
PhD Thesis

The Weighted Path Order

for

Termination of Term Rewriting

April 2014

Akihisa Yamada

Graduate School of Information Science

Nagoya University

Abstract

Termination of term rewrite systems (TRSs) has been widely studied and various

automated termination provers have been developed. Nevertheless, there is still

an increasing demand on the power and scalability of termination provers. This

thesis aims at proposing a powerful method for automatically proving termina-

tion of TRSs, and moreover providing its efficient implementation. We propose

a novel method called the weighted path order , which subsumes many existing

techniques. In particular, we unify the three most celebrated and longstanding

methods: the Knuth-Bendix order, the polynomial interpretation order, and the

lexicographic path order. Further to incorporate the new order into the depen-

dency pair framework, the modern standard of termination proving, we propose

a new technique called partial status. In this setting, our method moreover

subsumes the matrix interpretation method, as well as many other well-known

techniques. Then we present how to encode our method as a satisfiability modulo

theory (SMT) problem, for which various efficient solvers exist. Our method is

implemented as a new termination prover NaTT. With only a few other techniques

implemented, NaTT is the second strongest tool in the International Termina-

tion Competition (full-run 2013), demonstrating the power of our method. We

also present new techniques for cooperating with SMT solvers which advance

the efficiency of the tool; NaTT ran almost five times faster than any other tool

participated in the competition.

In addition, we consider extensions of the Knuth-Bendix order that cope with

associativity and commutativity (AC) axioms. The orders of Steinbach and of

Korovin and Voronkov are revisited; we enhance the former to a more powerful

AC-compatible order and modify the latter to amend its lack of monotonicity on

non-ground terms. We compare these variants by investigating computational

complexity, as well as experiments on problems in termination and completion.

i

ii ABSTRACT

Acknowledgment

Fist of all, I am grateful to my supervisor Toshiki Sakabe for his kind guidance

and support for my PhD study. Without him, I could not complete my doctoral

research, or probably not even start it. I would like to thank Keiichirou Kusakari

for the countless discussions on almost all parts of my study. I would also like

to celebrate his recent promotion to a full professor at Gifu University.

I am grateful to Masahiko Sakai for his thoughtful advices that covered not

only research topic but also concerning my carrier. I also thank Naoki Nishida

for comments from viewpoints of fields that I was unfamiliar with.

It is my great pleasure to have been collaborating with Sarah Winkler, Nao

Hirokawa, and Aart Middeldorp. Besides the fact that our joint-work forms

a notable chapter in this thesis, I would like to notice that one of the most

important ideas of this thesis came into my mind through discussions with them

during my comfortable one month stay in Innsbruck.

Finally, I would like to express my gratitude to my friends and family. Al-

though they are not directly related to the topics of this thesis, their existence

encouraged me fighting in the challenging situation of a PhD student.

Contents

Abstract i

1 Introduction 1

2 Preliminaries 5

2.1 Relations and Orders . 5

2.2 Terms and Rewriting . 8

2.3 Reduction Orders . 9

2.3.1 Interpretation Methods . 10

2.3.2 Recursive Path Orders . 12

2.3.3 Knuth-Bendix Order . 14

2.4 Dependency Pairs . 16

2.4.1 Weakly Monotone Interpretations 17

2.4.2 Argument Filtering . 18

3 Variants of the Knuth-Bendix Order 19

3.1 Generalized Knuth-Bendix Order 19

3.2 Lankford’s Polynomial KBO . 22

3.3 Transfinite KBO . 22

4 The Weighted Path Order 25

4.1 The Definition of Weighted Path Order 26

4.2 WPO(Sum) . 29

4.3 WPO(Pol) . 30

4.4 WPO(Max) . 31

4.5 WPO(MPol) and WPO(MSum) 33

5 WPO as a Reduction Pair 35

5.1 WPO with Partial Status . 35

iii

iv CONTENTS

5.2 Refinements . 39

5.3 Comparison with Other Reduction Pairs 42

5.3.1 WPO v.s. Argument Filtering 42

5.3.2 WPO v.s. Interpretation Methods 43

5.3.3 WPO v.s. RPOLO . 44

6 SMT Encoding 47

6.1 The Common Structure . 48

6.2 Encoding WPO(Pol) and WPO(Sum) 50

6.3 Encoding WPO(Max) . 51

6.4 Encoding WPO(MPol) and WPO(MSum) 52

6.5 Encoding WPO(Mat) . 53

6.6 Encoding for Reduction Orders 53

6.7 Optimizations . 54

6.7.1 Fixing w0 . 54

6.7.2 Fixing Weight Status . 54

6.7.3 Reducing Recursive Checks 55

7 Nagoya Termination Tool 57

7.1 Implementation of the DP Framework 57

7.2 Implementation of WPO . 60

7.2.1 Obtaining Well-known Reduction Pairs 61

7.3 Cooperation with SMT Solvers 61

7.3.1 Use of Interactive Features of SMT Solvers 62

7.3.2 Use of Linear Arithmetic 63

7.4 Design . 64

7.4.1 Command Line Interface 64

7.4.2 The Default Strategy . 65

7.5 Experiments . 66

7.5.1 Results for Reduction Orders 66

7.5.2 Results for Reduction Pairs 66

7.5.3 Effect of Linearlization . 68

7.5.4 Effect of Interactive SMT Solving 69

7.5.5 Results for Combination 70

7.6 Assessment . 71

CONTENTS v

8 AC-Compatible Knuth-Bendix Orders 73

8.1 Rewriting modulo AC . 74

8.2 Steinbach’s Order . 75

8.3 Korovin and Voronkov’s Orders 76

8.3.1 Ground Case . 76

8.3.2 Non-ground Case . 78

8.4 AC-KBO . 81

8.5 Correctness . 84

8.5.1 Correctness of AC-KBO 84

8.5.2 Correctness of >KV′ . 88

8.6 Complexity . 90

8.6.1 Membership Problem for >KV′ 90

8.6.2 Membership Problems for >ACKBO and >KV 91

8.6.3 Orientability Problem for >KV 93

8.6.4 Orientability Problem for >ACKBO 95

8.7 Subterm Coefficients . 96

8.8 Experiments . 97

9 Conclusion 101

vi CONTENTS

Chapter 1

Introduction

A term rewrite system (TRS) is a computational model that represents each

computation step as a rewriting of terms. For example, the function sum that

computes summation of list elements can be represented by the following TRS

Rsum:

Rsum :=

{
sum(nil) → 0

sum(x :: xs) → x + sum(xs)

A TRS directly corresponds to a first-order functional program. For example,

the TRS Rsum above corresponds to the following Standard ML program:

fun sum nil = 0

| sum (x :: xs) = x + sum xs

By proving termination of a TRS one can verify termination of the corre-

sponding first-order functional program. Hence there have been a lot of re-

searches toward automatic termination proving, resulting in many automated

termination provers: AProVE [29], TTT2 [47], CiME [13], VMTL [67], etc., com-

peting in the annual termination competition1 for a decade.

There is still an increasing demand on power and efficiency of termination

provers. Several works have been made to prove termination of more practical

programs by transforming them into (constrained) TRSs, e.g. for Haskell [30, 32],

Prolog [68], C [21, 22], and Java Bytecode [63]. Moreover, termination of a TRS

is a crucial property also for automated equational reasoning, such as the Knuth-

Bendix completion [43] and rewriting induction [64]. In particular, termination

provers are incorporated in recent completion tools: Slothrop [78], mkbTT [80, 82],

1http://termination-portal.org/wiki/Termination_Competition

1

http://termination-portal.org/wiki/Termination_Competition

2 CHAPTER 1. INTRODUCTION

and KBCV [73]. Hence, this thesis aims at proposing a powerful method of

proving termination and providing its efficient implementation.

History of Termination Proving

A reduction order is the classic method of proving termination of TRSs. Since

the end of 1960s, a number of reduction orders have been proposed. Along with

the recent development of satisfiability (SAT) solvers and satisfiability modulo

theory (SMT) solvers, efficient SAT/SMT encodings for these reduction orders

have been proposed.

One of the most well-known reduction orders is the lexicographic path order

(LPO) of Kamin and Lévy [40], a variant of the recursive path order (RPO) of

Dershowitz [14]. LPO is unified with RPO using status [56]. Recently, Codish

et al . [12] proposed an efficient implementation of RPO with status via SAT

encoding.

The Knuth-Bendix order (KBO) [43] is the oldest reduction order. KBO has

become a practical alternative in automatic termination proving since Korovin

and Voronkov [45] discovered a polynomial-time algorithm for proving termina-

tion by KBO. Zankl et al. [91] proposed another implementation method via

SAT/SMT encoding, and verified a significant improvement in efficiency over

dedicated implementations of the polynomial-time algorithm. However, KBO is

disadvantageous compared to LPO when duplicating rules (where a variable oc-

curs more often in the right-hand side than in the left-hand side) are considered.

Actually, no duplicating rule can be oriented by KBO. To overcome this disad-

vantage, Middeldorp and Zantema [62] proposed the generalized KBO (GKBO),

which generalizes weights over algebras that are weakly monotone and strictly

simple: f(. . . , x, . . .) > x. Ludwig and Waldmann proposed another extension of

KBO called the transfinite KBO (TKBO) [58, 48, 81], which extends the weight

function to allow linear polynomials over ordinals. However, proving termination

with TKBO involves solving the satisfiability problem of non-linear arithmetic

which is undecidable in general. Moreover, TKBO still does not subsume LPO.

The polynomial order (POLO) of Lankford [53] interprets each function sym-

bol by a strictly monotone polynomial. Zantema [93] extended the method to

algebras, and suggested combining the “max” operator with polynomial inter-

pretations (max-polynomials in terms of Fuhs et al. [24]). Fuhs et al . proposed

an efficient SAT encoding of POLO [23], and a general version of POLO with

max [24].

3

The dependency pair (DP) method of Arts and Giesl [2] significantly enhances

the classic approach of reduction orders by analyzing cyclic dependencies between

rewrite rules. In the DP method, reduction orders are generalized to reduction

pairs, and it suffices if one rule in a recursive dependency is strictly oriented, and

other rules are only weakly oriented. One of the typical methods for designing

reduction pairs is argument filtering [2], which generates reduction pairs from ar-

bitrary reduction orders. Hence, reduction orders are still an important subject

to study in modern termination proving. Another typical technique is generaliz-

ing interpretation methods to weakly monotone ones, e.g. allowing 0 coefficients

for polynomial interpretations [2]. Endrullis et al. [20] extended polynomial in-

terpretations to matrix interpretations, and presented their implementation via

SAT encoding. More recently, Bofill et al. [8] proposed a reduction pair called

RPOLO, which unifies standard POLO and RPO by choosing either RPO-like

or POLO-like comparison depending on function symbols.

Overview and Contributions

Chapter 2 presents preliminaries for term rewriting and termination proving, in-

cluding several existing reduction orders and brief introduction of the dependency

pair framework.

Chapter 3 concentrates on generalizations of KBO. Rigorously speaking,

GKBO of Middeldorp and Zantema [62] does not generalize KBO, since the

strict simplicity is too restrictive. In this chapter we present a slightly modified

version of GKBO that subsumes the original KBO. Then a variant introduced

by Lankford [55] is revisited, and then related with a more recent proposal by

Ludwig and Waldmann [58].

Chapter 4 introduces a new reduction order called the weighted path order

(WPO). The reduction orders and reduction pairs described so far require differ-

ent correctness proofs and different implementations. We extract the underlying

essence of these techniques and unify them into WPO. Technically, WPO is a

generalization of GKBO that relaxes the strict simplicity condition of weights

to weak simplicity. This relaxation becomes possible by combining the recur-

sive checks of LPO with GKBO. While strict simplicity is so restrictive that

the original GKBO does not even subsume the standard KBO, weak simplicity

is so generous that WPO subsumes not only KBO but also most of the reduc-

tion orders described above (LPO, TKBO, POLO and so on), except for matrix

interpretations. These results are reported in [85, 87].

4 CHAPTER 1. INTRODUCTION

Chapter 5 extends WPO as a reduction pair by introducing the notion of

partial status. This extension further relaxes the weak simplicity condition, and

arbitrary weakly monotone interpretations can be used. Hence as a reduction

pair, WPO also subsumes the matrix interpretations, as well as KBO, TKBO,

LPO and POLO. Though RPOLO also unifies RPO and POLO, we show that

WPO and RPOLO are incomparable in general. In practice, WPO shows signif-

icant benefit in the problems from the Termination Problem Data Base (TPDB)

[77], while (the first-order version of) RPOLO does not, as reported in [8]. These

results are reported in [87] and partially in [86].

Chapter 6 presents how to encode WPO as an SMT problem, by extending

the corresponding technique for KBO proposed by Zankl et al. [91]. In particu-

lar, orientability problem of WPO(Sum), WPO(Max), and WPO(MSum) are

reduced to a satisfiability problem of linear arithmetic, which is known to be

decidable. These results are reported in [85, 87].

Chapter 7 describes the Nagoya Termination Tool (NaTT), which implements

WPO as well as some existing techniques of the DP framework [36, 27, 29], a

successor of DP method. We present some new techniques that advance the effi-

ciency of the tool by deeply cooperating with SMT solvers. Through experiments

and results of the Termination Competition [75], we also verify the efficiency of

our implementation and significance of WPO in practice. The description is

reported in [88].

Chapter 8 is devoted to extensions of KBO to cope with associativity and

commutativity (AC) axioms. The orders of Steinbach [70] and of Korovin and

Voronkov [46] are revisited; we enhance the former to a more powerful AC-

compatible order and modify the latter to amend its lack of monotonicity on

non-ground terms. We further present new complexity results. An extension

reflecting the proposal of Ludwig and Waldmann [58] in plain KBO is also given.

The various orders are compared on problems in termination and completion.

These results are reported in [89].

Chapter 2

Preliminaries

In this chapter, we recall some basic notions needed in this thesis: orders, term

rewriting, and existing methods for proving termination. In Section 2.1 we

present the notions and notations for relations and orders used in this thesis.

Section 2.2 recalls basic notions of term rewriting. Classic methods for proving

termination based on reduction orders are presented in Section 2.3. Then the

more modern dependency pair framework is described in Section 2.4.

2.1 Relations and Orders

A binary relation A on a set A is a subset of A×A. Following the convention, we

write a A b instead of 〈a, b〉 ∈ A, and a0 A1 a1 A2 . . . An an instead of ai−1 Ai ai
for every i ∈ {1, . . . , n}. Further, we write a 6A b to state that a A b does not

hold.

Definition 2.1 The identity relation on A is denoted by =A. The composition

A1 ·A2 of relations A1 and A2 is defined as: a A1 ·A2 c iff a A1 b A2 c for some

b ∈ A. From a relation A on A, we define the following relations on A:

• i-folding: A0 := =A and Ai+1 := A ·Ai,

• reflexive closure: A= := A ∪A0,

• transitive closure: A+ :=
⋃
i>0 A

i,

• reflexive transitive closure: A∗ :=
⋃
i≥0 A

i,

• inverse: a A−1 b iff b A a.

5

6 CHAPTER 2. PRELIMINARIES

We denote the inverse of A by @, if such a symbol is available.

Definition 2.2 A relation A on A is said to be

• reflexive iff a A a for arbitrary a ∈ A,

• irreflexive iff a 6A a for arbitrary a ∈ A,

• transitive iff a A b A c implies a A c,

• a quasi-order iff it is transitive and reflexive,

• a strict order iff it is transitive and irreflexive,

• well-founded iff there exists no infinite sequence a1 A a2 A · · · ,

• total iff a A b or a = b or a @ b for arbitrary a, b ∈ A.

In this thesis, we often denote quasi-orders by &, %, etc., and strict orders

by >, �, etc. Note that � does not always denote the strict part of %, which

is defined as % \-. Instead, we often assume the following relationship between

relations denoted by % and �:

Definition 2.3 A relation � on a set A is said to be compatible with a relation

% on A iff % · � ·% ⊆ �. An order pair on A is a pair 〈%,�〉 of a quasi-order

% on A and a strict order � which is compatible with %. An order pair 〈%,�〉
is said to be well-founded iff � is well-founded.

Definition 2.4 Let 〈%,�〉 be an order pair on a set A. An element a ∈ A is

• greatest (respectively least) iff a % b (respectively a - b) for every b ∈ A,

and

• maximal (respectively minimal) iff a ⊀ b (respectively a � b) for every

b ∈ A.

A function f : An → A is

• strictly (weakly) monotone in its i-th argument iff

f(a1, . . . , ai, . . . , an) %() f(a1, . . . , a
′
i, . . . , an)

whenever ai %() a
′
i, and

2.1. RELATIONS AND ORDERS 7

• strictly (weakly) simple in its i-th argument iff f(a1, . . . , an) %() ai for every

ai ∈ A.

We say that f is strictly/weakly monotone/simple iff it is so in every argument.

The lexicographic extension is a technique to lift an order pair on a set A to

an order pair on finite lists of A. In this thesis, a list of x1, . . . , xn ∈ A is written

[x1, . . . , xn].

Definition 2.5 (Lexicographic Extension) Let � and % be relations on

a set A. The lexicographic extensions �lex and %lex are defined as follows:

[x1, . . . , xn] %()
lex [y1, . . . , ym] iff for some k ∈ {1, . . . ,m} with n ≥

()
k,

• xi % yi for each i ∈ {1, . . . , k}, and

• either k = m, or n > k and xk+1 � yk+1.

Note that the extended relations �lex and %lex depend on both % and �.

A similar extension is known for multisets : A (finite) multiset on A is formally

a mapping X : A→ N such that the set {x | X(x) > 0} is finite. By {x1, . . . , xn}
we denote the multiset X such that X(x) is the number of indices i satisfying

xi = x. Order pairs on A are lifted over multisets as follows:

Definition 2.6 (Multiset Extension) Let � and % be relations on a set A.

The multiset extensions �mul and %mul are defined as follows: X %()
mul Y iff

X and Y are written {x1, . . . , xn} and {y1, . . . , ym}, respectively that satisfy for

some k ∈ {1, . . . ,m} with n ≥
()

k,

• xi % yi for each i ∈ {1, . . . , k}, and

• for each j ∈ {k+1, . . . ,m}, there exists i ∈ {k+1, . . . , n} such that xi � yj.

The following result is folklore; a recent formalization of multiset extensions

in Isabelle/HOL is presented in [76].

Theorem 2.7 If 〈%,�〉 is an order pair, so are 〈%lex,�lex〉 and 〈%mul,�mul〉. 2

8 CHAPTER 2. PRELIMINARIES

2.2 Terms and Rewriting

Now we introduce the basic notions for terms and term rewriting. For further

details of rewriting, see e.g., [3] or [74].

Definition 2.8 (Signature) A signature F is a finite set of function symbols,

where each function symbol f is associated with its arity n ∈ N. We denote the

set of n-ary symbols by Fn.

In particular, a function symbol f is called a constant, unary, or binary sym-

bol, if its arity is 0, 1, or 2, respectively.

Definition 2.9 (Term) Let F be a signature and V a set of variable symbols,

where F∩V = ∅. The set T (F ,V) of terms constructed by F and V is inductively

defined as follows:

• V ⊆ T (F ,V), and

• f(s1, . . . , sn) ∈ T (F ,V) if f ∈ Fn and s1, . . . , sn ∈ (F ,V).

The root symbol of a term s = f(s1, . . . , sn) is f and denoted by root(s). The

set of variables occurring in a term s is denoted by Var(s), and the number of

occurrence of a variable x in s is denoted by |s|x.

Throughout this thesis, we consider a fixed set V of variables. Substitutions

to variables are formally defined below.

Definition 2.10 (Substitution) A mapping θ : V → T (F ,V) is called a sub-

stitution if its domain Dom(θ) is finite, which is defined as follows:

Dom(θ) := {x ∈ V | θ(x) 6= x}

A substitution θ is homomorphically extended to θ̂ : T (F ,V) → T (F ,V) as

follows:

• θ̂(x) = θ(x) if x ∈ V, and

• θ̂(f(s1, . . . , sn)) = f(θ̂(s1), . . . , θ̂(sn)).

We write sθ instead of θ̂(s).

2.3. REDUCTION ORDERS 9

Definition 2.11 (Context) A context C is a term in T (F ,V ∪{2}) such that

2 occurs exactly once in C. The term obtained by replacing 2 in C by s is

denoted by C[s].

Definition 2.12 (Rewrite Relation) A relation A on terms is

• closed under context, or monotonic iff s A t implies C[s] A C[t] for every

context C, and

• closed under substitution, or stable iff s A t implies sθ A tθ for every

substitution θ.

If a relation on terms is both monotonic and stable, then it is called a rewrite

relation. A rewrite relation is called a rewrite order iff it is also a strict order.

Definition 2.13 (Rewrite Rule) A rewrite rule is a pair of terms l and r,

written l → r, such that l /∈ V and Var(l) ⊇ Var(r). A rule l → r is said to be

duplicating iff there exists a variable x such that |l|x < |r|x.

Definition 2.14 (Term Rewrite System) A term rewrite system (TRS) is a

set R of rewrite rules. A TRS R induces the root reduction ε−→
R

which is defined

as follows: s ε−→
R
t iff s = lθ and t = rθ for some l → r ∈ R and substitution θ.

The reduction relation −→
R

induced by R is defined as: s −→
R
t iff s = C[s′] and

t = C[t′] such that s′ ε−→
R
t′.

Termination is the main topic of this thesis: A TRS R is said to be ter-

minating iff −→
R

is well-founded. In the rest of this chapter we present existing

techniques for proving termination of TRSs.

2.3 Reduction Orders

A reduction order is a classical technique for proving termination.

Definition 2.15 A reduction order is a well-founded rewrite order. We say an

order � orients a TRS R iff l � r for every rule l → r ∈ R; in other words,

R ⊆ �.

The following result is well-known:

Theorem 2.16 ([54, 92]) A TRS is terminating iff it is oriented by a reduction

order. 2

10 CHAPTER 2. PRELIMINARIES

To illustrate the technique, we use the following easy TRS as a running ex-

ample.

Example 2.17 Consider the following TRS Rfact:

Rfact :=

{
fact(0) → s(0)

fact(s(x)) → s(x) * fact(x)

In order to prove termination of Rfact by a reduction order, we need to find a

reduction order � such that

fact(0) � s(0)

fact(s(x)) � s(x) * fact(x)

In the rest of this section, we describe existing techniques used to design

well-founded reduction orders.

2.3.1 Interpretation Methods

In this section, we investigate methods that ensure well-foundedness by interpret-

ing terms into a mathematical structure where a well-founded order is known,

e.g., > on the natural numbers N. The idea goes back to Manna and Ness [59].

First, we present in an abstract setting that basically follows Zantema [92]

and Endrullis et al. [20].

Definition 2.18 (Algebras) Let F be a signature. An F -algebra is a pair

〈A, I〉 that consists of

• a set A called the carrier, and

• a family I of mappings I(f) : An → A called the interpretation of f ∈ Fn.

A well-founded F -algebra is a quadruple A = 〈A, I,&, >〉 such that 〈A, I〉 is an

F-algebra and 〈&, >〉 is a well-founded order pair on A.

When the signature F is clear from the context, we simply say algebra instead

of F -algebra. For a well-founded algebra A = 〈A, I,&, >〉, we write fA instead of

I(f) and often omit specifying I. If A is (a subset of) N, then the standard > is

assumed and & is considered as the standard ≥, without explicitly stating. Hence

in that case, we only define interpretations fA in order to define a well-founded

algebra A.

2.3. REDUCTION ORDERS 11

Definition 2.19 Let A be a well-founded algebra. A mapping α : V → A is

called an assignment, and extended homomorphically to α̂ : T (F ,V) → A as

follows:

• α̂(x) = α(x) if x ∈ V, and

• α̂(f(s1, . . . , sn)) = fA(α̂(s1), . . . , α̂(sn)).

The relations &A and >A on terms are defined as follows:

s &()A t
def⇐⇒ α̂(s) &() α̂(t) for every assignment α : V → A.

We extend the terminologies “monotonicity” and “simplicity” on well-founded

F -algebras as follows: A is said to be (strictly/weakly) monotone and analo-

gously (strictly/weakly) simple iff fA is so for every f ∈ F . Further, we just

say (strictly/weakly) monotone algebra instead of (strictly/weakly) monotone

well-founded F -algebra.

Theorem 2.20 ([92]) For a strictly monotone algebra A, >A is a reduction

order. 2

Polynomial Interpretations

The polynomial interpretation order (POLO) of Lankford [53] is a special case

of interpretation methods using a well-founded algebra Pol such that the carrier

set is N and the interpretation fPol is a polynomial for every function symbol

f ∈ F . The algebra Pol induces a reduction order if it is strictly monotone; in

other words, all arguments have coefficients at least 1.

Corollary 2.21 ([53]) Let Pol be a strictly monotone polynomial interpretation.

Then >Pol is a reduction order. 2

Example 2.22 Termination of Rfact of Example 2.17 can be shown by a poly-

nomial interpretation Pol such that

sPol(x) = 2x+ 1 0Pol = 0

factPol(x) = 2x+ 2 x *Pol y = x+ y

The left- and right-hand-sides of the rule fact(0)→ s(0) are interpreted as 2 and

1, respectively, and that of the rule fact(s(x)) → s(x) * fact(x) are 4x + 4 and

4x+ 3, respectively.

12 CHAPTER 2. PRELIMINARIES

Matrix Interpretations

The matrix interpretation method is introduced for string rewriting by Hofbauer

and Waldmann [38], and extended for term rewriting by Endrullis et al. [20].

This method uses a well-founded algebra Mat whose carrier is the set Nd of

d-dimension vectors which is ordered by the following order pair 〈&, >〉:v1...
vd

 &()

u1...
ud

 def⇐⇒ v1 ≥()
u1 and vj ≥ uj for all j ∈ {2, . . . , d}

The interpretation of f ∈ Fn in Mat is in the following shape:

fMat(x 1, . . . ,xn) = w f +
n∑
i=1

Cf,i · x i

where w f is a d-dimension vector and Cf,i is a d×d matrix for each i ∈ {1, . . . , n}.
Variables ranging column vectors are denoted by bold fonts: x , y , etc. The i-th

row and j-th column element of a matrix M is denoted by M i,j. Monotonicity

of Mat is ensured if C1,1
f,i ≥ 1 for every f ∈ Fn and i ∈ {1, . . . , n}.

Corollary 2.23 ([20]) Let Mat be a strictly monotone matrix interpretation.

Then >Mat is a reduction order. 2

2.3.2 Recursive Path Orders

In this section, we recall the celebrated technique of Dershowitz [14] for ensuring

well-foundedness based on Kruskal’s tree theorem [49].

Definition 2.24 (Subterm) A term t is called a subterm of a term s, written

s D t iff either s = t, or s = f(s1, . . . , sn) and si D t for some i ∈ {1, . . . , n}. A

subterm t of s is called a strict subterm, written s B t iff s D t and s 6= t.

Definition 2.25 (Simplification Order) A relation A on terms is said to

have the subterm property iff B ⊆ A. A simplification order is a rewrite order

that satisfies the subterm property.

Theorem 2.26 ([14]) If the signature F is finite, then every simplification order

is well-founded. Hence, a simplification order is a reduction order. 2

In this thesis, we always consider finite signature. Hence a simplification

order is a reduction order. The subterm property can be easily checked:

2.3. REDUCTION ORDERS 13

Proposition 2.27 ([62]) A rewrite order � is a simplification order iff

f(x1, . . . , xn) � xi

for every f ∈ Fn and i ∈ {1, . . . , n}. 2

Multiset Path Order

The multiset path order [14] is induced by a precedence over function symbols.

In this thesis, we consider quasi-precedences which are introduced in [40].

Definition 2.28 A quasi-precedence & is a quasi-order on F , whose strict part,

denoted by >, is well-founded. The equivalence part of & is denoted by ∼.

Definition 2.29 (MPO) For a quasi-precedence &, the multiset path order

(MPO) >MPO on terms is recursively defined as follows: s = f(s1, . . . , sn) >MPO t

iff

(a) ∃i ∈ {1, . . . , n}. si ≥MPO t, or

(b) t = g(t1, . . . , tm) and either

i. f > g and ∀j ∈ {1, . . . ,m}. s >MPO tj, or

ii. f ∼ g and {s1, . . . , sn} >mul
MPO {t1, . . . , tm}.

Theorem 2.30 ([14]) The order >MPO is a simplification order. 2

Example 2.31 Termination of Rfact from Example 2.17 can be shown by MPO.

Both rules are oriented by case (b)–i with a precedence such that fact > s for the

first rule and fact > * for the second rule.

Lexicographic Path Order

The lexicographic path order of Kamin and Lévy [40] is a variant of MPO that uses

lexicographic extension instead of multiset extension when comparing arguments

in case (b)–ii. In this thesis, we consider LPO with status that allow permutation

before the lexicographic comparison (confer [69, 62]).

Definition 2.32 (Status) A status function σ assigns to each function symbol

f ∈ Fn a permutation [i1, . . . , in] of positions in {1, . . . , n}. We denote the list

[si1 , . . . , sin] by [s1, . . . , sn]σ(f) for σ(f) = [i1, . . . , in].

14 CHAPTER 2. PRELIMINARIES

Definition 2.33 (LPO) Let & be a quasi-precedence and σ a status. The lex-

icographic path order (LPO) >LPO(σ) on terms is recursively defined as follows:

s = f(s1, . . . , sn) >LPO(σ) t iff

(a) ∃i ∈ {1, . . . , n}. si ≥LPO(σ) t, or

(b) t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s >LPO(σ) tj and either

i. f > g, or

ii. f ∼ g and [s1, . . . , sn]σ(f) >lex
LPO(σ) [t1, . . . , tm]σ(g).

When no confusion arises, we write >LPO instead of >LPO(σ).

Theorem 2.34 ([40]) The order >LPO is a simplification order. 2

2.3.3 Knuth-Bendix Order

While being the oldest invented reduction order, the order proposed by Knuth

and Bendix [43] (KBO for short) combines both interpretation-based comparison

and

precedence-based comparison. The original KBO defines interpretations from

a so-called weight function.

Definition 2.35 (Weight Function) A weight function is a pair 〈w,w0〉 of

mapping w : F → N and w0 ∈ N, such that w(c) ≥ w0 for every constant c ∈ F0.

The weight w(s) of a term s is defined as follows:

w(s) :=


w0 if s ∈ V

w(f) +
n∑
i=1

w(si) if s = f(s1, . . . , sn)

Definition 2.36 (KBO) Let & be a quasi-precedence, 〈w,w0〉 a weight func-

tion, and σ a status. The Knuth-Bendix order (KBO) >KBO is recursively defined

as follows: s = f(s1, . . . , sn) >KBO t iff |s|x ≥ |t|x for all x ∈ V and either

1. w(s) > w(t), or

2. w(s) = w(t) and either

(a) t ∈ V, or

(b) t = g(t1, . . . , tm) and either

2.3. REDUCTION ORDERS 15

i. f > g, or

ii. f ∼ g and [s1, . . . , sn]σ(f) >lex
KBO [t1, . . . , tm]σ(g).

In order for KBO to be a reduction order, the following condition is required:

Definition 2.37 (Admissibility) A weight function 〈w,w0〉 is said to be ad-

missible for a quasi-precedence & iff the following two conditions hold:

(A) w0 > 0, and

(B) if f ∈ F1 and w(f) = 0, then f is greatest with respect to &.

A detailed proof of the following result can be found in e.g. [3, Theorem 5.4.20].

Theorem 2.38 Let & be a quasi-precedence and 〈w,w0〉 a weight function which

is admissible for &. Then >KBO is a simplification order. 2

Below we list some remarks on differences between our version and existing

formulations of KBO in literatures.

• The original definition by Knuth and Bendix [43] further imposes “|s|x =

|t|x for all x ∈ V” in case 2, which was harmlessly removed by Dick et al.

[19].

• We do not consider weight functions on real numbers, which was proposed

by Martin [61] and adopted in the influential textbook by Baader and Nip-

kow [3]. According to Korovin and Voronkov [45], however, real numbers

do not increase the power of the order when finite TRSs are considered.

• In many literatures [43, 55, 61, 19, 3, 45, 81], case (2a) is phrased as:

“s = fk(t) and t ∈ V for some k > 0,”

since whenever w(s) = w0, admissibility implies root(s) = f is unary and

has the greatest precedence. As we consider quasi-precedences, such f

may be not unique; see a preceding example of Zankl et al. [91]. Use

of quasi-precedences in KBO is first mentioned by Dershowitz [14] and

defined in [15]; however, the order is defined only on ground terms, and a

case corresponding to (2a) of Definition 2.36 does not appear in [15].

16 CHAPTER 2. PRELIMINARIES

• We consider statuses, that are first incorporated in KBO by Steinbach [69].

Our version follows the more general version of Middeldorp and Zantema

[62].

The variable condition “|s|x ≥ |t|x for all x ∈ V” is often said to be a major

disadvantage of KBO. Indeed, no duplicating rule can be oriented by KBO.

Example 2.39 Termination of Rfact of Example 2.17 cannot be shown by KBO,

since x is duplicating in the second rule fact(s(x))→ s(x) * fact(x).

2.4 Dependency Pairs

The dependency pair (DP) method [2] significantly enhances the classical method

of reduction orders by analyzing dependencies between rewrite rules. We briefly

recall the essential notions for its successor, the DP framework [27, 36, 31].

Definition 2.40 (Defined Symbol) A function symbol f is defined in a TRS

R iff there exists a rule l → r ∈ R such that root(l) = f . The set of defined

symbols in R is denoted by D.

Definition 2.41 (Dependency Pair) Let R be a TRS over a signature F .

For each f ∈ D, F is extended by a fresh marked symbol f] whose arity is the

same as f . For s = f(s1, . . . , sn) with f ∈ D, the term f](s1, . . . , sn) is denoted

by s]. The set DP(R) of dependency pairs for R is defined as:

DP(R) := {l] → t] | l→ r ∈ R, l 6B t E r, root(t) ∈ D}

The exclusion of l] → t] such that l B t from dependency pairs is due to

Dershowitz [16].

Definition 2.42 A DP problem is a pair 〈P ,R〉 of a TRS R and a set P
of dependency pairs for R. A DP problem 〈P ,R〉 is finite iff ε−→

P
· −→
R
∗ is well-

founded, where P is viewed as a TRS.

The main result of the DP method is the following:

Theorem 2.43 ([2]) A TRS R is terminating iff the DP problem 〈DP(R),R〉
is finite. 2

2.4. DEPENDENCY PAIRS 17

Finiteness of a DP problem is proved by DP processors : A sound DP processor

gets a DP problem as input and outputs a set of (hopefully simpler) DP problems

such that the input problem is finite if all the output problems are finite. Among

other DP processors for transforming or simplifying DP problems (confer [31] for

a summary), we recall the most important one:

Definition 2.44 (Reduction Pair) A reduction pair is a well-founded order

pair 〈%,�〉 on terms such that % is monotonic and stable, and � is stable. A

reduction pair 〈%,�〉 is monotonic iff � is monotonic.

Theorem 2.45 (Reduction Pair Processor) [2, 27, 36] Let 〈%,�〉 be a re-

duction pair such that P ∪ R ⊆ % and P ′ ⊆ �. Then the DP processor that

maps 〈P ,R〉 to {〈P \ P ′,R〉} is sound. 2

Example 2.46 Consider again the TRS Rfact of Example 2.17. Rfact has one

reduction pair fact](s(x))→ fact](x). Hence we need a reduction pair 〈%,�〉 that

satisfies the following constraints: 1

fact(0) % s(0) fact(s(x)) % s(x) * fact(x) fact](s(x)) � fact](x)

2.4.1 Weakly Monotone Interpretations

To define a reduction pair by polynomial interpretations, an interpretation Pol
need not be strictly monotone but only weakly monotone; in other words, 0

coefficients are allowed.

Theorem 2.47 ([2]) Let Pol be a weakly monotone polynomial interpretation.

Then 〈≥Pol, >Pol〉 forms a reduction pair. 2

Example 2.48 Consider an interpretation Pol such that

sPol(x) = x+ 1 0Pol = 0

factPol(x) = x+ 1 x *Pol y = 0 fact]Pol(x) = x

Then 〈≥Pol, >Pol〉 satisfies all the constraints in Example 2.46.

Theorem 2.49 ([20]) Let Mat be a matrix interpretation. Then 〈&Mat, >Mat〉
forms a reduction pair. 2

1The last constraint can be handled by subterm criterion [36], and the first constraints can

be ignored if we consider usable rules [2]. In order to demonstrate reduction pairs, we ignore

these techniques in this chapter.

18 CHAPTER 2. PRELIMINARIES

2.4.2 Argument Filtering

Argument filtering [2, 52] is a typical technique to design a reduction pair from

a reduction order.

Definition 2.50 An argument filter π maps each f ∈ Fn to either a position

i ∈ {1, . . . , n} or a list [i1, . . . , im] of positions such that 1 ≤ i1 < · · · < im ≤ n.

The signature Fπ consists of every f ∈ F such that π(f) = [i1, . . . , im], and

arity of f is m in Fπ. An argument filter π induces a mapping π : T (F ,V) →
T (Fπ,V) as follows:

π(s) :=


s if s ∈ V
π(si) if s = f(s1, . . . , sn), π(f) = i

f(π(si1), . . . , π(sim)) if s = f(s1, . . . , sn), π(f) = [i1, . . . , im]

For an argument filter π and a reduction order � on T (Fπ,V), the relations %π

and �π on T (F ,V) are defined as follows: s %()
π t iff π(s) �() π(t).

Theorem 2.51 ([2]) For a reduction order � and an argument filter π, 〈%π,�π

〉 forms a reduction pair. 2

The effect of argument filtering is especially apparent for KBO; it relaxes the

variable condition.

Example 2.52 Applying an argument filter π such that π(*) = 1 for the con-

straints in Example 2.46, we obtain the following constraints:

fact(0) % s(0) fact(s(x)) % s(x) fact](s(x)) � fact](x)

The first constraint can be satisfied by KBO with e.g. w(fact) > w(s). The other

constraints are satisfied by any instance of KBO.

Chapter 3

Variants of the Knuth-Bendix

Order

In this chapter, we investigate several variants of KBO. Middeldorp and Zantema

[62] introduced the generalized KBO which, despite the name, does not properly

generalize KBO. Hence in Section 3.1, we present a slightly modified version that

properly subsumes the original KBO. In Section 3.2, we revisit the less-known

variant proposed by Lankford [55], and then relate it with the more recent variant

proposed by Ludwig and Waldmann [58].

3.1 Generalized Knuth-Bendix Order

Middeldorp and Zantema [62] generalized the weight function of KBO using a

weakly monotone algebra which is also strictly simple. However, due to the

possibility for unary symbols of weight 0, which is not strictly simple, their order

does not rigorously subsume the original KBO. Thus, we present a version that

slightly relaxes the condition to admit such unary symbols.

Definition 3.1 (improved GKBO) Let & be a quasi-precedence, σ a status,

and A a well-founded algebra. The generalized Knuth-Bendix order (GKBO)

>GKBO(A,σ) is recursively defined as follows: s = f(s1, . . . , sn) >GKBO(A,σ) t iff

1. s >A t, or

2. s &A t and either

(a) t ∈ V, or

19

20 CHAPTER 3. VARIANTS OF THE KNUTH-BENDIX ORDER

(b) t = g(t1, . . . , tm) and either

i. f > g, or

ii. f ∼ g and [s1, . . . , sn]σ(f) >lex
GKBO(A,σ) [t1, . . . , tm]σ(g).

When no confusion arises, we write >GKBO or >GKBO(A) instead of >GKBO(A,σ).

Note that in the above definition, we extend [62] with quasi-order &A and quasi-

precedence &, and omit multiset status. However, the most notable difference is

that we supply case (2a) which makes the improved GKBO indeed a generaliza-

tion of the original KBO. By this modification, our version admits unary symbols

with greatest precedence to be not strictly simple but only weakly simple.

Definition 3.2 A well-founded algebra A is admissible for a quasi-precedence

& iff for every f ∈ F ,

• fA is strictly simple, or

• fA is weakly simple, and f is unary and greatest with respect to &.

An equivalent notion of the above admissibility has already been mentioned

by Dershowitz [14]. However, since he did not consider variables when defining

his variant of KBO, case (2a) does not appear in the paper [14]. For the following

result to hold, case (2a) is necessary.

Theorem 3.3 Let & be a quasi-precedence and A a weakly monotone algebra

which is admissible for &. Then >GKBO is a simplification order.

Proof. The result follows from the development of Chapter 4 as a corollary of

Theorem 4.4 and Theorem 4.6. 2

One of the most important advantages of GKBO is that it admits weakly

monotone interpretations such as the operator max. Due to this generality,

GKBO can orient TRSs that cannot be oriented by KBO.

Example 3.4 Termination of Rfact of Example 2.17 can be shown by GKBO

induced by an algebra A on N with interpretation such that

sA(x) = x+ 1 0A = 0

factA(x) = x+ 2 x *A y = max{x, y}+ 1

and a precedence such that fact > *. Note that A is admissible for >. The

first rule fact(0) → s(0) is oriented by case 1. The second rule fact(s(x)) →
s(x) * fact(x) is oriented by case (2b)–i, since x+ 3 ≥ max{x+ 1, x+ 2}+ 1.

3.1. GENERALIZED KNUTH-BENDIX ORDER 21

Now we prove that the improved GKBO is indeed a generalization of the

original KBO. We define a well-founded algebra Sum which plays the role of

weights of KBO.

Definition 3.5 A summation algebra is a well-founded algebra Sum, whose car-

rier set is a subset of N and the interpretation of each f ∈ F is in the following

form:

fSum(x1, . . . , xn) = wf +
n∑
i=1

xi (3.1)

where wf ∈ N. We say that Sum corresponds to a weight function 〈w,w0〉 iff

wf = w(f) for every f ∈ F and w0 is the lower bound of the carrier set.

Lemma 3.6 Let 〈w,w0〉 be a weight function and Sum the corresponding sum-

mation algebra. Then, s ≥
()Sum t iff |s|x ≥ |t|x for all x ∈ V and w(s) ≥

()
w(t).

Proof. The “if” direction is trivial. For the “only-if” direction, suppose that

s ≥
()Sum t. Let us define the assignment α0 which maps all variables to w0.

Then we have α̂0(s) ≥()
α̂0(t), that is, w(s) ≥

()
w(t). Furthermore, let αx be

the assignment that maps x to w(s) + w0 and other variables to w0. Then we

have α̂x(s) ≥()
α̂x(t), which implies w(s) + |s|x · w(s) ≥

()
w(t) + |t|x · w(s). Here,

|s|x < |t|x cannot hold since w(t) ≥ 0. We conclude |s|x ≥ |t|x. 2

Note that the above lemma is also a corollary of the shifting method of Hong and

Jakuš [39, Theorem 1]. Next, we show that admissibility of Definition 2.37 and

that of Definition 3.2 corresponds.

Lemma 3.7 Let 〈w,w0〉 be a weight function, Sum the corresponding summa-

tion algebra, and & a quasi-precedence. If 〈w,w0〉 is admissible for & then Sum
is admissible for &.

Proof. Consider a function symbol f ∈ Fn. Since the minimum element of

the carrier set is w0 > 0, fSum(. . . , x, . . .) > x whenever n > 1. If n = 1,

then fSum(x) = w(f) + x ≯ x implies w(f) = 0 and hence f has the greatest

precedence by the assumption. 2

Proposition 3.8 Let 〈w,w0〉 be a weight function and Sum the corresponding

summation algebra. Then, >GKBO(Sum) = >KBO.

Proof. Straightforward. 2

22 CHAPTER 3. VARIANTS OF THE KNUTH-BENDIX ORDER

3.2 Lankford’s Polynomial KBO

Lankford [55] proposed a combination of a restricted polynomial interpretation

and KBO. In our notation, his result corresponds to the following:

Corollary 3.9 Let Pol be a monotone polynomial interpretation. If Pol is ad-

missible for &, then >GKBO(Pol) is a reduction order. 2

In [55, Lemma 3], he moreover assumed that the lower bound of the carrier set

of Pol is greater than or equal to 2, because he was considering interpretations

such as fPol(x, y) = x · y. We do not explicitly assume this, since when such

an interpretation is considered, the admissibility condition demands the lower

bound to be above 2.

Example 3.10 Consider again the TRS Rfact of Example 2.17. Let Pol be a

polynomial interpretation such that

sPol(x) = 2x 0Pol = 1

factPol(x) = 2x+ 1 x *Pol y = x+ y

The first rule fact(0) → s(0) is oriented by case 1. Both sides of the second

rule fact(s(x))→ s(x) * fact(x) are interpreted as 4x+ 3. Hence with precedence

fact > *, the rule is oriented by case (2b)–i. Note that the interpretation *Pol is

admissible only if the carrier set does not contain 0.

Note that not all monotone polynomial interpretations can be used in Corol-

lary 3.9, since the admissibility condition imposes every non-unary symbol to

be strictly simple. Thus, the interpretation of Example 2.22 cannot be applied.

This problem will be overcome in Chapter 4.

3.3 Transfinite KBO

Ludwig and Waldmann [58] proposed an extension of KBO called the transfinite

KBO (TKBO) that admits weights over ordinals , and further introduced subterm

coefficients when computing weights of terms. However, Kovács et al. [48] showed

that weights greater than ωω
ω

are not needed. Moreover, when only finite TRSs

are considered, Winkler et al. [81] showed that only finite weights are sufficient.

Therefore in this thesis, we do not consider transfinite weights.

3.3. TRANSFINITE KBO 23

Definition 3.11 A subterm coefficient function sc assigns a positive integer

sc(f, i) to each f ∈ Fn and i ∈ {1, . . . , n}. For a weight function 〈w,w0〉 and a

subterm coefficient function sc, w(s) is refined as follows:

w(s) :=


w0 if s ∈ V

w(f) +
n∑
i=1

sc(f, i) · w(si) if s = f(s1, . . . , sn)

The variable coefficient vc(x, s) of x in s is defined recursively as follows:

vc(x, s) :=


1 if x = s

0 if x 6= y ∈ V
n∑
i=1

sc(f, i) · vc(x, si) if s = f(s1, . . . , sn)

Then the order >TKBO is obtained by slightly modifying Definition 2.36 using the

notions defined above.

Definition 3.12 (TKBO) Let & be a quasi-precedence, 〈w,w0〉 a weight func-

tion, and sc be a subterm coefficient function. The transfinite Knuth-Bendix or-

der >TKBO with status σ is recursively defined as follows: s = f(s1, . . . , sn) >TKBO

t iff vc(x, s) ≥ vc(x, t) for all x ∈ V and either

1. w(s) > w(t), or

2. w(s) = w(t) and either

(a) t ∈ V, or

(b) t = g(t1, . . . , tm) and either

i. f > g, or

ii. f ∼ g and [s1, . . . , sn]σ(f) >lex
TKBO [t1, . . . , tm]σ(g).

Theorem 3.13 ([58]) If 〈w,w0〉 is admissible for &, then >TKBO is a simplifi-

cation order. 2

Just as KBO corresponds to GKBO(Sum), TKBO defined above corresponds

to GKBO(Pol) where Pol is a linear polynomial interpretation. Thus it turns

out that TKBO is a special case of the polynomial KBO of Lankford [55].

24 CHAPTER 3. VARIANTS OF THE KNUTH-BENDIX ORDER

Definition 3.14 A linear polynomial interpretation is a well-founded algebra

Pol, whose carrier set is a subset of N and the interpretation of each f ∈ F is

in the following form:

fPol(x1, . . . , xn) = wf +
n∑
i=1

cf,i · xi (3.2)

where wf , cf,1, . . . , cf,n ∈ N. A linear polynomial interpretation Pol corresponds

to a weight function 〈w,w0〉 and a subterm coefficient function sc iff wf = w(f),

cf,i = sc(f, i), and w0 is the lower bound of the carrier set.

Proposition 3.15 If Pol corresponds to a weight function 〈w,w0〉 and a subterm

coefficient sc, then >GKBO(Pol) = >TKBO.

Proof. Analogous to Proposition 3.8. 2

Chapter 4

The Weighted Path Order – as a

Reduction Order

In this chapter, we propose a new reduction order called the weighted path order

(WPO) that further generalizes GKBO by weakening the admissibility condition

on algebras. Not only extending GKBO, we show that WPO subsumes most

of the reduction orders described so far, except for the matrix interpretations.

Moreover, we present examples showing that these subsumption relations are

strict.

Instances of WPO are characterized by how weights are computed. In par-

ticular, we introduce the following instances of WPO and investigate their rela-

tionships with existing reduction orders:

• WPO(Sum) which uses summations for weight computation. KBO can

be obtained as a restricted case of WPO(Sum), where the admissibility

condition is enforced on constants and unary symbols. WPO(Sum) is free

from these restrictions, and we verify that each extension strictly increases

the power of the order.

• WPO(Pol) which uses monotone polynomial interpretations for weight

computation. As a reduction order, POLO is subsumed by WPO(Pol).
TKBO can be obtained as a restricted case of WPO(Pol), where interpre-

tations are linear polynomials, admissibility is enforced, and interpretations

of constants are greater than 0.

• WPO(Max) which uses maximums for weight computation. LPO can

be obtained as a restricted case of WPO(Max), where the weights of all

25

26 CHAPTER 4. THE WEIGHTED PATH ORDER

symbols are fixed to 0. In order to keep the presentation simple, we omit

multiset status and only consider LPO with status. Nonetheless, it is easy

to extend this result to RPO with status.

• WPO(MPol) which combines polynomial and maximum for interpre-

tation, and its variant WPO(MSum) whose coefficients are fixed to 1.

WPO(MSum) generalizes KBO and LPO, and WPO(MPol) moreover

subsumes POLO (with max) as a reduction order.

Note that these instances use weakly simple algebras which cannot be used for

GKBO in general.

There exist several earlier works on generalizing existing reduction orders.

The semantic path order (SPO) proposed by Kamin and Lévy [40] is a general-

ization of RPO where precedence comparison is generalized to an arbitrary well-

founded order on terms. However, in order to prove termination by SPO, users

have to ensure monotonicity by themselves even if the underlying well-founded

order is monotone (confer [9]). On the other hand, monotonicity of WPO is

guaranteed. Borralleras et al. [9] proposed a variant of SPO that ensures mono-

tonicity by using an external monotonic order. As well as LPO or POLO, WPO

can be used as such an external order. The general path order (GPO) [17, 25] is

a very general framework that many reduction orders are subsumed. Due to the

generality, however, implementing GPO seems to be quite challenging. Indeed,

we are not aware of any tool that implements GPO.

In the next section, we give the abstract definition of WPO and prove some

properties of the order needed to be a reduction order. Then follows a series of

sections that introduce several instances of WPO by fixing algebras. In these sec-

tions we investigate relationships between these instances of WPO and existing

reduction orders and show the potential of WPO.

4.1 The Definition of Weighted Path Order

We first introduce the definition of WPO. In order to admit algebras that are not

strictly but only weakly simple, we employ the recursive checks which ensures

that LPO is a simplification order.

Definition 4.1 (WPO) Let & be a quasi-precedence, A a well-founded algebra

and σ a status. The weighted path order >WPO(A,σ) on terms is defined as follows:

s = f(s1, . . . , sn) >WPO(A,σ) t iff

4.1. THE DEFINITION OF WEIGHTED PATH ORDER 27

1. s >A t, or

2. s &A t and

(a) ∃i ∈ {1, . . . , n}. si ≥WPO(A,σ) t, or

(b) t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s >WPO(A,σ) tj and either

i. f > g or

ii. f ∼ g and [s1, . . . , sn]σ(f) >lex
WPO(A,σ) [t1, . . . , tm]σ(g).

We abbreviate >WPO(A,σ) by >WPO(A) and >WPO when no confusion arises.

Case 1 and the side condition of case 2 are the same as GKBO. Case (2a)

and the side condition of case (2b) are the recursive checks that correspond to

(a) and (b) of LPO. Note that here we may restrict i in (2a) and j in (2b)–ii to

positions such that f(. . . , xi, . . .) ≯A xi, since otherwise we have s >A t, which

is covered by 1. Cases (2b)–i and (2b)–ii are common among WPO, GKBO and

LPO.

Now we show that WPO is a simplification order. Most of the required

properties will be obtained in Section 5.1, except for the following:

Lemma 4.2 If A is weakly monotone and weakly simple, then >WPO is mono-

tone.

Proof. Suppose si >WPO s
′
i and let us show

s = f(. . . , si, . . .) >WPO f(. . . , s′i, . . .) = s′

Since si &A s′i, we have s &A s′ by the weak monotonicity of A. By the weak

simplicity of A, we have s &A sj for every j, and thus s >WPO sj by case (2a) of

Definition 5.2. Hence case (2b)–ii applies for s >WPO s
′. 2

Well-foundedness of WPO will be ensured by Lemma 5.8. To meet a theo-

retical interest, we also state that WPO is a simplification order.

Lemma 4.3 If A is weakly simple, then >WPO has the subterm property.

Proof. By the assumption, f(. . . , si, . . .) &A si and hence f(. . . , si, . . .) >WPO si

by case (2a). 2

Theorem 4.4 If A is weakly monotone and weakly simple, then >WPO is a sim-

plification order. 2

28 CHAPTER 4. THE WEIGHTED PATH ORDER

Theorem 4.4 gives an alternative proof for the following result of Zantema

[93]:

Theorem 4.5 ([93]) If a TRS R is oriented by >A for a weakly monotone and

weakly simple algebra A, then R is simply terminating, i.e., its termination is

shown by a simplification order.

Proof. Since >A ⊆ >WPO, R is oriented by the simplification order >WPO. 2

Next, we prove that WPO generalizes our version of GKBO.

Theorem 4.6 If A is admissible for &, then >WPO = >GKBO.

Proof. For arbitrary terms s = f(s1, . . . , sn) and t, we show s >WPO t iff s >GKBO

t by induction on |s|+ |t|.

• Suppose s >GKBO t. If s >A t, then we have s >WPO t by 1 of Definition 4.1.

Let us consider that s &A t but s ≯A t.

– Suppose t ∈ V . Since s ≯A t, the admissibility imposes f to be unary

and greatest with respect to &. If s1 ∈ V , then obviously s1 = t and

hence s = f(t) >WPO t by case (2a). Otherwise, s1 >GKBO t by case

(2a) of Definition 3.1. By the induction hypothesis, we get s1 >WPO t.

Hence, case (2a) of Definition 4.1 applies for s >WPO t.

– Suppose t = g(t1, . . . , tm) and case (2b)–i or (2b)–ii applies. For all

j ∈ {1, . . . ,m}, we have t >GKBO tj by the subterm property of >GKBO,

and we get s >GKBO tj by the transitivity. By the induction hypothesis

we obtain s >WPO tj. Hence the side condition in (2b) of Definition 4.1

is satisfied, and subcase (2b)–i or (2b)–ii applies.

• Suppose s >WPO t. If s >A t, then s >GKBO t by 1 of Definition 3.1.

Consider the case s ≯A t.

– Suppose si ≥WPO t for some i ∈ {1, . . . , n}. By the induction hypoth-

esis, we have si ≥GKBO t. The subterm property of >GKBO ensures

s >GKBO si. Hence by the transitivity, we get s >GKBO t.

– Suppose t = g(t1, . . . , tm). If f > g, then case (2b)–i of Definition 3.1

applies. If f = g and [s1, . . . , sn] >lex
WPO [t1, . . . , tm], then by the induc-

tion hypothesis we get [s1, . . . , sn] >lex
GKBO [t1, . . . , tm], and hence case

(2b)–ii applies. 2

In the remainder of this section, we investigate several instances of WPO.

4.2. WPO(Sum) 29

4.2 WPO(Sum)

The first instance of WPO, WPO(Sum), is induced by a summation algebra

Sum introduced by Definition 3.5. Obviously, Sum is strictly (and hence weakly)

monotone and weakly simple. We obtain the following as a corollary of Theorem

4.4:

Corollary 4.7 The relation >WPO(Sum) is a simplification order. 2

We obtain KBO as a restricted case of WPO(Sum). The result is a straight-

forward corollary of Theorem 4.6 and Proposition 3.8.

Corollary 4.8 Let & be a quasi-precedence, 〈w,w0〉 an admissible weight func-

tion, and Sum the corresponding summation algebra. Then, >WPO(Sum) = >KBO.2

Note that Corollary 4.7 does not impose either condition A or B of Defini-

tion 2.37. Let us see that removal of these conditions are indeed advantageous.

The following example illustrates that WPO(Sum) which does not satisfy con-

dition B properly enhances KBO.

Example 4.9 Consider the following TRS R1:

R1 :=

{
f(g(x))→ g(f(f(x)))

f(h(x))→ h(h(f(x)))

The first rule is oriented from right to left by LPO in any precedence. The second

rule is oriented from right to left by KBO, since w(h) > 0 implies increase in

weights and w(h) = 0 implies h & f by the admissibility. On the other hand,

WPO(Sum+) with precedence f > g, f > h and w(g) > w(f) = w(h) = 0 orients

all the rules. Hence, R1 is orientable by WPO(Sum+), but not by KBO or LPO.

Note that there is no need to consider a status for R1, since all symbols are

unary.

Moreover, removing condition B is also a proper enhancement. Let us denote

WPO(Sum+) for WPO(Sum) if the carrier set of Sum has a positive lower

bound.

Example 4.10 Consider the following TRS R2:

R2 :=

{
f(a, b)→ f(b, f(b, a))

f(a, f(b, x))→ f(x, f(b, b))

30 CHAPTER 4. THE WEIGHTED PATH ORDER

The first rule cannot be oriented by KBO or WPO(Sum+), since w(b) = 0 is

required. The second rule is not orientable by LPO no matter how one chooses

σ. On the other hand, WPO(Sum) with w(a) > w(b) = w(f) = 0, a > b and

σ(f) = [1, 2] orients both rules. Hence, R2 is orientable by WPO(Sum), but not

by LPO, KBO, or WPO(Sum+).

4.3 WPO(Pol)

Next we consider generalizing WPO(Sum) using monotone polynomial interpre-

tations. According to Zantema [93, Proposition 4], every monotone interpreta-

tion on a totally ordered set is weakly simple. Hence a monotone polynomial

interpretation Pol is weakly simple and we obtain the following:

Corollary 4.11 If Pol is strictly monotone then >WPO(Pol) is a simplification

order. 2

Trivially, POLO is subsumed by WPO(Pol) as a reduction order. More pre-

cisely, the following relation holds:

Proposition 4.12 For arbitrary well-founded algebra A, >A ⊆ >WPO(A). 2

Also, the following is a direct corollary of Theorem 4.6.

Corollary 4.13 Let Pol be a polynomial interpretation and & a quasi-

precedence. If Pol is admissible for & then >GKBO(Pol) = >WPO(Pol). 2

Moreover, we can verify that WPO(Pol) strictly enhances both POLO and

GKBO(Pol). More generally, we show that >A and >GKBO(A) induced by an

interpretation A on N cannot subsume even WPO(Sum).

Example 4.14 Let A be a strictly monotone interpretation on N. The first rule

of R1 cannot be oriented by >A:

l1 = f(g(x)) ≯A g(f(f(x))) = r1

since it is not ω-terminating, according to Zantema [92]. Suppose that R1 is

oriented by >GKBO(A). For the first rule, we need

f(g(x)) ≥A g(f(f(x))) (4.1)

4.4. WPO(Max) 31

We prove f(x) =A x by modifying the proof of [92, Proposition 11].

First, we show gA(n) ≥ n for arbitrary n ∈ N. Suppose on the contrary,

there exist n ∈ N such that gA(n) < n. By monotonicity, we obtain the following

infinite reduction sequence:

n > gA(n) > gA(gA(n)) > . . .

which contradicts the well-foundedness of > on N. This concludes that g(x) ≥A
x = f0(x). Second, suppose that g(x) ≥A fk(x). Then from (4.1),

f(g(x)) ≥A g(f(f(x))) ≥A fk(f(f(x))) = f(fk+1(x))

By monotonicity and totality of > on N, this implies g(x) ≥A fk+1(x). Hence, by

the induction on k, we conclude g(x) ≥A fk(x) for every k ∈ N. If fA(n) > n for

some n ∈ N, then by monotonicity of fA we obtain the following infinite sequence

n < fA(n) < fA(fA(n)) < . . .

which is not possible in order for gA(n) ∈ N to be well-defined. We conclude

fA(n) = n for arbitrary n ∈ N, i.e., f(x) =A x.

Now we are ready to consider the second rule of R1:

l2 = f(h(x))→ h(h(f(x))) = r2

Since f(x) =A x, we need h(x) ≥A h(h(x)). This implies hA(n) ≯ n. Now

the admissibility demands both f and h to be the greatest with respect to the

precedence &, and thus f ∼ h. Hence this rule can be oriented only from right to

left by GKBO(A).

Note also that it is not possible to orient one of the rules in R1 by >Pol and the

other by ≥Pol. Thus, togather with the discussion in Example 4.9, we conclude

that R1 cannot be oriented by any lexicographic composition of POLO, (T)KBO,

and LPO. 2

4.4 WPO(Max)

The algebras considered in the preceding sections are strictly monotone. WPO

admits also weakly monotone interpretations; a typical example is the operator

max. This section considers instances of WPO using max for interpretation.

Note that a weakly monotone polynomial (i.e., 0 coefficients are allowed) is not

weakly simple, and hence cannot be applied for WPO of this chapter. We will

consider such polynomials in Chapter 5.

32 CHAPTER 4. THE WEIGHTED PATH ORDER

Definition 4.15 A maximum algebraMax is a well-founded algebra whose car-

rier set is N and the interpretation of f ∈ Fn is of the following form:

fMax := wf if n = 0

fMax(x1, . . . , xn) :=
n

max
i=1

(
pf,i + xi

)
otherwise

Lemma 4.16 The algebra Max is weakly monotone and weakly simple.

Proof. Weak simplicity is obvious from the fact that max(. . . , a, . . .) ≥ a. For

weak monotonicity, suppose a > b and let us show

a′ = fMax(c1, . . . , ck, a, d1, . . . , dl) ≥ fMax(c1, . . . , ck, b, d1, . . . , dl) = b′

To this end, let c = fMax(c1, . . . , ck, 0, d1, . . . , dl). If c ≥ pf,k+1 + a, then a′ =

b′ = c. Otherwise, we have a′ = pf,k+1 + a and either a′ > pf,k+1 + b = b′ > c or

a′ > b′ = c. 2

Note that Max can be considered as the 1-dimensional variant of arctic

interpretations [44]. The weak monotonicity of Max is also shown there. From

the above lemma, we obtain the following corollary of Theorem 4.4:

Corollary 4.17 The relation >WPO(Max) is a simplification order. 2

Now we show that LPO is obtained as a restricted case of WPO(Max).

Theorem 4.18 Let Max be a maximum algebra such that for every f ∈ Fn,

wf = 0 and pf,i = 0 for every i ∈ {1, . . . , n}. Then, >LPO = >WPO(Max).

Proof. From the assumptions, s >Max t never holds. Hence, case 1 of Defini-

tion 4.1 can be ignored. Moreover, s ≥Max t is equivalent to Var(s) ⊇ Var(t).

One can easily verify the latter holds whenever s >LPO t, using the fact that

s �LPO x for x /∈ Var(s). Hence, the side condition of case 2 can be ignored and

Definition 2.33 and Definition 4.1 become equivalent. 2

The following example illustrates that WPO(Max) properly enhances LPO.

Example 4.19 Consider the following TRS R3:

R3 :=


f(x, y)→ g(x)

f(g(x), y)→ f(x, g(x))

f(x, g(y))→ f(y, y)

To orient the first two rules by LPO, we need f > g and σ(f) = [1, 2]. LPO cannot

orient the third rule by this precedence and status, while p g,1 > p f,1 = 0 suffices

for WPO(Max). Since the last two rules are duplicating, KBO or WPO(Sum)

cannot apply for R3.

4.5. WPO(MPol) AND WPO(MSum) 33

4.5 WPO(MPol) and WPO(MSum)

Note that WPO(Max) does not cover WPO(Sum), and not even KBO. Hence

in this section, we consider unifying WPO(Max) and WPO(Pol) to cover both

KBO and LPO. To this end, we introduce the weight status to choose a polyno-

mial or max for each function symbol.

Definition 4.20 A weight status function is a mapping ws which maps each

function symbol f either to symbol pol or to max. The well-founded algebra

MPol consists of the carrier set {a ∈ N | a ≥ w0} and the interpretation which

is defined as follows:

fMPol(a1, . . . , an) :=


wf +

n∑
i=1

cf,i · ai if ws(f) = pol

n
max
i=1

(pf,i + ai) if ws(f) = max

We denote MPol by MSum if coefficients are at most 1.

Corollary 4.21 The relation >WPO(MPol) is a simplification order. 2

Trivially, WPO(MSum) subsumes both WPO(Sum) and WPO(Max).

Hence, we obtain the following more influential result:

Theorem 4.22 WPO(MSum) subsumes both LPO and KBO. 2

As far as we know, this is the first simplification order that unifies LPO and

KBO. The following example illustrates that WPO(MSum) is strictly stronger

than the union of WPO(Sum) and WPO(Max).

Example 4.23 Consider the following TRS R4:

R4 :=

{
f(f(x, y), z)→ f(x, f(y, z))

g(f(a, x), b)→ g(f(x, b), x)

If ws(f) = max, then the first rule requires p f,2 = 0. Under this restriction the

second rule cannot be oriented. If ws(f) = pol, then the first rule is oriented iff

cf,1 = cf,2 = 1 and σ(f) = [1, 2]. On the other hand, the duplicating variable x in

the second rule requires ws(g) = max. Hence, R4 is orientable by WPO(MSum)

only if ws(f) = pol and ws(g) = max.

34 CHAPTER 4. THE WEIGHTED PATH ORDER

The following example suggests that WPO(MSum) advances the state-of-

the-art of automated termination proving.

Example 4.24 The most powerful termination provers including AProVE 2013

and TTT2 1.11 fail to prove termination of the following TRS R5:

R5 :=


f(g(g(x, a), g(b, y)))→ f(g(g(h(x, x), b), g(y, a)))

g(x, y)→ x

h(x, h(y, z))→ y

We show that WPO(MSum) such that

aMSum = 1 gMSum(x, y) = x+ y

bMSum = 0 hMSum(x, y) = max{x, y}

and σ(f) = σ(g) = [1, 2] orients all the rules. For the first rule, applying case

(2b)–ii twice it yields orienting g(x, a) >WPO(MSum) g(h(x, x), b) where case 1

applies. The other rules are trivially oriented.

In general, matrix interpretations cannot be combined with WPO, since a

matrix interpretation is often not weakly simple. Consider the following TRS

from [20]:

R6 := {f(f(x))→ f(g(f(x)))}

which is shown terminating by the following matrix interpretation Mat such

that

fMat(~x) =

(
1 1

0 0

)
· ~x+

(
0

1

)
gMat(~x) =

(
1 0

0 0

)
· ~x

However, gMat is not weakly simple. For example,

gMat(

(
0

1

)
) =

(
1 0

0 0

)
·

(
0

1

)
=

(
0

0

)
�

(
0

1

)

Hence, in order to unify the matrix interpretation with WPO, we have to further

relax the weak simplicity condition on interpretations. This will be achieved in

the next chapter by extending WPO to an reduction pair.

Chapter 5

WPO as a Reduction Pair

In modern termination provers, reduction orders are often incorporated in the

DP framework as reduction pairs. Since WPO introduced in Chapter 4 is a re-

duction order, it is possible to obtain a reduction pair using argument filtering

[2]. However, in this approach WPO cannot subsume reduction pairs induced

by weakly monotone interpretations, including POLO. This is because the weak

part of POLO is not subsumed by the weak part of WPO, i.e., ≥πWPO(A). Hence

in this chapter, we propose the notion of a partial status that turns WPO into a

reduction pair. This extension further relaxes the weak simplicity condition, and

arbitrary weakly monotone interpretations can be used for weight computation.

Hence as a reduction pair, WPO also subsumes the matrix interpretations, as

well as GKBO, LPO, and POLO. Though RPOLO also unifies RPO and POLO,

we show that WPO and RPOLO are incomparable in general. In practice, WPO

brings significant benefit on the problems from the Termination Problem Data

Base (TPDB) [77], while (the first-order version of) RPOLO does not, as re-

ported in [8].1

5.1 WPO with Partial Status

In this section, we introduce a reduction pair by incorporating a partial status into

WPO. A partial status is a generalization of status that admits non-permutations.

1Note that in theory, it is possible to consider an instance of WPO that uses RPOLO for

weight computation.

35

36 CHAPTER 5. WPO AS A REDUCTION PAIR

Definition 5.1 A partial status function σ is a mapping that assigns to each

n-ary symbol f a list [i1, . . . , im] of (distinct) positions in {1, . . . , n}. We also

view σ(f) as the set {i1, . . . , im} for σ(f) = [i1, . . . , im].

Note that here σ(f) need not be a permutation, since some positions may be

ignored. If every σ(f) is a permutation, then we say that σ is total. Conversely

if σ(f) = [] for every f , then we call σ the empty status.

Definition 5.2 (WPO with Partial Status) Let A be a well-founded algebra

and σ a partial status. The relations &WPO(A,σ) and >WPO(A,σ) on terms are

defined by mutual recursion as follows: For s ∈ V, s &WPO(A,σ) t iff s = t. For

s = f(s1, . . . , sn), s &()WPO(A,σ) t iff

1. s >A t, or

2. s &A t and

(a) ∃i ∈ σ(f). si &WPO(A,σ) t, or

(b) t = g(t1, . . . , tm), ∀j ∈ σ(g). s >WPO(A,σ) tj and either

i. f > g or

ii. f ∼ g and [s1, . . . , sn]σ(f) &()
lex
WPO(A,σ) [t1, . . . , tm]σ(g).

The advantage of a partial status over argument filtering is due to the weights

of ignored arguments. This is illustrated by the following example.

Example 5.3 Consider a DP problem that induces the following constrains:

f](s(x)) � f](p(s(x))) p(s(x)) % x

In order to satisfy the first constraint by any simplification order, the argument

of p must be filtered. However, the second constraint cannot be satisfied under

such an argument filtering.

On the other hand, the DP problem can be shown finite using WPO with

partial status such that sA(x) > x, f]A(x) = pA(x) = x, σ(f]) = σ(s) = [1],

σ(p) = [], and s > p. We have f](s(x)) >WPO f](p(s(x))) because of cases (2b)–ii

and (2b)–i, and p(s(x)) &WPO x because of case 1.

In order for Definition 5.2 to define a correct reduction pair, even weak sim-

plicity of A can be relaxed to the following:

5.1. WPO WITH PARTIAL STATUS 37

Definition 5.4 A well-founded algebra A is (weakly) simple with respect to σ

iff fA is (weakly) simple in its i-th argument for every f ∈ F and i ∈ σ(f).

In the rest of this section, we prove that WPO with partial status forms a

reduction pair. The following auxiliary result is obvious from the definition.

Lemma 5.5 The following inclusion holds: >WPO ⊆ &WPO. 2

Using the above lemma, we show compatibility of &WPO and >WPO.

Lemma 5.6 (Compatibility) The relation >WPO is compatible with &WPO.

Proof. Supposing s &WPO t >WPO u, we show s >WPO u by induction on

〈|s| , |t| , |u|〉. The other case, s >WPO t &WPO u, is analogous.

From the definition, it is obvious that s and t are in form f(s1, . . . , sn) and

g(t1, . . . , tm), respectively, and moreover s &A t &A u. If s >A t or t >A u,

then we obtain s >WPO u by case 1. If si &WPO t for some i ∈ σ(f), then by

the induction hypothesis and Lemma 5.5, we get si &WPO u and hence case (2a)

applies for s >WPO t. Now suppose s >WPO tj for every j ∈ σ(g) and either

f > g or f ∼ g and [s1, . . . , sn]σ(f) &lex
WPO [t1, . . . , tm]σ(g) holds. There remain the

following cases to consider for t >WPO u:

• tj &WPO u for some j ∈ σ(g). In this case, we have s >WPO tj &WPO u.

Hence the induction hypothesis concludes s >WPO u.

• u = h(u1, . . . , ul) and t >WPO uk for every k ∈ σ(h). By the induction

hypothesis, we obtain s >WPO uk. Moreover, if f > g or g > h, then

we get f > h and (2b)–i applies. Otherwise, we have f ∼ g ∼ h and

[s1, . . . , sn]σ(f) &lex
WPO [t1, . . . , tm]σ(g) >lex

WPO [u1, . . . , uk]
σ(h). From the in-

duction hypothesis, we obtain [s1, . . . , sn]σ(f) >lex
WPO [u1, . . . , uk]

σ(h). Hence

(2b)–ii applies. 2

In order to prove well-foundedness of >WPO, we define the set SN of strongly

normalizing terms as follows: s ∈ SN iff there exist no infinite reduction sequence

s >WPO s1 >WPO s2 >WPO . . . beginning from s. In the next two lemmas, we

prove that all terms are in SN.

Lemma 5.7 Suppose that A is weakly simple with respect to σ. If s = f(s1, . . . , sn)

with si ∈ SN for every i ∈ σ(f), then s >WPO t implies t ∈ SN.

38 CHAPTER 5. WPO AS A REDUCTION PAIR

Proof. We perform induction on 〈s, f, [s1, . . . , sn]σ(f), |t|〉 which is ordered by the

lexicographic composition of >A, >, >lex
WPO and >. Since it is obvious if t ∈ Var,

we consider t = g(t1, . . . , tm).

1. Suppose s >A t. First we show that tj ∈ SN for every j ∈ σ(g). By the weak

simplicity assumption, we have s >A t &A tj and hence s >WPO tj. Thus

by the induction hypothesis on the fourth component, we obtain tj ∈ SN.

Now for arbitrary u such that t >WPO u, the induction hypothesis on the

first component yields u ∈ SN.

2. Suppose s &A t. There are two subcases to consider.

(a) Suppose si &WPO t for some i ∈ σ(f). Then by the assumption, we

have si ∈ SN. Hence by Lemma 5.6, we obtain t ∈ SN.

(b) Suppose s >WPO tj for every j ∈ σ(g). Then by the induction hy-

pothesis on the fourth component, we get tj ∈ SN. Consider arbitrary

u such that t >WPO u. Since we have either f > g or f & g and

[s1, . . . , sn]σ(f) >lex
WPO [t1, . . . , tm]σ(g), 〈s, f, [s1, . . . , sn]σ(f), |t|〉 is greater

than 〈t, g, [t1, . . . , tm]σ(g), |u|〉 by second or third components. Hence,

the induction hypothesis yields u ∈ SN. 2

Lemma 5.8 (Well-foundedness) If A is weakly simple with respect to σ, then

>WPO is well-founded.

Proof. Let us show s ∈ SN for every term s by induction on |s|. It is trivial if

s ∈ V . Suppose s = f(s1, . . . , sn) >WPO t. By the induction hypothesis, we have

si ∈ SN for every i ∈ {1, . . . , n}. Hence by Lemma 5.7, we get t ∈ SN. 2

Now we prove that &WPO and >WPO are quasi- and strict orders, respectively.

Lemma 5.9 (Transitivity) Both &WPO and >WPO are transitive.

Proof. Analogous to Lemma 5.6. 2

Lemma 5.10 ((Ir)reflexivity) &WPO is reflexive and >WPO is irreflexive.

Proof. For arbitrary term s, s &WPO s is easy by induction on |s|. Irreflexivity

of >WPO follows from Lemma 5.8. 2

Now remaining properties required for a reduction pair are stability and weak

monotonicity, which are shown bellow.

5.2. REFINEMENTS 39

Lemma 5.11 (Stability) Both &WPO and >WPO are stable.

Proof. Let s = f(s1, . . . , sn) &()WPO t and θ an arbitrary substitution. We show

sθ &()WPO tθ by induction on |s|+ |t|. It is obvious if s >A t. Otherwise, we have

s &A t and obviously sθ &A tθ. The remaining cases are as follows:

• Suppose si &WPO t for some i ∈ σ(f). By the induction hypothesis, we get

siθ &WPO tθ. Hence, case (2a) applies for sθ &()WPO tθ.

• Suppose t = g(t1, . . . , tm) and s >WPO tj for all j ∈ σ(g). By the induction

hypothesis, we get sθ >WPO tjθ. It is obvious if f > g. If f ∼ g and

[s1, . . . , sn]σ(f) &()
lex
WPO [t1, . . . , tm]σ(g), then by the induction hypothesis we

get

[s1θ, . . . , snθ]
σ(f) &()

lex
WPO [t1θ, . . . , tmθ]

σ(g)

Hence, case (2b)–ii applies for sθ &()WPO tθ. 2

Lemma 5.12 (Weak monotonicity) If A is weakly monotone and weakly

simple with respect to σ, then &WPO is monotone.

Proof. Suppose si &WPO s
′
i and let us show

s = f(. . . , si, . . .) &WPO f(. . . , s′i, . . .) = s′

Since si &A s′i, we have s &A s′ by the weak monotonicity of A.

If i /∈ σ(f), then we have [s1, . . . , sn]σ(f) = [s′1, . . . , s
′
n]σ(f). Otherwise, by the

weak simplicity assumption we have s &A sj for every j ∈ σ(f), and thus s >WPO

sj by case (2a) of Definition 5.2. Hence case (2b)–ii applies for s &WPO s
′. 2

Now we are ready to state the following main result of this chapter.

Theorem 5.13 (Correctness) If A is weakly monotone and weakly simple with

respect to σ, then 〈&WPO, >WPO〉 forms a reduction pair. 2

5.2 Refinements

As we will see in Section 7.5.2, the reduction pair processor induced by Defini-

tion 5.2 is already powerful in practice. However in theory, the WPO reduction

pair is not a proper extension of the underlying interpretation, e.g., x &A g(x)

if gA(x) = x, but x &WPO g(x) cannot hold. Hence we refine the definition of

&WPO so as to properly subsume the underlying interpretation.

Note that in the above case, assuming x &WPO g(x) does not cause a problem

if g is least with respect to & and σ(g) = [].

40 CHAPTER 5. WPO AS A REDUCTION PAIR

Proposition 5.14 Let g ∈ F such that f & g for every f ∈ F and σ(g) = [].

Then x &A t = g(t1, . . . , tm) implies s &WPO t[x 7→ s] for arbitrary non-variable

terms s = f(s1, . . . , sn).

Proof. By the definition of &A, we have s &A t[x 7→ s]. Since g is least with

respect to &, we have f & g. Moreover, since σ(g) = [], we have

[s1, . . . , sn]σ(f) &lex
WPO [t1, . . . , tm]σ(g) = [] 2

Proposition 5.14 suggests a refined definition of s &WPO t by adding the

following subcase in case 2 of Definition 5.2 (note that s &A t is ensured in this

case):

(2c) s ∈ V and t = g(t1, . . . , tm) such that σ(g) = [] and g is least with

respect to &.

Similar refinements are proposed for KBO [45, 72] and for RPO [76], when t

is a least constant. Our version is more general since t need not be a constant.

Example 5.15 [86] Consider a DP problem that induces the following con-

straints:

f](s(x), y) > f](p(s(x)), p(y))

f](x, s(y)) & f](p(x), p(s(y)))

p(s(x)) & x

Let σ(p) = [], σ(f]) = [1], sA(x) = x + 1, pA(x) = x, f]A(x, y) = x and p be least

with respect to &. The first constraint is strictly oriented by case (2b)–i. For the

second constraint, it yields x &WPO p(x), for which case (2c) applies. Note that

the argument of p cannot be filtered by an argument filter, because of the third

constraint. Hence the refinements of [45] or [76] do not work for this example.

For WPO, a further refinement is also possible when the right-hand side is

a variable. Note that if σ(f) = [], f(x) &A x does not imply f(x) &WPO x.

Nonetheless, f(x) &WPO x can be assumed if f is greatest (i.e., f & g for every

g ∈ F), and moreover σ(g) = [] whenever f ∼ g. The last condition is crucial,

since f(g(x)) <WPO g(x) if f ∼ g and g = [1].

Proposition 5.16 Suppose that A is strictly simple with respect to σ, and f ∈ F
such that either f > g, or f ∼ g and σ(g) = [] for every g ∈ F . Then,

s = f(s1, . . . , sn) &A y implies s[y 7→ t] &WPO t for any non-variable term

t = g(t1, . . . , tm).

5.2. REFINEMENTS 41

Proof. By the definition of &A, we have s[y 7→ t] &A t. Moreover by the strict

simplicity, s[y 7→ t] &A t >A tj for all j ∈ σ(g). Hence we get s >WPO tj. If

f > g, then s[y 7→ t] >WPO t by case (2b)–i. If f ∼ g and σ(g) = [], then

s[y 7→ t] &WPO t by case (2b)–ii. 2

Provided that A is strictly simple with respect to σ, Proposition 5.16 suggests

a refinement of s &WPO t by adding the following subcase in case 2:

(2d) s = f(s1, . . . , sn) and t ∈ V such that for every g ∈ F , either f > g

or f & g and σ(g) = [].

Note that an arbitrary algebra is strictly simple with respect to the empty status.

Hence we obtain the following result:

Theorem 5.17 Consider an instance of WPO that is induced by

• a well-founded algebra A that is non-trivial, i.e., there exist a, b ∈ A such

that a/&Ab,

• the empty status function σ, and

• the quasi-precedence & such that f & g for arbitrary f, g ∈ F .

Then, 〈&A, >A〉 = 〈&WPO, >WPO〉 after the refinements.

Proof. From the definition, it is obvious that >A ⊆ >WPO and &WPO ⊆ &A.

By the assumptions, cases (2b)–i and (2b)–ii of Definition 5.2 cannot apply for

>WPO. Hence we easily obtain >WPO ⊆ >A.

Now suppose s &A t and let us show s &WPO t. The proof proceeds by case

analysis on the structure of s and t.

• Suppose that both s and t are variables. Then, from non-triviality we have

s = t, and hence s &WPO t.

• Suppose that either s or t is a variable. Then, refinement (2c) or (2d) can

be applied to derive s &WPO t.

• Suppose s = f(s1, . . . , sn) and t = f(t1, . . . , tm). Since f > g never holds,

case (2b)–i of Definition 5.2 can be ignored. Moreover, since f & g and

[] &lex
WPO [], s &A t implies s &WPO t. 2

42 CHAPTER 5. WPO AS A REDUCTION PAIR

5.3 Comparison with Other Reduction Pairs

In this section, we compare instances of WPO with existing reduction pairs.

5.3.1 WPO v.s. Argument Filtering

The effect of a partial status has similarity with that of combining argument

filtering and a standard total status. Indeed, WPO with partial status subsumes

WPO with total status and certain form of argument filtering. An argument

filter π is said to be non-collapsing iff π(f) is a list for every f ∈ F .

Proposition 5.18 Let π be a non-collapsing argument filter. For every Fπ-

algebra A and total status σ on Fπ, there exists an F-algebra A′ and a partial

status σ′ on F such that

〈&πWPO(A,σ), >
π
WPO(A,σ)〉 = 〈&WPO(A′,σ′), >WPO(A′,σ′)〉

Proof. Let us define the interpretation of each f ∈ Fn in A′ by fA′(x1, . . . , xn) :=

fA(x1, . . . , xπ(f)). Then obviously, π(s) &()A π(t) iff s &()A′ t. Moreover, we define

σ′(f) by π(f) ? σ(f), where ? is a left-associative operator defined by

[a1, . . . , an] ? [i1, . . . , in′] := [ai1 , . . . , ain′]

Now we verify that s &()
π
WPO(A,σ) t implies s &()WPO(A′,σ′) t by induction on

|s| + |t|. If s ∈ V , then s = π(t) = t since π is non-collapsing, and hence

s &WPO(A′,σ′) t. Suppose s = f(s1, . . . , sn). We proceed by case splitting for the

derivation of π(s) &()WPO(A,σ) π(t).

1. Suppose π(s) >A π(t). We obviously have s >A′ t and hence s >WPO(A′,σ′) t.

2. Suppose π(s) &A π(t). We obviously have s &A′ t.

(a) Suppose that π(s) &()WPO(A,σ) π(t) is derived by case (2a). Then we

have si &πWPO(A,σ) t for some i ∈ [1, . . . , n] ? π(f). By the induction

hypothesis we have si &WPO(A′,σ′) t, and since i ∈ σ′(f), s >WPO(A′,σ′) t

by case (2a).

(b) Suppose that π(s) &()WPO(A,σ) π(t) is derived by case (2b). Then we

have t = g(t1, . . . , tm) and s >π
WPO(A,σ) tj for every j ∈ [1, . . . ,m]?π(g).

By the induction hypothesis we have s >WPO(A′,σ′) tj, for all j ∈ σ′(f).

5.3. COMPARISON WITH OTHER REDUCTION PAIRS 43

If furthermore f > g, then immediately s >WPO(A′,σ′) t by case (2b)–i.

If case (2b)–ii applies, then we obtain

[s1, . . . , sn] ? π(f) ? σ(f) &()

π lex
WPO(A,σ) [t1, . . . , tm] ? π(g) ? σ(g)

By the induction hypothesis and definition of σ′ we obtain

[s1, . . . , sn]σ
′(f) &()WPO(A′,σ′) [t1, . . . , tm]σ

′(g) 2

In Definition 5.2, it is obvious that induced >WPO is identical to that induced

by Definition 4.1, if we choose a total status σ. Hence Theorems 4.6 and 4.18

imply that WPO subsumes GKBO and LPO also as a reduction pair.

5.3.2 WPO v.s. Interpretation Methods

Note that Proposition 4.12 does not imply that WPO(Pol) subsumes POLO as

a reduction pair, since the “weak-part” ≥Pol is not considered in the theorem.

Nonetheless, after the refinements in Section 5.2, we obtain the following result

from Theorem 5.17:

Corollary 5.19 The reduction pair WPO(Pol) with the refinements (2c) and

(2d) subsumes POLO. 2

It is now easy to obtain the following result:

Corollary 5.20 The reduction pair WPO(MPol) with the refinements (2c) and

(2d) subsumes POLO, KBO, TKBO and LPO. 2

Moreover, WPO also subsumes the matrix interpretation method [20], when

weights are computed by a matrix interpretationMat. Note that a matrix inter-

pretation is not always weakly simple. Hence as a reduction order, Definition 4.1

cannot be applied for Mat in general. The situation is relaxed for reduction

pairs, and from Theorem 5.17 we obtain the following.

Corollary 5.21 The reduction pair induced by WPO(Mat) subsumes the reduc-

tion pair induced by the matrix interpretation Mat. 2

44 CHAPTER 5. WPO AS A REDUCTION PAIR

5.3.3 WPO v.s. RPOLO

Finally, we show that WPO(MPol) and RPOLO of Bofill et al . [8], another

approach to unifying LPO and POLO, are incomparable in theory.

In order to define RPOLO, we need some preliminaries. The signature F is

split into two disjoint sets: the set FPOLO of POLO-symbols and the set FRPO

of RPO-symbols. The polynomial interpretation I of RPOLO introduces extra

fresh variables to represent terms rooted by an RPO-symbol.

I(s) =

{
fI(I(s1), . . . , I(sn)) if s = f(s1, . . . , sn) and f ∈ FPOLO

vs otherwise

where each fI(x1, . . . , xn) is a polynomial expression over variables x1, . . . , xn,

and vs is the fresh variable representing s.

The set of accessible terms are defined as follows:

Acc(s) =

{
Acc(s1) ∪ · · · ∪ Acc(sn) if f(s1, . . . , sn) and f ∈ FPOLO

{s} otherwise

Let φ be a formula built from atoms of the form p > q or p ≥ q, where p

and q are polynomial expressions over variables from X. We write |= φ iff every

assignment α : X → N satisfies φ.

Definition 5.22 (RPOLO [8]) The pair 〈&RPOLO,&RPOLO〉 is defined as fol-

lows: x &RPOLO x and s = f(s1, . . . , sn) &()RPOLO t iff

1. f ∈ FPOLO and I(s) >C(s) I(t),

2. f ∈ FRPO and

(a) ∃i ∈ {1, . . . , n}. si &RPOLO t, or

(b) t = g(t1, . . . , tm), g ∈ FPOLO and ∀t′ ∈ Acc(t). s >RPOLO t
′, or

(c) t = g(t1, . . . , tm), g ∈ FRPO, ∀j ∈ {1, . . . ,m}. s >RPOLO tj, and

i. f > g, or

ii. f & g and [s1, . . . , sn] &()
lex
RPOLO [t1, . . . , tm],

where s >C(u) t holds iff |= φ ⇒ s > t for some conjunction φ of atoms of the

following forms:

• vs > t where s ∈ Acc(u), t is a polynomial expression over variables

vt1 , . . . , vtm such that s >RPOLO tj for every j ∈ {1, . . . ,m}, or

5.3. COMPARISON WITH OTHER REDUCTION PAIRS 45

• vs ≥ vt where s ∈ Acc(u), root(vt) ∈ FRPO and s &RPOLO t.

Note that in the definition of RPOLO, the relations &RPOLO, >RPOLO, and >C(u)

are defined by mutual recursion.

Theorem 5.23 ([8]) The pair 〈&RPOLO, >RPOLO〉 forms a reduction pair. 2

Now we verify that WPO(MPol) is not subsumed by RPOLO. More precisely,

we show that RPOLO does not subsume even KBO.

Example 5.24 We show that the constraint f(g(x)) � g(f(f(x))) cannot be sat-

isfied by RPOLO.2 Note that this constraint is satisfied by KBO with w(f) = 0

and f > g.

• Suppose f ∈ FPOLO. Since this constraint cannot be satisfied by POLO,

g must be in FRPO. Hence we need fPol(vg(x)) >C(f(g(x))) vg(f(f(x))). This

requires either

– fPol(x) = x and g(x) >RPOLO g(f(f(x))), or

– fPol(x) > x and g(x) ≥RPOLO g(f(f(x))).

In either case, we obtain g(x) >RPOLO g(x), which is a contradiction.

• Suppose f ∈ FRPO. Since this constraint cannot be satisfied by RPO, g must

be in FPOLO. Hence we need

– g(x) ≥RPOLO g(f(f(x))), or

– f(g(x)) >RPOLO f(f(x)).

The first case contradicts f(x) >RPOLO x. The second case contradicts the

fact that f(x) >RPOLO g(x).

On the other hand, RPOLO is also not subsumed by WPO(MPol), as the

following example illustrates.

2 To simplify the discussion, we do not consider possibility for argument filterings or usable

rules [2] in the following examples. Nonetheless, it is easy to exclude these techniques by

adding rules e.g. g(x)→ x.

46 CHAPTER 5. WPO AS A REDUCTION PAIR

Example 5.25 Consider a DP problem that induces the following constraints:

f](i(x, i(y, g(z)))) � f](i(y, i(z, x)))) (5.1)

f(g(h(x))) % g(f(h(g(x)))) (5.2)

i(y, i(z, x)) % i(x, i(y, z)) (5.3)

where constraint (5.2) is from [92, Proposition 10].

• First, let us show that the set of constraints cannot be satisfied by

WPO(MPol). Since f, g and h are unary, we only consider ws(f) =

ws(g) = ws(h) = pol. It is easy to adjust [92, Proposition 10] to show

that gPol(x) = x whenever (5.2) is satisfied. Together with (5.3), we obtain

i(y, i(z, x)) ≥MPol i(x, i(y, z)) =MPol i(x, i(y, g(z)))

Hence, case 1 of Definition 5.2 cannot be applied for constraint (5.1). More-

over, by any choice of σ(i), case (2b)–ii cannot be applied, either.

• Second, we show that the set of constraints can be satisfied by RPOLO.

Consider f, g, h ∈ FRPO, i, f] ∈ FPOLO, f > g > h, iPol(x, y) = x + y and

f]Pol(x) = x. Then, constraint (5.2) is strictly oriented and (5.3) is weakly

oriented. Since g(z) >RPOLO z and vg(z) > z implies x+y+vg(z) > y+z+x,

constraint (5.1) is also satisfied. 2

Chapter 6

SMT Encoding

In the preceding chapters, we have concentrated on theoretical aspects. In this

chapter, we consider how to implement the instances of WPO using SMT solvers.

In particular, WPO(Sum), WPO(Max), and WPO(MSum) are reduced to

SMT problems over linear arithmetic, and as a consequence, decidability is en-

sured for orientability problems of these orders. To this end, we extend the

corresponding approach for KBO proposed by Zankl et al. [91].

Definition 6.1 An expression e is built from (non-negative integer) variables,

constants and the binary symbols · and + denoting multiplication and addition,

respectively. A formula is built from atoms of the form e1 > e2 and e1 ≥ e2, nega-

tion ¬, and the binary symbols ∧, ∨, and ⇒ denoting conjunction, disjunction

and implication, respectively. The precedence of these symbols is in the order we

listed above.

The main interest of the SMT encoding approach is to employ SMT solvers

for finding a concrete algebra that proves termination of a given TRS or finiteness

of a given DP problem. Hence we assume that algebras are parameterized by a

set of expression variables.

Definition 6.2 An algebra A parameterized by a set V of variables is a mapping

that induces a concrete algebra Aα from an assignment α whose domain contains

V . An encoding of the relation &()A is a function that assigns for two terms s

and t a formula [[s &()A t]] over variables from V such that α |= [[s &()A t]] iff

s &()Aα t.

In the encodings presented in the following sections, we consider A to be

parameterized by at most the following variables:

47

48 CHAPTER 6. SMT ENCODING

• integer variables wf and w0 denoting wf and w0, respectively, and

• integer variables scf,i and spf,i denoting cf,i and pf,i, respectively.

6.1 The Common Structure

To optimize the presentation, we first present an encoding of the common struc-

ture of WPO independent from the shape of A. Hence, we assume encodings for

>A and &A are given.

Following [91], we first represent a precedence & by integer variables pf .

Definition 6.3 Let α be an assignment such that α(pf) ∈ N is defined for every

f ∈ F . The precedence &α induced by α is defined as follows: f &α g iff

α |= pf ≥ pg.

Next, we consider representing a partial status by imitating the encoding of

a filtered permutation proposed in [12]. We introduce the boolean variables stf,i

and stf,i,j, so that an assignment α induces a status σα as follows: α |= stf,i iff

i ∈ σα(f); and α |= stf,i,j iff i is the j-th element in σα(f). In order for σα

to be well-defined, every i ∈ σα(f) must occur exactly once in σα(f) and any

i /∈ σα(f) must not occur in σα(f). These conditions are represented by the

following formula:

ST :=
∧
f∈Fn

n∧
i=1

((
stf,i ⇒

n∑
j=1

stf,i,j = 1
)
∧
(
¬stf,i ⇒

n∑
j=1

stf,i,j = 0
))

It is easy to verify that σα is well-defined if α |= ST. In contrast to the previ-

ous works [91, 12], we moreover introduce the following formula to ensure weak

simplicity of A with respect to σ:

SIMP :=
∧
f∈Fn

n∧
i=1

(
stf,i ⇒ [[f(x1, . . . , xn) &A xi]]

)
Note that in the formula SIMP, the condition f(x1, . . . , xn) &A xi can often

be encoded in a more efficient way. For linear polynomial interpretations, for

example, this condition is equivalent to scf,i ≥ 1.

Lemma 6.4 Let A be a well-founded algebra parameterized by V and α an as-

signment on V ∪ {stf,i, stf,i,j | f ∈ Fn, i, j ∈ {1, . . . , n}}. Then α |= ST ∧ SIMP

iff Aα is weakly simple with respect to the partial status σα. 2

6.1. THE COMMON STRUCTURE 49

Now we present the encodings for WPO.

Definition 6.5 The encodings of >WPO and &WPO are defined as follows:

[[s &()WPO t]] := [[s >A t]] ∨
(
[[s &A t]] ∧ s &()1 t

)
where the formula s &()1 t is defined as follows:

x &1 t :=

{
True if x = t

False otherwise

x >1 t := False

f(s1, . . . , sn) &()1 t :=
n∨
i=1

(
stf,i ∧ [[si &WPO t]]

)
∨ f(s1, . . . , sn) &()2 t

and the formula f(s1, . . . , sn) &()2 t is defined as follows:

f(s1, . . . , sn) &()2 y := False

f(s1, . . . , sn) &()2 g(t1, . . . , tm) :=
m∧
j=1

(
stg,j ⇒ [[s >WPO tj]]

)
∧(

pf > pg ∨ pf = pg ∧ [[[s1, . . . , sn]σ(f) &()

lex
WPO [t1, . . . , tm]σ(g)]]

)
Here we do not present the encoding for the lexicographic extension with respect

to permutation, which can be found in [12]. In the definition, s >1 t indicates

that s >WPO t is derived by cases (2a) or (2b), and s >2 t indicates that s >WPO t

is derived by cases (2b)–i or (2b)–ii.

For an assignment α, we write &()
α
WPO to denote the instance of WPO corre-

sponding to α, i.e., &()
α
WPO is induced by the algebra Aα, the precedence &α and

the partial status σα.

Lemma 6.6 Let α |= ST ∧ SIMP. Then α |= [[s &()WPO t]] iff s &()
α
WPO t.

Proof. Obvious. 2

Theorem 6.7 If the following formula is satisfiable:

ST ∧ SIMP ∧
∧

l→r∈R∪P

[[l &WPO r]] ∧
∨

l→r∈P ′

[[l >WPO r]] (6.1)

then the DP processor that maps 〈P ,R〉 to {〈P \ P ′,R〉} is sound.

50 CHAPTER 6. SMT ENCODING

Proof. Let α be the assignment that satisfies (6.1). By Lemma 6.6, we obtain

l &αWPO r for all l → r ∈ R ∪ P and l >α
WPO r for all l → r ∈ P ′. Moreover

by Theorem 5.13, 〈&αWPO, >
α
WPO〉 forms a reduction pair. Hence Theorem 2.45

concludes the soundness of this DP processor. 2

In the following sections, we give encodings depending on the choice of A for

each instance of WPO.

6.2 Encoding WPO(Pol) and WPO(Sum)

First we present encodings for linear polynomial interpretation Pol. The encod-

ings for Sum is obtained by fixing coefficients to 1. The weight of a term s and

the variable coefficient of x in s are encoded as follows:

w(s) :=


w0 if s ∈ V

wf +
n∑
i=1

scf,i · w(si) if s = f(s1, . . . , sn)

vc(x, s) :=


1 if x = s

0 if x 6= s ∈ V
n∑
i=1

scf,i · vc(x, si) if s = f(s1, . . . , sn)

We have to ensure w0 to be the lower bound of weights of terms. To ensure

w(f(sn)) > w0 for every term f(sn), we need either wf ≥ w0 or one of the

arguments to have a positive coefficient (note that the weight of this argument

is at least w0). This is represented by

WMIN :=
∧
f∈Fn

(
wf ≥ w0 ∨

n∨
i=1

scf,i ≥ 1
)

Now the relations >Pol and ≥Pol are encoded as follows:

[[s ≥
()Pol t]] := w(s) ≥

()
w(t) ∧

∧
x∈Var(t)

vc(x, s) ≥ vc(x, t)

Corollary 6.8 If the following formula is satisfiable:

ST ∧ SIMP ∧ WMIN ∧
∧

l→r∈R∪P

[[l &WPO(Pol) r]] ∧
∨

l→r∈P ′

[[l >WPO(Pol) r]]

then the DP processor that maps 〈P ,R〉 to {〈P \ P ′,R〉} is sound. 2

6.3. ENCODING WPO(Max) 51

6.3 Encoding WPO(Max)

In this section, we consider encoding WPO(Max). Unfortunately, we are aware

of no SMT solver which supports a built-in max operator. Hence we consider en-

coding the constraint s >Max t into both quantified and quantifier-free formulas.

First, we present an encoding to a quantified formula. A straightforward

encoding would involve

w(s) :=

{
s if s ∈ V
v if s = f(s1, . . . , sn)

where v is a fresh integer variable representing max{wf ,w(s1), . . . ,w(sn)} with

the following constraint φ added into the context:

φ := v ≥ wf ∧
n∧
i=1

v ≥ w(si) ∧
(
v = wf ∨

n∨
i=1

v = w(si)
)

Then the constraint s ≥
()Max t can be encoded as follows:

[[s ≥
()Max t]] := ∀x1, . . . , xk, v1, . . . , vm. φ1 ∧ · · · ∧ φm ⇒ w(s) ≥

()
w(t)

where {x1, . . . , xk} = Var(s)∪Var(t) and each 〈φj, vj〉 is the pair of the constraint

and the fresh variable introduced during the encoding.

Although quantified linear integer arithmetic (i.e., Presburger arithmetic) is

well-known to be decidable, the SMT solvers we have tested could not solve

the problems generated by the above straightforward encoding efficiently, if at

all. Fuhs et al . [24] proposed a sound elimination of quantifiers by introducing

new template polynomials. Here we propose another encoding to quantifier-free

formulas that does not introduce extra polynomials and is sound and complete

for linear polynomials with max.

Definition 6.9 A generalized weight [46] is a pair 〈n,N〉 where n ∈ N and N

is a finite multiset1 over V. We define the following operations:

〈n,N〉+ 〈m,M〉 := 〈n+m,N]M〉
n · 〈m,M〉 := 〈n ·m,n ·M〉

where n ·M denotes the multiset that maps x to n ·M(x) for every x ∈ V. We

encode a generalized weight as a pair of an expression and a mapping N from V
to expressions such that the domain Dom(N) := {x | N(x) 6= 0} of N is finite.

1In the encoding for Max, N need not contain more than one variable. This generality is

reserved for the encoding of MPol.

52 CHAPTER 6. SMT ENCODING

A generalized weight 〈n,N〉 represents the expression n+
∑

x∈N x. Notations

for generalized weights are naturally extended for encoded ones. The relation ⊇
on multisets is encoded as follows:

N ⊇M :=
∧

x∈Dom(M)

N(x) ≥M(x)

Now we consider removing max.

Definition 6.10 The expanded weight w(s) of a term s is a set of generalized

weights, which is defined as follows:

w(s) :=

{
{〈w0, {s}〉} if s ∈ V
{〈wf , ∅〉} ∪ {spf,i + p | p ∈ w(si), 1 ≤ i ≤ n} if s = f(s1, . . . , sn)

The expanded weight w(s) = {p1, . . . , pn} represents the expression maxni=1 ei,

where each generalized weight pi represents the expression ei. Using expanded

weights, we can encode >Max and ≥Max in a way similar to the max set ordering

presented in [6]:

[[s ≥
()Max t]] :=

∧
〈m,M〉∈w(t)

∨
〈n,N〉∈w(s)

(n ≥
()

m ∧ N ⊇M)

Using the quantified or quantifier-free encodings, we obtain the following

corollary of Theorem 5.13:

Corollary 6.11 If the following formula is satisfiable:

ST ∧
∧

l→r∈R∪P

[[l &WPO(Max) r]] ∧
∨

l→r∈P ′

[[l >WPO(Max) r]]

then the DP processor that maps 〈P ,R〉 to {〈P \ P ′,R〉} is sound. 2

6.4 Encoding WPO(MPol) and WPO(MSum)

In this section, we consider encoding linear polynomials with max into SMT

formulas. First, we extend Definition 6.10 to admit a weight status.

Definition 6.12 For a weight status ws, the expanded weight wws(s) of a term

s is the set of generalized weight, which is recursively defined as follows:

wws(s) :=


{(w0, {s})} if s ∈ V
S if s = f(s1, . . . , sn), ws(f) = pol

T if s = f(s1, . . . , sn), ws(f) = max

6.5. ENCODING WPO(Mat) 53

where

S =
{
wf +

n∑
i=1

scf,i · pi
∣∣ p1 ∈ wws(s1), . . . , pn ∈ wws(sn)

}
T = {wf} ∪ {spf,i + scf,i · p | p ∈ wws(si), i ∈ {1, . . . , n}}

Now the encoding of >MPol and ≥MPol are given as follows:

[[s ≥
()MPol t]] :=

∧
〈m,M〉∈wws(t)

∨
〈n,N〉∈wws(s)

(
n ≥

()
m ∧ N ⊇M

)
Corollary 6.13 If the following formula is satisfiable:

ST ∧ SIMP ∧ WMIN ∧
∧

l→r∈R∪P

[[l &WPO(MPol) r]] ∧
∨

l→r∈P ′

[[l >WPO(MPol) r]]

then the DP processor that maps 〈P ,R〉 to {〈P \ P ′,R〉} is sound. 2

6.5 Encoding WPO(Mat)

We omit presenting an encoding of the matrix interpretation method, which can

be found in [20]. In order to use a matrix interpretation in WPO, however, small

care is needed; one has to ensure weak simplicity ofMat with respect to σ. This

can be done by ensuring that Cf,i ≥ E for every f ∈ Fn and i ∈ σ(f), where E

denotes the unit matrix.

Lemma 6.14 If Cj,j
f,i ≥ 1 for all f ∈ Fn, i ∈ σ(f) and j ∈ {1, . . . , d}, then Mat

is weakly simple with respect to σ. 2

6.6 Encoding for Reduction Orders

In case one wants an encoding for the reduction order >WPO defined in Defini-

tion 4.1, the status σ must be total. This can be ensured by enforcing i ∈ σ(f)

for all i ∈ {1, . . . , n} and f ∈ F , which is represented by the following formula:

TOTAL :=
∧
f∈Fn

n∧
i=1

stf,i

or equivalently by replacing all stf,i by True. Note that TOTAL ∧ SIMP enforces

all the subterm coefficients to be greater than 1.

54 CHAPTER 6. SMT ENCODING

Theorem 6.15 If the following formula is satisfiable:

TOTAL ∧ ST ∧ SIMP ∧ WMIN ∧
∧

l→r∈R

[[l >WPO(MPol) r]]

then R is orientable by WPO(MPol). 2

6.7 Optimizations

In our implementation, some optimizations are performed during the encoding.

For example, formulas like False ∧ φ are reduced in advance to avoid generat-

ing meaningless formulas, and temporary variables are inserted to avoid multiple

occurrences of an expression or a formula. Moreover, we apply several optimiza-

tions that we discuss below.

6.7.1 Fixing w0

We can simplify the encoded formulas by fixing w0. For KBO, Winkler et al . [81]

show that w0 can be fixed to arbitrary k > 0 e.g. 1 without loosing the power

of the order. Applying their technique, it can be shown that for WPO(Sum),

w0 can be fixed to 0. On the contrary to KBO, however, w0 cannot be fixed

to k > 0 since transforming a weight function 〈w, 0〉 into 〈wk, k〉 may assign

negative weights to some symbols.

6.7.2 Fixing Weight Status

For POLO and WPO using algebrasMSum andMPol, it may be not practical

to consider all possible weight statuses. Hence, we introduce a heuristic for fixing

ws . In case of WPO(MSum), ws should at least satisfy the following condition

for all l→ r ∈ R ∪ P : ∧
〈m,M〉∈wws(r)

∨
〈n,N〉∈wws(l)

N ⊇M

since otherwise the formula
∧
l→r∈R[[l &WPO(MSum) r]] is trivially unsatisfiable.

Hence in our implementation, we consider MSum and MPol are induced by

the weight status which minimizes the number of f with ws(f) = max, while

satisfying the above condition.

6.7. OPTIMIZATIONS 55

6.7.3 Reducing Recursive Checks

Encoding KBO as a reduction order [91] is notably efficient, because KBO

does not have a recursive check like LPO or WPO. For WPO, we can re-

duce formulas for recursive checks by restricting w0 > 0, since under this re-

striction, f(s1, . . . , sn) >MPol si whenever n ≥ 2 and ws(f) = pol. Hence

when n ≥ 2 and ws(f) = pol, we reduce the formula f(s1, . . . , sn) &()1 t to

f(s1, . . . , sn) &()2 t. Analogously, when m ≥ 2 and ws(g) = pol we reduce the

formula f(s1, . . . , sn) &()2 g(t1, . . . , tm) to the following:

pf > pg ∨ pf = pg ∧ [[[s1, . . . , sn]σ(f) &()

lex
WPO(A,σ) [t1, . . . , tm]σ(g)]]

without generating formulas for recursive checks corresponding to cases (2a)

and (2b). Note that however, this simplification does not apply when encoding

reduction pairs using argument filtering, as we will see in Section 7.5.2.

56 CHAPTER 6. SMT ENCODING

Chapter 7

Nagoya Termination Tool

In this chapter, we describe the Nagoya Termination Tool (NaTT), a new termi-

nation prover for TRS, which is available at

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

NaTT is powerful and fast; its power comes from the implementation of WPO

introduced in Chapters 4 and 5, and its efficiency comes from the strong coop-

eration with state-of-the-art SMT solvers. In principle, any solver that complies

with the SMT-LIB Standard1 version 2.0 can be incorporated as a back-end into

NaTT.

In the next section, we present some existing DP processors that are imple-

mented in NaTT. Section 7.2 describes the implementation of WPO and demon-

strates how to obtain other existing techniques as instances of WPO. Some tech-

niques on cooperating with SMT solvers are presented in Section 7.3. After

giving some design details in Section 7.4, we verify the power of WPO through

experiments in Section 7.5. We assess NaTT by its result in the Termination

Competition [75] in Section 7.6.

7.1 Implementation of the DP Framework

The overall procedure of NaTT is illustrated in Figure 7.1.

NaTT is based on the DP framework, a very successful technique for proving

termination of TRSs which is implemented in almost all the modern termination

provers for TRSs. The DP framework (dis)proves termination ofR by simplifying

1http://www.smtlib.org/

57

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/
http://www.smtlib.org/

58 CHAPTER 7. NAGOYA TERMINATION TOOL

Input TRS

Rule Removal Processors

Success?

Uncurrying Processor

EDG Processor

SCC = ∅? yes

Reduction Pair Processors

Success?

Find loop? no

maybe

no

yes

yes

no

yes
no

found

not found

Figure 7.1: Flowchart of NaTT

and decomposing DP problems 〈P ,R〉, where initially P = DP(R). To this end,

many DP processors have been proposed. NaTT implements the following DP

processors:

Dependency Graph Processor

This processor decomposes a DP problem 〈P ,R〉 into the subproblems

〈P1,R〉, . . . , 〈Pn,R〉, where P1, . . . ,Pn are the strongly connected components

(SCCs) of the dependency graph [34, 27]. Since the dependency graph is not com-

putable in general, several approximations called estimated dependency graphs

(EDGs) have been proposed. NaTT implements the EDG proposed by Giesl

et al. [28].

Reduction Pair Processor

This processor forms the core of NaTT; it supports the following ones:

• Some simplification orders combined with argument filters [2]:

– KBO [43] and its variants including KBO with status [69], GKBO [62]

and TKBO [58, 81],

– MPO [14] and LPO [40],

7.1. IMPLEMENTATION OF THE DP FRAMEWORK 59

• POLO [53, 2] and its variants, including certain forms2 of POLO with

negative constants [35] and max-POLO [24],

• the matrix interpretation method [38, 20], and

• WPO.

Note that all of the above mentioned reduction pairs are subsumed by WPO.

That is, by implementing WPO, we obtain the other reduction pairs for free. We

discuss the implementation details in Section 7.2.

Rule Removal Processor

In the worst case, the size of dependency pairs is quadratic in the size of the

input TRS R. Hence, it is preferable to reduce the size of R before computing

dependency pairs. To this end, NaTT applies the rule removal processor [27].

If all rules in R are weakly decreasing with respect to a monotone reduction

pair, then the processor removes strictly decreasing rules from R. The required

monotonicity of a reduction pair is obtained by choosing appropriate parameters

for the implementation of WPO described above.

Uncurrying Processor

Use of uncurrying for proving termination is proposed for applicative rewrite

systems by Hirokawa et al. [37]. The uncurrying implemented in NaTT is simi-

lar to the generalized version proposed by Sternagel and Thiemann [71], in the

sense that it does not assume application symbols to be binary. A symbol f is

considered as an application symbol if all the following conditions hold:

• f is defined and has positive arity,

• a subterm of the form f(x, . . .) does not occur in any left-hand-sides of R,

• a subterm of the form f(g(. . .), . . .) occurs in some right-hand-side of R.

If such application symbols are found, then R is uncurried with respect to the

uncurrying TRS U that consists of the following rules:3

f(f lg(x1, . . . , xm), y1, . . . , yn)→ f l+1g(x1, . . . , xm, y1, . . . , yn)

2Here, negative values are allowed only for constant part.
3The notation is derived from the freezing technique [84].

60 CHAPTER 7. NAGOYA TERMINATION TOOL

for every g 6= f and l less than the applicative arity4 of g, where f 0g denotes g

and f l+1g is a new function symbol of arity m+ n.

7.2 Implementation of WPO

As we already mentioned, NaTT implements only WPO for obtaining reduction

pairs. Following options are provided for specifying search spaces of parameters

for WPO.

Classes of Precedences

NaTT offers “quasi” and “strict” precedences, as well as an option to disable them

(i.e., all symbols are considered to have the same precedence). For reduction pairs

using precedences, we recommend quasi-precedences which are chosen by default,

as the encoding follows the technique of Zankl et al. [91] that naturally encodes

quasi-precedences.

Classes of Status Functions

NaTT offers three classes of status functions: “total”, “partial” and “empty”

ones.

Templates for Weight Algebras

One of the most important tasks in proving termination by WPO is finding an

appropriate weight algebra. In order to reduce the task to an SMT problem,

NaTT considers template algebras on integer domain. Currently the following

template algebras are implemented.

• The algebra Pol of Definition 3.14, where interpretations are in the follow-

ing shape:

fPol(x1, . . . , xn) = wf +
n∑
i=1

cf,i · xi (3.2)

where the template variables wf and cf,1, . . . , cf,n should be decided by an

external SMT solver.

4Applicative arities are taken so that η-saturation is not needed.

7.3. COOPERATION WITH SMT SOLVERS 61

• The algebraMax where we supply coefficients compared to Definition 4.15,

in order to treat uniformly with Pol. A symbol f with arity ≥ 1 is inter-

preted in the following shape:

fMax(x1, . . . , xn) =
n

max
i=1

(pf,i + cf,i · xi) (7.1)

where pf,1, . . . , pf,n and cf,1, . . . , cf,n are template variables. For constant

symbols, interpretations of the shape (3.2) are used. Since the operator max

is not usually supported by SMT solvers, these interpretations are encoded

to quantifier-free formula using the technique presented in Section 6.3.

• The algebraMPol combines both form of interpretations according to the

heuristics presented in Section 6.7.2.

The template variables introduced above are partitioned into two groups:

the template variables wf , pf,1, . . . , pf,n are grouped in the constant part, and

template variables cf,1, . . . , cf,n are in the coefficient part. For efficiency, it is

important to properly restrict the range of these variables.

7.2.1 Obtaining Well-known Reduction Pairs

Although most of the existing reduction pairs are subsumed by WPO, some

of them are still useful for improving efficiency, due to the restricted search

space and simplified SMT encoding. We list parameters that corresponds to

some known reduction pairs in Tables 7.1 and 7.2. Note here that the effects

of non-collapsing argument filters are simulated by allowing 0-coefficients in the

weight algebra. Thus, NaTT has a dedicated implementation only for collapsing

argument filters, and implementations of usable rules for interpretation methods

and path orders are smoothly unified.

7.3 Cooperation with SMT Solvers

NaTT is designed to work with any SMT-LIB 2.0 compliant solvers that support

at least QF_LIA logic, for which various efficient solvers exist.5 NaTT extensively

uses SMT encoding techniques for finding appropriate reduction pairs; the condi-

tions of reduction pair processors are encoded into the following SMT constraint:∧
l→r∈R

[[l % r]] ∧
∧

s→t∈P

[[s % t]] ∧
∨

s→t∈P

[[s � t]] (7.2)

5Confer the Satisfiability Modulo Theories Competition, http://smtcomp.org/.

http://smtcomp.org/

62 CHAPTER 7. NAGOYA TERMINATION TOOL

Table 7.1: Parameters for some monotone reduction pairs.

Technique template coefficient constant precedence status

Linear POLO Pol Z+ N no empty

LPO Max {1} {0} yes total

KBO6 Pol {1} N yes total

Transfinite KBO6 Pol Z+ N yes total

Table 7.2: Parameters for some (non-monotone) reduction pairs.

Technique template coefficient constant precedence status

Linear POLO Pol N N no empty

Max-POLO MPol N Z no empty

LPO + argument filter Max {0, 1} {0} yes total

KBO + argument filter Pol {0, 1} N yes total

Matrix interpretations Pol Nd×d Nd no empty

WPO(MSum) MPol {0, 1} N yes partial

where each [[l %() r]] is an SMT formula that represents the condition l %() r.

In the remainder of this section, we present two techniques for handling such

constraints that contribute to the efficiency of NaTT.

7.3.1 Use of Interactive Features of SMT Solvers

In a typical run of termination verification, constraints of the form (7.2) are gen-

erated and solved many times, and each encoding sometimes involves thousands

of lines of SMT queries with a number of template and auxiliary variables. Hence,

runtime spent for the SMT solver forms a large part of the overall runtime of the

tool execution. NaTT tries to reduce the runtime by using interactive features of

SMT solvers, which are specified in SMT-LIB 2.0.

Note that for each technique of reduction pairs, the encoded formula of the

constraint
∧
l→r∈R[[l % r]] in (7.2) need not be changed during a run, as far

as R is not modified.7 Hence, when a reduction pair processor is applied for

the first time, the back-end SMT solver is initialized according to the following

pseudo-script:

6Further constraints for admissibility are imposed.
7Although rules in R may be removed by considering usable rules, the formula still need

not be changed, since it can be simulated by negating a propositional variable that represents

whether the rule is usable or not.

7.3. COOPERATION WITH SMT SOLVERS 63

(assert (
∧
l→r∈R

(
ul→r ⇒ [[l % r]]

)
))

(push)

where ul→r is a boolean variable denoting whether the rule l → r is usable or

not. When the processor is applied to an SCC P , the following script is used:

(assert (
∧
s→t∈P [[s % t]] ∧

∨
s→t∈P [[s � t]]))

(check-sat)

Then, if a solution is found by the SMT solver, NaTT analyzes the solution using

the get-value command. After this analysis, the command

(pop)

is issued to clear the constraints due to P and go back to the context saved by

the (push) command. In order to derive the best performance of the solver,

(reset)

is also issued in case sufficiently many rules become unusable (e.g., 1/3 of the

rules in R) from P . All these commands, push, pop and reset are expected to

be available in SMT-LIB 2.0 compliant solvers.

7.3.2 Use of Linear Arithmetic

Expressions of the form (3.2) or (7.1) are nonlinear, due to the coefficients

cf,1, . . . , cf,n. However, not many SMT solvers support nonlinear arithmetic,

and even if they do, they are much less scalable than they are for linear arith-

metic. Hence, we consider reducing the formulas to linear ones by restricting the

range of cf,1, . . . , cf,n e.g. to {0, 1}. Although the idea is inspired by the tech-

nique of Borralleras et al. [10], NaTT uses a more straightforward reduction using

ite (if-then-else) expressions. Each coefficient cf,i is replaced by the expression

(ite bf,i 1 0) where bf,i is a propositional variable, and then multiplications

are reduced according to the rule:

(* (ite e1 e2 e3) e4) → (ite e1 (* e2 e4) (* e3 e4))

It is easy to see that this reduction terminates and linearizes expressions of the

form (3.2) or (7.1). Moreover, it is possible to avoid an explosion of the size of

formulas by introducing an auxiliary variable for the duplicated expression e4.

64 CHAPTER 7. NAGOYA TERMINATION TOOL

Example 7.1 Consider the constraint f(f(a)) > b interpreted in the algebra Pol,
and suppose that the range of c f,1 is restricted to {1, 2}. The interpretation of

the term f(f(a)) is reduced as follows (written as S-expressions):

[[f(f(a))]] = (+ wf (* (ite b f,1 2 1) [[f(a)]]))

→ (+ wf (ite b f,1 (* 2 [[f(a)]]) [[f(a)]]))

Similarly, for f(a) we obtain

[[f(a)]] → (+ wf (ite b f,1 (* 2 wa) wa))

Now, the constraint [[f(f(a)) > b]] is expressed by the following script:

(define-fun v (+ wf (ite b f,1 (* 2 wa) wa)))

(assert (> (+ wf (ite b f,1 (* 2 v) v) wb)))

In contrast to SAT encoding techniques [23, 24, 20], we do not have to care

about the bit-width for the constant part and intermediate results. It is also

possible to indicate that NaTT should keep formulas nonlinear, and solve them

using SMT solvers that support QF NIA logic. Our experiments, however, suggest

that use of nonlinear SMT solving is much inefficient and not beneficial on the

problems from TPDB.

7.4 Design

The source code of NaTT consists of about 6000 lines of code written in OCaml.8

About 23% is consumed by interfacing SMT solvers, where some optimizations

for encodings are also implemented. Another 17% is for parsing command-lines

and TRS files. The most important part of the source code is the 40% devoted

to the implementation of WPO, the unified reduction pair processor. Each of

the other processors implemented consumes less than 3%. For computing SCCs,

the third-party library ocamlgraph9 is used.

7.4.1 Command Line Interface

The command line of NaTT has the following syntax:

8http://caml.inria.fr/
9http://ocamlgraph.lri.fr/

http://caml.inria.fr/
http://ocamlgraph.lri.fr/

7.4. DESIGN 65

./NaTT [FILE] [OPTION]... [PROCESSOR]...

To execute NaTT, an SMT-LIB 2.0 compliant solver must be installed. By de-

fault, z3 version 4.0 or later10 is supposed to be installed in the path. Users can

specify other solvers by the --smt "COMMAND" option, where the solver invoked

by COMMAND should process SMT-LIB 2.0 scripts given on the standard input.

The TRS whose termination should be verified is read from either the specified

FILE or the standard input.11 Each PROCESSOR is either an order (e.g. POLO, KBO,

WPO, etc., possibly followed by options), or a name of other processors (UNCURRY,

EDG, or LOOP). Orders preceding the EDG processor should be monotone reduction

pairs and applied as rule removal processors before computing the dependency

pairs. Orders following the EDG processor are applied as reduction pair processors

to each SCC in the EDG. A list of available OPTIONs and PROCESSORs can be

obtained via NaTT --help.

7.4.2 The Default Strategy

In case no PROCESSOR is specified, the following default strategy will be applied:

• As a rule removal processor, POLO with coefficients in {1, 2} and constants

in N is applied.

• Then the uncurrying processor is applied.

• The following reduction pair processors are applied (in this order):

1. POLO with coefficients in {0, 1} and constants in N,

2. algebra Max with coefficients in {0, 1} and constants in N,

3. LPO with quasi-precedence, status and argument filters,

4. algebra MPol with coefficients in {0, 1} and constants in Z,

5. WPO with quasi-precedence, partial status, algebra MPol, coeffi-

cients in {0, 1} and constants in N,

6. matrix interpretations with {0, 1}2×2 matrices and N2 vectors.

• If all the above processors fail, then a (naive) loop detection is performed.

10http://z3.codeplex.com/
11 The format is found at https://www.lri.fr/~marche/tpdb/format.html.

http://z3.codeplex.com/
https://www.lri.fr/~marche/tpdb/format.html

66 CHAPTER 7. NAGOYA TERMINATION TOOL

7.5 Experiments

In this section, we examine the performance of WPO implemented in NaTT, both

as a reduction order and reduction pairs.

For a test set of termination problems, we use the 1463 TRSs from the TRS

Standard category of TPDB 8.0.6 [77]. The experiments are run on a server

equipped with two quad-core Intel Xeon W5590 processors running at a clock

rate of 3.33GHz and 48GB of main memory, though only one thread of SMT

solver runs at once. As the SMT solver, we choose z3 4.3.1.12 Timeout is set to

60s, as in the Termination Competition.

7.5.1 Results for Reduction Orders

First we evaluated WPO as a reduction order by directly testing orientability

for input TRSs. The results are listed in Table 7.3. Since KBO, POLO(Sum),

WPO(Sum) are only applicable for non-duplicating TRSs, the test set is split

into non-duplicating ones (consisting of 439 TRSs) and duplicating ones (consist-

ing of 1024 TRSs). In the table, ‘yes’ column indicates the number of successful

termination proofs, ‘T.O.’ indicates the number of timeouts, and ‘time’ indicates

the total time. We point that WPO(MSum) is a balanced choice; it is sig-

nificantly stronger than existing orders, while the runtime is much better than

involving non-linear SMT solving (last 5 columns). Note that here we directly

solve non-linear problems using z3; their runtime will be significantly improved

by the linearization proposed in Section 7.3.2. If the efficiency is the main con-

cern, then WPO(Sum+), a variant of WPO(Sum) with w0 > 0, is a reasonable

substitute for KBO. This efficiency is due to the reduction of recursive checks

proposed in Section 6.7.3.

7.5.2 Results for Reduction Pairs

Second, we evaluated WPO as a reduction pair. Table 7.4 compares the power of

the reduction pair processors. In ‘total status’ column, we apply standard total

status and argument filtering to obtain a reduction pair from a reduction order,

as in [85]. Because of argument filtering, existence of duplicating rules are not

an issue in this setting. For POLO, status is ignored.

12http://z3.codeplex.com/

http://z3.codeplex.com/

7.5. EXPERIMENTS 67

Table 7.3: Results for reduction orders.

439 non-dup. TRSs 1024 dup. TRSs

order algebra yes T.O. time yes T.O. time

POLO Sum 41 0 3.54 – – –

LPO 90 0 20.94 90 0 22.64

KBO 115 0 4.51 – – –

WPO Sum+ 126 0 4.75 – – –

WPO Sum 135 0 31.47 – – –

WPO MSum 135 0 31.55 138 0 40.06

WPO Max 116 0 52.96 125 0 35.23

POLO Pol 81 3 190.45 12 9 812.18

TKBO 125 0 10.38 22 9 1146.65

POLO Mat 136 3 246.73 20 15 1638.92

WPO Pol 147 0 276.21 26 9 1261.37

WPO MPol 147 0 276.05 138 9 982.71

The power of WPO is still measurable here. On the contrary to the reduction

order case, WPO(Sum) outperforms KBO both in power and efficiency. This is

because KBO needs formulas for recursive comparison that resembles WPO,

when argument filters are considered. Moreover, encodings of weights are more

complex in KBO, since w0 cannot be fixed to 0 as discussed in Section 6.7.1.

Finally, KBO needs extra constraints that correspond to admissibility.

In ‘partial status’ column, we moreover admit partial status functions. We

also apply partial status for KBO [86] but not for LPO; note that LPO does not

benefit from partial status because weights are not considered. The power of

WPO is much more significant in this setting, and WPO(MSum) is about 30%

stronger than any other existing techniques. Though the efficiency is sacrificed for

partial status, this is not a severe problem in the DP framework, as we will see in

the next section. On the other hand, our implementation of the instances of WPO

that require non-linear SMT solving are extremely time-consuming. Especially,

WPO(Mat) looses 107 problems by timeout compared to the standard matrix

interpretation method. We conjecture that the situation can be improved by

SAT encoding or by using other non-linear SMT solvers such as the techniques

of Zankl and Middeldorp [90] and Borralleras et al. [11].

68 CHAPTER 7. NAGOYA TERMINATION TOOL

Table 7.4: Results for reduction pairs.

total status partial status

order algebra yes T.O. time yes T.O. time

POLO Sum 512 0 111.51 – – –

POLO MSum 522 0 273.09 – – –

LPO 502 0 361.41 – – –

KBO 497 3 900.79 520 4 1109.59

WPO Sum 514 23 830.21 560 4 1105.42

WPO Max 548 6 1230.17 637 13 1855.59

WPO MSum 578 6 1289.61 675 12 1755.66

POLO Pol 544 19 1958.44 – – –

POLO MPol 540 18 1889.86 – – –

POLO Mat 645 480 32367.26 – – –

TKBO 516 187 15665.26 539 178 15799.28

WPO Pol 527 172 14535.24 579 153 13579.95

WPO MPol 560 88 7678.43 672 94 9269.36

WPO Mat – – – 538 640 42067.45

7.5.3 Effect of Linearlization

In this section, we verify the effect of linearization proposed in Section 7.3.2.

Table 7.5 presents the results of linearization for reduction orders. For each

order, the coefficient part is bounded by 2. In “non-linear” column, the encoded

QF-NIA problem is solved via z3 and the constant part is also bounded by 2,

in order to achieve a feasible runtime. In “linearized” column the constant part

is left open in N. The effect of linearization is clear here; the runtime improves

by an order of magnitude, and several successful termination proofs are gained

from the unlimited constant part. The effect becomes even clearer if we increase

the upper bound of the constant part for non-linear case.

Table 7.6 presents the results for reduction pairs. The upper bounds for the

constant part and the coefficient part are as in the previous setting. The benefit

in runtime becomes less significant but still measurable in this setting (except

for matrix interpretations). If we increase the upper bound of the constant part

for non-linear case, the difference becomes dramatically clearer.

7.5. EXPERIMENTS 69

Table 7.5: Effect of linearization (reduction orders).

non-linear linearized

reduction order yes T.O. time yes T.O. time

Pol 93 12 1002.63 122 0 29.17

Mat 156 18 1885.65 183 0 199.94

TKBO 147 12 1359.06 162 0 61.55

WPO(Pol) 173 12 1537.58 175 0 159.67

WPO(MPol) 285 12 1258.76 289 0 212.47

Table 7.6: Effect of linearization (reduction pairs).

non-linear linearized

reduction pair yes T.O. time yes T.O. time

Pol 516 18 1814.31 543 6 851.01

Mat 644 13 1972.56 648 15 1999.78

TKBO 511 17 2573.66 521 11 2355.69

WPO(Pol) 578 22 2946.16 579 14 2366.34

WPO(MPol) 668 26 3320.65 669 22 3096.16

7.5.4 Effect of Interactive SMT Solving

In Table 7.7, we verify the effect of interactive use of SMT solvers proposed in

Section 7.3.1. The “interactive” column uses the interactive feature, and the

“reset” column issues the reset command at every time the reduction pair is

applied. The effect is especially clear for methods that involve recursive compar-

isons (LPO, KBO, and WPO). On the other hand, the benefit is unclear for inter-

pretation methods; for these methods, encoded formulas are simple arithmetic

comparisons which are easy to generate, and the overhead of saving contexts

seems to become significant. Note that in the “reset” column, NaTT optimizes

the set of considered rules by excluding unusable rules. Due to this optimization,

the “reset” column gains several successes compared to the “interactive” column.

70 CHAPTER 7. NAGOYA TERMINATION TOOL

Table 7.7: Effect of interactive SMT solving.

reset interactive

reduction pair yes T.O. time yes T.O. time

Sum 512 0 137.09 512 0 111.51

Mat 647 15 1998.84 648 17 2200.75

LPO 502 2 781.98 502 2 361.41

KBO 497 4 1778.15 496 2 900.79

WPO(MSum) 679 15 2994.93 675 12 1755.66

Table 7.8: Results for Combination

strategy yes no unknown T.O. time

NaTT with WPO 848 173 429 13 1865.50

NaTT without WPO 810 173 467 13 2023.18

AProVE 1020 270 0 173 15123.48

TTT2 788 193 417 65 13784.43

7.5.5 Results for Combination

Modern termination provers combine DP processors and apply weak but efficient

ones first. In Table 7.8, we compare the following: ‘NaTT with WPO’ (the default

strategy described in Section 7.4.2), ‘NaTT without WPO’ (WPO is replaced by

KBO),13 AProVE 2014, and TTT2 1.15. The ‘no’ column indicates the number of

successful nontermination proofs.

The benefit of WPO is clear in this setting. Not only gaining 38 successful

termination proofs, WPO also advances the efficiency of the tool. The reason for

this phenomenon is that WPO may prove termination of a TRS, which otherwise

would be passed to the more inefficient matrix interpretation or nontermination

check which will never succeed. When compared to other termination provers,

NaTT is not as strong as AProVE. This is because AProVE implements lots of

techniques that are not implemented in NaTT. Nonetheless, NaTT (dis)proves

37 examples that could not be proved by AProVE or TTT2. Moreover, NaTT is

extremely fast than other tools.

13However, KBO does not contribute in this strategy.

7.6. ASSESSMENT 71

7.6 Assessment

Many tools have been developed for proving termination of TRSs, and the inter-

national Termination Competition has been held annually for a decade. NaTT

participated in the TRS Standard category of the full-run 2013,14 where the other

participants are versions of: AProVE,15 TTT2,16 MU-TERM,17 and WANDA.18 Us-

ing the default strategy described in Section 7.4.2, NaTT (dis)proves termination

of 982 TRSs out of 1463 TRSs,19 and comes next to (the two versions of) AProVE,

the constant champion of the category. It should be noticed that NaTT proved

termination of 34 TRSs out of the 159 whose termination could not be proved

by any other tool, and for 29 of them, WPO is essential. NaTT is also notably

faster than the other competitors; it consumed only 21% of the time compared

to AProVE, the second fastest. We expect that we can further improve efficiency

by optimizing to multi-core architecture; currently, NaTT runs in almost single

thread.

NaTT also participated in the SRS Standard category. However, the result is

not as good as it is for TRSs. This is due to the fact that the default strategy of

Section 7.4.2 is designed only for non-unary signatures. Indeed, an interpretation

of the form (7.1) makes sense only if it has at least two arguments. It should be

improved by choosing a strategy depending on the shape of input TRSs.

14http://termcomp.uibk.ac.at/
15http://aprove.informatik.rwth-aachen.de/
16http://cl-informatik.uibk.ac.at/software/ttt2/
17http://zenon.dsic.upv.es/muterm/
18http://wandahot.sourceforge.net/
19due to an unfortunate parser bug, the competition version of NaTT failed to input 36 TRSs

for which current version succeeds to conclude termination.

http://termcomp.uibk.ac.at/
http://aprove.informatik.rwth-aachen.de/
http://cl-informatik.uibk.ac.at/software/ttt2/
http://zenon.dsic.upv.es/muterm/
http://wandahot.sourceforge.net/

72 CHAPTER 7. NAGOYA TERMINATION TOOL

Chapter 8

AC-Compatible Knuth-Bendix

Orders

Associative and commutative (AC) operators appear in many applications, e.g.

in automated reasoning with respect to algebraic structures such as commuta-

tive groups or rings. AC termination is important when deciding validity in

equational theories with AC operators by means of completion.

Several termination methods for plain rewriting have been extended to deal

with AC symbols.

• Lankford [55] presented some restrictions of polynomial interpretations that

ensure compatiblility with AC axioms. Ben Cherifa and Lescanne [7] gave

a sound and complete characterization of such polynomial interpretations.

• There have been numerous papers on extending RPO of Dershowitz [14]

to deal with AC symbols. To list some, [18, 5, 33, 42, 4, 66, 41], and

culminating in the fully syntactic AC-RPO of Rubio [65].

• Several authors, namely, Kusakari and Toyama [51], Marché and Urbain

[60], Giesl and Kapur [26] adapted the influential dependency pair method

of Arts and Giesl [2] to AC rewriting. The AC extension of the more

modern DP framework is due to Alarcón et al. [1].

On the other hand, we are aware of only two papers on AC extensions of the

order of Knuth and Bendix (KBO) [43]. In this chapter we revisit these orders

and present yet another AC-compatible KBO. Steinbach [70] presented a first

version, which comes with the restriction that AC symbols are minimal in the

precedence. By incorporating ideas of AC-RPO [65], Korovin and Voronkov [46]

73

74 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

presented a version without this restriction. Actually, they present two ver-

sions. One is defined on ground terms and another one on arbitrary terms. For

(automatically) proving AC termination of rewrite systems, an AC-compatible

order on arbitrary terms is required.1 We show that the second order of Ko-

rovin and Voronkov [46] lacks the monotonicity property which is required by

the definition of simplification orders. Nevertheless we prove that the order is

sound for proving termination by extending it to an AC-compatible simplifica-

tion order. We furthermore present a simpler variant of this latter order which

properly extends the order of Steinbach [70]. In particular, Steinbach’s order

is a correct AC-compatible simplification order, contrary to what is claimed in

[46]. We also present new complexity results which confirm that AC rewriting

is much more involved than plain rewriting. Apart from these theoretical con-

tributions, we implemented the various AC-compatible KBOs to compare them

also experimentally.

The remainder of this chapter is organized as follows. After recalling basic

concepts of rewriting modulo AC and orders, we revisit Steinbach’s order in Sec-

tion 8.2. Section 8.3 is devoted to the two orders of Korovin and Voronkov. We

present a first version of our AC-compatible KBO in Section 8.4 and theoreti-

cally compare the order with other variants introduced so far. In Section 8.5, we

give the non-trivial proofs that our AC-KBO as well as the corrected version of

Korovin and Voronkov’s order have the required properties. (The proofs in [46]

are limited to the order on ground terms.) Then we investigate complexities of

checking membership and orientability in Section 8.6 for the various orders. In

Section 8.7 our order is strengthened with subterm coefficients. In order to show

effectiveness of these orders, experimental data is provided in Section 8.8.

8.1 Rewriting modulo AC

In this section, we briefly recall the notions of AC-rewriting. We consider a

designated subset FAC ⊆ F of binary AC symbols.

1Any AC-compatible reduction order �g on ground terms can trivially be extended to

arbitrary terms by defining s � t iff sσ �g tσ for all grounding substitutions σ. This is,

however, only of (mild) theoretical interest.

8.2. STEINBACH’S ORDER 75

Definition 8.1 The TRS AC consists of the following rules for every f ∈ FAC:

f(f(x, y), z)→ f(x, f(y, z)) (A)

f(x, y)→ f(y, x) (C)

The AC-equivalence relation is defined as ≈AC := (−→
AC
∪ ←−

AC
)∗.

Definition 8.2 Let R be a TRS. The AC-rewrite relation induced by R is de-

fined as: −−−→
R/AC

:= ≈AC · −→R · ≈AC. The TRS R is AC-terminating iff the relation

≈AC · −→R · ≈AC is well-founded.

Definition 8.3 A strict order � on terms is AC-compatible iff ≈AC·�·≈AC ⊆ �,

and is AC-total iff s � t, t � s or s ≈AC t, for all ground terms s and t.

Note that AC compatibility can be rephraised by that 〈≈AC,�〉 is an order

pair. AC termination is established if a TRS is oriented by an AC-compatible

simplification order.

8.2 Steinbach’s Order

In this section, we recall the AC-compatible KBO >S of Steinbach [70], which

reduces to the standard KBO if AC symbols are absent.2 Just like the standard

KBO, >S depends on a precedence and an admissible weight function. In this

chapter, we only consider a strict precedence.

Definition 8.4 The top-flattening [65] of a term t with respect to an AC symbol

f is the multiset Of (t) defined inductively as follows: Of (t) = {t} if root(t) 6= f

and Of (f(t1, t2)) = Of (t1)] Of (t2).

Definition 8.5 Let > be a precedence and 〈w,w0〉 a weight function. The order

>S is inductively defined as follows: s >S t if |s|x ≥ |t|x for all x ∈ V and either

w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

0. s = fk(t) and t ∈ V for some k > 0,

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, [s1, . . . , sn] >lex
S [t1, . . . , tn],

2The version in [70] is slightly more general, since non-AC function symbols can have arbi-

trary status. To simplify the discussion, we do not consider status in this chapter.

76 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and Of (s) >mul
S Of (t).

The relation ≈AC is used as preorder in >lex
S and >mul

S .

Cases 0–2 are the same as in the classical Knuth-Bendix order. In case 3 terms

rooted by the same AC symbol f are treated by comparing their top-flattenings

in the multiset extension of >S.

Example 8.6 Consider the signature F = {a, f, g} with f ∈ FAC, precedence

g > a > f and admissible weight function 〈w,w0〉 with w(f) = w(g) = 0 and

w0 = w(a) = 1. Let R1 be the following ground TRS:

`1 = g(f(a, a))→ f(g(a), g(a)) = r1 (8.1)

`2 = f(a, g(g(a)))→ f(g(a), g(a)) = r2 (8.2)

For i ∈ {1, 2}, let Si = Of(`i) and Ti = Of(ri). Both rules vacuously satisfy the

variable condition. We have w(`1) = 2 = w(r1) and g > f, so `1 >S r1 holds by

case 1. We have w(`2) = 2 = w(r2), S2 = {a, g(g(a))}, and T2 = {g(a), g(a)}.
Since g(a) >S a holds by case 1, g(g(a)) >S g(a) holds by case 2, and therefore

`2 >S r2 by case 3.

Theorem 8.7 ([70]) If every symbol in FAC is minimal with respect to >, then

>S is an AC-compatible simplification order.3 2

In Section 8.4 we reprove4 Theorem 8.7 by showing that >S is a special case

of our new AC-compatible Knuth-Bendix order.

8.3 Korovin and Voronkov’s Orders

In this section we recall the orders of Korovin and Voronkov [46].

8.3.1 Ground Case

The first one is defined on ground terms. The difference with >S is that in

case 3 of the definition a further case analysis is performed based on terms in

3In [70] AC symbols are further required to have weight 0 because terms are flattened. Our

version of >S does not impose this restriction due to the use of top-flattening.
4The counterexample in [46] against the monotonicity of >S is invalid as the condition that

AC symbols are minimal in the precedence is not satisfied.

8.3. KOROVIN AND VORONKOV’S ORDERS 77

Of (s) and Of (t) whose root symbols are not smaller than f in the precedence.

Rather than recursively comparing these terms with the order being defined, a

lighter non-recursive version is used in which the weights and root symbols are

considered.

Definition 8.8 Given a multiset T of terms, a function symbol f , and a binary

relation A on function symbols, we define the following submultisets of T :

T �V = T ∩ V T �Af = {t ∈ T \ V | root(t) A f}

Definition 8.9 Let > be a precedence and 〈w,w0〉 a weight function.5 First we

define the auxiliary relations =kv and >kv as follows:

• s =kv t if w(s) = w(t) and root(s) = root(t),

• s >kv t if either w(s) > w(t) or both w(s) = w(t) and root(s) > root(t).

The order >KV is inductively defined on ground terms as follows: s >KV t if

either w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, [s1, . . . , sn] >lex
KV [t1, . . . , tn],

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = Of (s) and T = Of (t)

(a) S�≮f >
mul
kv T �≮f , or

(b) S�≮f =mul
kv T �≮f and |S| > |T |, or

(c) S�≮f =mul
kv T �≮f , |S| = |T |, and S >mul

KV T .

Here ≈AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Only in cases 2 and (3c) the order >KV is used recursively. In case 3 terms

rooted by the same AC symbol f are compared by extracting from the top-

flattenings S and T the multisets S�≮f and T �≮f consisting of all terms rooted by

a function symbol not smaller than f in the precedence. If S�≮f is larger than

T �≮f in the multiset extension of >kv, we conclude in case (3a). Otherwise the

multisets must be equal (with respect to =mul
kv). If S has more terms than T , we

conclude in case (3b). In the final case (3c), S and T have the same number of

terms and we compare S and T in the multiset extension of >KV.

5Here we do not impose totality on precedences, cf. [46]. See also Example 8.22.

78 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Theorem 8.10 ([46]) The order >KV is an AC-compatible simplification order

on ground terms. If > is total then >KV is AC-total on ground terms. 2

The two orders >KV and >S are incomparable on ground TRSs.

Example 8.11 Consider again the ground TRS R1 of Example 8.6. To orient

rule (8.1) with >KV, the weight of the unary function symbol g must be 0 and

admissibility demands g > a and g > f. Hence rule (8.1) is handled by case 1 of

the definition. For rule (8.2), the multisets

S = {a, g(g(a))} T = {g(a), g(a)}

are compared in case 3. We have S�≮f = {g(g(a))} if f > a and S�≮f = S

otherwise. In both cases we have T �≮f = T . Note that neither a >kv g(a) nor

g(g(a)) >kv g(a) holds. Hence case (3a) does not apply. But also cases (3b) and

(3c) are not applicable as g(g(a)) =kv g(a) and a 6=kv g(a). Hence, independent

of the choice of >, R1 cannot be proved terminating by >KV. Conversely, the

TRS R2 resulting from reversing rule (8.2) in R1 can be proved terminating by

>KV but not by >S.

8.3.2 Non-ground Case

Next we present the second order of Korovin and Voronkov [46], the extension of

>KV to non-ground terms. Since it coincides with >KV on ground terms, we use

the same notation for the order. In case 3 of the Definition 8.13, also variables

appearing in the top-flattenings S and T are taken into account in the first

multiset comparison.

Definition 8.12 Given a relation A on terms and a function symbol f , we define

the relation Af on multisets of terms as follows:

S Af T
def⇐⇒ S�≮f A

mul T �≮f] T �V − S�V

Note that Af depends on a precedence >. Whenever we use Af , > is defined.

Definition 8.13 Let > be a precedence and 〈w,w0〉 a weight function. First we

extend the orders =kv and >kv as follows:

• s =kv t if |s|x = |t|x for all x ∈ V, w(s) = w(t), and root(s) = root(t),

8.3. KOROVIN AND VORONKOV’S ORDERS 79

• s >kv t if |s|x ≥ |t|x for all x ∈ V and either w(s) > w(t) or both w(s) =

w(t) and root(s) > root(t).

The order >KV is now inductively defined as follows: s >KV t if |s|x ≥ |t|x for

all x ∈ V and either w(s) > w(t), or w(s) = w(t) and one of the following

alternatives holds:

0. s = fk(t) and t ∈ V for some k > 0,

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, [s1, . . . , sn] >lex
KV [t1, . . . , tn],

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = Of (s) and T = Of (t)

(a) S >f
kv T , or

(b) S =f
kv T and |S| > |T |, or

(c) S =f
kv T , |S| = |T |, and S >mul

KV T .

Here ≈AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Contrary to what is claimed in [46], the order >KV of Definition 8.13 is not a

simplification order because it lacks the monotonicity property (i.e., >KV is not

closed under contexts), as shown in the following example.

Example 8.14 Let ◦ be an AC symbol and f a unary function symbol with

w(f) = 0 and f > ◦. We obviously have

f(x) >KV x

However, the following does not hold:

f(x) ◦ y >KV x ◦ y

Let S = O◦(s) = {f(x), y} and T = O◦(t) = {x, y}. We have S�≮◦ = {f(x)},
S�V = {y}, T �≮◦ = ∅, and T �V = {x, y}. Note that f(x) >kv x does not hold

since f ≯ x. Hence case (3a) in Definition 8.13 does not apply. However, cases

(3b) and (3c) also do not apply, since f(x) =kv x does not hold.

This example does not refute the soundness of >KV for proving AC termina-

tion; note that also f(x, y) >KV f(g(x), y) does not hold. We prove soundness by

extending >KV to >KV′ which has all desired properties.

80 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Definition 8.15 The order >KV′ is obtained as in Definition 8.13 after replacing

=f
kv by ≥fkv′ in cases (3b) and (3c), and using ≥kv′ as preorder in >mul

kv in case

(3a). Here the relation ≥kv′ is defined as follows:

• s ≥kv′ t if |s|x ≥ |t|x for all x ∈ V and either w(s) > w(t), or w(s) = w(t)

and either root(s) ≥ root(t) or t ∈ V.

Note that ≥kv′ is a preorder that contains ≈AC.

Example 8.16 Consider again Example 8.14. We have

f(g(x), y) >KV′ f(x, y)

because now case (3c) applies: S�≮f = {g(x)} ≥mul
kv′ {x} = T �≮f] T �V − S�V ,

|S| = 2 = |T |, and S = {g(x), y} >mul
KV′ {x, y} = T because g(x) >KV′ x.

Note that the use of the preorder ≥kv′ is essential for the non-ground version

of >KV to be closed under contexts, even if there is no unary symbol of weight

0. This is illustrated by the following example.

Example 8.17 Let ◦ be an AC symbol, c a constant, f a unary function symbol

and g a non-AC binary symbol such that w(c) = w0, w(f) > 0, and g > ◦ > c.

By case 2, we have

` = g(f(c), x) >KV g(c, f(c)) = r

However, the following does not hold:

s = ` ◦ c >KV r ◦ c = t

Let S = O◦(s) = {`, c} and T = O◦(t) = {r, c}. We have S�≮◦ = {`}, T �≮◦ = {r},
and S�V = T �V = ∅. Note that ` >kv r does not hold since w(`) = w(r) and

root(`) = g = root(r). Hence case (3a) in Definition 8.13 does not apply. On

the other hand, ` =kv r does not hold since |`|x = 1 6= 0 = |r|x, excluding cases

(3b) and (3c).

In Section 8.5.2, we prove that >KV′ is an AC-compatible simplification order.

Theorem 8.18 The order >KV′ is an AC-compatible simplification order.

Since the inclusion >KV ⊆ >KV′ obviously holds, it follows that >KV is a sound

method for establishing AC termination, despite the lack of monotonicity.

Unfortunately, the order >KV′ lacks one important feature: a polynomial-time

algorithm to decide s >KV′ t when the precedence and weight function are given.

In Section 8.6.1 we show that the problem is NP-hard. Note that for KBO the

problem is known to be linear [57].

8.4. AC-KBO 81

8.4 AC-KBO

In this section we present another AC-compatible simplification order. In con-

trast to >KV′ , our new order >ACKBO contains >S. Moreover, its definition is

simpler than >KV′ since we avoid the use of an auxiliary order in case (3b). Fi-

nally, >ACKBO is decidable in polynomial-time. Hence it will be used as the basis

for the extension discussed in Section 8.7.

Definition 8.19 Let > be a precedence and 〈w,w0〉 a weight function. We define

>ACKBO inductively as follows: s >ACKBO t if |s|x ≥ |t|x for all x ∈ V and either

w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

0. s = fk(t) and t ∈ V for some k > 0.

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g.

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, [s1, . . . , sn] >lex
ACKBO [t1, . . . , tn].

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = Of (s) and T = Of (t),

(a) S >f
ACKBO T , or

(b) S ≈fAC T , and |S| > |T |, or

(c) S ≈fAC T , |S| = |T |, and S�<f >
mul
ACKBO T �

<
f .

The relation ≈AC is used as preorder in >lex
ACKBO and >mul

ACKBO.

Note that in case (3c) we compare the multisets S�<f and T �<f rather than S and

T in the multiset extension of >ACKBO. In Section 8.5.1, we prove the following

result stating correctness of our order:

Theorem 8.20 The order >ACKBO is an AC-compatible simplification order.

Since we deal with finite non-variadic signatures, simplification orders are

well-founded. The following theorem is easily proved.

Theorem 8.21 If > is total then >ACKBO is AC-total on ground terms. 2

The following example shows that AC-KBO is not incremental, i.e., orientabil-

ity is not necessarily preserved when the precedence is extended. This is in

contrast to the AC-RPO of Rubio [65]. However, this is not necessarily a disad-

vantage; actually, the example shows that by allowing partial precedences more

TRSs can be proved to be AC terminating using AC-KBO.

82 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Example 8.22 Consider the TRS R consisting of the rules

a ◦ (b • c)→ b ◦ f(a • c) a • (b ◦ c)→ b • f(a ◦ c)

over the signature F = {a, b, c, f, ◦, •} with ◦, • ∈ FAC. By taking the precedence

f > a, b, c, ◦, • and admissible weight function 〈w,w0〉 with w(f) = w(◦) = w(•) =

0, w0 = w(a) = w(c) = 1, and w(b) = 2, the resulting >ACKBO orients both rules

from left to right. It is essential that ◦ and • are incomparable in the precedence:

We must have w(f) = 0, so f > a, b, c, ◦, • is enforced by admissibility. If ◦ > •
then the first rule can only be oriented from left to right if a >ACKBO f(a•c) holds,

which contradicts the subterm property. If • > ◦ then we use the second rule to

obtain the impossible a >ACKBO f(a • c). Similarly, R is also orientable by >KV′

but we must adopt a non-total precedence.

In the rest of this section, we investigate relationships between our AC-KBO

and other variants. In particular, Steinbach’s order is a special case of our AC-

KBO. As a consequence, correctness of >S (i.e., Theorem 8.7) is concluded by

Theorem 8.20.

Theorem 8.23 If every AC symbol has minimal precedence then >S = >ACKBO.

Proof. Suppose that every function symbol in FAC is minimal with respect to >.

We show that s >S t iff s >ACKBO t by induction on s. It is clearly sufficient to

consider case 3 in Definition 8.5 and cases (3a)–(3c) in Definition 8.19. So let

s = f(s1, s2) and t = f(t1, t2) such that w(s) = w(t) and f ∈ FAC. Let S = Of (s)

and T = Of (t).

• Let s >S t by case 3. We have S >mul
S T . Since S >mul

S T involves only

comparisons s′ >S t
′ for subterms s′ of s, the induction hypothesis yields

S >mul
ACKBO T . Because f is minimal in >, S = S�≮f]S�V and T = T �≮f]T �V .

For no elements u ∈ S�V and v ∈ T �≮f , u >ACKBO v or u ≈AC v holds. Hence

S >mul
ACKBO T implies S >f

ACKBO T or both S ≈fAC T and S�V) T �V . In the

former case s >ACKBO t is due to case (3a) in Definition 8.19. In the latter

case we have |S| > |T | and s >ACKBO t follows by case (3b).

• Let s >ACKBO t by applying one of the cases (3a)–(3c) in Definition 8.19.

– Suppose (3a) applies. Then we have S >f
ACKBO T . Since f is minimal

in >, S�≮f = S − S�V and T �≮f] T �V = T . Hence S >mul
ACKBO (T −

S�V)] S�V ⊇ T . We obtain S >mul
S T from the induction hypothesis

and thus case 3 in Definition 8.5 applies.

8.4. AC-KBO 83

>KV′

>ACKBO

>S

R1
•

R2
•

R3
•

R1 Example 8.6 (and 8.11)

R2 Example 8.11

R3 Example 8.24

Figure 8.1: Comparison.

– Suppose (3b) applies. Analogous to the previous case, the inclusion

S ≈mul
AC (T − S�V)] S�V ⊇ T holds. Since |S| > |T |, S ≈mul

AC T is not

possible. Thus (T − S�V)] S�V) T and hence S >mul
S T .

– If case (3c) applies then S�<f >mul
ACKBO T �<f . This is impossible since

both sides are empty as f is minimal in >. 2

The following example shows that >ACKBO is a proper extension of >S and

incomparable with >KV′ .

Example 8.24 Consider the TRS R3 consisting of the rules

f(x+ y)→ f(x) + y g(x) + y → g(x+ y)

h(a, b)→ h(b, a) h(g(a), a)→ h(a, g(b))

h(g(a), b)→ h(a, g(a)) h(a, g(g(a)))→ h(g(a), f(a))

f(a) + g(b)→ f(b) + g(a)

over the signature {+, f, g, h, a, b} with + ∈ FAC. Consider the precedence f >

+ > g > a > b > h together with the admissible weight function 〈w,w0〉 with

w(+) = w(h) = 0, w(f) = w(a) = w(b) = w0 = 1 and w(g) = 2. The interesting

rule is f(a)+g(b)→ f(b)+g(a). For S = O+(f(a)+g(b)) and T = O+(f(b)+g(a))

the multisets S ′ = S�≮+ = {f(a)} and T ′ = T �≮+] T �V − S�V = {f(b)} satisfy

S ′ >mul
ACKBO T ′ as f(a) >ACKBO f(b), so that case (3a) of Definition 8.19 applies.

All other rules are oriented from left to right by both >KV′ and >ACKBO, and they

enforce a precedence and weight function which are identical (or very similar) to

the one given above. Since >KV′ orients the rule f(a) + g(b) → f(b) + g(a) from

right to left, R3 cannot be compatible with >KV′. It is easy to see that the rule

g(x) + y → g(x+ y) requires + > g, and hence >S cannot be applied.

We close this section with Figure 8.1 that summarizes the relationships be-

tween the orders introduced so far.

84 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

8.5 Correctness

In this section, we show that >ACKBO and >KV′ are AC-compatible simplification

orders.

8.5.1 Correctness of AC-KBO

In order to prove correctness of >ACKBO, we first show that 〈≈AC, >ACKBO〉 is an

order pair. To facilitate the proof, we decompose >ACKBO into several orders. We

write

• s >01 t if |s|x ≥ |t|x for all x ∈ V and either w(s) > w(t) or w(s) = w(t)

and case 0 or case 1 of Definition 8.19 applies,

• s >23,k t if |s|, |t| ≤ k, |s|x ≥ |t|x for all x ∈ V , w(s) = w(t), and case 2 or

case 3 applies.

The union of >01 and >23,k is denoted by >k. The next lemma states straight-

forward properties.

Lemma 8.25 The following statements hold:

1. >ACKBO =
⋃
{>k | k ∈ N},

2. 〈≈AC, >01〉 is an order pair, and

3. (>01 · >k) ∪ (>k · >01) ⊆ >01.

Proof.

1. The inclusion from right to left is obvious from the definition. For the

inclusion from left to right, suppose s >ACKBO t. If either w(s) > w(t), or

w(s) = w(t) and case 0 or case 1 of Definition 8.19 applies, then trivially

s >01 t. If case 2 or case 3 applies, then s >23,k t for any k with k ≥
max(|s|, |t|).

2. First we show that >01 is transitive. Suppose s >01 t >01 u. If w(s) >

w(t) or w(t) > w(u), then w(s) > w(u) and s >01 u. Hence suppose

w(s) = w(t) = w(u). Since s, t /∈ V , we may write s = f(s1, . . . , sn) and

t = g(t1, . . . , tm) with f > g. Because of admissibility, g is not a unary

symbol with w(g) = 0. Thus u /∈ V , and we may write u = h(u1, . . . , ul)

8.5. CORRECTNESS 85

with g > h. By the transitivity of > we obtain s >01 u. The irreflexivity

of >01 is obvious from the definition. It remains to show the compatibility

condition ≈AC · >01 · ≈AC ⊆ >01. This easily follows from the fact that

w(s) = w(t) and root(s) = root(t) whenever s ≈AC t.

3. Suppose s = f(s1, . . . , sn) >01 t = g(t1, . . . , tm) >k u. If t >01 u then s >01

u follows from the transitivity of >01. Suppose t >23,k u. So w(t) = w(u).

Thus w(s) > w(u) if w(s) > w(t), and case 1 applies if w(s) = w(t). The

inclusion >k ·>01 ⊆ >k is proved in exactly the same way. 2

Lemma 8.26 Let > be a precedence, f ∈ F , and 〈%,�〉 an order pair on terms.

Then 〈%f ,�f〉 is an order pair on multisets of terms.

Proof. We first prove compatibility. Suppose S %f T �f U . From T �f U we

infer that T �≮f] T �V �mul U�≮f] U�V . Hence S�≮f �mul U�≮f] U�V − S�V follows

from S %f T . Hence also S (% · �)f U . We obtain the desired S �f U from

the compatibility of % and �. Transitivity of %f and �f is obtained in a very

similar way. Reflexivity of %f and irreflexivity of �f are obvious. 2

We employ the following simple criterion to construct order pairs, which

enables us to prove correctness in a modular way.

Lemma 8.27 Let 〈%,�k〉 be order pairs for k ∈ N with �k ⊆ �k+1. If � is the

union of all �k, then 〈%,�〉 is an order pair.

Proof. The relation % is a preorder by assumption. Suppose s � t � u. By

assumption there exist k and l such that s �k t �l u. Let m = max(k, l).

We obtain s �m t �m u from the assumptions of the lemma and hence s �m u

follows from the fact that 〈%,�m〉 is an order pair. Compatibility is an immediate

consequence of the assumptions and the irreflexivity of � is obtained by an easy

induction proof. 2

Lemma 8.28 The pair 〈≈AC, >ACKBO〉 is an order pair.

Proof. According to Lemmata 8.27 and 8.25(1), it is sufficient to prove that

〈≈AC, >k〉 is an order pair for all k ∈ N. Due to Lemma 8.25(2,3) it suffices to

prove that 〈≈AC, >23,k〉 is an order pair, which follows by using induction on k in

combination with Lemma 8.26 and Theorem 2.7. 2

The subterm property is an easy consequence of transitivity and admissibility.

86 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Lemma 8.29 The order >ACKBO has the subterm property. 2

Next we prove that >ACKBO is closed under contexts. The following lemma

is an auxiliary result needed for its proof. In order to reuse this lemma for the

correctness proof of >KV′ in Section 8.5.2, we prove it in an abstract setting.

Lemma 8.30 Let 〈%,�〉 be an order pair on terms and f ∈ FAC with f(u, v) �
u, v for arbitrary terms u and v. If s % t then {s} %mul Of (t) or {s} �mul Of (t).

If s � t then {s} �mul Of (t).

Proof. Let Of (t) = {t1, . . . , tm}. If m = 1 then Of (t) = {t} and the lemma holds

trivially. Otherwise we get t � tj for every j ∈ {1, . . . ,m} by recursively applying

the assumption. Hence s � tj by the transitivity of � or the compatibility of �
and %. We conclude that {s} �mul Of (t). 2

In the following proof of closure under contexts, admissibility is essential.

This is in contrast to the corresponding result for standard KBO.

Lemma 8.31 If 〈w,w0〉 is admissible for > then >ACKBO is closed under con-

texts.

Proof. Suppose s >ACKBO t. We consider the context h(2, u) with h ∈ FAC and

u an arbitrary term, and prove that s′ = h(s, u) >ACKBO h(t, u) = t′. Closure

under contexts of >ACKBO follows then by induction; contexts rooted by a non-AC

symbol are handled as in the proof for standard KBO.

If w(s) > w(t) then obviously w(s′) > w(t′). So we assume w(s) = w(t).

Let S = Oh(s), T = Oh(t), and U = Oh(u). Note that Oh(s′) = S] U and

Oh(t′) = T] U . Because >mul
ACKBO is closed under multiset sum, it suffices to

show that one of the cases (3a)–(3c) of Definition 8.19 holds for S and T . Let

f = root(s) and g = root(t). We distinguish the following cases.

• Suppose f
 h. We have S = S�≮h = {s}, and from Lemmata 8.29 and 8.30

we obtain S >mul
ACKBO T . Since T is a superset of T �≮h] T �V − S�V , (3a)

applies.

• Suppose f = h > g. We have T �≮h]T �V = ∅. If S�≮h 6= ∅, then (3a) applies.

Otherwise, since AC symbols are binary and T = {t}, |S| ≥ 2 > 1 = |T |.
Hence (3b) applies.

8.5. CORRECTNESS 87

• Suppose f = g = h. Then, s >ACKBO t must be derived by one of the cases

(3a)–(3c) for S and T .

• Suppose f, g < h. We have S�≮h = T �≮h] T �V = ∅, |S| = |T | = 1, and

S�<h = {s} >mul
ACKBO {t} = T �<h . Hence (3c) holds.

Note that f ≥ g since w(s) = w(t) and s >ACKBO t. Moreover, if t ∈ V then s =

fk(t) for some k > 0 with w(f) = 0, which entails f > h due to admissibility. 2

Closure under substitutions is the trickiest part since by substituting AC-

rooted terms for variables that appear in the top-flattening of a term, the struc-

ture of the term changes. In the proof, the multisets {t ∈ T | t /∈ V}, {tσ | t ∈ T},
and {Of (t) | t ∈ T} are denoted by T �F , Tσ, and Of (T), respectively.

Lemma 8.32 Let > be a precedence, f ∈ FAC, and 〈%,�〉 an order pair on terms

such that % and � are closed under substitutions and f(x, y) � x, y. Consider

terms s and t such that S = Of (s), T = Of (t), S ′ = Of (sσ), and T ′ = Of (tσ).

1. If S �f T then S ′ �f T ′.

2. If S %f T then S ′ �f T ′ or S ′ %f T ′. In the latter case |S|−|T | ≤ |S ′|−|T ′|
and S ′�<f �mul T ′�<f whenever S�<f �mul T �<f .

Proof. Let v be an arbitrary term. By the assumption on � we have either

{v} = Of (v) or both {v} �mul Of (v) and 1 < |Of (v)|. Hence, for any set V of

terms, either V = Of (V) or both V �mul Of (V) and |V | < |Of (V)|. Moreover,

for V = Of (v), the following equalities hold:

Of (vσ)�≮f = V �≮f σ] Of (V �Vσ)�≮f Of (vσ)�V = Of (V �Vσ)�V

To prove the lemma, assume S Af T for A ∈ {%,�}. We have S�≮f A
mul

T �≮f]U where U = (T − S)�V . Since multiset extensions preserve closure under

substitutions, S�≮f σ A
mul T �≮f σ] Uσ follows. Using the above (in)equalities, we

obtain

S ′�≮f = S�≮f σ] Of (S�Vσ)�≮f

Amul T �≮f σ] Of (S�Vσ)�≮f] Uσ
O T �≮f σ] Of (S�Vσ)�≮f] Of (Uσ)

= T �≮f σ] Of (S�Vσ)�≮f] Of (Uσ)�V] Of (Uσ)�≮f] Of (Uσ)�<f

P T �≮f σ] Of (T �Vσ)�≮f] Of (Uσ)�V

= T �≮f σ] Of (T �Vσ)�≮f] Of (T �Vσ)�V − Of (S�Vσ)�V

= T ′�≮f] T ′�V − S ′�V

88 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Here O denotes = if Uσ = Of (Uσ) and �mul if |Uσ| < |Of (Uσ)|, while P denotes

= if Uσ�<f = ∅ and) otherwise. Since 〈%mul,�mul〉 is an order pair with ⊇ ⊆
%mul and) ⊆ �mul, we obtain S ′ Af T ′.

It remains to show (2). If S ′ ≯f T ′ then O and P are both = and thus

Uσ = Of (Uσ) and Uσ�<f = ∅. Let X = S�V ∩ T �V . We have U = T �V −X.

• Since |W �Fσ| = |W �F | and |W | ≤ |Of (W)| for an arbitrary set W of terms,

we have |S ′| ≥ |S| − |X| + |Of (Xσ)|. From |Uσ| = |U | = |T �V | − |X| we

obtain |T ′| = |T �Fσ|+ |Of (Uσ)|+ |Of (Xσ)| = |T |− |X|+ |Of (Xσ)|. Hence

|S| − |T | ≤ |S ′| − |T ′| as desired.

• Suppose S�<f �mul T �<f . From Uσ�<f = ∅ we infer T �Vσ�
<
f ⊆ S�Vσ�

<
f .

Because S ′�<f = S�<f σ]S�Vσ�<f and T ′�<f = T �<f σ]T �Vσ�<f , closure under

substitutions of �mul (which it inherits from � and %) yields the desired

S ′�<f �mul T ′�<f . 2

Lemma 8.33 >ACKBO is closed under substitutions.

Proof. If s >ACKBO t is obtained by cases 0–1 in Definition 8.19, the proof for

standard KBO goes through. If (3a) or (3b) is used to obtain s >ACKBO t, ac-

cording to Lemma 8.32 one of these cases also applies to sσ >ACKBO tσ. The

final case is (3c). So Of (s)�
<
f >mul

ACKBO Of (t)�
<
f . Suppose sσ >ACKBO tσ can-

not be obtained by (3a) or (3b). Lemma 8.32(2) yields |Of (sσ)| = |Of (tσ)|
and Of (sσ)�<f >mul

ACKBO Of (tσ)�<f . Hence, case (3c) is applicable and we obtain

sσ >ACKBO tσ. 2

8.5.2 Correctness of >KV′

In this section, we prove that >KV′ is an AC-compatible simplification order.

The proof mimics the one given above for >ACKBO, but there are some subtle

differences. The easy proof of the following lemma is omitted.

Lemma 8.34 The pairs 〈≈AC, >kv〉 and 〈≥kv′ , >kv〉 are order pairs. 2

Lemma 8.35 The pair 〈≈AC, >KV′〉 is an order pair.

Proof. Similar to the proof of Lemma 8.28, except for case 3 of Definition 8.15,

where we need Lemma 8.34 and Theorem 2.7. 2

8.5. CORRECTNESS 89

The subterm property follows exactly as in the proof of Lemma 8.29; note that

the relation >01 has the subterm property, and we obviously have >01 ⊆ >KV′ .

Lemma 8.36 The order >KV′ has the subterm property. 2

Lemma 8.37 The order >KV′ is closed under contexts.

Proof. Suppose s >KV′ t. We follow the proof for >ACKBO in Lemma 8.31 and

consider here the case that w(s) = w(t). We will show that one of the cases

(3a)–(3c) in Definition 8.15 (8.13) is applicable to S = Oh(s) and T = Oh(t). Let

f = root(s) and g = root(t). The proof proceeds by case splitting according to

the derivation of s >KV′ t.

• Suppose s = fk(t) with k > 0 and t ∈ V . By admissibility, f is maximal

in the precedence. Hence, S�≮h = {s} ≥mul
kv′ {t}. We have |S| = |T | = 1 and

S >mul
KV′ T . Hence (3c) applies. (This case breaks down for >KV.)

• Suppose f = g /∈ FAC. We have S ≥mul
kv′ T , |S| = |T | = 1, and S = {s} >mul

KV′

{t} = T . Hence (3c) applies.

• The remaining cases are similar to the proof of Lemma 8.31, except that

we use Lemma 8.30 with 〈≥kv′ , >kv〉. 2

For closure under substitutions we need to extend Lemma 8.32 with the fol-

lowing case:

3. If S %f T and S ′ ≯f T ′ then S ′ − T ′ ⊇ Sσ − Tσ and Tσ − Sσ ⊇ T ′ − S ′.

Proof. We continue the proof of Lemma 8.32. From Of (Uσ) = Uσ we infer that

T ′ = T �Fσ] Uσ] Of (Xσ). On the other hand, S ′ = S�Fσ] Of (Y σ)] Of (Xσ)

with Y = S�V −X. Hence we obtain the following two inclusions:

T ′ − S ′ ⊆ T �Fσ] Uσ − S�Fσ
= T �Fσ] Uσ]Xσ − (S�F]Xσ) ⊆ Tσ − Sσ

S ′ − T ′ ⊇ S�Fσ − T �Fσ − Uσ
= S�Fσ]Xσ − (T �F] Uσ]Xσ) ⊇ Sσ − Tσ 2

Lemma 8.38 The order >KV′ is closed under substitutions.

90 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Proof. By induction on |s|, we verify that s >KV′ t implies sσ >KV′ tσ. If s >KV′ t

is derived by one of the cases 0, 1, 2, (3a), or (3b) in Definition 8.15 (8.13), then

the proof of Lemma 8.31 goes through. So suppose that s >KV′ t is derived by

case (3c) and further suppose that sσ >KV′ tσ can be derived neither by case

(3a) nor (3b). By definition we have Of (s) >mul
KV′ Of (t). This is equivalent6 to

Of (s)− Of (t) >mul
KV′ Of (t)− Of (s)

We obtain Of (s)σ − Of (t)σ >mul
KV′ Of (t)σ − Of (s)σ from the induction hypothesis

and thus Of (sσ) − Of (tσ) >mul
KV′ Of (tσ) − Of (sσ) by Lemma 8.32(3). Using the

earlier equivalence, we infer Of (sσ) >mul
KV′ Of (tσ) and hence case (3c) applies to

obtain the desired sσ >KV′ tσ. 2

The combination of the above results proves Theorem 8.18.

8.6 Complexity

In this section, we investigate complexities of membership problems for the AC-

compatible variants of KBO.

8.6.1 Membership Problem for >KV′

Deciding s >KV′ t is considerably difficult in theory; we show NP-hardness of this

problem by adapting the reduction technique of [76, Theorem 4.2].

Theorem 8.39 The decision problem for >KV′ is NP-hard.

Proof. It is sufficient to show NP-hardness of deciding S >mul
kv′ T since we can

easily construct terms s and t such that S >mul
kv′ T iff s >KV′ t. To wit, for S =

{s1, . . . , sn} and T = {t1, . . . , tm} we introduce an AC symbol ◦ and constants c

and d such that ◦ > c, d and define

s = s1 ◦ · · · ◦ sn ◦ c t = t1 ◦ · · · ◦ tm ◦ d ◦ d

The weights of c and d should be chosen so that w(s) = w(t). If S >mul
kv′ T then

case (3a) applies for s >KV′ t. Otherwise, S ≥mul
kv′ T implies n = m and thus

|O◦(s)| < |O◦(t)|. Hence neither case (3b) nor (3c) applies.

6This property is well-known for standard multiset extensions (involving a single strict

order). It is also not difficult to prove for the multiset extension defined in Definition 2.6.

8.6. COMPLEXITY 91

We reduce a non-empty CNF SAT problem φ = {C1, . . . , Cm} over propo-

sitional variables x1, . . . , xn to the decision problem Sφ >
mul
kv′ Tφ. The multisets

Sφ and Tφ will consist of terms in T ({a, f}, {x1, . . . , xn, y1, . . . , ym}), where a is

a constant with w(a) = w0 and f has arity m + 1. For each j ∈ {1, . . . ,m} and

literal l, we define

sj(l) =

yj if l ∈ Cj
a otherwise

Moreover, for each i ∈ {1, . . . , n} we define

t+i = f(xi, s1(xi), . . . , sm(xi))

t−i = f(xi, s1(¬xi), . . . , sm(¬xi))
ti = f(xi, a, . . . , a)

Note that w(t+i) = w(t−i) = w(ti) > w(yj) for all i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}. Finally, we define

Sφ = {t+1 , t−1 , . . . , t+n , t−n } Tφ = {t1, . . . , tn, y1, . . . , ym}

Note that for every i ∈ {1, . . . , n} there is no s ∈ Sφ such that s >kv ti. Hence

Sφ >
mul
kv′ Tφ iff Sφ can be written as {s1, . . . , sn, s′1, . . . , s′n} such that si ≥kv′ ti for

all i ∈ {1, . . . , n}, and for all j ∈ {1, . . . ,m} there exists an 1 ≤ i ≤ n such that

s′i >kv yj. It is easy to see that the only candidates for si are t+i and t−i .

Now suppose Sφ >
mul
kv′ Tφ with Sφ written as above. Consider the assignment

α defined as follows: α(xi) is true iff si = t−i . We claim that α satisfies every

Cj ∈ φ. We know that there exists i ∈ {1, . . . , n} such that s′i >kv yj and thus

also yj ∈ Var(s′i). This is only possible if xi ∈ Cj (when s′i = t+i) or ¬xi ∈ Cj
(when s′i = t−i). Hence, by construction of α, α satisfies Cj.

Conversely, suppose α satisfies φ. Let s′i = t+i and si = t−i if α(xi) is true

and s′i = t−i and si = t+i if α(xi) is false. We trivially have si ≥kv′ ti for all

i ∈ {1, . . . , n}. Moreover, for each j ∈ {1, . . . ,m}, Cj contains a literal l = (¬)xi

such that α(l) is true. By construction, yj ∈ Var(s′i) and thus s′i >kv yj. Since φ

is non-empty, m > 0 and hence Sφ >
mul
kv′ Tφ as desired. 2

8.6.2 Membership Problems for >ACKBO and >KV

In this section, we investigate complexity of membership problems for >KV and

>ACKBO. While the corresponding problem for >KV′ is NP-hard, it turns out that

these problems are polynomially decidable.

92 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Let S be a sequence of terms s1, . . . , sn. We denote by S[t]i the sequence

obtained by replacing si with t in S, and by S[]i the sequence obtained by

removing si from S. Moreover, we write {S} as a shorthand for the multiset

{s1, . . . , sn}.

Lemma 8.40 Let 〈%,�〉 be an order pair on terms such that ∼ := % \ � is

symmetric, and let S and T denote sequences of terms. If s ∼ t, then {S}]
{s} �mul {T}] {t} iff {S} �mul {T}.

Proof. The “if” direction is trivial. For the “only if” direction, we assume

S[s]i Amul
k T [t]j and show {S[]i} �mul {T []j}. We distinguish four cases.

• If i, j ≤ k then sj % tj = t ∼ s = si % ti and hence S[sj]i[]j Amul
k−1 T [ti]j[]i.

Since {S[sj]i[]j} = {S[]i} and {T [ti]j[]i} = {T []j}, we are done.

• If i ≤ k < j then sl � tj = t ∼ s = si % ti for some l > k. Hence

S[]i Amul
k−1 T [ti]j[]i.

• If j ≤ k < i then sj % tj = t ∼ s = si and thus sj � tl for every l > k such

that si � tl. Hence S[sj]i[]j Amul
k−1 T []j.

• The remaining case k < i, j is analogous to the previous case, and we obtain

S[]i Amul
k T []j. 2

Lemma 8.41 Let 〈%,�〉 be an order pair such that ∼ := % \ � is symmetric

and the decision problems for % and � are in P. Then, the decision problem for

�mul is in P.

Proof. Suppose we want to decide whether two multisets S and T satisfy S �mul

T . We first check if there exists a pair (s, t) ∈ S × T such that s ∼ t, which can

be done by testing s % t and s ≯ t at most |S|×|T | times. If such a pair is found

then according to Lemma 8.40, the problem is reduced to S − {s} �mul T − {t}.
Otherwise, we check for each t ∈ T whether there exists s ∈ S such that s � t,

which can be done by testing s � t at most |S| × |T | times. 2

Using the above lemma, we obtain the following result by a straightforward

induction argument.

Corollary 8.42 The decision problems for >ACKBO and >KV are in P. 2

8.6. COMPLEXITY 93

8.6.3 Orientability Problem for >KV

It is well-known [45] that KBO orientability is decidable in polynomial time. In

this section, we show that the corresponding problem for >KV is NP-hard even

for ground TRSs. The same result will be obtained for >ACKBO in Section 8.6.4.

To this end, we reduce a SAT instance to an orientability problem; let

φ = {C1, . . . , Cn} be a CNF SAT problem over propositional variables p1, . . . , pm.

We consider the signature Fφ consisting of an AC symbol +, constants c and

d1, . . . , dn, and unary function symbols p1, . . . , pm, a, b, and eji for all i ∈
{1, . . . , n} and j ∈ {0, . . . ,m}. We define a ground TRS Rφ on T (Fφ) such

that >KV orients Rφ iff φ is satisfiable. The TRS Rφ will contain the follow-

ing base system R0 that enforces certain constraints on the precedence and the

weight function:

a(c + c)→ a(c) + c b(c) + c→ b(c + c) a(b(b(c)))→ b(a(a(c)))

a(a(c))→ b(p1(c)) a(p1(c))→ b(p2(c)) · · · a(pm(c))→ b(a(c))

Lemma 8.43 The order >KV is compatible with R0 iff a > + > b and w(a) =

w(b) = w(pj) for all j ∈ {1, . . . ,m}. 2

Definition 8.44 Consider the clause Ci of the form {p′1, . . . , p′k,¬p′′1, . . . ,¬p′′l }.
Let U , U ′, V , and W denote the followings multisets:

U = {p′1(b(di)), . . . , p
′
k(b(di))} V = {p′′0(e0,1i), . . . , p′′l−1(e

l−1,l
i), p′′l (e

l,0
i)}

U ′ = {b(p′1(di)), . . . , b(p′k(di))} W = {p′′0(e0,0i), . . . , p′′l (e
l,l
i)}

where we write p′′0 for a and ej,ki for eji (e
k
i (c)). The TRS Rφ is defined as the

union of R0 and {`i → ri | 1 ≤ i ≤ n} with

`i = b(b(c + c)) +
∑
U +

∑
V ri = b(c) + b(c) +

∑
U ′ +

∑
W

Note that the symbols di and e0i , . . . , e
l
i are specific to the rule `i → ri.

Lemma 8.45 Let a > + > b. Then, Rφ ⊆ >KV for some 〈w,w0〉 iff for every i

there is some p such that p ∈ Ci with p ≮ + or ¬p ∈ Ci with + > p.

Proof. For the “if” direction we reason as follows. Consider a (partial) weight

function w such that w(a) = w(b) = w(pj) for every j ∈ {1, . . .m}. We obtain

R0 ⊆ >KV from Lemma 8.43. Further, consider Ci = {p′1, . . . , p′k,¬p′′1, . . . ,¬p′′l }
and `i, ri, U , V andW defined above. Let L = O+(`i) and R = O+(ri). We clearly

have L�≮+ = U�≮+ ∪ V �≮+ and R�≮+ = W �≮+. It is easy to show that w(`i) = w(ri).

We show `i >KV ri by distinguishing two cases.

94 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

1. First suppose that p′j ≮ + for some j ∈ {1, . . . , k}. We have p′j(b(di)) ∈
U�≮+. Extend the weight function w such that

w(di) = 1 + 2 ·max {w(e0i), . . . , w(eli)}

Then p′j(b(di)) >kv t for all terms t ∈ W and hence L�≮+ >mul
kv R�≮+. There-

fore `i >KV ri by case (3a).

2. Otherwise, U�≮+ = ∅ holds. By assumption + > p′′j for some j ∈ {1, . . . , l}.
Consider the smallest m such that + > p′′m. Extend the weight function w

such that

w(emi) = 1 + 2 ·max {w(eji) | j 6= m}

Then w(p′′m−1(e
m−1,m
i)) > w(p′′j (e

j,j
i)) for all j 6= m. From p′′m−1 > + we

infer p′′m−1(e
m−1,m
i) ∈ V �≮+. (Note that p′′m−1 = a > + if m = 1.) By

definition of m, p′′m(em,mi) /∈ W �≮+. It follows that L�≮+ >mul
kv R�≮+ and thus

`i >KV ri by case (3a).

Next we prove the “only if” direction. So suppose there exists a weight

function w such that Rφ ⊆ >KV. We obtain w(a) = w(b) = w(pj) for all

j ∈ {1, . . . ,m} from Lemma 8.43. It follows that w(`i) = w(ri) for every Ci ∈ φ.

Suppose for a proof by contradiction that there exists Ci ∈ φ such that + > p

for all p ∈ Ci and p ≮ + whenever ¬p ∈ Ci. So L�≮+ = V and R�≮+ = W . Since

|R| = |L| + 1, we must have `i >KV ri by case (3a) and thus V >kv W . Let

s be a term in V of maximal weight. We must have w(s) ≥ w(t) for all terms

t ∈ W . By construction of the terms in V and W , this is only possible if all

symbols eji have the same weight. It follows that all terms in V and W have the

same weight. Since |V | = |W | and for every term s′ ∈ V there exists a unique

term t′ ∈ W with root(s′) = root(t′), we conclude V =kv W , which provides the

desired contradiction. 2

After these preliminaries we are ready to prove NP-hardness.

Theorem 8.46 The (ground) orientability problem for >KV is NP-hard.

Proof. It is sufficient to prove that a CNF formula φ = {C1, . . . , Cn} is satisfiable

iff the correspondingRφ is orientable by >KV. Note that the size ofRφ is linear in

the size of φ. First suppose that φ is satisfiable. Let α be a satisfying assignment

for the atoms p1, . . . , pm. Define the precedence > as follows: a > + > b and

pj > + if α(pj) is true and + > pj if α(pj) is false. Then Rφ ⊆ >KV follows

8.6. COMPLEXITY 95

from Lemma 8.45. Conversely, if Rφ is compatible with >KV then we define an

assignment α for the atoms in φ as follows: α(p) is true if p ≮ + and α(p) is

false if + > p. We claim that α satisfies φ. Let Ci be a clause in φ. According to

Lemma 8.45, p ≮ + for one of the atoms p in Ci or + > p for one of the negative

literals ¬p in Ci. Hence α satisfies Ci by definition. 2

8.6.4 Orientability Problem for >ACKBO

Now we adapt the reasoning in the previous section to prove NP-hardness of

the orientability problem for >ACKBO. To this end, we introduce the TRS R′0
consisting of the rules

a(p1(c))→ p1(a(c)) · · · a(pm(c))→ pm(a(c))

together with a rule e0i (e
1
i (c)) → e1i (e

0
i (c)) for each clause Ci that contains a

negative literal. The next property is immediate.

Lemma 8.47 If R′0 ⊆ >ACKBO then e0i > e1i for all i ∈ {1, . . . , n} and a > pj for

all j ∈ {1, . . . ,m}. 2

We denote the TRS R0 ∪R′0 ∪ {`i → ri | 1 ≤ i ≤ n} by R′φ.

Lemma 8.48 Suppose a > + > b and the consequence of Lemma 8.47 holds.

Then R′φ ⊆ >ACKBO for some 〈w,w0〉 iff for every i there is some p such that

p ∈ Ci with p ≮ + or ¬p ∈ Ci with + > p.

Proof. The “if” direction is analogous to Lemma 8.45. Let us prove the “only

if” direction by contradiction. Suppose that + > p′j for every j ∈ {1, . . . , k},
p′′j ≮ + for every j ∈ {1, . . . , l}, and R′φ ⊆ >ACKBO. As discussed in the proof of

Lemma 8.45, for the multisets V and W of Definition 8.44 we obtain V >mul
ACKBO W

and all terms in V and W have the same weight. With help of Lemma 8.47 we

infer that a(e0i (e
0
i (c))) ∈ W is greater than every other term in V and W . This

contradicts V >mul
ACKBO W . 2

Now the desired result follows immediately.

Corollary 8.49 The ground orientability problem for >ACKBO is NP-hard. 2

The overview of complexity results are presented in Table 8.1.

96 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Table 8.1: Complexity results (KV is the ground version of >KV).

problem KBO AC-KBO KV KV′

membership P P P NP-hard

orientability P NP-hard NP-hard NP-hard

8.7 Subterm Coefficients

Subterm coefficients were introduced by Ludwig and Waldmann [58] in order to

cope with rewrite rules like f(x) → g(x, x) which violate the variable condition.

A subterm coefficient function is a partial mapping sc : F ×N→ N such that for

a function symbol f of arity n we have sc(f, i) > 0 for all i ∈ {1, . . . , n}. Given

a weight function 〈w,w0〉 and a subterm coefficient function sc, the weight of a

term is inductively defined as follows:

w(t) =

w0 if t ∈ V

w(f) +
∑

1≤i≤n

s(f, i) · w(ti) if t = f(t1, . . . , tn)

The variable coefficient vc(x, t) of a variable x in a term t is inductively

defined as follows: vc(x, t) = 1 if t = x, vc(x, t) = 0 if t ∈ V \ {x}, and

vc(x, f(t1, . . . , tn)) = sc(f, 1) · vc(x, t1) + · · ·+ sc(f, n) · vc(x, tn).

Definition 8.50 The order >sc
ACKBO is obtained from Definition 8.19 by replacing

the condition “ |s|x ≥ |t|x for all x ∈ V” with “ vc(x, s) ≥ vc(x, t) for all x ∈ V”

and using the modified weight function introduced above.

In order to guarantee AC compatibility of >sc
ACKBO, the subterm coefficient

function sc has to assign the value 1 to arguments of AC symbols. This follows

by considering the terms t ◦ (u ◦ v) and (t ◦ u) ◦ v for an AC symbol ◦ with

sc(◦, 1) = m and sc(◦, 2) = n. We have

w(t ◦ (u ◦ v)) = 2 · w(◦) +m · w(t) +mn · w(u) + n2 · w(v)

w((t ◦ u) ◦ v) = 2 · w(◦) +m2 · w(t) +mn · w(u) + n · w(v)

Since w(t ◦ (u ◦ v)) = w((t ◦ u) ◦ v) must hold for all possible terms t, u, and

v, it follows that m = m2 and n2 = n, implying m = n = 1.7 The proof of the

following theorem is very similar to the one of Theorem 8.20 and hence omitted.

7This condition is also obtained by restricting [7, Proposition 4] to linear polynomials.

8.8. EXPERIMENTS 97

Theorem 8.51 If sc(f, 1) = sc(f, 2) = 1 for every function symbol f ∈ FAC

then >sc
ACKBO is an AC-compatible simplification order. 2

Example 8.52 Consider the following TRS R with f ∈ FAC:

g(0, f(x, x))→ x (8.3)

g(x, s(y))→ g(f(x, y), 0) (8.4)

g(s(x), y)→ g(f(x, y), 0) (8.5)

g(f(x, y), 0)→ f(g(x, 0), g(y, 0)) (8.6)

Termination of R was shown using AC dependency pairs in [50, Example 4.2.30].

Consider a precedence g > f > s > 0, and weights and subterm coefficients given

by w0 = 1 and the following interpretation A, mapping function symbols in F to

linear polynomials over N:

sA(x) = x+ 6 gA(x, y) = 4x+ 4y + 5 fA(x, y) = x+ y + 3 0A = 1

It is easy to check that the first three rules result in a weight decrease. The left-

and right-hand side of rule (8.6) are both interpreted as 4x + 4y + 21, so both

terms have weight 29, but since g > f we conclude termination of R from case

1 in Definition 8.19 (8.50). Note that termination of R cannot be shown by

AC-RPO or any of the previously considered versions of AC-KBO.

8.8 Experiments

We ran experiments on a server equipped with eight dual-core AMD Opteron R©

processors 885 running at a clock rate of 2.6GHz with 64GB of main memory. The

different versions of AC-KBO considered in this chapter as well as AC-RPO [65]

were implemented on top of TTT2 using encodings in SAT/SMT. These encodings

resemble those for standard KBO [91] and transfinite KBO [81]. The encoding

of multiset extensions of order pairs are based on [12], but careful modifications

were required to deal with submultisets induced by the precedence.

For termination experiments, our test set comprises all AC problems in the

Termination Problem Data Base,8 all examples in this chapter, some further

problems harvested from the literature, and constraint systems produced by the

completion tool mkbtt [79] (145 TRSs in total). The timeout was set to 60 sec-

onds. The results are summarized in Table 8.2, where we list for each order

8http://termination-portal.org/wiki/TPDB

http://termination-portal.org/wiki/TPDB

98 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Table 8.2: Experiments on 145 termination problems.

orientability AC-DP

method yes T.O. time yes T.O. time

AC-KBO 32 0 1.7 66 3 463.1

Steinbach 23 0 1.6 50 2 463.2

Korovin & Voronkov 30 0 2.0 66 4 474.3

KV′ 30 0 2.1 66 3 472.4

subterm coefficients 37 0 47.1 68 2 464.7

AC-RPO 63 0 2.8 79 4 501.5

total 72 94

Table 8.3: Experiments on 67 completion problems.

method success T.O. time

AC-KBO 25 37 2278.6

Steinbach 24 36 2235.4

Korovin & Voronkov 25 37 2279.4

KV′ 25 37 2279.6

subterm coefficients 28 26 1724.7

AC-RPO 28 26 1701.6

total 31

the number of successful termination proofs, the total time, and the number of

timeouts (T.O.). The ‘orientability’ column directly applies the order to orient

all the rules. Although AC-RPO succeeds on more input problems, termination

of 9 TRSs could only be established by (variants of) AC-KBO. We found that

our definition of AC-KBO is about equally powerful as Korovin and Voronkov’s

order, but both are considerably more useful than Steinbach’s version. When

it comes to proving termination, we did not observe a difference between Def-

initions 8.13 and 8.15. Subterm coefficients clearly increase the success rate,

although efficiency is affected. In all settings partial precedences were allowed.

The ‘AC-DP’ column applies the order in the AC-dependency pair framework

of [1], in combination with argument filterings and usable rules. Here AC symbols

in dependency pairs are unmarked, as proposed by Marché and Urbain [60] in [60].

In this setting the variants of AC-KBO become considerably more powerful and

competitive to AC-RPO, since argument filterings relax the variable condition,

as pointed out Zankl et al. [91].

8.8. EXPERIMENTS 99

For completion experiments, we ran the normalized completion tool mkbtt

with AC-RPO and the variants of AC-KBO for termination checks on 67 equa-

tional systems collected from the literature. The overall timeout was set to 60

seconds, the timeout for each termination check to 1.5 seconds. Table 8.3 sum-

marizes our results, listing for each order the number of successful completions,

the total time, and the number of timeouts. All experimental details, source

code, and TTT2 binaries are available online.9

We close this chapter with an example that can be completed using AC-KBO,

whereas AC-RPO does not succeed.

Example 8.53 Consider the following TRS R [60] for addition of binary num-

bers:

+ 0→ # x0 + y0→ (x+ y)0 x1 + y1→ (x+ y + #1)0

x+ #→ x x0 + y1→ (x+ y)1

Here + ∈ FAC, 0 and 1 are unary operators in postfix notation, and # denotes

the empty bit sequence. For example, #100 represents the number 4. This TRS

is not compatible with AC-RPO but AC termination can easily be shown by AC-

KBO, for instance with the weight function 〈w,w0〉 with w(+) = 0, w0 = w(0) =

w(#) = 1, and w(1) = 3. The system can be completed into an AC convergent

TRS using AC-KBO but not with AC-RPO.

9http://cl-informatik.uibk.ac.at/software/ackbo

http://cl-informatik.uibk.ac.at/software/ackbo

100 CHAPTER 8. AC-COMPATIBLE KNUTH-BENDIX ORDERS

Chapter 9

Conclusion

In this thesis, we have considered unifying existing techniques for proving ter-

mination of term rewrite systems. In Chapter 3, we summarized the variants of

the order of Knuth and Bendix [43]. There we presented a modification to the

generalized KBO of Middeldorp and Zantema [62] in order to properly generalize

the original KBO.

In Chapter 4, we introduced WPO that generalize not only KBO but also

most of the well-known reduction orders. As instances of WPO, we presented the

following orders: WPO(Sum) that subsumes KBO, WPO(Pol) that subsumes

POLO and TKBO, WPO(Max) that subsumes LPO, WPO(MSum) that uni-

fies KBO and LPO, and WPO(MPol) that unifies all of them. In Chapter 5, we

introduced a partial status for WPO to obtain a reduction pair, and presented

further refinements. We have shown that as a reduction pair, WPO subsumes

KBO, LPO and TKBO with argument filters, POLO, and matrix interpreta-

tions. In Chapter 6, we also presented SMT encodings for these techniques.

The orientability problems of WPO(Sum), WPO(Max) and WPO(MSum) are

decidable, since they are reduced to satisfiability problems of linear integer arith-

metic which is known to be decidable.

In Chapter 7, we described the implementation and techniques of the termi-

nation tool NaTT, the first tool that implements WPO. The implementation of

WPO is described in detail, and some techniques for cooperating SMT solvers

are presented. Together with these efforts, NaTT is one of the most efficient and

strongest tools for proving termination of TRSs. Through experiments using

NaTT, we verified the significance of the proposed techniques of this thesis.

In Chapter 8, we revisited the two variants of AC-compatible extensions of

KBO. We extended the first version >S introduced by Steinbach [70] to a new

101

102 CHAPTER 9. CONCLUSION

version >ACKBO, and presented a rigorous correctness proof. By this we conclude

correctness of >S, which had been put in doubt in [46]. We also modified the

order >KV by Korovin and Voronkov [46] to a new version >KV′ which is monotone

on non-ground terms, in contrast to >KV. We also presented several complexity

results regarding these variants. While a polynomial time algorithm is known

for the orientability problem of standard KBO [45], the problem becomes NP-

hard even for the ground version of >KV, as well as for our >ACKBO. Somewhat

unexpectedly, even deciding >KV′ is NP-hard while it is linear for standard KBO

[57]. In contrast, the corresponding problem is polynomial-time for our >ACKBO.

Finally, we implemented these variants of AC-compatible KBO as well as the AC-

dependency pair framework of Alarcón et al. [1]. We presented full experimental

results both for termination proving and normalized completion.

Future Works

When combining WPO(Pol) and WPO(Max), we only considered a straight-

forward method using ‘weight statuses’, and moreover heuristically fixed the

weight status. We leave it for future work to search for other possible weight

statuses, or to find more sophisticated combinations of max-polynomials such as

fA(x, y, z) = x+max(y, z), or even trying other algebras including ordinal inter-

pretations [81, 83]. For efficiency, real arithmetic is also attractive to consider,

since SMT for real arithmetic is often more efficient than for integer arithmetic.

To this end, we will have to reconstruct the proof of well-foundedness of WPO,

since our current proof relies on well-foundedness of the underlying order, which

does not hold anymore for real numbers.

Another obvious future work is to combine results of Chapter 8 with WPO

to introduce an AC-compatible variant of WPO. Moreover, it might be also

interesting to extend WPO for higher-order case. Since RPOLO has strength in

its higher-order version [8], we expect their technique can be extended for WPO.

Because of its efficiency, NaTT is especially strong on larger systems. In

general, a larger input TRS requires a larger proof script to be produced, which

is quite difficult to be checked by hand. Thus we leave it for future work to

produce proofs in the certifiable proof format.1

1http://cl-informatik.uibk.ac.at/software/cpf/

http://cl-informatik.uibk.ac.at/software/cpf/

Bibliography

[1] B. Alarcón, S. Lucas, and J. Meseguer. A dependency pair framework for

A∨C-termination. In Proceedings of 8th International Workshop on Rewrit-

ing Logic and its Applications (WRLA ’10), Volume 6381 of Lecture Notes

in Computer Science, pages 36–52, 2010.

[2] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.

Theoretical Computer Science, 236(1-2):133–178, 2000.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-

versity Press, 1998.

[4] L. Bachmair. Assosiative-commutative reduction orderings. Information

Processing Letters, 43:21–27, 1992.

[5] L. Bachmair and D. A. Plaisted. Termination orderings for associative-

commutative rewriting systems. Journal of Symbolic Computation, 1:329–

349, 1985.

[6] A. M. Ben-Amram and M. Codish. A SAT-based approach to size change

termination with global ranking functions. In Proceedings of 14th Tools

and Algorithms for the Construction and Analysis of Systems (TACAS ’08),

Volume 4963 of Lecture Notes in Computer Science, pages 218–232, 2008.

[7] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by poly-

nomial interpretations and its implementation. Science of Computer Pro-

gramming, 9(2):137–159, 1987.

[8] M. Bofill, C. Borralleras, E. Rodŕıguez-Carbonell, and A. Rubio. The re-

cursive path and polynomial ordering for first-order and higher-order terms.

Journal of Logic and Computation, 23(1):263–305, 2013.

103

104 BIBLIOGRAPHY

[9] C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic

path orderings. In Proceedings of 17th International Conference on Auto-

mated Deduction (CADE ’00), Volume 1831 of Lecture Notes in Computer

Science, pages 346–364, 2000.

[10] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodŕıguez-Carbonell, and

A. Rubio. Solving non-linear polynomial arithmetic via SAT modulo linear

arithmetic. In Proceedings of 22nd International Conference on Automated

Deduction (CADE ’09), Volume 5663 of Lecture Notes in Computer Science,

pages 294–305, 2009.

[11] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodŕıguez-Carbonell, and

A. Rubio. SAT modulo linear arithmetic for solving polynomial constraints.

Journal of Automated Reasoning, 48(1):107–131, 2012.

[12] M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving

for termination proofs with recursive path orders and dependency pairs.

Journal of Automated Reasoning, 49(1):53–93, 2012.

[13] E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving termination

of rewriting with cime. In 6th International Workshop on Termination

(WST ’03), pages 71–73, 2003.

[14] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer

Science, 17(3):279–301, 1982.

[15] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,

3(1–2):69–115, 1987.

[16] N. Dershowitz. Termination by abstraction. In Proceedings of 20th In-

ternational Conference on Logic Programming (ICLP ’04), Volume 3132 of

Lecture Notes in Computer Science, pages 1–18, 2004.

[17] N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer

Science, 142(2):179–207, 1995.

[18] N. Dershowitz, J. Hsiang, A. Josephson, and D. Plaisted. Associative-

commutative rewriting. In Proceedings of 8th International Joint Conference

on Artificial Intelligence (IJCAI ’83), pages 940–944, 1983.

BIBLIOGRAPHY 105

[19] J. Dick, J. Kalmus, and U. Martin. Automating the Knuth Bendix ordering.

Acta Infomatica, 28:95–119, 1990.

[20] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for

proving termination of term rewriting. Journal of Automated Reasoning, 40

(2-3):195–220, 2008.

[21] S. Falke and D. Kapur. A term rewriting approach to the automated termi-

nation analysis of imperative programs. In Proceedings of 22nd International

Conference on Automated Deduction (CADE ’09), Volume 5663 of Lecture

Notes in Artificial Intelligence, pages 277–293, 2009.

[22] S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using

compiler intermediate languages. In Proceedings of 22nd International Con-

ference on Rewriting Techniques and Applications (RTA ’11), Volume 10 of

Leibniz International Proceedings in Informatics, pages 41–50, 2011.

[23] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and

H. Zankl. SAT solving for termination analysis with polynomial interpreta-

tions. In Proceedings of 10th Theory and Applications of Satisfiability Test-

ing (SAT ’07), Volume 4501 of Lecture Notes in Computer Science, pages

340–354, 2007.

[24] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and

H. Zankl. Maximal termination. In Proceedings of 19th International Con-

ference on Rewriting Techniques and Applications (RTA ’08), Volume 5117

of Lecture Notes in Computer Science, pages 110–125, 2008.

[25] A. Geser. An improved general path order. Applicable Algebra in Engineer-

ing, Communication and Computing, 7(6):469–511, 1996.

[26] J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In

Proceedings of 12th International Conference on Rewriting Techniques and

Applications (RTA ’01), Volume 2051 of Lecture Notes in Computer Science,

pages 93–107, 2001.

[27] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair frame-

work: Combining techniques for automated termination proofs. In Proceed-

ings of 11th International Conference on Logic for Programming, Artificial

Intelligence and Reasoning (LPAR ’04), Volume 3452 of Lecture Notes in

Artificial Intelligence, pages 75–90, 2004.

106 BIBLIOGRAPHY

[28] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving

termination of higher-order functions. In Proceedings of 5th International

Symposium on Frontiers of Combining Systems (FroCoS ’05), Volume 3717

of Lecture Notes in Artificial Intelligence, pages 216–231, 2005.

[29] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic

termination proofs in the dependency pair framework. In Proceedings of

3rd International Joint Conference on Automated Reasoning (IJCAR ’06),

Volume 4130 of Lecture Notes in Artificial Intelligence, pages 281–286, 2006.

[30] J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated

termination analysis for Haskell: From term rewriting to programming lan-

guages. In Proceedings of 17th International Conference on Rewriting Tech-

niques and Applications (RTA ’06), Volume 4098 of Lecture Notes in Com-

puter Science, pages 297–312, 2006.

[31] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and

improving dependency pairs. Journal of Automated Reasoning, 37(3):155–

203, 2006.

[32] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thie-

mann. Automated termination proofs for Haskell by term rewriting. ACM

Transactions on Programming Languages and Systems, 33(7), 2011.

[33] I. Gnaedig and P. Lescanne. Proving termination of associative commu-

tative rewriting systems by rewriting. In Proceedings of 8th International

Conference on Automated Deduction (CADE ’86), Volume 230 of Lecture

Notes in Computer Science, pages 52–61, 1986.

[34] N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proceedings

of 15th International Conference on Rewriting Techniques and Applications

(RTA ’04), Volume 3091 of Lecture Notes in Computer Science, pages 249–

268, 2004.

[35] N. Hirokawa and A. Middeldorp. Polynomial interpretations with nega-

tive coefficients. In Proceedings of 7th International Conference on Artifi-

cial Intelligence and Symbolic Mathematical Computation (AISC ’04), Vol-

ume 3249 of Lecture Notes in Artificial Intelligence, pages 185–198, 2004.

[36] N. Hirokawa and A. Middeldorp. Automating the dependency pair method.

Information and Computation, 199(1,2):172–199, 2005.

BIBLIOGRAPHY 107

[37] N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination and

complexity. Journal of Automated Reasoning, 50(3):279–315, 2013.

[38] D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix

interpretations. In Proceedings of 16th International Conference on Rewrit-

ing Techniques and Applications (RTA ’06), Volume 4098 of Lecture Notes

in Computer Science, pages 328–342, 2006.

[39] H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of

Automated Reasoning, 21:23–38, 1998.

[40] S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering,

1980. Unpublished note.

[41] D. Kapur and G. Sivakumar. Proving associative-communicative termina-

tion using RPO-compatible orderings. In Automated Deduction in Classical

and Non-Classical Logics, Selected Papers, Volume 1761 of Lecture Notes in

Computer Science, pages 39–61, 1998.

[42] D. Kapur, G. Sivakumar, and H. Zhang. A new method for proving termina-

tion of AC-rewrite systems. In Proceedings of 10th Foundations of Software

Technology and Theoretical Computer Science (FSTTCS ’90), Volume 472

of Lecture Notes in Computer Science, pages 133–148, 1990.

[43] D.E. Knuth and P. Bendix. Simple word problems in universal algebras.

In Computational Problems in Abstract Algebra, pages 263–297. Pergamon

Press, New York, 1970.

[44] A. Koprowski and J. Waldmann. Max/plus tree automata for termination

of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

[45] K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix

order. Information and Computation, 183(2):165–186, 2003.

[46] K. Korovin and A. Voronkov. An AC-compatible Knuth-Bendix order.

In Proceedings of 19th International Conference on Automated Deduction

(CADE ’03), Volume 2741 of Lecture Notes in Artificial Intelligence, pages

47–59, 2003.

[47] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termina-

tion Tool 2. In Proceedings of 20th International Conference on Rewriting

108 BIBLIOGRAPHY

Techniques and Applications (RTA ’09), Volume 5595 of Lecture Notes in

Computer Science, pages 295–304, 2009.

[48] L. Kovács, G. Moser, and A. Voronkov. On transfinite Knuth-Bendix orders.

In Proceedings of 23rd International Conference on Automated Deduction

(CADE ’11), Volume 6803 of Lecture Notes in Artificial Intelligence, pages

384–399, 2011.

[49] J. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyia’s conjec-

ture. Transactions of the American Mathematical Society, 95(2):210–225,

1960.

[50] K. Kusakari. AC-Termination and Dependency Pairs of Term Rewriting

Systems. PhD thesis, JAIST, 2000.

[51] K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency

pairs. IEICE Transactions on Information and Systems, E84-D(5):439–447,

2001.

[52] K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transfor-

mation. In Proceedings of 1st International Symposium on Principles and

Practice of Declarative Programming (PPDP ’99), Volume 1702 of Lecture

Notes in Computer Science, pages 47–61, 1999.

[53] D. Lankford. Canonical algebraic simplification in computational logic.

Technical Report ATP-25, University of Texas, 1975.

[54] D. Lankford. Some approaches to equality for computational logic: A survey

and assessment. Technical Report ATP-36, University of Texas, 1977.

[55] D. Lankford. On proving term rewrite systems are Noetherian. Technical

Report MTP-3, Louisiana Technical University, 1979.

[56] P. Lescanne. Computer experiments with the REVE term rewriting system

generator. In Proceedings of 10th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages (POPL ’83), pages 99–108, 1983.

[57] B. Löchner. Things to know when implementing KBO. Journal of Automated

Reasoning, 36(4):289–310, 2006.

BIBLIOGRAPHY 109

[58] M. Ludwig and U. Waldmann. An extension of the Knuth-Bendix order-

ing with LPO-like properties. In Proceedings of 14th International Con-

ference on Logic for Programming, Artificial Intelligence and Reasoning

(LPAR ’07), Volume 4790 of Lecture Notes in Artificial Intelligence, pages

348–362, 2007.

[59] Z. Manna and S. Ness. On the termination of Markov algorithms. In Proceed-

ings of the 3rd Hawaii International Conference on System Science, pages

789–792, 1970.

[60] C. Marché and X. Urbain. Modular and incremental proofs of AC-

termination. Journal of Symbolic Computation, 38(1):873–897, 2004.

[61] U. Martin. How to choose the weights in the Knuth Bendix ordering. In

Proceedings of 2nd International Conference on Rewriting Techniques and

Applications (RTA ’87), pages 42–53, 1987.

[62] A. Middeldorp and H. Zantema. Simple termination of rewrite systems.

Theoretical Computer Science, 175(1):127–158, 1997.

[63] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated ter-

mination analysis of java bytecode by term rewriting. In Proceedings of

21st International Conference on Rewriting Techniques and Applications

(RTA ’10), Volume 6 of Leibniz International Proceedings in Informatics,

pages 259–276, 2010.

[64] U.S. Reddy. Term rewriting induction. In Proceedings of 10th International

Conference on Automated Deduction (CADE ’90), Volume 449 of Lecture

Notes in Computer Science, pages 162–177, 1990.

[65] A. Rubio. A fully syntactic AC-RPO. Information and Computation, 178

(2):515–533, 2002.

[66] A. Rubio and R. Nieuwenhuis. A total AC-compatible ordering based on

RPO. Theoretical Computer Science, 142(2):209–227, 1995.

[67] F. Schernhammer and B. Gramlich. VMTL – a modular termination labo-

ratory. In Proceedings of 20th International Conference on Rewriting Tech-

niques and Applications (RTA ’09), Volume 5595 of Lecture Notes in Com-

puter Science, pages 285–294, 2009.

110 BIBLIOGRAPHY

[68] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated

termination analysis for logic programs by term rewriting. In Proceedings

of 16th International Symposium on Logic-Based Program Synthesis and

Transformation (LOPSTR ’06), Volume 4407 of Lecture Notes in Computer

Science, pages 177–193, 2007.

[69] J. Steinbach. Extensions and comparison of simplification orders. In Pro-

ceedings of 3rd International Conference on Rewriting Techniques and Ap-

plications (RTA ’89), Volume 355 of Lecture Notes in Computer Science,

pages 434–448, 1989.

[70] J. Steinbach. AC-termination of rewrite systems: A modified Knuth-Bendix

ordering. In Proceedings of 2nd International Conference on Algebraic and

Logic Programming (ALP ’90), Volume 463 of Lecture Notes in Computer

Science, pages 372–386, 1990.

[71] C. Sternagel and R. Thiemann. Generalized and formalized uncurrying. In

Proceedings of 8th International Symposium on Frontiers of Combining Sys-

tems (FroCoS ’11), Volume 6989 of Lecture Notes in Artificial Intelligence,

pages 243–258, 2011.

[72] C. Sternagel and R. Thiemann. Formalizing Knuth-Bendix orders and

Knuth-Bendix completion. In Proceedings of 24th International Conference

on Rewriting Techniques and Applications (RTA ’13), Volume 21 of Leibniz

International Proceedings in Informatics, pages 287–302, 2013.

[73] T. Sternagel and H. Zankl. KBCV – knuth-bendix completion visualizer. In

Proceedings of 6th International Joint Conference on Automated Reasoning

(IJCAR ’12), Volume 7364 of Lecture Notes in Computer Science, pages

530–536, 2012.

[74] TeReSe. Term Rewriting Systems. Volume 55 of Cambridge Tracts in The-

oretical Computer Science. Cambridge University Press, 2003.

[75] TermComp. The termination competition, 2013. URL http://termcomp.

uibk.ac.at/termcomp/.

[76] R. Thiemann, G. Allais, and J. Nagele. On the formalization of termination

techniques based on multiset orderings. In Proceedings of 23rd International

Conference on Rewriting Techniques and Applications (RTA ’12), Volume 15

of Leibniz International Proceedings in Informatics, pages 339–354, 2012.

http://termcomp.uibk.ac.at/termcomp/
http://termcomp.uibk.ac.at/termcomp/

BIBLIOGRAPHY 111

[77] TPDB. The termination problem data base, version 8.0.6, 2013. URL

http://termination-portal.org/wiki/TPDB.

[78] I. Wehrman, A. Stump, and E. Westbrook. Slothrop: Knuth-Bendix com-

pletion with a modern termination checker. In Proceedings of 17th Inter-

national Conference on Rewriting Techniques and Applications (RTA ’06),

Volume 4098 of Lecture Notes in Computer Science, pages 287–296, 2006.

[79] S. Winkler. Termination Tools in Automated Reasoning. PhD thesis, Uni-

versity of Innsbruck, 2013.

[80] S. Winkler and A. Middeldorp. Termination tools in ordered completion. In

Proceedings of 5th International Joint Conference on Automated Reasoning

(IJCAR ’10), Volume 6173 of Lecture Notes in Artificial Intelligence, pages

518–532, 2010.

[81] S. Winkler, H. Zankl, and A. Middeldorp. Ordinals and Knuth-Bendix

orders. In Proceedings of 18th International Conference on Logic for Pro-

gramming, Artificial Intelligence and Reasoning (LPAR ’12), Volume 7180

of LNCS Advanced Research in Computing and Software Science, pages

420–434, 2012.

[82] S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Multi-completion

with termination tools. Journal of Automated Reasoning, 50(3):317–354,

2013.

[83] S. Winkler, H. Zankl, and A. Middeldorp. Beyond Peano arithmetic – au-

tomatically proving termination of the Goodstein sequence. In Proceedings

of 24th International Conference on Rewriting Techniques and Applications

(RTA ’13), Volume 21 of Leibniz International Proceedings in Informatics,

pages 335–351, 2013.

[84] H. Xi. Towards automated termination proofs through “freezing”. In Pro-

ceedings of 9th International Conference on Rewriting Techniques and Ap-

plications (RTA ’98), Volume 1379 of Lecture Notes in Computer Science,

pages 271–285, 1998.

[85] A. Yamada, K. Kusakari, and T. Sakabe. Unifying the Knuth-Bendix, recur-

sive path and polynomial orders. In Proceedings of 15th International Sym-

posium on Principles and Practice of Declarative Programming (PPDP ’13),

pages 181–192, 2013.

http://termination-portal.org/wiki/TPDB

112 BIBLIOGRAPHY

[86] A. Yamada, K. Kusakari, and T. Sakabe. Partial status for KBO. In Pro-

ceedings of 13th International Workshop on Termination (WST ’13), pages

74–78, 2013.

[87] A. Yamada, K. Kusakari, and T. Sakabe. A unified order for termination

proving. Science of Computer Programming, 2014. To apear, available as

CoRR abs/1404.6245.

[88] A. Yamada, K. Kusakari, and T. Sakabe. Nagoya Termination Tool. In

Proceedings of Joint 25th International Conference on Rewriting Techniques

and Applications and 12th International Conference on Typed Lambda Cal-

culi and Applications (RTA-TLCA ’14), Volume 8560 of Lecture Notes in

Computer Science, pages 466–475, 2014. To appear, full version appeared

as CoRR abs/1404.6626.

[89] A. Yamada, S. Winkler, N. Hirokawa, and A. Middeldorp. AC-KBO re-

visited. In Proceedings of 12th International Symposium on Functional

and Logic Programming (FLOPS ’14), Volume 8475 of Lecture Notes in

Computer Science, pages 319–335, 2014. Full version appeared as CoRR

abs/1403.0406.

[90] H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arith-

metic. In Proceedings of 16th International Conference on Logic for Pro-

gramming, Artificial Intelligence and Reasoning (LPAR ’10), Volume 6355

of Lecture Notes in Artificial Intelligence, pages 481–500, 2010.

[91] H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. Journal of

Automated Reasoning, 43(2):173–201, 2009.

[92] H. Zantema. Termination of term rewriting: interpretation and type elimi-

nation. Journal of Symbolic Computation, 17(1):23–50, 1994.

[93] H. Zantema. The termination hierarchy for term rewriting. Applicable Al-

gebra in Engineering, Communication and Computing, 12:3–19, 2001.

	Abstract
	Introduction
	Preliminaries
	Relations and Orders
	Terms and Rewriting
	Reduction Orders
	Interpretation Methods
	Recursive Path Orders
	Knuth-Bendix Order

	Dependency Pairs
	Weakly Monotone Interpretations
	Argument Filtering

	Variants of the Knuth-Bendix Order
	Generalized Knuth-Bendix Order
	Lankford's Polynomial KBO
	Transfinite KBO

	The Weighted Path Order
	[2]The Definition of Weighted Path Order
	WPO(Sum)
	WPO(Pol)
	WPO(Max)
	WPO(MPol) and WPO(MSum)

	WPO as a Reduction Pair
	WPO with Partial Status
	Refinements
	Comparison with Other Reduction Pairs
	WPO v.s. Argument Filtering
	WPO v.s. Interpretation Methods
	WPO v.s. RPOLO

	SMT Encoding
	The Common Structure
	Encoding WPO(Pol) and WPO(Sum)
	Encoding WPO(Max)
	Encoding WPO(MPol) and WPO(MSum)
	Encoding WPO(Mat)
	Encoding for Reduction Orders
	Optimizations
	Fixing w0
	Fixing Weight Status
	Reducing Recursive Checks

	Nagoya Termination Tool
	Implementation of the DP Framework
	Implementation of WPO
	Obtaining Well-known Reduction Pairs

	Cooperation with SMT Solvers
	Use of Interactive Features of SMT Solvers
	Use of Linear Arithmetic

	Design
	Command Line Interface
	The Default Strategy

	Experiments
	Results for Reduction Orders
	Results for Reduction Pairs
	Effect of Linearlization
	Effect of Interactive SMT Solving
	Results for Combination

	Assessment

	AC-Compatible Knuth-Bendix Orders
	Rewriting modulo AC
	Steinbach's Order
	Korovin and Voronkov's Orders
	Ground Case
	Non-ground Case

	AC-KBO
	Correctness
	Correctness of AC-KBO
	Correctness of > KV'

	Complexity
	Membership Problem for > KV'
	Membership Problems for > ACKBO and > KV
	Orientability Problem for > KV
	Orientability Problem for > ACKBO

	Subterm Coefficients
	Experiments

	Conclusion

