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Appearance of a homochiral state of crystals induced by random fluctuation in grinding
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We study crystallization of chiral crystals from achiral molecules using a master equation based on a simple
reaction model. Although there is no chiral symmetry breaking in the reaction model, random fluctuations drive
the system to a homochiral state. The time necessary for the appearance of the homochiral state is proportional
to the total number of molecules in the system. This behavior is described by a diffusion equation in a size space
with a position-dependent diffusion coefficient. We also study the effect of chiral impurities, which affect the
crystal growth. Depending on the type of impurities, the chiral symmetry breaking occurs either deterministically
or with the help of random fluctuations.
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I. INTRODUCTION

Achiral molecules of some materials such as NaClO3 and
SiO2 form a pair of chiral crystal structures. Spontaneous
symmetry breaking from an achiral solution to chiral crystals
occurs microscopically during crystallization, and racemic
mixtures of crystals are obtained from a supersaturated
solution so that chiral symmetry is macroscopically restored
[1]. Macroscopic spontaneous chiral symmetry breaking in
crystallization has been found [2,3]. If one makes NaClO3

crystals from a supersaturated solution under stirring, almost
all crystals grown from the solution have the same chirality.
The chirality of crystals obtained in each experiment is com-
pletely random, and the cause of this phenomenon is attributed
to secondary nucleation [3–8]. Focusing on the effect of the
flow of solution, chiral symmetry breaking is demonstrated
in simulations with chaotic flow [9–11]. Recently, Viedma
has shown that chirality conversion of crystals occurs in this
system [12]. Starting with powder crystals of both chiral types
in a solution, grinding and stirring convert the crystals from the
racemic state to a homochiral one, which implies that crystals
of the minor chirality disappear. Not only has been confirmed
the same phenomenon of chirality conversion in another
achiral molecular system [13], but also chirality conversion
has been found in an organic system (an amino acid derivative)
by Noorduin et al. [14,15]. In the latter case, a molecule
has chirality, which changes in a solution with a base. The
conversion from racemic conglomerates to homochiral crystals
implies simultaneous conversion of molecular chirality. Such
phenomena have been observed in other organic systems
[16–18], and the resultant chirality can be controlled with
the use of additives [14,19,20]. In order to understand the
mechanism of the appearance of the homochiral state (such a
process may be called Viedma ripening [15]), several other
theoretical models have been proposed [11,21–30]. Some
of these models, which include nonlinear effect, reproduce
the experimentally observed exponential increase of the
enantiomeric excess (EE). With regard to chemical reaction,
by Sugimori et al. [31], fluctuation is shown to induce a
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homochiral state in a small system, although the rate equation
analysis predicts no chiral symmetry breaking.

In the present paper, following the analysis of Ref. [31],
we study the mechanism of the chirality conversion by
fluctuation. In Sec. II, the simplest model of crystal growth
for chiral crystals with grinding is introduced. The rate
equation can describe only the evolution of average values
and homochirality does not appear. In order to take account of
the effect of fluctuations, we study a stochastic master equation
model in Sec. III. With a numerical integration of the master
equation for a small system, the change of the probability
distribution is studied. A homochiral state is shown to appear
temporarily. In Sec. IV, the waiting time for the appearance of
the homochiral state is studied using an eigenvalue analysis.
Since the master equation is hard to solve numerically for a
large system, we performed Monte Carlo simulation of the
model in Sec. V. In Sec. VI, we also study the appearance
of a homochirality induced by chiral impurities that affect
the growth and/or decay rate of crystallization. The results are
summarized in Sec. VII.

II. RATE EQUATION APPROACH

We consider the amplification of a chirality imbalance
in crystallization of achiral molecules. In the experiments
[12–17] of Viedma ripening, the important operation is
grinding and stirring. Crystals are distributed uniformly in
a solution by stirring, and the size distribution of crystals is
steady because of the grinding. Therefore, we may neglect a
distribution of clusters in space and size. In this section, we use
the simplest reaction model, which includes the processes of
the crystal growth and dissolution, using the masses of achiral
molecules and chiral crystals.

Our model consists of three components: achiral molecules
(Z), and two types of chiral crystals (X and Y). The reaction
processes are described as

dz

dt
= −kz(x + y) + λ(x + y), (1)

dx

dt
= kzx − λx, (2)

dy

dt
= kzy − λy, (3)
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FIG. 1. Flow diagram of Eqs. (2) and (3). The thick solid line,
x + y = 0.9, represents the fixed line.

where z, x, y are the normalized masses of monomers, crystals
X, and crystals Y, respectively. The terms proportional to k

represent the growth processes of X and Y with attachment
of monomers. The terms proportional to λ represent the decay
processes of X and Y by detachment of monomers. The rate
equations satisfy the mass conservation condition z + x +
y = 1.

The analytical solution is

x(t) = (km − λ)x0

k(x0 + y0) + {k(m − x0 − y0) − λ} exp{−(km − λ)t} ,
(4)

y(t) = (km − λ)y0

k(x0 + y0) + {k(m − x0 − y0) − λ} exp{−(km − λ)t} ,
(5)

where x0 and y0 represent initial masses of crystals X and
Y, respectively. From the solution Eqs. (4) and (5), the ratio
x(t)/y(t) is constant in time. By solving dz/dt = 0, it is easily
seen that any final states are on the fixed line in the x-y plane
given by

z = λ

k
, (6)

x + y = 1 − z, (7)

for various initial condition (x0,y0) except x0 = y0 = 0.
The time evolution is depicted as a flow diagram with

λ/k = 0.1 in Fig. 1(a). The thick solid line represents the
fixed line x + y = 1 − λ/k = 0.9. The flow is radial from the
origin and the EE, which is defined by φ = (x − y)/(x + y),
does not change with time. Therefore, without fluctuation of
the system, any change of chirality is not possible.

III. MASTER EQUATION

In order to study the effect of random fluctuation on the
simplest system studied in Sec. II, following Ref. [31], we
consider a stochastic model. The total number of molecules is
constant N = Nz + Nx + Ny , where Nz, Nx and Ny represent
the number of single molecules Z, the number of molecules
in X and Y, respectively. The system is described by the

probability distribution P (X) of a state X = (Nx,Ny) (Note
that Nz = N − Nx − Ny). The growth rate k and the decay rate
λ are related to the realization probability of the corresponding
processes.

A state X changes to another state X ′ = X + q with a
transition probability W (X ; q). The probability P (X) evolves
according to the master equation

∂P (X)

∂t
=

∑
q

W (X − q; q)P (X − q) −
∑

q

W (X ; q)P (X).

(8)

The transition probability W (X ; q) for a change of the state
depends on the possible processes in the system. Thus, the
transition probabilities are

W ({Nx,Ny}; {+1,0}) = k′(N − Nx − Ny)Nx, (9)

W ({Nx,Ny}; {0, + 1}) = k′(N − Nx − Ny)Ny, (10)

W ({Nx,Ny}; {−1,0}) = λNx, (11)

W ({Nx,Ny}; {0, − 1}) = λNy. (12)

The growth rate k′ is related to the macroscopic reaction rate k

as k′ = k/N . Other transition probabilities W (X ; q) are zero.
The explicit form of the master equation is expressed as

∂P (Nx,Ny)

∂t

= k′(N − Nx − Ny + 1){(Nx − 1)P (Nx − 1,Ny)

+ (Ny − 1)P (Nx,Ny − 1)}
+ λ{(Nx+1)P (Nx + 1,Ny) + (Ny + 1)P (Nx,Ny + 1)}
− {k′(N − Nx − Ny) + λ}(Nx + Ny)P (Nx,Ny). (13)

A state X = (Nx,Ny) moves to one of the nearest-neighbor
states on the two-dimensional lattice shown in Fig. 2. The
all monomer state X = (0,0) is a special state because the
transition probabilities to any other states are zero.

Figure 3 shows the time evolution of the probability
distribution P (X) with N = 16. The growth rate k′ and the
decay rate λ are set to 1/16 and 0.1, respectively. The initial
condition is a supersaturated state P (1,1) = 1 as shown in

Nx

Ny

k NzNx

k NzNy

λΝy

λΝx

′

′

FIG. 2. The schematic figure of the change of a state in the number
space. A state moves to one of the nearest-neighbor states.
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FIG. 3. (Color online) Time evolution of the probability distribu-
tion obtained from Eq. (13) with k = 1, λ = 0.1, and N = 16. The
initial state is P (1,1) = 1. The corresponding time is at (a) t = 0, (b)
t = 10, and (c) t = 1000.

Fig. 3(a). As shown in Fig. 3(b), the state develops onto the
fixed line Nx + Ny = 14.4 = Nst obtained from Eq. (7). In
Fig. 3(c), the states on the fixed line seem to flow into the
chiral states (Nst,0) or (0,Nst). The reason is that a state on
the fixed line Nx + Ny = Nst can change into another state by
fluctuation. The probability distribution is always symmetric
with regard to the line Nx = Ny .

With the use of the probability distribution P (X), the
expectation value of the absolute enantiomeric excess is easily

obtained as

〈|φ|〉 =
∑

Nx,Ny

∣∣∣∣Nx − Ny

Nx + Ny

∣∣∣∣ P (X). (14)

The imbalance of the probability distribution is reflected in the
magnitude of 〈|φ|〉. Figure 4 shows the time evolution of the
EE. The average value 〈φ〉 is always zero because the initial
distribution is symmetric. In Fig. 4(a), 〈|φ|〉 increases sharply
and linearly until t � 1 and increases slowly after t ∼ 4. The
relaxation in 10 < t < 300 is characterized by the form

〈|φ|〉 = 1 − a exp

(
− t

τ4

)
, (15)

where τ4 is a characteristic time, and 1/τ4 = 0.014. After a
long time, t > 106, the mass of crystals Nx + Ny decreases
slightly because there is a small transition probability to the
monomer state X = (0,0). Assuming an exponential decay,
the relaxation is characterized by the form

〈|φ|〉 = b − c exp

(
t

τ2

)
, (16)

with 1/τ2 ∼ 10−10. These values will be discussed later.
The expected final state is X = (0,0) since there is no way

to escape from this state, and the probability to fall into this
state is finite. However, the numerical result for the small
decay rate of the chiral states suggests that the relaxation time
to the final state is extremely long and practically infinity
(see Sec. IV).

IV. EIGENVALUE ANALYSIS

In the numerical integration of the master equation, the
system did not reach the final state and stayed at the temporal
symmetric state with two peaks. We analyze the problem in
terms of the evolution matrix of the master equation [31]. Since
the master equation is a linear equation for the probability
distribution, the time evolution is written as

dP (X)

dt
=

∑
X ′

(X|M|X ′)P (X ′), (17)
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FIG. 4. Time evolution of the average of the absolute value EE. (a) Initial change from the supersaturated condition P (1,1) = 1. (b) Change
from the initial condition. ©: P (1,1) = 1, �: P (7,7) = 1.

051608-3



HIROYASU KATSUNO AND MAKIO UWAHA PHYSICAL REVIEW E 86, 051608 (2012)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0  5  10  15  20

|ω
2|

N

10-3

10-2

10-1

100

10-3 10-2 10-1 100

|ω
4|

1/N

 (a)  (b)

FIG. 5. The size dependence of eigenvalues. (a): The second (and the third) eigenvalue and (b): the fourth eigenvalue.

where the elements of the evolution matrix M are related to
the transition probability W (X,q) as

(X|M|X ′) =
{

W (X ′; X − X ′) for X ′ 	= X,

−∑
q W (X ; q) for X ′ = X .

Equation (17) is an eigenvalue equation if we assume the
form P (X,t) = P (X)eωt . By solving the equation we obtain
the decay rate of a distribution of the eigenstate. The largest
eigenvalue ω1 is obviously zero with the eigenvector P (X) =
δX,0. The all monomer state X = (0,0) can not decay to
any other states. The ith eigenvalues ωi can be obtained
numerically, and they are nonpositive. Their values are related
to the decay time τi : ωi = −1/τi .

The second eigenstate and the third eigenstate are degen-
erate and completely homochiral: Nx = 0 or Ny = 0. The
magnitude |ω2| is very small and decreases exponentially
with the total number N as shown in Fig. 5(a). The fourth
eigenstate is symmetric and its components are nonzero around
the fixed line like the distribution shown in Fig. 3(b). The
magnitude |ω4| decreases with the system size as 1/N . These
eigenvalues correspond to the relaxation times found in the
numerical integration of the master equation. For N = 16, ω2

is obtained as −2.3 × 10−10, which is of the order of the inverse
relaxation time −1/τ2 ∼ 10−10 obtained from the integration
up to t ∼ 1010. The fourth eigenvalue ω4 is about −0.015,
which is in good agreement with the inverse relaxation time
−1/τ4 = −0.014.

The relaxation time τ2 is much longer than τ4 for any system
size, and corresponds to the change from the degenerate state
to the all monomer state. It is so long that the all monomer
state does not appear in the numerical integration within the
limited time.

V. MONTE CARLO SIMULATION
OF THE MASTER EQUATION

From the result of Secs. III and IV, the distribution
changes as follows: it initially approaches the fixed line
obtained from the rate equations, and stays at the points
around X = (Nst,0) or X = (0,Nst). Finally, the monomer
state appears after a long time. In this section, we focus on the
appearance of homochiral states and its mechanism. The time
development of the system can be regarded as a random walk
on the two-dimensional lattice with the transition probability

W (X,q). Instead of solving Eq. (17) we perform a Monte Carlo
simulation in which a walker moves to one of the neighboring
sites until it arrives at one of the homochiral states: (Nst,0) and
(0,Nst).

Figure 6(a) shows the change of EE for one sample with
the total number N = 100,1000,10000. The EE seems to
increase linearly although its value fluctuates from the initial
value φ = 0.05. On average the walker moves from the initial
state to the fixed line and it fluctuates around the fixed line. As
a result of random walk, the walker finally falls into one of the
homochiral states. We define the conversion time τf as the time
necessary for the completion of homochirality. The conversion
time averaged over 100 samples is plotted in Figs. 6(b) and
6(c) for various system size N . The error bars represent the
root-mean-square of the data. The conversion time increases
linearly with the total number N , and corresponds to the decay
time τ4 from the fixed line state to the homochiral state shown
in Fig. 5(b).

The conversion time may be estimated as the following
way. A walker arrives at the fixed line deterministically and
quickly according to the rate equation. It takes long that a
walker moves from a point on the fixed line to the homochiral
state [(Nst,0) or (0,Nst)]. To estimate the conversion time,
we suppose that the walker moves only on the fixed line
(Nx,Nst − Nx) and their neighboring sites (Nx , Nst − Nx ± 1)
or (Nx ± 1, Nst − Nx), where Nst is assumed to be an integer.
The move occurs at the rate given by Eqs. (9)–(12) in a
period of time �t , which we set 1/λNst. A walker reaches
from a site to its neighboring site by one growth process and
one decay process of crystals in time 2�t . The transition
probability from (Nx ,Nst − Nx) to (Nx + 1,Nst − Nx − 1) is
Nx(Nst − Nx)/N2

st, where the number of monomers is assumed
to be constant. The average displacement and the dispersion
of Nx at a certain site are 〈�Nx〉 = 0 and 〈(�Nx)2〉 =
2Nx(Nst − Nx)/Nst

2, respectively. We obtain

〈�x ′〉 = 0, (18)

〈(�x ′)2〉 = 2

N2
st

x ′(1 − x ′), (19)

where x ′ = Nx/Nst. Therefore the behavior of the walker along
the fixed line is described by a diffusion equation with the
position-dependent diffusion coefficient D(x ′) = λ

2Nst
x ′(1 −

x ′). This simplified model corresponds to the diffusion process
approximation of the Wright-Fisher model studied in the field
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FIG. 6. (a) Time evolution of φ in the Monte Carlo simulation. (b) The conversion time for various system size N . (c) The conversion time
for various decay rate λ. The solid lines represent the estimated conversion time using the the simplified model Eq. (20).

of population genetics [32,33]. It is known that starting from
x ′ = x ′

0, a walker reaches x ′ = 1, and the average time is
T = −2(Nst/λ)(1 − x ′

0)/x ′
0 × ln(1 − x ′

0). As the conversion
time τf is the average time for the walker to reach x ′ = 1
or x ′ = 0, the conversion time τf from the initial position x ′

0
on the fixed line can be estimated as

τf = −2Nst

λ
{x ′

0 ln x ′
0 + (1 − x ′

0) ln(1 − x ′
0)}

= −2N

λ

{
x0 ln

x0

1 − λ/k
+

(
1 − λ

k
− x0

)

× ln
1 − λ/k − x0

1 − λ/k

}
. (20)

The result is shown as the solid line in Figs. 6(b) and
6(c). Parameters are set as k = 1, λ = 0.1, and x0 = 0.45 in
Fig. 6(b), and k = 1, x0 = (1 − λ/k)/2 and N = 10000 in
Fig. 6(c). The estimation of the conversion time Eq. (20) is in
agreement with the simulation results.

VI. IMPURITY EFFECT

In experiment, the chirality of crystals can be controlled
by adding chiral impurities [14,19,20], radiating circularly
polarized light [34], and changing order of process steps [35].
Since all these effects are attributed to the effect of chiral
impurities, we here study the effect of impurities on our model.
It is commonly accepted that chiral impurities adsorb onto the
crystal surface in a solution and affect the crystal growth of one
type of chiral crystals. We consider two types of impurities:
one prevents the crystal growth process and the other prevents
both growth and decay processes in the same ratio.
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FIG. 7. Flow diagram of (a) Eq. (21) and of (b) Eq. (22). Solid
bold line represents the fixed line.

The first type is described in the simple rate equation model
by introducing a reduction factor α(<1)

dx

dt
= kzx − λx,

dy

dt
= αkzy − λy, (21)

z = 1 − x − y.

The second type is described with another reduction factor
β(<1) as

dx

dt
= kzx − λx,

dy

dt
= βkzy − βλy, (22)

z = 1 − x − y.

Flow diagrams of Eqs. (21) and (22) are shown in Figs. 7(a)
with α = 0.9 and 7(b) with β = 0.9, respectively. As α < 1
and β < 1, the ratio x/y increases in the supersaturated
condition and decreases in the under saturated condition in
the initial time evolution. For the first type [Fig. 7(a)], there
are two unstable fixed points and one stable fixed point. Since
the mass of monomers at equilibrium for crystal X is lower
than that for crystal Y, any initial state with finite x and y

reaches the stable homochiral state deterministically. For the
second type [Fig. 7(b)], a fixed line appears as in Fig. 1. This
type does not change the mass of monomers at equilibrium for
both crystals X and Y. As the flow lines are curved as shown
in Fig. 7(b), the relative ratio of X increases until the system
reaches the fixed line. When the system reaches a state on the
fixed line, it is on the state closer to the point (xst,0) than in the
case of Fig. 1. Then, the fluctuation drives the system along
the fixed line to homochirality as in the case of Sec. V with
the smaller diffusion coefficient βD(x ′).

VII. SUMMARY

We studied the possibility of the chirality conversion by
random fluctuation. We introduced the simple rate equation
model of crystallization with grinding of chiral crystals. Our
model does not include any effects of convection [10,11] and
nonlinearity [21,22,24,29]. The analytical solution shows that
the ratio of crystal X and Y does not change. The master equa-
tion based on the rate equation was also introduced. According
to the numerical integration, the distribution function evolves
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from the initial state to the point on the fixed line after about a
time 1/λ. The expectation value of the absolute value of the EE
〈|φ|〉 increases linearly with time and a steady state appears.
We also performed the eigenvalue analysis. The eigenvalue
ω1 of the all monomer state vanishes. The eigenvalues ω2

and ω3 of homochiral states decrease exponentially with the
system size N , which implies they are practically zero. The
eigenvalue ω4 of the state along the fixed line decreases as
1/N . The magnitudes of ω2 and ω4 are of the order of those
obtained by the direct numerical integration.

We performed the Monte Carlo simulation of the stochastic
model. The simulation data show that the conversion time
increases linearly with the system size. Such a behavior
is derived mathematically in a simplified random walker
model. Thus, the direct integration of the master equation,
the eigenvalue analysis, and the Monte Carlo simulation all
show that the conversion of the chirality due to fluctuation
is possible but requires a conversion time proportional to the
system size.

In the simulation with convective flow [11], the increase
in EE seems linear and was attributed to a random selection
effect. Also, in our previous work [26], a linear amplification of

EE has been observed in a monomer reaction model. Although
the model of this paper differs from that of Refs. [11] and [26],
we think that homochirality is realized by simple fluctuation
without nonlinearity and a similar behavior is expected in such
systems. In experiment, in most cases the observed EE changes
exponentially in time, and nonlinearity such as cluster growth
certainly plays an essential role in the chirality conversion.
In some cases, however, a linear change of the EE has been
reported [18]. Fluctuation in the atomic scale is not able to
produce a homochiral state since τf ∼ N , but some fluctuation
at a different level may play a role.

Effects of chiral impurities added to the system are also
discussed. When the impurity differentiates equilibrium mass
of monomers for crystals X and Y, homochiral state is
realized deterministically. When the impurity does not shift the
equilibrium mass of monomers of both, complete homochiral
state can be realized only by random fluctuation.
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