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1 The general formulation

The purpose of this article is to survey recent results of the authors on the value-
distribution of log L and L′/L for certain L-functions. Details [9, 10, 11] will be
published elsewhere. We begin with the general formulation of the problem.

Let K be a global field, X a certain family of infinitely many “characters” χ
defined on K, and L(s, χ) the “L-function” associated with χ, where s = σ + iτ
is a complex variable. Our aim is to construct some “density function” Mσ(w)
(resp. Mσ(w)) which describes the value-distribution of L′/L (resp. log L) in
the sense that

AvgχΦ

(
L′

L
(s, χ)

)
=

∫

C
Mσ(w)Φ(w)|dw| (1.1)

or

AvgχΦ (log L(s, χ)) =
∫

C
Mσ(w)Φ(w)|dw| (1.2)

holds, where s is fixed, Avgχ is an average with respect to χ ∈ X in some suitable
sense, Φ is a “test function” (some function with good properties defined on C),
and |dw| = (2π)−1dudv (w = u + iv).

In the case of the Riemann zeta-function ζ(s), the value-distribution theory
was cultivated by H. Bohr and his colleagues in the first half of the 20th century.
Bohr treated the average with respect to the imaginary part of the variable; in
other words, he considered the case when characters are defined by χτ ′(p) = p−iτ ′

for each prime p and real τ ′. In this case the associated L-function is
∏

p

(1− χτ ′(p)p−s)−1 =
∏

p

(1− p−s−iτ ′)−1 = ζ(s + iτ ′), (1.3)
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and the average with respect to χτ ′ implies the mean value with respect to
τ ′. In the log ζ case, Bohr and Jessen [1] proved the following theorem. Let
σ > 1/2, T > 0, R an arbitrary rectangle in C with the edges parallel to the
axes, and Vσ(T, R) the Lebesgue measure of the set of all τ ′ ∈ [−T, T ] for which
log ζ(σ + iτ ′) ∈ R holds (under a certain fixed choice of the branch). Then they
proved that there exists a continuous, everywhere non-negative function Fσ(w)
for which

lim
T→∞

1
2T

Vσ(T, R) =
∫

R
Fσ(w)|dw| (1.4)

holds for any R. Therefore, if we define the average by

Avgχφ(χτ ′) = lim
T→∞

1
2T

∫ T

−T
φ(χτ ′)dτ ′ (1.5)

(where φ(χτ ′) is any integrable function of τ ′), we can see that (1.4) of Bohr and
Jessen is a special case of (1.2), with Φ = 1R, the characteristic function of R,
and Mσ = Fσ.

On the other hand, it is also important to consider some different type of
averages. In particular, various averages of Dirichlet L-functions with respect to
Dirichlet characters have been studied by many mathematicians. Some proba-
bilistic limit theorems in this direction were obtained by P. D. T. A. Elliott and
E. Stankus in 1970s. (See Chapter 8 of Laurinčikas [14].)

Recently, motivated by a study on Euler-Kronecker constants of global fields
([5], [6], [12]), the first author [8] searched for the density function (the “M -
function”) Mσ(w) which satisfies (1.1) in various situations. In the next section
we review this work briefly.

In what follows, the symbol |A| means the cardinality of the set A. The
meaning of Vinogradov’s symbol f # g is the same as that of Landau’s symbol
f = O(g).

Acknowledgement. The authors would like to thank the referee for useful comments.

2 The situations we are working in

In [8], the following three situations are considered:
(A) K = Q (the rational number field), or an imaginary quadratic field, or a

function field over any finite field. In the last case, we fix one prime divisor ℘∞
of degree 1 which plays the same role as the unique archimedean prime in the
first two cases. The characters are Dirichlet characters χ on K, normalized by
the condition χ(℘∞) = 1 in the last case.

(B) K is a number field with at least two archimedean primes, and the
characters are from some family of unramified Grössencharacters.

(C) K = Q, and the characters are χτ ′ defined in Section 1.
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We explain the meaning of “average” in Case (A). Let f be a prime divisor
of K, and N(f) its norm. By X(f) we mean the set of all Dirichlet characters
with conductor f . Let

AvgX(f)φ(χ) =
1

|X(f)|
∑

χ∈X(f)

φ(χ) (2.1)

(where φ is any complex-valued function) and

Avg(1)
N(f)≤mφ(χ) =

∑
N(f)≤m AvgX(f)φ(χ)

∑
N(f)≤m 1

, (2.2)

where m is a positive integer, and f runs over all prime divisors with norm ≤ m.
Then the meaning of Avgχ in Case (A), studied in [8], is

Avg(1)
χ φ(χ) = lim

m→∞

(
Avg(1)

N(f)≤mφ(χ)
)

. (2.3)

(We attach the suffix (1) here, because later we will also consider different types
of averages.) The meaning of the average in Case (C) is (1.5). As for the meaning
of the average in Case (B), we refer to [8].

The associated L-function is defined as the usual Euler product, but in the
function field case, without the ℘∞-component; that is,

L(s, χ) =
∏

℘ '=℘∞

(1− χ(℘)N(℘)−s)−1,

where ℘ runs over prime divisors and N(℘) is the norm of ℘.
In the domain of absolute convergence of L-functions, the following theorem

is proved in [8]:

Theorem 2.1. There exisits an explicitly constructable “M -function” Mσ(w) on
C for any σ > 1/2, such that when σ = Re s > 1, (1.1) holds for all the cases
(A), (B) and (C), for any continuous function Φ.

Needless to say, more interesting is to consider the situation in the critical
strip, which is surely much more difficult. One obvious obstacle is the generalized
Riemann hypothesis (GRH), because in the L′/L case the L-function is in the
denominator. Therefore, in [8], the function field case is mainly studied, because
in this case the GRH has been solved.

In [8], formula (1.1) is proved in Case (A) for function fields K, in each of
the following two cases.

(a) σ > 3/4, and Φ is any character C→ T = {t ∈ C ; |t| = 1}, i.e., Φ = ψz

with some z ∈ C defined by

ψz(w) = exp(iRe (zw)); (2.4)
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(b) σ > 1/2, and Φ(w) = P (w,w), where P (w1, w2) is any polynomial in two
variables w1, w2 with complex coefficients;

see Theorem 7(ii), (iii) of [8]. The point is that instead of the characteristic
function of rectangles as in previous investigations, we consider characters and
polynomials. The result for characters will have some applications to more gen-
eral case of Φ, as we shall see.

However, we already mentioned in Section 1 that the result (1.4) of Bohr and
Jessen is proved for any σ > 1/2. Therefore we may expect that results such as
(a) are also valid for any σ > 1/2.

3 Unconditional results for the log L case, K = Q

The reason why Bohr and Jessen succeeded in proving their result for any σ >
1/2 is that they used some mean value results on relevant Dirichlet series. Since
then, mean value theorems have been frequently used successfully in the value-
distribution theory (cf. Laurinčikas [14], Steuding [17]). Therefore it is natural
to expect that a suitable usage of mean value results will improve the above (a)
and (b), or will give some progress even in the number field case.

One possible way of research is to develop the log L analogue of the theory in
[8] and combine it with the Bohr-Jessen theory. The original argument of Bohr
and Jessen is rather geometric, based on various properties of planar convex
curves, but later, more analytic (or Fourier-theoretic) approaches to Bohr-Jessen
type theorems have been developed; see Jessen-Wintner [13], Borchsenius-Jessen
[2], the second author [15] etc. Therefore a strategy is to apply the methods in
those papers to the log L analogue of the theory of [8] which is also rather
Fourier-theoretic. This has been carried out in [10], and the following theorems
were proved.

First, in the domain of absolute convergence, as an analogue of Theorem 1.1,
we obtain:

Theorem 3.1. There exists an explicitly constructable “M -function” Mσ(w) on
C for any σ > 1/2, such that when σ = Re s > 1, (1.2) holds for all the cases
(A), (B) and (C), for any continuous function Φ.

In the strip 1/2 < σ ≤ 1, in [10] we prove the result only in the case K = Q, so
only the case (A) (with K = Q) or (C).

First of all we have to fix the branch of the logarithm. Let D = {s ; 1/2 <
σ ≤ 1}, and remove from D all segments

Bj(χ) = {s = σ + iτj ; 1/2 < σ ≤ σj},

where σj + iτj are possible (hypothetical) zeros, and a possible pole, of L(s, χ)
in D, and denote the remaining set by Gχ. At any point s0 = σ0 + iτ0 ∈ Gχ, we
define the value of log L(s0, χ) by the analytic continuation along the horizontal
path {s = σ + iτ0 ; σ ≥ σ0}.
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In Case (A) (with K = Q), if we use definition (2.3) of the average, then we
should exclude all points s ∈ Bj(χ) for all j and all χ from our consideration,
which is quite unsatisfactory. To avoid this trouble, we modify the definition of
the average as follows. Let X(f) be the set of all primitive Dirichlet characters
whose conductor is f , and X ′(f) be a subset of X(f) for which

lim
f→∞

|X ′(f)|
|X(f)| = 1 (3.1)

holds. Let
AvgX′(f)φ(χ) =

1
|X(f)|

∑

χ∈X′(f)

φ(χ),

and define Avg(2)
f≤mφ(χ) by replacing AvgX(f) in (2.2) by AvgX′(f), and define

Avg(2)
χ φ(χ) by replacing Avg(1)

f≤m in (2.3) by Avg(2)
f≤m. It is important that, if φ

is bounded, then the value of Avg(2)
χ φ(χ) will not change when we choose smaller

X ′(f), keeping condition (3.1).
By using a zero density theorem for L-functions (Montgomery [16]), we can

check that, for any s with 1/2 < Re s ≤ 1, the set

X ′(f) = X ′(f, s) := {χ ∈ X(f) ; s ∈ Gχ} (3.2)

satisfies (3.1). Under this choice of X ′(f) and the above definition of the average,
we can show the following theorem.

Theorem 3.2. Let 1/2 < σ = Re s ≤ 1. In Case (A) (with K = Q) or Case (C),
(1.2) holds for Φ which is one of the following (or any finite linear combination
of them):

(i) Φ is any bounded continuous function.
(ii) Φ is the characteristic function of either a compact subset of C or the

complement of such a subset.

The special case Φ = ψz (see (2.4)) of (i) is actually the basic case in our proof.
In Case (A) (with K = Q), (1.2) can be read as

lim
m→∞

1
π(m)

∑

2<f≤m

f :prime

1
f − 2

∑

χ∈X′(f)

Φ(log L(s, χ)) =
∫

C
Mσ(w)Φ(w)|dw|, (3.3)

where π(m) is the number of primes not larger than m.
In Case (C), the meaning of the average is (1.5), and (1.2) can be read as

lim
T→∞

1
2T

∫ T

−T
Φ(log ζ(s + iτ ′))dτ ′ =

∫

C
Mσ(w)Φ(w)|dw|. (3.4)

If s+iτ ′ /∈ G1 (where 1 is the trivial character), then log ζ(s+iτ ′) is not defined,
but still the integral is well-defined for the above type of Φ, so it is not necessary
to exclude such situation.
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4 The construction of “M -functions”

In this and the next section we assume K = Q, and sketch how to prove Theo-
rems 1.2 and 3.2. In this section we explain how to construct the density function
(the “M -function”). The argument is basically an analogue of that developed in
[8], where the existence of the “M -function” in the L′/L case was established.

Let P be a finite set of primes, and define

LP (s, χ) =
∏

p∈P

(1− χ(p)p−s)−1.

The first aim is to construct the density function Mσ,P (w) for which

AvgχΦ(log LP (s, χ)) =
∫

C
Mσ,P (w)Φ(w)|dw| (4.1)

holds for any continuous function Φ.
Let T = {t ∈ C ; |t| = 1}, and TP =

∏
p∈P T . Define the function gσ,P :

TP → C by

gσ,P (tP ) = −
∑

p∈P

log(1− tpp
−σ), tP = (tp)p∈P ∈ TP . (4.2)

Then we see that

log LP (s, χ) = gσ,P (χP P−iτ ), (4.3)

where χP = (χ(p))p∈P ∈ TP and P−iτ = (p−iτ )p∈P ∈ TP . Here we quote the
following lemma:

AvgχΨ(χP ) =
∫

TP

Ψ(tP )d∗tP (4.4)

holds for any continuous function Ψ : TP → C, where d∗tP is the normalized
Haar measure on TP (Lemma 4.3.1 of [8]; in Case (A), exclude those χ whose
conductor is ∈ P ). This lemma reflects the uniform distribution property of χP

on TP , and can be proved by using the orthogonality relation of characters in
Case (A), and the Kronecker-Weyl theorem in Case (C). Applying this lemma
with Ψ = Φ ◦ gσ,P , and combining with (4.3), we obtain

AvgχΦ(log LP (s, χ)) =
∫

TP

Φ(gσ,P (tP ))d∗tP . (4.5)

Therefore, to prove (4.1), it is enough to find Mσ,P (w) which satisfies
∫

TP

Φ(gσ,P (tP ))d∗tP =
∫

C
Mσ,P (w)Φ(w)|dw|. (4.6)

When P consists of only one prime P = {p}, by direct calculations we find that
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Mσ,{p}(w) =
|1− rpeiθp |2

rp
δ(rp − p−σ) (4.7)

suffices, where rp, θp are determined by w = − log(1−rpeiθp) and δ(·) denotes the
Dirac delta distribution. (When there is no solution rp, θp then Mσ,{p}(w) = 0.)
For general (finite) P , we define Mσ,P (w) by the convolution product

Mσ,P (w) =
∫

C
Mσ,P ′(w′)Mσ,{p}(w − w′)|dw′| (4.8)

if P = P ′∪{p}. Then, if |P | ≥ 2, this is a function in the usual sense, compactly
supported, non-negative, and

∫

C
Mσ,P (w)|dw| = 1. (4.9)

It is not difficult to see that this Mσ,P (w) satisfies (4.6), and hence (4.1), for
any continuous Φ.

Now we choose P = Py := {p : prime ; p ≤ y}. The next step is the proof of
the existence of the limit

Mσ(w) = lim
y→∞

Mσ,P (w). (4.10)

For this purpose we consider the Fourier transform

M̃σ,P (z) =
∏

p∈P

∫

C
Mσ,{p}(w)ψz(w)|dw|. (4.11)

Since each integral on the right-hand side is O((1 + |z|)−1/2) (Theorem 13 of
Jessen and Wintner [13]), we have M̃σ,P (z) = O((1 + |z|)−|P |/2). Using this
fact, we can show that there exists the limit

M̃σ(z) = lim
y→∞

M̃σ,P (z), (4.12)

and the above convergence is uniform in any compact subset of C (by applying
the method in Section 3 of [15]). From (4.12) we can deduce the existence of the
limit (4.10) for any σ > 1/2. The limit function Mσ(w) is continuous in both σ
and w, non-negative, and satisfies

∫

C
Mσ(w)|dw| = 1. (4.13)

Also, Mσ(w) is compactly supported when σ > 1, while it tends to 0 as |w| → ∞
when 1/2 < σ ≤ 1. The functions Mσ and M̃σ are Fourier duals of each other.

It is worthwhile noting that M̃σ has the Dirichlet series expansion

M̃σ(z) =
∞∑

n=1

λz(n)λz(n)n−2σ, (4.14)
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where λz(n) is defined by

L(s, χ)iz/2 =
∞∑

n=1

λz(n)χ(n)n−s. (4.15)

Since λz(n) # nε for any ε > 0, the series (4.14) is absolutely convergent for
σ > 1/2 (see [11]).

5 Mean value theorems play a role

Now our aim is to show that the “M -function” Mσ, constructed in the preceding
section, indeed satisfies (1.2) for any σ > 1/2 and for a reasonably large family
of test functions Φ. We briefly outline the proof for Case (C). A fundamental
idea in [10] (as well as in [8]) is to consider the case Φ = ψz first. In this case
the right-hand side of (3.4) is M̃σ(z), and so, what we have to show is that

∣∣∣∣∣
1

2T

∫ T

−T
ψz(log ζ(σ + iτ ′))dτ ′ − M̃σ(z)

∣∣∣∣∣ (5.1)

tends to 0 as T → ∞. (We can easily see that ζ(s + iτ ′) can be replaced by
ζ(σ + iτ ′).) The quantity (5.1) can be estimated as

≤

∣∣∣∣∣
1

2T

∫ T

−T
ψz(log ζ(σ + iτ ′))dτ ′ − 1

2T

∫ T

−T
ψz(log ζP (σ + iτ ′))dτ ′

∣∣∣∣∣

+

∣∣∣∣∣
1

2T

∫ T

−T
ψz(log ζP (σ + iτ ′))dτ ′ − M̃σ,P (z)

∣∣∣∣∣ + |M̃σ,P (z)− M̃σ(z)|

= XP (z) + YP (z) + ZP (z), (5.2)

say.
If we choose y = y(T ) such that y →∞ as T →∞, then (4.12) implies that

ZP (z)→ 0 as T →∞.
To estimate XP (z), we use upper bound estimates of the mean square of

fP (σ + iτ ′) =
ζ(σ + iτ ′)
ζP (σ + iτ ′)

− 1,

which were proved in [15]. In the general theory of Dirichlet series, an asymptotic
formula for the mean square of Dirichlet series due to Carlson [3] is known. The
proof of the mean square estimates given in [15] is inspired by a proof of Carlson’s
theorem described in Titchmarsh [18].

Consider YP (z). From (4.3) (in the case L = ζ, χ = χτ ′) we have

ψz(log ζP (σ + iτ ′)) = ψz(gσ,P (χP )).

We use the Fourier expansion
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ψz(gσ,P (tP )) =
∑

nP∈ZP

Aσ,P (nP , z)tnP
P , (5.3)

where
ZP =

∏

p∈P

Z, nP = (np)p∈P ∈ ZP , tnP
P =

∏

p∈P

tnp
p ∈ TP ,

and Aσ,P (nP , z) are the Fourier coefficients. Among them, the constant term is
Aσ,P (0, z) = M̃σ,P (z) (where 0 = (0)p∈P ), and hence

YP (z) =

∣∣∣∣∣∣∣∣

∑

nP∈ZP
nP '=0

Aσ,P (nP , z)
1

2T

∫ T

−T

∏

p∈P

e−iτ ′np log pdτ ′

∣∣∣∣∣∣∣∣

# 1
T

∑

nP∈ZP
nP '=0

∣∣∣∣∣
Aσ,P (nP , z)∑

p∈P np log p

∣∣∣∣∣ . (5.4)

We can show a certain upper bound of each Fourier coefficient Aσ,P (nP , z), and
also a mean value estimate of them (by the method similar to Section 5 of [8]).
Applying those estimates to the right-hand side of (5.4), we obtain an upper
bound of YP (z).

Lastly, choosing y = (log T )ω, where ω is a small positive constant, we find
that both XP (z) and YP (z) tend to 0 as T → ∞. Now we are done in the case
Φ = ψz. Moreover we can observe that, in this case, the convergence to the limit
M̃σ(z) is uniform in |z| ≤ R for any R > 0. Noting this uniformity, we can
deduce the general case of (i) and (ii) of Theorem 3.2 from this case by passage
to the Fourier dual and by suitable approximations.

In Case (A) with K = Q, the basic structure of the argument is similar. The
quantity corresponding to XP (z) is estimated by using the idea of Section 4 of
[15], combined with a mean square estimate of

fP (s, χ) =
L(s, χ)

LP (s, χ)
− 1

with respect to χ. The latter estimate is reduced to a mean square estimate of
Dirichlet L-functions, which can be shown as an analogue of Gallagher’s result
[4]. The quantity corresponding to YP (z) is treated by the method in Section 6
of [8].

6 The function field case

In the previous sections we have seen how to apply mean value estimates to ob-
tain sharp results in the log L case, K = Q. The same idea can surely be applied
to other cases. In this section we consider the case when K is a function field,
and explain how to improve and generalize the results (a) and (b) mentioned in
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Section 2. We hope this is not just a case study but will give some insight into
and prospect for the number field cases.

In a recent article [9] we have shown that in the function field case, formula
(1.1) (with the meaning (2.3) of the average) holds under the condition:

(c) σ > 1/2, and Φ is any continuous function of at most polynomial growth.

Of course condition (c) contains both (a) and (b). The main point of the proof
is an upper bound estimate for power mean values

AvgX(f)|g(s, χ, y)|2k (6.1)

(k > 0 fixed) of

g(s, χ, y) =
L′

L
(s, χ)− L′P

LP
(s, χ), (6.2)

where P = Py := {℘ : prime divisor on K, *= ℘∞, N(℘) ≤ y}. To evaluate (6.1),
we write

g(s, χ, y) =
1

2πi

{∫

Re w=c
−

∫

Re w=−ε

}
Γ (w)g(s + w, χ, y)Xwdw

= Int+ − Int−, (6.3)

say, where c > max(0, 1− σ), ε is a small positive number, X ≥ 1. We estimate
|Int−| using Weil’s proof of the Riemann Hypothesis [20], and the power mean
values of |Int+| by using orthogonality relation for characters. A suitable choice
of X depending on N(f) will give a simple and rather surprising result to the
effect that the mean value (6.1) tends to 0 as y →∞, uniformly in f . Combining
this with (b) mentioned above in Section 2, we can prove (1.1) for any Φ satisfying
condition (c) directly (first for Φ ∈ C1 with compact support, and then for
general Φ by approximation); that is, it is not necessary to treat the case Φ =
ψz before treating the general case. This is a big difference from the proof of
Theorem 3.2.

The above result is another example of successful application of mean value
theorems. However, even condition (c) is not the weakest condition we have ever
obtained. To state a further stronger result, we first define another variant of
average by

Avg(3)
χ φ(χ) = lim

f :prime
N(f)→∞

(
AvgX(f)φ(χ)

)
. (6.4)

Then the following theorem is proved in [11]:
Theorem 6.1. Let K be a function field, and by Avgχ we mean the average
defined by (6.4). Then both (1.1) and (1.2) hold for any σ > 1/2 and any Φ
satisfying (ii) (in Theorem 3.2) or

(iii) Φ is any continuous function of at most exponential growth, i.e., Φ(w)#
ea|w| holds for some a > 0.
The proof of Theorem 6.1 is again different from both in [10] and in [9]. In [11]
we also treat the number field case, which will be discussed in the next section.
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7 Under the GRH

According to the well-known principle on the analogy between function fields
and number fields, we may expect that the analogue of Theorem 6.1 holds for
number fields, at least under the assumption of the GRH. In fact, in [11] we
prove the following theorem.

Theorem 7.1. Let K be the rational number field or an imaginary quadratic
field, and consider Case (A) with the meaning (6.4) of the average. We assume
the GRH for L(s, χ). Then both (1.1) and (1.2) hold for any σ > 1/2 and any Φ
satisfying (ii) or (iii).

In [11], Theorem 6.1 and Theorem 7.1 are proved simultaneously. Therefore
hereafter we assume that K is either Q, an imaginary quadratic field, or a
function field, and assume the GRH when K is a number field. We have seen
in the previous sections that mean value theorems play a key role in the proof
of our theorems. In particular, in Section 5 we mentioned that a part of our
proof was inspired by Carlson’s theorem. In [11], we prove a certain variant of
Carlson’s theorem, which is quite essential in our argument.

To explain our variant of Carlson’s theorem, first recall the expression (4.14)
for M̃σ(z). Here we introduce the following more general Dirichlet series:

M̃s(z1, z2) =
∑

D

λz1(D)λz2(D)N(D)−2s, (7.1)

where s, z1 and z2 are complex variables, D runs over all integral divisors of K,
N(D) is the norm of D, and λz(D) is defined by

L(s, χ)iz/2 =
∑

D

λz(D)χ(D)N(D)−s. (7.2)

It is also possible to define the same type of function M̃s(z1, z2) in the
L′/L case, which was already done in [8]. Basic properties and the behaviour of
M̃s(z1, z2) (resp. M̃s(z1, z2)) have been discussed in [7], [8] (resp. [11]).

We also consider the quasi-characters ψz1,z2 : C → C× parametrized by
z1, z2 ∈ C defined by

ψz1,z2(w) = exp
(

i

2
(z1w + z2w)

)
,

which will be the "basic case" for Φ in the proof of Theorems 6.1 and 7.1. Our
Carlson’s theorem can be written as follows.

Theorem 7.2. Let K be as in Theorem 6.1 or Theorem 7.1, and assume the
GRH if K is a number field. Then

Avg(3)
χ ψz1,z2

(
L′

L
(s, χ)

)
= M̃σ(z1, z2) (7.3)
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and

Avg(3)
χ ψz1,z2(log L(s, χ)) = M̃σ(z1, z2) (7.4)

hold uniformly in |z1|, |z2| ≤ R and for s = σ + iτ with σ ≥ 1/2 + ε and, in the
number field case, |τ | ≤ T .

To prove this theorem, it is necessary to obtain a sufficiently sharp upper bound
of (L′/L)(s, χ) for σ > 1/2. Such an upper bound can be shown by using the
polynomial expression of the L-function in the function field case, and by using
Weil’s explicit formula ([19]) in the number field case.

The necessary estimate in the log L case can be deduced by integrating the
result in the L′/L case.

When z2 = z1, we see that ψz1,z2 = ψz1 . Therefore Theorem 7.2 gives (1.1)
and (1.2) in the case Φ = ψz1 . From this result, we obtain the assertions of
Theorems 6.1 and 7.1 again by suitable approximations. The proof that Φ can
be of exponential growth follows by comparing the following two facts: first,

Mσ(w), Mσ(w)# exp(−λ|w|2) (7.5)

for any λ > 0, and secondly,

AvgX(f) exp
(

a

∣∣∣∣
L′

L
(s, χ)

∣∣∣∣

)
, AvgX(f) exp(a| log L(s, χ)|)# 1 (7.6)

for any a > 0. The first is a simple generalization of a result of Jessen and Wint-
ner [13], while the second can be shown from Theorem 7.2 (here it is important
that Theorem 7.2 is proved not only for z2 = z1, but for general z1 and z2).

The conditions on Φ in our unconditional Theorem 3.2 is obviously much
more restrictive than the conditions in Theorem 7.1. It seems very difficult to
prove the claim of Theorem 7.1 unconditionally at present, but we believe that
the methods developed in [9, 10, 11] will give a base for further progress in the
future.
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