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Abstract

We study pattern formation of a step induced by a moving linear source of adatoms, which is related to a step pattern during Ga
deposition on Si(111), and possively to a graphene film grown on SiC. Diffusion of adatoms released from the source in front
of the step causes wandering instability of the step. Many small intrusions with branches appear, and the characteristic length of
the pattern increases untill it reaches a steady state. Coarsening process of the branch period is examined. In the first stage the
period increases asλ ∼ tν1, with ν1 ≈ 1/4, increasing slowly with decreasing the velocity of the source. Competition between the
intrusions results in a faster growth of the branch period with exponentν2 ≈ 1/2. Change in the step pattern by an abrupt change in
the source velocity is also studied. Branches adjust their period by terminating growth of some branches or increasing their number
by tip-splitting. The latter is suppressed by a large stiffness and a metastable state with side branches is seen.

Keywords: A1: Computer simulation, A1: morphological instability, A1: Surface processes, A3: Physical vapor deposition
processes, B2: Semiconducting silicon

1. Introduction

A strange comblike pattern of a growing step was observed
during Ga deposition onto a Si(111) vicinal face [1]. With
Ga deposition, a structural phase transformation of the surface
from the

√
3×
√

3 structure to the 6.3×6.3 structure is induced
near the lower side of a step, and simultaneously Si atoms are
released onto the surface. Therefore the moving phase bound-
ary with Ga incorporation acts as a source of Si adsorbed atoms
(adatoms) and the step growth occurs with such excess Si atoms.
We have modeled this system as a growing step guided by a lin-
ear source of adatoms, and suceeded to reproduce the comblike
step pattarn in the Monte Carlo simulation [2, 3]. Such a growth
guided by an atom source may be found in other systems. Actu-
ally, a similar pattern has been reported during epitaxial growth
of a graphene sheet from a heated SiC crystal. Si atoms are
evaporated from the SiC surface by heating, and a buffer layer
of carbon-rich 6

√
3 × 6

√
3 structure is first formed. Further

evaporation of Si produces a new buffer layer, and the existing
buffer layer transforms into graphene. Fingerlike graphene was
observed in the lower side near the step, which is probably the
source of C atoms [4, 5, 6]. The number of C atoms in graphene
is about three times that in a SiC bilayer. Therefore a single or
a double bilayer step cannot supply sufficient C atoms to form
a graphene layer, as the phase boundary in the Ga/Si sytem. In-
sufficient supply of C atoms causes wandering instability of the
graphene growth front in the diffusion field, and the front forms
the comblike pattern [6]. Thus, diffusional growth guided by
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a linear atom source may be realized under various conditions,
and common pattern formation should be observed.

In our previous study [3], we have performed Monte Carlo
simulations with a square lattice model. In the model, a step
is advancing by incorporating adatoms that are released from a
linear source moving in front of the step. The initially straight
step is unstable and many intrusions appear at the beginning.
Relaxation of the small intrusions and competition between the
intrusions result in coarsening of the pattern, and the step soon
reaches a steadily growing state where branching period shows
a steady profile. The intrusions tend to grow into the〈11〉 direc-
tions of the suquare lattice, and the comblike pattern is seen in
growth towards the [11] direction. These patterns are markedly
different from that of deposition growth [7, 8, 9] or from growth
without evaporation [10, 11, 12]. Periodλ of branches in the

steady state,λ∗, is proportional to
√
β̃/Vp, whereβ̃ is the step

stiffness andVp the velocity of the moving source.
In the present paper we study coarsening behavior in the

initial stage of growth and the change in period by an abrupt
change in the source velocity. In2 we define our model of a
step with a linear source of adatoms, and the results of our pre-
vious study are summarized in3. Initial stage of the wandering
instability is studied in4 with emphasis on coarsening of the
wandering pattern. In5 we study how the period is adjusted
when the velocity is changed abruptly. Finally, we summarize
our results and discuss about remaining questions in6.
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Figure 1: The lattice model for a (01) step. The blue and red squares are solid
and step atoms. The green circles are adatoms. The yellow line is the phase
boundary, and the green area is the outside. (a) The initial and (b) a later con-
figuration.

2. Model

The model we use was introduced in Ref. [3] to explain
the comblike pattern found in Si(001) surface with Ga deposi-
tion. The rules for growth of a step and diffusion of adatoms
are the same as those of Ref. [8]. Adatoms diffuse on a flat
square lattice, which is bound by a step on one side and by
a straight phase boundary releasing adatoms and moving at a
constant velocityVp (the location isy(x, t) = Vpt), on the other
side. In Fig. 1, we show a magnified view of a (01) step. The
lattice is rotated 45◦ for a (11) step. A periodic boundary con-
dition is imposed in thex direction: the site (x, y) is equivalent
to (x + L, y). When an adatom comes next to the step, it may
solidify with the probability

p+ =
1

1+ e(∆E−φ)/kBT
, (1)

where∆E is the change in step energy (the kink energyε or half
the lateral bond energy times the perimeter length in the unit of
the lattice constant) associated with the solidification, andφ is
the energy gain in solidification. The solidified atom becomes
a step atom, and step atoms form an edge of the solid atomic
layer. A step atom may “melt” to become an adatom with the
probability

p− =
1

1+ e(∆E+φ)/kBT
, (2)

where∆E is the change in step energy associated with the melt-
ing. Time increases in each diffusion trail, and the unit of time
is so chosen that the diffusion coefficientDs is unity.

At the start, the step is straight and located near the bottom
of the system, and the source is in contact with the step. The
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Figure 2: Step patterns induced by the moving linear source of atoms at velocity
Vp = 0.02, (a) in the [01] direction and (b) in the [11] direction, andVp = 0.005,
(c) in the [01] direction and (d) in the [11] direction. Blue (dark grey) represents
solid layer, and green (light grey) dots represent adatoms.

y direction is either [01] or [11] direction of a square lattice.
The motion of the adatom source is realized in the simulation
as follows. The linear source initially containsc0 randomly dis-
tributed adatoms per site, and it is the upper boundary of the
system. Every time intervalV−1

p , a new line of lattice sites with
c0 adatoms per site is added at the top of the system. We use
the parameter valueφ/kBT = 3.0, which gives the equilibrium
adatom density asc0

eq = e−φ/kBT = 0.05. The adatom densityc0

is chosen to be 0.525. Then, in the long run, half of the system
is covered by solid, and the rest is the terrace with the equilib-
rium number of adatoms. The kink energy is set asε/kBT = 2.0
giving stiffnessβ̃[01] = 2.76 andβ̃[11] = 1.23 [8]. The width of
the system isL = 1024 (we set the lattice constant as the length
unit).

3. Formation of a forest

Typical step patterns formed in the simulation are shown in
Fig. 2. These patterns and similar patterns found in a related

2



model are analyzed in Refs. [2] and [3]. The results are sum-
marized as follows.

1. Wandering instability of the step is induced by the mov-
ing linear source of adatoms, and a forestlike pattern of
intrusions appears.

2. Because of the anisotropy in the step stiffness, intrusions
tend to grow into the〈11〉 directions of the smallest stiff-
ness. As a result, the step growing into the [01] direc-
tion produces many branches (Figs. 2(a) and (c)) while
the step growing into the [11] direction produces few
branches (Figs. 2(b) and (d)). The latter patterns resem-
ble the comblike step pattern found on a Ga deposited
Si(111) surface [1] and the finger pattern of a graphene
sheet [4, 5, 6].

3. Except for coarsening and local relaxation in the early
stage, the global pattern of the step seems steady. In par-
ticular periodλ of branches, measured by counting num-
ber of branches at a certain height, takes a steady value
determined by velocityVp of the source and the kink en-
ergyε. Periodλ was found to be several times larger than
the linearly most unstable wavelength,λmax, of the wan-
dering instability

λmax = 2π

√
3ΓlD

1− c0
eq
, (3)

where lD = Ds/Vp is a diffusion length corresponding
to the source velocity, andΓ = c0

eqβ̃[01]/kBT the capil-
lary length for the [01] step (this holds true even for the
growth into the [11] direction). Thus the period is deter-
mined by the stiffness of the [01] step and the source ve-

locity: λ ∼
√
β̃[01]/Vp. The moving source at a different

velocity Vp brings about a similar pattern of the different
length scale: the pattern adjusts its characteristic length
to follow the guiding source.

4. If Vp is too fast, however, the step cannot follow the source
and a fractallike growth at a constant velocity occurs.

In the following, we first study the change in branch period
λ during growth,i.e. coarsening of the step pattern in the early
stage. We also study the adjustment of periodλ to an abrupt
change in velocityVp of the source.

4. Coarsening of the step pattern

Period of branches.From the simulation data we deduced the
period of branches by two different ways.

In the previous paper [3] we counted the number of branches
cut at various heighty, and derived periodλ∗ near the top in the
steady state. Here we are interested in early stage of the growth
before the steady stage, and we simply count the number at the
half-way line to the effective frontys of the solid layer defined
later in Eq. (4).1 The results are shown in Fig. 3. The coars-
ening process is divided into two stages, and both stages show

1Since the values ofVp studied in this paper are rather small, we may neglect
the effect of relaxation after growth and resultant decrease in the branch number.
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Figure 3: Change of the branch period,λ, as time in the [01] growth (square)
and in the [11] growth (diamond). The velocity of the source is (a)Vp = 0.02,
(b) Vp = 0.01, (c)Vp = 0.005. Dotted lines are power-law fits, horizontal lines
areλmax, and dotted horizontal lines are the steady state values,λ∗, in Ref. [3],
all for the [01] growth.

power-law growth with time. For the [01] growth, the exponent
in the first stage is about 1/4 (0.23-0.28) and that in the second
stage is about 1/2 (0.45-0.6). The growth in the [11] direction
shows a similar behavior. The differences areλ in the first stage
is about ten percent smaller, and the exponents in the second
stage is slightly larger.

We have also performed Fourier analysis of the step posi-
tion, y(x, t), as shown in Fig. 4. It is more accurate in the early
stage than counting the number of branches, but looses accu-
racy once the step developes overhangs2. The exponents found
in the first stage are about the same as those obtained in Fig. 3,
but the transition to the second stage is seen much later (about
four times). For small source velocities, the exponent increases
up to 0.4. The value of the second stage is not reliable because
of overhangs.

2We have made Fourier analysis of the highest step position at eachx.
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Figure 4: Change of the branch periodλ found in the Fourier analysis, with the
source velocity (a)Vp = 0.02. (b)Vp = 0.01. (c)Vp = 0.002. (d)Vp = 0.001
for the [01] growth (square). In (b), data for the [11] growth are also shown by
diamonds. Dotted lines are power-law fits, horizontal lines areλmax, and dotted
horizontal lines are the steady state values,λ∗, in Ref. [3], for the [01] growth.

Diffusion length.The coarsening of the pattern may be related
to the change in the diffusion length. To find the diffusion length
for each simulation we made an analysis based on the following
picture. If we measure density of the solid and that of adatoms
averaged overx as a function of the height,y, the profiles at
time t, cs(y, t) andc(y, t), can be interpreted as follows. Most
of the solid forest region will show the constant density,cs(y) ≈
const≡ cs = 1/2, near to an effective sharp front of the growing
solid layer (or an averaged position of the growing part of step),
defined by

csys(t) =
∫ Vpt

0
cs(y, t)dy, (4)

wherecs(y, t) =
∑L

x=1 cs(x, y, t)/L. If we regard the system as
one-dimensional, the boundary condition for the adatom den-
sity, c(y, t) =

∑L
x=1 c(x, y, t)/L, at the solid front,y = ys(t), is

csẏs(t) = Ds
∂c
∂y

∣∣∣∣∣
ys(t)
, (5)

and at the source,y = yp, is

c0Vp = c(yp)Vp + Ds
∂c
∂y

∣∣∣∣∣
yp=Vpt

. (6)

Supposing that a steady state is approximately realized at each
moment, the steady state solution of the diffusion equation in
the frame of reference moving at velocityV = ẏs = Vp for the
boundary conditions, Eq. (5) and thatc(y → ∞) = c0, is (the
latter is necessary for the existence of the steady state in one-
dimension)

c(y) =
(
c0 − c0

eq

) [
1− exp

(
−

Vp

Ds
(y− ys)

)]
+ c0

eq. (7)

Substituting Eq. (7) to Eq. (6), it is easily seen that this solution
satisfies Eq. (6) automatically. It means that the average den-
sity is approximately represented by Eq. (7), and the distance
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Figure 5: (a) Part of a growth pattern withVp = 0.01 att = 10000 (yp = 100).
Circles indicate the position of steps cut atys/2. (b) Density of solid (red or
grey line) and adatoms (black line), and the best fit to the adatom density Eq. (8)
(blue or dark grey line).

between the step position and the source,yp−ys, is not uniquely
determined. The diffusion length defined from the density gra-
dient is given bylD = Ds/Vp.

Density profile in the simulation.In the above picture we have
assumed a steady state, but in reality the density profile must
change since the source is initially in contact with the step and
the distanceyp − ys increases with time until the steady state is
realized. To analyze the change we measured the density profile
c(y, t) and fit it with the function

c(y) =
(
c0 − c0

eq

) [
1− exp

(
−y− ỹs

l̃D

)]
+ c0

eq, (8)

where we treat ˜ys andl̃D as fitting parameters.
An example is shown in Fig. 5. The black line in Fig. 5(b)

is the adatom densityc(y, t) and the red line is the solid density
cs(y, t). The blue line is the best fit Eq. (8) to the upper part of
the black line. We checked consistency of the parameters thus
found by calculating the mass conservation atyp. The measured
values ofl̃D are shown as red squres in Figs. 6. The blue lines
are error bars, and data with dark bars indicate that the error
is so big or the convergence of fitting is so poor that the data
are not reliable. They show that the measured diffusion length
becomes a steady value consistent with the diffusion length ex-
pected from the source velocity:l̃D ≈ lD ≡ Ds/Vp. Because of
the large error, the initial behavior is not very clear, but Fig. 6(c)
indicates that̃lD is small in the initial stage and increases up to
the steady value. This is reasonable since the source is initially
close to the step.

Interpretatin of the change in period.Interpretation of the re-
sults is not simple. The first stages in the Fourier analysis
(Fig. 4) and in the branch number analysis (Fig. 3) show sim-
ilar exponents: about 1/4 with Vp = 0.02 slightly increasing
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Figure 6: Change of the measured diffusion length̃lD as time (red squares with
a blue error bar) with the source velocity (a)Vp = 0.02. (b) Vp = 0.01. (c)
Vp = 0.005. The data with a dark error bar indicate fitting is poor and unreliable.

with decreasingVp. Crossover to the second stage is seen in
both analyses, but the change from the first stage in Fig. 4 oc-
curs about three times later than in Fig. 3. We think the change
in the first stage is due to local relaxation of a rough step formed
by random attachment of adatoms although we do not have the-
oretical explanation of the exponent. The snapshot of the step
in Fig. 7(a) shows a pattern in this stage. This process contin-
ues as observed in the Fourier analysis, and wandering insta-
bility occurs in addition. In Fig. 7(c) the instability is obvious
and not all intrusions are detected by the branch counting. The
intrusions formed by the instability begin to compete. Such a
feature becomes evident in Fig. 7(d) when only winners of the
competition are counted. Fig. 7(b) is a snapshot at the crossover
point in Fig. 3(b). The first stage observed in Fig. 4 ends whenλ
becomes aboutλmax of Eq. (3). Implication of this result and its
relation to the change in the diffusion length are still unsolved
problem to us.

In the second stage, the exponent is about 1/2. Observation
of many growth patterns suggests that the coarsening proceeds
by competition of intrusions as seen in Figs. 7(c) and (d). If
we start with intrusions of a comparable size with periodλ1,
the natural selection of winners takes timet ∼ λ2

1 since it is
the result of disparity in the diffusion field. This may be the
origin of the exponent close to 1/2, as often seen in step growth
phenomena [13, 14].
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Figure 7: Step patterns withVp = 0.01 at (a)t = 1500, (b)t = 2500, (c)
t = 5000, (b)t = 10000. Circles indicate the position of branches couted in
Fig. 3.

5. Response to an abrupt change in the velocity

Since the period of the branches in the steady state,λ∗, is
determined by the velocity of the sourceVp, it must respond to
an abrupt change in the velocity. In the case of thin-film lamel-
lar eutectic growth, doubling of the pulling rate induces a parity
breaking transition and a tilted pattern is seen [15]. To find out
the way branches adjust their shape to a new period that corre-
sponds to the new source velocity, we performed simulations in
which Vp jumps to a value several times larger or smaller than
the initial one when the source reachesyp = 700.

Increase of the source velocity.Severel examples for the growth
into the [11] direction, toward which branches tend to grow
straight with less branching, are shown in Figs. 8 and 9. Fig. 8(a)
and (b) are step patterns when the velocity has increased nine
times. With our standard value of the stiffnessε/kBT = 2.0,
after the initial coarsening, the number of survived branches
in the view (a) is three. The favorable number of branches
for the nine times increase ofVp is 3×

√
9 = 9. In (a), two
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Figure 8: Step patterns with the change fromVp = 0.000866 to 0.007793 (9
times increase). (a)ε/kBT = 2.0, (b)ε/kBT = 3.0.

branches out of the three made multiple tip-splitting and the
number of branches takes values from seven to nine depending
on the height. With larger stiffnessε/kBT = 3.0, the number
in the first steady state is two as seen in (b). After the change
in Vp, the favorable number would be six, but the number re-
mained the same. Because of the large stiffness, tip-splitting
hardly occurs and instead side-branching occurs to compensate
the large separation between the main branches. Transition to a
state of different number of branches is a discontinuous transi-
tion and a large fluctuation is necessary, as in a first order phase
transition. It is only possible with weak anisotropy of the stiff-
ness.

Decrease of the source velocity.When the source velocityVp

is decreased, the favorable number of branches decreases. Con-
trary to the case of increasing velocity, termination of growth
of some existing branches is sufficient to realize a state with
fewer branches. Figs. 9(a) and (b) show patterns formed by a
sudden decrease ofVp by 1/9. With ε/kBT = 2.0, the number
decreased from seven to three (several branches in Fig. 9(a) are
already broken and about to dissapear by local relaxation), and
from four to two withε/kBT = 3.0. Note that the most favor-
able number of branches is expected to appear only on average,
and that the actual number is also limited by the system size.

6. Summary and discussion

We have examined coarsening process of the branch period
in the step wandering instability guided by a linear source of
adatoms. Our model was motivated by the step pattern on a
Ga deposited Si(111) surface, and is possibly applicable to the
finger pattern of a graphene sheet grown from SiC. In the first
stage the period increases asλ ∼ tν1, with ν1 ≈ 1/4, increasing
slowly with decreasingVp. In the Fourier analysis, this behav-
ior continues untillλ ∼ λmax , whereλmax is the most unstable
wavelength for the diffusion length in the steady state. How-
ever, the competition between the intrusions results in a faster
growth of the branch period with the exponentν2 ≈ 1/2. With
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Figure 9: Step patterns with the change fromVp = 0.007793 to 0.000866 (9−1

times). (a)ε/kBT = 2.0, (b)ε/kBT = 3.0.

an abrupt change in the velocity, branches adjust their period
by terminating growth of some branches or by increasing their
number by tip-splitting. The latter is suppressed by a large stiff-
ness, and a metastable state with side branches is seen.

Theoretically, many questions arise. The branch period,λ∗,
in the steady state is apparently related to the wavelengthλmax

of the most unstable mode, but it is several times larger than
λmax. How is the prefactor determined? Can one explain the
coarsening exponentsν1 ≈ 1/4 andν2 ≈ 1/2? Are they related
to the change in diffusion length? Certainly crystal anisotropy is
essential to the step pattern as observed in the metastable state
under the abrupt change in the source velocity. Quantitative
study of the effect of anisotropy is necessary if one wishes to
control the shape.

The present study was supported by Grants-in-Aid from
Japan Society for the Promotion of Science.
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