
ON THE SPEED OF CONVERGENCE TO LIMIT

DISTRIBUTIONS FOR HECKE L-FUNCTIONS ASSOCIATED

WITH IDEAL CLASS CHARACTERS

KOHJI MATSUMOTO

1. Introduction

Let K be an algebraic number field of degree `, L = max{`, 2}, s = σ + it a
complex variable, and ζK(s) the Dedekind zeta-function attached to K. In [6] [7]
[8], the value-distribution of log ζK(s) in the half-plane σ = <s > 1 − L−1 has
been studied.

The definition of log ζK(σ + it) is clear for σ > 1, and for 1− L−1 < σ ≤ 1 we
define this function by analytic continuation along the horizontal line segment
from 2+ it. In case there exists a zero or a pole of ζK(s) on this line segment, we
do not define log ζK(s).

Let R be any fixed closed rectangle in the complex plane C with the edges
parallel to the axes. We write µn(·) for the n-dimensional Lebesgue measure. For
any fixed σ > 1− L−1, let

VK(T ; R) = µ1({t ∈ [1, T ] | log ζK(σ + it) ∈ R}).

Then there exists the limit

WK(R) = lim
T→∞

1

T
VK(T ; R). (1.1)

This was proved by Bohr and Jessen [1] [2] for the Riemann zeta-function ζ(s),
and by the author [6] [7] for general case.

In [8], the author studied the speed of convergence on the right-hand side of
(1.1), and proved

WK(R)−
1

T
VK(T ; R) = O

(

(µ2(R) + 1)(log T )−C(σ)+ε
)

(1.2)

for any σ > 1− L−1 and any ε > 0, where

C(σ) =







(σ − 1)/(3 + 2σ) (σ > 1),

2(2σ − 1)/(21 + 8σ) (1 ≥ σ > 1− L−1).
(1.3)

In the case of ζ(s), the estimate (1.2) was first proved in a joint paper of Harman
and the author [3]. This paper [3] gives an improvement of former weaker results
proved in the author’s previous papers [4] [5] [7]. In [7], such a weaker result
was also shown for ζK(s) when K is a Galois extension of the rational number
field Q. In [3] it is mentioned without proof that (1.2) can be shown for ζK(s)
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of any Galois number field. Finally in [8], the proof of (1.2) for any (Galois or
non-Galois) number field has been given.

The purpose of the present paper is to generalize (1.2) to the case of Hecke L-
functions associated with ideal class characters. Recently, the value-distribution
of Hecke L-functions of number fields has been studied extensively by Mishou
[10] [11] [12] [13] [14] [15] (partly with Koyama). The present paper is another
contribution to this topic.

The first draft of the present paper was written during the author’s stay, in-
vited by Professor Jörn Steuding, at Universidad Autónoma de Madrid, Spain,
Nov/Dec 2005. The author expresses his sincere gratitude to Professor Steuding
and his wife Dr. Rasa (Šleževičienė-) Steuding for their hospitality.

2. Statement of the result

First we recall the definition and basic properties of Hecke L-functions.
Let K be as in Section 1, OK the ring of integers of K, r1 the number of real

places of K, and 2r2 the number of complex places of K. Denote by I the set of
all ideals of OK, and by J the set of all fractional ideals of K. Fix an ideal f ∈ I,
and define

J(f) = {a ∈ J | (a, f) = 1},

P (f) = {(α) | α ∈ K, α ≡ 1 mod f̃},

where (α) denotes the principal ideal generated by α, and α ≡ 1 mod f̃ means
that α is totally positive and if we write α = a/b, a, b ∈ OK, (a, b) = 1, then
a− b ∈ f. Then P (f) is a subgroup of J(f) and the quotient

Cl(f) = J(f)/P (f),

the ideal class group modulo f, is a finite Abelian group. Denote the projection
map by π.

Let χ be a character of Cl(f). Define the mapping χ : I \ {0} → C (ideal
class character) by

χ(a) =







χ(π(a)) if a ∈ I ∩ J(f),

0 otherwise.

Denote by B the set of all values taken by the ideal class character χ. Clearly
this is a finite set.

The Hecke L-function associated with χ is

LK(s, χ) =
∑

a∈I\{0}

χ(a)(Na)−s, (2.1)

where Na denotes the norm of a. This series is convergent absolutely for σ > 1,
and can be continued meromorphically to the whole plane C. The functional
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equation is

ξK(1− s, χ̄) = ξK(s, χ), (2.2)

where

ξK(s, χ) = d(f)sΓ(s)r2

r1
∏

m=1

Γ
(

s + am

2

)

LK(s, χ)

with a constant d(f) depending only on f and am ∈ {0, 1} (1 ≤ m ≤ r1). Hence
the critical strip is 0 ≤ σ ≤ 1, and the critical line is σ = 1/2.

Define log LK(s, χ) for σ > 1 − L−1 as in the case of log ζK(s) explained in
Section 1. Let

VK(T ; R, χ) = µ1({t ∈ [1, T ] | log LK(σ + it, χ) ∈ R})

for any fixed σ > 1− L−1. Then the existence of the limit

WK(R, χ) = lim
T→∞

1

T
VK(T ; R, χ) (2.3)

can be established. This is a special case of a general limit theorem proved in [6].
The restriction σ > 1 − L−1 comes from the fact that, at present, we can prove
the mean square estimate

∫ T

1
|LK(σ + it, χ)|2dt = O(T ) (2.4)

only for σ > 1−L−1. This follows from the functional equation (2.2) and Potter’s
general result [17]. The estimate (2.4) is necessary to apply the result of [6].

In the present paper we will prove the following generalization of (1.2).

Theorem. Let K be an algebraic number field of degree `, and let L =
max{`, 2}. Then, for any ε > 0, we have

WK(R, χ)−
1

T
VK(T ; R, χ) = O

(

(µ2(R) + 1)(log T )−C(σ)+ε
)

(2.5)

for σ > 1− L−1, where C(σ) is given by (1.3).

The basic structure of the proof is the same as in [8], so we omit the details,
only describing several key points of the argument in the following three sections.

It is desirable to generalize the above theorem further to the case of Hecke L-
functions associated with any Grössencharacters, but it seems that the argument
in the present paper is not sufficient for that purpose.

3. Limit distributions for finite truncations

It is well known that LK(s, χ) has the Euler product expansion

LK(s, χ) =
∏

p

(

1−
χ(p)

(Np)s

)−1

(σ > 1), (3.1)
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where p runs over all prime ideals. Let pn be the n-th prime number, and
p(1)

n , . . . , p(g(n))
n the prime divisors of pn with norm Np(j)

n = pf(j,n)
n (1 ≤ j ≤ g(n)).

Then

LK(s, χ) =
∞
∏

n=1

g(n)
∏

j=1

(

1− χ(p(j)
n )(Np(j)

n )−s
)−1

=
∞
∏

n=1

g(n)
∏

j=1

(

1− χ(p(j)
n )p−f(j,n)σ

n exp(−if(j, n)t log pn)
)−1

.

Let N be a positive integer, σ > 1− L−1, and consider the finite truncation

LN,K(s, χ) =
N
∏

n=1

g(n)
∏

j=1

(

1− χ(p(j)
n )p−f(j,n)σ

n exp(−if(j, n)t log pn)
)−1

.
(3.2)

Let QN = [0, 1)N , θ = (θ1, . . . , θN ) ∈ QN ,

zn,K(θn, χ) = −
g(n)
∑

j=1

log
(

1− χ(p(j)
n )p−f(j,n)σ

n exp(2πif(j, n)θn)
)

,
(3.3)

and

SN,K(θ, χ) =
N
∑

n=1

zN,K(θn, χ). (3.4)

Then

log LN,K(s, χ) = SN,K(x(t), χ), (3.5)

where

x(t) =
({

−
t

2π
log p1

}

, . . . ,
{

−
t

2π
log pN

})

({x} = x− [x] is the fractional part of x). Define

VN,K(T ; R, χ) = µ1({t ∈ [1, T ] | log LN,K(σ + it, χ) ∈ R}).

From (3.5) we see that log LN,K(σ + it, χ) ∈ R if and only if x(t) ∈ ΩN (R, χ),
where

ΩN (R, χ) = {θ ∈ QN | SN,K(θ, χ) ∈ R}.

The uniqueness of the decomposition of integers into prime factors implies that
log p1, . . . , log pN are linearly independent over Q. Hence, by the Kronecker-Weyl
theorem, we can show the existence of the limit

WN,K(R, χ) = lim
T→∞

1

T
VN,K(T ; R, χ), (3.6)

and moreover WN,K(R, χ) = µN(ΩN (R, χ)). The latter shows that WN,K is a
probability measure on C.

We evaluate the speed of convergence on the right-hand side of (3.6).
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Proposition 1. Let N be sufficiently large, and let m and r be large positive

integers with 2rN ≤ m. Then
∣

∣

∣

∣

WN,K(R, χ)−
1

T
VN,K(T ; R, χ)

∣

∣

∣

∣

�
N1/2

r
+

Nr

m
+

1

T
(6r log m)N exp(mN log N). (3.7)

In the case of Dedekind zeta-functions, this is Proposition 1 of [8], whose main
idea goes back to [3] (and even [4] [9]).

In [8], the proposition has been deduced from (5.1), (5.2), (5.3) and Lemma 3
of [8]. Hence our task here is to generalize those to our present situation.

Inequalities (5.1), (5.2) and (5.3) of [8] were first proved in [3] in the case of ζ(s),
and the method in [3] can be applied without change to our present situation.

To prove Lemma 3 of [8], we used in [8] the Artin-Chebotarev density theorem
to find a suitable rearrangement of the sequence of prime numbers. Here we apply
the Artin-Chebotarev density theorem (see Proposition 7.15 of Narkiewicz [16]) in
a slightly different way; by the Artin-Chebotarev theorem we see that there exist
infinitely many primes pn for which g(n) = 1, f(1, n) = ` hold. Moreover, since
there are only finitely many prime factors of f, we may assume that the above
pns are coprime with f. Denote the first three of those primes by pn(1), pn(2) and
pn(3), and define the rearrangement of primes, by using these pn(ν) (ν = 1, 2, 3),
similarly as in Section 5 of [8]. The curve Γn(ν) described by

zn(ν),K(θn(ν), χ) = − log
(

1− χ(p
(1)
n(ν))p

−`σ
n(ν) exp(2πi`θn(ν))

)

(3.8)

(0 ≤ θn(ν) < 1) is convex (ν = 1, 2, 3). Since (p
(1)
n(ν), f) = 1, we have |χ(p

(1)
n(ν))| = 1.

Write χ(p
(1)
n(ν)) = exp(2πi`ϕ(ν)) with a certain real number ϕ(ν), and put θ′n(ν) =

`(θn(ν) + ϕ(ν)). Then

zn(ν),K(θn(ν), χ) = − log
(

1− p−`σ
n(ν) exp(2πiθ′n(ν))

)

, (3.9)

and this describes the same curve as Γn(ν) when θ′n(ν) moves from 0 to `. The

difference from the argument in [8] is that, in the present case, zn(ν),K(θn(ν), χ)
rounds `-times along the curve Γn(ν) when θ′n(ν) moves from 0 to `. When θ′n(ν)

moves on the subinterval [k, k + 1) (0 ≤ k ≤ `− 1), we can show the analogue of
Lemma 3 of [3] for zn(ν),K(θn(ν), χ). Hence the analogue of Lemma 4 of [3] can
also be established for each k. Therefore, adding them, we find that the analogue
of Lemma 4 of [3] is valid in our present situation.

To prove the analogue of Lemma 3 of [8], the remaining part of the proof is
the same as in [8].
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4. An application of Lévy’s inversion formula

From (4.6) of [6] we have

lim
N→∞

WN,K(R, χ) = WK(R, χ) (4.1)

for any rectangle R. In this section we evaluate the speed of this convergence to
show, as a generalization of Proposition 2 of [8], the following

Proposition 2. For any sufficiently large N , we have

|WK(R, χ)−WN,K(R, χ)| � µ2(R)N1−2σ(log N)−2σ. (4.2)

The proof is based on Lévy’s inversion formula. Consider the Fourier transform

ΛN,K(w, χ) =
∫

C

ei<z,w>dWN,K(z, χ)

=
∫

QN

exp (i < SN,K(θ, χ), w >) dµN(θ),

where < z, w >= <z<w + =z=w. Then the right-hand side is the product of

Kn,K(w, χ) =
∫ 1

0
exp (i < zn,K(θn, χ), w >) dθn (1 ≤ n ≤ N)

(4.3)

(see (3.4)).
In order to use Lévy’s inversion formula, it is necessary to obtain a suitable

upper bound of |Kn,K(w, χ)|. For this purpose, in [8], we use the fact that there
are only finitely many patterns of decomposition of primes into prime ideals of
K. In the present case, we combine this fact with the finiteness of the set B,
introduced in Section 2.

For any integer g satisfying 1 ≤ g ≤ `, let Fg(χ) be the set of all integer vectors

(f ,b) = (f(1), . . . , f(g), b(1), . . . , b(g)),

for which there exists an n such that g = g(n), f(j) = f(j, n) and b(j) = χ(p(j)
n )

(1 ≤ j ≤ g) holds.Then Fg(χ) is a finite set, because B is finite and

g(n)
∑

j=1

e(j, n)f(j, n) = ` (4.4)

holds, where e(j, n) is the ramification index of p(j)
n over pn. Hence

F(χ) =
⋃

1≤g≤`

Fg(χ)

is also finite.
For each (f ,b) ∈ F(χ), define

F(f ,b)(v) = −
g
∑

j=1

log
(

1− b(j)vf(j)
)

. (4.5)
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Let N be the set of all positive integers. For any n ∈ N, we can find a unique
(f ,b) ∈ F(χ) which satifsies

zn,K(θn, χ) = F(f ,b)

(

p−σ
n exp(2πiθn)

)

. (4.6)

Let N (f ,b) be the set of all n for which (4.6) holds. Then we have

N =
⋃

(f ,b)∈F(χ)

N (f ,b). (4.7)

This decomposition corresponds to (3.9) of [8], and then, by the same argument
as in [8], we can show

Kn,K(w, χ) = O
(

pσ`/2
n |w|−1/2

)

. (4.8)

In the procedure of proving (4.8), it is important that F(χ) is a finite set.
Estimate (4.8) is exactly the same as (3.16) of [8], and from which we can

deduce the assertion of Proposition 2.

5. Completion of the proof

Now we can combine Proposition 1 and Proposition 2 to complete the proof
of our theorem, quite similarly to the argument in Section 6 of [8]. The main
tools used in Section 6 of [8] are Lemma 4 of [8] and estimate (6.9) of [8]. Lemma
4 of [8] can be generalized to the present case, by using the rearrangement of
primes defined in Section 3. Estimate (6.9) of [8] is based on Lemma 5 of [7].
Tha latter is a certain mean value estimate of Dedekind zeta-functions. This can
be generalized to the present case, because of (2.4). Therefore the argument in
Section 6 of [8] can be applied without change to LK(s, χ). The proof of our
theorem is now complete.

Remark. When K is a Galois extension of Q, we have f(1, n) = · · · =
f(g(n), n) (= f(n), say), hence (3.3) is

zn,K(θn, χ) = −
g(n)
∑

j=1

log
(

1− χ(p(j)
n )p−f(n)σ

n exp(2πif(n)θn)
)

. (5.1)

In the case of the Dedekind zeta-function ζK(s), this is further reduced to

−g(n) log(1− p−f(n)σ
n exp(2πif(n)θn)),

which describes a convex curve. This is the reason why in [3] it is mentioned
that estimate (1.2), proved for the Riemann zeta-function in that paper, can be
generalized to ζK(s) of any Galois extension. However, for Hecke L-functions,
the curve described by (5.1) is not always convex (because of the existence of
χ(p(j)

n )) even in the case of Galois extensions. Therefore the idea in [8], originally
developed for the purpose of treating ζK(s) in the non-Galois case, is necessary
even for Galois extensions when we consider Hecke L-functions.
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