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Abstract

In this dissertation, frequency bin selection is proposed as a method to reduce the com-

putational cost of blind source separation (BSS) based on frequency domain independent

component analysis (FDICA). Clear voice quality is expected by users when communicat-

ing through speech processing equipment such as teleconferencing equipment and mobile

telephones. Speech processing equipment is usually manufactured with embedded pro-

cessors, especially digital signal processors (DSP), because of their low electric power

consumption and the need for real-time processing. BSS has been widely investigated for

use in speech enhancement applications for the purpose of obtaining higher voice qual-

ity, and FDICA is one of the most popular methods used by researchers to perform BSS.

This is because acoustic conditions are usually reverberant, and FDICA is an inverse filter

method, and thus minimizes reverberation influence. However, the computational cost of

FDICA is quite high because FDICA estimates inverse filter coefficients in each frequency

bin using an optimization scheme employing higher-order statistics, usually an iterative

update algorithm. Current DSPs can achieve high levels of performance, however the ap-

propriate choice of a DSP strongly depends on the specifications of the speech processing

equipment in which it is to be used. For mobile devices, due to battery life considerations,

low-powered DSPs are normally used. ICA stores long-term observed signals because its

optimization scheme employing higher-order statistics, so that the external memory usually

consists of dynamic random access memory (DRAM). However, the required wait states of

DRAM is another issue, because of the waste of electric power this involves. In addition,

the amount of power wasted is not negligible. Therefore, implementing FDICA using em-

bedded processors is difficult, despite the high performance of current DSPs. The proposed

method aims at reducing computational cost by reducing the number of frequency bins in
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which the ICA algorithm is performed, thus reducing computational cost and increasing

the feasibility of implementing FDICA in embedded processors. The proposed frequency

bin selection method utilizes spatial correlation; the determinant of the spatial covariance

matrix or the magnitude squared coherence (MSC) between two microphones.

Two types of frequency bin selection are proposed for FDICA, one for mobile telephone

devices and one for portable speech processing equipment, such as portable teleconferenc-

ing systems. For mobile devices, the determinant of the spatial covariance matrix is used

to select the frequency bins. The determinant is theoretically analyzed, since its character-

istics simultaneously reflect both directional information as well as the power of the source

signals. In other words, signal separability can be evaluated using the determinant. In

the unselected frequency bins, a Wiener filter is obtained using the tentatively separated

signals, which are the output of the null-beamformers. Use of the separated signals re-

sults in improved performance, because this cancels out the signal distortion caused for

acoustic reasons by microphone array signal processing. Performance, as measured by the

segmental signal-to-noise ratio, is experimentally evaluated, and significant improvement

is achieved. Cepstral distortion is also employed to evaluate performance, but results show

deterioration in performance instead of improvement as the number of frequency bins se-

lected is reduced. The trade-off between these two measures of distortion is used as a

criterion to determine the number of frequency bins selected, and it is determined that 64

bins should be selected. Compared to conventional FDICA methods, the proposed method

achieves a more than 80 percent reduction in computational cost. Despite this large reduc-

tion in computational cost, the segmental signal-to-noise ratio is improved by about 2 dB,

while deterioration in cepstral distortion is restrained to only about 1 dB.

For portable speech equipment, a dodecahedral microphone array (DHMA) is used as a

small, agglomerative sound capture system. DHMAs have ten faces, with six microphones

installed on each face. When performing BSS using DHMAs, FDICA is executed under

overdetermined conditions, since the number of the microphones exceeds the number of

source signals. The size of the FDICA separation matrix when performing BSS with a

DHMA is quite large, making this approach extremely computationally expensive. The
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permutation solution requires especially large computational resources because its cluster-

ing method involves a large number of similarity calculations. Magnitude squared coher-

ence is utilized to select frequency bins for analysis. The shape of a DHMA is similar to

that of a spherical microphone array, but its acoustic characteristics are somewhat different

due to its many flat faces. Two arbitrarily chosen microphones are used to calculate mag-

nitude squared coherence, and frequency regions are evaluated on this basis, with lower

MSC values indicating the separable frequency region. Frequency bin selection is not uni-

formly spaced when using the proposed method. The resulting reduction in computational

cost exceeds 80 percent, even with only a 68 percent reduction in the number of frequency

bins selected. Separation performance, as measured by the signal-to-interference ratio, de-

teriorates, however, compared to FDICA which frequency bins are uniformly selected, the

deterioration is restrained by about 1 dB. As for distortion, the segmental signal-to-noise

ratio deteriorates slightly, although cepstral distortion is improved. For these distortion

measures, compared to methods in which the frequency bins are uniformly selected, both

measures are improved when using the proposed method.

Both frequency bin selection methods calculate the spatial correlation between only

two microphones, and these spatial correlations are categorized as second-order statistics.

This implies that BSS based on FDICA can become more computationally efficient, while

maintaining the signal distortion level, through the combination of second-order statistics.

When speech processing equipment is manufactured with DSPs, the required wait states of

the DRAM external memory is an important issue to consider when implementing FDICA.

FDICA must store long-term observed signals in DRAMs because the high-speed internal

memory in the DSPs should not be taken up just to store these signals. By reducing the

number of frequency bins selected, the proposed method also reduces required memory

consumption, which restrains the amount of memory access required. The computational

costs of conventional FDICA are clarified, and a target number of operations for the use

of FDICA with internal DSPs are estimated: 200 mega-operations for mobile devices and

160 giga-operations for portable equipment. Calculations are made which show that the

proposed method does not exceed the target computational cost. The function responsible

for the dominant computational expense changes according to the number of frequency

bins selected, indicating to engineers which software function should be optimized. Taking
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into consideration objective measures used to evaluate popular speech enhancement appli-

cations, about 10 to 20 dB is the allowable value for the absolute signal-to-interference

ratio. Even though separation performance deteriorated when using the proposed methods,

performance remained in the range allowable for practical commercial applications. On

the other hand, measures of distortion remained at equivalent levels, while still achieving

a more than 80 percent reduction in computational cost. As a consequence, the proposed

method involves a practical trade-off between separation performance and computational

cost on the one hand, and a quite advantageous trade-off between signal distortion and

computational cost on the other. These findings indicate that the proposed BSS methods

are practical, and that they are acceptable for use in speech processing equipment with

embedded processors. Future work includes more investigation into the separation method

used for the unselected frequency bins, as well as into on-line implementation.
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Chapter 1

Introduction

1.1 Preface

Speech communication and speech recognition systems are now widely in use, generally

under reverberant and noisy conditions. Originally, the Internet was intended to mainly

be an infrastructure for a text communication, i.e., e-mail and hypertext browsing. How-

ever, in the last few decades the Internet has evolved into a multi-media environment. And

in the last decade, it has begun to be widely used as a communication infrastructure for

Internet telephony of speech and real-time video, using PCs, teleconferencing equipment,

or mobile devices. Speech communication equipment can be used under many different

acoustic conditions. Teleconferencing equipment, for example, is commonly used in rever-

berant meeting rooms. Mobile devices, however, are used outside meeting rooms, where

the acoustic conditions are not reverberant, but noisy. Noise can be produced by a large va-

riety of sound sources, such as air conditioners, projectors, or the voices of people who are

not the target speakers. Both noise and reverberation degrade the quality of speech, but high

speech quality is needed to achieve clear speech communication or reliable speech recog-

nition results. The noise from an air conditioner or a projector is called stationary noise,

which is noise that is relatively constant in nature in terms of energy, pitch, location, and

onset time. Noise reduction methods such as spectral subtraction [3] can reduce stationary

noise, and these methods have achieved successful results for the last forty years. However,

for non-stationary noise, these noise reduction methods can not work appropriately.
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1.2 Blind source separation

At a microphone, target speech and the speech of other speakers are captured simultane-

ously, resulting in a mixed signal. In such cases, the speech of other speakers is considered

to be noise, because the speech of the other speakers interferes with the target speech sig-

nal. Such non-stationary noise as speech from other speakers. can not be reduced by noise

reduction methods. To cope with this problem, blind source separation (BSS) is considered

widely to be used for speech enhancement applications, because it can separate the mixed

signal into individual sound sources without any advance information.

1.2.1 Types of blind source separation

BSS can be broadly classified into two categories: time-frequency masking (TFM) and in-

verse response methods. The TFM method is commonly used to extract sparse signals in

under-determined conditions, i.e., when the number of source signals exceeds the number

of microphones. Sparse signal representation usually assumes that only one source signal

has a time-frequency component, for example, speech signals. One of the most researched

TFM methods is the degenerate unmixing estimation technique (DUET) [4]. DUET eval-

uates the directions of arrival (DOA) of the source signals and their relative amplitudes to

make clusters that correspond to individual sources. After clustering the source signals,

a binary mask or Wiener filter is used to separate the observed signals in the frequency

domain. The DUET concept has been continuously refined, resulting in various methods

which have been proposed in recent years. For example, DOA and a time-frequency mask

are iteratively estimated using the expectation maximization (EM) algorithm [5]. Another

approach is the use of k-means clustering, which involves evaluation of normalized am-

plitude and phase differences [6] when there are more than three microphones, even if

the microphones are positioned non-uniformly. DUET-based techniques achieve signifi-

cant separation performance, which is further improved by sparse signal representation.

Sparse signal representation is effective when acoustic conditions are anechoic. The in-

verse response method, however, does not assume that the source signals are sparse. When

acoustic conditions are reverberant, the temporal envelope of the source signal is ”smeared”

by reverberation over neighboring time-frequency components. In fact, acoustic conditions
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are usually reverberant, sparse signal representation methods work less effective under re-

verberant conditions than the inverse response methods. In other words, methods based on

inverse response are more appropriate than TFM for sound source separation.

1.2.2 Indepedent component analysis

Prior to 1990, much of the research on BSS was based on nonlinear decorrelation [7–9].

In the 1990s, it was clarified that nonlinear decorrelation was strongly connected with in-

dependent component analysis (ICA), and a BSS technique based on ICA was widely re-

searched. ICA assumes that source signals are statistically independent, and this statistical

independence is used to separate mixed signals. Statistical independence can be evaluated

on the basis of non-Gaussianity [10, 11]. A probability distribution of the sum of inde-

pendent random variables gradually approaches a Gaussian distribution, according to the

central limit theorem. Therefore, non-Gaussianity can be used as a measure of the statistical

independence of separated signals.

One measure of non-Gaussianity is kurtosis. Data sets with high kurtosis tend to have

heavy tails with its probability distribution, in other words, infrequent observations. Kur-

tosis can be used for ICA [12–14]. When the probability distribution of a source signal

is super Gaussian, the source signal’s kurtosis is higher than the kurtosis of a Gaussian

distribution. If independent, super Gaussian signals were mixed together, a probability

distribution of the mixed signal would approach Gaussianity according to the central limit

theorem. In other words, mixing independent signals results in a decrease in the mixed

signal’s kurtosis. Therefore, maximizing a separated signal’s kurtosis corresponds to maxi-

mizing its non-Gaussianity, thus mixed signals can be separated into separate source signals

using ICA. Kurtosis is calculated using the second and fourth moments. Because kurtosis

is very sensitive to outliers when it is being calculated, large errors tend to occur, which is

one disadvantage of using kurtosis as a means of evaluating statistical independence.

Statistical independence can also be evaluated using negentropy [15] as another mea-

sure of non-Gaussianity. The other measures which do not evaluate non-Gaussianity, such

3



as the Kullback-Leibler divergence, maximum likelihood estimation (MLE) [16–18], in-

fomax [19] and mutual information [15, 20], can also be used for ICA. The ICA algo-

rithms which use these measures assume specific probability distributions of the source

signals. Entropy expresses the degree of statistical randomness. Negentropy measures

the difference in entropy between a given distribution and the Gaussian distribution. If

a random variable would concentrate at a specific value, entropy would be small and the

peakedness of the probability distribution would be high. Low entropy corresponds to

high non-Gaussianity, therefore negentropy can be used to evaluate statistical indepen-

dence. The Kullback-Leibler divergence measures the difference between two probability

distributions. In the case of ICA, if the separated signals were statistically independent,

the Kullback-Leibler divergence would become zero. Therefore, statistical independence

can be evaluated by minimizing the Kullback-Leibler divergence. MLE optimizes sepa-

ration coefficients by using probability distributions of the source signals. Likelihood in

MLE consists of the mixed signals and the separation coefficients. The mixed signals re-

main constant during the MLE process, therefore the likelihood of the separated signals

is only changed by the separation coefficients. Therefore, maximizing likelihood corre-

sponds to evaluating the statistical independence among the separated signals using the

separation coefficients. Note that MLE can be viewed theoretically as a process to mini-

mize a Kullback-Leibler divergence between two distributions. Infomax is an optimization

principle for neural networks. In the case of ICA, infomax maximizes joint entropy of

the separated signals, which corresponds to maximizing statistical independence among

the separated signals. Note that infomax for ICA [19] is the same as MLE when the dif-

ferential of the nonlinear function for infomax equals the probability distribution function

of MLE. Kullback-Leibler divergence, MLE and infomax all employ nonlinear correlation

among the separated signals as the criterion of statistical independence. These criteria have

been utilized in ICA algorithms for the last twenty years.

Gradient and fixed-point algorithms are used for nonlinear optimization, such as when

evaluating statistical independence. Note that a natural gradient improves an algorithm’s

efficiency and stability [21, 22]. Gradient and fixed-point algorithms are iterative update

rules. During the iterative update stage, statistical independence is evaluated using matrix
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multiplication to calculate nonlinear correlation among the separated signals. The sep-

arated signals are calculated using separation coefficients and the mixed signals. These

separation coefficients are expressed in a matrix, which is called the separation matrix. The

separation matrix changes with every iterative update, so that the separated signals must be

recalculated with every update. This leads to a large amount of matrix multiplication. Non-

linear correlation in the ICA algorithms must be calculated using separated signals with

long temporal lengths, which means that matrix multiplication must be performed for each

time slot. Therefore, during each iterative update, and for each time slot, matrix multipli-

cation in ICA algorithms must be performed. The resulting high computational cost is one

disadvantage of ICA.

Acoustic conditions are often reverberant, as mentioned in Section 1.1. Reverberation

corresponds to an acoustic transfer function from a sound source to a microphone. An

acoustic transfer function is also called a room impulse response (RIR), which consists of

direct and reflected sounds. The time delay of the direct sound corresponds to the distance

from the sound source to the microphone. Reflected sounds are observed after the direct

sound, and this convolution of the source signal and the RIR results in a reverberant signal.

Is is commonly assumed when using ICA that several microphones will be used to sep-

arate the sound source signals, which are transfered to the microphones through different

acoustic paths. At one microphone, the sound signals are observed and mixed simultane-

ously. If an acoustic condition is anechoic, the mixing condition is called an instantaneous

mixture. If an acoustic condition is reverberant, the mixing condition is called a convolu-

tive mixture. ICA research began focusing on instantaneous mixtures in the 1990s [10,11].

Regarding convolutive mixtures, in the late 1990s Murata and Smaragdis proposed fre-

quency domain ICA (FDICA) [23, 24]. After 2000, FDICA researchers concentrated on

obtaining higher performance [25–30]. Another approach, time domain ICA (TDICA) us-

ing a finite impulse response (FIR) filter, has also been studied for use with convolutive

mixtures [10, 31–34]. In the case of TDICA, the separation matrix consists of a FIR filter

matrix, and the FIR filters correspond to the inverse RIRs. TDICA was compared with

FDICA by Nishikawa [35], whose experiments showed that TDICA’s separation perfor-

mance was lower for convolutive mixtures, due to the length of the FIR filters. This was

because RIRs usually last hundreds of milliseconds, and FIR filter length can easily exceed
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Figure 1.1: A block diagram of BSS using FDICA. Source signals are mixed and observed

at a microphone array. FDICA separates them in the frequency domain.

2,000 samples when the sampling frequency is 8 kHz and the length of the RIR is 250 mil-

liseconds, for example. This is a serious drawback for sound source separation, therefore

FDICA is a more appropriate BSS method for the convolutive mixtures which occur under

reverberant conditions.

ICA assumes statistical independence among the source signals, and FDICA addition-

ally assumes statistical independence among the frequency bins. A block diagram of BSS

using FDICA is shown in Figure 1.1. The sound signals are transfered from their source

positions to the microphones, and the signals are mixed at the microphones. The observed

signals are transformed from the time domain to the frequency domain by Short Time

Fourier Transform (STFT). ICA separates the observed signals into individual sound sig-

nals in each frequency bin. An Inverse Short Time Fourier Transform (ISTFT) transforms

the separated signals back into time domain signals. ICA must overcome two problems;

scaling and permutation. The scaling problem refers to amplitude ambiguity among the

separated signals, because the amplitude of the separated signals is not necessarily equal

to the amplitude of the source signals. If FDICA’s scaling problem is not resolved, then

the scales of the separation matrix will be different in different frequency bins. The per-

mutation problem refers to ambiguity regarding the order of the separated signals. In the

case of FDICA, the order may vary in different frequency bins. If the permutation prob-

lem of FDICA is not solved, then a separated signal will include different source signals in

different frequency bins. Both problems result in deterioration of separation performance.
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Therefore, both problems must be solved, and the solutions lead to additional computa-

tional costs. Solving the scaling and permutation problems is discussed in Section 2.2.4.

As a conclusion of the overview of BSS using FDICA, FDICA involves considerable

computational costs with respect to the iterative update rule of the ICA algorithms, and due

to solving the scaling and permutation problems. Therefore, computational cost becomes

a critical issue when FDICA is used. Methods of reducing the computational cost of both

matrix multiplication during iterative updating, and of solving the scaling and permutation

problems, should be considered.

1.3 Implementation issues of FDICA and review of em-

bedded processors

BSS using FDICA can be a standard method used by speech enhancement applications un-

der reverberant acoustic conditions. From the viewpoint of stress-free communication, as

little time delay as possible is important, especially for long-distance conversations using

speech communication equipment. The central processing units (CPUs) of modern per-

sonal computers are very powerful. But when FDICA is being performed, the time delay is

difficult to control because many device drivers and applications operate concurrently. In

order for real-time systems to make use of low time delay applications, operating systems

are often designed with embedded processors. Embedded processors are dedicated to spe-

cific tasks, so design engineers can optimize them to increase reliability and performance.

But embedded processors can also restrict electric power consumption, resulting is less

computational power.

In addition, speech communication equipment is often portable or mobile. Since mobile

devices are designed to be quite small, their batteries are also small, however a battery’s

capacity drops as its size decreases. This means that battery size becomes another critical

issue for mobile devices. In order to achieve longer operating times, electric power con-

sumption must be extremely restrained. Therefore, reducing computational costs would be

helpful, especially when embedded processors are used in portable teleconference equip-

ment or mobile devices. When FDICA is being performed by embedded processors to
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carry out BSS, the computational cost of FDICA is fairly high, and must be reduced.

Representative computational cost can be defined as the sum of the required number

of operations and the required amount of memory consumption. For example, the number

of operations can be converted into computation time by taking into account the operating

speed of a processor, and this can be helpful to select an appropriate processor. Required

memory consumption can determine the balance between system requirements and man-

ufacturing costs, with smaller memory consumption requirements leading to lower manu-

facturing costs.

Digital signal processors (DSP) are a type of embedded processor widely used for

speech signal processing. Most DSPs are designed using Harvard architecture, which

means there are physically separated memories, some storing instructions and others stor-

ing data, with physically separated buses to transfer them. Another common type of em-

bedded processor are microprocessors such as ARM architecture processors, Qualcomm

Snapdragon, nVidia Tegra, etc. These microprocessors are designed using Von Neumann

architecture, in which there is only one memory, which stores both instructions and data,

and a single bus to transfer them both. Speech processing equipment is usually designed

as a real-time system. Because voices vary from moment to moment, speech signals are

constantly being processed by the DSP, from input to output, which leads to frequent data

access. Harvard architecture is more appropriate for this kind of real-time application, due

to its separated memories and buses.

The operating speeds of currently available DSPs and microprocessors have become

quite high; 1 GHz, for example. As a result, the processing performance of recently de-

veloped embedded processors is quite high. For the microprocessors, this high operating

speed seems to make up for the disadvantage of the microprocessor’s architecture, even

though the architecture of DSPs is more advantageous for real-time systems. This implies

that DSPs may no longer be required, and that microprocessors could now be used. On

the other hand, dynamic random access memory (DRAM) is widely used as the external

memory in computing devices. DRAM is inexpensive and large amounts of memory space

are available, but DRAM operating speed is very slow; still around a few hundred MHz,

which is about one-fifth the working speed of embedded processors. In addition, DRAM

has a disadvantageous data access scheme, involving a number of waiting cycles due to
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its architecture, causing data transfer to be delayed between the processor and the external

memory. Therefore, when using external memory, slow operating speed and waiting cy-

cles reduce processor performance. The advantages of the Harvard architecture make up

for part of this problem, suggesting that DSPs should be used for BSS applications instead

of microprocessors. While DSPs are waiting, their calculating units are still operating, and

this electric power consumption is wasted due to slow data transfer to and from the external

memory. These points suggest that reducing the memory consumption required for FDICA

would be very useful.

If we can reduce the required number of operations and the required amount of memory

consumption needed to perform FDICA, we may be able to achieving the goal of perform-

ing FDICA with DSPs. The computational cost of FDICA is discussed in Section 2.2, and

target levels for number of operations and required memory consumption are discussed in

Section 2.3.

1.4 Purpose of this dissertation

In this dissertation, a method of performing FDICA with lower computational costs, using

frequency bin selection, is proposed. This lower computational cost is helpful for perform-

ing BSS using FDICA with embedded processors, since the proposed method is intended

for use in portable equipment and mobile devices. Since FDICA estimates the separation

matrix in every frequency bin, the proposed method restrains the number of operations by

reducing the number of frequency bins. FDICA must also store long temporal signals in

order to estimate the separation matrix, and these signals are stored in every frequency bin.

Thus, the proposed method also reduces memory consumption required for FDICA. This

reduction in memory consumption also reduces the number of slow data transfers to and

from the external memory.

The frequency bins are reduced using criteria based on spatial correlation. First, it is

proposed that the determinant of the covariance matrix be used to select the frequency bins

in cases in which two microphones are used. Using the power spectrum would appear to be

the obvious way to select the frequency bins, however the power spectrum does not include

any spatial information. The spatial covariance matrix includes spatial cross-correlation in
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its off-diagonal elements. The determinant includes the off-diagonal elements, so that the

determinant can be used to evaluate the spatial information. In addition, the determinant is

a real number, and this fact is assured by the covariance matrix. It is theoretically and ex-

perimentally clarified how these properties of the determinant make it useful for frequency

bin selection. Through a BSS experiment, using this method is determined that frequency

bins can be appropriately selected for FDICA. Second, the use of magnitude squared co-

herence (MSC) is proposed to assist in selecting the frequency bins. MSC corresponds to

the normalized cross-correlation coefficients between two microphones. When the shape

of a microphone array is complex, deviation tends to occur between the theoretical model

and the actual properties of the microphone array. If this type of deviation occurs, MSC can

still be calculated experimentally. Therefore, the proposed method employs experimental

MSC to select the frequency bins.

1.5 Structure of this dissertation

In Chapter 2, BSS using FDICA is introduced at first, and for FDICA functions and two

types of target speech processing equipment, computational costs are discussed. Sec-

tion 2.1.1 introduce a signal model and FDICA functions including an update rule of

ICA. Section 2.1.2 introduces a dodecahedral microphone array and the conventional BSS

method using DHMA. Section 2.2 discusses computational costs for each FDICA function.

For an iterative update rule, computational costs are discussed, in addition, faster conver-

gence methods are reviewed. Computational costs of clustering methods are discussed

because permutation solution usually consists of a clustering method. Through the dis-

cussion in Section 2.2, the total computational cost of conventional FDICA is concluded.

Section 2.3 introduces current digital signal processors into which the proposed method

can be implemented, and discusses computational costs for the target speech equipment.

In Chapter 3, for two microphones, a computationally efficient BSS method is proposed.

Section 3.1 introduces motivation and strategy for this research. Section 3.2 presents a fre-

quency bin selection method to reduce computational costs, and also presents a theoretical

analysis of the selection criteria, which is the determinant of a spatial covariance matrix. A

frame-wise Wiener filter is proposed in the same section for source separation in unselected
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frequency bins. Section 3.3 shows experimental results and estimate of computational costs

for the case of two microphones. In Section 3.4, the proposed method is discussed and

summarized.

In Chapter 4, for dodecahedral microphone array (DHMA), a computationally efficient

BSS method is proposed, which utilizes the magnitude squared coherence. Section 4.2

presents the proposed method. In Section 4.2.1 and 4.2.2, the magnitude squared coher-

ence (MSC) is introduced, and its characteristics are investigated experimentally. Introduc-

ing the proposed frequency bin selection in Section 4.2.3, frequency bins are non-uniformly

selected using the experimentally evaluated MSCs. From Section 4.2.4 to 4.2.6, the sub-

space method and ICA in the selected frequency bins are introduced. In Section 4.2.7, the

estimated separation matrices are interpolated to generate interpolated separation matrices

in unselected frequency bins. Section 4.3 shows the experimental results and estimate of

computational costs. In Section 4.4, the proposed method is discussed and summarized for

the BSS method using DHMAs.

Chapter 5 discusses characteristics of the proposed methods, important issues to im-

plement the proposed methods, and remaining issues. The spatial correlation represents

the characteristics of the proposed method. For considering the implementation issues, the

separation performance and the distortion measures are quantitatively discussed to clarify

the evaluated performance, and the estimated computational costs from practical points of

view. Remaining issues, in other words future recommendations, are discussed from the

points which focus on separation matrices in unselected frequency bins and on-line meth-

ods.

Finally, Chapter 6 concludes this dissertation.
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Chapter 2

Computational cost of frequency domain
independent component analysis

BSS using FDICA improves speech quality for both portable and mobile speech commu-

nication equipment, which are usually used under reverberant acoustic conditions. This

chapter briefly introduces conventional FDICA and discusses its computational cost. An

ICA algorithm is an iterative update rule which involves matrix multiplication during every

iteration. With FDICA, the ICA algorithm is applied to every frequency bin, with matrix

multiplication during every iteration. In addition, the scaling and permutation problems

must be solved. The conventional scaling solution involves an inverse operation using the

matrix, and the permutation solution employs a clustering method. Therefore, the number

of operations required is extremely large, and the computational cost of the iterative up-

date rule, the permutation solution and the scaling solution are discussed. It is assumed

that FDICA is implemented within embedded processors, as mentioned in Chapter 1. The

processing performance of embedded processors is currently lower than the computational

cost which conventional FDICA needs, so the performance of current embedded proces-

sors is also discussed in this chapter. A target computational cost is determined by taking

into account the estimated computational cost of FDICA and the performance of current

embedded processors.
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Figure 2.1: Block diagram of conventional FDICA

2.1 Blind source separation using FDICA

2.1.1 Signal processing for FDICA

Figure 2.1 shows a block diagram of FDICA. The observed signals xi(n) are transformed

from the time domain to the frequency domain. n and i represent the sample index and the

microphone number, respectively. In Section 1.2.2, convolutive mixtures were introduced.

In the frequency domain, a convolutive mixture is formulated as:

X(k, l) = A(k)S(k, l), (2.1)

where X(k, l) is an observed signal vector which consists of Xi(k, l). k and l represent the

frequency bin index and the frame index, respectively. S(k, l) is a source signal vector, and

A(k) is the room impulse response in the frequency domain. A(k) is also called the mixing

matrix. Observed signals Xi(k, l) are stored for a designated time period. The stored signals

are used to obtain separation matrix W(k) using the ICA algorithm. In this dissertation, the

iterative update rule [23] is used to obtain the separation matrix, which is formulated as:

Wp+1(k) =Wp(k) − η · off-diag
{
El

[
φ (Y(k, l)) YH(k, l)

]}
Wp(k), (2.2)
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Figure 2.2: Block diagram describing bin-wise process which is the separation matrix esti-

mation of FDICA. An iterative update algorithm is performed, and the scaling problem is

solved in each frequency bin 1, 2, · · · ,NB. Separation matrices for all frequency bins are

input into a permutation solution. X(k, l) and Y(k, l) denote observed and separated signals.

k and l are the frequency bin and frame indexes. Wp(k) denotes a separation matrix, and p

represents an iteration number. The separation matrix finally obtained is denoted as W(k).
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where p is an iteration number, and η is a step-size. off-diag(·) denotes the operator at which

all diagonal elements are set to zero. φ(·) denotes a nonlinear function which is described in

the next paragraph. The scaling and permutation problems are solved for separation matrix

W(k) after the convergence of the iterative updates. The scaling and permutation solutions

are discussed in this section and in 2.2.4. Applying the separation matrix to the observed

signals, the separated signals can be represented as:

Y(k, l) =W(k)X(k, l), (2.3)

where Y(k, l) is a separated signal vector.

In Eq.(2.2), φ(·) denotes a nonlinear function. For sound source separation using

FDICA, the nonlinear function is usually a sigmoid function such as a complex hyper-

bolic tangent in the Cartesian coordinate or the polar coordinate [36]. The sign function

sgn(·) is the most computationally efficient sigmoid function, and it extracts the sign of

a real number. Because we are trying to develop a BSS method with low computational

cost, the sign function is likely to be the most appropriate sigmoid function. The nonlinear

function φ(·) is defined as:

φ(Y) ≡ sgn (Re{Y}) + j sgn (Im{Y}) , (2.4)

where Re{·} and Im{·} denote the real and imaginary parts of a complex number, respec-

tively.

A bin-wise FDICA procedure is shown in Figure 2.2. The scaling problem is solved in

every frequency bin. One common scaling solution is the projection method [37]. The

scale of the separation matrix is corrected by the calculation of diag{W−1(k)}W(k) or

diag{W+(k)}W(k) by the projection method. diag(·) is the operator which retains the di-

agonal elements, but which sets all of the other elements to zero. (·)−1 and (·)+ represent

the inverse matrix and the pseudo-inverse matrix, respectively. The permutation problem

can be solved for all the separation matrices in all the frequency bins, and for all the sep-

arated signals. Clustering methods, such as generalized Lloyd’s algorithms [38], k-means

clustering, or hierarchical clustering [2] are common permutation solutions.
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Figure 2.3: Dodecahedral microphone array (DHMA). The diameter of the microphone is

about 7 cm. Microphones can be installed on ten faces, excluding the top and bottom. Six

microphones were installed for the experimental evaluation.

2.1.2 Portable microphone arrays and blind source separation

Dodecahedral microphone array

Use of a dodecahedral microphone array (DHMA) [1, 2] has been proposed for portable

speech communication equipment. In this section, DHMAs are briefly described. Fig-

ure 2.3 shows a DHMA. Microphones are installed on ten faces, excluding the top and

bottom faces. Sixteen holes appear on each face of the DHMA. Even though DHMAs can

be small and portable, up to 160 microphones can be installed. The acoustic properties of

DHMAs are different from those of spherical microphone arrays regarding sound pressure

levels, arrival times and the influence of diffraction waves, for example. For the experimen-

tal evaluation in Chapter 4, six small, omni-directional microphones (SONY ECM-77B)

were installed on each face of a DHMA. The total number of microphones used was sixty.

Because it is difficult to adjust a large number of microphones, microphone gains were

adjusted manually in our BSS using a DHMA experiments.
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Figure 2.4: Block diagram of previously proposed BSS method using a DHMA [1, 2].

Before estimating the separation matrix, the number of source signals is estimated using

eigenvalues, and the subspace matrix is estimated using eigenvectors. Hierarchical clus-

tering corrects the permutation problem by making clusters corresponding to direct and

reflected sources.



Blind source separation using a DHMA

FDICA has been proposed for BSS using DHMAs [1, 2]. A block diagram of the process

is shown in Figure 2.4. DHMAs are used when there are reverberant acoustic conditions.

Room impulse response (RIR) in an enclosed reverberant space is composed of three basic

components: the direct sound signal, the early reflections of the signals, and late rever-

berations of the signals. Direct sound consists of the direction of arrival and the distance

between a sound source and a microphone. Reflected sounds can be identified using the

image source method, which is mainly influenced by the properties of the walls and the

size of the room. In addition, reflected sounds can arrive from any direction. Regarding

microphone array techniques, a larger number of microphones increases flexibility, allow-

ing their use under a wider variety of acoustic conditions. Beamforming, also known as

spatial filtering, is one microphone array technique. ICA can be categorized an adaptive

beamforming technique [39]. The concept of the microphone array technique is similar

to the sampling technique for the temporal signal. Microphone distances correspond to

sampling intervals, so that shorter distance allows higher spatial frequency. Microphone

positions correspond to sampling points, so that larger number of the microphones allows

more precise filter shape. When a microphone array uses a large number of microphones,

its spatial resolution is high. This means that the beam can become very narrow. In other

words, beamforming can capture direct and reflected sounds separately. A common micro-

phone shape for capturing multi-directional sound is a sphere, allowing it to capture sound

from any direction. The shape of a DHMA is similar to a sphere, allowing it to also cap-

ture sound from any direction. The separation matrix of FDICA corresponds to the inverse

mixing matrix, and this separation matrix also includes spatial information. Therefore, BSS

using a DHMA can capture sound directionality via the beamforming technique, allowing

it to describe the acoustic conditions.

DHMA has two remarkable merits as a microphone array technique: differences in

amplitude on its different faces, and spatial aliasing. Generally, larger distances between

microphones leads to larger differences in sound pressure. Sound pressure differences for

DHMAs are greater than for spherical microphone arrays at frequencies above 6 kHz, as

was experimentally confirmed by Ogasawara [1, 2]. The sound pressure on the side of a
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DHMA facing a sound source is high, while the pressure on the opposite face is low, and

the amplitude difference corresponds to the difference in sound pressure. Therefore, the

first merit of DHMAs is that they enlarge amplitude differences. Second, spatial aliasing is

unlikely when using a DHMA. The distance between microphones on the same face of a

DHMA is very small, which allows for high spatial frequency.

The characteristics of DHMAs and their use in BSS have been fully described in [1,2].

Therefore, BSS using DHMAs is only briefly introduced here and in Chapter 4. BSS meth-

ods using DHMAs are assumed to be operating in an overdetermined condition, which

means that the number of microphones exceeds the number of source signals. In the fre-

quency domain, the number of sources is estimated using the eigenvalues of the spatial

covariance matrix. A threshold is calculated for the eigenvalues in order to project the ob-

served signals onto the subspace signals. The signals in the signal subspace are used for

FDICA to obtain the separated signals. The scaling problem is solved by the projection

method after obtaining the separation matrix. The permutation problem is solved using

hierarchical clustering. The enlarged differences in amplitude of a DHMA are used by the

permutation solution, along with direction of arrival (DOA), as the similarity measures to

be evaluated by the clustering method. In addition, this method does not require any prior

information, for example, the number of sound sources or source locations. Hierarchical

clustering involves high computational costs due to the large number of similarity com-

parisons. When using a DHMA, similarities are calculated for all the transfer functions,

the number of which depends on the number of microphones and the number of frequency

bins.

2.2 Discussion of computational costs for FDICA

2.2.1 Processing functions for FDICA

In Section 2.1.1, the FDICA algorithm was briefly introduced. FDICA mainly consists of

the following functions:

• Time-frequency transformation,
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• Iterative update algorithm to obtain the separation matrix,

• Separation in the frequency domain,

• Scaling solution,

• Permutation solution.

In this section, the computational costs of FDICA are estimated to assess its practical fea-

sibility. In the case of mobile devices, two microphones are assumed because this is the

smallest possible microphone array. Iterative updating and clustering involve higher com-

putational costs in this situation, than do the other functions. In the case of portable equip-

ment, a DHMA is assumed, and application of the subspace method is an additional func-

tion whose computational cost must be evaluated in addition to the usual FDICA functions.

The expressions used when evaluating computational cost are defined as follows:

• NM: the number of the microphones,

• NF: size of the fast Fourier transform (FFT),

• NL: the number of frames,

• NB: the number of frequency bins,

• NI: the number of iterations of ICA update rule.

Number of frames NL represents the length of time the observed signals are stored. NL

depends on the shift size of the short-time Fourier transform (STFT). NB depends on the

size of the FFT NF . If all the frequency bins are used, NB = NF/2 + 1.

In the following sections, the computational cost of each function of FDICA are dis-

cussed. After discussing each function, the overall computational cost of FDICA is dis-

cussed.
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2.2.2 STFT and the separation process

The complexity of the FFT is known asO(n log2 n), and n represents FFT size. FDICA uses

forward and inverse STFTs for each microphone signal, so that the number of operations

depends on the values of the variables of:

2 × NM × NL × NF × log2 NF . (2.5)

Signal separation requires matrix multiplication, the complexity of which is O(n3)

where n represents the order of a square matrix. Matrix multiplication occurs in each frame

and each frequency bin. The separation process depends mainly on matrix multiplication

in a frame, so that computational cost depends on the values of the variables of:

N3
M × NB. (2.6)

In the frequency domain, all values are complex numbers. Since two real numbers are

needed to store a complex number, each multiplication requires the multiplication of four

of real numbers.

2.2.3 Iterative update and faster convergence methods

The number of operations required to execute the iterative update rule of FDICA depends

on NB and the values of the other variables of:

N3
M × NB × NL × NI , (2.7)

Iterative update in ICA includes matrix multiplication, the number of multiplication op-

erations of which is N3
M. Note that each matrix element is a complex number because

updating is performed in the frequency domain. As mentioned above, multiplication of

complex numbers corresponds to four multiplication operations with real numbers. NM de-

pends on the system requirements of the speech processing equipment being used, so that

NM cannot be easily changed. NL affects the estimation accuracy of the separation matrix.

Higher values of NL result in more accurate separation matrices. This means that lower
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values for NL are not an optimum choice for good separation performance. Therefore, re-

ducing NM and NL are not good options. In contrast, NB and NI can easily be varied to

reduce computational cost.

Research proposing the reduction of NI has already been published, and the number

of operations has been successfully restrained by Osako [40], Ema [41], Tachibana [42]

and so on. However, reduction of NB is a task which still remains, as it has not been well

researched. Reducing NB works with reducing NI simultaneously, so that reducing NB is

also beneficial for the algorithms to reduce NI . In addition, reducing NB not only reduces

the number of required operations but also reduces the amount of memory consumption

required.

For faster convergence of FDICA, Osako proposed that a limited number of frequency

bins be used at the beginning of the iterative update stage [40], and that the number of bins

be gradually increased in relation to the number of iterations. This method aims at reduc-

ing the total number of operations. The frequency bins are selected uniformly, according

to which separation matrix is being estimated, and the iterative update is divided into sev-

eral stages. The number of frequency bins increases uniformly, stage-by-stage, and this

increase continues until all the frequency bins are selected. The resulting separation matrix

corresponds to the coefficients of an adaptive beamformer [39]. In the selected frequency

bins, the directions of arrival (DOA) of the source signals are estimated using the estimated

separation matrix. The beamformer coefficients are calculated using the estimated DOAs

in the unselected frequency bins, and then used as the initial separation matrix for itera-

tive updates in the next stage. This stage-by-stage processing method involves additional

operations, consisting of DOA estimation and calculation of the initial separation matrix,

however the total number of operations is restrained.

To achieve faster FDICA convergence, Ema proposed that the number of signals be es-

timated from the observed signals, and that two different iterative update rules be used [41].

In each frequency bin, DOA was estimated using the normalized phase differences of the

observed signals. The number of source signals was then evaluated using a histogram of

the estimated DOAs. If the number of source signals is sufficient in one frequency bin, the

separation matrix is estimated using the first iterative update rule. For the frequency bins in
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which the separation matrix is not estimated, a second iterative update rule is applied to es-

timate the separation matrix. In those bins, the number of the source signals is insufficient,

so that the separation matrix may not converge on an optimal solution by the first rule. The

second rule includes the separation matrix from the neighboring frequency bin, which was

estimated using the first rule. The number of iterations needed when using the second rule

is smaller than when using the first rule, because the included separation matrix works as

the suboptimal solution. Therefore, the total number of iterations is restrained, and this

means that the total number of operations is restrained.

Tachibana [42] proposed the combination of a closed-form ICA algorithm and a con-

ventional ICA algorithm to achieve faster convergence. The closed-form ICA algorithm

is used to obtain a “better” initialization of the separation matrix, while the conventional

ICA algorithm consists of higher-order statistics. This means that local optimal solutions

exist, in other words, that separation performance depends upon the initialization method.

ICA can be solved to be a closed-form expression by using second-order statistics (SOS).

Closed-form ICA is a very effective method of obtaining a separation matrix [43], however

closed-form ICA is inferior to higher-order ICA with respect to separation performance.

The separation matrix created using closed-form ICA can be expected to correspond more

closely to the global optimal solution. Therefore, closed-form ICA can be used to obtain

the initial matrix for higher-order ICA. This combination achieves faster convergence of

the separation matrix, and results in restraining the total number of the iterations, and thus

the total number of the operations.

The amount of memory consumption required can be estimated as:

NM × NB × NL. (2.8)

NM and NL cannot be easily reduced, for reasons which will be explained in this section,

however NB can be reduced. Note that two real numbers are needed to store a complex

number, and that an observed signal is a complex number in the frequency domain. This

fact must be kept in mind when estimating the amount of memory space required. NB tends

to be the largest number in Eq. (2.8). For example, the parameters of FDICA might be:

• the length of the observed signals is three seconds for ICA,
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• the sampling frequency is 8 kHz,

• the window and FFT size are 1,024,

• the shift size is 256.

In this case, NL is 94 and NB is 513. NM is the number of the microphones, which in

the case of mobile devices could be two, while in the case of portable equipment using a

DHMA could be up to 160. The size of the FFT should depend on length of the room im-

pulse response (RIR), and RIR length is generally long under reverberant conditions. For

example, let’s consider a typical meeting situation with a few people in a reverberant room.

Assuming the room is less than ten meters long, reverberation time could be up to 500

milliseconds. When FFT size is 1,024, RIR length can be up to 128 milliseconds, corre-

sponding to the length of the FIR filter. In other words, the shortest RIR length is assumed.

Sound absorption on the walls change the reverberation time. Usually, the anechoic condi-

tion is not preferable to talk because the acoustic feedback helps to control volume of the

voice. On the other hand, rich reverberant conditions are difficult to catch the voice from

other people in the meeting rooms. 128 milliseconds are almost quater of 500 milliseconds

as the reverberation time, and this condition can be considered as the shortest reverberation

time to process FDICA. Therefore, NB is the main factor determining required memory

consumption.

2.2.4 Permutation solution and clustering methods

In Section 1.2.2, the issue of the permutation problem was introduced, which refers to

ambiguity in the order of the separated signals. For example, assume that FDICA is being

applied to two sources, named A and B, and that the correct order is “A, B” in frequency

bin k1. If the permutation problem does not occur, the order of the separated signals will

not change. However, the order of the separated signals may switch to “B, A” in frequency

bin k2 due to the permutation problem. If the permutation problem is not solved, separation

performance will deteriorate.

Various methods have been proposed to solve the permutation problem, and they can be
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broadly classified into two groups: correlation methods and clustering methods. Correla-

tion methods evaluate the correlation between two separated signals in different frequency

bins [25, 26, 44, 45]. The two bins must be close to each other because there must be

high correlation between the target signals in each bin. Similar temporal changes in two

signals implies that the signals were generated by the same source. But if two different

signals are mixed, they will exhibit irregular changes over time. Clustering methods place

separation coefficients into groups, which are classified by their DOA, or their directivity

when using the beamforming technique [39, 46]. The mixing matrix can be obtained using

the inverse or pseudo-inverse of the separation matrix. The mixing matrix represents the

group of transfer functions from the source positions to the microphone positions. In other

words, the coefficients of the separation matrix correspond to the coefficients of the beam-

formers. A generalized Lloyd’s algorithm [47] has been used to make clusters of transfer

functions [39]. Note that Lloyd’s algorithm is equivalent to the k-means method [48].

Grouping the transfer functions effectively solves the permutation problem by using the

k-means method [49]. To achieve a flexible and accurate clustering method, agglomerative

hierarchical clustering [50] has also been applied to solve the permutation problem [51].

Hierarchical clustering does not require designating the number of clusters, which is ben-

eficial in situations in which the number of the source signals is unknown. Note that BSS

using a DHMA, as described in Section 2.1.2, uses hierarchical clustering as its permuta-

tion solution. Various methods have been proposed using the same concept; the coherency

of the separation matrices in adjacent frequency bins was used to evaluate source locations

by Asano [27]. Source locations are equivalent to DOA. Pham evaluated the continuity of

the frequency response of the mixing matrices [52–54]. In adjacent frequency bins, the

product of the separation and inverse separation matrices should be nearly diagonal when

the permutation problem does not occur. Nesta has proposed using evaluation of the conti-

nuity of the phase response as a permutation solution [55–57]. In the time domain, the time

difference for a signal is only described by the unitary value, which contains only the time

value and does not contain any other values. In the frequency domain, the phase response

is expressed by the time difference, but the phase includes the frequency value and varies

according to the frequency. The relationship between time difference and phase is linear,

so that the phase response has continuity. Combination of the correlation and clustering
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methods has also been proposed [58]. Speech signals generally include harmonic compo-

nents, so Sawada proposed a combination of harmonic correlation and directivity, based on

the pseudo-inverse of the separation matrix [59]. The clustering method compares clusters,

calculating the similarity or distance between two samples. Similarity must be calculated

for all combinations of the two samples, therefore computational cost becomes a serious

issue when a clustering method is used.

Another approach, permutation-free ICA, has also been studied [60,61], “free” meaning

that a permutation solution is not needed. Permutation-free ICA collects the separation

matrices in all the frequency bins, and the collected matrices become elements of one huge

matrix. This huge matrix is iteratively updated using an ICA algorithm. The permutation

problem of FDICA is caused by the assumption of independence between the different

frequency bins, but a single huge matrix avoids this independence assumption. However,

the size of the matrix becomes an issue from the viewpoint of computational cost, because

ICA algorithms involve matrix multiplication, resulting in an extremely large number of

operations due to the huge size of the matrix. In addition, required memory consumption

is much larger than for methods in which the separation matrices are not collected.

Another ICA algorithm which does not require a permutation solution, known as TRINI-

CON (Triple-N ICA for convolutive mixtures), uses joint diagonalization of second-order

statistics (SOS) [28,62–64]. Discrete Fourier transformation (DFT) is included in the itera-

tive update process of TRINICON, in order to avoid the need for a permutation solution. In-

verse and forward DFTs are calculated for the separation matrices every several iterations.

Between two transformations, namely in the time domain, aliasing is attenuated for the

impulse responses. The inverse of the separation matrix is the same as the group of transfer

functions mentioned in this section, and in the time domain these transfer functions are

expressed as impulse responses as well. The Fourier transform combines the coefficients in

the different frequency bins and in the different time indexes. These processes prevent the

complete decoupling of the frequency bins usually caused by the bin-wise independence

assumption. This is why a permutation solution is not required when using inverse and

forward DFTs during the iterative update process. Note that the same signal processing

technique is used in the field of adaptive filter research. Although TRINICON does not
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require a permutation solution, using DFTs as TRINICON does is computationally disad-

vantageous. Skipping several iterations in order to reduce computational cost is a common

method, but unsolved permutations may still remain. Ideally, the inverse and forward DFTs

must be applied at every iteration. Other methods have been proposed which use DFTs at

every iteration [65–68]. If bin-wise independence was assumed when using TRINICON,

in other words if DFTs were not used during iterative updates, then a permutation solution

for TRINICON would be necessary [63].

The BSS method proposed in this dissertation selects frequency bins for processing

in order to reduce computational costs. Selection of specific frequency bins can be done

only under the assumption of bin-wise independence. In addition, the correlation method

cannot be used because our selection method does not allow signal correlation between dif-

ferent frequency bins. Therefore, using the proposed method, FDICA needs a permutation

solution, and only the clustering method can be used.

The complexity of the clustering method depends on the number of elements, clusters,

and similarity calculations. The optimal complexity of agglomerative hierarchical cluster-

ing is known as O(n2) [50] where n represents the number of data points. In the case of

FDICA, the number of data points depends on the total number of transfer functions in

all of the frequency bins. The pseudo-inverse of the separation matrix corresponds to the

mixing matrix, and the column vectors represent the transfer functions in the mixing ma-

trix. The inner product between two column vectors can be calculated to evaluate similarity

for the clustering method. This means that NM multiplications are required for a similar-

ity calculation. The number of operations for hierarchical clustering can be calculated as

follows:

N4
M × N2

B. (2.9)

Note that NM usually depends on the specification of the speech processing equipment, so

reducing NM is not a good option. Therefore, only the number of frequency bins (NB) can

be reduced in Eq. (2.9). If NM is large, then the number of operations in the permutation

solution also becomes large. Since reducing NM is not a good option, reducing NB in the

clustering method is another quite feasible method of reducing computational cost.
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The k-means method has been discussed in previous paragraphs, and it can also be

used as a permutation solution. The disadvantage of using k-means is that the number

of clusters must be fixed in advance. However, this method can be applied with mobile

devices. Because mobile devices must be small, the number of microphones tends to be

small, therefore system requirements can be used to set a fixed number of source signals

for mobile devices. The complexity of k-means is O(niten) where nite is the number of the

iterations for k-means. The number of the operations can be calculated as:

nite × N2
M × NB. (2.10)

This is less than the number of operations required for hierarchical clustering, which means

that k-means is more appropriate for mobile devices, because computational costs need to

be lower.

2.2.5 Scaling solution

The scaling problem refers to ambiguity in the amplitudes of the separated signals. Ampli-

tudes may vary for each source and among different frequency bins, and amplitude scaling

ambiguity distorts the results of the ICA algorithm. The scaling problem can be solved

using the projection method [37] which employs the pseudo-inverse of the separation ma-

trix. Unexpected amplitude scales are included in the separation matrix just after the ICA

algorithm has converged. The projection method is calculated using the separation matrix

W(k) and its pseudo-inverse W+(k) as follows:

diag
{
W+(k)

}
W(k). (2.11)

The pseudo-inverse includes the reciprocal values of the unexpected scales, which is why

the projection method can solve the scaling problem. This pseudo-inverse matrix is respon-

sible for most of the computational cost of the projection method.

The computational cost of obtaining an inverse matrix is known to be large, in gen-

eral. The complexity of the pseudo-inverse can be evaluated using eigenvalue decom-

position, because the pseudo-inverse can be calculated with singular value decomposition.

28



Eigenvalue decomposition can be calculated using the Householder method and the implicit

shifted QL method [69]. Singular value decomposition can be calculated using the same

method used for eigenvalue decomposition. The Householder method requires (4/3)n3 op-

erations, and the implicit shifted QL method requires 3n3 operations. These methods are

matrix operations, and n represents the number of elements in a row or column of a square

matrix. ICA assumes that the number of source signals equals the number of microphones:

n equals NM. FDICA obtains the NM × NM separation matrix for all of the different fre-

quency bins. Therefore, the number of the operations required for the projection method

can be estimated as:

{
(4/3) N3

M + 3N3
M

}
× NB = (13/3)N3

MNB. (2.12)

2.2.6 Total computational cost of conventional FDICA

The number of operations required for each component of FDICA have been discussed in

previous sections. They are listed as follows:

• STFT: 2 × NM × NL × NF × log2 NF ,

• Separation: N3
M × NF ,

• Iterative update: N3
M × NB × NL × NI ,

• Scaling solution: (13/3)N3
M × NB,

• Permutation solution (k-means): 10 × N2
M × NB

OR

• Permutation solution (hierarchical clustering): N4
M × N2

B,

where the number of k-means iterations (nite) is assumed to be ten for the estimation of com-

putational cost. Only STFT does not include a term which is a power of NM, thus the other

functions have higher computational costs than STFT. For conventional FDICA, the num-

ber of frequency bins (NB) equals NF/2+1. Because ICA algorithms optimize higher-order

29



statistics which can only be accurately calculated using a large amount of data, a meaning-

ful number of frames (NL) is over a few seconds. NL and NI are positive numbers, and they

are usually larger than at least ten. For the separation function and the scaling solution, the

number of operations can be approximated as 2N3
MNB and (13/3)N3

MNB, respectively, thus

the iterative update function has a higher computational cost. If the permutation solution

used is k-means, iterative update is the dominant function with respect to computational

cost, because of NLNI > 10 and N3
M > N2

M. If the permutation solution used is hierarchical

clustering, iterative update and permutation solution functions are dominant with respect

to the computational cost. The parameters NB, NL and NI determine which function is

dominant.

2.3 Properties of current embedded processors and target

computational cost

2.3.1 Review of current embedded processors

For speech signal processing, digital signal processors are more appropriate than micropro-

cessors with embedded speech processing functions, for reasons, which are its architecture

and real-time speech signal processing, explained in Section 1.3. The operating frequency

of the latest DSPs is over 1-GHz, and they have multiple arithmetic units. For example,

the Texas Instruments TMS320C6678 has eight cores, and can achieve a peak performance

of 160 GFLOPS at an operating speed of 1.25-GHz. Each core can calculate eight mul-

tiplications per cycle using a pipeline operation. The TMS320C6678 is very expensive,

however, and consumes large amounts of electrical power, about 20 watts at maximum

capacity. This means that high-performance DSPs such as the TMS320C6678 are not prac-

tical for mobile devices, but can be an appropriate choice for portable equipment. Portable

equipment can be taken anywhere due to its small size, and the electric power supply can

be an AC power outlet, because this sort of speech communication equipment is usually

used in meeting rooms. If many DSPs were used in the same piece of equipment, its size

would increase, jeopardizing its portability. If only one high-performance DSP were used

in a portable speech device, then it would be small enough to carry anywhere. Therefore,

30



the target computational cost of portable equipment can be considered to be 160 GFLOPS,

based on using a single, high-performance DSP.

On the other hand, low-power DSPs such as the Texas Instruments TMS320C55x are

also available. Its electric power consumption is several tens of milliwatts, making it quite

appropriate for use in mobile devices. In recent years, battery capacities have increased,

with a current capacity of around 2,000 mAh for consumer products. High-performance

DSPs operate at 1.5 volts for a core unit, so even with a large capacity battery, they could

only operate for about 9 minutes on a mobile device, which is insufficient for teleconfer-

encing. However, in the near future operating time will probably increase, because future

high-performance DSPs are expected to consume less electric power. In addition, battery

capacity will also probably increase. On the other hand, mobile devices are used to run

many rich functions, such as graphical user interfaces, GPS, etc. The power consumption

of these functions is not a negligible issue, but these functions contribute to the usefulness

and desirability of these devices, so removing them is not an option. Therefore, high-

performance DSPs probably cannot be used in mobile devices, due to power consumption

issues. For these reasons, use of low-power DSPs in mobile devices is a better option, how-

ever signal processing performance is much lower than with high-performance DSPs. The

operating speed of low-power DSPs is a few hundred MHz, and the number of multiplica-

tion units is only one per cycle, in contrast to the multiple units of high-performance DSPs.

Therefore, computational performance of low-power DSPs corresponds to their operating

frequency: a few hundred MFLOPS. This can give the target computational cost for mobile

devices: 200 MFLOPS.

Most DSPs have fast internal memory, which can be accessed without wait states, how-

ever this memory is very small due to its expense. This internal memory can be used to

help estimate target required memory consumption. The internal memory size per core of

the TMS320C6678 is 512 kBytes. FDICA must store the observed signal to estimate the

separation matrix. For example, when the number of microphones (NM) equals two, over

800 kBytes of memory is required. An example of the calculation of the required memory

is as follows:

• observed signal length: 3 seconds,
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Table 2.1: Target computational costs estimated by the target equipment and appropriate

DSPs

mobile portable

Number of operations 160 GFLOPS 200 MFLOPS

Memory consumption
depend on balance of system requirements

and algorithm performance

• number of the microphones NM: 2,

• 16-bit for one sample,

• 8 kHz sampling frequency.

Thus the required amount of memory exceeds the size of the internal memory, which means

that the size of the internal memory is insufficient for storing the observed signals. In

addition, internal memory is designed to be used as working memory, not as storage. But

the internal memory is sufficient for algorithms requiring high level computation, such

as FFT or matrix calculation. Let’s look at another example, in which there are a large

number of microphones. Required memory consumption grows to over 12 MBytes when

performing BSS with a DHMA with sixty microphones. Therefore, an external memory

must be used to store the observed signals. However the required wait states of external

memories are a serious issue, as mentioned in Section 1.3.

Low memory consumption helps to restrain the total number of required wait states

during external memory access. This means that reducing memory consumption improves

the feasibility of performing FDICA with embedded processors. If the sampling frequency

is higher than 8 kHz, required memory consumption must be increased to store the observed

signals. Wait states are a very practical signal processing issue, however this problem

tends to be overlooked. While lower memory consumption is preferable, target required

memory consumption depends a great deal on the balance between system requirements

and algorithm separation performance, so that it is difficult to designate a target value. As

a consequence, target computational costs, discussed in this section, are listed in Table 2.1.
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Table 2.2: Estimated computational costs of conventional FDICA with two microphones

Method Complexity

STFT (forward & inverse) 4NLNF log2 NF

Iterative update of separation matrix 4NINLNF

Scaling solution using projection method 17NF

Permutation solution using k-means clustering 20NF

Total
[{

4 log2 NF + 4NI
}

NL + 37
]

NF

2.3.2 Examples of computational costs for BSS using conventional FDICA

Mobile devices with two microphones

In this section, we assume the use of a small mobile device with two microphones, which is

the smallest possible microphone array. The number of source signals should also be small,

so a fixed number of source signals and microphones is assumed. These assumptions are

reasonable because the device is small, and the number of users is almost always two. Be-

cause mobile devices are usually operated with a small battery, k-means is an appropriate

permutation solution, because its computational cost is lower than that of hierarchical clus-

tering, and because the number of the clusters is fixed. Table 2.2 shows an example of

the number of operations required. To simplify the numbers in the comparison, NB and

(13/3)N3
M/2 are approximated as NF/2 and 17, respectively, in the estimate. The dominant

computational cost can be either STFT or the iterative update. If the number of iterations

is larger than the logarithm of FFT size, that is NI > log2 NF , then iterative update becomes

the dominant computational cost.

If the values used are as follows:

• FFT size: 1024,

• number of frames: 100,

• number of iterations: 200,
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Table 2.3: Examples of computational costs for the functions of conventional FDICA with

two microphones, for the different sizes of FFT under the 8–kHz sampling frequency

Function
FFT size

512 1024 2048 4096

STFT 13.86 15.40 16.94 18.09

Iterative update 308.02 308.02 308.02 301.47

Scaling solution 0.03 0.07 0.14 0.28

Permutation solution (k-means) 0.04 0.08 0.16 0.33

Note: The unit of computational costs is mega-operations.

then the total number of operations is about 80 mega-operations. Note that about 100

frames corresponds to about three seconds at a sampling rate of 8–kHz, with 256 samples

as the shift length of STFT. When the sampling frequency is 8–kHz, log2 NF equals 10,

and the iterative update is the dominant cost. If the sampling frequency is 48–kHz, the

appropriate FFT size is over 8192: log2 NF = 13. Additionally, four multiplication opera-

tions are needed per complex number, which means that in this example the total number

of operations becomes about 320 mega-operations.

For the different sizes of FFT, the examples of estimated computational costs for the

FDICA functions is shown in Table 2.3 and Table 2.4. These examples include the influ-

ence of the multiplication of two complex numbers. Table 2.3 is under that the sampling

frequency is 8–kHz, and Table 2.4 is under that the sampling frequency is 48–kHz. The

sizes of FFT are chosen by considering similar time lengths for two different sampling

frequencies.

Figure 2.5 and Figure 2.6 show the ratio of the computational costs between FDICA

functions. It is clearly recognized tha the iterative update is always the dominant computa-

tional cost of FDICA, for the case of two microphones which assumes the mobile devices.

The iterative update includes the numbers, NI, NL and NF in Table 2.2. As discussed in

Section 2.2.3, reducing NI is not preferable from the viewpoint of the estimation accuracy,
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Figure 2.5: The ratios of estimated computational costs for the conventional FDICA with

two microphones under the different FFT sizes and that the sampling frequency is 8–kHz.

Even though four functions are shown, it is very easy to recognize that the iterative update

function is dominant.

Figure 2.6: The ratios of estimated computational costs for the conventional FDICA with

two microphones under the different FFT sizes and that the sampling frequency is 48–kHz.

Even though four functions are shown, it is very easy to recognize that the iterative update

function is dominant.



Table 2.4: Examples of computational costs for the functions of conventional FDICA with

two microphones, for the different sizes of FFT under the 48–kHz sampling frequency

Function
FFT size

2048 4096 8192 16384

STFT 101.29 110.89 119.28 128.45

Iterative update 1,841.56 1,848.12 1,835.01 1,835.01

Scaling solution 0.14 0.28 0.56 1.11

Permutation solution (k-means) 0.16 0.33 0.66 1.31

Note: The unit of computational costs is mega-operations.

and the researches for reducing NI have been reported and work properly. Therefore, the

estimation examples give insight again which limiting the number of the frequency bins is

a reasonable way for reducing the computational cost, that is discussed in Section 2.2.3 as

well.

Portable equipment with DHMAs

When using BSS with a DHMA, an additional step, which utilizes the subspace method, is

required to estimate the number of source signals. A block diagram of the process is shown

in Figure 2.4 in p. 17. The number of source signals is estimated using a threshold operation

on the eigenvalues of the spatial covariance matrix. The subspace matrix consists of the

eigenvectors related to the eigenvalues which exceed the threshold. The subspace matrix is

applied to the observed signal to extract the subspace signals. Eigenvalue decomposition

(EVD) is the dominant computational cost when using the subspace method. EVD can be

calculated using the Householder method and the implicit shifted QL (ISQL) method [69].

The number of operations required for the Householder method can be represented as n3.

The number of operations required for the ISQL method can be represented as (13/3)n3.

An example estimation of the number of the operations required for BSS using a DHMA

is as follows:
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Table 2.5: Estimated computational costs of conventional FDICA with DHMAs

Method Complexity

STFT (forward & inverse) 120NLNF log2 NF

Covariance matrix 1800NLNF

Eigenvalue decomposition 4.64 × 105 NF

Subspace method 600NLNF

Iterative update of separation matrix 4000NLNINF

Scaling solution 4.64 × 105 NF

Permutation solution (hierarchical clustering) 2.03 × 105 N2
F

Total
[{

120 log2 NF + 4000NI + 2400
}

NL+

2.03 × 105NF + 9.28 × 105
]

NF

• NQ: order estimation of the subspace,

• NK(k): the number of separated signals in each frequency bin k,

• N K̃: the average number of separated signals.

Reverberant conditions exist when the sound signal consists of both direct and reflected

sounds. Reflected sound is also known as the “virtual source” when using the image source

method. The number of direct and reflected sounds is greater than the number of direct

sounds, i.e., the number of source signals. Therefore, if assuming that reverberant condi-

tions exist, the order of subspace NQ is less than NM, and NQ should be greater than NK(k).

The permutation solution depends on the total number of transfer functions, thus, the sub-

space method influences the permutation solution. NK(k) varies among the frequency bins.

Assuming a constant value for NK(k) is very difficult because the number of direct and re-

flected sounds depends not only on acoustic conditions, but also on the frequency region

of the signals. To simplify the computational cost estimation, the average value of NK(k)

is used, which is N K̃ . The k-means method requires that the number of the clusters be
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Table 2.6: Examples of computational costs for the functions of the BSS method using

DHMAs, for the different sizes of FFT under the 8–kHz sampling frequency

Function
FFT size

512 1024 2048 4096

STFT 0.42 0.46 0.51 0.54

Covariance matrix 0.69 0.69 0.69 0.68

Eigenvalue decomposition 0.95 1.90 3.80 7.60

Subspace method 0.23 0.23 0.23 0.23

Iterative update 308.02 308.02 308.02 301.47

Scaling solution 0.95 1.90 3.80 7.60

Permutation solution (hierarchical clustering) 212.86 851.44 3,405.77 13,623.10

Note: The unit of computational costs is giga-operations.

defined in advance, but the hierarchical clustering method does not have this requirement.

Therefore, hierarchical clustering is the appropriate permutation solution for BSS using a

DHMA.

The number of operations for each process are calculated as follows:

• STFT (forward & inverse) : 2NMNLNF log2 NF

• Covariance matrix : N2
MNLNB,

• Eigenvalue decomposition : (13/3)N3
M

• Subspace method : NQNMNLNB,

• Iterative update of separation matrix : N3
QNLNINB

• Scaling solution (hierarchical clustering) : {NMN K̃NB}2
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Figure 2.7: The ratios of estimated computational costs for the BSS method using DHMA

under the different FFT sizes and that the sampling frequency is 8–kHz. Even though seven

functions are shown, the permutation solution is the dominant cost for larger FFT sizes. For

smaller FFT size, however, the iterative update is dominant.

Figure 2.8: The ratios of estimated computational costs for the BSS method using DHMA

under the different FFT sizes and that the sampling frequency is 48–kHz. Even though

seven functions are shown, the permutation solution is the dominant cost for larger FFT

sizes. For smaller FFT size, the permutation solution is still dominant, however the iterative

update becomes not negligible.



Table 2.7: Examples of computational costs for the functions of the BSS method using

DHMAs, for the different sizes of FFT under the 48–kHz sampling frequency

Function
FFT size

2048 4096 8192 16384

STFT 3.04 3.33 3.58 3.85

Covariance matrix 4.14 4.16 4.13 4.13

Eigenvalue decomposition 3.80 7.60 15.20 30.41

Subspace method 1.38 1.38 1.38 1.38

Iterative update 1,841.56 1,848.12 1,835.01 1,835.01

Scaling solution 3.80 7.60 15.20 30.41

Permutation solution
3,405.77 13,623.10 54,492.40 217,969.59

(hierarchical clustering)

Note: The unit of computational costs is giga-operations.

NM is sixty which means six microphones on each face of the DHMA as described in

Section 2.1.2. If NQ and N K̃ are assumed to be one-third and one-fourth of NM, respec-

tively, then the number of operations shown in Table 2.5 can be revised. The size of the

FFT (NF) should be chosen based on reverberation time, which is usually a few hundred

milliseconds in meeting rooms, for example. If the sampling frequency is 8–kHz, the size

of the FFT should be larger than 1,024 samples, which corresponds to 128 milliseconds.

If NF ≥ 1024 is satisfied, hierarchical clustering becomes the predominant computational

cost. If NF = 1024 is satisfied, the number of the operations becomes 212 giga-operations,

without taking into account the multiplication of complex numbers required for hierarchical

clustering. Considering that four multiplication operations using a real number are required

for each multiplication by a complex number, the number of required operations becomes

about 850 giga-operations for hierarchical clustering.
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For the different sizes of FFT, the examples of estimated computational costs for the

functions of the BSS method using DHMAs is shown in Table 2.6 and Table 2.7. These

examples include the influence of the multiplication of two complex numbers. Table 2.6

is under that the sampling frequency is 8–kHz, and Table 2.7 is under that the sampling

frequency is 48–kHz. The sizes of FFT are chosen by considering similar time lengths for

two different sampling frequencies.

Figure 2.7 and Figure 2.8 show the ratio of the computational costs between functions

for the BSS method using DHMAs. For the case NF ≥ 1024, the computational cost of hi-

erarchical clustering is the dominant cost, and it increases when the size of FFT increases.

In addition, for the smaller sizes of FFT, the iterative update becomes not negligible. Hier-

archical clustering only depends on NF in Table 2.5. Limiting the number of the frequency

bins contributes to reduce the computational cost for the iterative update. These facts give

insight again that limiting the number of the frequency bins is a reasonable way, that is

discussed in Section 2.2.4 as well.

2.3.3 Discussion of target computational costs

In this section, the target computational cost of BSS with FDICA is discussed, in regards

to computational cost sufficiently to allow the use of embedded processors. Two types of

applications have been considered: mobile devices and portable equipment. It has been

discussed that DRAM involves the slow data transfer characteristics, which leads to de-

layed signal processing and power wastage in the DSP. The required memory consumption

of BSS with FDICA already exceeds the internal memory size of the high performance

TMS320C6678 DSP, for example, which means that external memory must therefore also

be used. Thus, the influence of DRAM waiting cycles on DSPs must be considered, which

is the equivalent of tripling the number of operations estimated previously in this disser-

tation. Taking into account the effect of slow data access, target computational costs are

re-estimated in Table 2.8. Current DSPs have been discussed in Section 2.3.1, and they

were categorized into two types: low-power, inexpensive DSPs and high-performance, ex-

pensive DSPs. They are listed in Table 2.9.

For mobile devices, it is assumed that BBS using FDICA will be performed using a
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Table 2.8: Computational costs of conventional FDICA for the target speech equipment

Mobile Portable

Number of operations 900 mega-operations 2.4 tera-operations

Required memory consumption 800 kBytes 12 MBytes

Power supply Battery AC power

Table 2.9: DSP categories

Low-power High-performance

Operating frequency Few hundred MHz 1.25–GHz

Peak performance equals operating frequency 160 GFLOPS

Size of internal memory 64–256 kBytes 512 kBytes

low-power DSP. In this case, only about one-third of the number of operations convention-

ally required are feasible, with respect to the estimated computational cost for conventional

FDICA shown in Tables 2.8 and 2.9. Since mobile devices also need to run rich func-

tions such as user interfaces, GPS, etc., basic functions such as speech processing should

not consume large amounts of computational resources. Even one-third the number op-

erations used conventionally is still excessive, because this would consume almost all of

the processing capacity of a low-power DSP. At most, one-fourth or one-fifth the number

of operations are feasible. Therefore, the target number of operations becomes about 200

mega-operations.

On the other hand, for portable equipment it is assumed that high-performance DSPs

can be used for BSS. The Texas Instruments TMS320C6678 DSP has eight cores, making

it a good candidate. Note that its peak signal processing performance is 160 GFLOPS. If

multiple high-performance DSPs were used in this kind of equipment, they could perform

conventional FDICA with a large number of microphones. However, the TMS320C6678

is quite expensive, with a price of over 160 U.S. dollars per DSP. If fifteen TMS320C6678
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DSPs were used, portable equipment using conventional BSS with a DHMA would be

feasible in terms of computational resources, but might not be feasible in terms of manu-

facturing cost, which would be over 2,000 U.S. dollars just for the DSPs. At this cost, the

market would be extremely limited for manufacturers. In addition, coordination of multiple

DSPs requires complex system management, which is also a drawback for manufacturers.

Therefore, in this dissertation it is assumed that using just one high-performance DSP is

reasonable when designing portable equipment to perform BSS with FDICA. At most one-

tenth or one-fifteenth of the number of possible operations is necessary if we can achieve

our target computational cost, which in this dissertation is 160 giga-operations.

As a conclusion, the target computational costs for each assumed speech equipment as

follows:

• Mobile devices: 200 mega-operations,

• Portable equipment: 160 giga-operations.
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Chapter 3

Blind source separation for the mobile
devices with two microphones

Low-power DSPs are expected by the reason which its electric power consumption is sev-

eral tens of milliwatts, making it quite appropriate for use in mobile devices. Reducing

computational costs of BSS using FDICA can widen the range of application fields, be-

cause computational costs of conventional FDICA have already exceeds the performance

of low-power DSPs, as mentioned in Section 2.3. In the case of the mobile devices, two

microphones are assumed because this is the smallest possible microphone array. The de-

terminant of the spatial covariance matrix is theoretically analyzed for two microphones,

and the determinant can simultaneously evaluate the number of source signals and the rel-

ative strength of the signals among different frequencies. This characteristic contributes

to select promising frequency bins for source separation, and the proposed method only

estimate the ICA separation matrices in the selected frequency bins. In unselected bins,

the Wiener filter consists of the tentative separated signals which are outputs of the null-

beamformer. The proposed method shows significant improvement with respect to both low

computational costs and low distortion in the separated signals, through the computational

costs estimation and the experimental evaluation.
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3.1 Motivation and strategy

A semi-blind source separation (semi-BSS) method with low computational costs has been

introduced in [70]. This semi-BSS method intuitively uses the determinant of a spatial co-

variance matrix to select frequency bins for reducing computational costs. In unselected

frequency bins, the null-beamformer (NBF) is used to separate the observed signal instead

of the ICA separation matrix. One of the purposes in this chapter is clarifying the theoret-

ical reason for the bin selection criteria, which is the determinant of the spatial covariance

matrix. This is introduced by an analysis of the determinant using the sound propaga-

tion and signal processing of the NBF. Another purpose in this chapter is how to improve

the performance deterioration that depends on the drawback involving the NBF. The NBF

consists of time delay adjustments and a subtraction between two microphone signals in

the time domain. A phase difference between two microphones is very small in the low

frequency region because of long wave lengths. This is due to, in the low frequency re-

gion, that the observed signals between two microphones are very similar even with that

the time delay adjustment is applied. This leads to the amplitude attenuation of the NBF

in the low frequency region, and results in the signal distortion of the separated signal in

the unselected frequency bins. Especially in mobile devices, the separated signals might be

extremely distorted because the distance between microphones would be very small. Even

though poor separation performance by the NBF in unselected frequency bins, the Wiener

filter can still work to improve the separated sound quality, in which the output of the NBF

is employed in this dissertation. The experimental results shows improved performance,

higher segmental signal-to-noise ratio than the case which ICA works in all the frequency

bins. A block diagram of the proposed method is shown in Figure 3.1.
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Figure 3.1: Block diagram of proposed method for two microphones. Capital letters show

frequency domain signal such as Xi(k, l), small letters show time domain signal such as

xi(n). Separation matrix W(k) is updated by the iterative update rule, and the separated

signals by ICA are obtained. The frame-wise Wiener filter Mi(k, l) is obtained by tenta-

tive separated signal by the null-beamformer which consists of estimated source direction.

Separated signals, W(k)X(k, l) and Mi(k, l)Xi(k, l), are gathered for all the frequency bins,

and transformed into the time domain signals by inverse STFT.
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Figure 3.2: Block diagram of mixing and separation based on the signal flow. τiS and

Ai(k) are delay and gain corresponding to distance between source and center positions

of microphone array. τi j(k) is the delay of each microphone, and τ̂i j(k) is the estimated

delay from an estimated source direction. Left half means mixing procedure, and right half

means separation procedure.

3.2 Proposed BSS method using two microphones

3.2.1 Signal model in the case of two microphones

The signal model is formulated by the same manner described in Section 2.1. In this chap-

ter, the case of two microphones is considered; there are two source signals and two micro-

phones. In this case, the source and observed signal vectors are formulated as:

S(k, l) =
[
S 1(k, l), S 2(k, l)

]T
,

X(k, l) =
[
X1(k, l), X2(k, l)

]T
. (3.1)

where (·)T denotes the transpose operator. S (·)(k, l) means the source signal in the frequency

bin k and the frame l of the channel (·). X(·)(k, l) denote the observed signal described as the

same manner of S (·)(k, l).

The left half of Figure 3.2 shows the block diagram of signal propagation, and indexes

k and l are omitted to simplify the diagram. In Figure 3.2, the source signals are located
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at direction θi(k) (i corresponds to the source number) in each frequency bin k, because

in the reverberant condition the estimated source direction deviates in each frequency bin.

The reverberation leads convolution among the reflected sound signals at the same time

index. Each reflected sounds in a narrow frequency band have different time delays, which

correspond to DOAs of each reflected sound. The reflected sounds are attenuated though

their propagation, so that the observed signal equals to the sum of the direct sound, and the

attenuated and different arrival sounds. Therefore, the observed direction deviates around

the direction of the direct sound. τiS and Ai(k) are a delay and a gain corresponding to the

distance between the source and the center position of the microphone array. In addition,

τi j(k) is the delay of each microphone based on the center position of the microphone array

( j corresponds to the microphone number) in the k-th frequency bin.

Therefore, the mixing matrix A(k) is formulated as follows:

A(k) =

A1(k)e− jω(k)(τ1S+τ11(k)) A2(k)e− jω(k)(τ2S+τ21(k))

A1(k)e− jω(k)(τ1S+τ12(k)) A2(k)e− jω(k)(τ2S+τ22(k))

 , (3.2)

where ω(k) is an angular frequency that equals 2π(kFs/NF), Fs and NF are the sampling

frequency and the size of the FFT, respectively.

3.2.2 Frequency bin selection by the determinant of the spatial covari-
ance matrix for reducing computational costs

In this section, the theoretical analysis of the frequency bin selection is introduced. Intu-

itively, if there is only one source in a frequency bin, the rank of the covariance matrix is

not full and the determinant becomes zero. In contrast, if there are two sources, the rank

of the spatial covariance matrix is full and the determinant never becomes zero. In other

words, the determinant can describe the number of source signals, only for two micro-

phones. Therefore, in the previously proposed semi-BSS method [70], the determinant of

the spatial covariance matrix is used for bin selection criterion, however it was only intu-

itively used. Hereinafter, the determinant is theoretically analyzed. On the other hand, the

power of observed signals is common criterion to describe the degree of spectral influence.

A theoretical analysis of the trace of the spatial covariance matrix, corresponding the power
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of the observed signals, is also introduced. In addition, experimental comparison is shown

to clarify the difference between the determinant and the trace.

Spatial covariance matrix

The spatial covariance matrix Rx(k), in a frequency bin k, is calculated to evaluate the

determinant and the trace as follows:

Rx(k) = El

[
X(k, l)XH(k, l)

]
, (3.3)

where El[·] is the expectation operator over frame l and (·)H is the Hermitian operator.

Analysis of the determinant of the spatial covariance matrix

In this section, the determinant of the spatial covariance matrix is analyzed. The spatial

covariance matrix of the observed signals Rx(k) is transformed using the mixing model in

Eq. (2.1) as follows:

Rx(k) = El

[
X(k, l)XH(k, l)

]
= A(k)El

[
S(k, l)SH(k, l)

]
AH(k)

≡ A(k)Rs(k)AH(k),

(3.4)

where Rs(k) is the spatial covariance matrix of the source signals. According to the assump-

tions of FDICA, the source signals are independent each other. Therefore, Rs(k) becomes

a diagonal matrix, and each element is equivalent to the source power σi(k) in the k-th

frequency bin as follows:

Rs(k) =

σ1(k) 0

0 σ2(k)

 . (3.5)

The determinant of the spatial covariance matrix, detRx(k), is written with Eq. (3.4) as
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follows:

detRx(k) = det
{
A(k)Rs(k)AH(k)

}
= detRs(k) · det

{
AH(k)A(k)

}
.

(3.6)

Meanwhile, the determinant can be calculated by the product of the eigenvalues, and in

the case of the diagonal matrix, the determinant consists of the product of the diago-

nal elements. The spatial covariance matrix of the source signals is the diagonal matrix;

detRs(k) of Eq. (3.6) can be obtained as the product of σi(k). Substituting Eq. (3.2) into

det{AH(k)A(k)} of Eq. (3.6), the propagation component of the determinant is obtained as

follows:

det
{
AH(k)A(k)

}
= det

 2A2
1(k)

A1(k)A2(k)
{
e jω(k)(τ21(k)−τ11(k)) + e jω(k)(τ22(k)−τ12(k))

}
A1(k)A2(k)

{
e jω(k)(τ11(k)−τ21(k)) + e jω(k)(τ12(k)−τ22(k))

}
2A2

2(k)


= 2A2

1(k)A2
2(k)

[
1 − cos

{
ω(k)

(
τ11(k) − τ21(k) − τ12(k) + τ22(k)

)}]
. (3.7)

Consequently, the determinant of Rx(k) is obtained as follows:

detRx(k) =

2A2
1(k)A2

2(k)
[
1 − cos

{
ω(k)

(
τ11(k) − τ21(k) − τ12(k) + τ22(k)

)}]
σ1(k)σ2(k). (3.8)

Analysis of the trace of the spatial covariance matrix

In this section, the trace of the spatial covariance matrix is analyzed. The trace is the sum

of the diagonal elements, in addition, the trace corresponds to the sum of the eigenvalues.

Rs(k) is the diagonal matrix, and thus Rx(k) can be isolated for each source as follows:

Rx(k) = A1(k)Rs1(k)AH
1 (k) + A2(k)Rs2(k)AH

2 (k), (3.9)
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where Rsi(k) has only one element as follows:

Rs1(k) =

σ1(k) 0

0 0

 ,
Rs2(k) =

0 0

0 σ2(k)

 , (3.10)

and the mixing matrix A(k) can also be isolated as follows:

A1(k) =

A1(k)e− jω(k)τ11(k) 0

A1(k)e− jω(k)τ12(k) 0

 ,
A2(k) =

0 A2(k)e− jω(k)τ21(k)

0 A2(k)e− jω(k)τ22(k)

 .
(3.11)

The trace is a linear map, therefore, the trace of the spatial covariance matrix can be consid-

ered separately for each source. In addition, the trace is invariant under the cyclic permu-

tations. Accordingly, the trace of the spatial covariance matrix is transformed as follows:

trRx(k) = tr
{
A1(k)Rs1(k)AH

1 (k) + A2(k)Rs2(k)AH
2 (k)

}
= tr

{
Rs1(k)AH

1 (k)A1(k)
}
+ tr

{
Rs2(k)AH

2 (k)A2(k)
}
.

(3.12)

Using the isolated covariance matrix Eq. (3.10) and the isolated mixing matrix Eq. (3.11),

the term tr{Rsi(k)AH
i (k)Ai(k)} is transformed as follows:

tr
{
RsiAH

i (k)Ai(k)
}
= 2σiA2

i (k). (3.13)

Consequently, the trace is obtained as follows:

trRx(k) = A2
1(k)σ1(k) + A2

2(k)σ2(k). (3.14)
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Procedure for selecting frequency bins

For each criterion, the determinant or the trace, the same rule is used to select frequency

bins. Since each criterion is a real value, the selection is performed according to the largest

magnitude of the criterion, until the number of bins selected reaches the designated number.

The selection procedure works as follows:

1. Calculate the spatial covariance matrix Rx(k).

2. Calculate either criterion, detRx(k) or trRx(k).

3. Sort the criterion in descending order of its magnitude.

4. Select the designated number of bins from the sorted list of criteria.

The designated number of bins can be defined by system requirements or about 10 percent

of the total number of bins can be selected; 10 percent means a rough estimate based on

the experimental results discussed in a following section.

3.2.3 BSS using ICA in the selected frequency bins

In this section, obtaining separation matrix of ICA is introduced in the selected frequency

bins, including the scaling solution and the permutation solution.

Separation matrix in selected frequency bins

Following STFT and selecting the frequency bins, the separation matrix W(k) is obtained

using the general ICA algorithm in the selected bins, the update rule is introduced in

Eq. (2.2).

Directions of arrival from the separation matrix and permutation solution

As mentioned in Section 2.2.4, the DOA of the source signals are estimated from the sepa-

ration matrix, and the permutation is solved using the estimated DOA such as in [39].
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For two microphones, the separation matrix is represented as follows:

W(k) ≡
w11(k) w12(k)

w21(k) w22(k)

 =
w1(k)

w2(k)

 , (3.15)

where wi(k) ≡ [wi1(k)wi2(k)]. From the standpoint of array signal processing, the directivity

pattern in each frequency bin is calculated from wi(k), and the DOA of a source signal is

estimated as follows:

ψ̂i(k) = arg min
ψ

{
wT

i (k)κ(k, ψ)
}
, (3.16)

where κ(k, ψ) = [1, e jρ(k,ψ)] is a steering vector and ρ(k, ψ) is the time difference correspond-

ing to a steering direction as:

ρ(k, ψ) ≡ 2π
kFs

NF

d
c

sin(ψ), (3.17)

where ψ is a steering direction to search the DOA. d is the distance between two micro-

phones and c is the velocity of sound, respectively. Finding out the the directional null ψ̂i(k)

by Eq. (3.16), this corresponds to the source direction in each frequency bin.

However, the source directions are still not determined. The permutation problem is

solved using the same method introduced in [39]. After clustering directional null in all

the selected frequency bins, each ψ̂i(k) belongs to the correct source cluster. This is the

permutation solution, then the source direction θ̂i(k) is obtained.

Collected source directions θ̂i(k) are averaged over the selected bins to obtain the esti-

mated DOA of the source signal, θ̂i, as follows:

θ̂i =
1

NB

∑
k∈Ξ

θ̂i(k), (3.18)

where NB is the number of bins and Ξ is a set of the selected bins.
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Theoretical analysis of the scaling solution by the projection method for two micro-
phones

The projection method in [37] is applied to solve the scaling ambiguity of the FDICA

separation matrix. The separated signal by the projection method corresponds to one of

observed signals, and a theoretical analysis of this fact is introduced in this section. Substi-

tuting Eq. (3.1) and Eq. (3.2) into Eq. (2.1), when the observed source signal is denoted as

Xi j(k, l) for the i-th source signal at the j-th microphone, the observed signal is transformed

as follows: X1(k, l)

X2(k, l)

 =
X11(k, l) + X21(k, l)

X12(k, l) + X22(k, l)


=

e− jω(k)τ11(k) e− jω(k)τ21(k)

e− jω(k)τ12(k) e− jω(k)τ22(k)


A1(k)S 1(k, l)

A2(k)S 2(k, l)


≡ B(k)S′(k, l),

(3.19)

where B(k) only consists of delay factors of the mixing matrix A(k); in other words, B(k)

corresponds to the mixing matrix with the plane wave assumption. S′(k, l) is the source sig-

nal with the observed amplitude. If the separation matrix W(k) corresponds to the inverse

of the mixing matrix B(k), Cramer’s formula can be applied to transform the separation

matrix as follows:

W(k) = D(k)B−1(k)

= D(k)
1

detB(k)
B̃(k)

≡
λ1(k) 0

0 λ2(k)


 e− jω(k)τ22(k) −e− jω(k)τ21(k)

−e− jω(k)τ12(k) e− jω(k)τ11(k)


≡ Λ(k)B̃(k),

(3.20)

where D(k) means the matrix of the scaling ambiguity. Λ(k) is the scaling matrix that

consists of the scaling ambiguity D(k) and the reciprocal number of the determinant of the

matrix B(k). B̃(k) corresponds to part of the inverse matrix B(k).

The projection method can solve the scaling ambiguity by calculating diag{W−1(k)}W(k).

54



The operator diag(·) remains diagonal elements of matrix (·) and the other all elements set

zero. Therefore the FDICA separated signal Y(k, l) is obtained as follows:

Y(k, l) = diag
{
W−1(k)

}
W(k)X(k, l)

=
1

detB̃(k)

e− jω(k)τ11(k) 0

0 e− jω(k)τ22(k)

Λ−1(k)Λ(k)B̃(k)B(k)S′(k, l)

=
1

detB(k)

e− jω(k)τ11(k) 0

0 e− jω(k)τ22(k)

 I ({detB(k)} I) S′(k, l)

=

e− jω(k)τ11(k) 0

0 e− jω(k)τ22(k)

 S′(k, l)

=

X11(k, l)

X22(k, l)

 .

(3.21)

Consequently, the separated signal by the projection method corresponds to one of the

observed source signals, Xii(k, l) for the i-the source signal at the i-th microphone.

Finally, diag{W−1(k)}W(k) can be considered as the new separation matrix that the

scaling ambiguity is solved by the projection method.

3.2.4 Frame-wise Wiener filter in unselected frequency bins

In this section, a frame-wise Wiener filter method is proposed, which improves separation

performance, especially in the low frequency region.

Tentative separation by NBF and its theoretical analysis

The delay value (d/c) sin(θ̂i) is calculated by the estimated DOA θ̂i, and this is applied to

the NBF to obtain tentative separated signals. As mentioned in Section 3.2.1, propagation

is assumed to be from the source position to the center position of the microphones. The

source direction only depends on the delay between two microphones. Considering the

fact that the separated signal by the projection method corresponds to one of the observed

source signals. In this case, the propagation delay τiS can be omitted without loss of gener-

ality, if we assume that the distance between the microphones is small enough, such as in
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mobile equipments. In addition, it is a reasonable consideration that the distance between

the source position and the microphone position can be represented as the gain Ai(k) by

the spherical wave assumption. Consequently, the source position is only depends on the

source direction which is represented as the delay τi j(k). The observed signal X j(k, l) can

be written as follows:

X j(k) = A1(k)S 1(k, l)e− jω(k)τ1 j(k) + A2(k)S 2(k, l)e− jω(k)τ2 j(k). (3.22)

The right half of Figure 3.2 shows the block diagram of the tentative separation, and this

process represents the null-beamformer. The output signals of the NBF are formulated as

follows:

YNBF
1 (k, l) = X1(k, l)e− jω(k)τ̂22 − X2(k, l)e− jω(k)τ̂21 ,

YNBF
2 (k, l) = −X1(k, l)e− jω(k)τ̂12 + X2(k, l)e− jω(k)τ̂11 ,

(3.23)

where the estimated delay of each channel is considered as follows:

τ̂11 = −(d/c) sin(θ̂1)/2,

τ̂12 = (d/c) sin(θ̂1)/2,

τ̂21 = (d/c) sin(θ̂2)/2,

τ̂22 = −(d/c) sin(θ̂2)/2.

(3.24)

Substituting Eq. (3.22) into Eq. (3.23), the relationship between the source signals

S 1(k, l), S 2(k, l) and the tentative separated signal YNBF
1 (k, l) is obtained as follows:

YNBF
1 (k, l) = X1(k, l)e− jω(k)τ̂22 − X2(k, l)e− jω(k)τ̂21

= A1(k)S 1(k, l)e− jω(k)(τ11(k)+τ̂22) + A2(k)S 2(k, l)e− jω(k)(τ21(k)+τ̂22)

− A1(k)S 1(k, l)e− jω(k)(τ12(k)+τ̂21) − A2(k)S 2(k, l)e− jω(k)(τ22(k)+τ̂21).

(3.25)

In the reverberant condition, the estimated DOA in each frequency bin is deviated by a

mixing of direct and reflected sounds. However, a deviation is quite small, because a direct

sound is much stronger than reflected sounds generally. According to this fact, assuming
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that the estimated direction θ̂i is approximately equivalent to the source direction θi; there-

fore τi j(k) ≈ τ̂i j can be an appropriate assumption. YNBF
2 (k, l) is calculated in the same way,

and we obtain the approximate relationship as follows:

YNBF
i (k, l) ≈ Ai(k)S i(k, l)

{
e− jω(k)(τ̂11+τ̂22) − e− jω(k)(τ̂12+τ̂21)

}
≡ Ai(k)S i(k, l)C(k).

(3.26)

where C(k) is a constant corresponding to the delay term in the frequency bin k. In the low

frequency region, ω(k) is smaller than in the high frequency region, and thus the amplitude

of the delay section of Eq. (3.26) takes a small value due to the low frequency. This is the

main reason of the degradation which appears in an output signal of the NBF, as mentioned

in Section 3.2.

Wiener filter obtained by the tentative separated signals

Considering a cost function to obtain the Wiener filter with regard to the observed source

signal as follows:

min
αi

El

[{
Ai(k)S i(k, l) − αiXi(k, l)

}2
]

(3.27)

where El is the expectation operator and αi is a variable. To minimize the cost function in

Eq. (3.27), the differentiations of αi are considered, and the assumption of the independence

between each source signal is also considered. When the independence and expectation are

utilized to derive the Wiener filter, cross correlation between each source signal become

zero. Therefore, we obtain the Wiener filter and it is approximated by the tentative sepa-

rated signals in Eq. (3.26) as follows:

αi =
El

[
A2

i (k)|S i(k, l)|2
]

El

[
A2

1(k)|S 1(k, l)|2
]
+ El

[
A2

2(k)|S 2(k, l)|2
]

≈
El

[
|YNBF

i (k, l)|2/C2(k)
]

El

[
|YNBF

1 (k, l)|2/C2(k)
]
+ El

[
|YNBF

2 (k, l)|2/C2(k)
] ,

=
El

[
|YNBF

i (k, l)|2
]

El

[
|YNBF

1 (k, l)|2
]
+ El

[
|YNBF

2 (k, l)|2
] .

(3.28)
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C(k) corresponds to the delay term, and it describes the frequency characteristics of the

NBF. The proposed Wiener filter in Eq. (3.28) cancels out the affect of the NBF character-

istics C(k), and this means preventing signal attenuation in the low frequency region cased

by the NBF.

In this research, the shortest expectation is considered in order to reduce computational

costs. The frame-wise Wiener filter Mi(k, l) is obtained as follows:

Mi(k, l) =

∣∣∣∣YNBF
i (k, l)

∣∣∣∣2∣∣∣∣YNBF
1 (k, l)

∣∣∣∣2 + ∣∣∣∣YNBF
2 (k, l)

∣∣∣∣2 . (3.29)

The obtained frame-wise Wiener filter varies frame by frame, and thus it can trace temporal

changes in each speech source signal.

Finally, the output separated signals are obtained as follows:

Y(k, l) =


W(k)X(k, l) (FDICA)

M1(k, l)X1(k, l)

M2(k, l)X2(k, l)

 (Wiener filter)

. (3.30)

3.3 Evaluation

In this section, computational costs of the proposed method are estimated, and the perfor-

mance of the proposed method is evaluated by a source separation simulation.

3.3.1 Comparison of selection criteria between determinant and trace
of spatial covariance matrix

In this section, performance comparison of frequency bin selection is introduced to evaluate

which criteria is more appropriate.

As mentioned in Section 3.2.2, if there is only one source in one of frequency bins,

the rank of Rx(k) is not full and the determinant of Rx(k) becomes zero. According to

Eq. (3.14), if there is only one source in one of frequency bins, the trace never becomes
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zero. In addition, Eq. (3.8) contains the term 1 − cos({ω(k)}), and this works as a weight-

ing factor. 1 − cos({ω(k)}) takes smaller values according to the lower frequency; this

corresponds to the relative attenuation against the higher frequency. Therefore, the term

1 − cos({ω(k)}) means that bin selection is unlikely to occur in the low frequency region

via the determinant criterion. As mentioned in Section 3.1, the phase difference becomes

small in the low frequency region, and this is a disadvantage of using microphone array

signal processing methods such as FDICA. In light of these considerations, the trace has

a tendency to select bins occur in the low frequency region, more so than the determinant.

This implies that the determinant is better suite than the trace to select frequency bins.

This tendency is evaluated by a bin selection experiment in which the DOA is estimated

from the separation matrix. In this experiment, the performance difference should be con-

firmed, in the DOA estimation task using the separation matrix. Therefore, the FDICA

algorithm and parameters are same as in the other experiments, meanwhile the simulation

is performed only for the anechoic condition and with 32 bins selected. This is because,

in the reverberant condition, there is a deviation in the estimated DOA, and it is difficult to

evaluate the difference in performance from the low frequency bin to the high frequency

bin.

The covariance matrix is calculated using recorded speech signals in each frequency

bin, then the determinant and trace are calculated respectively. Following the calculation

of the criterion, some bins are selected according to the selection process in Section 3.2.2.

For the selected bins, the FDICA separation matrix is iteratively estimated using Eq. (2.2),

and the DOA of the source signal is estimated via the FDICA separation matrix in each

frequency bin. In this evaluation, the number of the bins selected is set at 32 because it

is easier to confirm the tendency in which bins are selected. The direction of the source

signals is set about {-45,45} degrees; note that this direction is not precise because the

loudspeakers are set by hand.

Figure 3.3 shows an example of the determinant and the trace of the covariance matrix

in each frequency bin. The horizontal axis shows the frequency. The vertical axis shows

the normalized value of the determinant and trace. The determinant and trace are averaged

over the different voice types. Normalization is applied to show the characteristics, so each

value is divided by the maximum value. Bin selection is performed based on the relative
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Figure 3.3: Example of determinant/trace of covariance matrix. Solid and dashed lines

indicate determinant and trace, respectively. Each value is normalized by maximum value

of each criterion.

value of the determinant or the trace over the frequency bins. Therefore, the normalization

is appropriate without loss of generality. In Figure 3.3, the values in the low frequency

region show significant differences, in particular that the values for the determinant are

lower than those for the trace.

Figure 3.4 shows experimental results of the DOA estimation from the FDICA separa-

tion matrix. The DOA estimation might be affected by noise signals in the real world, for

example, acoustical ambient noise or electric circuit noise. Therefore the performance of

the beamformer is degraded in the low frequency region. As shown in Figure 3.4(b), the

trace criteria selects more bins in the low frequency region than the determinant criteria.

In addition, since this experiment is performed in the anechoic condition, the estimated

directions should not vary among the selected bins. However, the estimated directions via

the trace criteria are more varied than the determinant criteria in the low frequency region,

and this fact implies that noise signals affected the DOA estimation. Consequently, DOA

estimation via the determinant criteria is more effective and precise than estimation using

the trace criteria; in other words, it is advantageous to use the determinant for bin selection.
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Figure 3.4: Estimated DOAs via determinant/trace selection criteria under anechoic condi-

tion. Figs. 3.4 (a) and 3.4 (b) show examples of estimated DOAs in frequency bins selected

by each criteria. In Fig. 3.4 (b), trace shows a tendency in low frequency region, in which

more lower frequency bins are selected and deviations of estimated DOAs appear.
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Table 3.1: FDICA parameters for evaluations with two microphones

FFT Size 1024 samples

FFT Shift 256 samples

Learning Time 3 seconds

Iteration max.200 times

Step Size 0.01

Initial Matrix Identity

Permutation Solution DOA [39]

Scaling Solution Projection method [37]

3.3.2 Estimate of computational costs in the case of two microphones

Estimating the number of operations (multiplication, addition as floating operations) based

on Eq. (2.2) is used to evaluate the computational efficiency of the proposed method. The

parameters of FDICA for the computational costs estimation are shown in Table 3.1. The

estimated computational costs are shown in Table 3.2. The number of frequency bins for

the estimate is 64, which is determined from the experimental results in Section 3.3.3.

‘Separation’ in Table 3.2 includes operations corresponding to the separation matrix, the

NBF and the Wiener filter. The unit ‘MOPs’ represents the number of mega-operations per

second. Each percentage in Table 3.2 means a ratio to conventional FDICA; conventional

FDICA means that the all of the frequency bins are used for BSS using ICA.

As shown in Table 3.2, the proposed method achieves an over 80 percent reduction

in the level of computational costs compared with conventional FDICA. The computa-

tional costs of the proposed method is almost equivalent to previously proposed semi-BSS

method. In addition, obtaining the separation matrix using an iterative update rule shows

the dominant computational cost, and the additional cost by the proposed method is suffi-

ciently small in Table 3.2. The frequency bin selection method significantly contributes the

reduction in the level of computational costs.
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Table 3.2: Estimated computational costs and ratios compared to conventional FDICA

conventional conventional proposed

FDICA semi-BSS

FFT 8.5 8.5 100% 8.5 100%

Covariance Matrix − 1.6 (additional) 1.6 (additional)

Separation Matrix 275 34 12.5% 34 12.5%

Projection Method 0.05 0.006 12.5% 0.006 12.5%

Permutation Solver 2.8 0.35 12.5% 0.35 12.5%

Separation 1 1 100% 3.2 320%

Total 287 46 16% 48 17%

3.3.3 Source separation simulation

Simulation conditions

The speech signals are recorded with two omni-directional microphones (SHURE SM93)

and the distance between the microphones is 3.6 cm. The recording conditions are shown in

Table 3.3 and Figure 3.5. The voice signals are played back via loudspeakers and recorded

individually. The observed signals are mixed in the same energy when the simulation

is performed; in other words, a mixing level is 0 dB. The parameters of FDICA for the

simulation are shown in Table 3.1; they are same as in the case of the computational costs

estimate. The number of bins ranges from 384 to 32 because these numbers are roughly the

ratio of integers, 3/4, 1/2, · · · , 1/16, for the total number of frequency bins, which is 513.

As mentioned in Chapter 1, FDICA must store the observed signals whose lengths are

longer than a few seconds. Additionally, the separated signals to estimate higher-order

statistics are different in every iteration, because the separation matrix is updated in every

iteration. These are the primary reasons that the computational costs required for FDICA is

high. Therefore, the smaller number of selections contributes to lower computational costs,
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Table 3.3: Signals for simulation using two microphones

Anechoic Reverberant

Samp. Freq. 8 kHz

Rev. Time − 500 msec

Voice type Male(2), Female(2)

Location pair {-45,45}, {-90,0}, {-45,0} degrees

and thus results in smaller memory consumption as well.

Although the classical ICA update rule is used in this research (see Eq. (2.2) and Sec-

tion 3.2.3), it can be replaced with any state-of-the-art ICA update rule. Therefore, the

proposed method, which consists of bin selection and the use of a frame-wise Wiener filter

for the unselected bins, is an improvement of the FDICA method, without loss of generality.

Evaluation measure

The performance of the proposed method is evaluated using the segmental signal-to-noise

ratio (SNRseg) [71] and cepstral distortion (CD) [72]. SNRseg is a very common measure for

evaluating noise suppression, for example, in high-efficiency coding such as MP3, etc. In

general, SNRseg is known to have a better correlation with the perception of noisy speech by

humans than entire interval SNR [71]. The proposed method is based on the Wiener filter,

in other words time-frequency masking method, and thus the degradation of the separated

signals can be estimated. Therefore, SNRseg is appropriate for evaluating the proposed

method. CD is another measure of the degree of distortion in the cepstrum domain, and

this can evaluate distortion of a spectral envelope.

The projection method [37] is used to solve the scaling ambiguity of FDICA, as men-

tioned in Table 3.1. This means that each separated signal corresponds to one of the ob-

served source signals at the microphones. Therefore, the objective measures are calculated

between one of the observed source signals and the separated signal. Each term of the right

side in Eq. (3.22) corresponds to one of the observed source signals. The observed signal
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Figure 3.5: Recording setup of microphones and loudspeakers for two-microphones BSS.

This loudspeaker position is used for evaluations: {-45,45}, {-90,0}, {-45,0} degrees. Hight

and distance of omni-directional microphones are 1 meter and 3.6 cm, respectively. Loud-

speakers at 1.4 meter individually play recorded speech signals.

at the j-th microphone in the time domain x j(n) is formulated as follows:

x1(n) = x11(n) + x21(n),

x2(n) = x12(n) + x22(n),
(3.31)

where i is the source number. xi j(n) corresponds to the time domain signal corresponding

to Xi j(k, l) in Eq. (3.19). In this case, SNRseg is defined as follows:

SNRseg ≡
1
2

∑
i

1
Nls

∑
ls

10 log10

∑
m x2

ii (m, ls)∑
m {xii (m, ls)−yi (m, ls)}2

, (3.32)

where xi j(m, l) and yi(m, l) are the observed source signal and the separated signal in the

time domain of frame ls and time m in the frame. Nls is the number of frames, and the

obtained SNRseg for each channel are averaged. CD is calculated only during the speech
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Table 3.4: Experimental results: segmental SNR

Number of Computational PREV,A PROP,A PREV,R PROP,R

selected bins costs [dB] [dB] [dB] [dB]

513 1.0 5.02 4.80 0.96 1.06

384 0.76 3.42 5.23 0.56 1.13

256 0.53 1.34 5.70 -0.41 1.54

192 0.41 0.34 5.89 -0.89 1.79

128 0.29 -0.65 6.07 -1.61 2.30

64 0.17 -1.59 6.86 -2.27 2.84

32 0.10 -1.90 7.04 -2.74 2.91

components, in other words only during utterance intervals, and it is defined as follows:

CD ≡ 1
2

∑
i

20
Nlc log 10

∑lc

√√
B∑
ν=1

2
(
Cxii(m,lc) (ν, lc)−Cyi(m,lc) (ν, lc)

)2

 , (3.33)

where C(·)(ν, lc) is the ν-th cepstral coefficient of the signal (·) in frame lc, and Nlc is the

number of frames. The obtained CD values for each channel are averaged; note that ‘1/2’

means an average for two channels. B is the number of dimensions of the cepstrum used

in the evaluation; we set B = 20. A small CD value indicates that the sound quality of the

separated signal is high.

Simulation results of source separation

Table 3.4 and 3.5 and Figure 3.6 and 3.7 show the performance of the proposed method.

‘PREV’ denotes the previously proposed semi-BSS method and ‘PROP’ denotes the pro-

posed method. ‘A’ and ‘R’ denote anechoic and reverberant conditions. The computational

costs corresponding to the number of bins selected are estimated by the same rule in Sec-

tion 3.3.2. The x-axis shows the computational costs, and the y-axis shows SNRseg and
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Table 3.5: Experimental results: cepstral distortion

Number of Computational PREV,A PROP,A PREV,R PROP,R

selected bins costs [dB] [dB] [dB] [dB]

513 1.0 0.42 0.44 1.47 1.46

384 0.76 1.01 0.60 2.90 1.63

256 0.53 1.80 0.87 4.58 2.03

192 0.41 2.18 1.00 5.29 2.26

128 0.29 2.73 1.19 6.20 2.59

64 0.17 3.30 1.22 7.48 2.73

32 0.10 3.75 1.40 8.76 2.91

CD, respectively. The y-axis of CD has been flipped because a lower CD value indicates

better sound quality. Figure 3.6 and Figure 3.7 show that the proposed method is signif-

icantly better than the conventional method. According to that the number of frequency

bins is reduced, SNRseg is improved and CD is deteriorated by the proposed method, re-

spectively. This means that the proposed method shows a trade-off, and that 64 might be

the best number of bins to select in this experiment.

Figure 3.8 shows the performance comparison among other methods. The x-axis shows

SNRseg, and the y-axis shows CD, respectively. Again, the y-axis is turned over because

CD improves with a smaller value. ‘PROP’, ‘FDICA’ and ‘DUET’ denote the proposed

method, conventional FDICA and DUET, respectively, while ‘A’ and ‘R’ denote anechoic

and reverberant conditions. In this comparison, the number of bins selected is 64. For

performing DUET, only the time difference is used as the similarity criteria to classify the

source signals, because the power of a source signal is same as each other in this experi-

ment. In Figure 3.8, the upper right corner shows better performance, and the lower left

corner shows worse performance. Therefore, the sound quality of the proposed method is

better than conventional FDICA for SNRseg, and better than DUET for CD. This tendency
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Figure 3.6: Segmental signal-to-noise ratio. Solid and dashed lines correspond to proposed

and previously proposed semi-BSS methods, respectively. ‘A’ means anechoic condition,

and ‘cross’ and ‘circle’ indicate the same condition. ‘R’ means reverberant condition, and

‘asterisk’ and ‘triangle’ indicate the same condition.

is shown in both anechoic and reverberant conditions.

3.4 Discussion

As shown in Table 3.2, the proposed method significantly reduces computational costs. In

Section 3.3.3, DUET is compared with the proposed method with regard to the separation

performance. DUET is a clustering method, therefore its computational cost strongly de-

pends on a length of the observed signal. We consider that k-means clustering is used as

the clustering method to obtain the separated signals for DUET. Under the same condition

in Table 3.1 for FFT and other parameters, the computational cost of DUET for 3, 10 and

30 seconds observed signals are estimated as 60, 200 and 600 MOPs. If the positions of

the source signals would not be changed so much during the sound capture, for example

every speaker is sitting a chair in a meeting room, FDICA store the shorter length of ob-

served signals than the total length of the observed signals. From these considerations and
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Figure 3.7: Cepstral distortion. Solid and dashed lines correspond to proposed and previ-

ously proposed semi-BSS methods, respectively. ‘A’ means anechoic condition, and ‘cross’

and ‘circle’ indicate the same condition. ‘R’ means reverberant condition, and ‘asterisk’

and ‘triangle’ indicate the same condition. Y-axis is turned over because it improves with

a smaller value.

the estimate result in Table 3.2, the proposed method is more reliable than DUET from the

viewpoint of computational costs.

In Section 1.3, DSPs have been discussed to be appropriate devices for the speech pro-

cessing equipment because of its architecture, and for mobile devices, the low-power DSPs

have been discussed and assumed to be implemented BSS using FDICA into, as mentioned

in Section 2.3.1. The required wait states of DRAM external memory are an important

issue, so that the estimated computational costs include this issue by tripling the num-

ber of required operations. The computational cost of conventional FDICA is almost 900

MOPs. The power consumption is much lower than the high-performance DSPs, however,

the operating frequency of the low-power DSPs is around 200 MHz. 144 MOPs are as-

sumed as the computational cost of the proposed method with tripling computational costs

in Table 3.2. The estimation shows that the proposed method can be implemented into the

low-power DSPs.

Note that, such microprocessors as ARM architecture processors work at high speed,
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Figure 3.8: Performance comparison with conventional FDICA, proposed method, and

DUET. X-axis shows segmental signal-to-noise ratio, and y-axis indicates cepstral distor-

tion. ‘Diamond’ and ‘star’ indicate conventional FDICA under anechoic and reverberant

conditions, respectively. ‘Circle’ and ‘triangle’ indicate proposed method under the same

conditions. ‘Square’ and ‘plus’ indicate DUET under the same condition.

over 1 GHz. However 900 MOPs corresponds to 900 MHz and BSS concurrently works

with many rich functions, so consuming full of the processor performance is a difficult way

to realize the mobile speech equipment.

For such the RISC processors as the ARM architecture processors, the proposed method

consumes around one-fifth of the all processing performance. The other four-fifth of the

all processing performance can be consumed to perform the functions, for example the

user interface, besides the basic speech function. Therefore, it can be possible that the

proposed method in RISC processors can work the other functions cuncurrently, and in

other words, the proposed method can be implemented even in the present RISC processors.

Therefore, it can be said that the proposed method shows a practical performance for mobile

equipment.
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Figure 3.6 shows that the proposed method’s separation performance exceeds not only

the previously proposed semi-BSS method but also conventional FDICA. The proposed

method combines the separation matrix and the Wiener filter; linear and non-linear pro-

cessing in the frequency domain. Since the FDICA separation matrix corresponds to the

coefficients of the beamformer [39], especially in the low frequency region, the separated

signal is attenuated by a property of the NBF. On the other hand, the proposed method

cancels out the NBF drawback in Eq. (3.28). This shows that the combination of linear

and non-linear processing in the frequency domain has never failed the performance, on

the contrary, the non-linear processing can cover the degradation of the linear processing.

The proposed method is somewhat better than both conventional FDICA and DUET in Fig-

ure 3.8. In addition, the efficiency of the proposed method is evaluated via a computational

estimate. Therefore, from these results, the proposed method shows both the effectiveness

and efficiency, concurrently.
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Chapter 4

Blind source separation for the portable
equipment with DHMAs

In Chapter 2, the dodecahedral microphone array (DHMA) and its BSS method using

DHMAs are briefly introduced. DHMA is advantageous to solve the permutation problem

with hierarchical clustering because its dodecahedral shape reflects acoustic characteristics

more than the spherical microphone array. Therefore, the spatial correlation of DHMAs

can be expected to reduce computational costs like the case of two microphones, because

the spatial correlation depends on its shape. The magnitude squared coherence is one of

common measures of the spatial correlation, therefore this feature can be utilized for re-

ducing computational costs by the frequency bin selection method. Separation performance

of the proposed method is improved against the case which frequency bins are uniformly

selected, under the condition which computational costs are significantly reduced.
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4.1 Motivation and strategy

In Chapter 3, computational costs are significantly reduced by the proposed frequency bin

selection method, and the distortion of the separated signals is also restrained, for the BSS

method using FDICA with the frequency bin selection method which the spatial correlation

is used as the selection criterion. From the similar point of view, the spatial correlation of

DHMAs can be utilized because the shape of DHMAs has significant property to evaluate

the sound propagation, for example the permutation solution in [1, 2]. However, only a

spatial amplitude distribution is used in the BSS method using DHMAs. Such magnitude

square coherence (MSC) as the spatial correlation still remains to be utilized. The shape

of DHMAs is too complex to analyze theoretically, therefore the amplitude characteristics

of DHMAs has been evaluated experimentally to compare a spherical microphone array in

the conventional method. The theoretical model of MSC in the microphone array research

field [73] are valuable to consider acoustic characteristics. In this chapter, an experimental

MSC of DHMAs is introduced, and comparison with the theoretical model of MSC shows

the strategy that MSC can be utilized for the frequency bin selection method to reduce

computational costs of the BSS method using DHMAs.

4.2 Proposed BSS method using DHMA

A block diagram of the proposed method is shown in Figure 4.1. Note that, as mentioned in

Section 3.3.3, an iterative update rule can be replaced with any state-of-the-art ICA with the

permutation solution. In other words, the frequency bin selection method is not constrained

by the update rule of FDICA, so there is no loss of generality.

4.2.1 Magnitude squared coherence

During estimating the separation matrix of FDICA, it is very important that the iterative

update of the separation matrix is performed on highly separable frequency bins when

using bin selection method. In this chapter, MSC is considered as a method of selecting the

separable frequency bins. MSC corresponds to a measure of the interference between two
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Figure 4.1: Block diagram of proposed method with DHMAs. Procedure is basically iden-

tical as conventional method proposed by Ogasawara. Proposed frequency bin selection

method stays between subspace method and FDICA.



signals, and is formulated as follows:

CX1X2(k) =
El

[
|PX1X2(k, l)|2

]
El

[|PX1X1(k, l)|
]

El
[|PX2X2(k, l)|

] , (4.1)

where PX1X1(k, l) and PX2X2(k, l) are the power spectra of signals X1 and X2, respectively,

and PX1X2(k, l) is a cross spectrum. k and l denote frequency bin index and frame index

respectively. El[·] is the expectation operator over frame l. CX1X2(k) is MSC between two

signals X1 and X2 in the frequency bin k. The formulation of MSC is the normalized cross

spectrum in each frequency bin, and thus the range of MSC shows 0 ≤ CX1X2(k) ≤ 1. In the

case of a diffused noise field, MSC is formulated as follows:

CX1X2(k) = sinc
(
2πkFs

NF
dmicc−1

)2

, (4.2)

where sinc(·) means the sinc function (sin(x)/x), Fs is a sampling frequency, NF is the FFT

size, dmic is a microphone distance and c is the velocity of sound, respectively. A theoretical

formulation of the diffused noise field is used to evaluate characteristics of the noise field

condition in [74], or to model the noise field for the post-filtering of the microphone array

processing in [75]. BSS conducted under the condition of multiple sources that can be

considered as a diffused noise field. A diffused noise field means that sound waves are ran-

domly arriving from every possible direction, so that observed signals at two microphones

have a variety of phase differences according to the directions of the sound sources. In the

high frequency region, larger phase differences can be observed than in the low frequency

region. The phase differences vary more widely in the high frequency region. Therefore,

weaker coherence characteristics are observed in the high frequency region, which results

in MSC assuming smaller values. Consequently, MSC can evaluate the phase difference

between two signals, and MSC can contribute to increasing separation performance by

selecting more number of the frequency bins with small MSC values.
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Table 4.1: Simulation conditions for the BSS method using DHMAs

Sampling Frequency 40 kHz

Source Signal Speech (6 Males, 6 Females), 4 seconds

Target Frequency Region 0–8 kHz

Number of Sources 12

Velocity of Sound 340 meter/second

Reverberation Time 138 milliseconds

Window Function Hann

Window Length 1024 samples

Shift Length 256 samples

FFT Length (NF) 1024 samples

4.2.2 Characteristics of MSC for DHMAs

In this section, the effectiveness of using MSC for DHMAs is experimentally evaluated. As

mentioned in Section 2.1.2, the acoustic pressure distribution of DHMAs is different from

that of spherical microphone arrays. In [1, 2], this comparison was made experimentally

because the shape of a DHMA makes it too complicated to evaluate this characteristic

theoretically. For the same reason, in the current study, the experimental evaluation is also

used. Two microphones are arbitrarily selected from the 60 microphones of the DHMA

(6 microphones are installed on each face), and the MSC of these two microphones are

calculated using the measured impulse responses. The conditions used to evaluate the

experimental MSC are shown in Table 4.1, in addition, the source signals are mixed in the

same energy. The position of loudspeakers and the DHMA are shown in Figure 4.2.

Figure 4.3 shows the MSC between two microphones on the same face of the DHMA

(microphone distance dmic = 7 millimeter). A dashed line shows an experimental character-

istic from the measured impulse response, and a solid line shows a theoretical characteristic

which is formulated using the sinc function. Figure 4.4 shows MSC on different faces of the
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Figure 4.2: Source and loudspeaker positions for DHMA evaluations. Height of DHMA

and loudspeakers is 130 cm. Reverberation time of room is 138 msec.
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Figure 4.3: Example of MSC: Same face

DHMA (microphone distance dmic = 42 millimeter). According to Figure 4.3, when both

microphones are on the same face, the experimental MSC is equivalent to the theoretical

MSC. On the other hand, when the microphones are on different faces, the experimental

MSC is different from the theoretical value. The experimental MSC in Figure 4.4 in the

low frequency region is smaller than the theoretical MSC, and this fact is important that the

phase difference of the DHMA is larger than the theoretical characteristic. In other words,

the DHMA shows the separable property even in the low frequency region. This is due to

the shape of the DHMA. This fact leads the bin selection concept which is employed in

the next section. In the high frequency region, the spatial aliasing resulting from the large

distance between microphones. From the viewpoint of the source separation, microphones

on the same face might be mainly used in the middle and high frequency region, in contrast

microphones on the different faces might be mainly used in the low frequency region.
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Figure 4.4: Example of MSC: Different faces

4.2.3 Frequency bin selection using averaged experimental MSC for
reducing computational costs

Figure 4.5 shows the averaged experimental MSC (AEMSC) on the same face of the micro-

phone, and on the different faces, respectively. In this research, the frequency bin selection

is based on the AEMSC. Small MSC values correspond to large phase differences, and

thus selection should occur mainly in regions with small MSC values. In order to prevent a

bias in which bins are selected, we consider three frequency regions based on MSC, which

leads to the selection of a large number of bins with small MSC values. Figure 4.6 shows

frequency regions B1, B2, B3. Boundary frequencies correspond to a mean of the AEMSC

shown in Figure 4.6. fb is determined by the cross point between the AEMSC for the same

face and its mean, and fa is determined in the same manner as the AEMSC of the different

face. The values of fa and fb in this research are 1016 Hz and 5040 Hz, respectively. As

mentioned in Section 4.2.1, the small MSC contributes to select the separable frequency

bins. The larger number of the frequency bins should be selected in the small MSC region

than the large MSC region. A mean indicates a threshold on which MSC values are small
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Figure 4.5: Averaged experimental MSC (AEMSC). MSCs observed on same and differ-

ent faces are averaged. Solid line means AEMSC on same faces, and dashed line means

AEMSC on different faces.

or large. In other words, the mean of the AEMSC divide the frequency region into the

smaller and larger MSC regions. When the frequency becomes high, the trend of the both

AEMSCs becomes small. This fact is appeared in Figure 4.5. Therefore, the number of

the selected frequency bins in the high frequency region should be larger than in the low

frequency region. In the highest frequency region, the microphones in a same face might

be chosen by the BSS method using DHMA, so that fb should be as low as possible to give

that the high frequency region becomes broad, and also be determined by the AEMSC for

the same face. Therefore, fb is determined as the cross point between the AEMSC for the

same face and its mean. In the middle frequency region, the AEMSC for the different faces

is lower than its mean which is shown as the thick dashed line in Figure 4.6. However, in

the low frequency region, the AEMSC for the different faces is still high, thus fa should be a

low frequency value to give that the middle frequency region becomes broad. Therefore, fa

is determined by the cross point between the AEMSC for the different faces and its mean,

in addition to the lowest cross point. Consequently, the mean of the AEMSC provide the
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Figure 4.6: Region of bin selection. fa is determined by a cross point between AEMSC on

the different faces (thin dashed line) and its mean (thick dashed line). fb is determined by

a cross point between AEMSC on the same faces (thin solid line) and its mean (thick solid

line). Values of fa and fb are 1016 Hz and 5040 Hz, respectively.

appropriate thresholds for dividing the separable frequency regions.

In Section 4.3, the number of bins in each frequency region is used as a parameter to

evaluate the proposed method. As mentioned in Section 4.2.1, in the high frequency region,

weaker coherence characteristics are observed; this means that the higher frequency region

is more separable than the lower frequency region. Therefore, the number of bins in the

higher frequency region should be larger than the lower frequency region. For example, the

bins 1/5, 1/3 and 1/2 are selected in regions B1, B2 and B3, respectively. The total number

of frequency bins is 77, reduced from 200 bins, which correspond to the target frequency

region 0–8 kHz, with a size of FFT 1024.
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4.2.4 Subspace method for reducing number of observed signals un-
der overdetermined condition

The signal model in this chapter is same as in Section 2.1. The source signals are trans-

ferred from their locations to the DHMA, and a mixing matrix is described in frequency

domain A(k) which is an NS × NM matrix where NS and NM are the number of sources

and microphones, respectively. The observed signal is represented by X(k, l) = A(k)S(k, l),

which is same as in Eq. (2.1) for frequency bin index k, and frame index l. X(k, l) and

S(k, l) represent the observed and source signal vectors, respectively.

The BSS method using a DHMA is conducted under an overdetermined condition

which means NM > NS , because a DHMA can include up to 160 microphones. FDICA

assumes that the number of source signals is equal to the number of the microphones, and

thus an estimation of the number of source signals and a reduction in the number of ob-

served signals are needed to perform FDICA. In addition, the reduced dimensions must

exceed the number of actual sound sources, because not only actual sound source signals

but also reflection waves are used in FDICA. The spatial covariance matrix is calculated by

an expectation of the observed signal X(k, l), and it is decomposed into eigenvalues. The

number of virtual sound sources NQ that include direct sound sources and early-reflected

sources is estimated from eigenvalue diagonal matrix Λ(k) as follows:

Λ(k) = diag
[
λ1, · · · , λNM

]
, (4.3)

where diag denotes the operator at which all of matrix elements except diagonal elements

are set to zero, and λi is the i-th eigenvalue. This corresponds to the estimation of the num-

ber of sound sources with directivity, because such sound sources are spatially correlated.

Normalization, whose summation of the eigenvalues is 1, is calculated at each frequency

as follows:

λm ←
λm∑NM
i=1 λi

, m = 1, · · · ,NM. (4.4)

The threshold for the normalized eigenvalues evaluates the number of virtual sound
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sources in each frequency bin, and the maximum estimated value in all frequencies is as-

sumed to be NQ, because the number of estimated sound sources is different in each fre-

quency bin. Following the estimation of the number of virtual sources, eigenvectors, which

are estimated with eigenvalues, are employed to reduce the number of observed signals

using the subspace method. A more detailed description of the process explained above is

given in [1, 2].

4.2.5 FDICA for subspace signals in selected frequency bins

The observed signal is reduced to the NQ dimension using the subspace method, following

estimation of the number of virtual sound sources NQ. FDICA estimates separation matrix

U(k) for the reduced number of the observed signals, but only in the selected bins, via an

update rule with iteration [76] based on the principle presented in [19]. Separation matrix

W(k) for actual separation is obtained through a combination of a subspace matrix and

separation matrix U(k). The separated signal Y(k, l) is obtained as follows:

Y(k, l) =W(k)X(k, l). (4.5)

The scaling problem is solved using the projection method [37]. Next, the number of

dominant source signals in each frequency bin NK(k) is calculated from the separated signals

via a threshold operation.

4.2.6 Permutation solution using characteristics of DHMAs

Solution of the permutation problem affects separation performance significantly, and Oga-

sawara has proposed a method which combines the acoustic pressure distribution and the

relative phase distance [1, 2]. For solving the permutation problem, one of the representa-

tive methods is the correlation method. Not only the direct sound source but also the early-

reflected sources, however, should be considered as the source signals, for the BSS method

using a DHMA. This implies that similar time differences from different locations are in-

cluded in the separated signals. These signals might be very similar in regard to the power

envelope, so that it is difficult to distinguish them by the correlation in between different
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and close frequency bins, for solving the permutation based on the power envelopes of the

separated signals Another representative permutation solution is the clustering method. For

the BSS method using a DHMA, the clustering method, therefore, might be more appropri-

ate. The method proposed in [1, 2] significantly improves ability to solve the permutation

problem for a DHMA, however it uses transfer function clustering, which leads to a high

level of computational costs. In this section, the permutation solution for the BSS method

using DHMAs is briefly explained, and estimate of computational costs is introduced when

the frequency bin selection method is applied.

Acoustic transfer function clustering

The Moore-Penrose pseudo-inverse of the separation matrix corresponds to the mixing

matrix; in other words, it corresponds to the transfer functions between the source signals

and the observed signals. The transfer function is estimated as the q-th column vector w+q (k)

of pseudo-inverse W+(k).

Two similarities are considered, acoustic pressure distribution p(w+q (k)) for amplitude

similarity Da, and relative phase distance ϕ(w+q (k)) for phase similarity Dp. As mentioned

in Section 2.1.2, a DHMA has an acoustic pressure difference between each face, and the

acoustic pressure distribution shows the characteristics of the directions of the sources. The

acoustic pressure distribution is formulated as follows:

p(w+q (k)) =

 1
|M(1)|

∑
m∈M(1)

∣∣∣w+q,m(k)
∣∣∣ , · · · , 1

|M(10)|
∑

m∈M(10)

∣∣∣w+q,m(k)
∣∣∣ , (4.6)

p
(
w+q (k)

)
←

p
(
w+q (k)

)
∑

q p
(
w+q (k)

) , (4.7)

where M(µ) represents the set of microphones on the µ-th face and w+q,m(k) is the transfer

function between source q and the m-th microphone on face µ. Amplitude similarity Da

is formulated using acoustic pressure distribution p(w+q (k)) with the ν-th centroid cν as

follows:

Da

(
w+q (k), cν

)
=

∥∥∥p(w+q (k)) − p(cν)
∥∥∥2
. (4.8)
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Phase similarity is calculated using the normalized phase difference ϕ(w+q (k)) between two

microphones, calculated from normalized time difference τq,m(k) as follows:

ϕ(w+q (k)) =
[
exp

(
jτq,1(k)

)
, · · · , exp

(
jτq,NM (k)

)]
, (4.9)

τq,m = γ
∠w+q,m(k)

Fsk/NF
, (4.10)

where γ is a normalization constant and ∠ means the operator which obtain an argument of

a complex number. Consequently, the phase similarity Dp is formulated as follows:

Dp

(
w+q (k), cν

)
=

10∑
l=1

∣∣∣∣∣∣∣ ∑
m∈M(µ)

ϕ
(
w+q,m(k)

)∗
ϕ
(
cν,m

)∣∣∣∣∣∣∣ (4.11)

where (·)∗ represents the complex conjugate and cν,m represents the ν-th centroid of the m-th

microphone. After the normalization of Da and Dp by their mean and variance respectively,

the combined similarity J(·) in each frequency bin for hierarchical clustering is calculated

as follows:

J
(
w+q1(kα),w+q2(kβ)

)
=

{
a(kα) + a(kβ)

}
Da +

{
b(kα) + b(kβ)

}
Dp, (4.12)

a(k) =
{

k/I
NF/2

}ρ
, b(k) = 1 − a(k), (4.13)

where I is a parameter to adjust the phase similarity weighting, and ρ is a parameter to

adjust the boundary frequency between the amplitude and phase similarities.

The similarity described in Eq. (4.12) is calculated with hierarchical clustering as the

permutation correction of the BSS method using DHMAs.

4.2.7 Interpolated separation matrices in unselected frequency bins

As mentioned previously, high computational costs are one of the drawbacks to performing

hierarchical clustering for the BSS method using DHMAs. The frequency bin selection

contributes to reduce computational costs, not only during estimation of the separation ma-

trix, but also during hierarchical clustering for the permutation solution. After permutation
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correction, the separation matrix in the unselected bins is obtained as the linearly interpo-

lated matrix from the separation matrix in the neighboring frequency bins, which has al-

ready been estimated. If the mixing matrices would be obtained and could be considered as

linear phase FIR filter, the frequency phase response should be linear. A spatial character-

istic of a mixing filter is described as a time difference combination, and the time difference

is equivalent to the phase difference in the frequency domain. Therefore, it can be said that

an interpolation of linear phase mixing matrices, which could be estimated from the in-

verse matrix of the separation matrix, should be appropriate. However, the inverse matrix,

which consumes order O(n3) complexity (n means a n-by-n square matrix) [69], leads to

additional computational costs. The aim of this research is reducing computational costs,

so that avoiding additional computational costs is preferable. Therefore, in the unselected

bins, the interpolation of the separation matrix in the neighboring frequency bins are used

as the separation matrix.

4.3 Evaluation

4.3.1 Estimate of computational costs in the case of DHMAs

Evaluation measure for computational costs

In Chapter 3, the number of floating operations of multiplication and addition is counted

precisely for each function to evaluate computational costs. From a practical viewpoint,

this criterion is valuable for estimating the possibility of implementation with embedded

processors, and in addition it is useful to estimate system requirements for manufacturers.

On the other hand, in particular when there are a large number of microphones, it is diffi-

cult to estimate computational costs precisely using the same method because of multiple

numerical calculations. Therefore, in this chapter, only the number of multiplication is

evaluated. This is also valuable for estimation of computational cost because the multi-

plication operator in the embedded processors is one of the most expensive units and can

represents the processor performance.
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Table 4.2: Computational costs for the BSS method using DHMAs

Method Complexity

STFT(Forward&Inverse) 2NMNLNF log2 NF

Covariance Matrix N2
MNLNB

Eigenvalue Decomposition (13/3) N3
MNB

Subspace Method NQNMNLNB

Separation Matrix N3
QNLNINB

Projection Method (13/3) N3
MNB

Hierarchical Clustering
(
NMNK(k)NB

)2

Estimate of the order of computational complexity

In general, eigenvalue decomposition (EVD) is solved by the Householder method (HHM)

and the implicit shifted QL method (ISQL) [69]. In [69], the numerical calculation method

for singular value decomposition (SVD) is also introduced and consists of HHM and ISQL.

Therefore, in our estimate, the computational complexity of the EVD and pseudo-inverse

by SVD can be estimated by HHM and ISQL. Computational costs of HHM and ISQL are

introduced as (4/3)n3 and 3n3 respectively in [69]. For hierarchical clustering, an efficient

algorithm is introduced in [50] and computational cost is n2.

Estimated computational costs are shown in Table 4.2 where:

• NM: Number of microphones,

• NL: Number of frames,

• NF: FFT size,

• NB: Number of bins selected, in the case of all bins selected, this number correspond

to the Nyquist frequency of speech signals,

• NQ: Number of subspaces,
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• NK(k): Number of separated source signals in each frequency bin,

• NI: Number of iterations.

An example estimate is shown in Table 4.3 which is calculated from the computational costs

in Table 4.2 using concrete numbers. NM is 60 as described in Section 1.4; six microphones

are installed on each face, and the DHMA has ten faces for microphone arrays. In our

experiments described in Section 4.3, some numbers are given in Table 4.1

• NL is 625, which corresponds to the length of the source signals as 4 sec,

• NF is 1024,

• NB is

– 200 in the case of the full bin for the DHMA (0–8 kHz),

– 80 in the case of the proposed method (for example estimate),

• NQ is 25 (determined by preliminary experiment),

• NK(k) is 15 (determined by preliminary experiment),

• NI is 200.

Note that, to simplify estimate, NK(k) is not varied in every frequency bin. Actual itera-

tion is terminated by a convergence test, however the number of the iteration is constant to

simplify the estimate. As shown in Table 4.3, the total estimated computational cost has

the same order of the computational cost as hierarchical clustering. The proposed method

results in an 84% reduction in computational costs as a result of reducing number of fre-

quency bins from 200 to 80; however, the number of frequency bins has only been reduced

60%. Agglomerative hierarchical clustering is based on a bottom-up algorithm, and this is

the reason for the large reduction in computational costs. Hierarchical clustering needs to

calculate similarities between all of the transfer functions, and thus computational costs de-

pend on the number of initial elements. The reduced computational cost of the hierarchical

clustering process results in a power of two reduction in computational costs compared to

reduction of the number of frequency bins.
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As mentioned in Section 2.3, the influence of the slow access of the external mem-

ory is considered as three times of the computational costs estimated. The architecture of

the high-performance DSPs consists of several cores such as the latest CPU. One of the

high-performance DSPs shows 160 GFLOPS with 8 cores as mentioned in Section 2.3. As

shown in Table 4.3, the amount of calculation of the proposed method is around 80 giga-

operations. When the influence of the slow access of the external memory is applied to this

estimate, the amount of calculation becomes around 240 giga-operations. In contrast, the

amount of calculation of the previously proposed BSS method using DHMA shows over

500 giga-operations; this corresponds to 1500 giga-operations with the external memory

influence. If some number of the high-performance DSPs are connected and work concur-

rently, the BSS method using DHMA can be implemented; however, about ten DSPs are

needed to perform. This fact leads to the big size of the equipments. The proposed method

reduces the size of equipment and lowers manufacturing costs.
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Comparison to ICA via second-order statistics

TRINICON [63, 64] is one of the most common BSS methods using ICA. It uses joint

diagonalization using second-order statistics (SOS), in addition it is known as its compu-

tational efficiency. As mentioned in Section 2.2.4, when inverse and forward DFTs are

calculated for the separation matrices every several iterations, then these processes prevent

the complete decoupling of the frequency bins usually caused by the bin-wise independence

assumption, in other words, the permutation solution is not required. Involving DFTs in

the update equation, Eq. (53) in [64], is a general way. However, using DFTs as TRINI-

CON is computationally disadvantageous. Even though the speech signal is limited up

to 8–kHz, using all of the frequency bins is necessary to estimate the separation matrix.

In contrast, the proposed method allows circular convolution for restraining computational

costs. Eq. (67) in [64] is the simplest update rule of TRINICON with some approximations.

Under the same configuration for the estimate of computational costs in Section 4.3.1, ad-

ditional parameters for TRINICON must be considered that FFT size is four times NF , the

number of bins for the separation matrix is 4NF/2+1, number of blocks for the joint diago-

nalization is NJ = 20, and the number of iterations NI′ = 40. The computational cost of the

update rule Eq. (67) in [64] is
{
3N3

Q(4NF/2 + 1)NJ

}
NI′ , and it is dominant computational

cost of TRINICON as shown in Table 4.3. No permutation solution certainly reduces total

computational costs, however considering the separation filter in the time domain increases

the computational costs of the iterative update.

When bin-wise independence is assumed during using TRINICON, a permutation so-

lution is necessary [63]. In addition, as mentioned in [64], the approximation applied to

the update equation disturbs the perfect permutation correction. In other words, this means

that the separation performance is deteriorated by these approximations, so that involving

DFTs in the update rule is the essential characteristic of TRINICON, from the point of

view that the permutation solution is not required. The proposed method is compared with

TRINICON involving DFTs in the update rule. The proposed method is also compared

with the previously proposed BSS method using DHMA because it is important to evaluate

feasibility of the proposed method, which might represent a balance between separation

performance and computational costs.
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4.3.2 Source separation simulation

Simulation conditions and evaluation measures

The experimental conditions are the same as in Figure 4.2 and Table 4.1. Separation per-

formance is evaluated by improvement in the signal-to-interference ratio (SIRimp).

SIR(ξ)
imp = SIR(ξ)

out − SIR(ξ)
in , (4.14)

SIR(ξ)
in = 10 log10


∑

t

{
xJξ(t)

}2∑
t
∑

(J′,ξ) {xJJ′(t)}2

 , (4.15)

SIR(ξ)
out = 10 log10


∑

t

{
yξξ(t)

}2

∑
t
∑

(J′,ξ)

{
yξJ′(t)

}2

 , (4.16)

where xJξ(t) represents the observed source signal ξ on the J-th microphone and yξξ(t) rep-

resents the output signal which corresponds to source signal ξ. SIR(ξ)
imp is averaged over

all of the source signals. The proposed frequency bin selection method might cause a de-

terioration in separation performance as a result of the limited number of frequency bins.

Therefore, the other important factor is the quality of the separated sound, and signal dis-

tortion should be evaluated. As mentioned in Chapter 3, segmental signal-to-noise ratio

(SNRseg) is a very common measure for evaluating noise suppression, and SNRseg is known

to have a better correlation with the perception of noisy speech by humans than entire inter-

val SNR [71]. Cepstral distortion (CD) [72] is another measure of the degree of distortion

via the cepstrum domain, and this can evaluate distortion of a spectral envelope. SNRseg
(ξ)

is formulated as follows:

SNRseg
(ξ) =

1
Nls

∑
ls

10 log10

∑
t

{
xJξ(t, ls)

}2

∑
t

{
xJξ(t, ls) − yξξ(t, ls)

}2 , (4.17)
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where ls is a frame number and Nls is the number of frames used to evaluate SNRseg. CD is

calculated from speech components, and it is defined as follows:

CD(ξ) =
20

Nlc ln 10

∑
t

√√
L∑
κ=1

2
{
CxJξ(t,lc) (κ, lc) −Cyξξ(t,lc) (κ, lc)

}2
, (4.18)

where lc is a frame number, κ is the index of the cepstrum coefficient and Nlc is the number

of frames for CD. C(·)(·) is the cepstrum coefficient and L is the number of dimensions of

the cepstrum used in the evaluation; we set L=20. SNRseg
(ξ) and CD(ξ) are also averaged

over all of the source signals.

Simulation results

Results for each objective measure are shown in Table 4.4. The first column shows the

ratio of selected bins in each frequency region, for example, ‘(1/5,1/3,1/2)’ means one-

fifth for lowest frequency region B1, one-third for middle frequency region B2 and one-

half for highest frequency region B3. Each region is divided into 1016 Hz and 5040 Hz,

respectively. The number of selected bins means the total number of selected frequency

bins. Computational costs in this table equal the ratio compared to using the full bin, and

the method of estimate of computational costs is described in Section 4.3.1. Figure 4.7–4.9

shows the performance of the proposed method. The x-axis of each figure represents the

ratio of computational costs, and the y-axis represents the objective measure.

4.4 Discussion

The configuration ‘(1,1,1)’ in Table 4.4 corresponds to the previously proposed BSS method

using DHMA, and these results are shown at ratio 1.0 (100) point on the x-axis of Fig-

ure 4.7–4.9. SIRimp shows the contribution to separation performance of a large number

of selected bins. This result is assumed before the experiment. SIRimp deteriorates as the

number of selected bins decreases, and SNRseg and CD show different characteristics of

this deterioration. SNRseg shows that only a small deterioration occurs under 1 dB; in other

words, SNRseg shows almost equivalent performance using limited number of frequency
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Table 4.4: Experimental results for the proposed BSS method using DHMAs

(B1,B2,B3) Number of Computational SIRimp SNRseg CD

selected bins Costs [dB] [dB] [dB]

(1,1,1) 200 1.0 24.4 7.85 2.65

(previous method)

(1/3,1/2,1) 134 0.45 22.3 7.80 2.51

(1/3,1/2,1/2) 97 0.24 21.8 7.74 2.48

(1/5,1/3,1/2) 77 0.15 20.6 7.52 2.30

(1/5,1/3,1/3) 64 0.1 20.8 7.45 2.30

uniformly spaced 64 0.1 19.9 6.18 2.58

bins. Even though SIRimp and SNRseg deteriorate, CD is still slightly improved because the

lower value of CD shows the better performance. The proposed method is focused on a non-

uniformly spaced selection of frequency bins. In addition, the aim of this non-uniformly

spaced selection is to utilize the characteristics of the dodecahedral shape of the micro-

phone array. When 64 bins were selected, SIRimp of the proposed method shows almost 1

dB higher than in the case of uniformly spaced bin selection. In particular, SNRseg shows

significant improvement. CD is slightly improved to uniformly spaced bin selection. The

magnitude squared coherence, theoretically and experimentally described in Section 4.2.2

and 4.2.3, reflects this characteristic. The experimental results indicate that lower values of

MSC contribute to separation performance, particularly in the high frequency region that

the number of selected bins is larger than the others. Even though computational cost is

reduced by around 90 percent as compared to using the full bin, the acoustic characteristics

of the proposed method contribute to improving not only the separation performance, but

also the quality of the separated sound.

The proposed frequency bin selection method for the frequency domain BSS method

94



10
−1

10
0

19

20

21

22

23

24

25

26
S

IR
 i

m
p
ro

v
em

en
t 

[d
B

]

Computational cost [ratio]

 

 

Proposed method

Previous method

Uniformly spaced

Figure 4.7: SIR improvement. ‘Diamond’ means previously proposed method that uses

all frequency bins, and this case corresponds to no computational cost reduction, shown as

a ratio that equals one (100). ‘Circle’ means proposed method. ‘Cross’ means uniformly

spaced selection case for comparison with proposed method that uses a non-uniformly

spaced selection.

is advantageous to achieve the trade-off between the separation performance with the sig-

nificantly low degradation of the sound quality and computational costs. However, the

deterioration of the separation performance shows a disadvantage of the proposed method

compared to the method which uses all the frequency bins. On the other hand, such the joint

diagonalization using SOS as TRINICON involves DFTs in its update rule. This results in

no permutation solution, so that TRINICON shows less computational costs, around 20

percent reduction, than the BSS method using the permutation solution. When the number

of microphones is small or the voice terminals have a high computation power, it is easy

to perform TRINICON. However, the constraint of the linear convolution does not allow

to reduce further computational costs. The voice terminals are generally implemented in
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the embedded systems as mentioned in Section 1, the lower computational costs are re-

quired to perform the BSS method. The proposed bin selection method can reduce further

computational costs, and it is easy to achieve over 50 percent reduction.
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Chapter 5

Overall discussion

First, this chapter discusses the proposed method’s use of spatial correlation between two

microphones to select frequency bins for source separation. Second, important implemen-

tation issues are discussed. Finally, remaining issues and possible future work are dis-

cussed.

98



5.1 Spatial correlation between two microphones

The proposed method uses spatial correlation to select promising frequency bins for source

separation. When using two microphones, the spatial covariance matrix is equivalent to

spatial correlation, and its determinant is used as the criterion to select the frequency bins.

The determinant can simultaneously evaluate the number of source signals and the relative

strength among frequencies. When using a DHMA, magnitude squared coherence (MSC)

is used as the criterion to designate the sets of the frequency bins. The proposed method

uses the arbitrary combination of the impulse responses at two microphones to obtain the

averaged MSC. Since MSC can evaluate phase differences between microphones, it can

be used as a criterion for the separable frequency region. Of course if there are three or

more microphones, spatial information can be calculated, so the spatial covariance matrix

can also be calculated for three or more microphones. For frequency bin selection, the

real valued and scalar criteria are preferable especially for the computational inexpensive-

ness. Phase difference in the frequency domain is described as a complex number, thus the

spatial information includes a complex number. The proposed bin selection criteria, the de-

terminant of the covariance matrix and the MSC, are real numbers. Both criteria are scalar

values in a frequency bin. The proposed method uses only two microphones to calculate

these criteria. System requirements define the specifications of speech processing equip-

ment and the number of microphones used, and these requirements differ widely because

such equipment is designed and manufactured for different applications. Therefore, equip-

ment specifications and the number of microphones used may vary widely. Experimental

results using the proposed method in this dissertation show that only two microphones are

sufficient to evaluate spatial information, even if the number of microphones available is

much larger. This calculation is much simpler than if all of the spatial information available

is used.

From another technical viewpoint, the off-diagonal elements of the spatial covariance

matrix (SCM) simultaneously include the directions and signal power of the source signals.

In contrast, the SCM’s diagonal elements do not include this spatial information. These

diagonal elements correspond to the power spectrum of the observed signals, namely the
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Table 5.1: Comparison of the number of the operations for the target speech equipment

Assumed system Mobile Portable

(DSP) (Low-power) (High-performance)

Target 200 mega-operations 160 giga-operations

Proposed method 144 mega-operations 240 giga-operations

mixed signals. The off-diagonal elements of the covariance matrix express the spatial cross-

correlation spectrum between microphones. From a statistical point of view, the spatial

correlation is categorized into second-order statistics. In this dissertation, only second-

order statistics are considered in order to reduce the number of the frequency bins. In other

words, this is another opportunity to restrain the computational cost of FDICA. In addition,

the physical characteristics of the microphone array can also be utilized in combination

with second-order statistics, such as the experimental MSC.

5.2 Important issues for FDICA implementation

5.2.1 Target and estimated computational costs

As discussed in Chapters 1 and 2, when implementing FDICA within embedded proces-

sors, one of the most important issues is the required wait states of DRAM external mem-

ory. This is because storing large amounts of observed signals is necessary for statistical

signal processing, especially when using optimization schemes via higher-order statistics,

such as ICA. Embedded processors have some internal high-speed memory, however the

amount of memory space is very limited, so this internal memory should be reserved for

computationally expensive algorithms, such as FFT or matrix calculation. This implies

that DRAM external memory must be used to store long-term observed signals, however

the required wait states of such external memory lead to DSP waiting cycles, which waste

electric power. This is a critical issue for small speech processing devices, such as the

portable speech equipment and mobile phones discussed in this dissertation.
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Target numbers for DSP operations are discussed in Section 2.3, and are listed in Ta-

ble 5.1. The estimated number of operations required when using the proposed method are

also listed in Table 5.1. The effect of DSP waiting cycles is estimated to be equivalent to

tripling the number of required operations, thus the numbers in Table 5.1 have already been

increased to reflect the effect of using DRAM with wait states.

In the case of mobile devices, which are assumed to have two microphones, the esti-

mated number of required operations is 144 mega-operations. Comparing the target and es-

timated numbers of operations, it seems feasible to implement the proposed method using a

low-power DSP. In the case of portable equipment with a DHMA, the estimated number of

operations is 240 giga-operations, which exceeds the target number. Because the proposed

method is a more efficient form of BSS than conventional BSS with FDICA, the signal

processing algorithm has been formulated for the highest level of program optimization,

in other words the design level optimization. The program optimization includes elements

such as overall design, source code, build, compile, and so on. If the level of optimization

of these elements is lowered, source code, build and compile, this should significantly re-

duce the number of operations required when using the proposed method. Generally, the

number of operations can easily be reduced by 50 percent in these lower level optimiza-

tions, but achieving a 90 percent reduction would be challenging. Reducing the estimated

number of operations by 50 percent results in a new estimate of 120 giga-operations, which

would make it feasible to implement the proposed method using a single, high-performance

DSP. Note that the BSS method with a DHMA [1,2] requires 1500 giga-operations, in part

due to the required wait states of DRAMs, and that this is more than ten times our target

number of operations.

Even though the effects of the required wait states of DRAMs are taken into account in

the estimated computational costs shown in Table 5.1, total required memory consumption

should be discussed further, as this concrete number is valuable for defining system require-

ments. The proposed method designates the number of frequency bins to be selected, and

the number of bins selected is assumed to be proportional to required memory consumption.

Therefore, selecting a smaller number of bins results in lower required memory consump-

tion, and thus to more efficient implementation. If the number of designated frequency bins

is 64 and FFT size is 1024, the memory reduction ratio would be about 88 percent, resulting
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in a required memory consumption level of about 96 kBytes for mobile devices. Note that

the selection of 64 designated frequency bins was determined on the basis of experimental

results. A required memory consumption level of 96 kBytes makes it feasible to use a static

random access memory (SRAM) as the external memory. In this case, the required wait

states of DRAMs do not need to be taken into consideration, greatly reducing the required

number of operations, however SRAM is much more expensive than DRAM. In the case of

portable equipment, required memory consumption drops to about 1.44 MBytes as a result

of algorithm modification and bin selection, which means that use of SRAM is not feasible

because this exceeds the memory capacity of SRAM. For conventional BSS using FDICA,

the required memory consumption figures for mobile devices and portable equipment are

800 kBytes and 12 MBytes, respectively, as shown in Table 2.8. These estimated mem-

ory consumption levels are also too large to use SRAM. As this discussion makes clear,

estimation of required memory consumption is an important consideration when designing

speech equipment systems, one which also impacts manufacturing costs.

The number of the microphones used (NM) also has an effect on the computational

cost of FDICA functions. In Section 2.2, NM was discussed in relation to determining

which functions are the dominant factors in computational cost, and how these dominant

functions can differ according to the number of microphones used. For example, when

NM is small, the iterative update process is the dominant computational cost. In contrast,

when NM is large, the permutation solution, consisting of the clustering method, becomes

the dominant computational cost. This implies that optimization should be focused on

functions whose costs are largely determined by NM. When implementing the proposed

method, this approach can indicate the direction of which important functions need to be

optimized. For industry, this approach can help restrain software development costs.

5.2.2 Separation performance

In general, lower computational costs widen the range of application fields a proposed

method can be applied in. Experimental results have shown that separation performance

deteriorates as the number of ICA frequency bins decreases. This tendency has been ob-

served for both mobile devices and portable equipment, however this deterioration is not
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proportional to the reduction in the number of the frequency bins. In other words, there

is a trade-off between separation performance and the number of the frequency bins se-

lected, but performance drops more slowly than the rate of bin reduction, an observation

on which our proposed separation method is based. The separation performance of con-

ventional FDICA is about 20 to 30 dB of improvement in the signal-to-interference ratio

(SIRimp) [1, 2]. 30 dB of SIRimp means 0.001 times the power of the interference sig-

nal. If twelve source signals were captured simultaneously, and the power of each sig-

nal was equal, the signal-to-interference ratio (SIR) of the mixed signal would be about

−10 dB at the microphones. This value can be calculated using the following equation:

10 log10(1/11). Thus, 30 dB of SIRimp corresponds to 20 dB of absolute SIR. On the other

hand, to achieve practical speech enhancement, the signal-to-noise ratio (SNR) should be

about 10 to 20 dB. For example, a suppression of 15 dB means 0.03 times the power of

the suppressed noise signal. In the example above, of FDICA with twelve sources, 15 dB

of absolute SIR corresponds to 25 dB of SIRimp. Therefore, a SIRimp of 20 dB can be

adopted as minimum separation performance target as possible, which corresponds to 10

dB of absolute SIR. Separation performance of the proposed BSS method using a DHMA

exceeds this allowable minimum, with separation performance exceeding 20 dB of SIRimp,

while achieving a 90 percent reduction in the level of computational cost. For the pre-

viously proposed BSS method using a DHMA, experimental results of 24 dB of SIRimp

are reported, which corresponds to 14 dB of absolute SIR. This level of separation per-

formance is equivalent to 0.04 times the power of the interference signal in the separated

signal, under conditions in which the signal power of all the source signals are equal to one

another. Using the proposed method, interference signal power is 0.1 times the power of

the suppressed signal, which is only about twice the interference signal power when using

the previously proposed BSS method with a DHMA. As explained in this paragraph, the

proposed method satisfies the allowable minimum separation performance while sharply

reducing the number of selected frequency bins, and thus computational cost.

On the other hand, SIR is not an appropriate measure of signal distortion. Signal-

to-noise ratio (SNR) and cepstral distortion (CD) can be used to evaluate the degree of

mismatch between unprocessed and processed signals, with the mismatch equaling sig-

nal distortion. SNR is a time domain measure and CD evaluates the comparison between
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the spectral envelopes in the cepstrum domain, so these measures can be used to evaluate

distortion from different perspectives. When only two microphones are used, the segmen-

tal signal-to-noise ratio (SNRseg) is significantly improved. The FDICA separation ma-

trix works as the adaptive beamformer, so that the separated signal tends to be attenuated

in the low frequency region. This attenuation is caused by the acoustical properties of

a two microphone array. The proposed method uses a Wiener filter in the non-selected

frequency bins, and the filter is used more in the lower than in the higher frequency re-

gion. The Wiener filter cancels out the attenuation caused by the beamformer, as discussed

in Section 3.4. This is due to the improvement in SNRseg when using two microphones.

In contrast, when using two microphones CD deteriorates, however this deterioration is

less than 1 dB, which is a good trade off due to the large reduction in computational cost

which results, accounting for over 80 percent of the overall reduction in computational

cost. Therefore speech signal distortion is acceptably restrained by the proposed method,

despite the large reduction in computational cost. For BSS with a DHMA, SNRseg dete-

riorates, but this deterioration is slight, at less than 1 dB. When the frequency bins are

uniformly selected, SNRseg deterioration exceeds 1 dB. Even though SNRseg deteriorates

slightly when using the proposed method, CD improves because low cepstral distortion re-

sults in better performance, as shown in Figure 4.9. From the effect on both SNRseg and CD

when using the proposed method with a DHMA, significantly less distortion is achieved,

even though there is an over 80 percent reduction in computational cost. In comparison,

DUET [4], which is a time-frequency masking method, causes more distortion than the

proposed method. In fact, since the proposed method uses a Wiener filter, it can also be

categorized as a time-frequency masking method. Note that combining FDICA with a

time-frequency masking method may be another avenue for improving BSS performance.

In the discussion of SNRseg and CD, the proposed method indicates how it has a tendency

to cause almost equivalent amounts of distortion in SNRseg and CD compared to the BSS

methods which have been reported previously.

The proposed method illustrates a quite favorable trade-off between reduced computa-

tional cost and signal distortion. Regarding the SIR, the proposed method also shows the

practical trade-off between separation performance and reduced computational cost. Sys-

tem developers and manufacturers can choose appropriate configurations with respect to the
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balance between separation performance, signal distortion, system requirements and man-

ufacturing costs. For speech communication, users communicate with each other through

speech transmitting equipment, and these users prefer more natural sound rather than highly

enhanced but distorted speech. The proposed method is suitable for this purpose. Even

though separation performance deteriorates when using the proposed method, the amount

of distortion is equivalent to that which occurs when using methods that employ all of the

frequency bins. 80 percent reduction in overall computational cost, which is experimen-

tally evaluated, can be achieved using the proposed method. Separation performance is

in the acceptable range, as the SIRimp is over 20 dB, and SNRseg and CD remain almost

equivalent to, or are better than, results achieved when using conventional methods. Con-

sequently, the proposed method is a practical BSS method which can be utilized in speech

processing equipment with embedded processors.

5.3 Remaining issues

5.3.1 Separation matrix in unselected frequency bins

The proposed frequency bin selection method has an issue regarding separation of the ob-

served signals in the unselected bins. Conventional FDICA cannot avoid the acoustic re-

strictions of microphone arrays because of linear signal processing. In the case of two

microphones however, use of a Wiener filter for the unselected bins works well, especially

in the low frequency region. This countermeasure to the drawback of microphone arrays

suggests a method to restrain the signal distortion caused by microphone array processing.

For the BSS method using a DHMA, in the unselected frequency bins only the interpolated

separation matrix separates the observed signal. This interpolation can be applied to the

inverse or pseudo-inverse of the estimated separation matrix. This corresponds to the in-

terpolation between estimated mixing matrices, which did not work well, however, in our

preliminary experiments. An interpolated separation matrix is practical, however, because

separation using the interpolated separation matrix can be considered as a tentative sepa-

ration, similar to the use of two microphones. At least in the low frequency region, signal
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distortion may be improved using this approach, because the distortion is caused for acous-

tical reasons related to microphone array processing. On the other hand, if the number of

source signals is large, the signal power of the separated signals might become an issue,

because a Wiener filter corresponds to a dividing point in observed signal power. There-

fore, additional investigation is required to determine how to obtain the separated signals

in the unselected bins, especially when there are a large number of source signals.

5.3.2 On-line implementation

The proposed method was evaluated using batch processing, however an on-line method

might be more practical. When portable speech equipment is being used, the positions of

speakers and microphones do not usually change. In most cases, the speakers are sitting

around a table, and the microphones are placed on the table. For mobile devices, how-

ever, the situation is more variable. Acoustic conditions may vary widely. For example,

a speaker may bring the device from a small room into a large room, or the speaker may

put the device on a table in the middle of a conversation. In order to deal with varying

acoustic conditions, a block-wise on-line method of FDICA has been proposed [77]. Batch

processing in one block estimates the separation matrix, and the separation matrices are

then estimated again, block-by-block, using the observed signals from only one block. The

block used for estimation includes some frames of Short Time Fourier Transform, and the

block is shifted from time to time. In the proposed method, the selected frequency bins are

fixed while estimating the separation matrix. Re-selecting the frequency bins is probably

necessary when the block-wise on-line method is used with the proposed method. The

following ideas and issues should be investigated in future work:

• approximated covariance matrix with a forgetting factor to obtain a selection crite-

rion,

• block segmentation parameters (block length, overlap, etc.),

• management scheme for keeping the separation matrix in the selected frequency bins,

because a selected bin may not be selected in the next block,

• management scheme for storing the observed signal based on block changes.
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To manage storage of the observed signals, one possible method is to make block length

longer than signal length for storage. ICA estimates the separation matrix using higher-

order statistics, so signal length should be relatively long for the purpose of estimation, as

mentioned in Section 2.1. Signal length should be at least a few seconds, and it should

be noted that longer signal length is expected to improve separation performance. For the

block-wise on-line method, block length should not be too long, because the goal is to adapt

to changes in acoustic conditions. When block length is one second and the length of the

observed signal is same as the block length, separation performance may deteriorate. These

parameters should be determined by the system requirements of the speech processing

equipment. The memory management scheme, however, should be carefully designed,

and its influence on separation performance should be experimentally evaluated, especially

regarding the distortion measures.
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Chapter 6

Conclusion

The method of blind source separation (BSS) proposed in this dissertation uses frequency

domain independent component analysis (FDICA), but limits the number of frequency bins

selected in order to reduce computational costs by up to more than 80 percent. Experimen-

tal results show that separation performance deteriorates as a result of limiting the number

of frequency bins, however the amount of distortion which results when using the pro-

posed method remains at levels roughly equivalent to those of conventional methods using

unlimited numbers of frequency bins. And when using two microphones, the segmental

signal-to-noise ratio (SNRseg) exceeds that of methods using conventional FDICA. When

using a dodecahedral microphone array (DHMA), deterioration in SNRseg is restrained to

under 1 dB, and cepstral distortion is slightly improved.

BSS methods such as FDICA can be categorized as speech processing functions, sim-

ilar to noise reduction methods or acoustic echo cancelers. When manufacturing mobile

or portable speech processing equipment, using a single embedded processor is the most

practical approach, even if several speech processing functions will be operating concur-

rently using the same processor. Computational costs for each function of FDICA were

clarified, confirming that use of conventional FDICA in embedded processors concurrently

with other speech processing functions is not realistic. In order to reduce computational

cost, the proposed method selects a limited number of frequency bins using spatial corre-

lation, which is a type of second-order statistics. Note that second-order statistics can be
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combined to reduce FDICA’s computational cost, even though ICA algorithms use higher-

order statistics for mathematical optimization. By reducing computational costs by a ratio

of 80 percent, the proposed FDICA method becomes quite feasible for use in embedded

processors. It was also shown how the function responsible for the dominant computa-

tional cost can change, depending on the number of microphones used, allowing system

design and optimization strategies to take into account dominant costs when choosing the

number of microphones to be used. This insight enables system designers to better balance

separation performance and manufacturing costs.

The following are notable features of the proposed method.

• Frequency bins for signal separation by ICA are selected using spatial correlation:

– Spatial correlation provides directional information of the source signals.

– When using two microphones, the determinant of the spatial covariance matrix

can simultaneously evaluate the number of source signals and their respective

strengths.

– The trace of the covariance matrix is not appropriate for frequency bin selection.

The trace equals the power of the observed signal, and never includes spatial

information.

– When using a DHMA, the magnitude squared coherence reflects the acoustical

and spatial characteristics of the DHMA’s shape which contributes to determine

separable frequency regions.

• A significant reduction in computational costs is achieved:

– An 80 percent reduction in cost is achieved, while maintaining acceptable per-

formance.

– The proposed method works with any ICA iterative update algorithm, including

state-of-the-art FDICA with a permutation solution.

• Distortion levels are comparable to methods in which all of the frequency bins are

used for signal separation by ICA:
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– The proposed frequency bin selection process is superior to uniform selection

because of higher separation performance.

– When using two microphones, the Wiener filter cancels out the acoustical dis-

advantage of the null-beamformer, even though tentative separation shows de-

terioration in performance.

– The combination of the Wiener filter and FDICA improves the segmental signal-

to-noise ratio, especially in the low frequency region.

– When using a DHMA, deterioration of the segmental signal-to-noise ratio is

significantly restrained.

– Cepstral distortion is slightly improved.

• The critical functions regarding computational cost are clarified for FDICA:

– When using two microphones, the iterative update process is responsible for the

largest share of computational costs.

– When using a DHMA, the permutation solution has the greatest computational

cost.

– The effect of increasing the number of microphones suggests that the clustering

method is more critical than the numerical operation of the matrix calculation

in regards to computational cost.

Future work includes developing a separation method for the unselected frequency bins,

as well as an on-line frequency bin selection method. These refinements are expected to

improve separation performance and adaptability to changes in acoustic conditions, respec-

tively.
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