 

elimination algorithms at first find the shortest path with respect to the definition of cost 
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and include it in the choice set. Then, each link or some links belonging to the shortest 

path are removed and a new shortest path is found and included in the choice set. 

Instead of eliminating links, link penalty algorithms increase the generalized cost on 

links in the previously found shortest path for finding a new shortest path (De La Barra et 

al., 1993). With different plans of increasing link cost, many variants can be found from 

the literature (Park and Rilett, 1997; Prato and Bekhor, 2007). 

Both the link elimination link penalty algorithms will only consider one generalized 

cost index. Different from these two methods, the labeling approach, first proposed by 

Ben-Akiva et al. (1984) assume that the drivers may have different objectives. Some of 

them may wish to minimize travel time, while others may prefer to drive through familiar 

landmarks. The labeling approach will at first define some labels that a driver may 

consider e.g. travel time, length and number of links. Then for each label the shortest path 

algorithm is applied to find the path that minimizes the cost defined by the label. All the 

found unique paths will be included in choice set. 

The shortest path-based methods try to find the “good” paths that the drivers will 

most likely to consider. On the contrary, the constrained enumeration methods try to 

exclude the “bad” paths that the drivers will not likely to consider (e.g. the path with 

more than ten times length of the shortest path). 

This method, which is also referred to as branch-and-bound, build a tree where each 

branch correspond to a path and generate all paths satisfying some constraints. Friedrich 

et al. (2001) first use this method for public transport network.  Hoogendoorn-Lanser 

(2005) propose this method for multi-modal networks and  Prato and Bekhor (2006) 

apply it for road network. 

Compared with the shortest path-based methods, the branch-and-bound methods will 

take much longer time and generate much more unique alternatives. Since they can 

generate much more unique alternatives, the branch-and-bound methods will perform 

better if the coverage of observed choice is the evaluation criterion. However, since the 

speed of these methods depends exponentially on the depth of the tree, the running time 

will become unaffordable when apply them on a large road network. 

2.2.2 Stochastic methods 
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Generally, there are two kinds of stochastic methods. The first kind is the shortest 

path-based algorithms with random cost, which is also called the simulation method 

(Ramming, 2001). In this method, the generalized cost of each link is assumed to follow 

some distributions. For each draw, the link costs are sampled, and the shortest path is 

found and added in the choice set. 

Another kind of stochastic methods is the sampling method. It is first proposed by 

Frejinger et al. (2009), and referred to as the random walk method. In this method, it is 

assumed that, the choice set is the universal set. Because the universal set is too large, 

they use random walk method to get some sampled alternatives. They also proposed a 

method to correct the error caused by using the sampled alternatives to estimate the route 

choice model. In Chapter 5, we will give a more detail description on this method. 

Although there are a lot of methods are proposed to address the choice set generation 

for route choice modeling, it is always difficult to say which method is the best. The main 

reason is that the actual choice sets are always unknown to the modelers. We can only 

propose some measures subjectively to evaluate the choice set generation methods. The 

following measures, which is proposed by Ramming (2001), are often used: 

computational time, coverage of the observed routes, number of routes in the choice set 

and number of links in the choice set. Some deep comparisons of choice set generation 

methods based on these measures can be found in the previous research (Bekhor et al., 

2006; Bovy, 2009). 

2.3 Route Choice Data 

To estimate a route choice model on a real road network, we usually need three kinds of 

data: 

 the road network, including the topological structure and attributes associated 

with links and nodes; 

 the attributes of travelers who make the route choices; 

 and the link-by-link descriptions of the routes used by the travelers. 

The road networks now are easy to be obtained, since there are so many digital map 

providers. The attributes of travelers can be obtained via some questionnaires. The most 

difficult task for route choice modelers is to observe the routes that really chosen by the 
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travelers. There are two approaches to collect such data: asking travelers to describe 

chosen routes and extracting the route observations from the location information 

collected by the Global Positioning System (GPS).  

Before the popular of GPS devices, most of the research about route choice is based 

on the trip data collected via mail, telephone and web-based surveys (Mahmassani et al., 

1993; Ramming, 2001).  In recent years, most of the studies about route choice are based 

on GPS data (Bierlaire and Frejinger, 2008; Morikawa and Miwa, 2006). 

All of the studies in this thesis are based on the GPS observations. Compared with 

the conventional methods, using GPS data has some advantages: for instance, multiple 

days of trip data can be collected automatically and are directly available in electronic 

format.  

However, GPS data also have some additional issues. At first, the raw GPS data are 

only some location points. Some map-matching algorithms should be applied to match 

the points to the road links. Second, the GPS data cannot explicitly tell where origins and 

destinations are. They can only provide the trajectories. Some algorithms should be 

applied to separate the trajectories to several trips and identify the origin-destination 

pairs. Third, travel purposes cannot be obtained from the GPS data. At last, in practice, 

the GPS data often can only describe part of the trips, since some trajectories are not 

recorded.  

2.4 Heterogeneity in Route Choice 

Most of the previous studies about heterogeneity in the context of route choice focus on 

the taste heterogeneity. There are mainly four categories of methods to consider 

heterogeneity: divide the users to be several classes with different taste coefficients (Yang 

and Huang, 2004); structure the scale parameter (Chen et al., 2012; Morikawa and Miwa, 

2006); add latent variable in the utility function (Prato et al., 2012; Ramming, 2001) and 

assume the taste coefficients to be random (Srinivasan and Mahmassani, 2003). To avoid 

too many equations, we will not give the technical details about these methods in this 

review. The first three methods have some difficulties to deal with panel data. Therefore 

in this thesis, we will mainly extend the random coefficient method for taste 

heterogeneity.  
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About heterogeneity in process and heterogeneity in perception, there are few 

previous studies about these in the context of route choice. To incorporate heterogeneity 

in perception, in some feedback-based models, travelers’ perceptions of travel time on 

alternative routes are treated implicitly as an function of the feedback of past experiences 

on the same route (Ben-Elia and Shiftan, 2010; Joel L, 1984). About the heterogeneity in 

process, Morikawa and Miwa (2006) first proposed  a model to consider this problem. 

More literature review about the heterogeneity will be given in the beginnings of the 

following chapters. 
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Chapter 3 

Modeling Dynamic Perceptions 

Within the random utility model framework, the deterministic part of route utilities 

depends on two vectors: travelers’ perceptions of route characteristics and their tastes on 

the perceptions. 

Travel time is an important route attribute, which must be considered if data is 

available. In most of the previous studies, travelers’ perceptions on route travel time are 

replaced by the travel time estimated by the analysts. There are mainly two kinds of 

estimated route travel time for route choice modeling: the fixed travel time (Bierlaire and 

Frejinger, 2008; Ramming, 2001) and the time-dependent travel time (Li et al., 2013; 

Morikawa and Miwa, 2006). The fixed travel time will be the free flow travel time or the 

estimated travel time considering congestion. The time-dependent route travel time will 

be based on the estimated link cost table, in which the link travel time is specified for 

each small time interval. 

Recall the first example in Section 1.3: 

 A: I think Route 1 will take 5 minutes; 

B: I think Route 1 will take 10 minutes, because I just traveled on road segment 

1, and find it is congested. 

We can find that, both the fixed travel time and the time-dependent travel time 

cannot consider the scenario shown above. In this chapter, a new method for modeling 

travel time perceptions is proposed to address the problem as shown in this example. 

Route choice models can be divided into two categories: static models and dynamic 

models. The static models only consider the pre-trip decisions, while the dynamic models 

also consider the en-route decisions (Morikawa and Miwa, 2006). A natural way to build 
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dynamic route choice models is to have a sequence of static choice models at each 

decision node, where the characteristics of alternative routes reflect updated information 

(Gao et al., 2010). Some dynamic traffic assignment models, e.g. DynaMIT(Ben-Akiva et 

al., 2002) and DYNSMART (Mahmassani, 2001), apply dynamic route choice models 

built in this way.  

If the en-route choices are considered, travelers’ heterogeneity in perceptions as 

shown in the above example cannot be ignored. In general, travelers’ perception of travel 

time are affected by three sources of information: historical experiences, external 

information and current perception during the trip (Adler and Blue, 1998). 

To consider the effect of historical experiences, in some feedback-based models, 

travelers’ perceptions of travel time on alternative routes are treated implicitly as an 

function of the feedback of past experiences on the same route (Ben-Elia and Shiftan, 

2010; Joel L, 1984). However, these studies only focus on the static route choice models. 

There also have been abundant studies of route choice models with external information. 

However, the previous studies about travel time perception only consider the effect of 

information on the links with information providing. In fact, travelers can also infer the 

traffic states of other links based on the provided information. Travelers’ current 

perceptions during the trip are based on the feedback about links that they have passed. 

Travelers can infer the traffic states of other links according to the feedback. According 

to authors’ limited knowledge, there is no previous research about this. 

From the introduction above, it can be found that, there is not a method to model 

travelers’ dynamic perceptions of travel time explicitly for dynamic route choice analysis, 

which can consider the effect of current perception during the trip. The purpose of this 

chapter is just to propose such a method. In this chapter, the travelers’ historical 

experiences are represented as a Bayesian network (BN) about network traffic states. 

Compared with the method in feedback-based models, this method is seemed less 

“behavioral”, but it is more implementable, because it only needs the historical data about 

network traffic states, such as probe vehicle data to estimate the BN. External information 

and current perception during the trip are the evidences used to update the BN. The 

dynamic travel time perception process can be described as the inference problem of this 
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BN. Unlike the previous studies, during the inferring process, the information about some 

links can also affect travelers’ perceptions about other links without information.  

The rest of the chapter is organized as follows. The problem proposed in this chapter 

is described in the next section. The basic concepts about BN are given in the following 

section. The BN about network traffic states is then introduced. The inference problem 

which can describe the dynamic perception of travel time is presented in the following 

section. Then a case study is presented to illustrate how to estimate and the Bayesian 

network and how to infer dynamic perception of travel time using probe vehicle data 

collected in Beijing. The final section presents some concluding comments and discusses 

future directions. 

3.1 The Problem 

In most of the previous research, the researchers will assume or estimate the link travel 

time of each link first, and give an expect value or a probabilistic distribution. Then route 

choice behavior is analyzed using the estimated or assumed travel time with defined error 

terms or not. However, in practice, it is the travelers, who estimate the link travel time, 

and make route choice decision. In this research, we assume that, the drivers have 

knowledge about the state relationship of links, not the knowledge of the link travel time 

itself, according to the historical experiences. The link state relationship is presented by a 

Bayesian network (BN). This Bayesian network can be estimated by history data about 

link traffic state. The state of the links they have passed and the information they received 

can be treated as the evidences of the BN. At each decision node, travelers’ perceptions 

of traffic states would be updated. According to the perception of link traffic state, the 

perception of link travel time can be estimated.  

Figure 3.1 is a simple network to illustrate the problem proposed in this chapter. A 

traveler is driving from O to D. For each link n, the traffic state Sn can be divided into 

several categories. In this example, there are two categories, i.e. {1,2}, according to it is 

congested or not. The travel time of link n is denoted as Tn. It is assumed that Tn is 

independent with the traffic states of other links. At each traffic state, for link n, the 

probability distribution of travel time can be estimated using historical data, and denoted 

as P(Tn |Sn). The probability distribution of Sn can also be estimated, and denoted as P(Sn). 
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When the driver is at node O, if he has no information about the current link states of 

network, he will estimate the travel time distribution of each link, P(Tn) according to the 

law of total probability:  
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Figure 3.1 An Simple Network for Illustration 

 

When the driver arrives node A, which is a decision node because he can switch his 

route here. Since he has passed link 1, it is assumed that the driver knows the traffic state 

of link 1. If the driver also has received the information about link 3, it is assumed that 

the driver knows the traffic state of link 3. Because Tn is assumed to be independent with 

the traffic states of other links, the travel time distribution of each link when S1 and S3 are 

known can be estimated: 
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Therefore, the next problem is how to estimate 2 1 3( | , )P S S S and 4 1 3( | , )P S S S . The 

traffic states relationship between links can be described by a BN about network traffic 

states, which will be introduced in the next section. 

3.2 Some Background on Bayesian Network 

Bayesian networks have been widely used to solve practical problems in different fields 

(Li et al., 2011; Ozbay and Noyan, 2006; Zhang and Taylor, 2006). A Bayesian network 

(BN) is an annotated directed acyclic graph that encodes a joint probability distribution 

over a set of random variables, and can be presented by a pair ( , )B G  . G is a directed 

acyclic graph whose nodes correspond to the random variables X , and whose links 

represent direct dependencies between variables (Jensen and Nielsen, 2007). The graph G, 

which is known as the structure of the BN, encodes independence assumptions: each 

variable ix  is independent of its non-descendants given its parents ( )ix  in G. 

1 1{ ( | ( )),..., ( | ( ))}n np x x p x x    is a set of parameters that quantifies the network, 

where ( | ( ))i ip x x  is the conational probability table attached to node ix . 

Figure 3.2 gives an example of BN. A scenario is assumed as following: Morikawa-

sensei lives in Nagoya, where burglaries and earthquakes will also occur. Since 

Morikawa-sensei often travel for business, there is an alarm installed in his house. If there 

is a burglary or earthquake, the alarm has a possibility to be activated, and then both of 

his neighbors, Yamamoto-sensei and Miwa-sensei have a possibility to call him by phone. 

In this example, there are 5 random events: burglary (B), earthquake (E), alarm (A), 

Yamamoto-sensei makes a call (Y) and Miwa-sensei makes a call (M). All of the five 

random events are denoted by five binary variables with possible values “y” and “n”. The 

dependent relationships of the five variables can be described by the acyclic graph shown 

in Figure 3.2. According to the basic assumption of BN, B and E are independent on each 

other, while M and Y are dependent on each other. However, if the status of A is known, 

M and Y are independent. This graph which encodes the dependent relationships among 

variables can be determined by experts’ knowledge or learned from data. 

 For each node, there is a conditional probability table (CPT), which called the 

parameters of BN. For example, the first row of CPT of Y means that, when the alarm is 



29 
 

activated, the probability that Yamamoto-sensei calls Morikawa-sensei is 0.7. Most of the 

time, the parameters should be learned from data. 
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Figure 3.2 An Example of BN 

 

 

3.3 BN About Network Traffic States 

The structure of the BN proposed for modeling travel time perception is presented in 

Figure 3.3. It is assumed that there are m OD pairs and n road links in the traffic network. 

Si is the traffic state of link i and Qj is the level of traffic demand in OD pair j. U is a 

variable that represents the level of total traffic demand in the traffic network. If link i is 

on the route that belongs to the route choice set of OD pair j, Qj is the parent of Si. U is 

the parent of all the OD pair demands. 

This structure is similar to the BN used in previous research (Castillo et al., 2008), 

because of the similar conditional independent assumptions. The link state nodes 

{ }1
 , ,

n
S S= ¼S  only have the OD demand level nodes { }1

, ,
m

Q Q= ¼Q  as parents, which 

implies conditional independence of all link traffic states given the OD demand. This 

assumption might appear to be unrealistic because the link traffic states, which can be 
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treated as a function of link traffic flow, are corrected. However, accepting that S  are 

related is not the same as saying |S Q  are correlated. In fact, as a special case, in the 

deterministic user equilibrium (DUE) models, under the condition that the OD demands 

Q  are known, the link traffic states S  are also deterministic, so |S Q  is not correlated.  

The correlations between Q  are obvious. In order to represent these correlations, a 

parent U is given to all the OD pair demands. U represents the level of total traffic 

demand in the traffic network. In particular, the OD demands have different 

characteristics during different periods of the day. In the traffic peak hours, the OD 

demand distributions are very different from that in the off-peak hours. So in this paper, 

U represents different time periods in the day. 

Regarding the nodes, in this paper U is determined by definition and S  can be 

estimated using probe data, so U and S are observed nodes. However, the OD demand 

cannot be observed directly, so Q  are latent variables. 

 

U

Q1 Qj Qm
. . .

S1 S2 Si Sn-1 Sn
. . .. . .

. . .

 

 

Figure 3.3 Structure of Proposed BN for Network Traffic States 
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The parameters of the BN are learnt from historical data in this study. Maximum 

likelihood estimation (MLE) is the most-used method of parameter learning. MLE can be 

used if the dataset is complete, but in the proposed BN, the OD demand nodes are latent, 

and there are also some missing traffic state data in practice. Therefore the Expectation 

Maximization (EM) algorithm (Lauritzen, 1995) is used in this paper. This algorithm 

basically alternates between two steps: 

Expectation Step: complete the dataset by using the current parameter estimates Q  

to calculate expectations for the missing data. 

Maximization Step: use the completed dataset to find a new MLE, 'Q , for the 

parameters. This estimate is then used in the next iteration of the expectation step. 

This algorithm has been described abundantly in the literature, so details will not be 

given in this paper. 

3.4 Inferences in BN as Travel Time Perceptions 

As explained at the beginning of this section, the problem of modeling travel time 

perception is to estimate the traffic states of other links when the states of some links are 

known. For the BN in Figure 3, this means computing the posterior marginal of traffic 

states of unobserved links \ 'S S , where 'S  are the set of traffic states that are observed 

by travelers. For each \ 'i ÎS S S , if X Q  denotes { , , }UQ S  and { , '}U=e S  is the evidence 

available to the driver, then the posterior marginal distribution of
iS is: 

\{ , }

\

( )
( , )

( | )
( ) ( )

iSi
i

P
P S

P S
P P

= =

å

å
X e

X e

X
e

e
e X

 (3.3) 

where ( )P X  can be calculated using the parameters of the BN: 

( ) ( | ( ))
i

i i

x

P P x xp
Î

= Õ
X

X  (3.4) 
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In order to update the posterior marginal distribution efficiently, certain algorithms 

are needed. The inference algorithm used in this paper is a junction tree algorithm (Shafer 

and Shenoy, 1990). A junction tree algorithm can be seen as the mother of all exact 

inference algorithms for BNs, and has been widely explained in the literature (Kjærulff 

and Madsen, 2008). With this algorithm, the independence properties of the BN are 

analyzed to establish a set of clusters and to construct a corresponding junction tree over 

the clusters. When updating the BN, it is necessary to calculate the posterior distributions 

of more than one variable. Using a junction tree to solve the inference problem, some 

processes can be shared, so efficiency is improved. 

 When the marginal distribution of traffic states of links S  are updated, then the 

distribution of link travel time can be estimated. In this study, we only estimate the mean 

of travel time, which can then be directly input into most route choice models:  

| ( )|

1

( | ) ( | ) ( | )
isp S

i i i i

s

M T P S s M T S s
=

= = =åe e  (3.5) 

where ( | )iM T e  is the mean travel time on link i. ( | )i iM T S s= can be estimated directly 

using probe data. If there is no information provided, then e  . 

3.5 Case Study 

The data used in this study is provided by CENNAVI company 

(http://www.cennavi.com.cn/en/index.php). The raw data is collected in real time using 

more than 10,000 taxies in Beijing.  

The raw probe vehicle GPS data is a series of location points with coordinates. 

CENNAVI did the map-matching and travel time estimation processing and provided us 

with a one-week (2011.7.25 to 2011.7.31) historical data set giving link traffic states and 

three months (2011.6 to 2011.8) of trajectory data for part of the urban area of Beijing. 

The historical traffic state data consists of the link travel time for each link estimated at 

intervals of five minutes. The trajectory data gives the location and service state of the 

taxis collected about every minute. 

http://www.cennavi.com.cn/en/index.php
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For the purpose of illustration, only a small network is used in this study. This 

network is shown in Figure 3.4 (with only the main roads considered and shown). There 

are eight nodes and nine links in this network and all links are bidirectional. 

With the probe vehicles being taxis, only data from occupied taxis are used in the 

study. We only consider trips from node A to B, of which there are 274 observations 

during the data collection period. All of these observations share the three routes shown 

in Figure 3.4.  

The link traffic states are determined according to travel speed estimated using the 

probe data. According to CENNAVI’s standards, which are similar to those of most 

traffic information providers, traffic states are divided into three categories:  

Congested: 0 20 /Speed km h    

Slow: 20 / 40 /km h Speed km h    

Uncongested:  40 /Speed km h   

The means of link travel time under different traffic states are estimated using the 

historical data and are shown in Table 3.1.  

It is assumed that there are four OD pairs in the network {(A, B), (B, A), (C, D), (D, 

C)} with the following routes: 

(A, B): {1+,7+,4+,5+,6+}, {1+,2+,8+,5+,6+}, {1+,2+,3+,9+,6+} 

(B, A): {6-,5-,4-,7-,1-}, {6-,5-,8-,2-,1-}, {6-,9-,3-,2-,1-} 

(C, D): {4+,5+, 9-, }, {4+, 8-,3+}, {7-,2+,3+} 

(D, C): {3-,2-,7+}, {3-,8+, 4-}, {9+, 5-,4-} 

The sign given for each link denotes the direction (with left to right and down to up 

being positive). In this study, as already noted, we only consider trips from A to B, so 

only the positive direction is considered for simplification.  
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Figure 3.4 Network Used for Study 
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Table 3.1 Estimated Mean of Travel Time under Different Traffic States (Unit: s) 

Link NO. 
State 1 

(Congested) 

State 2 

(Slow) 

State 3 

(Uncongested) 
All states 

1 280.747 99.578 71.505 126.143 

2 178.424 75.471 49.622 103.416 

3 317.803 157.764 110.803 193.174 

4 170.526 88.521 61.914 106.595 

5 377.009 179.737 134.946 198.142 

6 174.454 58.164 40.626 76.535 

7 215.334 94.7673 63.184 123.511 

8 205.168 110.306 70.788 122.614 

9 220.940 97.029 64.920 124.514 

 

The BN structure developed for this traffic network is shown in Figure 3.5. The 

method of determining this structure is explained in Section 3.3. Variable U, which 

indicates the level of total traffic demand in the traffic network, depends on the time of 

day. In this example, variable U has four states: morning peak hours (state 1; 7:00–9:00), 

flat hours (state 2; 9:00–18:00), evening peak hours (state 3; 18:00–21:00), and valley 

hours (state 4; 21:00–7:00). 
1 3{ ,..., }Q Q=Q  are the variables representing the traffic 

demand level of the OD pairs {(A,B), (C,D), (D,C)} respectively. Q  are latent variables 

and the count of states is not determined, since the complexity of a BN increases rapidly 

as the count of states increases. Therefore, it is assumed that Q  has three states in this 

example. The variables 
1 9{ ,..., }S S=S  represent the traffic states of links. If link i is on 

the route between OD pair j, there is a directed arc from Qi to Sj in the BN. 
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The parameters of the BN in Figure Figure 3.5 are obtained from the data using the 

EM algorithm implemented in BNT, an open source Matlab package (Murphy, 2001).  
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Figure 3.5 BN for the Illustrative Example 

 

Then, according to Section 3.4, the updating of the driver’s travel time perception for 

each link is treated as the inference problem to be solved using the developed BN. At 

each decision node, the driver’s updated knowledge is described by the updated evidence 

entered into the BN. As a simplification, information about links not included in the 

studied network is ignored.  

Therefore, when a driver arrives at node A, the only information that can be obtained 

is for the current time period. For instance, assuming arrival is at 13:30 (during the flat 

hours), then the evidence is e={U=2}. The driver then continues the trip and arrives at 

DN1. Because the driver has passed link 1, the traffic state of link 1 is known. Assuming 

link 1 is uncongested, then the evidence is updated to be {U=2, S1=1}. Similarly, when 

the driver arrives at DN2, if link 2 is also uncongested, the evidence is updated to be 

{U=2, S1=1, S2=1}. From GPS data, the traffic state of passed links during each 

observation can be estimated, then using Equations (3.3–3.5), we can obtain the dynamic 

travel time perception for the estimation of choice models (shown in Table 3.2). 
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If we assume a simple rule that, a driver will choose the path with shortest perceiving 

travel time and make route choice at every node then: 

At the origin, the perceiving travel time of the three routes is 624, 620 and 616, 

respectively, so the driver will choose route 3 here; 

At node DN1, the perceiving travel time of the two available routes (2 and 3) is 513 

and 521, respectively, so the driver will switch to route 2 here; 

At node DN2, the perceiving travel time of the two available routes (2 and 3) is 418 

and 427, respectively, so the driver will still use route 2. 

 

 

Table 3.2 Updated Mean Travel Time on Links 

Link 

NO. 

Mean travel time when e= 

Æ  {U=2} {U=2, S1=1} {U=2, S1=1, S2=1} 

1 121.737 121.924 - - 

2 96.985 97.038 102.010 - 

3 190.455 190.474 197.436 200.226 

4 104.165 104.212 112.534 116.023 

5 194.807 194.718 198.148 198.870 

6 79.341 79.374 89.936 94.118 

7 124.741 124.683 126.685 128.107 

8 127.601 127.734 123.537 125.015 

9 128.175 128.181 131.748 133.589 
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3.6 Conclusions and Future Directions 

Travelers’ travel time perceptions are important inputs of route choice models. 

However there are limited previous researches about this. This chapter proposes a 

Bayesian networks (BN) based approach to model travelers’ travel time perceptions for 

route choice analysis. The dynamic travel time perception process is described by the 

inference problem of BN. About the first example in Section 1.3: 

 A: I think Route 1 will take 5 minutes; 

B: I think Route 1 will take 10 minutes, because I just traveled on road segment 

1, and find it is congested. 

Their heterogeneity in perceptions can be considered by inputting different evidences to 

the BN for inferences. 

As an illustrative example, a BN about a small part of the road network of Beijing is 

estimated using the probe data. Using the estimated BN and the mean travel time 

estimated under different traffic states on each road link, a dynamic route choice process 

is described with a simple route choice model. Through this example, it can be found that 

travelers’ dynamic perceptions of travel time during the trips can be considered explicitly 

using this approach.  

This study is only a first try to model travelers’ heterogeneity in perceptions using 

BN. There are still some problems should be solved in the future for widely applied in 

real cases. At first, in this chapter, the case study is on a small network. How to give a 

structure of BN on a large road network should be considered in the future. Second, in 

this study, we assume the homogeneity in the knowledge about the link state relationships. 

In the future, this assumption should be relaxed by adding some characteristics of the 

travelers to the BN structures. At last, it is also possible to model travelers’ day-to-day 

learning process by the on-line parameter learning algorithms of BN in the future. 
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Chapter 4 

Modeling Heterogeneity in Processes 

Recall the first example in Section 1.3: 

 A: Yesterday, I chose Route 1 at node O, but I found Route 1 is congested, then I 

switched to Route 2 at node T; 

B: Yesterday, I chose Route 2 at node O, and didn’t change my mind during the 

trip. 

To consider the scenario shown in the above example, it is in fact to consider the en-route 

choices. Route choice models can be categorized as static models (SM) and dynamic 

models (DM), where SMs only consider pre-trip decisions, while DMs also take into 

account en-route decisions (Morikawa and Miwa, 2006). 

The development of a dynamic route choice model presents two additional problems 

as compared with static models, as follows: 

 The possibility of making en-route route choices; 

 The en-route updating of the driver’s perception of route characteristics. 

Looking at the first of these problems, a natural way to build dynamic route choice 

models is to have a sequence of static choice models, one at each decision node, where 

the characteristics of alternative routes reflect updated information (Gao et al., 2010). 

Some dynamic traffic assignment models, e.g. DynaMIT (Ben-Akiva et al., 2002) and 

DYNSMART (Mahmassani, 2001), employ dynamic route choice models constructed 

this way. This kind of model is referred to as a deterministic dynamic route choice model 

(DDM) in this paper. Although easily applied in practice, it is obviously not necessary for 

a driver to make a route choice decision at every decision node. According to the 

preliminary analysis by Morikawa and Miwa (2006) using probe vehicle data (Morikawa 
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and Miwa, 2006), a SM will sometimes give better numerical results than a DDM in a 

small network. They proposed a threshold-based model to account for the probability of 

making a route choice decision at each decision node. This kind of dynamic model is 

referred to here as a stochastic dynamic model (SDM). However, in their research, a 

driver’s choices are related only to the characteristics of the decision nodes and the links 

driven. Route choice decisions and expected utility for links not driven are not considered. 

As a consequence, this model is unable to consider which route will be chosen at the 

previous node and the utilities of alternative routes at the current decision node. 

The second problem is, in fact, the problem of modeling a driver’s en-route learning 

process. The characteristics of a route are various and can be divided into two classes: 

deterministic characteristics and uncertain characteristics. The driver can have perfect 

knowledge of the deterministic characteristics before making a route choice decision; 

they include the number of intersections, the proportion of the route on expressway and 

toll charges. On the contrary, it is impossible for the driver to have perfect knowledge of 

uncertain characteristics prior to making a route choice decision. Travel time, which is an 

important input into route choice models, is one uncertain route characteristic. In most 

previous studies, the travel time for each route at the time of making a route choice is 

estimated by the researchers according to the current state of traffic on the network and it 

is assumed that drivers are able to obtain perfect knowledge of it (Bierlaire and Frejinger, 

2008; Xu et al., 2011). However, in reality, a driver cannot know the true traffic state of 

the whole network and can only infer it from past experience, external information and 

the state of traffic on links already passed during the current trip. Recently, there has been 

much research that takes external information and past experience into account using 

learning-based models (Ben-Elia et al., 2008; Ben-Elia and Shiftan, 2010). However, 

these works did not explicitly consider a driver’s experience on links already passed 

during the current trip. 

In this chapter, corresponding to the first problem, a new random utility-based model 

is proposed for considering the route choice and decision making choice problem 

together. Corresponding to the second problem, the Bayesian networks based model 

which proposed in last chapter is used for modeling a driver’s perception of travel time 

that explicitly considers the driver’s en-route inference process. These two models are 
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combined and a simulation carried out in a case study using GPS data from probe 

vehicles. 

The remainder of this chapter is organized as follows. First, a simple example is used 

to illustrate the dynamic route choice problem in the next section. Then the process-based 

route choice model is specified in the following section. A case study based on probe 

vehicle data is carried out in Section 4.3. The final section presents some concluding 

comments and discusses possible future directions. 

4.1 The Problem 

In this section, before giving the formal specifications, we illustrate the dynamic 

route choice model using a simple example. Figure 4.1 is a simple network with five 

nodes and six links. There are three available routes from O to D: route O-A-B-D (route 

1), route O-A-D (route 2) and route O-D (route 3). We now consider the route choice 

problem for travel from O to D. 

 

1

2 3

4

O DA

B

5
Route 1 Route 2 Route 3

 

Figure 4.1 A Simple Illustrative Network 

 

The SMs, which only consider a driver’s decision-making at the origin, assume that 

the probability of actually using route 1 ( 1SP  ) is equal to the probability of choosing 

route 1 at the origin ( 1

oP  ): 
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1 1= o

SP P
 (4.1) 

 However, upon arrival at node A, a driver has a second chance of making a route 

choice decision. If a route choice decision is made here, the probability of choosing route 

1 at node A is
1

AP . 

 The DDMs assume that a driver will make a decision at each decision node. 

Decision nodes are defined as the set of intersections at which the driver can change the 

route choice plan. In this example, because a driver can only change the route choice 

plans at node A, there is one decision nodes (i.e. node A). Therefore, the probability of 

actually using route 1 ( 1DP ) is 

1 1 2 1( ) ( )o o A

DP P P P= + ×  (4.2) 

However, it is not necessary for the driver to make a decision at every decision node. 

The SDMs assume that there is a probability at each node that the driver will change the 

route choice again. In this simple example, at node A, for each driver, there will be a 

binary choice as to whether to make a route choice decision or not. Let 
Aq  denote the 

probability that the driver will make a route choice decision at node A, then the 

probability that the driver actually uses route 1 is: 

1 1 1 1 2

1 1

(1 ) ( )

=(1 )

A o A A o o

A A

S D

P q P q P P P

q P q P

= - + +

- +
 (4.3) 

It can be found that the SM and the DDM are the two limiting cases of SDM when 

Aq   approaches 0 and 1, respectively. Therefore, the first issue facing dynamic route 

choice modeling is how to obtain
Aq . To solve this binary choice problem, in next section, 

a random utility-based model will be proposed. 

If we use the Multinomial Logit (MNL) model to analyze a driver’s route choice 

behavior over this simple network, and the systematic utility of each route is equal to the 

sum of the systematic utility of links on this route, then 
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1 1 2 1

1 2 3 1 4 2 3

5 1 2 3 1 4 2 3 4

( ) ( )
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exp( )+exp( ) exp( ) exp( )+exp( )

o o A
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o o o o o A A
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(4.4) 

where k

iv is the systematic utility of link i when the driver arrives at node k. 

Considering the special case in which the characteristics of links do not change during the 

trip (i.e. A O

i iv v ), then 

1 2 3 1 4 2 3
1

5 1 2 3 1 4 2 3 4

1 2 3
1

5 1 2 3 1 4

exp( )+exp( ) exp( )

exp( )+exp( ) exp( ) exp( )+exp( )

exp( ))

exp( )+exp( ) exp( )

o o o o o o o

D o o o o o o o o o

o o o

So o o o o o

v v v v v v v
P

v v v v v v v v v

v v v
P

v v v v v v

+ + + +
= ×

+ + + + +

+ +
= =

+ + + +  

(4.5) 

This implies that the different results given by SM and DM result from a driver’s en-

route learning process under the MNL framework. Travel time is an important input for 

route choice models, so the BN-based model proposed in last chapter is applied in this 

chapter to model explicitly the process of updating travel time perception. 

As shown in this simple example, a process of dynamic route choice can be discribed 

by Figure 4.2. At the origin, a traveler must make a route choice decision. During the trip, 

the driver’s knowledge is updated. Upon arrival at decision nodes en-route, the driver has 

the chance to make another route choice decision. To calculate
nq , the probability of 

making a decision at node n, a binary Logit model is used with two alternatives: making a 

decision or not. In the next section, we will give a formal specification of a process-based 

route choice model. 
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Figure 4.2 The Process of Dynamic Route Choice 

 

 

4.2  A Process-Based Route Choice Model 

In this section, a process-based route choice model is proposed to consider the 

heterogeneity in processes. The dynamic choice process is defined as the sequence of 

choices during a trip, including the route choices (both pre-trip and en-route choices) and 

the choices of making a route choice again at every decision node. Considering the 

example shown in last section, there are 7 possible dynamic choice processes (coded as 

D1 to D7) as shown in Figure 4.3. 
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Figure 4.3 Possible Dynamic Choice Processes for the Illustrative Example 

 

As an example, process D1 (denoted by the red arrows) means that: the driver 

chooses route 1 at the origin; then at node A, the driver does not make a new route choice. 

There are 3, 3 and 1 possible dynamic choice processes that result in observation of route 

1, route 2 and route 3, respectively. These are labelled by R1, R2 and R3 in Figure 4.3. 

Then the probability that the driver actually uses route 1 is: 

1

1 ( )
D C

P P D


   
(4.6) 
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where 1C  is the set of dynamic choice processes that result in observed route 1. ( )P D  is 

the probability of dynamic process D. In the following part of this section, we will 

discuss how to model P(D). 

Let Sn denote the traffic state for observation n, which is defined as the driver’s 

dynamic perception of route characteristics during the trip. Then the probability of the h-

th dynamic route choice process Dh is 

( | ),    
( | ) ( | , )

1 ,     

h h

t t
h

t h

h
t

D D

nD

h n n h D
t T

P k S if j Y
P D S H j S D

if j N

 
 


  (4.7) 

where Th is the set of decision nodes that the driver will pass if the choice process is 

Dh, 
h

t

D
k  is the route chosen by the driver at decision node t following process Dh, and h

t

D
j  

is the driver’s decision making choice at decision node t in following dynamic process Dh. 

( | )h

t

D

nP k S  and ( | , )h

t

D

n hH j S D  are the probability of route choice and decision making 

choice, respectively. 

Therefore, the dynamic route choice problem can be divided into two subsidiary 

choice problems: route choice and decision making choice. In the rest of this section, we 

will model these two subsidiary choices. 

Because alternative routes overlap, the Multinomial Logit (MNL) model is not 

appropriate for route choice analysis. The Path-Size model has been proposed to deal 

with the overlap problem while maintaining the computational simplicity of the logit 

form(Ben-Akiva and Bierlaire, 1999; Ramming, 2001). Let h

kt

D
U  be the utility of route k 

at decision node t when following dynamic process Dh, where this consists of an observed 

utility h

kt

D
V  and an unobserved component h

kt

D , such that 

h h h

kt kt kt

D D D
U V  

 
(4.8) 

The unobserved components of the alternatives are assumed to be independent and 

identically distributed (i.i.d.) Gumbel. The observed utility is assumed to be a linear 
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relationship between attributes and tastes. To consider the correlation of alternative routes, 

a correction term is added to the utility of alternative routes, such that 

ln( )h

kt

D

kt PS ktV x PS  
 

(4.9) 

where   is a set of parameters of route characteristics, ktx ; PS  is the parameter of path-

size; and the correction term ktPS is formulated as 

1

k
Dh

t

a
kt

a k al

l C

l
PS

L 



 
  

 



 

(4.10) 

where k is the set of links in route k; is the length of link a; and al is the link-path 

incidence dummy (that is, 1 if path l uses link a and 0 otherwise). 

Then the probability that route h

t

D
k is chosen in choice situation t is given by the 

Path-Size model as follows:  

ln( ))

ln( )
( | )

kt PS kt

h

t lt PS lt

Dh

t

x PS
D

n x PS

l C

e
P k S

e

 

 










 

(4.11) 

where hD

tC is the choice set at decision node t, following choice process Dh. 

A random utility based model is developed for the decision making choice. This is 

given as 

1 0

0 1

1
,    

1
( | , )

1
,   

1

h

t

h

t

h

t

D

V V
D

n h

D

V V

if j N
e

H j S D

if j Y
e






 

 
 
 

 (4.12) 

where V1 and V0 are the observed utilities of making a decision and not making a 

decision, respectively, which depend on nS , hD  and t. 
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If the traveler has already chosen route i before arriving at node t and, at this node, 

the traveler’s knowledge is updated, then the benefit of making a decision here ( 1tB ) is 

the expected maximum utility of the route choice model using the updated knowledge, 

which is not related to i. Since a MNL model is used for route choice, 1tB is the logsum of 

the systematic utility of the routes available at node t ( h

kt

D
V ): 

1 ln exp( )h

lt
Dh

t

D

t

l C

B V


   
(4.13) 

In order to consider the preference of the driver for the previous route choice 

decision, in a similar manner to the concept of cognitive cost in reference (Gao et al., 

2011), the cost of making a decision, DC, is defined: 

'

dc dcDC x  (4.14) 

where dcx is a set of explanation variables that affect the driver’s cost of making the 

decision. 

If a decision is not made at node t, the driver will continue to use route i. The benefit 

of not making a decision in condition that route 
1

h

t

D
k


 has been chosen beforehand, is the 

updated expected utility of route 
1

h

t

D
k


: 

0 Mean( )h h h

kt kt kt

D D D

tB V V    (4.15) 

 

Then, the systematic utilities of the decision making choice under the condition nS , 

hD  and t can be specified as follows: 

Making decision: 1 Benefit 1tV DC B   (4.16) 



51 
 

Not making decision: 0 Benefit 0tV B  (4.17) 

where Benefit  is the parameter of benefit.  

4.3  Case Study 

In this section, we do a case study using the same data set and test network shown in last 

chapter. Since the data description and the modeling of travel time perceptions have 

already introduced in last chapter, we only describe the model estimation and analysis 

work in this section. 

We consider two variables in the systematic utility of the route choice model: travel 

time and intersection density. For the specification of DC, we consider two plans:  

0

0 1 2

Constant  

Related to other variables: 

DC=

DC= d w

b

b b b+ × + ×

：
 (4.18) 

Where d is the distance from the origin/mean distance between A and B and w is an 

index related to the width of the link crossing the current link at the decision node. 

Route travel times are estimated according to the departure time and the real travel 

time on the passed links using the BN developed in last chapter. 

In order to evaluate the proposed model, we also estimate a SM and a DDM using 

the same data. The estimation results are shown in Table 4.1. 
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Table 4.1 The Estimation Results of Route Choice Models 

Parameter DDM SM SDM 1 SDM 2 

Travel time (min) 
-7.46  

(-7.19) 

-9.08 

(-6.22) 

-14.56 

 (-7.95) 

-12.70 

(-5.21) 

Intersection Density 

(count/km) 

-1.63 

(-5.23) 

-0.71 

 (-2.71) 

-2.27 

 (-6.27) 

-1.78  

(-3.55) 

LnPS 
0.42 

(2.15) 

0.36 

(1.03) 

0.61 

(0.77) 

0.53 

 (0.92) 

Benefit - - 
5.65  

(0.64) 

6.62 

(1.02) 

Constant part of DC - - 
-4.36  

(-0.64) 

-3.31 

 (-0.80) 

D (%) - - - 
-2.51  

(-0.77) 

w - - - 
7.03 

 (0.91) 

LL at 0 -301.02 -301.02 -301.02 -301.02 

LL at convergence -272.13 -270.57 -258.36 -246.18 

Adjusted 
2r  0.09 0.09 0.13 0.16 

 

We can obtain several findings from these estimation results. From the aspect of 

goodness of fit, SDM 2 gives the best result. We find that, in this case, the DDM has a 

slightly lower LL at convergence than the SM. This is consistent with the results obtained 

in previous research (Morikawa and Miwa, 2006) and indicates the need to consider a 

driver’s en-route decision-making choice. 
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In SDM 1, the parameter of the constant part of DC is negative. This confirms the 

assumption that drivers prefer to continue on the initially planned route without making 

change. 

The negative sign of parameter of d implies that drivers tend to make a new route 

choice when they are far from the destination. This is consistent with the results of 

previous research (Morikawa and Miwa, 2006). 

The positive sign of parameter of w indicates that drivers tend to change their route 

choice plans when the spatial scale of the decision node is large. 

In order to illustrate potential biases introduced by over-simplifying assumptions 

about decision-making choices, SDM 1 is used to predict route choices with the same 

choice scenario resulted the perceived traffic states shown in Table 3.2: A driver arrives 

from node A at 13:30 (during the flat hours), assuming link 1 and 2 are both uncongested. 

SDM 2 is not used here because we are interested in the impact of decision costs as a 

whole on route choice. 

We let DC change by different multiples of Benefit  (5.65), keeping the other 

parameters the same as in Table 4.1. The outputs are shown in Figure 4.4. In this figure, 

P
n 

is the probability that route n is used at last. q
n
 is the probability of decision making at 

node n, which can be calculated using Equation (4.19): 

n

n n n

i i

i C

q P q



  (4.19) 

where n

iP  is the probability that route i is chosen just before the driver arrives at 

node n. When the driver leaves node n-1, the set of available routes is 1nC  . When the 

driver arrives at node n, the set of available routes at decision node n is 1n nC C  . It can 

be known that routes belonging to 1 \n nC C  are not chosen when the driver leaves from 

node n-1.Therefore, n

iP   can be calculated using Equation (4.20): 

-1

-1

n

n
n i

i n

j

j C

P
P

P








 
(4.20) 
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We find that the decision to make an en-route choice is in fact a tradeoff between the 

benefit of the perceived change in route characteristics and the cost of making the 

decision. When 
Benefit/DC b  is large enough, SDM will approach SM, while if 

Benefit/DC b  is negative and small enough, SDM will approach DDM. 

It should be noted that the probability of making a route choice again at DN2 (q2) 

does not decrease as a monotonic function of 
Benefit/DC b . This is because, in the 

proposed model, the decision-making choice is dependent on route choice. The decision-

making choice at DN1 will affect the route choice, and then this will affect the decision-

making choice at DN2. 

The benefit parameter can indicate a driver’s sensitivity to the benefit. According to 

this study, even taxi drivers (who are more sensitive to benefit than private drivers) 

cannot be assumed to make a decision at approximately every node. Further, from Figure 

4.4, it is found that the share of trips taken by each route will change significantly as the 

probability of making a decision changes. These results indicate the necessity for 

considering a driver’s en-route choice to make a new decision. 

 

Figure 4.4 Decision Cost Impact on Route Choice 
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4.4 Conclusions and Future Directions 

In this chapter, we have proposed a process-based method for analyzing dynamic route 

choice behavior. As compared with static models, two additional problems are considered 

in the dynamic route-choice model: the en-route updating of driver knowledge and the 

en-route choice to make a new route decision at a decision node. Upon starting a trip, a 

driver has knowledge about the traffic state from past experience on the links to be passed 

and external information. This availability of knowledge is described explicitly using a 

model based on a Bayesian network. Because of knowledge updating, a driver’s route 

choice decisions will differ according to whether an en-route choice is made to change 

the route at each decision node. A random utility-based method is proposed for modeling 

the choice to make a decision and the choice of route at each decision node 

simultaneously. 

Using the proposed dynamic route model, a case study over a small network is 

carried out. The model is estimated and compared with conventional models using probe 

vehicle data. The results show that drivers do not tend to make route choice decisions at 

all decision nodes. The probability of making an en-route choice is related to a driver’s 

sensitivity to benefit and the cost of making the decision. The absolute value of the 

decision cost is positively correlated with distance to the origin and negative correlated 

with the spatial scale of the intersection at the decision node. 

The case study in this chapter is on a small network. When applied on a large 

network, the number of the possible processes will be huge. Therefore, in the future, 

some algorithms should be developed to generate a set of choice processes when the 

proposed model is applied on a large network, which are similar to choice set generation 

methods for path-base route choice model. About the decision making choice, in this 

study, travelers’ attributes cannot be considered because of the lacking of data. In the 

future, the traveler specific attributes should be considered in the utility function when 

data is available. 
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Chapter 5 

Considering Observed Taste Heterogeneity: 

Exploration on the Effect of Familiarity 

Route choice has been widely investigated from both methodology and practice because 

it is a complex process which depends on many factors. A comprehensive review of this 

problem can be found in Prato (2009). The random utility theory (RUT) framework(Ben-

Akiva and Lerman, 1985), which is also applied in this thesis, is the most widely 

approach for route choice modeling.  

The advantage of the RUT models is the simple specification which makes them easy 

to develop, estimate and apply. However, in recent years, the behavioral realism of these 

utility-maximizing models has been questioned by behavioral scientists (Avineri, 2004). 

In the case of route choice, several researches also show violations of RUT(Avineri and 

Prashker, 2004; Bogers et al., 2005). 

Recalling the last example in Section 1.3: 

 A: I prefer to drive on the side streets, because there are not so many cars; 

B: I hate to drive on the side streets, because there are too many intersections. 

In the conventional RUT based route choice models, travelers’ tastes on the observed 

route attribute (i.e. the parameters in the systematic parts of utility functions) are assumed 

to be constant and homogeneous. This assumption means that, for all the travelers and all 

the O-D pairs, the vectors of estimated parameters of route attributes (e.g. the rate of side 

streets) are the same. Therefore, the conventional RUT based route choice models cannot 

deal with a scenario shown in the above example. 
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In order to bridge the gap between economic modelers and behavioral scientists, 

there are two directions: suggesting alternative approaches to RUT and incorporating 

psychological and other factors in RUT based models. In the first direction, several 

alternative conceptual frameworks have been proposed, among which prospect theory 

(Gao et al., 2010; Xu et al., 2011) and regret theory (Chorus, 2012) have attracted 

increasing following in the field of route choice. In the second direction, behavioral 

determinants other than travel time and cost have been considered in the RUT based 

models to capture the taste heterogeneity across individuals and choice situations. 

Madanat et al. (1995) explored the effect of attitudes toward route diversion and 

perceptions of information reliability on route switch behavior following traffic 

accidents(Madanat et al., 1995). Parkany et al. (2006) explained that attitudinal indicators 

influence consistency and diversion for both stated and revealed preferences of drivers 

(Parkany et al., 2006). Bogers (2009) constructed a simulation experiment to explore the 

influence of day-to-day learning, habit and information. Papinski et al. (2009) examined 

spatial or temporal deviations between observed and pre-planned routes(Papinski et al., 

2009). Prato et al. (2012) proposed a hybrid model and incorporated spatial abilities and 

behavioral patterns in route choice analysis  

In this study, following the second direction, we will explore how to consider the 

observed heterogeneity in tastes in the route choice modeling. Observed taste 

heterogeneity means the part of taste heterogeneity which is related to some observed 

attributes, e.g. age of the traveler and distance between the O-D pairs. Particularly, we 

will explore the effect of familiarity on taste heterogeneity in route choice behavior.  

Familiarity is a behavioral determinant associates with drivers’ network knowledge. 

In geographic theory, the concept of cognitive map is used to describe drivers’ network 

knowledge. Cognitive maps are the conceptual manifestations of place-based experience 

and reasoning that allow one to determine where one is at any moment and what place-

related objects occur in that vicinity or in the surrounding space(Hensher, 2004). 

Cognitive map provides knowledge about how to get from one place to another, and 

naturally interacts with route choice behavior(Golledge and Garling, 2001). Individual 

differences exist in the degrees of knowledge about places, locations, or landmarks and 
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other components of a route or network(Allen, 1999). To capture these differences in 

route choice modeling, familiarity, which is easy to be measured, is an appropriate term 

that can be incorporated in the RUT based models. 

Familiarity can be divided roughly into two groups (Lotan, 1997): familiarity with 

the network and familiarity with the information system. In this study, we focus on the 

familiarity with the networks. This problem has been investigated by several researchers. 

Ramming (2001) developed a Multiple Indicator-Multiple Cause (MIMic) specification 

to examine how network knowledge may be related to a person’s tenure in the 

metropolitan area and other socioeconomic factors. He used the questionnaire survey data 

to estimate the MIMic model and combined it with the route choice models. Some 

researchers investigated effects of familiarity on route choice behavior using the driving 

simulators: Adler and McNally (1994) used a hypothetical network and distinguished the 

levels of network knowledge according to the degree of the network map that was 

presented to subjects. Lotan (1997) did a similar research using a simplified real network. 

According to these studies, familiarity has a significant effect on route choice behavior. 

In these studies, the level of familiarity is distinguished according to the different 

characteristics of subjects, therefore it is individual specific. From the perspective of 

geographic theory, these previous researches have shown the effects of heterogeneity on 

route choice behavior among individuals with different cognitive maps. However, with 

the same cognitive map, the same individual’s response tastes will also be different when 

travel different OD pairs. 

Therefore familiarity also relates to OD pairs. A driver can be very familiar with the 

network as a whole and travel between several OD pairs every day, while never travel 

between many other OD pairs. To analyze the effect of OD pair specific familiarity, we 

need large size individual specific route choice data between multi-OD pairs. Benefited 

from the GPS technology, the abundant GPS data collected by private vehicles are 

available, which can meet the requirements, are used in this research.  

The main contribution of this study is to answer the two questions below: 

 Whether the effect of heterogeneity in familiarity to OD pairs on route choice is 
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statistically significant? 

 How to incorporate the familiarity to OD pairs in route choice models? 

About the first question, although the effect of familiarity to OD pairs on route 

choice seems obvious, we need explore whether the effect is statistically significant and 

worth to be considered in route choice models. If it is significant, we should answer the 

second question and get some findings from the estimation results of route choice models. 

The rest of this chapter is organized as follows. The next section gives a description 

about the data used in this study. In the following section, the change of route choice 

behavior relating to familiarity is explored and the first question is answered. Then, for 

the second question, two route choice models are specified to consider familiarity to OD 

pairs explicitly. The estimation results of the proposed models are discussed. The final 

section provides some concluding comments and future research directions. 

5.1 Data 

The probe data used in this study are collected by private vehicles. In recent years, 

benefited from the popularity of vehicle navigation system, GPS data become important 

resources and have been used in many research about route choice (Bierlaire and 

Frejinger, 2008; Morikawa and Miwa, 2006; Yamamoto et al., 2012). However, because 

of the privacy issues, most of these research used the probe data collected by the 

commercial vehicles, not the private vehicles, which is more useful for exploring the 

heterogeneity in route choice behavior.  

The private probe data was collected in Toyota, Japan in 2011, as a part of the green 

mobility project. More than 200 drivers participate in this survey. An on-board equipment 

which installed on their private vehicles will record their operations (e.g. acceleration) as 

well as the GPS trajectory data real time. These data will be uploaded to internet by the 

participants every week. 

The road network of the urban area in Toyota is used in this study. This is a dense 

network. Part of the network is shown in Figure 5.1. It covers an area about 220 16km , 

and includes 12068 nodes and 35138 links.  
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Figure 5.1 Part of the Network Studied in This Study 

 

 

52 drivers who have more than 400 trips in 10 months (2011.3~2011.12) are 

selected as the subjects in this study. All of these subjects have abundant experiences on 

the network, therefore subjects’ heterogeneity in familiarity to the whole network would 

not be considered. After a basic data cleaning process, a data set with 37254 trips is 

constructed for this study.  
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The raw GPS coordinates are map-matched to a sequence of links. Bierlaire and 

Frejinger (2008) have proposed an advanced processing method of GPS data that avoids 

the ambiguity in map matching. However, its application remains as a task for future 

studies. For each trip, the outflow node of the first link and the inflow node of the last 

link are treated as the origin and destination of this trip respectively. Many of these trips 

start or/and finish outside the target area. In that case, only the part in the target area is 

considered and treated as a complete trip. The trips with the same or adjacent first and 

last links are considered to share the same OD pairs. 

For each trip, before analyzing the route choice behavior, a choice set should be 

generated. For route choice analysis, several choice set generation algorithms have been 

proposed and evaluated (Bekhor et al., 2006). Bovy (2009) stated that random walk 

method proposed by Frejinger et al. (2009) is promising. Therefore, this method is used 

in this study.  

Given an origin-destination pair (so, sd), a path, which is a ordered set of links 

denoted by  , is generated using the following algorithm: 

Initialization: v=so,   . 

Loop: While dv s perform the following. 

 Weights For each link ( , ) vl v w E  , where Ev is the set of outgoing links from v, 

the weights are calculated :   

1 2

1 2( | , ) 1 (1 )
b b

lw l b b x    (5.1) 

( , )

( ) ( , )

d
l

d

SP v s
x

C l SP w s



 (5.2) 

  In this study, b1=5, b2=1. 

 Probability for each link ( , ) vl v w E  , the probability of choosing a link is  
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( | , )
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v

l E

w l b b
q l E b b

w l b b





 
(5.3) 

 Draw Random select a link 
*( , )v w in vE based on the above probability 

 Update path 
*( , )v w    

For each trip, 20 paths are random drawn, and construct a choice set that can replace 

the universal set.  

5.2 Route Choice Behavior Relating to Familiarity 

In this section, we try to answer the first question stated at the beginning of this 

chapter. Although the effect of familiarity on route choice behavior seems to be obvious, 

in order to explore whether it is worth to consider familiarity in choice models, we need 

test whether this effect is statistical significant.  

The most direct measure of a driver’s familiarity on an OD pair is the times that the 

driver has traveled between this OD pair. We use 
rs

nF  to denote the familiarity of driver n 

on OD pair rs. Figure 5.2 is the frequency histogram and cumulative curve about
rs

nF of 

the extracted trips. 

From Figure 5.2, we can find that, about 1/3 trips with =1rs

nF . These trips are 

categorized to the very unfamiliar group. Another 1/3 trips with [2, 20]rs

nF  are 

categorized to the unfamiliar group. The remaining trips with >20rs

nF are categorized to 

the familiar group. The description statistics of each group is shown in Table 5.1. 
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Figure 5.2 The Distribution of Familiarity in the Studied Data Set 

 

 

This study uses the sampled alternatives to analyze the route choice behavior. 

Generally, conventional exogenous sample maximum likelihood (ESML) estimation with 

sampled alternatives provides consistent estimates for a multinomial logit model 

(McFadden, 1977).  

For route choice behavior analysis, Frejinger et al. (2009) proposed an expanding 

path-size logit model with sampling of alternatives, which is also used in this study. 

Suppose Rn paths are drawn with replacements from the universal set of paths U, using 

the algorithm described in last section. Adding the chosen path by the driver, there will be 

a set nC  for observation n ( | | 1n nC R  ). Suppose that Cn is the choice set contains all 

the unique paths in nC , The multinomial logit model can be consistently estimated with 

the conditional probability given as 
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exp( +ln( / ( )))
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







 
(5.4) 

where  is the scale parameter; ink is the number of times path n appears in nC ; inV  is the 

systematic utility that specified as 

' ln( )in in ps inV x EPS     (5.5) 

where '  is the explanation variables with parameters; inEPS is the expanding path size of 

route i in observation n, which is given as 

1

i

n

a
in

a i aj jn

j C

L
EPS

L 









 
(5.6) 

where aL is the length of link a; iL is the length of path; aj  equals 1if path j contains link 

a and is zero otherwise; jn is the expansion factor given as 

1 if route  is chosen or ( ) 1;

1
otherwise.

( )

n

jn

n

j q j R

q j R




  



 (5.7) 

 

Table 5.2The estimated parameters using different group of data are shown in Table 

5.2. Looking at the estimated parameters, all of the estimates in each group are 

statistically significant and have the expected sign. We can also find the estimated 

parameters are different between groups. When drivers travel between very unfamiliar 

OD pairs, they are more sensitive on the count of intersections than free travel time.  

Table 5.2Considering again about the estimation results shown in Table 5.2 it is of 

interest to know whether the differences of estimated parameters in different groups are 

statistically significant, or those differences occur only because of sampling error.  
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Because the estimated parameters to be compared are confounded with their 

respective scale factors in the proposed choice model, the standard Chow test may lead to 

a wrong conclusion. Consequently, in order to isolate the scale factor differences, a two-

stage variant of Chow test is used in this study to show whether the observations in 

different groups share the same parameters of route choice model.  

Swait and Louviere (1993) proposed this test method. In general, it is to consider a 

situation in which two data sets contain observations of an identical specified 

multinomial logit model. The estimated parameters of the choice model using different 

data sets are 1̂ and 2̂ respectively. 

 

Table 5.1 Description Statistics of the Trips in Each Group 

Groups Familiar Unfamiliar Very Unfamiliar All 

Count of trips 10761 9724 13520 34005 

Mean free travel time 7.78 6.91 7.02 7.23 

Std. deviation of free 

travel time 
4.96 4.76 2.78 4.85 

Mean count of 

intersections 
42.11 36.87 37.72 38.87 

Std. deviation of count 

of intersections 
24.66 22.63 22.12 23.20 

Mean familiarity 78.40 6.99 1 27.21 

Std. deviation of 

familiarity 
44.89 4.89 0 43.17 
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We are interested to know whether the differences between 1̂ and 2̂ occur because (1) 

they are simply the result of sampling error, since the true underlying parameters and 

scale factors are the same in both populations(i.e. 1 2  , 1 2  ); (2) the true 

underlying parameters -are the same but the scale factors are different ( 1 2  , 1 2  ); 

(3) there are real differences in true parameters and scale factors( 1 1 2 2    ).This 

problem is identical to test the hypothesis 

H1: 1 2   and 1 2   

The procedure of the two-stage pairwise hypothesis testing is 

 Test whether 1 and 2 are equal (H1A: 1 2 =   ) while permitting the scale 

factors to differ between datasets. The test statistic is 

1 22[ ( )]A L L L    
 

Where 1L and 2L are log likelihood values of route choice models estimated using the 

two datasets respectively. L  is the log likelihood value of choice model estimated using 

the concatenate data of these two datasets, while set 1 1  , 2 is a parameter needed to 

be estimated.  

 If H1A cannot be rejected, then test hypothesis: H1B: 1 2 =   , using the test 

statistic  

2[ ]B pL L     

Where pL is the log likelihood value for the model under H1B. Both A and B are 

asymptotically chi-squared distributed with (K+1) degrees of freedom. K is the number of 

parameters. 
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Table 5.2 Estimation Results with Data of Different Groups 

Parameter on 

Parm (t-stat.) 

Familiar group 
Unfamiliar 

group 

Very unfamiliar 

group 

Free travel 

time(min) 

-0.7389 

(-45.13) 

-1.26 

(-64.13) 

-0.549 

(-37.10) 

Count of 

intersections  

-0.6144 

(-231.03) 

-0.74 

(-220.52) 

-0.70 

(-270.67) 

Ln(EPS) 
0.59 

(14.42) 

0.27 

(7.91) 

0.86 

(24.89) 

LL0 -217240.21 -174090.73 -236950.91 

LL -44031.78 -19046.70 -40041.81 

Rho square 0.7973 0.8906 0.8310 

Count of trips 10761 9724 13520 

 

 

Following this procedure, we test the heterogeneity between groups with different 

levels of familiarity to OD pairs. The results are shown in Table 5.3. We can find that, in 

all of the three cases, the hypothesis is rejected at the first stage. This indicates that there 

are real differences in true parameters and scale factors crossing groups. The estimated 

value of 2  is simply an average multiplier that optimally scales the data of the second 

group to offset the imposition of the  parameter equality assumption. 

In order to test whether the heterogeneity between groups is really because of the 

familiarity to OD pairs, we do another heterogeneity test within groups. Each group is 

randomly divided to two sub-groups. The description statistic is shown in Table 5.4. For 

each group, we do a test on heterogeneity between sub-groups. The results are shown in 

Table 5.5. We can find that only the test between unfamiliar sub-groups (U1 and U2) 
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should be rejected for 95% confidence level. This can confirm again the heterogeneity 

found in Table 3 relates to the familiarity to OD pairs. The rejection of test between U1 

and U2 implies that the marginal effect of familiarity is larger when the degree of 

familiarity is lower. 

 

Table 5.3 Heterogeneity Test Crossing Groups 

Case 
2  L1 L2 L  

A  
Reject 

H1A? 

F, VU 1.07 -44031.78 -40041.81 -84153.19 159.2 yes 

F, U 1.30 -44031.78 -19046.70 -41048 225.64 yes 

VU, U 1.21 -40041.81 -19046.70 -59563.16 949.30 yes 

1. Chi-squared statistic for 4 d.f. and 95% confidence level =9.49. 

2. F, VU and U denote the familiar group, very unfamiliar group and unfamiliar group 

respectively. 

 

Table 5.4 Description Statistics of the Trips in Each Sub-Group 

Sub-Groups 
VF U VU 

VF1 VF2 U1 U2 VU1 VU2 

Count of trips 5438 5323 4910 4814 6784 6736 

Mean free travel time 

(min) 
7.71 7.86 6.96 6.85 6.98 7.06 

Std. deviation of free 

travel time 
4.92 5.00 4.78 4.74 4.80 4.77 

Mean count of 

intersections 
42.03 42.20 37.15 36.58 37.42 38.03 

Std. deviation of 

count of intersections 
24.52 24.81 22.76 22.48 21.97 22.27 

Mean familiarity 78.54 78.25 7.06 6.91 1 1 

Std. deviation of 

familiarity 
44.53 45.26 4.93 4.85 0 0 
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Table 5.5 Heterogeneity Test Crossing Sub-Groups 

Case F1, F2 U1, U2 VU1, VU2 

2  1.00 1.01 1.00 

L1 -20165.59 -9706.45 -21572.84 

L2 -19872.16 -9330.96 -22458.53 

L  -40041.58 -19043.98 -44031.78 

A  7.66 13.14 0.82 

Reject H1A? no yes no 

pL  -40041.81 - -44031.78 

B  0.46 - 0.00 

Reject H1B? no - no 

 

 

5.3 Route Choice Models Considering Familiarity 

According to the findings in last section, route choice behavior significantly relates to the 

heterogeneity in familiarity to OD pairs. Therefore, it is worth to consider familiarity in 

route choice models. In this section, we try to answer the second question stated in the 

first section. Two route choice models are proposed to incorporate familiarity to OD pairs 

explicitly. 

 Model 1: structured scale parameter  

The heterogeneity among observations resulting from the differences in familiarity to OD 

pairs can be considered by using a structured scale parameter. The scale parameter  in 

Equation (4) can be structured by familiarity. Let rs

in  denote the error term of choice 

model, which has a variance expressed as  
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2

2
( )

6( )

rs

in rs

n

Var





  (5.8) 

The structured scale parameter is given as 

( )rs rs

n nF    (5.9) 

rs

nF  is the count of trips that driver n has traveled between OD pair rs during the survey 

period.  is a parameter needed to be estimated. If   is negative (positive), the scale 

parameter is smaller (larger), thus the variance of error is larger (smaller), for more 

familiar OD pairs. This structuralization of the scale parameter includes heterogeneity, 

which is assumed in conventional logit models to be a special case when =0 . 

 Model 2: structured parameters of explanation variables 

As analyzed in Section 5.2, the familiarity to OD pairs also affects the parameters of 

explanation variables in the systematic term of utility. In order to consider the systematic 

response heterogeneity, Bhat (1998 and 2000) proposed a specification (Bhat, 1998, 2000) 

which can allow for the observed heterogeneity:  

( )rs rs

n nF    (5.10) 

' is the parameters in systematic term of utility. The exponential specification is to 

guarantee the correct sign of parameters for all the possible values of rs

nF . In this study, 

both the signs of intersection count and free travel time are negative, while the sign of 

ln( )inEPS is positive. c and are parameters to be estimated. If is negative(positive), 

the more familiar to an OD pair, the less(more) sensitive to the explanation variables. 

Because estimated parameters are confounded with their respective scale factors in 

the MNL models, model 2 can also incorporate the heterogeneity in scale parameter. 

Therefore, it is not necessary to combine Model 1 and Model 2. 
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Using the combined data of all of the three groups, Model 1 and Model 2 are 

estimated, as well as the conventional choice model used in Section 5.2 (Model 0). The 

estimation results are shown in Table 5.6.  

 

Table 5.6 Estimation Results for Models Considering Familiarity 

Parameter on 
Parm (t-stat.) 

Model 1 Model 2 Model 0 

Free travel 

time (min) 

 

Constant -0.61(-88.16) -0.21(-14.65) -0.83(-88.15) 

Familiarity 

(/100) 
- -0.14(-2.31) - 

Count of 

intersections 

Constant -0.50(-345.24) -0.34(-226.14) -0.68(-420.59) 

Familiarity 

(/100) 
- -0.70(-25.64) - 

Ln(EPS) 

Constant 0.40(26.16) -0.62(-116.38) 0.54(25.59) 

Familiarity 

(/100) 
- -0.01(-25.32) - 

  -0.03(-34.57) - - 

LL0 -628281.86 -628281.86 -628281.86 

LL -106437.15 -105746.72 -107025.90 

Rho square 0.8306 0.8317 0.8296 

Count of trips 34005 
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The three estimated models are applied to a specific setting of choice situation and 

predictions of route shares are compared to illustrate the potential biases introduced by 

not considering heterogeneity in familiarity to OD pairs.  

Consider a situation that the universal set of alternatives contains 3 routes without overlap: 

Route 1: free travel time is 7 minutes; count of intersections is 40; 

Route 2: free travel time is 9 minutes; count of intersections is 36; 

Route 3: free travel time is 8 minutes; count of intersections is 38. 

We let 
rs

nF vary from 1 to 190 (the maximum in the studied dataset), the predicted route 

shares by 3 estimated models are shown in Figure 5.3.  

 

 

(a) Model 0 

 



75 
 

 

(b) Model 1 

 

 

(c) Model 2 

Figure 5.3 Familiarity to OD Impacts on Expected Path Shares 
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In Section 3, we try to answer the second question stated in the first section. Two 

models are proposed to incorporate familiarity for route choice analysis. From the 

estimation and prediction results shown in Table 5.6 and Figure 5.3, several findings are 

summarized as follows: 

Concerning the goodness-of-fit statistics, the final log-likelihood of Model 1 and 

Model 2 is significant higher than Model 0. The adjusted Rho square values of Model 1 

and Model 2 are both more than 0.001 higher than Model 0. Considering the large count 

of observations, this indicates that the proposed models can capture the effect of 

familiarity, and confirms that models with explicitly consideration of familiarity on OD 

pairs merit further consideration(Ben-Akiva and Lerman, 1985). Model 2 has a 0.001 

higher adjusted Rho square value than Model 1, this indicates that familiarity not only 

affects the unobserved term of utility, but also affects the drivers’ responses to the 

explanation variables in the systematic term of utility. 

In Model 1, all of the coefficient estimates have the expected signs. The estimated 

sale parameter  is negative, and statistically significantly different from zero. This 

suggests that trips between more familiar OD pairs have larger variances of error terms. 

The error term of utility represents the utility that observed by the drivers but not 

observed by the analysts. The only observed explanation variables in this study are free 

travel time and count of intersections. However route choice behavior will be affected by 

many factors. Some of the dynamic factors could not be observed by the analysts, such as 

the real time perceived travel time and received traffic information. These factors will be 

incorporated in the error term. Therefore, the negative sign of   means that the drivers 

are more easily to be affected by some dynamic factors when travel between more 

familiar OD pairs. In fact, when a driver has a trip between an unfamiliar OD pair, he/she 

will choose a route based on some objective and static knowledge about the network, or 

even follow the navigation system and choose the shortest path. In opposite, when a 

driver travels between a very familiar OD pair, he/she will be more easy to change the 

route choice en-route, because of the dynamic perceptions about the traffic state. 

In Model 2, the coefficient of familiarity for each parameter of explanation variable 

is negative, and statistically significantly different from zero. This implies that when 
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drivers drive between more familiar OD pairs, they will less sensitive to the free travel 

time and count of intersections, and consider more factors that are not observed in Model 

2. This is consistent to the estimation results of Model 1. However, unlike Model 1, 

Model 2 also captures the effect of familiarity on drivers’ response to observed 

explanation variables. The parameter of familiarity for the response to free travel time has 

a lower absolute value than that for the response to the count of intersections. This 

implies that when travel between more familiar OD pairs, drivers will be less sensitive to 

the count of intersections than free travel time. 

The prediction results can show the findings more intuitively. The We can find that, 

applying Model 0, the shares of three routes keep constant as the degree of familiarity 

increasing. If Model 1 is applied, as familiarity increasing, because of the increasing 

variances of error terms, the shares of routes approach to each other. However, because 

is low, the effect of familiarity is not so significant. From figure 3(a), we can also find 

that the varying of scale parameter will not change the order of route shares. That is 

because the error terms are assumed to be independent identically distributed (i.i.d.), and 

the order of route shares only associate with the systematic part of utility. Applying 

Model 2, the shares of routes change significantly as familiarity increasing. When 
rs

nF  

equates to 1, route 1 takes the smallest share of the three routes. As
rs

nF increasing, the 

differences of shares between routes approach to the average (1/3). Unlike Model 1, 

because Model 2 also consider the effect of familiarity on systematic utility, when
rs

nF is 

larger than about 100, the order of route shares will change, and route 1 takes the largest 

share. route 1 is the alternative with shortest free travel time and most intersections. This 

result confirms the finding that familiarity has different effects on parameters of the two 

explanation variables, and drivers will be less sensitive to the count of intersections than 

free travel time when travel between more familiar OD pairs. The obvious changing of 

route shares associate with familiarity also indicates the potential biases introduced by 

not considering heterogeneity in familiarity to OD pairs. 
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5.4 Conclusions and Future Directions 

This chapter provides an exploratory analysis about the effect of familiarity on route 

choice behavior. Familiarity considered here is both individual and OD pair specific, 

different from previous researches which only consider the individual specific familiarity. 

The analysis is based on the probe data collected by private vehicles in Toyota, Japan.  

The first contribution of this study is the empirical research about the effect of 

familiarity to OD pairs on route choice behavior. Although the effect of familiarity on 

route choice seems obvious, we need explore whether this effect is statistically significant 

and worth to be considered in route choice models. The route choice observations are 

categorized into 3 groups according to the levels of familiarity to OD pairs. These three 

groups of observations are used to estimate the route choice model with the same 

specification respectively. The differences on estimated parameters across groups show 

the potential effect of familiarity. To test whether these differences are statistically 

significant, A two-stage variant of Chow test on the different groups of observations is 

carried out. The test results prove that the differences on parameters are statistically 

significant and occur not only because of sampling error. In order to further test whether 

the differences on parameters across groups mainly relate to familiarity, or other 

unobserved factors, we divide the observations in each groups into 2 sub-groups 

randomly, and do the two-stage test on each pair of sub-groups. The test results exclude 

the effect of unobserved factors on the parameters of route choice model. 

The second contribution of this study is the proposed models which can incorporate 

familiarity explicitly. Since the effect of familiarity on route choice behavior has been 

proved to be statistically significant, it is worth to consider familiarity in route choice 

models. 2 specifications of choice models are proposed: a model with structured scale 

parameter (Model 1) and a model with structured parameters of explanation variables 

(Model 2). These two models are estimated using the revealed observations extracted 

from private probe data, and applied to apply the route shares under a specific setting of 

choice situation. According to the estimation and prediction results, the proposed models 

can capture the effect of familiarity. The better performance of Model 2 than Model 1 

implies the necessary to consider familiarity in both unobserved and observed parts of 
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utility. Finding from the results, drivers will be more easy affected by some unobserved 

factors (to the analyst), such as en-route information and perception, when travel between 

more familiar OD pairs. The estimated parameters also imply that drivers will be less 

sensitive to the count of intersections than free travel time when travel between more 

familiar OD pairs. 

From an application perspective, this study can be used in travel demand prediction 

and navigation system. Benefited from the popularity of GPS, abundant location data of 

travelers have made it possible to analyze drivers’ behavior and predict travel demand at 

the individual level. The route choice models considering more behavioral terms (e.g. 

memory, habit and familiarity) besides cost (e.g. travel time and distance) are required by 

the activity based travel demand prediction(Ben-Akiva and Bowman, 1998). The findings 

and proposed models in this study have shown the potential of incorporating familiarity 

for the improvement of travel demand prediction. This study can also benefit the 

development of navigation system. One core part of navigation system is to find routes 

that can give users most satisfaction. This study indicates that drivers’ evaluation rules of 

satisfaction are related to familiarity (more sensitive to the count of intersections when 

travel between less familiar OD pairs). Therefore, this study has a potential to improve 

the service of navigation system. 

In this research, because it is lack of data about drivers’ characteristics and dynamic 

traffic information, only two explanation variables about static network knowledge are 

incorporated in the choice models. In future research, more explanation variables can be 

considered. This study focuses on the familiarity to OD pairs, in the future, the familiarity 

on information systems, links and routes will also be considered and incorporated in 

choice models. In this study, familiarity is static. However, it is a dynamic process to get 

familiar to an OD pair. The dynamic feature of familiarity is another direction for future 

work. 
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Chapter 6 

Considering both Observed and Unobserved Taste 

Heterogeneity: A Multi-Level Mixed Logit Model 

 

 

In this research, following last chapter, we will explore drivers’ taste heterogeneity in 

route choice analysis. Taste heterogeneity may be incorporated into route choice analysis 

by introducing observed individual socio-economic characteristics. However, due to the 

difficulty of data collection for route choice analysis, there is limited research considering 

observed individual characteristics with revealed preference data. What is more, in the 

context of route choice, the characteristics of Origin-Destination (O-D) pairs also have an 

important effect on drivers’ route choice behavior. In most previous research into 

heterogeneity, only a single O-D pair is considered so the O-D pair specific heterogeneity 

cannot be explored.  

On the other hand, it is very likely that taste heterogeneity will remain even when 

observed characteristics are accounted for. The mixed logit model is a popular 

mathematical structure for the analysis of unobserved heterogeneity. A method based on 

the mixed logit model in which both observed and unobserved heterogeneity is 

considered can also be found in the literature (Bhat, 1998, 2000).  

There are two different versions of the mixed logit model: the random coefficient 

logit model and the flexible error logit model. Since these two versions are proved to be 

formally equivalent, researchers can choose one version according to their focuses of 

studies (Train, 2003): The random coefficient version is more straightly when account the 

correlations among the coefficients. Therefore, it is more appropriate for incorporating 
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heterogeneity and dealing with panel data. The flexible error logit model, which is also 

often referred as Logit Kernel model, is more appropriate for considering the correlations 

over alternatives. These two versions both have applied in route choice modeling: Bekhor 

et al. (2002) apply the Logit Kernel model to consider the overlap problem while Bogers 

(2009) use the random coefficient logit model to deal with panel data. 

Since this study focuses on taste heterogeneity, we apply the random coefficient 

specifications. Random taste heterogeneity in a mixed logit model is accommodated by 

random parameters associated with attributes within the utility function specification. 

Regarding these random parameters, it is often assumed that they are independent 

between choices. This assumption is only appropriate when the observations are cross-

sectional data. However, for route choice, there are often repeated choices for one 

individual between one O-D pair. To deal with the repeated choice, as applied in almost 

all previous research in the field of transportation, it is often assumed that tastes vary 

across individuals, but stay constant across observations for the same individual (Revelt 

and Train, 1998). However, adopting this assumption is in fact to ignore intra-traveler 

heterogeneity. 

In the context of route choice, because of the complicated nature of the choices, 

tastes also will vary across choice situations for the same traveler. For example, if the 

driver is going to be late for work, he/she will be more sensitive to the travel time. This 

means it is not appropriate to assume intra-traveler homogeneity because travel purpose 

obviously will affect taste. Understanding this, Hess and Rose (2009) proposed a 

generalized method to allow for both inter-individual and intra-individual heterogeneity. 

They have also tested the relative accuracy of this method (Hess and Train, 2011).  

The main contribution of this study is to incorporate both the observed and 

unobserved taste heterogeneity into route choice analysis. The method proposed by Hess 

and Rose (2009) is extended in two respects for particular application in route choice. 

Firstly, combined with the method proposed by Bhat (2000), the observed heterogeneity 

is also considered. Secondly, the intra-individual heterogeneity is divided into two parts: 

O-D pair specific and choice situation specific heterogeneity. For an empirical analysis, 

GPS data collected by private vehicles in Toyota city, Japan is used in this study for the 
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estimation of the proposed models.  

The remainder of this chapter is organized as follows. Section 6.1 presents the 

modeling approach developed in this study. Section 6.2 describes the data for route 

choice analysis. Section 6.3 gives the specifications of models estimated in this study. 

Section 6.4 shows and analyzes the estimation results. Finally, Section 6.5 presents the 

conclusions of this study. 

6.1 Methodology 

In this section, we develop a modeling framework of route choice that allows for the joint 

representation of observed and unobserved heterogeneity. For the unobserved part, both 

inter-traveler and intra-traveler heterogeneity will be considered. 

6.1.1 Path-size Logit model 

Because of the overlap of alternative routes in a route choice situation, the MNL model is 

not appropriate for route choice analysis. The Path-size model was proposed to deal with 

the overlap problem, while maintaining the computational simplicity of the logit form. As 

described in the second chapter, Path-size Logit model and C-logit model are both MNL-

modifications and only account the overlaps of routes within the deterministic part. 

Because likelihood values show that the Path-Size Logit model generally outperforms the 

C-Logit model (Prato and Bekhor, 2006, 2007; Ramming, 2001), although these two 

models have a similar specification, C-logit model is not chosen in this study. GEV 

models, Probit model, and Logit Kernel model can consider the overlaps within the 

stochastic term, however, these models have much more computational requirements than 

Path-size model (Ramming, 2001). In this study, as shown in the following parts of this 

section, the random parameter specification has already made the proposed models need a 

considerable long estimation time. Considering the large network and abundant 

observations in the case study, to keep an affordable computational expenditure, we apply 

the path-size model to consider the overlap problem, rather than the more complicate 

models.  

Let , , ,i n m tU  be the utility of route i for respondent n in choice situation t when 

traveling between O-D pair m. This consists of an observed utility , , ,i n m tV  , and an 
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unobserved component , , , i n m t , such that 

, , , , , , , , ,i n m t i n m t i n m tU V    (6.1) 

 

The unobserved components of the alternatives are assumed to be independent and 

identically distributed (i.i.d.) as a Gumbel distribution. The observed utility is assumed to 

have a linear relationship between attributes and tastes, such that 

'

, , , , , , , ,i n m t n m t i n m tV x  (6.2) 

where , , ,i n m tx  is a vector of observed route attributes; 
, ,n m t  is a vector of coefficients 

that represent drivers’ tastes on route attributes. 

To consider the correlation of alternative routes, a correction term is added to the 

utility of alternative routes. The probability that respondent n chooses route i in choice 

situation t between O-D pair m is then given by the path-size model: 
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The correction term , , ,i n m tPS is formulated as 

, ,

, , ,

,

1





 
  

 


i

n m t

a
i n m t

a i a j

j C

l
PS

L
 

(6.4) 

where i is the set of links in route i; al is the length of link a; iL  is the length of route 

i; ,a j is the link-path incidence dummy (that is, 1 if path j uses link a and 0 otherwise). 

6.1.2 Incorporating observed heterogeneity 

In the traditional path-size model, tastes  are fixed coefficients. To incorporate observed 



87 
 

heterogeneity, as applied by Bhat (1998),   are assumed to have a linear relationship 

between characteristics and coefficients: 

'

, , , ,n m t n m ty   (6.5) 

where 
, ,n m ty  is a vector of observed variables that related to drivers’ tastes on route 

attributes;   is a matrix of coefficients. 

For route choice analysis, the characteristics can be divided to three categories: 

individual-specific (e.g. age and income), O-D pair specific (e.g. distance) and choice 

situation specific (e.g. weather).  

6.1.3 Incorporating unobserved heterogeneity 

The mixed logit model is used to incorporate the unobserved taste heterogeneity. In a 

mixed logit model, the vector of taste coefficient   is assumed to follow a certain 

random distribution with probability density function ( | )f   .   represents a set of 

parameters of the distribution of  . Combined with the observed heterogeneity, the 

structure of the taste coefficient will then be 

'

, , , , , ,n m t n m t n m ty z    (6.6) 

where , ,n m tz is assumed to be normally distributed with a 0 mean (the mean is 

incorporated in the constant term in '

, ,n m ty ). 

In the context of the mixed logit model, two main specifications exist. The cross-

sectional specification is the standard approach for a one-shot choice. With this 

specification, all observations are treated as independent. In route choice analysis, the 

observations are usually from different travelers. However, for each traveler, there will 

often be more than one observation. With the cross-sectional specification, separated 

observations from the same traveler are treated as if they came from separate travelers. 

From the perspective of taste heterogeneity, this means that sensitivities vary across 

choices for a given traveler in the same way they vary across travelers.  

Accordingly, another specification (Revelt and Train, 1998) has been designed for 
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the case of repeated choice data. With this specification, separated observations from the 

same traveler share the same taste coefficients, while observations from separate travelers 

are assumed to be independent. From a taste heterogeneity perspective, this specification 

can only allow for inter-traveler heterogeneity. 

A more generalized specification was proposed by Hess and Rose (2009) in which 

intra-traveler heterogeneity can also be considered. With this specification, , ,n m tz  in Eq. 

(5) is the sum of two terms, n and , ,n m t ; that is,  

, , , ,n m t n n m tz     (6.7) 

where n  is distributed across travelers but not over multiple choice situations for a 

given traveler and , ,n m t varies over all choices as well as travelers. In this specification, 

n captures the inter-individual variation in tastes while , ,n m t  captures intra-individual 

variation.  

With this specification, for observations of a given traveler, the intra-individual 

variation , ,n m t  is treated as independent. However, in the context of route choice, 

different observations from the same traveler are often for the same O-D pair. As with 

individual-specific heterogeneity, correlations over choice situations of a given traveler 

for the same O-D pair should also be considered. To incorporate the O-D pair specific 

heterogeneity, we extend the framework proposed by Hess and Rose (2009) and develop 

a new specification particularly for route choice analysis. In our model, , ,n m tz  becomes 

the sum of three normally distributed terms n , ,n m and , ,n m t ; that is, 

, , , , ,n m t n n m n m tz       (6.8) 

Where n and , ,n m t are defined as for Eq. 6, and ,n m  varies over O-D pairs for each 

traveler and captures the inter-OD variation in tastes. All of these three terms are assumed 

to be normally distributed with mean 0 and variance 1. 

It should be noted that, for simplification, correlations of observations for the same O-
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D pair but from different travelers are not considered in this specification. 

6.1.4 A discussion on the error components 

To give a further discussion on the error components, the utility function in the proposed 

model is rewritten with a flexible error specification: 

'

, , , , , , , , , , ,

'

, , , , , , , , , , ,

i n m t n m t i n m t i n m t

i n m t n m t i n m t i n m t
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 

  

  
 (6.9) 

where , , ,i n m t  is the unobserved (random) portion of utility. As shown in Eq. (7), 

, ,n m tz  is the sum of three terms: n , ,n m and , ,n m t . n  
and ,n m are not observation 

specific. Observations from the same individual will share the same n . Observations 

between the same OD pair from the same individual will have the same ,n m . Therefore 

utility should be correlated over observations from panel data. 

It should be noted that, for all the alternatives of one observation, the random term 

, ,n m tz  will be same. Therefore, with this specification, the unobserved term , , ,i n m t  is also 

correlated over alternatives. For two different routes i and j, the covariance of unobserved 

terms will be 

' '

, , , , , , , , , , , , , , , , , , , , , ,

'

, , , , , ,

Cov( , ) [( )( )]i n m t j n m t n m t i n m t i n m t n m t j n m t j n m t

i n m t j n m t

E z x z x

x Wx

       


 (6.10) 

where W is the covariance of , ,n m tz .  

We can find that , , , , , ,Cov( , )i n m t j n m t   is nonzero and related to the observed route 

attributes (e.g. route travel time and route length). 

The specification shown in Eq. (6.9) seems similar to the Logit Kernel model 

proposed by Bekhor et al. (2002). However, in their specification, alternatives are 

assumed to be correlated because of the overlap problem rather than the correlated 

random tastes, and the covariance of unobserved terms is related to the overlap length of 

routes rather than the absolute values of observed route attributes. Therefore, for non-
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overlapping routes, the covariance of unobserved terms will be zero in Logit Kernel 

model, but non-zero in the model proposed in this study. 

It should be noted that, it is feasible in methodology to add another random term in 

the proposed model to consider the correlations caused by route overlaps, as that in Logit 

Kernel model. However, this will significantly increase the model estimation time. Since 

this study mainly focus on the heterogeneity, to keep an affordable computational 

expenditure, we only consider the overlap problem in the deterministic part with the Path-

size specification rather than giving a more complicate specification of error term. 

6.1.5 Simulation-based estimation 

Using the same notation as presented in above, the log-likelihood function of a mixed 

logit model is given by 

,

, , , , , ,

1 1 1

( ) ln ( | )
n mn
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n m t n m t n m t

n m t

LL E P i 
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  (6.11) 

where N is the number of travelers, Mn is the number of O-D pairs for traveler n, and 

Tn,m is the number of observations for traveler n for O-D pair m. 

With the cross-sectional specification, it is assumed that each choice situation is 

independent of all other choice situations, even if two choice situations relate to the same 

respondent. With this assumption, and replacing expectation with integration, then Eq. 

(6.11) is rewritten as 

,

, ,
, , , , , , , , , ,
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With the specification proposed by Revelt and Train (1998), the independent 

assumption of observations from the same traveler is relaxed. Only the inter-traveler 

observations are assumed to be independent, then Eq. (10) is rewritten as 

,

, , , , , , , ,
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With the specification proposed by Hess and Rose (2009), the log-likelihood function 

is given by 

,

, ,

, , , , , ,
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where 
, ,( | )n m tk   and ( | )ng    are the probability density functions of 

, ,n m t  and 

n  with parameters   and  , respectively.  
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With the specification proposed in this study, the log-likelihood function is given by 

where ,( | )n mh    is the probability density functions of ,n m  with parameters  .  

Because the integrals do not take a closed form, the log-likelihood functions are 

approximated by simulation. Then Eqs. (6.12-15) are approximated by Eqs. (6.16-19), 

respectively: 

,

, , , , , , ,

1 1 1 1

1
( ) ln ( | )

n mn
TMN R

n m t n m t r n m t

n m t r

SLL P i
R


   

 
   

 
   (6.16) 

,

, , , , ,

1 1 1 1

1
( ) ln ( | )

n mn
TMN R

n m t n m t r n

n r m t

SLL P i
R


   

 
   

 
 

 

(6.17) 
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For Eq. (6.17), there is an alternative that utilizes the cross-sectional formulation but, 

instead of taking different draws for each choice by a given traveler, uses the same draws 

in all the choice situations for the same person. Under this approach (Paag et al., 2000), 

SLL is written  
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The only difference in comparison with Eq. (15) is the subscript of  . In Eq. (19), 

the same set of R draws is reused in the simulation of all choices for traveler n, thus 

leading to a requirement for NR draws, which is different from the ,

1 1

nMN

n m

n m

R T
 

 draws for 

Eq. (6.16). 

This approach attempts to accommodate the panel nature of the data by reusing the 

same draws across choices for a given traveler. Similarly, an approximation of Eq. (19) 

can be given as 
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Eq. (6.21) incorporates all simulations at the level of individual choices, but the same 

draws of   are reused across choices for the same traveler. For  , draws are reused 

across choices between the same O-D pair for the same traveler. For  , new draws are 

used in each choice situation.  

Hess and Train (2011) concluded that, although this approach is computationally 

attractive, it is unable to recover the true patterns of heterogeneity because, as the number 

of draws increases, it becomes simply a cross-sectional estimator in which the three 

forms of heterogeneity will not be distinguished. In this study, following their suggestion, 

we will use the correct specification of the simulated log-likelihood function for the 

empirical analysis, although the accuracy of Eq. (6.21) also will be tested from the aspect 

of model fit.  

6.2 Data  

6.2.1 Observations 

The GPS data used in this study is the same data that used in last chapter.  However, in 

this study, since there is a more complete description on taste heterogeneity, more 

travelers are selected as the subjects for this study. 95 drivers who made trips every 

month in the period 2011.3 to 2011.12 are selected as the subjects for this study. After a 

basic data cleaning process, a data set with 52,330 trips was constructed.  

The raw GPS coordinates are map-matched to a sequence of links. There is an 

advanced processing method of GPS data that avoids ambiguity in map matching 

(Bierlaire and Frejinger, 2008). However, its application remains a task for future studies.  

For each trip, the outflow node of the first link and the inflow node of the last link 

are treated as the origin and destination, respectively. Many of these trips start or/and 

finish outside the target area. In those cases, only the part of the trip within the target area 

is considered and that part is treated as a complete trip. For each driver, the trips with the 

same or adjacent first and last links are considered to share the same O-D pairs. 

Unlike some choice situations, such as travel mode choice, route choice presents a 

large choice set. Because of computational issues, it is very difficult to use all of the 

52,330 extracted observations to estimate the complicated mixed logit models. Therefore, 
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we extract a small data set for the empirical analysis. 

The small data set is constructed as follows. First, for every driver, O-D pairs are 

random selected. At most 10 unique O-D pairs are selected for each driver. Then, for each 

O-D pair, at most 10 unique observations are selected at random. The small data set 

resulting from this process consist of 2,182 observations.  

6.2.2 Choice set generation 

For each trip, before analyzing route choice behavior, a choice set must be generated. 

Several choice set generation algorithms have been proposed and evaluated for route 

choice analysis (Bekhor et al., 2006). As the same as in last chapter, the random walk is 

adopted in this study. However, we make some modifications on the original random 

walk method. In this study, different from that in last chapter, we assume that the 

consideration choice set is the sampled set of paths, but not the universal set of all the 

available paths. 

Given an origin-destination pair (so, sd), a path consisting of an ordered set of links 

denoted by   is generated using the following algorithm: 

Initialization: Set current node v=so,   ;  

For every link l in the network, set 0( ) ( )C l C l , where  C(l) is the cost of link l used 

in the Loop step; 0 ( )C l  is the original cost of link l. 

Loop: While dv s  perform the following: 

 Weights For every link ( , ) vl v w E  , where Ev is the set of outgoing links from 

v. Then, for each link, the weight is calculated: 

1 2

1 2( | , ) 1 (1 )
b b

lw l b b x    (6.22) 
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(6.23) 
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C(l) is the cost of link l. ( )SP   is the length of the shortest path between the two 

nodes. In this study, b1=5, b2=1.  

 If 0 0( ) ( ) ( , ) 1.5 ( , )d o d

k

C k C l SP w s SP s s


    , then set 1 2( | , ) 0w l b b  . 

 Set the cost of every link ( , ) vl v w E   to be ( )=C l  . 

 Probability For each link ( , ) vl v w E  , the probability of choosing a link is  

'

1 2
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w l b b
q l E b b

w l b b
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(6.24) 

 Draw Randomly select a link 
*( , )v w in vE based on the above probability. 

 Update path 
*( , )v w   .  

For each trip, 50 paths are randomly drawn. Repeated draws are discarded. In contrast 

with the original version of the random walk method, two constraints are set in the 

Weights step. In order to avoid cyclic routes, the cost of outgoing links is set to   at the 

last of Weights step. Only paths satisfying the detour constraint are used to construct a 

choice set for use in route choice analysis, which means that the sampled path must be 

shorter than 1.5 times of the shortest path. Figure 6.1 gives a detail description on the 

generated choice set.  

6.2.3 Data set 

The route characteristics, as well as the characteristics of drivers and O-D pairs, to be 

used in route choice analysis are shown in Table 6.1. 

 It should be noted that, as always a problem with studies on real large road network, 

the data about real time or congested link travel time are not available for this study. 

Drivers are often assumed to choose route according to the route travel time perceived at 

the time that they make the choice. In some previous studies, the probe data are collected 

by a large number of taxies; therefore they can estimate real time link travel time for the 

whole networks and then include the real time route travel time in route choice 

analysis(Li et al., 2013; Morikawa and Miwa, 2006). However, in this study, the GPS 
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data are collected by only about one hundred private cars, which is not enough for the 

estimation of real time link travel time. In some other studies, the estimated peak hour 

link travel time is included to the effect of congestion (Ramming, 2001). However, the 

network data available for us only include some basic attributes of links, without the 

information of congested travel time. Therefore, due to lack of data, like some previous 

research(Bierlaire and Frejinger, 2008), only free travel time is considered in this study.  

 

 

 

 
(a) The Distribution of Link Number. 
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 (b) The Distribution of Longest Path Length 

 
(c) The Distribution of Longest Path Length/Shortest Path Length 

 

Figure 6.1 Descriptions on the Choice Set 
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Table 6.1 Description of Characteristics Used for Route Choice Analysis 

Characteristic Description Value 

Route specific   

Free_Travel_Time 
Free travel time for the route

*
 (unit: 

minute) 
- 

Number_of_Intersections 
The number of intersections along the 

route 
- 

Traveler specific   

Gender Male (90%) 1 

 Female (10%) 0 

Age <= 35 years old (17%) 0 

 > 35 years old (83%) 1 

Car displacement <=1.79 L (55%) 0 

 >1.79 L (45%) 1 

O-D specific   

Distance The distance from O to D (unit: km) 0.44~34.22 

Familiarity 

1 + the number of times that the driver 

has traveled between the O-D pair (unit: 

100 times) 

0.01~1.9  

* calculated according to the free-flow speed of the link, which is determined by the 

characteristics of the street layout. 
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6.3 Model Specifications 

A total of 13 models are estimated in this analysis, ranging from a basic path-size model 

to the specification given in Eq. (6.8). A summary of the different structures is provided 

in Table 6.2. 

 

 

Table 6.2 Summary of Estimated Models 

Model 

Observed heterogeneity Unobserved heterogeneity 

Indv. specific OD specific Indv. specific OD specific Choice specific 

0 × × × × × 

O1 ○ × × × × 

O2 ○ ○ × × × 

U1 × × ○ × × 

U2 × × × ○ × 

U3 × × × × ○ 

U13 × × ○ × ○ 

U123 × × ○ ○ ○ 

UO1 ○ ○ ○ × × 

UO2 ○ ○ × ○ × 

UO3 ○ ○ × × ○ 

UO13 ○ ○ ○ × ○ 

UO123 ○ ○ ○ ○ ○ 
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The systematic part of the utility without unobserved heterogeneity (i.e. the 

specification of Model O2) is given as: 

11 12 13

14 15

21 22 23

24 25

(Constant Age Gender Displacement

Distance Familiarity) Free_Travel_Time

(Constant Age Gender Displacement

Distance Familiarity) Number_of_Intersections

V   

 

  

 

      

    

      

    

 (6.25) 

Then the specifications of the estimated models can be determined according to 

Section 6.1. 

6.4 Estimation Results and Analysis 

6.4.1 Findings from the estimation results 

Using the extracted observations, all of the 13 models are estimated. Given the high 

number of models, it is not possible to present detailed estimation results for each single 

model. Therefore, we only give an overview of the results across models, as shown in 

Table 6.3. The last row of Table 3 (UO123
*
) is the performance of Model UO123 

estimated using Eq. (6.21). Detailed estimation results of several selected models are 

shown in Table 6.4. 

Several findings can be obtained from Table 6.3, which evaluates the models with 

respect to goodness of fit. 

The first significant observation to be made is the significant improvement in model 

fit that occurs when O-D pair characteristics are considered in the observed heterogeneity. 

As noted in the introduction section, most previous research concerning taste 

heterogeneity in route choice takes into account travelers’ characteristics only, because it 

was based on experiments using a single O-D pair. Few previous investigations concern 

heterogeneity that is O-D pair specific. However, this finding implies that O-D pair 

specific heterogeneity may have a much greater effect on route choice behavior than 

individual characteristics. One very important application of route choice models is as a 

core part of traffic assignment. Previous research (Chen et al., 2012; Miwa et al., 2010) 

has demonstrated the effect of O-D specific route choice models on traffic assignment. 
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This finding provides empirical evidence for the necessity of applying O-D 

characteristics in structured route choice models used for traffic assignment. 

 

 

 

Table 6.3 Summary of Model Performance 

Model 
Log-likelihood at 

estimates 

Count of 

parameters 
Adjusted Rho^2 

0 -5588.888 3 0.277 

O1 -5238.737 9 0.321 

O2 -4361.250 13 0.434 

U1 -4878.550 5 0.368 

U2 -5161.488 5 0.332 

U3 -5569.032 5 0.279 

U13 -4877.656 7 0.368 

U123 -4704.112 9 0.390 

UO1 -4013.565 15 0.479 

UO2 -4134.722 15 0.463 

UO3 -4360.373 15 0.434 

UO13 -4000.761 17 0.480 

UO123 -3920.780 19 0.490 

UO123* -4293.357 19 0.442 
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Table 6.4 Estimation Results of Selected Models 

Parameter 
Estimation (t-stat.) 

0 O2 U123 UO123 

F
ree trav

el tim
e 

Constant 
-0.104 

(-6.409) 

-1.498 

(-12.715) 

-0.254 

(-8.667) 

-1.967 

(12.868) 

Age 

( 11 ) 
 

-0.655 

(-12.831) 
 

-0.456 

(-6.732) 

Gender 

( 12 ) 
 

0.723 

(7.229) 
 

0.817 

(6.386) 

Displacement 

( 13 ) 
 

0.140 

(3.590) 
 

0.283 

(4.618) 

Distance 

( 14 )  
 

0.104 

(21.316) 
 

0.150 

(22.012) 

Familiarity 

( 15 ) 
 

-0.271 

(-5.880) 
 

-0.552 

(-8.771) 

Std. d( )    
0.762 

(19.534) 

0.636 

(13.149) 

Std. d( )    
0.621 

(19.013) 

0.659 

(15.277) 

Std. d( )    
0.021 

(0.454) 

0.023 

(0.657) 

N
u
m

b
er o

f in
tersectio

n
s 

Constant 
-0.067 

(-24.329) 

-0.098 

(-5.552) 

0.088 

(-17.892) 

-0.053 

(-2.447) 

Age 

( 21 ) 
 

0.033 

(3.282) 
 

-0.005 

(-0.373) 

Gender 

( 22 ) 
 

-0.073 

(-4.866) 
 

-0.119 

(-6.741) 

Displacement 

 ( 23 ) 
 

0.005 

(0.724) 
 

0.009 

(1.036) 

Distance 

( 24 )  
 

0.007 

(9.567) 
 

0.003 

(3.759) 

Familiarity 

( 25 ) 
 

0.022 

(3.252) 
 

0.062 

(6.932) 

Std. d( )    
0.054 

(18.320) 

0.051 

(13.848) 

Std. d( )    
0.110 

(16.736) 

0.070 

(11.088) 

Std. d( )    
0.002 

(0.318) 

0.003 

(0.467) 

Ln(PS) 
2.105 

(50.934) 

2.199 

(47.074) 

2.100 

(44.355) 

2.195 

(43.311) 
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The next observation is that all models in which only unobserved heterogeneity is 

considered have a comfortably higher log-likelihood than Model 0 (the largest p-value in 

the likelihood ratio test is only
-9

2.38 10 ). However, they all have much lower log-

likelihood than Model O2 (where the largest p-value in the likelihood ratio test 

approaches 0), which considers only observed heterogeneity. This finding confirms that 

the random coefficients specification can enhance the performance of the logit model 

significantly. However, it also indicates that incorporating random taste heterogeneity 

cannot replace the observed characteristics of travelers and O-D pairs. Considering the 

difficulties involved in the estimation and implementation of mixed logit models, this 

suggests that the more efficient way to enhance the performance of route choice models is 

to add more observed characteristics of travelers and O-D pairs rather than increasing the 

complexity of the specification. 

It also should be noted that, compared with Model O2, Model UO3 has a slightly 

higher log-likelihood. However, the p-value in the likelihood ratio test is 0.416. This 

means that although there is an improvement in model fit, it is only significant at the 

58.4% level. But all other models incorporating both unobserved and observed taste 

heterogeneity have a considerably higher log-likelihood than Model UO2 (where the 

largest p-value in the likelihood ratio test value approaches 0). Models U3 and UO3 are 

in fact the mixed logit models that treat the repeat choice observations as inter-sectional 

data. Recalling that Model U3 also has the worst performance among the models 

incorporating only unobserved heterogeneity, this suggests that when dealing with panel 

data, it is not appropriate to assume each choice situation is independent of all other 

choice situations. 

We now proceed to look at the structure of random taste heterogeneity. Compared 

with Model U1, Model U13 with the specification suggested by Hess and Rose (2009) 

has improved model fit. However, this improvement is not statistically significant (the p-

value is 0.409). Model U123, which also considers intra-OD heterogeneity, has a 

considerably higher log-likelihood than Model U13 (where the p-value approaches 0). A 

similar finding is obtained from the estimation results of the UO series of models. This 

suggests that it is desirable to add inter-OD heterogeneity while incorporating intra-



104 
 

traveler heterogeneity.  

Model U123 has the best fit among the U series of models. This indicates that it is 

necessary to combine inter-traveler, inter-OD, and inter-choice heterogeneity when 

specifying random taste heterogeneity. Looking at goodness of fit, Model UO123 is 

significantly better than all of the other models. This suggests that it is desirable to 

incorporate both observed and unobserved heterogeneity.  

The fact that Model UO123 has the best fit also indicates that all other models are 

mis-specified. Concerning the estimation results of Model UO123*, the log-likelihood is 

much lower than Model UO123, and only Model UO3 has a lower value among the UO 

series of models. This is consistent with the finding of Hess and Train (2011), and does 

not support the use of the simplified simulated log-likelihood function. 

The estimated models shown in Table 6.4 are applied to a specific scenario to illustrate 

the potential bias introduced by over-simplifying the assumptions of homogeneity. In this 

scenario, we assume that a driver is to make choice among three routes without overlap:  

Route 1: free travel time is 10 minutes, number of intersections is 20 (lower free travel 

time, more intersections); 

Route 2: free travel time is 15 minutes, number of intersections is 15 (greater free 

travel time, fewer intersections); 

Route 3: free travel time is 10 minutes, number of intersections is 15 (lower free travel 

time, fewer intersections). 

This driver is assumed to be male and older than 35 years old. His car has a 

displacement of 1.6 L. The distance between origin and destination is 5km. This is the 

first time that he has traveled between this O-D pair.  

Figure 6.2 presents the expected route shares on the three routes for each of the three 

models. It is clear that the predictions obtained using these models are quite different. 

According to the likelihood ratio test, Model UO123 is considered the most accurate 

model. The significant variation in route shares given by the other models suggests that 

any simplifying of heterogeneity considerations will result in incorrect predictions. 
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Figure 6.2 Estimated Route Shares 

 

Moving on to details of the estimated parameters, several behavioral findings can be 

obtained. Figure 6.3 shows the effect of observed heterogeneity on route choice 

prediction when applying Model UO123. This shows that, for the same route 

characteristics, different drivers will make significantly different choices. 

First, as expected, the constant part of the estimated parameter has a negative sign in 

each case. Then, we look at the sign of the observed individual and O-D pair specific 

characteristics.   

The negative sign and t-statistic of 11  suggest that age will affect the taste for free 

travel time significantly, with older people being more sensitive to free travel time. The 

low t-statistic of 21  implies that age does not have a significant effect on the taste for the 

number of intersections at the level of 95%. 
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 (a) Age 

 

(b) Gender 
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(c) Displacement 

 
 (d) Distance 
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(e) Familiarity 

 

Figure 6.3 Estimated route shares 

 

As shown in Figure 6.3 (a), as a driver’s age moves from younger than 35 to older 

than 35, the differences between route shares are larger. This finding is a little 

counterintuitive, since it is often assumed that the younger driver will be more sensitive 

to the observed cost. Here is a possible explanation: Since the scale parameter cannot be 

identified from taste coefficients in Logit models, all the taste coefficients have less 

absolute value can be caused by a smaller scale parameter, which means a larger variance 

of the error term. Therefore the negative signs of 11 and 21 can be interpreted as 

meaning that there are more unobserved factors affect younger drivers’ route choice 

behavior than the older drivers.  

According to the t-test, gender has a significant effect on both free travel time and 

number of intersections. Male drivers are more sensitive to the number of intersections, 

but less sensitive to free travel time. As found in Figure 6.3 (b), since Route 1 offers 

lower free travel time but more intersections, for male drivers, the expected route share of 



109 
 

Route 1 is much lower than for female drivers. 

Car displacement also has a significant effect on free travel time. However its effect 

on the number of intersections is not significant. The positive signs of 13  and 23  mean 

that drivers of vehicles with larger displacement will be less sensitive to route cost. From 

Figure 6.3 (c), we find that the expected share of Route 2 is higher than that of Route 1 

for drivers with larger displacement vehicles, while for drivers with lower displacement 

vehicles, the expected share of Route 2 is the lowest. This indicates that the effect of 

displacement on taste for free travel time is larger than that on the taste for intersection 

count. 

Both 14 and 24  are positive and statistically significant. This confirms that as the 

distance between the O-D pair increases, drivers will be less sensitive to the observed 

attributes. This also can be interpreted as an increasing variance in the unobserved utility, 

which is consistent with the assumptions made in previous research on traffic assignment 

(Chen et al., 2012; Miwa et al., 2010).  

15 and 25 are negative and positive, respectively, and both are significant. This 

implies that when driving between more familiar O-D pairs, drivers will be more 

sensitive to free travel time but less sensitive to the number of intersections. We find in 

Figure 4(e) that, as the familiarity of the O-D pair increases, the expected share of Route 

1 increases as compared with Route 2. 

Finally, it should be noted that the absolute value of the parameters in Model U123 is 

much larger that of Model 0. This is because Model U123 decomposes the unobserved 

portion of utility into taste heterogeneity. 

6.4.2 The stability of behavioral findings 

In this study, Path-size model and Random Walk method are chosen to overcome the 

overlap and choice set generation problems, respectively. Because of the computational 

issues, we only use a small part of the all extracted observations.  

In this section we will check the stability of the behavioral findings in the above 

analysis for different route choice models, choice set generation methods and datasets. 
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As shown in Table 6.5, with the heterogeneity specification same as Model O2, 

Generalized Nested Logit (GNL) model (Bekhor and Prashker, 2001), C-logit model 

(Cascetta et al., 1996), Logit Kernel Model and Logit Kernel model with Path-size 

(Bekhor et al., 2002) are estimated using the some dataset described in Section 3. Model 

UO123, the most complicate model proposed in this study is not used here because of the 

unaffordable computational burden caused by combining the GNL or Logit Kernel Model 

with the multi-level random parameter specification.  

At first, we can find that, although the estimates are different with different models, 

the signs are consistent. Therefore the behavioral findings, which are mainly based on the 

signs of estimates, are not dependent on the choice models. Second, from aspect of model 

fit, Path-size Logit model is superior to other models except the Logit Kernel model with 

path-size. This is consistent to the findings in Ramming (2001). At last, from the 

computational aspect, GNL model and Logit Kernel model take much longer time for 

estimation than Path-size model and C-logit model. 

Therefore, the behavioral findings are stable for different route choice models. Path-

size Logit model is a reasonable choice when consider both the model fit and 

computational efficiency. 

The route choice model estimates are found to be sensitive to the choice set 

compositions (Bliemer and Bovy, 2008; Prato and Bekhor, 2007). Therefore, we generate 

two more choice sets for the dataset described in Section 3 (denoted as Data 0), using link 

penalty method (Park and Rilett, 1997) and simulation method (Ramming, 2001) 

respectively. Using the random walk method, we generated two datasets with different 

random selected observations (denoted as Data 1 and Data 2). Observations in Data 0, 

Data 1 and Data 2 do not have any intersections because the already selected observations 

are excluded when random extract a new small dataset. The Labeling method (Ben-Akiva 

et al., 1984) is not applied because there is no enough data about “labels” to generate 

routes. The branch-and-bound method (Prato and Bekhor, 2006) is not applied because it 

is too time consuming in such a dense network (Rieser-Schüssler et al., 2012). The 

estimation results are shown in Table 6.6. 
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Table 6.5 Estimation Results of Model O2 with Different Specifications  

Parameter 

Estimation (t-stat.) 

GNL 
Logit 

Kernel 
C-logit 

Path-size 

Logit 

Logit Kernel 

with Ln(PS) 

F
ree trav

el tim
e 

Constant 
-0.961 

(-8.240) 

-2.396 

(-9.980) 

-1.214 

(-10.521) 

-1.498 

(-12.715) 

-1.660 

(-12.234) 

Age 

( 11 ) 
-0.556 

(-10.539) 

-1.497 

(-12.487) 

-0.608 

(-11.811) 

-0.655 

(-12.831) 

-0.734 

(-11.911) 

Gender 

( 12 ) 
0.855 

(8.402) 

1.736 

(9.363) 

0.810 

(8.116) 

0.723 

(7.229) 

0.797 

(7.219) 

Displacement 

( 13 ) 
0.157 

(4.108) 

0.257 

(2.909) 

0.155 

(4.142) 

0.140 

(3.590) 

0.141 

(3.141) 

Distance 

( 14 )  
0.065 

(14.875) 

0.166 

(15.067) 

0.080 

(17.412) 

0.104 

(21.316) 

0.118 

(18.890) 

Familiarity 

( 15 ) 
-0.203 

(-4.458) 

-0.677 

(-6.372) 

-0.247 

(-5.652) 

-0.271 

(-5.880) 

-0.310 

(-5.553) 

N
u
m

b
er o

f in
tersectio

n
s 

Constant 
-0.080 

(-4.384) 

-0.184 

(-5.206) 

-0.083 

(-4.729) 

-0.098 

(-5.552) 

-0.103 

(-5.103) 

Age 

( 21 ) 
0.030 

(2.912) 

0.082 

(4.274) 

0.037 

(3.664) 

0.033 

(3.282) 

0.041 

(3.510) 

Gender 

( 22 ) 
-0.115 

(-7.352) 

-0.228 

(-8.048) 

-0.094 

(-6.394) 

-0.073 

(-4.866) 

-0.089 

(-5.297) 

Displacement 

 ( 23 ) 
0.000 

(0.045) 

0.017 

(1.177) 

0.001 

(0.090) 

0.005 

(0.724) 

0.006 

(0.735) 

Distance 

( 24 )  
0.008 

(12.843) 

0.016 

(10.315) 

0.007 

(9.968) 

0.007 

(9.567) 

0.007 

(8.017) 

Familiarity 

( 25 ) 
0.026 

(3.400) 

0.073 

(5.041) 

0.028 

(3.991) 

0.022 

(3.252) 

0.026 

(3.103) 

Ln(PS)    
2.199 

(47.074) 

2.188 

(43.230) 

Nesting Parameter 
2.602 

(4.23) 
    

Gaussian Covariance 

Parameter 
 

2.052 

(19.838) 
  

0.454 

(10.098) 

Commonality Factor   
1.793 

(33.444) 
  

Log-likelihood at 

estimates 
-4670.18 -5321.35 -5015.56 -4361.25 4316.35 

Adjusted Rho^2 0.394 0.310 0.349 0.434 0.440 

Estimation time 13 hours 7 hours <5 mins <5 mins 7 hours 
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Table 6.6 Estimation Results of Model UO123 with Different Choice Sets and Datasets 

Parameter 

Estimation (t-stat.)  

LP 

(Data 0) 

SIM 

(Data 0) 

RW 

(Data 1) 

RW 

(Data 2) 

RW 

(Data0) 

F
ree trav

el tim
e 

Constant 
-1.378 

(-9.847) 

-0.375 

(-3.675) 

-2.467 

(-16.928) 

-1.991 

(-14.471) 

-1.967 

(12.868) 

Age 

( 11 ) 
-0.465 

(-9.892) 

-0.483 

(-9.381) 

-0.359 

(-5.123) 

-0.165 

(-2.348) 

-0.456 

(-6.732) 

Gender 

( 12 ) 
1.078 

(9.979) 

0.794 

(8.253) 

0.735 

(6.474) 

0.653 

(6.859) 

0.817 

(6.386) 

Displacement 

( 13 ) 
0.307 

(7.183) 

0.158 

(3.900) 

0.117 

(1.890) 

0.094 

(1.956) 

0.283 

(4.618) 

Distance 

( 14 )  
0.040 

(4.608) 

0.005 

(5.140) 

0.175 

(23.066) 

0.145 

(20.729) 

0.150 

(22.012) 

Familiarity 

( 15 ) 
-0.216 

(-5.028) 

-0.188 

(-4.964) 

-0.260 

(-1.906) 

-0.970 

(-7.299) 

-0.552 

(-8.771) 

Std. d( )  0.397 

(18.323) 

0.369 

(16.875) 

0.506 

(11.923) 

0.439 

(13.170) 

0.636 

(13.149) 

Std. d( )  0.515 

(21.696) 

0.402 

(18.926) 

0.658 

(16.294) 

0.510 

(10.366) 

0.659 

(15.277) 

Std. d( )  
0.084 

(2.613) 

0.058 

(3.380) 

0.156 

(3.707) 

0.012 

(0.430) 

0.023 

(0.657) 

N
u
m

b
er o

f in
tersectio

n
s 

Constant 
-0.026 

(-9.600) 

-0.013 

(-1.006) 

-0.074 

(-3.841) 

-0.091 

(-4.739) 

-0.053 

(-2.447) 

Age 

( 21 ) 
-0.004 

(-4.513) 
0.001 

(0.488) 

0.020 

(1.134) 

0.005 

(0.407) 

-0.005 

(-0.373) 

Gender 

( 22 ) 
-0.150 

(-12.164) 

-0.091 

(-8.517) 

-0.041 

(-2.594) 

-0.050 

(-3.449) 

-0.119 

(-6.741) 

Displacement 

 ( 23 ) 
0.002 

(2.548) 
-0.000 

(-0.600) 

-0.013 

(-1.264) 

0.019 

(2.225) 

0.009 

(1.036) 

Distance 

( 24 )  
0.002 

(5.880) 

0.000 

(1.781) 

0.001 

(1.392) 

0.004 

(3.972) 

0.003 

(3.759) 

Familiarity 

( 25 ) 
0.057 

(7.866) 

0.037 

(6.250) 

0.115 

(3.109) 

0.109 

(5.020) 

0.062 

(6.932) 

Std. d( )  0.088 

(16.697) 

0.043 

(13.077) 

0.032 

(8.176) 

0.042 

(10.692) 

0.051 

(13.848) 

Std. d( )  0.081 

(19.595) 

0.049 

(14.347) 

0.076 

(12.956) 

0.044 

(2.968) 

0.070 

(11.088) 

Std. d( )  0.008 

(1.537) 

0.008 

(2.378) 

0.021 

(3.574) 

0.001 

(0.311) 

0.003 

(0.467) 

Ln(PS) 
2.262 

(29.217) 

1.904 

(34.747) 

2.160 

(41.853) 

2.074 

(43.497) 

2.195 

(43.311) 
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According to the results shown in Table 6.6, it is confirmed again that, the estimation 

of route choice models is sensitive to the choice set generation methods. With different 

path sets, the estimates are significantly different. 

However, the behavioral interpretations are mainly based on the signs of estimated 

parameters. Most of the estimates in Table 6 have consistent signs. Only the effect of age 

and displacement on the taste of number of intersections is not stable. But according to 

the t-values, these two parameters are not significant. 

From the tests and analysis above, it can be found that the behavioral findings in this 

study are stable for different route choice models, choice set generation methods and 

datasets. 

6.5 Conclusions and Future Directions 

In this research, we explore taste heterogeneity in route choice behavior. Taste 

heterogeneity may be incorporated in route choice analysis by introducing observed 

individual socio-economic characteristics. However, it is very likely that some taste 

heterogeneity will remain even after accounting for any observed characteristics. To 

incorporate both observed and unobserved characteristics, a mixed logit based method is 

proposed, in which the taste coefficients are treated as random and structured as observed 

characteristics. 

It is not appropriate to consider route choice as a one-shot choice problem, so the use 

of panel data to deal with the random element is also discussed. Random taste may 

consist of three components: traveler specific, O-D pair specific and choice situation 

specific. In most previous research, only traveler specific heterogeneity is considered 

when dealing with panel data. However, as discussed by Hess and Rose (2009), it is 

necessary to also consider intra-traveler heterogeneity. In the generalized model they 

proposed, the random coefficients are divided to two parts: traveler specific for 

consideration of inter-traveler heterogeneity and choice situation specific for 

consideration of intra-traveler heterogeneity. However, in the particular application of 

route choice, it is declared in this paper that intra-traveler heterogeneity should be divided 

into an O-D pair specific part and a choice situation specific part. 
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The data used in this study is GPS location data obtained from private vehicles in 

Toyota city, Japan. Route choice observations between multiple O-D pairs are extracted 

from map-matched trajectory data. The random walk method is used for choice set 

generation. Models with various assumptions about heterogeneity are estimated and 

compared. Empirical analysis suggests that, to enhance the performance of route choice 

models, it is more efficient to add more observed characteristics relating to travelers and 

O-D pairs than to increase the complexity of the specification. It is found inappropriate 

from the aspect of model fit to assume independence between choice situations when 

dealing with panel data. It is also proved that the incorporation of O-D pair specific 

unobserved taste heterogeneity can enhance the performance of a route choice model 

significantly. 

Further, the empirical analysis supports the conclusion of Hess and Train (2011) that 

to guarantee recovery of the true patterns of heterogeneity, analysts should make use of 

the correct specification of the simulated log-likelihood function and avoid any shortcuts. 

Looking at the estimations in more detail, it is found that age affects the taste for free 

travel time significantly, with older people being more sensitive to free travel time. 

However age does not have a significant effect on taste for the number of intersections. 

Gender significantly affects taste for both free travel time and number of intersections. 

Male drivers are more sensitive to the number of intersections, while they are less 

sensitive to free travel time. Car displacement has a significant effect on taste for free 

travel time, while its effect on the number of intersections is not significant. As distance 

between O-D pair increases, drivers become less sensitive to the observed attributes. 

When driving between more familiar O-D pairs, drivers are more sensitive to free travel 

time but less sensitive to the number of intersections. The stability of the behavioral 

findings is also checked. It is found that the findings in this study are stable for different 

route choice models, choice set generation methods and datasets. 

The number of driver characteristics considered in this research is limited because of 

a lack of data. In further research, the GPS data might be combined with questionnaire 

data so as to take into account a greater number of behavioral terms. Further, in this study, 

the random coefficients are formed linearly so as not to make the model too complicated. 
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However, this assumption should be discussed in future work because, for example, with 

increasing distance, the mean taste coefficients of costs will be positive, which is not 

appropriate. Recently, Fosgerau et al. (2013) propose a link based route choice model 

with unrestricted choice set. It is also possible to discuss the heterogeneity in that 

framework.  

 

 

References 

Bekhor, S., Ben-Akiva, M., Scott Ramming, M. (2002) Adaptation of logit kernel to route 

choice situation. Transportation Research Record: Journal of the Transportation 

Research Board 1805, 78-85. 

Bekhor, S., Ben-Akiva, M.E., Ramming, M.S. (2006) Evaluation of choice set generation 

algorithms for route choice models. Annals of Operations Research 144, 235-247. 

Bekhor, S., Prashker, J. (2001) Stochastic user equilibrium formulation for generalized 

nested logit model. Transportation Research Record: Journal of the Transportation 

Research Board 1752, 84-90. 

Ben-Akiva, M., Bergman, M., Daly, A.J., Ramaswamy, R. (1984) Modeling inter-urban 

route choice behaviour. Proceedings of Proceedings of the 9th International Symposium 

on Transportation and Traffic Theory, VNU Press, Utrecht, pp. 299-330. 

Bhat, C.R. (1998) Accommodating variations in responsiveness to level-of-service 

measures in travel mode choice modeling. Transportation Research Part A: Policy and 

Practice 32, 495-507. 

Bhat, C.R. (2000) Incorporating observed and unobserved heterogeneity in urban work 

travel mode choice modeling. Transportation Science 34, 228-238. 

Bierlaire, M., Frejinger, E. (2008) Route choice modeling with network-free data. 

Transportation Research Part C: Emerging Technologies 16, 187-198. 

Bliemer, M.C., Bovy, P.H. (2008) Impact of route choice set on route choice probabilities. 

Transportation Research Record: Journal of the Transportation Research Board 2076, 

10-19. 



116 
 

Bogers, E.A.I. (2009) Traffic information and learning in day-to-day route choice. 

Proefschrift TU Delft TRAIL Thesis Series. 

Cascetta, E., Nuzzolo, A., Russo, F., Vitetta, A. (1996) A modified logit route choice 

model overcoming path overlapping problems. Specification and some calibration results 

for interurban networks. Proceedings of Internaional symposium on transportation and 

traffic theory, pp. 697-711. 

Chen, A., Pravinvongvuth, S., Xu, X., Ryu, S., Chootinan, P. (2012) Examining the 

scaling effect and overlapping problem in logit-based stochastic user equilibrium models. 

Transportation Research Part A: Policy and Practice. 

Fosgerau, M., Frejinger, E., Karlstrom, A. (2013) A link based network route choice 

model with unrestricted choice set. Transportation Research Part B: Methodological 56, 

70-80. 

Hess, S., Rose, J.M. (2009) Allowing for intra-respondent variations in coefficients 

estimated on repeated choice data. Transportation Research Part B: Methodological 43, 

708-719. 

Hess, S., Train, K.E. (2011) Recovery of inter- and intra-personal heterogeneity using 

mixed logit models. Transportation Research Part B: Methodological 45, 973-990. 

Li, D., Miwa, T., Morikawa, T. (2013) Dynamic route choice behavior analysis 

considering en route learning and choices (forthcoming). Transportation Research 

Record: Journal of the Transportation Research Board. 

Miwa, T., Okada, Y., Morikawa, T. (2010) Applying a structured dispersion parameter to 

multiclass stochastic user equilibrium assignment model. Transportation Research 

Record: Journal of the Transportation Research Board 2196, 142-149. 

Morikawa, T., Miwa, T. (2006) Preliminary analysis on dynamic route choice behavior: 

Using probe‐vehicle data. Journal of advanced transportation 40, 140-163. 

Paag, H., Daly, A., Rohr, C. (2000) Predicting use of the copenhagen harbour tunnel. 

Proceedings of INTERNATIONAL CONFERENCE ON TRAVEL BEHAVIOUR 

RESEARCH, 9TH, 2000, GOLD COAST, QUEENSLAND, AUSTRALIA, VOL 12. 

Park, D., Rilett, L.R. (1997) Identifying multiple and reasonable paths in transportation 

networks: A heuristic approach. Transportation Research Record: Journal of the 

Transportation Research Board 1607, 31-37. 



117 
 

Prato, C.G., Bekhor, S. (2006) Applying branch-and-bound technique to route choice set 

generation. Transportation Research Record: Journal of the Transportation Research 

Board 1985, 19-28. 

Prato, C.G., Bekhor, S. (2007) Modeling route choice behavior: How relevant is the 

composition of choice set? Transportation Research Record: Journal of the 

Transportation Research Board 2003, 64-73. 

Ramming, M.S. (2001) Network knowledge and route choice. Massachusetts Institute of 

Technology. 

Revelt, D., Train, K. (1998) Mixed logit with repeated choices: Households' choices of 

appliance efficiency level. Review of Economics and Statistics 80, 647-657. 

Rieser-Schüssler, N., Balmer, M., Axhausen, K.W. (2012) Route choice sets for very 

high-resolution data. Transportmetrica, 1-21. 

Train, K.E. (2003) Discrete choice methods with simulation. Cambridge university press. 

 

 



118 
 

Chapter 7 

Conclusions and Future Directions 

This thesis deals with some issues in the context of route choice modeling. More 

particularly, these issues are concluded as three kinds of heterogeneity: heterogeneity in 

perceptions, heterogeneity in processes and heterogeneity in tastes. GPS data are used to 

illustrate the estimation of proposed models. Some behavioral findings can be obtained 

from the estimation results. This chapter provides a concluding overview of this thesis. 

Section 7.1 discusses the contributions of this effort. Section 7.2 describes the future 

research directions. 

7.1 Contributions 

 A Bayesian network based method to model the dynamic perceptions of travel 

time; 

Travelers’ travel time perceptions are important inputs of route choice models. However, 

there is no previous study to model drivers’ dynamic perceptions of travel time 

considering the en-route experiences, according to our limited knowledge. In Chapter 3, a 

Bayesian networks (BN) based approach is proposed to model travelers’ travel time 

perceptions for route choice analysis. In this method, drivers’ dynamic travel time 

perception process is described by the inference problem of BN. Their heterogeneity in 

perceptions can be considered by inputting different evidences to the BN for inferences. 

The evidences can consider drivers’ en-route experiences explicitly.  

A BN about a small part of the road network of Beijing is estimated using the probe 

data. Using the estimated BN and the mean travel time estimated under different traffic 

states on each road link, a dynamic route choice process is described with a simple route 

choice rule.  
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 A process based model to consider the en-route choices; 

In Chapter 4, we propose a process-based method for analyzing dynamic route choice 

behavior. In this model, for each trip, the observed chosen route is actually the result of 

the driver’s dynamic choice process. The dynamic choice process is defined as the 

sequence of choices during a trip, including the route choices (both pre-trip and en-route 

choices) and the choices of making a route choice again at every decision node. As 

compared with previous static models, two additional problems are considered in this 

process based route-choice model: the en-route updating of driver knowledge and the en-

route choice to make a new route decision at a decision node.  

The en-route updating is based on the BN model proposed in Chapter 3. The en-route 

choice problem is solved by a utility based model. It is assumed that, there is a binary 

choice at each decision node about whether make route choice again. Since drivers are 

assumed to prefer to use current route, a term indicate the cost of making decision is 

added in the utility function. 

Using the proposed dynamic route model, a case study over a small network is 

carried out. The model is estimated and compared with conventional models using probe 

vehicle data. The results confirm that drivers do not tend to make route choice decisions 

at all decision nodes. The probability of making an en-route choice is related to a driver’s 

sensitivity to benefit and the cost of making the decision. The absolute value of the 

decision cost is positively correlated with distance to the origin and negative correlated 

with the spatial scale of the intersection at the decision node. 

 Application of several methods to explore the effect of observed attributes on 

heterogeneity in tastes; 

Chapter 5 is an application of several methods to explore the taste heterogeneity which is 

related to some observed attributes. Particularly, we explore the effect of familiarity on 

route choice behavior. Familiarity considered here is both individual and OD pair specific, 

different from previous researches which only consider the individual specific familiarity. 

Three methods are applied in this chapter. At first, we divide the observations to 

several classes, and estimate the parameters for each class. We are the first in the 
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literature to use the two-stage variant of Chow test to explore the significance of taste 

heterogeneity, in the field of travel behavior modeling. Using this test, the effect of 

familiarity to O-D pairs on route choice behavior is proved to be statistically significant 

using the data collected in Toyota by private cars.  

Then 2 specifications of choice models are proposed: a model with structured scale 

parameter and a model with structured parameters of explanation variables. These two 

models are estimated and apply to predict the route shares under a specific setting of 

choice situation. According to the estimation and prediction results, the proposed models 

can capture the effect of familiarity. The model with structured parameters of explanation 

variables has a better performance.  

Behavioral finding from the results, drivers will be more easy affected by some 

unobserved factors (to the analyst), such as en-route information and perception, when 

travel between more familiar OD pairs. The estimated parameters also imply that drivers 

will be less sensitive to the count of intersections than free travel time when travel 

between more familiar OD pairs. From an application perspective, this study can be used 

in agent based travel demand prediction system and advanced navigation system.  

 A multi-level mixed logit model to consider both observed and unobserved 

heterogeneity; 

Chapter 6 is an extension of Chapter 5. In chapter 5, taste heterogeneity is incorporated in 

route choice analysis by introducing observed individual socio-economic characteristics. 

However, it is very likely that some taste heterogeneity will remain even after accounting 

for any observed characteristics. Chapter 6 proposed a multi-level mixed logit model to 

incorporate both observed and unobserved characteristics.  

In the proposed model, the taste coefficients are treated as random and structured as 

observed characteristics. Further, to deal with the panel data problem, random taste is 

divided to three components: traveler specific, O-D pair specific and choice situation 

specific.  

Using the GPS data collected in Toyota, Models with various assumptions about 

heterogeneity are estimated and compared. Empirical analysis suggests that, to enhance 
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the performance of route choice models, it is more efficient to add more observed 

characteristics relating to travelers and O-D pairs than to increase the complexity of the 

specification. It is also proved that the incorporation of O-D pair specific unobserved 

taste heterogeneity can enhance the performance of a route choice model significantly. 

From the estimation results, we also get several behavioral findings: age affects the 

taste for free travel time significantly, with older people being more sensitive to free 

travel time. However age does not have a significant effect on taste for the number of 

intersections. Gender significantly affects taste for both free travel time and number of 

intersections. Male drivers are more sensitive to the number of intersections, while they 

are less sensitive to free travel time. Car displacement has a significant effect on taste for 

free travel time, while its effect on the number of intersections is not significant. As 

distance between O-D pair increases, drivers become less sensitive to the observed 

attributes. When driving between more familiar O-D pairs, drivers are more sensitive to 

free travel time but less sensitive to the number of intersections. It is also found that these 

findings are stable for different route choice models, choice set generation methods and 

datasets. 

7.2 Future Research 

Modeling route choice is an important part of modeling travel demand. In the 

macroscopic models, such as the classical 4-steps model (Karlaftis, 2001), we only need 

some simple route choice models. However, in some more advanced travel demand 

modeling system, such as the activity based models (Ben-Akiva and Bowman, 1998), we 

must consider the heterogeneity because these models are agent-based. On the other hand, 

in this “big data” age, benefited from the advanced information techniques, it also 

becomes affordable to explore the heterogeneity in route choice. 

In this thesis, we consider 3 kinds of heterogeneity: the heterogeneity in perceptions, 

the heterogeneity in processes and the heterogeneity in tastes. The first two kinds of 

heterogeneity are few discussed in the previous studies. Therefore, our studies are only a 

beginning and need more development in the future studies. And the first issue is to make 

the proposed methods to be feasible for applying on a large network. About the 

heterogeneity in tastes, although there are abundant studies about it in the field of choice 

modeling, it is still difficult to apply the most advance methods in the context of route 

choice, because of its complicate nature. In the future studies, we can try to combine the 

latent class model and mixed logit model to reduce the complexity of the proposed mult-
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level mixed logit model. We can also try to apply the proposed models in some 

simulation tools. 

Beside the three kinds of heterogeneity in this thesis, there are still many other kinds 

of heterogeneity should be considered in the route choice modeling: the heterogeneity of 

consideration sets(Yamamoto et al., 2012), the heterogeneity of attributes attendance 

(Collins et al., 2013) and the heterogeneity of behavioral protocols (Tian et al., 2012).  
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