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Abstract

We study pattern formation of a step induced by a moving linear source of adatoms, which is related to a step pattern during C
deposition on Si(111), and possively to a graphene film grown on Siffudidn of adatoms released from the source in front

of the step causes wandering instability of the step. Many small intrusions with branches appear, and the characteristic length
the pattern increases untill it reaches a steady state. Coarsening process of the branch period is examined. In the first stage
period increases ak~ t"t, with v; ~ 1/4, increasing slowly with decreasing the velocity of the source. Competition between the
intrusions results in a faster growth of the branch period with exponentl/2. Change in the step pattern by an abrupt change in
the source velocity is also studied. Branches adjust their period by terminating growth of some branches or increasing their numk
by tip-splitting. The latter is suppressed by a largéfrstiss and a metastable state with side branches is seen.

Keywords: Al: Computer simulation, A1: morphological instability, A1l: Surface processes, A3: Physical vapor deposition
processes, B2: Semiconducting silicon

1. Introduction a linear atom source may be realized under various conditions,
and common pattern formation should be observed.

A strange comblike pattern of a growing step was observed | our previous study [3], we have performed Monte Carlo
during Ga deposition onto a Si(111) vicinal face [1]. With sjmylations with a square lattice model. In the model, a step
Ga deposition, a structural phase transformation _of_the surfagg advancing by incorporating adatoms that are released from a
from the V3x ‘/§ structure to the 8x 6.3 structure is induced  |inear source moving in front of the step. The initially straight
near the lower side of a step, and smultaneogsly Si atoms aep is unstable and many intrusions appear at the beginning.
released onto the surface. Therefore the moving phase boungiz|axation of the small intrusions and competition between the
ary with Ga incorporation acts as a source of Si adsorbed atomgirysjons result in coarsening of the pattern, and the step soon
(adatoms) and the step growth occurs with such excess Si atomggches a steadily growing state where branching period shows
We have modeled this system as a growing step guided by a liny steady profile. The intrusions tend to grow into ¢h#) direc-
ear source of adatoms, and suceeded to reproduce the comblifgns of the suquare lattice, and the comblike pattern is seen in
step pattarn in the Monte Carlo simulation [2, 3]. Such a growthyrowth towards the [11] direction. These patterns are markedly
guided by an atom source may be found in other systems. ActUsifrerent from that of deposition growth [7, 8, 9] or from growth

ally, a similar pattern has been reported during epitaxial growthyithout evaporation [10, 11, 12]. Periodof branches in the
of a graphene sheet from a heated SiC crystal. Si atoms are

evaporated from the SiC surface by heating, andféeblayer stgady statel”, is proportional to\,ﬁ/ \_/P’ wheref s the step

of carbon-rich 6y3 x 63 structure is first formed. Further Stiffness and/, the velocity of the moving source.
evaporation of Si produces a newflar layer, and the existing N the present paper we study coarsening behavior in the
buffer layer transforms into graphene. Fingerlike graphene wailitial stage of growth and the change in period by an abrupt
observed in the lower side near the step, which is probably thehange in the source velocity. Bwe define our model of a
source of C atoms [4, 5, 6]. The number of C atoms in graphengl€P with a linear source of adatoms, and the results of our pre-
is about three times that in a SiC bilayer. Therefore a single oYious study are summarized & Initial stage of the wandering

a double bilayer step cannot supplyfitient C atoms to form instability is studied in4 with emphasis on coarsening of the

a graphene layer, as the phase boundary in thigiGgtem. In- wandering patt_ern_. 5 we study how the_ period is adjuste_d
sufficient supply of C atoms causes wandering instability of theVhen the velocity is changed abruptly. Finally, we summarize
graphene growth front in thefliiision field, and the front forms  OUr results and discuss about remaining questioBs in

the comblike pattern [6]. Thus, flisional growth guided by
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Figure 1: The lattice model for a (01) step. The blue and red squares are solid 6
and step atoms. The green circles are adatoms. The yellow line is the phase Y1000 [ N
boundary, and the green area is the outside. (a) The initial and (b) a later con-
figuration.

2. Model

The model we use was introduced in Ref. [3] to explain 0
the comblike pattern found in Si(001) surface with Ga deposi- ° w e e e
tion. The rules for growth of a step andfdision of adatoms (©) (d)

are the same as those of Ref. [8]. AdatomSudie on a flat

square lattice, which is bound by a step on one side and beigure 2: Step patterns induced by the moving linear source of atoms at velocity

a straight phase boundary releasing adatoms and moving atVa= 0.02, (a) in the [01] direction and (b) in the [11] direction, avgl= 0.005,

constant Ve|OCith (the location isy(x, t) = th)' on the other (c) _|nthe [01] direction a_nd (d) in the [11] direction. Blue (dark grey) represents
. . e . solid layer, and green (light grey) dots represent adatoms.

side. In Fig. 1, we show a magnified view of a (01) step. The

lattice is rotated 45for a (11) step. A periodic boundary con-

dition is imposed in thex direction: the siteX, y) is equivalent y direction is either [01] or [11] direction of a square lattice.

to (x + L,y). When an adatom comes next to the step, it mayrhe motion of the adatom source is realized in the simulation

solidify with the probability as follows. The linear source initially contaioggrandomly dis-
1 tributed adatoms per site, and it is the upper boundary of the
P = T e et (1)  system. Every time interval,*, a new line of lattice sites with

] . ) Co adatoms per site is added at the top of the system. We use

whereAE is the change in step energy (the kink energy half  the parameter valug/ks T = 3.0, which gives the equilibrium

the lateral bond energy times the perimeter length in the unit oqatom density a2, = e /%™ = 0.05. The adatom density

the energy gain in solidification. The solidified atom becomess covered by solid, and the rest is the terrace with the equilib-
a step atom, and step atoms form an edge of the solid atomigym number of adatoms. The kink energy is set4g T = 2.0
layer. A step atom may “melt” to become an adatom with thegjying stiffnesBio; = 2.76 andpy = 1.23 [8]. The width of
probability the system i4. = 1024 (we set the lattice constant as the length

1 unit).
p-= 1+ AE9)/ksT @)

whereAE is the change in step energy associated with the melt3. Formation of a forest
ing. Time increases in eachfilision trail, and the unit of time
is so chosen that theftlision codicientDg is unity.

At the start, the step is straight and located near the bottorﬁ
of the system, and the source is in contact with the step. The

2

Typical step patterns formed in the simulation are shown in
ig. 2. These patterns and similar patterns found in a related



model are analyzed in Refs. [2] and [3]. The results are sum- 100
marized as follows.

A

A =0.94t0% 4

1. Wandering instability of the step is induced by the mov-
ing linear source of adatoms, and a forestlike pattern of by Amax
intrusions appears.

2. Because of the anisotropy in the stefffagss, intrusions .
tend to grow into th€11) directions of the smallest i -«’" yp =57
ness. As a result, the step growing into the [01] direc- e ‘ ‘
tion produces many branches (Figs. 2(a) and (c)) while 100 1000 10000
the step growing into the [11] direction produces few (a) t
branches (Figs. 2(b) and (d)). The latter patterns resem- :
ble the comblike step pattern found on a Ga deposited A
Si(111) surface [1] and the finger pattern of a graphene 100¢ N
sheet [4, 5, 6]. A

3. Except for coarsening and local relaxation in the early A
stage, the global pattern of the step seems steady. In par-
ticular perioda of branches, measured by counting num-
ber of branches at a certain height, takes a steady value
determined by velocity/, of the source and the kink en-
ergye. Periodl was found to be several times larger than
the linearly most unstable wavelengthyay, Of the wan-
dering instability

W\ a0

T A =2.910%

100 emd e

Yp =25

100 1000 10000

(b) !

100}
Amax = 21, | ——, (3)

wherelp = Ds/V, is a difusion length corresponding A=250%

to the source velocity, andl = cgcﬁ[m]/kBT the capil- n o
lary length for the [01] step (this holds true even for the i v 35
growth into the [11] direction). Thus the period is deter- 1100‘0‘" T oo o000
mined by the sfthess of the [01] step and the source ve- (©) t

locity: A ~ +/Bo1j/Vp. The moving source at aftéerent
. . _ . Figure 3: Change of the branch period,as time in the [01] growth (square)
velocity Vp brings about a similar pattern of thefigirent and in the [11] growth (diamond). The velocity of the source isg}= 0.02,

length scale: the pattern adjusts its characteristic lengt{b) v, = 0.01, (c)V, = 0.005. Dotted lines are power-law fits, horizontal lines
to follow the guiding source. aremax and dotted horizontal lines are the steady state valties Ref. [3],

4. If V,yis too fast, however, the step cannot follow the sourc@! for the [01] growth.
and a fractallike growth at a constant velocity occurs.

In the following, we first study the change in branch periodPoWer-law growth with time. For the [01] growth, the exponent
A during growth,j.e. coarsening of the step pattern in the earlyn the first stage is abouy4 (0.23-0.28) and that in the second

change in velocity, of the source. shows a similar behavior. Thefférences arg in the first stage

is about ten percent smaller, and the exponents in the second
stage is slightly larger.
We have also performed Fourier analysis of the step posi-

Period of branches From the simulation data we deduced the ion: Y(X.1), &s shown in Fig. 4. Itis more accurate in the early
period of branches by two fierent ways. stage than counting the number of branches, but looses accu-

In the previous paper [3] we counted the number of branche&Cy once the step developes overhdngsie exponents found
cut at various height, and derived period* near the top in the I the first stage are about the same as those obtained in Fig. 3,
steady state. Here we are interested in early stage of the growfit the transition to the second stage is seen much later (about
before the steady stage, and we simply count the number at thigur times). For small source velocities, the exponent increases
half-way line to the fective frontys of the solid layer defined up to 0.4. The value of the second stage is not reliable because
later in Eq. (4) The results are shown in Fig. 3. The coars-©f overhangs.
ening process is divided into two stages, and both stages show

4. Coarsening of the step pattern

1Since the values of,, studied in this paper are rather small, we may neglect
the dfect of relaxation after growth and resultant decrease in the branch number. 2We have made Fourier analysis of the highest step position abeach
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Figure 4: Change of the branch peridfound in the Fourier analysis, with the x density
source velocity (a)/p = 0.02. (b)V, = 0.01. (c)V, = 0.002. (d)V, = 0.001 (a) (b)

for the [01] growth (square). In (b), data for the [11] growth are also shown by

diar_nonds. _Dotted lines are power-law fits, horizontal linesiayg, and dotted Figure 5: (a) Part of a growth pattern with, = 0.01 att = 10000 {, = 100).

horizontal lines are the steady state valuésjn Ref. [3], for the [01] growth. Circles indicate the position of steps cutyat2. (b) Density of solid (red or
grey line) and adatoms (black line), and the best fit to the adatom density Eq. (8)

. . . (blue or dark grey line).
Diffusion length. The coarsening of the pattern may be related

to the change in the flusion length. To find the fusion length

for each simulation we made an analysis based on the followingetween the step position and the souyge.ys, is not uniquely
picture. If we measure density of the solid and that of adatomgetermined. The diusion length defined from the density gra-
averaged ovex as a function of the height;, the profiles at ~ dientis given bylp = Ds/Vj.

timet, cs(y,t) andc(y,t), can be interpreted as follows. Most

of the solid forest region will show the constant densitgy) ~ Density profile in the simulationin the above picture we have

const= ¢ = 1/2, near to anfective sharp front of the growing assumed a steady state, but in reality the density profile must

solid layer (or an averaged position of the growing part of Step)chan_ge since the source is init.ially. in contact with the step qnd
defined by the distancey, — ys increases with time until the steady state is

realized. To analyze the change we measured the density profile

Vit c(y, t) and fit it with the function

Csys(t) = | cs(y, t)dy, (4)

+c2 (8)

eq

c(y) = (co - €2q) [1 - exp(— Y lnys)

wherecs(y, t) = Z'x':l cs(x,y,t)/L. If we regard the system as
one-dimensional, the boundary condition for the adatom den-

sity, ¢y, 1) = L . ¢(x.y.t)/L, at the solid fronty = y(t), is where we treays'andip as fitting parameters.
Vo ey ) = Doy SX Y./ Y=Y An example is shown in Fig. 5. The black line in Fig. 5(b)

. oc i i inei i '
cys(t) = Ds Z| ) is the adatom density(y, t) and the red line is the solid density

Yy cs(y,t). The blue line is the best fit Eqg. (8) to the upper part of
and at the source.= v is the black line. We checked consistency of the parameters thus
= Yp: found by calculating the mass conservatiog,afThe measured
3 ac values oflp are shown as red squres in Figs. 6. The blue lines
CoVp = C{yp)Vp + Ds @ YoVt ®6) are error bars, and data with dark bars indicate that the error
p—VYp

is so big or the convergence of fitting is so poor that the data

Supposing that a steady state is approximately realized at eaga 1ot reliable. They show that the measuretudion length
moment, the steady state solution of théudiion equation in pecomes a steady value consistent with tifugiion length ex-
the frame of reference moving at velochy= ys = Vp forthe  pected from the source velocitl ~ Ip = Ds/V,. Because of
boundary conditions, Eq. (5) and thy — o) = Co, is (the  the Jarge error, the initial behavior is not very clear, but Fig. 6(c)
latter is necessary for the existence of the steady state in Ongygicates thalp is small in the initial stage and increases up to

dimension) the steady value. This is reasonable since the source is initially

0 VA close to the step.
o) = (0o - ) [1 - eXp(—H(y - ys>)
s Interpretatin of the change in periodnterpretation of the re-
Substituting Eq. (7) to Eq. (6), it is easily seen that this solutiorsults is not simple. The first stages in the Fourier analysis

satisfies Eq. (6) automatically. It means that the average derfFig. 4) and in the branch number analysis (Fig. 3) show sim-
sity is approximately represented by Eq. (7), and the distanciar exponents: about/4 with V, = 0.02 slightly increasing

4
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Figure 6: Change of the measuredfdsion lengttp as time (red squares with
a blue error bar) with the source velocity (d) = 0.02. (b)V, = 0.01. (c)
Vp = 0.005. The data with a dark error bar indicate fitting is poor and unreliable.

with decreasing/,. Crossover to the second stage is seen in 0 150 300
both analyses, but the change from the first stage in Fig. 4 oc-
curs about three times later than in Fig. 3. We think the change (d) X

in the first stage is due to local relaxation of a rough step formed. _
by random attachment of adatoms although we do not have thg.9|r 7: Step patterns witd, = 001 at (a)t = 1500, (b)t = 2500, (©)
y - . 9 ?: 5000, (b)t = 10000. Circles indicate the position of branches couted in
oretical explanation of the exponent. The snapshot of the stepg. 3.
in Fig. 7(a) shows a pattern in this stage. This process contin-
ues as observed in the Fourier analysis, and wandering insta- ) )
bility occurs in addition. In Fig. 7(c) the instability is obvious °- Response to an abrupt change in the velocity
gnd n_ot all intrusions are Qetectgd by the branch counting. The Since the period of the branches in the steady siiteis
intrusions formed by the instability begin to compete. Such a ; . .
4 R . determined by the velocity of the sourgg, it must respond to
feature becomes evident in Fig. 7(d) when only winners of the . . o
o . \ an abrupt change in the velocity. In the case of thin-film lamel-
competition are counted. Fig. 7(b) is a snapshot at the CrOSSOVEL.  +ectic arowth. doubling of the pulling rate induces a parit
pointin Fig. 3(b). The first stage observed in Fig. 4 ends when 9 ' 9 P 9 parity

becomes aboulyay of Eq. (3). Implication of this result and its breaking transition ar_ld a tllte_d pattern is seen [15]. To find out
. . T : the way branches adjust their shape to a new period that corre-
relation to the change in theftlision length are still unsolved

problem to us sponds to the new source velocity, we performed simulations in

In the second stage, the exponent is abg2it Observation which V, jumps to a value several times larger or smaller than

of many growth patterns suggests that the coarsening proceethlse initial one when the source reaclygs- 700.

by competition of intrusions as seen in Figs. 7(c) and (d). Ifjncrease of the source velocitBeverel examples for the growth

we start with intrusions of a comparable size ;’V't,h periad  jnio the [11] direction, toward which branches tend to grow

the natural selection of winners takes time- 1 since itiS  gyaight with less branching, are shown in Figs. 8 and 9. Fig. 8(a)

the result of disparity in the fusion field. This may be the 554 (1)) are step patterns when the velocity has increased nine

origin of the exponent close tg2, as often seen in step growth a5 " With our standard value of thefitiesse/keT = 2.0,

phenomena [13, 14]. after the initial coarsening, the number of survived branches
in the view (a) is three. The favorable number of branches
for the nine times increase &f, is 3 x V9 = 9. In (a), two
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Figure 8: Step patterns with the change frofn= 0.000866 to 007793 (9
times increase). (&/ksT = 2.0, (b)e/ksT = 3.0.
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Figure 9: Step patterns with the change fro;= 0.007793 to 0000866 (91
times). (@)e/ksT = 2.0, (b)e/ksgT = 3.0.

branches out of the three made multiple tip-splitting and thean abrupt change in the velocity, branches adjust their period
number of branches takes values from seven to nine depending terminating growth of some branches or by increasing their
on the height. With larger sthesse/ksT = 3.0, the number number by tip-splitting. The latter is suppressed by a large sti

in the first steady state is two as seen in (b). After the changgess, and a metastable state with side branches is seen.

in Vp, the favorable number would be six, but the number re-  Theoretically, many questions arise. The branch period,
mained the same. Because of the larg#frass, tip-splitting  in the steady state is apparently related to the wavelenhgth
hardly occurs and instead side-branching occurs to compensase the most unstable mode, but it is several times larger than
the large separation between the main branches. Transition tojd,,,. How is the prefactor determined? Can one explain the

state of diferent number of branches is a discontinuous transicoarsening exponents ~ 1/4 andv, ~ 1/2? Are they related
tion and a large fluctuation is necessary, as in afirst order phasg the change in diusion length? Certainly crystal anisotropy is

transition. It is only possible with weak anisotropy of thefsti
ness.

essential to the step pattern as observed in the metastable state
under the abrupt change in the source velocity. Quantitative

study of the &ect of anisotropy is necessary if one wishes to

Decrease of the source velocityWhen the source velocity,
is decreased, the favorable number of branches decreases. Con-
trary to the case of increasing velocity, termination of growth

control the shape.
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fewer branches. Figs. 9(a) and (b) show patterns formed by a
sudden decrease b}, by 1/9. With e/kgT = 2.0, the number

decreased from seven to three (several branches in Fig. 9(a) diéferences

already broken and about to dissapear by local relaxation), anc(ll]
from four to two withe/kgT = 3.0. Note that the most favor-  [2]
able number of branches is expected to appear only on averagé3]
and that the actual number is also limited by the system size. 4]

[5]

[6]
We have examined coarsening process of the branch periogn
in the step wandering instability guided by a linear source of [g]
adatoms. Our model was motivated by the step pattern on a
Ga deposited Si(111) surface, and is possibly applicable to thd®
finger pattern of a graphene sheet grown from SiC. In the firs; g
stage the period increasesas t", with v; ~ 1/4, increasing
slowly with decreasing,. In the Fourier analysis, this behav- [11]
ior continues untilll ~ Amax , Wherednmay is the most unstable [12]
wavelength for the diusion length in the steady state. How- [13]
ever, the competition between the intrusions results in a fastegt4]
growth of the branch period with the exponent~ 1/2. With ~ [19]

6. Summary and discussion
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