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Abstract. In this paper, we consider certain double polylogarithms and
the ordinary polylogarithm of complex variables, and introduce a method
of producing functional relations among them. Furthermore we consider
χ-analogues of them. These functional relations can be regarded as poly-
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1. Introduction

Let N be the set of natural numbers, N0 = N∪{0}, Z the ring of rational
integers, Q the �eld of rational numbers, R the �eld of real numbers, and C
the �eld of complex numbers.

The polylogarithm Lik(x) =
∞∑

n=1
xnn−k and their multiple analogues play

important roles in various �elds of mathematics, for example, number theo-
ry, theory of special functions, in�nite analysis and related mathematical
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physics.
As fascinating formulas, it is known that (see [7], [8]), for example,

Li2
(

1
2

)
=

1
2
ζ(2)− 1

2
(log 2)2, (1.1)

Li3
(

3−√5
2

)
=

4
5
ζ(3) +

1
5
ζ(2) log

(
3−√5

2

)

− 1
12

[
log

(
3−√5

2

)]3

, (1.2)

where ζ(s) =
∞∑

n=1
n−s is the Riemann zeta-function.

In this paper, we consider the polylogarithm of a complex variable and
its double analogues, de�ned by P1(s; x) =

∞∑
n=1

xnn−s and

P∗,2(s1, s2, s3; x) =
∞∑

m,n=1

xn

ms1ns2(m + n)s3
, (1.3)

Px, 2(s1, s2, s3;x) =
∞∑

m,n=1

xm+n

ms1ns2(m + n)s3
, (1.4)

for s, s1, s2, s3 ∈ C and x ∈ C with |x| 6 1. Note that P1(k; x) = Lik(x),
k ∈ N, and that P∗,2(0, k, l; x) and Px, 2(0, k, l; x), k, l ∈ N, are called the
double polylogarithms which have been studied as special cases of multiple
polylogarithms in recent research (see, for example, [2], [3], [4]).

On the other hand, P1(s; x) can be viewed as a special case of Hurwitz-
Lerch zeta-functions. Furthermore P∗,2(s1, s2, s3; 1) = Px, 2(s1, s2, s3; 1) is
called the Mordell-Tornheim double zeta-function denoted by ζMT,2(s1, s2, s3)
or is called the Witten zeta-function associated with sl(3) studied by the �rst
named author in [9], [10] (see also [12]). He proved the meromorphic conti-
nuation of ζMT,2 using the Mellin-Barnes formula. The name of this function
is derived from the classical results of Tornheim and Mordell (see [14], [16]).
They studied the values of ζMT,2 at positive integers and gave some rela-
tion formulas. Recently, their results were generalized by the second named
author in [17], [19].

The main aim of this paper is to give functional relations among P∗,2,
Px, 2 and P1 (see Theorem 2.5), for example,

2P∗,2(1, s, 1;x)− Px, 2(1, 1, s;x) = 2P1(s + 2;x)



Functional relations among certain double polylogarithms... 191

for s ∈ C with Re s > 0 and x ∈ C with |x| 6 1 (see Theorem 2.1). In
particular, when x = 1, we obtain the known functional relation between
ζMT,2 and the Riemann zeta-function ζ(s) (see [13], [19]) which includes the
well-known sum formula for the double zeta values given by Euler. On the
other hand, as relations among the values at positive integers, we give some
relation formulas for the double polylogarithms, which include a polyloga-
rithmic generalization of the Mordell-Zagier formula ([14], [23]) given by the
second named author in [20].

Additionally we give χ-analogues of these facts for any Dirichlet character
χ (see Theorem 3.1). In particular, when x = 1, we obtain functional re-
lations between double L-functions and Dirichlet L-functions (see [18]). On
the other hand, as a relation among the values at positive integers, we give,
for example,

∞∑

m,n=1

χ4(n)
(
2−√3

)n

m(m + n)
=

2
3
L(2;χ4) +

1
3
L(1;χ4) log

(
2−

√
3
)

+
1
4i

[{
log(1− (2−

√
3)i)

}2

−{
log(1 + (2−

√
3)i)

}2
]
,

where χ4 is the unique primitive Dirichlet character of conductor 4 and i =√−1.

2. Double polylogarithms

First we recall some known results (see, for example, [17]).
Let

φ(s) = P1(s;−1) =
∞∑

m=1

(−1)m

ms
= (21−s − 1)ζ(s).

From Lemma 2 of [17], we see that
∞∑

m=1

(−1)m sin(mθ)
m2k+1

=
k∑

j=0

φ(2k − 2j)
(−1)jθ2j+1

(2j + 1)!
(2.1)

and
∞∑

m=1

(−1)m cos(mθ)
m2l

=
l∑

j=0

φ(2l − 2j)
(−1)jθ2j

(2j)!
(2.2)
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for k ∈ N0, l ∈ N and θ ∈ (−π, π) ⊂ R. Note that φ(0) = ζ(0) = −1
2 .

We �x x ∈ C with |x| 6 1 and s ∈ C with Re s > 1. Let

G(θ; s; x) =
∞∑

n=1

(−1)nxn cos(nθ)
ns

, θ ∈ R. (2.3)

Note that G(θ; s; x) is uniformly convergent with respect to θ ∈ (−π, π),
because |x| 6 1 and Re s > 1. Furthermore, for θ ∈ R and k ∈ N0, we let

F1(θ; 2k + 1;x)

= 2




∞∑

m=1

(−1)m sin(mθ)
m2k+1

−
k∑

j=0

φ(2k − 2j)
(−1)jθ2j+1

(2j + 1)!




×G(θ; s; x). (2.4)

It follows from (2.1) that F1(θ; 2k + 1;x) = 0 for θ ∈ (−π, π).
Now we prove the following.

Theorem 2.1. For x ∈ C with |x| 6 1 and s ∈ C with Re s > 0,

2P∗,2(1, s, 1;x)−Px, 2(1, 1, s; x) = 2P1(s + 2;x). (2.5)

We consider (2.4) in the case k = 0, namely

F1(θ; 1; x) = 2

( ∞∑

m=1

(−1)m sin(mθ)
m

+
θ

2

) ∞∑

n=1

(−1)nxn cos(nθ)
ns

. (2.6)

First we assume Re s > 1. From Lemma 2.1 of [13], the �rst term in the
parentheses on the right-hand side of (2.6) is uniformly convergent on any
compact subset in (−π, π). Hence

F1(θ; 1; x) = 2
∞∑

m,n=1

(−1)m+nxn sin(mθ) cos(nθ)
mns

+ θ
∞∑

n=1

(−1)nxn cos(nθ)
ns

=
∞∑

m,n=1

(−1)m+nxn{sin((m− n)θ) + sin((m + n)θ)}
mns

+θ
∞∑

n=1

(−1)nxn cos(nθ)
ns

= 0

for θ ∈ (−π, π). This means, by integrating the both sides, that
∞∑

m,n=1
m6=n

(−1)m+nxn cos((m− n)θ)
mns(m− n)

+
∞∑

m,n=1

(−1)m+nxn cos((m + n)θ)
mns(m + n)
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−θ
∞∑

n=1

(−1)nxn sin(nθ)
ns+1

−
∞∑

n=1

(−1)nxn cos(nθ)
ns+2

= C0, (2.7)

where C0 is a constant which depends on x and s. In order to determine
this constant C0, we further consider the inde�nite integral of (2.7). By the
uniform convergence of (2.7), we can justify the term-by-term integration,
namely

∞∑
m,n=1
m6=n

(−1)m+nxn sin((m− n)θ)
mns(m− n)2

+
∞∑

m,n=1

(−1)m+nxn sin((m + n)θ)
mns(m + n)2

+θ
∞∑

n=1

(−1)nxn cos(nθ)
ns+2

− 2
∞∑

n=1

(−1)nxn sin(nθ)
ns+3

= D0 + C0θ (2.8)

for θ ∈ (−π, π). Letting θ = 0, we see that D0 = 0. Since each side of
(2.8) is continuous with respect to θ on [−π, π], (2.8) holds for θ = π. Since
cos(kπ) = (−1)k for k ∈ Z, we have

C0 = P1(s + 2;x). (2.9)

Putting l = m − n and j = n −m in the �rst term on the left-hand side of
(2.7) according as m > n and m < n respectively, and using (2.9), we can
write (2.7) as

∞∑

n,l=1

(−1)lxn cos(lθ)
lns(l + n)

−
∞∑

m,j=1

(−1)jxj+m cos(jθ)
jm(j + m)s

+
∞∑

m,n=1

(−1)m+nxn cos((m + n)θ)
mns(m + n)

− θ

∞∑

n=1

(−1)nxn sin(nθ)
ns+1

−
∞∑

n=1

(−1)nxn cos(nθ)
ns+2

= P1(s + 2;x). (2.10)

This also holds for θ = π. Hence (2.5) holds for s ∈ C with Re s > 1.
Additionally we see that Px, 2(1, 1, s; x) and P∗,2(1, s, 1;x) are convergent
absolutely for s ∈ C with Re s > 0 and |x| 6 1. In fact, letting σ = Re s > 0,
we obtain |Px, 2(1, 1, s; x)| 6 2−σζ(1 + σ

2 )2 from the relation m + n > 2
√

mn.
Next we can easily see that ab ¿ ap + bq for a, b > 0, where p, q > 1
with 1

p + 1
q = 1. Putting (a, b) = (m

1
p , n

1
q ) in this inequality, we have

m
1
p n

1
q ¿ m + n. Therefore, we have mnσ(m + n) À m

1+ 1
p n

σ+ 1
q . We can

�nd q > 1 which satis�es σ + 1
q > 1. Hence we can see that P∗,2(1, s, 1;x) is

convergent absolutely for s ∈ C with Re s > 0 and |x| 6 1. Thus, (2.5) holds
for s ∈ C with Re s > 0 and |x| 6 1. This completes the proof.
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Example 2.2. Letting x = 1 in (2.5), we obtain the functional relation

2ζMT,2(1, s, 1)− ζMT,2(1, 1, s) = 2ζ(s + 2),

which was given in [13], [19]. Letting s = 1 and using the relation

1
mn

=
1

m + n

(
1
m

+
1
n

)
,

we obtain Euler's well-known formula
∞∑

m,n=1

1
m(m + n)2

=
1
2
ζMT,2(1, 1, 1) = ζ(3).

On the other hand, letting s = 1 in (2.5), we have
∞∑

m,n=1

2xn − xm+n

mn(m + n)
= 2Li3(x), |x| 6 1,

which was given in [20]. Putting x = 3−√5
2 and using (1.2), we have

∞∑

m,n=1

(
3−√5

2

)n {
2−

(
3−√5

2

)m}

mn(m + n)

=
8
5
ζ(3) +

2
5
ζ(2) log

(
3−√5

2

)
− 1

6

[
log

(
3−√5

2

)]3

. (2.11)

Now we proceed to the next step. By repeating the procedure used in
the proof of Theorem 2.1, we can inductively prove that

∞∑
m,n=1
m6=n

(−1)m+nxn cos((m− n)θ)
mns(m− n)2d+1

+
∞∑

m,n=1

(−1)m+nxn cos((m + n)θ)
mns(m + n)2d+1

−(2d + 1)
∞∑

n=1

(−1)nxn cos(nθ)
ns+2d+2

− θ

∞∑

n=1

(−1)nxn sin(nθ)
ns+2d+1

=
d∑

j=0

Cd−j
(−1)jθ2j

(2j)!
, (2.12)

and
∞∑

m,n=1
m6=n

(−1)m+nxn sin((m− n)θ)
mns(m− n)2d+2

+
∞∑

m,n=1

(−1)m+nxn sin((m + n)θ)
mns(m + n)2d+2
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−(2d + 2)
∞∑

n=1

(−1)nxn sin(nθ)
ns+2d+3

+ θ
∞∑

n=1

(−1)nxn cos(nθ)
ns+2d+2

=
d∑

j=0

Cd−j
(−1)jθ2j+1

(2j + 1)!
(2.13)

for d ∈ N0 and θ ∈ (−π, π), where {C0, C1, . . . , Cd} can be determined
inductively. Note that C0 has been determined by (2.9). Since we can let
θ → π on both sides of (2.12) and (2.13), we obtain

∞∑
m,n=1
m6=n

xn

mns(m− n)2d+1
+

∞∑

m,n=1

xn

mns(m + n)2d+1

−(2d + 1)
∞∑

n=1

xn

ns+2d+2
=

d∑

j=0

Cd−j
(−1)jπ2j

(2j)!
, (2.14)

and

π

∞∑

n=1

xn

ns+2d+2
=

d∑

j=0

Cd−j
(−1)jπ2j+1

(2j + 1)!
. (2.15)

Now we recall the following lemma.

Lemma 2.3 ([19], Lemma 4.4). Let {α2d}d∈N0, {β2d}d∈N0, {γ2d}d∈N0 be se-
quences satisfying that

α2d =
d∑

j=0

γ2d−2j
(−1)jπ2j

(2j)!
, β2d =

d∑

j=0

γ2d−2j
(−1)jπ2j

(2j + 1)!

for any d ∈ N0. Then

α2d = −2
d∑

ν=0

β2νζ(2d− 2ν)

for any d ∈ N0.

Combining (2.14), (2.15) and Lemma 2.3, we obtain
∞∑

m,n=1
m6=n

xn

mns(m− n)2d+1
+

∞∑

m,n=1

xn

mns(m + n)2d+1

−(2d + 1)
∞∑

n=1

xn

ns+2d+2
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= −2
d∑

j=0

ζ(2d− 2j)P1(s + 2j + 2;x). (2.16)

Putting l = m − n and j = n −m in the �rst term on the left-hand side of
(2.16) according as m > n and m < n respectively, we obtain the following.

Theorem 2.4. For d ∈ N0, x ∈ C with |x| 6 1 and s ∈ C with Re s > 0,

P∗,2(2d + 1, s, 1;x) + P∗,2(1, s, 2d + 1; x)− Px, 2(2d + 1, 1, s; x)
= (2d + 1)P1(s + 2d + 2; x)

−2
d∑

j=0

ζ(2d− 2j)P1(s + 2j + 2;x). (2.17)

Theorem 2.1 is a special case of this theorem.
Next we present a further generalization. Instead of (2.6), we consider

F1(θ; 2k + 1;x), and

F2(θ; 2k + 1;x) = 2




∞∑

m=1

(−1)m sin(mθ)
m2k+1

−
k∑

j=0

φ(2k − 2j)
(−1)jθ2j+1

(2j + 1)!




×
∞∑

n=1

(−1)nxn sin(nθ)
ns

, (2.18)

F3(θ; 2l; x) = 2




∞∑

m=1

(−1)m cos(mθ)
m2l

−
l∑

j=0

φ(2l − 2j)
(−1)jθ2j

(2j)!




×
∞∑

n=1

(−1)nxn cos(nθ)
ns

(2.19)

and

F4(θ; 2l;x) = 2




∞∑

m=1

(−1)m cos(mθ)
m2l

−
l∑

j=0

φ(2l − 2j)
(−1)jθ2j

(2j)!




×
∞∑

n=1

(−1)nxn sin(nθ)
ns

(2.20)

for k, l ∈ N. Then, by (2.1) and (2.2), we see that these are equal to 0
for θ ∈ (−π, π). Hence, by the same argument as above, we can prove the
following.
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Theorem 2.5. For p, q ∈ N, x ∈ C with |x| 6 1 and s ∈ C with Re s > 0,

(−1)pP∗,2(p, s, q; x) + (−1)qP∗,2(q, s, p; x) + Px, 2(p, q, s; x)

= 2
p∑

j=0
j≡p (2)

(
21−p+j − 1

)
ζ(p− j)

×
[ j
2
]∑

µ=0

(−1)µπ2µ

(2µ)!

(
q − 1 + j − 2µ

j − 2µ

)
P1(s + q + j − 2µ;x)

−4
p∑

j=0
j≡p (2)

(
21−p+j − 1

)
ζ(p− j)

[ j−1
2

]∑

µ=0

(−1)µπ2µ

(2µ + 1)!

q∑
ν=0

ν≡q (2)

ζ(q − ν)

×
(

ν − 1 + j − 2µ

j − 2µ− 1

)
P1(s + ν + j − 2µ; x). (2.21)

Note that if |x| < 1 then (2.21) holds for all s ∈ C.

We give the proof in the case (p, q) = (2k + 1, 2d + 1) for k, d ∈ N0. Note
that, in the case k = 0, we have already given the proof in Theorem 2.4.

We �x a general k ∈ N and assume Re s > 1. By (2.1), we see that
F1(θ; 2k + 1;x) = 0 for θ ∈ (−π, π). By using (2.4) and the relation
2 sinα cosβ = sin(α− β) + sin(α + β), we have

F1(θ; 2k + 1;x)

=
∞∑

m,n=1
m6=n

(−1)m+nxn sin((m− n)θ)
m2k+1ns

+
∞∑

m,n=1

(−1)m+nxn sin((m + n)θ)
m2k+1ns

−2
k∑

j=0

φ(2k − 2j)
(−1)jθ2j+1

(2j + 1)!

∞∑

n=1

(−1)nxn cos(nθ)
ns

= 0 (2.22)

for θ ∈ (−π, π). As well as in the proof of Theorem 2.1, by integrating the
both sides of (2.22) and repeating the integration by parts, we have

∞∑
m,n=1
m6=n

(−1)m+nxn cos((m− n)θ)
m2k+1ns(m− n)

+
∞∑

m,n=1

(−1)m+nxn cos((m + n)θ)
m2k+1ns(m + n)

−2
k∑

j=0

φ(2k − 2j)
2j+1∑

ν=0

(−θ)ν

ν!

∞∑

n=1

(−1)nxn cos(ν)(nθ)
ns+2j+2−ν

= C0(2k + 1), (2.23)
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where C0(2k+1) is a constant which depends on (k, x, s), cos(ν)(x) is the νth
derivative of cosx and cos(ν)(α) := cos(ν)(x)

∣∣
x=α

. Note that C0(1) is equal
to C0 de�ned in (2.7). Indeed, (2.23) in the case k = 0 is equal to (2.7). By
repeating the procedure used in the proof of Theorem 2.1 and of Theorem
2.4, we can prove that

∞∑
m,n=1
m6=n

(−1)m+nxn cos((m− n)θ)
m2k+1ns(m− n)2d+1

+
∞∑

m,n=1

(−1)m+nxn cos((m + n)θ)
m2k+1ns(m + n)2d+1

−2
k∑

j=0

φ(2k − 2j)
2j+1∑

ν=0

(
2d + 1 + 2j − ν

2j + 1− ν

)
(−θ)ν

ν!

×
∞∑

n=1

(−1)nxn cos(ν)(nθ)
ns+2d+2j+2−ν

=
d∑

j=0

Cd−j(2k + 1)
(−1)jθ2j

(2j)!
(2.24)

and
∞∑

m,n=1
m6=n

(−1)m+nxn sin((m− n)θ)
m2k+1ns(m− n)2d+2

+
∞∑

m,n=1

(−1)m+nxn sin((m + n)θ)
m2k+1ns(m + n)2d+2

−2
k∑

j=0

φ(2k − 2j)
2j+1∑

ν=0

(
2d + 2 + 2j − ν

2j + 1− ν

)
(−θ)ν

ν!

×
∞∑

n=1

(−1)nxn cos(ν+1)(nθ)
ns+2d+2j+3−ν

=
d∑

j=0

Cd−j(2k + 1)
(−1)jθ2j+1

(2j + 1)!
, θ ∈ (−π, π), (2.25)

by induction on d ∈ N0, where {C0(2k+1), C1(2k+1), . . . , Cd(2k+1)} can be
determined inductively. The both sides of (2.24) and (2.25) are continuous
with respect to θ ∈ [−π, π]. Hence we can let θ → π on both sides of (2.24)
and (2.25). By cos(nπ) = (−1)n and sin(nπ) = 0 (n ∈ Z), we obtain

∞∑
m,n=1
m6=n

xn

m2k+1ns(m− n)2d+1
+

∞∑

m,n=1

xn

m2k+1ns(m + n)2d+1

−2
k∑

j=0

φ(2k − 2j)
j∑

µ=0

(
2d + 1 + 2j − 2µ

2j + 1− 2µ

)
(−1)µπ2µ

(2µ)!

×
∞∑

n=1

xn

ns+2d+2j+2−2µ
=

d∑

j=0

Cd−j(2k + 1)
(−1)jπ2j

(2j)!
(2.26)
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and

−2
k∑

j=0

φ(2k − 2j)
j∑

µ=0

(
2d + 1 + 2j − 2µ

2j − 2µ

)
(−1)µπ2µ+1

(2µ + 1)!

×
∞∑

n=1

xn

ns+2d+2j+2−2µ
=

d∑

j=0

Cd−j(2k + 1)
(−1)jπ2j+1

(2j + 1)!
. (2.27)

Combining (2.26), (2.27) and Lemma 2.3, we obtain
∞∑

m,n=1
m6=n

xn

m2k+1ns(m− n)2d+1
+

∞∑

m,n=1

xn

m2k+1ns(m + n)2d+1

−2
k∑

j=0

φ(2k − 2j)
j∑

µ=0

(
2d + 1 + 2j − 2µ

2j + 1− 2µ

)
(−1)µπ2µ

(2µ)!

×
∞∑

n=1

xn

ns+2d+2j+2−2µ

= 4
d∑

ν=0

ζ(2d− 2ν)
k∑

j=0

φ(2k − 2j)
j∑

µ=0

(
2ν + 1 + 2j − 2µ

2j − 2µ

)
(−1)µπ2µ

(2µ + 1)!

×
∞∑

n=1

xn

ns+2ν+2j+2−2µ
. (2.28)

Using φ(s) =
(
21−s − 1

)
ζ(s), and putting l = m − n and j = n −m in the

�rst term on the left-hand side of (2.28) according as m > n and m < n
respectively, we can obtain the proof of (2.21) in the case (p, q) = (2k +
1, 2d + 1). Note that if |x| = 1 then the left-hand side of (2.21) is convergent
absolutely for Re s > 0 which can be shown similarly to the argument at the
end of the proof of Theorem 2.1. Hence (2.21) holds for Re s > 0. On the
other hand, if |x| < 1 then we can easily see that (2.21) holds for all s ∈ C.

By considering F2(θ; 2k + 1; x), F3(θ; 2l; x) and F4(θ; 2l; x) instead of
F1(θ; 2k + 1; x), we can similarly obtain the proofs of (2.21) in the cases
(p, q) = (2k + 1, 2e), (2l, 2e) and (2l, 2d + 1) for k, d ∈ N0 and l, e ∈ N.
Example 2.6. Applying (2.21) in the case (p, q) = (2, 2), we obtain

2P∗,2(2, s, 2;x) + Px, 2(2, 2, s; x) = 4ζ(2)P1(s + 2;x)− 6P1(s + 4; x). (2.29)

Letting s = 2, we obtain the formula given in Proposition 2 of [20]. Further-
more, letting x = 1, we obtain Mordell's formula ([14])

ζMT,2(2, 2, 2) =
4
3
ζ(2)ζ(4)− 2ζ(6).
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As a next example, put (s, x) = (2.34, 0.8) in (2.29). Then we can approxi-
mately calculate that

P∗,2(2, 2.34, 2 ; 0.8) = 0.253330048 . . . ,

Px, 2(2, 2, 2.34 ; 0.8) = 0.152764587 . . . ,

P1(4.34 ; 0.8) = 0.837450277 . . . ,

P1(6.34 ; 0.8) = 0.808462890 . . . .

Hence we can numerically check the validity of (2.29) for (s, x) = (2.34, 0.8).

3. Character analogues of double polylogarithms

Let χ be any primitive Dirichlet character of conductor f . We de�ne

P1(s; x; χ) =
∞∑

n=1

χ(n)xn

ns
, (3.1)

P∗,2(s1, s2, s3; x; χ) =
∞∑

m,n=1

χ(n)xn

ms1ns2(m + n)s3
, (3.2)

Px, 2(s1, s2, s3; x; χ) =
∞∑

m,n=1

χ(m + n)xm+n

ms1ns2(m + n)s3
. (3.3)

In particular, when x = 1, these coincide with the Dirichlet L-function L(s; χ)
and the Mordell-Tornheim double L-functions (see [18], [22], see also [1]).

It is well known that

χ(b)τ(χ) =
f∑

a=1

χ(a)e
2πiab

f , b ∈ N,

where τ(χ) =
f∑

a=1
χ(a)e

2πia
f is the Gauss sum and χ = χ−1 (see [21], Lemma

4.7). Hence we see that

χ(n)xn =
1

τ(χ)

f∑

a=1

χ(a)
(
xe

2πia
f

)n
, n ∈ N. (3.4)

Therefore, we have

(−1)pP∗,2(p, s, q; x; χ) + (−1)qP∗,2(q, s, p; x; χ) + Px, 2(p, q, s; x; χ)
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=
1

τ(χ)

f∑

a=1

χ(a)
∞∑

m,n=1

{
(−1)p

(
xe

2πia
f

)n

mpns(m + n)q

+(−1)q

(
xe

2πia
f

)n

mqns(m + n)p
+

(
xe

2πia
f

)m+n

mpnq(m + n)s

}

=
1

τ(χ)

f∑

a=1

χ(a)
{

(−1)pP∗,2
(
p, s, q; xe

2πia
f

)

+(−1)qP∗,2
(
q, s, p; xe

2πia
f

)
+ Px, 2

(
p, q, s; xe

2πia
f

)}
(3.5)

for p, q ∈ N. Substituting (2.21) into the right-hand side of (3.5), and using
(3.4) again, we obtain the following.

Theorem 3.1. For p, q ∈ N, x ∈ C with |x| 6 1 and s ∈ C with Re s > 0,

(−1)pP∗,2(p, s, q; x; χ) + (−1)qP∗,2(q, s, p; x; χ) + Px, 2(p, q, s;x;χ)

= 2
p∑

j=0
j≡p (2)

(
21−p+j − 1

)
ζ(p− j)

×
[ j
2
]∑

µ=0

(−1)µπ2µ

(2µ)!

(
q − 1 + j − 2µ

j − 2µ

)
P1(s + q + j − 2µ;x;χ)

−4
p∑

j=0
j≡p (2)

(
21−p+j − 1

)
ζ(p− j)

[ j−1
2

]∑

µ=0

(−1)µπ2µ

(2µ + 1)!

q∑
ν=0

ν≡q (2)

ζ(q − ν)

×
(

ν − 1 + j − 2µ

j − 2µ− 1

)
P1(s + ν + j − 2µ; x; χ). (3.6)

Note that if |x| < 1, then (3.6) holds for all s ∈ C.

Remark 3.2. The equation (3.6) in the case x = 1 has been essentially
obtained by Nakamura in [15] by a totally di�erent method. In fact, Naka-
mura's formulas are of more simple expressions, comparing with (3.6) in the
case x = 1.
Example 3.3. Applying Theorem 3.1 in the case (p, q) = (1, 1), we have

−2P∗,2(1, s, 1;x; χ) + Px, 2(1, 1, s; x; χ)
= 2ζ(0)P1(s + 2;x; χ)− 4ζ2(0)P1(s + 2;x; χ)
= −2P1(s + 2;x; χ), (3.7)



202 K. Matsumoto, H. Tsumura

because ζ(0) = −1
2 . If |x| < 1, then (3.7) holds for s = 0. Note that, for

|x| < 1,

Px, 2(1, 1, 0;x; χ) =
∞∑

m,n=1

xm+n

mn

1
τ(χ)

f∑

a=1

χ(a)e
2πia(m+n)

f

=
1

τ(χ)

f∑

a=1

χ(a)
{

log
(
1− xe

2πia
f

)}2
. (3.8)

From (2.29) in [8], we have

3P1(2; 2−
√

3;χ4) = 2L(2;χ4) + L(1;χ4) log(2−
√

3), (3.9)

where χ4 is the unique primitive Dirichlet character of conductor 4. By
putting x = 2−√3 and s = 0 in (3.7) and using (3.8) and (3.9), we obtain

∞∑

m,n=1

χ4(n)
(
2−√3

)n

m(m + n)

= P1(2; 2−
√

3;χ4) +
1

2τ(χ)

4∑

a=1

χ4(a)
{

log
(
1− (2−

√
3)e

2πia
4

)}2

=
2
3
L(2;χ4) +

1
3
L(1;χ4) log

(
2−

√
3
)

+
1
4i

[{
log

(
1− (2−

√
3)i

)}2
−

{
log

(
1 + (2−

√
3)i

)}2
]

. (3.10)

Note that we can approximately calculate

1
4i

[{
log

(
1− (2−

√
3)i

)}2
−

{
log

(
1 + (2−

√
3)i

)}2
]

= −0.00907612 . . . .

The other terms in (3.10) can be easily calculated numerically, and hence we
can numerically verify that (3.10) surely holds.
Remark 3.4. We will be able to generalize these results to more general
multiple series. In fact the authors are studying Witten's type of multiple
zeta-functions associated with semi-simple Lie algebras (see [12]). We would
like to discuss functional relations for Witten's type of multiple polyloga-
rithms in forthcoming papers.
Note added in the revised version. The �rst version of the present pa-
per had already been completed in early 2006. After that, the authors noticed
that the technique developed in the present paper is useful in the study of
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functional relations among multiple zeta-functions. In fact, under the name
of the �polylogarithm technique�, we applied the idea in the present paper
to Witten zeta-functions in [5], [6], and proved various functional relations
which are more general than those obtained in [12].

After the �rst version of this paper had been completed, we obtained the
following result (see [11], Lemma 2.1):

For arbitrary functions f, g : N0 → C and a ∈ N, we have

a∑
j=0

j≡a ( mod 2)

(
21−a+j − 1

)
ζ(a− j)

[ j
2
]∑

µ=0

f(j − 2µ)
(−1)µπ2µ

(2µ)!

=
[a
2
]∑

ρ=0

ζ(2ρ)f(a− 2ρ), (3.11)

and
a∑

j=0
j≡a (mod 2)

(
21−a+j − 1

)
ζ(a− j)

[ j−1
2

]∑

µ=0

g(j − 2µ)
(−1)µπ2µ

(2µ + 1)!

= −1
2
g(a). (3.12)

Using this result, we can rewrite (2.21) and (3.6) to

(−1)pP∗,2(p, s, q;x) + (−1)qP∗,2(q, s, p; x) + Px, 2(p, q, s;x)

= 2
[ p
2
]∑

ρ=0

(
p + q − 2ρ− 1

p− 2ρ

)
ζ(2ρ)P1(s + p + q − 2ρ;x)

+2
[ q
2
]∑

ρ=0

(
p + q − 2ρ− 1

q − 2ρ

)
ζ(2ρ)P1(s + p + q − 2ρ; x), (3.13)

and

(−1)pP∗,2(p, s, q; x; χ) + (−1)qP∗,2(q, s, p; x; χ) + Px, 2(p, q, s; x; χ)

= 2
[ p
2
]∑

ρ=0

(
p + q − 2ρ− 1

p− 2ρ

)
ζ(2ρ)P1(s + p + q − 2ρ; x; χ)

+2
[ q
2
]∑

ρ=0

(
p + q − 2ρ− 1

q − 2ρ

)
ζ(2ρ)P1(s + p + q − 2ρ; x; χ), (3.14)

respectively.
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