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Abstract. With the use of the classical nucleation model, the passage from the initial stage of nucleation to the final stage
of Ostwald ripening is surveyed. Direct numerical integration confirms that, under weak initial supersaturation, the drop of
supersaturation occurs with a long delay but the relative drop is deep. For various initial supersaturation, the cluster size
distribution approaches the single Lifshits-Slyozov-Wagner form. Based on an analysis of current in the cluster size space,
a single variable model to describe the time evolution of supersaturation is proposed. The classical nucleation model is
generalized and applied to the problem of chirality conversion with grinding crystals.
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INTRODUCTION

Crystal growth generally proceeds through three distinct stages: nucleation of small crystal nuclei, growth of nuclei to
macroscopic crystals and Ostwald ripening. Various models are used to describe these processes by emphasizing
specific aspects of crystal growth. Theclassical nucleation model(CNM) describes the system in terms of the
number1 of clusters of the sizel at time t: nl (t). It is a simplified version of a cluster reaction model (see [1])
and only the monomer reaction is taken into account. The CNM was first formulated by L. Farkas [2] based on
the idea of L. Szilard. The exact steady-state solution of the model was provided by Becker and Döring, and the
model is often called the Becker-Döring model[3]. By neglecting correlations and collisions of clusters as well as
complicated processes of growth at the surface, the CNM provides a systematic description for qualitative change
of the system[4]. It is the standard model of nucleation to obtain formation rate of supercritical nuclei (the classical
nucleation theory: CNT). The CNM also leads to a mean field description of Ostwald ripening known as the Lifshitz-
Slyozov-Wagner(LSW) theory[5, 6], which predicts the asymptotic behavior of the system. These initial and final
behaviors have been theoretically studied in detail, but the intermediate behavior is much less understood[7].

In this paper we briefly summarize the standard CNT as a theory of the initial stage of crystal growth, and the
LSW theory as that of the final stage. With the help of a numerical integration of CNM, we characterize features
of an intermediate stage that connects the two limiting stages and try to provide a simple qualitative view of the
whole crystallization process[8]. Finally, we discuss an application of the CNM to the recently discovered chirality
conversion by grinding crystals in a solution[9].

THE CLASSICAL NUCLEATION MODEL

The Model

The CNM describes the system in terms of the numbernl (t) of clusters, Xl , which consists ofl atoms (or molecules)
of X. For the reaction

X1 +X l ↔ X l+1, (1)

1 In the present paper we consider a system of unit volume, andnl (t) is, in fact, a number density. We call, however,nl (t) the number, for simplicity.



the rate to the right is given byσl n1(t)nl (t), and that to the left isλl+1nl+1(t). The coefficientσl is proportional to the
surface area∼ l2/3 of the cluster Xl . It may be proportional to the thermal velocity of the atoms for the growth in a
gas. The decay rateλl is also proportional to the surface area of the cluster. For small size clusters, however, the decay
rate per unit surface area∼ λl/l2/3 increases due to the Gibbs-Thomson effect. The net growth rate is the current in
the cluster size space

j l (t) = σl n1(t)nl (t)−λl+1nl+1(t). (2)

Change of the number of clustersnl (t) is given by the continuity equation in the size space as

∂nl (t)
∂ t

= j l−1(t)− j l (t). (3)

Equation (3) holds forl ≥ 2, and, forl = 1, the number of monomers obeys

∂n1(t)
∂ t

= −2σ1n2
1(t)−n1(t)

∞

∑
l=2

σl nl (t)+2λ2n2(t)+
∞

∑
l=3

λl nl (t). (4)

The first term is the formation of dimers and the second term represents the consumption of monomers because of the
growth of clusters. The last two terms come from the decay of clusters by emitting monomers. The total number of
atoms in the system

∞

∑
l=1

lnl (t) = N (5)

is conserved.
At saturation equilibrium, chemical potential of the vapor and that of the crystal are the same, and a saturated vapor

is in equilibrium with a bulk crystal. That is, for very largel , the impingement rate per unit surface area is the same
as the decay rate (evaporation or dissolution rate) per unit surface area. See Fig.1(a). Under the equilibrium condition,
only small clusters and a bulk crystal exist in the system, and the equilibrium distribution of clusters is given by

neq
l = neq

1 e−Geq
l /kBT = neq

1 exp[−ᾱ(l2/3−1)] (6)

with

ᾱ = (4π)1/3(3Ω)2/3 α
kBT

, (7)

whereΩ is the atomic volume,α the surface free energy density2. Note that we have assumed the simple form of
surface free energy in (6), and that the excess chemical potential (supersaturation)∆µ = µgas− µsolid vanishes at the
saturation equilibrium. The suffix “eq" indicates the unique saturation equilibrium.

For the collision rate coefficientσl , we assume a kinetics-limited process in three dimensions and put

σl = al2/3, (8)

wherea is a constant proportional to the molecular thermal velocity. Evaluation of the decay rateλl including the
Gibbs-Thomson effect can be done from the detailed balance condition at saturation equilibrium. Since the two
reactions in (1) balance at equilibrium,jeq

l = 0, i.e.

σl n
eq
1 neq

l = λl+1neq
l+1. (9)

Thusλl+1 is given by

λl+1 = σl n
eq
1 exp[ᾱ(l +1)2/3− ᾱ l2/3]. (10)

2 Geq
l = 4πR2α and(4π/3)R3 = lΩ.



(a) l
3

1

2

3

4

5

n1

Hn1L
eq

(b) l
3

1

2

3

4

5

n1

Hn1L
eq

FIGURE 1. Normalized impingement rate (solid blue line) and evaporation (dissolution) rate (dashed purple line) per unit area of
the cluster surface vs. the linear sizel1/3 of the cluster: (a) at saturation equilibrium (n1 = neq

1 ), (b) in supersaturated environment
(n1 > neq

1 ). The shaded areas represent the equilibrium size distributionsneq
l in (a), and the imaginary equilibrium distribution ¯nl in

(b), in an arbitrary scale.

For largel , this formula is approximated by

λl+1 = al2/3neq
1

(
1+

2ᾱ
3

1

l1/3

)
. (11)

In the following numerical calculation, we use the form (11), even for a smalll . This choice makes theoretical
analysis in the ripening stage simpler, and the corresponding free energy barrier for nucleation is much smaller than
the original form (10) so that nucleation process is realized more easily in the numerical calculation.

Undersaturated and Supersaturated States

In Fig.1 we show the impingement rate and the evaporation rate as functions of the cluster sizel1/3. At saturation
equilibrium (Fig.1(a)), the impingement rate per unit surface area is constant (aneq

1 ) and normalized to unity. The
evaporation rate (or dissolution rate) per unit area is the same constant for large clusters (l → ∞) and larger for small
clusters due to the Gibbs-Thomson effect. Therefore all clusters tend to shrink, and only small clusters exist in the
system as the shaded area indicates3. This is the saturated equilibrium size distributionneq

l given by (6).
If the monomer density is smaller thanneq

l , the number of clusters decrease compared withneq
l . This is undersat-

urated equilibrium state, and the cluster size distribution ¯nl is determined by the same condition as the saturation
equilibrium,i.e. jl = 0:

σl n1n̄l = λl+1n̄l+1 (12)

with n1 < neq
1 . From (12), the distribution is given by

n̄l = nl
1

σ1σ2 · · ·σl−1

λ2λ3 · · ·λl
=

(
n1

neq
1

)l

neq
l . (13)

With the use of the excess chemical potential∆µ compared to the saturation equilibrium4,

∆µ = kBT ln
n1

neq
1

, (14)

the steady distribution is expressed as

n̄l = el∆µ/kBTneq
l = n1exp

(
− Gl

kBT

)
(15)

3 The graphs are not correct for very smalll since the model free energyGeq
l = ᾱ(l2/3−1) is not reliable here.

4 Note that∆µ < 0 in an undersaturated state.



with

Gl = −l∆µ +Geq
l = −l∆µ + ᾱ(l2/3−1). (16)

The equilibrium number of clusters,neq
l or n̄l , is expressed in terms of the free energyGl of the cluster. The ratio

S=
n1−neq

1

neq
1

=
δn1

neq
1

, (17)

whereδn1 = n1 − neq
1 , may be called a monomer supersaturation while the true supersaturation is defined as(N−

Neq)/Neq, where the total number density of atoms in the system is given by (5).
If the monomer density is increased to a valuen1 larger thanneq

1 at the same temperature, the evaporation rate
is the same, but the impingement increases as shown in Fig.1(b). For large clusters, if they exist, the impingement
rate exceeds the decay rate and the size increases. A particular sizelc of clusters, with which the two rates coincide,
n1σlc = λlc, or 5

l1/3
c =

2ᾱ
3

1

ln(n1/neq
1 )

≈ 2ᾱ
3

neq
1

δn1
. (18)

This is thecritical cluster size, which coincides with the thermodynamic definition. It is the size at which the free
energy takes the minimum value6

∂Gl

∂ l

∣∣∣∣∣
lc

= 0. (19)

A cluster larger thanlc tends to grow, and a cluster smaller thanlc tends to shrink. The conditionj l = 0 determines an
imaginary equilibrium state given by (13) or (15), ¯nl , which is shown as the shaded area in Fig.1(b). The total number
of atoms as well as the number of large clusters in this distribution ¯nl diverges.

If monomers are supplied to an equilibrium system (undersaturated or saturated), what happens is the following:
the initial size distribution is something like that of Fig.1(a) and the clusters slowly grow as a result of collisions with
monomers. When a cluster larger thanlc appears by chance, this cluster has a good chance to grow sincen1σl > λl
for l > lc. This is nucleation of a critical cluster for growth, and the cluster is called acritical nucleus. The first our
problem is to describe the process of nucleation.

STEADY STATE NUCLEATION

Practical problems for nucleation theory are to estimate the time for a first nucleus to appear, and to determine the fre-
quency of appearance of the critical nuclei. Time evolution of the system, when the monomer number (supersaturation)
is changed, is difficult to study analytically, and we first study a steady state problem.

Steady State Distribution and Nucleation Rate

We consider the monomer density as a given constantn1, and the numbers of very large clusters vanish. This is a
reasonable approximation in an early stage in which all clusters are small and the total mass of the clusters larger than
lc is negligible compared to the monomer mass:∑∞

l>lc lnl ¿ n1. Theoretically, this state can be realized by eliminating
very large clusters from the system and supplying monomers continuously to the system. As a result, there is stedy
current jss

l in the cluster size space forl ≤ lmax, wherelmax is a cutoff size. Thesteady state distribution nss
l is

determined by

jss
l = σl n

ss
1 nss

l −λl+1nss
l+1 = constant= jss (20)

5 The critical sizelc is usually a large number, and, if necessary, we neglect the difference betweenl andl +1 for simplicity’s sake.
6 If one takes more general configurations into account than the spherical cluster, the critical pointl = lc is a saddle point: the free energy increases
for any change of the cluster shape.



with the boundary condition,n1 = nss
1 and7 n∞ = 0. From (12), the decay coefficient in (20) can be expressed in terms

of the imaginary equilibrium distribution asλl+1 = σl n1n̄l/n̄l+1. By substituting this form into (20), we obtain a useful
relation between the imaginary equilibrium distribution ¯nl , which we already know in terms of the rate coefficients,
and the steady state distributionnss

l , which we want to know, as

nss
l

n̄l
−

nss
l+1

n̄l+1
=

jss

n1σl n̄l
. (21)

Summing up (21) forl , and usingnss
1 = n̄1 = n1, we obtain

1−
nss

l

n̄l
=

l−1

∑
l ′=1

jss

n1σl ′ n̄l ′
. (22)

With the use of this relation we can calculate the steady nucleation rate and the steady state distribution.
With the boundary condition forl → ∞, nss

l /n̄l = 0, the steady state current,i.e. thesteady state nucleation rate,
jss
l , is given by

1
jss
l

=
∞

∑
l ′=1

1
n1σl ′ n̄l ′

. (23)

The steady state distribution is also expressed in terms of the imaginary equilibrium distribution as

nss
l = n̄l

1−

l−1

∑
l ′=1

(σl ′ n̄l ′)
−1

∞

∑
l ′=1

(σl ′ n̄l ′)
−1

 . (24)

In order to evaluate the steady state nucleation rate, we regard the discrete numberl as a continuous variable

1
jss
l

=
∫ ∞

1

1
n1σl ′ n̄l ′

dl′. (25)

Since n̄l ′ changes exponentially fast, the integral can be evaluated by the saddle point integration atlc, where
n̄l = n1e−Gl /kBT takes the minimum value. The result is

jss≈ n1σlc

√
−

G′′
lc

2πkBT
n1e−Glc/kBT . (26)

It is the growth raten1σl n̄l at l = lc multiplied by a factor from the Gaussian integral
√
−G′′

lc
/2πkBT, which is called

the Zeldovich factor[10].

Approach to Steady State

Time Lag of Nucleation

If the monomer number is increased abruptly to a supersaturated value, we have to wait some period of time until a
first critical nucleus appears. And nucleation becomes steady soon. The waiting time is calledtime lag of nucleation.
In Fig.2, we show a numerical example of the change of the number of clusters larger than the critical size. This is
the total number of nucleation events and nothing but the time integral of the current passing through the critical size,

7 The steady distributionnss
l for large l is decreasing steeply because the larger a cluster, the faster it grows. And we may use this boundary

condition.
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FIGURE 2. Number of supercritical nuclei forSss= 1.20 (S(0) = 4). The red and green crosses are the numerical data, the dotted
line (blue) represents the theoretical steady state rate 1.30×10−10t and the thin line (pink) the best linear fit: 1.30×10−10(t−1.2×
106). (From [8])

∫ t
0 j lcdt. In the numerical calculation, the initial distribution is assumed to be only monomers, and the equilibrium

number is set constantneq
1 = 1023. Other parameter values are fixed as8 ᾱ = 10 anda = 2×10−28. Note that the time

scale of change is basically determined by the product of the two factors:neq
1 a. The figure shows a linear increase after

a time lagτ, which implies that nucleation becomes steady after the time lag. The time lag may be defined from the
condition jss(t − τ) =

∫ t
0 j lcdt for larget as

τ =
∫ ∞

0

(
1− j lc(t)

jss

)
dt, (27)

where jss is current in the steady state. Theoretical estimation of the time lag gives the form[1, 11, 12]

τ = s
kBT

n1σlc|G
′′
lc
|
, (28)

with s a numerical factor (∼ 1, weakly increasing with the critical cluster sizelc).
The change of the distribution relative to the imaginary equilibrium distribution,nl (t)/n̄1, up to an early stage of the

steady state is shown in Fig3. During this period the distribution function expresses asnl (t)/n̄l expands to large clusters
and approaches the steady state one with a well defined front[13]. The shape reaches the steady onenss

l /n̄l within a
few times ofτ in the figure. In this calculation the initial monomer supersaturation isS(0) = 4.0 (n1(0) = 5×1023)
but the monomers soon form small clusters and the monomer supersaturation drops to a steady value ofSss = 1.20
(n1(0) = 2.2×1023) and remains this value for a long time. The valueS= 1.20 corresponds to the supersaturation in
the steady state and that in a real system. The critical nucleus size withSss= 1.20 is lc = 170, which has been used
in Fig.2. The steady nucleation ratejss= 1.30×10−10 obtained from the slope agrees well with the exact theoretical
value

jss=

[
∞

∑
l=1

(n1σl n̄l )
−1

]−1

= 1.30×10−10. (29)

The saddle point evaluation (26) also gives a very good estimation:jss= 1.22×10−10. The time lag hereτ = 1.2×106

corresponds to9 s= 0.74.

8 The present choice of the parameters are rather arbitrary.
9 The values is smaller than other numerical results in the literature, possibly because we use the expression (11) instead of (10).
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Continuum Variable and Fokker-Planck Equation

As we have done in (25), the discrete numberl may be treated as a continuous variable. If the monomer number is
kept constant, the current at a time may be written as

j l (t) = n1σl n̄l

(
nl (t)
n̄l

− nl+1(t)
n̄l+1

)
⇒−n1σl n̄l

∂
∂ l

nl (t)
n̄l

. (30)

Then the change of distribution is given by[10, 14]

∂nl (t)
∂ t

=
∂
∂ l

(
n1σl n̄l

∂
∂ l

nl (t)
n̄l

)
. (31)

If we use the explicit form of the imaginary equilibrium distribution ¯nl = n1exp(−Gl/kBT), we obtain

∂nl (t)
∂ t

= − ∂
∂ l

(
n1σl

G′
l

kBT
nl (t)

)
+

∂
∂ l

(
n1σl

∂nl (t)
∂ l

)
. (32)

This is a form of the Fokker-Planck equation. The first term represents a drift effect towards a size of lower free energy,
and the second term represents a diffusion effect in the size space, which tends to spread the distribution.

Starting from the distribution of an undersaturated equilibrium state (the shaded area of Fig.(a)), the diffusion, due
to collision and evaporation, spreads the distribution, and its tail climbs the free energy hill against the drift. After the
time lag, the tail of the distribution goes over the hill top (a saddle point in a configuration space) and leaks through
the pass. The length of waiting time and the leaking rate are determined by the critical region of the free energy[15]
and expressed in terms oflc, Glc andG

′′
lc

as (26) and (28).

EVOLUTION FROM NUCLEATION TO RIPENING

Variable Monomer Number

In a closed system the monomer number decreases during crystallization, and the conditionn1(t) = nss
1 should be

removed. Rewriting the current as

j l (t) = σl

(
n1(t)−

λl

σl

)
nl (t)− (λl+1nl+1(t)−λl nl (t)) , (33)
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we can write the change of cluster numbers as[16]

∂nl (t)
∂ t

= − ∂
∂ l

(vl (t)nl (t))+
∂ 2

∂ l2 (λl nl (t)) , (34)

wherevl (t) is the drift velocity in the size space determined byn1(t) as

vl (t) = σl

(
n1(t)−

λl

σl

)
. (35)

For our rate coefficient (11), the drift velocity is

vl (t) = σl

[
n1(t)−neq

1

(
1+

2ᾱ
3

1

l1/3

)]
(36)

= al2/3
(

δn1(t)−
2ᾱ
3

neq
1

l1/3

)
(37)

= Al2/3

(
1

l1/3
c (t)

− 1

l1/3

)
, (38)

wherelc(t) is the temporary critical size determined byδn1(t) and the coefficient is

A =
3a

2ᾱneq
1

. (39)

Change during the Steady State

After the time lagτ, the system can be considered as that in a steady state: we call this period astedy nucleation
stage. We plot in Fig.4 the current distributionj l (t), which is the number of monomers consumed for growth of the
clusters at sizel , obtained in the numerical calculation with the same parameters as in Fig3. The currentj l (t) is a good
measure to see the approach to the steady state:j l (t) = jss. Numerically, the position of the frontlf(t) defined by the
mid value of the current,j lf(t)(t) = jss/2, obeys the deterministic equation (38), as expected. The distribution is not
too far from the steady state one forl <∼ lf(t). The total number of monomer consumption for growth may be estimated
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as

ṅ1(t) = −
∫ ∞

1
j l (t)dl ≈− jsslf(t). (40)

Although the monomer number is decreasing at the rate (40), no marked change in the supersaturationS(t) occurs
within the calculated time range sincejss is very small for the supersaturation valueSss= 1.2 (S(0) = 4).

According to (38) the front cluster sizelf(t) first increases slowly because of the Gibbs-Thomson effect when
lf(t) ∼ lss

c . Once the size becomes large (lf(t) À lss
c ), it increases rapidly and the second term is negligible. Thus

lf(t) ≈
A3

27lss
c

(t − t1)3, (41)

wheret1 ∼ τ is a constant representing the nucleation time lag and a slow initial growth oflf(t). Then, from (40), the
decrease in the monomer number is proportional to the fourth power of the duration:

δnss
1 −δn1(t) ∼

jssA3

108lss
c

(t − t1)4 =
1

108
jss(aδnss

1 )3(t − t1)4. (42)

This equation characterizes the initial decrease inδn1 from the steady state value.

End of the Steady Nucleation Stage

After the steady nucleation stage, the monomer consumption (42) becomes appreciable so that the value ofj l , which
is proportional toδn1, the growth rate of the distribution frontlf , and the size of critical nucleuslc change. Accurate
evaluation of these changes needs detailed information of the size distribution, and numerical calculation is necessary.
In Fig.5 we show the change of relative supersaturationS(t) in a logarithmic scale for various initial values ofn1(0).
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With relatively “weak” supersaturation asS(0) = 4 (the steady state value:Sss= 1.20), the decrease ofS is not ap-
preciable within the calculated time. With a stronger supersaturation asS(0) = 7 (Sss= 1.7), the supersaturation drops
down toS≈ 0.17 in a rather short period and then decreases much more slowly. This sharp drop of supersaturation is
due to free growth of nucleated clusters. The monomer consumption is accelerated because the supercritical clusters
nucleated in an early stage have become large. The monomer consumption ends because supersaturation has dropped
and small clusters nucleated later start to dissolve. With a stronger initial supersaturation, the supersaturation behaves
similarly but with a shorter steady nucleation stage and a smaller drop ofS, in agreement with experiment[17].

Simplified Qualitative Description of Supersaturation

To understand qualitatively the change of supersaturation as time, the following simplified model with a single
variable may be useful. We replace (40) by

dn1(t)
dt

= − jssδn1(t)
δnss

1
(lf(t)− lc(t)) , (43)

where we have assumed that the monomer consumption is proportional to the temporary supersaturation (or the excess
monomer number),δn1(t), and that the range of growing clusters is from the critical sizelc(t) to the front cluster size
lf(t). The latter, neglecting the Gibbs Thomson effect, changes as

l1/3
f (t) = (lss

c )1/3 +
a
3

∫ t

t1
δn1(t ′)dt′ (44)

from (37), and the temporary critical size is

lc(t) = lss
c

(
δnss

1

δn1(t)

)3

, (45)

from (18). The detailed change of the form of distribution is completely neglected. All quantities are expressed in
relation to their values at the steady nucleation stage.

With the use of a new variable

z(t) =
1
b

+
1

δnss
1

∫ t

0
δn1dt′, (46)

the time evolution equations can be cast into the single equation as

d2z(t)
dt2

= −c
dz(t)

dt

[
(bz(t))3−

(
dz(t)

dt

)−3
]

. (47)



The parameters are defined by

b =
aδnss

1

3(lss
c )1/3

=
a(δnss

1 )2

2ᾱneq
1

, c =
jsslss

c

δnss
1

. (48)

In (47), we have shifted the origin of time tot = t1. The monomer number is given by

δn1(t) = δnss
1 ż(t). (49)

The initial conditions are ˙z(0) = 1 andz(0) = 1/b. Numerical integration of (47) is easy and the solutions for various
values ofc are shown in Fig.6.

With the change of the initial supersaturationS(0), the steady nucleation ratejss changes markedly, andjss controls
the initiation of the sharp drop of supersaturation. The equation (47) does not include the time lagτ andt1, and the drop
of S in Fig.6 occurs too early, but the transition point from the free growth stage to the ripening stage is reproduced
qualitatively well10.

Ostwald Ripening

As seen in Fig.6, all the solutions approach, after a slow change ofS, an asymptotic line, which is obtained from the

condition that the quantity in the square bracket of (47) vanishes:δn1(t) =
(
ᾱneq

1 /at
)1/2

. The data of direct numerical
calculation (Fig.5) also indicate a similar asymptotic behavior. The stage of slow change is theOstwald ripening
stage. Here the drop of supersaturation is compensated by melting of clusters smaller than the critical sizelc(t), which
has increased with consumption of monomers by the growth of large clusters.

The asymptotic behavior ofS(t) in the Ostwald ripening is well described by theLifshitz-Slyozov-Wagner(LSW)
theory[5, 6], which is a mean field description of the system. Since fluctuation is less important for large clusters, the
LSW theory uses (34) without the diffusive second term:

∂nl (t)
∂ t

+
∂
∂ l

(vl (t)nl (t)) = 0, (50)

with the change of cluster size

dl1/3(t)
dt

=
A
3

(
1

l1/3
c (t)

− 1

l1/3(t)

)
, (51)

from (38). In the ripening stage small clusters are melting while large clusters are growing. The divide is the critical
cluster sizelc(t), which increases as the supersaturation decreases. The cluster size distribution is shifting to large
clusters, and the total number of clusters is decreasing. Let us assume that the shape of this distribution does not
change in time and only the characteristic size changes. This size must be the critical sizelc(t). Thus the distribution
has the scaling formnl (t̃) ∼ ν(λ ) with λ = l/lc(t̃), wheret̃ is the time measured from an arbitrary starting time in
the ripening stage with a proper unit. Since the number of atoms in the clusters are roughly the total number11, the
distribution has the form

nl (t̃) =
lc(0)
l2
c(t̃)

ν(λ ), (52)

which should satisfy the number conservation∫ ∞

0
lnl (t̃)dl = lc(0)

∫ ∞

0
λν(λ )dλ = N. (53)

10 The location of the transition points seems to obey a power law as indicated by black dots in Fig.6
11 Contrary to the initial nucleation stage, the monomer number in the late stage is negligible compared to the number of atoms in all other clusters.
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The form of the scaling function is[8]

ν(λ ) =
8e3

λ 1/3(2−λ 1/3)5
e−6/(2−λ 1/3)ν0 (54)

with the constant12 ν0 = 1.04529(N/lc(0)), and the range ofλ is limited to 0< λ < 8. The total number of clusters at
time t̃ is

Ncluster(t̃) =
∫ ∞

0
nl (t̃)dl =

lc(0)
lc(t̃)

∫ 8

0
ν(λ )dλ = 1.04529

N
lc(t̃)

. (55)

The asymptotic form of the critical size is given by

l1/3
c (t) =

1
3

√
aᾱneq

1 t, (56)

and therefore the supersaturation changes as[8]

δn1(t) = 2

√
ᾱneq

1

a
t−1/2. (57)

In Fig.5 the LSW form (57),S= δn1(t)/neq
1 = 1.41×103t−1/2, is indicated by the broken line, which all the data

seem to approach. (The result of the simplified model fails by a factor two.) Mass distributionlnl (t) obtained with a
very high initial value13 S(0) = 49.0 along with the LSW scaling solutionlnLSW

l is shown in Fig.7. Although the shape
is somewhat similar, its approach to the exact asymptotic formnLSW

l is known to be extremely slow[18].
The final power law decrease of supersaturation (57) or the increase of critical size (56) depends on the form of

σl . So far we have assumed the kinetics-limited growth (the rate is proportional to the surface area)σl = al2/3. If
growth is limited by a bulk diffusion process, the rate is proportional to the surface area devided by the diffusion

length andσl ∼ l1/3, then we haveδn1(t) ∼ l−1/3
c (t) ∼ t−1/3. This is the well-known coarsening law for diffusion

growth confirmed by many experiments.

12 The normalization isν−1
0

∫
ν(λ )dλ = 1, andν−1

0

∫
λν(λ )dλ = 0.956676= 1/1.04529.

13 With smaller initial supersaturation the late stage cannot be reached within our calculation time.



Is the Classical Nucleation Theory Reliable?

We have studied the behavior of the CNM from the beginning to the end. Obviously, the final state in reality is a
big single crystal in the whole system, but not the continuous distribution of the CMN, which is an artifact due to
the continuous treatment of the model. We should not forget that CNM is a rate equation treatment of a probabilistic
model. The CNM assumes the spherical shape of the clusters and neglects all correlations[4]. Despite these limitations,
the CNM model seems to describe the nucleation process rather well[11]. The predicted nucleation rate, however,
sometimes differs orders of magnitude from the experimental data, and reconsideration of the CNT is necessary.
Recent advancement of the computer and the statistical mechanical treatment[19] make direct molecular dynamics
simulation of nucleation possible. For example, a recent study of crystal nucleation of an undercooled Lennard-Jones
liquid shows, about the nucleation pathways, that critical clusters can be small and compact, with a high degree of
stable fcc ordering, but also loose and more metastable bcc ordered[20].

What is really happening during nucleation is rather difficult to observe in real bulk systems. On crystal surfaces,
there are more opportunities for observation of atomic clusters, and many detailed studies have been attempted[21].

CHIRALITY CONVERSION OF CRYSTALS BY GRINDING

The CNM has been applied to many systems with considerable success. In this section We will present one recent
application of a generalized version of this model. The problem is related to competing crystallization of two chiral
pair of crystals.

Chiral Symmetry Breaking and Chirality Conversion in Crystallization

Striking chirality conversion of NaClO3 crystals by grinding in a saturated solution was discovered by Viedma[22].
A molecule of NaClO3 is achiral, but its crystal takes right (R) and left (L) types of structures14. The material is
known to show spontaneous chiral symmetry breaking during nucleation growth with stirring[23]. When the solution
is highly supersaturated, both types of crystals nucleate, and, without stirring, we will obtain about the same amount
of R and L crystals, that is, the system isracemic. If the solution is stirred, however, almost all crystals obtained in a
single run are either R or L crystals at even odds, and each system ishomochiral. The cause of this phenomenon is
attributed to secondary nucleation, by which the type of crystals that nucleated first become predominant[24, 25]. The
newly discovered chirality conversion of the crystal structures occurs when both types coexist in a solution at first,
and by grinding crystals, the minority type disappears. The transition from a racemic (mixed) state into a homochiral
state is very puzzling since the two chiral states are energetically equal. Recently Noorduin et al. reported a similar
phenomenon in an organic molecule system[26]. In the organic system, a molecule has chirality, which can change
in a solution with an added base, and the chiral molecules form crystals of the respective chiralities. Therefore the
conversion of crystal chirality implies the simultaneous conversion of molecular chirality: simple grinding converts
the molecular chirality of the minority type. Recent review of experiment in organic systems is given in [27].

Reaction Model for the Chirality Conversion

Several models have been proposed to explain the chirality conversion[28, 29, 30, 31, 32, 33]. The first model
proposed to explain this extraordinary phenomenon was a simple reaction type model that takes crystallization of
clusters into account[28]. The important features of the model are enhanced formation of subcritical chiral clusters by
grinding and incorporation of the clusters into crystals of the same chirality. This nonlinear process amplifies a small
initial imbalance of chiral components, and the minor species is completely converted into the major species.

The model involves five mass variables(Fig.8(a)): two kinds of chiral crystals (X and Y), whose masses are denoted
by x andy, two kinds of chiral clusters (Xu and Yu), denoted byxu andyu, and achiral monomers (Z), denoted by

14 The two chiral pairs are called dextrorotatory (D) and levorotatory (L), or rectus (R) and sinister (S) in different contexts. In this paper, we simply
use the words, right and left.
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FIGURE 8. (a) Original reaction-type model[28]. X and Y: chiral crystals, Xu and Yu: subcritical chiral clusters, and Z: achiral
molecules. (b) Minimal model for chirality conversion[35]. (From [31].)

z. Since the system is always ground, the size distribution of crystals and the concentration in the solution must be
steady, and we may describe the system with masses of the five components. The following reactions are assumed:

1) formation of chiral clusters (Z+Z → Xu or Z+Z → Yu),
2) nucleation of chiral clusters (Xu +Xu → X and Yu +Yu → Y),
3) growth of crystals by incorporating achiral monomers (X+Z → X and Y+Z → Y),
4) growth of crystals by incorporating chiral clusters (X+Xu → X and Y+Yu → Y),
5) decay of chiral clusters , (Xu → Z+Z and Yu → Z+Z),
6) dissolution of achiral monomers (X→ X +Z and Y→ Y +Z),
7) dissolution of chiral clusters (X→ X +Xu and Y→ Y +Yu).

Fig.9 shows an example of numerical calculation starting with abundant monomers and a little excess of right
chiral crystals X compared to Y. Within a short period∼ 5, the system seems to reach a steady state with almost
the same amount of X and Y, and the system is racemic. In the long run, however, the racemic state is unstable and
the tiny imbalance of X and Y is amplified exponentially. The final state is homochiral and contains little amount
of the minor species Y15. The exponential amplification of enantiomeric excess (chirality imbalance) agrees with
the experiment[22]. With a small amount of chiral crystals X in a supersaturated solution, the model also seems to
reproduce the spontaneous symmetry breaking observed in a supersaturated solution[23].
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0 1000500
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FIGURE 9. Time evolution forx(0) = 0.101,y(0) = 0.100 andxu(0) = yu(0) = 0. (From [28].)

15 Since all the processes have their inverse reaction, complete distinction of Y does not occur.
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FIGURE 10. Reaction type model for organic systems. Monomers are chiral and transform each other in a solution. (From [31].)

McBride and Tully[35] showed that the model may be simplified for the chirality conversion problem. Since both
types of crystals are present from the beginning, the nucleation process is not really necessary. Without the processes
1), 2) and 6), the system behaves essentially in the same way. The reaction type model is also applicable to the organic
system, with replacement of the monomer component from achiral Z to equilibrating(racemizing) chiral pairs Zx and
Zy (See Fig.10).

Although the simple reaction type models reproduce the experimental behavior qualitatively, validity of the as-
sumptions behind them should be clarified. As an application of the CNM, we study size distribution of the chiral
solid clusters for the chirality conversion problem.

Generalized Classical Nucleation Model with Grinding

The essential assumption of the reaction type models is that the relative size distribution of crystals does not change
during grinding. To test the validity of this assumption, we generalize the CNM and performe numerical integration.
Since the chiral crystallization problem involves two types of clusters, we need to distinguish the numbers of right-
handed and left-handed clusters asnR

l andnL
l for l ≥ 2. Here we assume, for simplicity, monomers are achiral and all

clusters (l ≥ 2) are chiral, although in the NaClO3 case clusters larger than trimers are chiral[22]. The cluster reactions
included in the generalized CNM are

A +A ↔ R2 or L2, (58)

A +Rl ↔ Rl+1 A +L l ↔ L l+1 for 2≤ l ≤ lmax−1, (59)

where A is the achiral molecule and Rl and Ll represent right and left types of clusters consisting ofl molecules. The
reactions in (58) and (59) are the usual CNM processes. The crucial point of the model is that incorporation of chiral
dimers to clusters of the same chirality occurs:

R2 +Rl ↔ Rl+2 L2 +L l ↔ L l+2 for 2≤ l ≤ lmax−2. (60)

We have assigned a maximum cluster sizelmax to model the grinding process. The largest clusters, Rlmax and Llmax, are
assumed to decompose into small clusters at a given rateλ grnR,L

lmax
. The dimer incorporation to the larger clusters occurs

in the same way as the monomer incorporation at the rateσd
l nR,L

2 nR,L
l = adl2/3nR,L

2 nR,L
l . The corresponding decay rate,

λ d
l nR,L

l , satisfies the detailed balance condition. The two rate constants for dimers,σd = adl2/3 andλ d, are probably
smaller than those for monomers,σ = al2/3 andλ .

Numerical Results

We first perform numerical integration of the generalized CNM without grinding, and find the usual OR, which may
cause slow chirality conversion. Then we will include the grinding effect by limiting the maximum size of clusters and
introducing new terms.
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FIGURE 11. Evolution of the mass distribution during OR without grinding:lnl (t) at t = 20 (purple diamond),t = 80 (blue
triangle),t = 160 (green inverted triangle),t = 320 (orange square),t = 640 (red circle). Filled marks are R and empty marks are
L. The initial conditions arenR

10(0) = 0.45/10,nR
20(0) = 0.4/20, andn1(0) = 0.05. The parameters areneq

1 = 0.001,a = ad = 1.0,
λ gr = 0 andlmaxÀ 100.

Without Grinding

If crystals of one type is larger than those of the other, Ostwald ripening (OR) causes chirality conversionwithout
grinding[36]. Figure 11 shows the mass distribution,lnR,L

l , without grinding (λ gr = 0 andlmax→ ∞) under the initial
condition with more small L crystals (l = 10) and fewer large R crystals(l = 20). Other parameter values used are
neq

1 = 0.001 and16 a = ad = 1.0. The peak of L clusters gradually diminishes and that of R clusters grows. As time
proceeds, the mass of R clusters will increase more and more at the cost of L clusters. The final state that OR brings
about in reality is obviously a single R crystal. However, it takes too long time to realize the final state of a single
crystal in a macroscopic system. The problem posed by the grinding experiments[22, 26] is that whether crystals of
similar size distributions produced by grinding can realize the amplification of the initial chirality imbalance. It is
important to realize the chirality conversion in a time scale independent of the system size[34]. To see the effect of
grinding, we introduce the maximum cluster size and decomposition of these clusters to smaller clusters.
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FIGURE 13. Time evolution of the distribution functionnl (t) at t = 0 (black circle),t = 20 (purple diamond),t = 40 (blue
triangle),t = 80 (green inverted triangle),t = 160 (orange square),t = 104 (red circle).

With Grinding

Fig. 12 shows time evolution of the size distribution and the number of atoms in each kind of chiral clusters[9]. The
number of clusters is normalized by the total number of molecules,N = n1+NR+NL , whereNR,L = ∑lmax

l=2 lnR,L
l , so that

the total number is unity. The parameter values used are:neq
1 = 0.001,λ gr = 0.1,a= ad = 1.0, andlmax= 20. The initial

distribution is set slightly R-rich:nR
l = 0.11/l2

max, nL
l = 0.9/l2

max (circles in Fig. 12) andn1 = 1−NR−NL(= 0.8955;

the initial solution is strongly supersaturated). At first the cluster numbersnR,L
l increase rapidly and reach a “quasi-

steady" (slowly-varying) distribution with a small chirality imbalance (diamonds in Fig. 12). Aftert ≈ 200, the
difference ofNR and NL increases slowly and exponentially with an amplification rateω = 2.14× 10−4. The
exponential amplification of the chirality imbalance continues untilt ≈ 1.7× 104 when saturation sets in as shown
in Fig. 12(b). This feature is similar to that observed in Fig. 9(b).

Although the size distributions of R and L clusters markedly change, their shape and the total distributionnR
l (t)+

nL
l (t) remain approximately the same during the amplification of chirality imbalance. The chirality conversion occurs

without changing the total size distribution, in contrast to the chirality conversion by simple OR (Fig. 11). The Gibbs-
Thomson effect, which causes the chirality conversion without grinding, is certainly working in the present system with
grinding. However, additional factors, incorporation of chiral clusters and grinding, are necessary to accelerate growth
of the majority species. If one of the two factors, cluster reaction and grinding, is lacking (i.e. ad = 0 or λ gr = 0), the
exponential amplification of the initial chirality imbalance does not occur. If we start with a chiral-symmetric initial
condition,nR

l (0) = nL
l (0), very different from that of Fig. 12(a) (black circles in Fig. 13), the final state with grinding

is symmetric as indicated by red circles in Fig. 13(a). The final distribution is very similar to the intermediate state at
t ≈ 103 in Fig. 12(a), which is a half of the total distributionnR

l (t)+ nL
l (t) after t ≈ 103. This symmetric (racemic)

state is unstable against a small asymmetric perturbation. If the initial condition is a slightly asymmetric distribution
of somewhat arbitrary shape, the distribution first approaches the unstable racemic distribution quickly, and then the
asymmetry is slowly amplified. The final state is that in Fig. 12 (or the state with R and L exchanged), which is
unique and almost homochiral with few small minority clusters. Thus, the implicit assumptions of the reaction type
models[28, 31] that grinding produces a steady cluster size distribution is justified. From the unstable racemic state
to the final homochiral state, the number of monomers changes slightly [n1(103) = 0.02248 andn1(105) = 0.02205].
These numbers of monomers correspond to the critical cluster sizeslc = 9.83 andlc = 10.01, and OR apparently does
not play the leading role.

CONCLUDING REMARKS

The classical nucleation model is simple and useful since it describes the entire process of crystal growth from a
supersaturated environment: from the initial stage of nucleation through free growth of crystallites to the final stage of

16 The result is very similar without dimer reaction,ad = 0.



Ostwald ripening. It provides us with consistent view of evolution of the system although to have quantitative view we
need to add various processes to the model. It may be used for more general situations such as the chirality conversion
with grinding crystals.
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