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Non-Brownian dynamics and strategy of amoeboid cell locomotion
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Amoeboid cells such as Dictyostelium discoideum and Madin-Darby canine kidney cells show the non-
Brownian dynamics of migration characterized by the superdiffusive increase of mean-squared displacement. In
order to elucidate the physical mechanism of this non-Brownian dynamics, a computational model is developed
which highlights a group of inhibitory molecules for actin polymerization. Based on this model, we propose a
hypothesis that inhibitory molecules are sent backward in the moving cell to accumulate at the rear of cell. The
accumulated inhibitory molecules at the rear further promote cell locomotion to form a slow positive feedback
loop of the whole-cell scale. The persistent straightforward migration is stabilized with this feedback mechanism,
but the fluctuation in the distribution of inhibitory molecules and the cell shape deformation concurrently interrupt
the persistent motion to turn the cell into a new direction. A sequence of switching behaviors between persistent
motions and random turns gives rise to the superdiffusive migration in the absence of the external guidance
signal. In the complex environment with obstacles, this combined process of persistent motions and random turns
drives the simulated amoebae to solve the maze problem in a highly efficient way, which suggests the biological
advantage for cells to bear the non-Brownian dynamics.
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I. INTRODUCTION

Cell migration plays crucial roles in many processes includ-
ing neuronal patterning, wound healing, and embryogenesis.
Biochemical and cell-biological experiments have revealed
that there is a common mechanism underlying cells in those
physiological processes and other motile cells such as Dic-
tyostelium discoideum amoeba and fish epidermal keratocytes:
The branched network of filamentous actin are nucleated at the
front of moving cell, which gives rise to the effective pressure
to protrude the leading edge forward [1–3]. Investigations
of motile cells have further shown that this nucleation for
actin polymerization induces the retrograde flow of cortex
actin [4,5], and the actin filaments are disassembled at the
rear to retract the rear edge of cell [5,6]. One of the important
problems, therefore, is to understand how this retrograde flow
of cortical actin regulates statistical features of migration [6,7].

Anomalous statistical features of migration have been
reported recently for amoeboid cells such as Madin-Darby
canine kidney (MDCK) cells [8] and D. discoideum [9]: When
there is no external cue to guide cells, cells move spontaneously
in random directions. Their trajectories, however, do not
obey simple Brownian dynamics but are characterized by
the superdiffusive increase of the mean-squared displacement
(MSD) for the time durations observed in experiments.
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Though some phenomenological equations of motion have
been proposed to fit the observed data [8–10], the physical
mechanism of this non-Brownian dynamics has remained
totally elusive. Furthermore, the biological advantage for
cells to exhibit such superdiffusive movement is not known
[8]. In this paper we explain the physical origin of the
non-Brownian dynamics by using a theoretical model which
focuses on the effects of the retrograde flow of cortical
actin and the associated whole-cell scale dynamics. We also
show that the mechanism which explains the non-Brownian
dynamics can efficiently drive cells in complex environment,
suggesting the biological significance of this non-Brownian
dynamics.

A number of theoretical models have been developed to
explain eukaryotic cell locomotion by simulating dependen-
cies of cell shape on the force-velocity relations [11–13], or
by focusing on cell polarization and chemotactic responses
[14–22]. In particular, the modified versions of the local-
excitation-global-inhibition (LEGI) models have explained
random and spontaneous formation of active membrane
patches which should enhance protrusion of pseudopodia
[16,18,21,22]. Though the appearance and disappearance of
such active patches should be important for the fluctuating
motion of amoeboid cells, these models could not explain
the observed stable polarity which causes cells to turn. It
was suggested, therefore, that a slow positive feedback loop
which was not taken into account in the LEGI models may be
responsible for the long-time behaviors of motile cells [16].

041909-11539-3755/2012/85(4)/041909(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.041909


SHIN I. NISHIMURA, MASAHIRO UEDA, AND MASAKI SASAI PHYSICAL REVIEW E 85, 041909 (2012)

In this paper we explore such slow positive feedback loop
to explain the non-Brownian movement, which consists of
multiple turns and multiple times of cell shape deformation.
For investigating such long-time behaviors, we develop a
coarse-grained model of migration, which only implicitly takes
account of the force-velocity relations and the biochemical
signaling pathways but highlights the slow positive feedback
effect arising from the retrograde flow of cortex actin in moving
cells [23–25].

A key assumption in the model is that molecules which
interact with cortex actin should move in conjunction with
the retrograde flow, and hence they are sent backward as the
cell moves forward. This assumption is consistent with the
observations that the fluorescent markers interacting
with the cortex actin are conveyed to the rear as the cortex
actin is sent backward [5,6]. At the rear of cell, actin filaments
are bundled with various actin-binding proteins (ABPs) such
as filamin [26,27], cortexillins [28], and others and the bundled
actin interacts with myosin II to generate the mechanical
force for tail contraction. Nucleation of new actin filaments
is suppressed in such bundled actin, so that those ABPs and
myosin II effectively inhibit actin polymerization. The bundled
actin itself, which is differently organized from the branched
network in the leading front, could also be regarded as an
inhibitory factor for actin polymerization. It is also possible to
imagine that the signaling molecules such as PTEN [29,30] and
PIP2 may interact with ABPs and move in a correlated way
with the cortex actin. These inhibitory molecules, including
ABPs, myosin II, and the bundled actin itself, are conveyed
by the flow of cortex actin and should be accumulated at the
rear of cell. Since dynamics of distributions of these inhibitory
molecules is largely determined by the flow of cortex actin,
we here do not specify the precise molecular species, but treat
them as a group which is referred to as cortical factor (CF) in
the model.

Though individual ABPs can be recruited at the front
for some specific work to bundle the actin filaments there,
we here highlight the general tendency that CF is sent
backward as the cell moves forward. Our assumption on
the predominance of the backward flow in dynamics of CF
can be naturally implemented in the model if we use a
coordinate fixed to the substrate: CF only slowly diffuses
in the substrate-fixed coordinate, which implies the existence
of a distinct backward flow of CF if we describe it in the
coordinate fixed on the moving cell. We here note that the
retrograde flow is determined by multiple factors including
actin network polymerization, cell adhesion to the substrate
[31,32], and cell shape deformation [33], so that the flow is
not completely described by the difference between cell-fixed
and substrate-fixed coordinates. Indeed, the actin flow shows
advection in the substrate-fixed frame [33], and the flow is
modulated by the effects of force-generating molecules such
as myosins [34,35]. Those residual flows, however, are about
10 times slower than the rate of the leading-edge growth or the
motion of the centroid [36,37] in keratocyte or Dictyostelium,
so that we can neglect their effects as a first approximation by
representing the retrograde flow with the difference between
two coordinates. Using this trick of modeling the retrograde
flow, the simulated CF accumulates at the rear as illustrated in
Fig. 1.

FIG. 1. Schematic illustration of the retrograde flow of cortical
factor (CF) in a cell. Black filled circles represent CF. The cell moves
upward from left to right, in which the initial position of the cell
is indicated by dashed lines. First, CF uniformly distributes (left).
As the cell moves, the retraction concentrates CF at the rear, and
the protrusion dilutes CF at the front, so that migration induces the
retrograde flow of CF in a cell (middle). The polarized distribution
of CF further promotes migration (right).

With CF thus defined, we simulate actin polymerization
by assuming that actin filaments are nucleated only at the
position in the cell where the concentration of CF is below a
certain threshold, which implicitly represents the switchlike
dynamical competition between excitatory and inhibitory
pathways [15,20,38], and we further assume that the increased
concentration of the actin network leads to the protrusion of
that part of cell while the other parts of cell are retracted to keep
the constraint of the approximately constant cell volume [7];
the latter two rules of cell shape deformation represent the
implicit force-velocity relations in cells.

With these assumptions, we can show that CF accumulates
at the rear when the cell moves forward. The accumulated CF
inhibits actin polymerization at the rear, and the diluted CF
at the front enhances the protrusion of pseudopodia. Thus,
the cell movement generates the CF polarity, and the CF
polarization further enhances the cell movement. In this way,
the CF distribution and cell movement form a slow positive
feedback loop, which we call the CF feedback. In this paper
we show that this positive feedback can generate switchlike
behaviors between two states: In one state, which we call
the persistent state, the straightforward motion is stabilized
through the polarized CF, and in the other state, which we
call the turning state, the cell shape deformation decreases
the CF polarity, and the decreased CF polarity enhances cell
deformation and erases the memory of the previous persistent
motion to turn the cell into a new direction.

In the following, we first explain that the model can
generate different modes of cell migration, which will be
used to clarify the dynamical features of migration examined
in this paper. We then show that the switchlike dynamics
underlies the superdiffusive motion of Dictyostelium, and we
show that the same dynamical features facilitate the efficient
route-finding behaviors of the simulated amoeboid cell in a
mazelike complex environment.

II. RESULTS

A. Amoeba- and keratocyte-like migration

In order to examine the cell movement quantitatively, it is
useful to compare different modes of migration by analyzing
how such difference is reflected in important quantities. We
first show that both two modes of migration, the amoeba-
like migration with protruding pseudopodia to move in a

041909-2



NON-BROWNIAN DYNAMICS AND STRATEGY OF . . . PHYSICAL REVIEW E 85, 041909 (2012)

fluctuating way and the keratocyte-like migration which shows
the half-moon cell shape to move in a straightforward way,
can be simulated with the present model. For that purpose,
we begin with a brief sketch of the model by leaving its
detailed definition and explanation of parameters to Supporting
Material and Table S1 [39].

To simulate a crawling cell on a substratum, the cell
is modeled on a two-dimensional plane that consists of
discrete hexagonal sites. Here the hexagonal lattice is adopted
to prevent the anisotropic effects arising from the lattice
discreteness: If we would use the square lattice, the simulated
overall shape of cell body tends to be square. This artifact
can be removed if we use the hexagonal lattice, which has the
higher symmetry than the square lattice. A cell is defined by a
set of connected sites in the hexagonal lattice, which we call
“cortical sites.” Other noncellular sites are “external sites.”
See Fig. S1 in Supporting Material [39] for the illustration
of the model plane. We assume that a typical cell consists of
the moderate number of 900 cortical sites to avoid both the
numerical inefficiency to calculate a cell having too large size
and the unwanted effects of the lattice discreteness in a cell
having too small a size.

Each cortical site has three chemical species; the branched
network of filamentous actin, CF, and the signal chemoat-
tractant, whose local concentrations at the j th site are Fj ,
Cj , and Sj , respectively. In external sites, only Sj can be
nonzero. Cj and Fj are dynamical variables within a cell,
which are updated at each simulation step by following the
rules explained in Supporting Material [39]: Cj is changed
through the slow diffusion to the adjacent cortical site, which
simulates the effective retrograde flow that becomes visible
when we describe it in the moving cell-fixed coordinate. Fj

does not diffuse to accommodate the retrograde flow in the
cell-fixed coordinate but is decreased through disassembly to
monomers or transformation to the bundled filamentous form
and is increased through actin polymerization. These processes
of Fj and Cj are simulated by updating them at each step to
F ′

j and C ′
j , respectively, as

F ′
j = Fj +

⎧⎨
⎩

γ − kf Fj (if Cj < α(Sj ), j ∈ periphery),

−kf Fj (otherwise),
(1)

C ′
j = Cj + β(Sj ) − kβCj . (2)

In Eq. (1), the actin polymerization with the rate γ is
considered only at the cell periphery, but degradation with
the rate −kf Fj takes place at every cortical site. In Eq. (2),
β is the rate of transferring CF from cytosol to cortical layer
and kβ is the rate constant of the reverse process. Here we
assumed that the initiation of actin network formation is
cooperative due to the local feedback effects in regulating actin
polymerization [38] and hence should nonlinearly depend on
Cj . In the model this nonlinearity is represented by the rule
that Fj increases with the rate γ only when Cj is smaller than a
threshold α(Sj ). Kinetics of actin polymerization is, therefore,
controlled by α(Sj ) and γ /kf .

Effects of the chemical signal are represented in the model
through how α and β depend on Sj . As has been assumed in

the LEGI models [15,16], it is natural to assume that the signal
molecules enhance both the local excitation and the global
inhibition: Here the local excitation is represented by increase
in α(Sj ), and CF behaves as a signal-dependent global inhibitor
which can diffuse over the cell. Signal molecules bound to the
receptors near the site j should promote initiation of actin
polymerization there, so that α(Sj ) should be an increasing
function of Sj . When receptors are unsaturated, α(Sj ) can be
a linear function of Sj as α(Sj ) = α0(1 + aSj ) with a constant
a > 0. Signal molecules should also promote transfer of CF
from cytosol to membrane, so that we assume β(Sj ) = β0(1 +
bSj ) with a constant b > 0. When enhancement of the local
excitation and enhancement of the global inhibition arise from
the common upstream signaling process, we may be able to
assume a ≈ b. In this case we have β(Sj )/α(Sj ) ≈ β0/α0 for
the uniform signal level with Sj = constant. Then the actin
polymerization and hence the cell motion are not altered much
by a uniform increase of the signal, so that the simulated
cell should show “adaptation” to such uniform increase of the
signal as has been observed in experiments [40].

In this model, cell is assumed not to slide on the substratum,
but it proceeds by creating new adhesive bonds at the front and
detaching from the substratum at the rear, which is simulated
as creation of new cortical sites at the front and annihilation of
cortical sites at the rear. Creation of new cortical sites is driven
by the development of actin network, which is simulated by
turning an external site to a new cortical site when the nearby
cortical site has Fj larger than a threshold Fth. To keep the cell
volume approximately constant, a cortical site at the periphery
of cell is randomly selected, and the site is turned into the
external site, which simulates the retraction of cell body. In
this way, chemical reactions, diffusion of CF, and the cell
shape deformation are simulated simultaneously.

By fixing kf , kβ , β0, a, and b as explained in the Supporting
Material [39], we explore the different kinetics of actin
polymerization by varying the remaining parameters α0 and
γ : With the larger α0, actin polymerization is triggered at
the wider region of the cell, and with the larger γ , actin
polymerization is more rapid. Various different modes of
motion are realized by changing α0 and γ . For example,
for small α0 and large γ , cell is amoeba-like [Fig. 2(a)
and Movie S1 [39]], and for large α0 and small γ , cell
is keratocyte-like [Fig. 2(b) and Movie S2 [39]]. Here the
simulated keratocyte-like motion exemplifies how the CF

(a) (b)

FIG. 2. (Color) Snapshots of the simulated migration in the
absence of external guiding signal. (a) Example of amoeba-like
motion with (α0,γ ) = (1.4,4.2); and (b) an example of keratocyte-like
motion with (α0,γ ) = (7.0,1.6). Concentration of CF is shown with
colors.
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polarization and the cell motion stabilize each other by
forming a feedback loop of the whole cell scale. Realization
of different types of migration through modulation of two
parameters suggests that the minor modification of reaction
rates gives rise to such difference, which is consistent with the
observation that an amiB-null Dictyostelium mutant indeed
shows the keratocyte-like movement [41] while the wild-type
Dictyostelium is a typical amoeba-like cell. In the following,
we compare these cell behaviors in different environments.

B. Superdiffusive migration of amoeboid cells

Spontaneous movement of cells in the absence of external
signal provides an important opportunity to examine the
quantitative aspects of migration. Plotted in Fig. 3 are the
data simulated without external signal for (α0,γ ) = (1.4,4.2)
(amoeba-like) and (7.0,1.6) (keratocyte-like), which are com-
pared with the observed data of 5.5 hour starved D. discoideum
wild-type cells [9]. As shown in Fig. 3, the simulated amoeba
well fits the observed data, which supports the view that the
proposed CF feedback mechanism plays important roles in
regulating migration. The simulated keratocyte migration, on
the other hand, is largely different from the amoebic data in
all panels of Fig. 3.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color) Statistical features of trajectories of the center
of cell simulated in the absence of guidance signal are compared
with the experimental data [9]. Red lines are the simulated amoeba
with (α0,γ ) = (1.4,4.2), green lines are the simulated keratocyte
with (α0,γ ) = (7.0,1.6), and blue lines are the experimental data.
The simulated data are averaged over 200 trajectories. (a) Log-log
plot of mean-square displacement (MSD) as a function of time.
(b) Time dependence of the exponent of MSD. (c) Temporal change
of kurtosis of the distribution of the position of cell center measured
along an arbitrarily chosen direction. (d) Velocity autocorrelation.
(e) Distribution of velocity projected onto an arbitrary direction.
(f) Relationship between the absolute value of velocity and accel-
eration projected onto a direction parallel to the velocity.

Shown in Fig. 3(a) is MSD of migration, x̄2(t) = 〈[�r(t) −
�r(0)]2〉, which can be scaled as x̄2(t) ∝ t l during 0.05 < t <

5.0 min, where �r(t) is the position of the center of cell at time
t , and the fitted values of the exponent are l = 1.64 for the
observed data and l = 1.78 for the simulated amoeba, both of
which significantly differ from the exponent for the Brownian
diffusion (l = 1) or the ballistic motion (l = 2), showing the
superdifusive feature during this time scale. Considering the
fact that the time scale of the MDCK cell is about two
orders of magnitude larger than that of Dictyostelium, this
feature is comparable with the data of MDCK cell exhibiting
1.5 < l < 1.8 during 5 < t < 100 min [8]. In contrast to such
superdiffusive migration, the simulated keratocyte shows l =
1.95 as expected from the ballistic movement of the observed
keratocyte [7]. Temporal variation of the exponent calculated
by l(t) = d[log x̄2(t)]/d(log t) is shown in Fig. 3(b). Here l(t)
of both the observed and simulated amoebae decreases from
l ≈ 1.6–1.8 at t = 0 to l ≈ 1.2–1.3 at t = 10 min.

As l(t) becomes small, the distribution of position of cells
begins to bear a Gaussian feature. Shown in Fig. 3(c) is the
kurtosis defined by 〈[ra(t) − 〈ra(t)〉]4〉/〈[ra(t) − 〈ra(t)〉]2 −
3 for the distribution of ra(t) = �r(t) · �ea , where �ea is an
arbitrarily chosen direction. Kurtosis represents how sharp the
peak of the distribution is, and the distribution is Gaussian
when the kurtosis is zero. The kurtosis of the simulated and
observed amoebae approaches the Gaussian value of 0 at
t ≈ 10 min, suggesting that the motion becomes uncorrelated
in the timescale longer than 10 min. Such decay of correlation
can be seen in the autocorrelation of velocity of cell: Shown
in Fig. 3(d) is 〈�v(τ ) · �v(τ + t)〉τ , where �v(t) = d�r/dt and
〈. . . 〉τ is the average taken over both τ and trajectories.
The correlation decays exponentially in both the simulated
and observed amoebae with the relaxation time of 3.8 min.
These data show that random turns of cell locomotion become
uncorrelated in the long-time scale.

The distribution of the amplitude of velocity, however,
retains the anomalous non-Gaussian features. As shown in
Fig. 3(e), the distribution of 〈�v(τ ) · �ea〉τ is highly non-
Gaussian, decaying more slowly than exponential both in the
simulated and observed amoebae. These data imply that the
amoeboid motion is persistent more than the simple Gaussian
process. The persistent motion of the simulated kerayocyte,
on the other hand, shows an exponential distribution with
the kurtosis 1.99. The exponential distributions are also
found around the peaks for amoeboid cells showing some
resemblance to the keratocyte movement for small velocity
but with kurtosis 4.22 and 3.24 for the simulated and observed
amoebae, respectively.

Features of changing velocity are also nontrivial as clearly
seen in the nonlinear relation between velocity and acceler-
ation [Fig. 3(f)]. The negative acceleration or the strength of
“brake” is small for amoebae running with small to medium
velocity, which is consistent with the data of Fig. 3(e) on
the persistency of motion, and is also consistent with the
simulated [25] and the observed [42] “inertia-like” features
of cell motion.

Thus, the dynamical behaviors of amoeba in Fig. 3 are
explained by the inertia-like persistent movement, which is
interrupted by the random changing of direction of motion
in the time scale of several minutes, and such coupled
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processes of persistent motions and random turns bring about
the non-Brownian superdiffusive migration as observed for
t < 10 min. The simulated data well reproduce this dynamics,
so the question to be asked is how the CF feedback mechanism
generates these dynamical behaviors.

C. The CF feedback underlies the superdiffusive migration

Shown in Fig. 4(a) is the persistency of migration defined
by p(t0) = 〈|�r(0) − �r(t0)|/s(0 : t0)〉, where s(0 : t0) is the
contour length calculated along the simulated trajectory of
�r(t) from t = 0 to t = t0 with t0 = 1000 s. p(t0) is large in the
keratocyte-like regime of large α0 and small γ , while p(t0) is
small in the regime at which both α0 and γ are large or both of
them are small. p(t0) is, on the other hand, at the intermediate
level in the amoeboid regime of small α0 and large γ . This
intermediate level of persistency of the simulated amoeba
is consistent with its dynamical persistency as shown in
Fig. 3.

The intermediate level of persistency should be intrinsically
related to the way how the straight motion of amoeba is
interrupted: As shown in Fig. 2(a), the simulated amoeba
spends typically about 100 s to gradually turn into a new
direction. This turning is associated with the change in the cell
shape to show the letter “Y”-like transient shape with multiple
protruding edges. To examine the correlation between the
appearance of such transient shape and the change in moving
direction, it is convenient to define the tripole moment of cell
shape A3, which is defined by the coefficient of P3(cos θ ), the
third-order Legendre polynomial, in the multipole expansion
of the shape of the cell boundary: Here the shape of the
cell boundary is represented as a function of the angle θ

measured around the cell center and is expanded by the
Legendre polynomials with its third-order coefficient being
used as the characteristic of the “Y”-like shape of the cell
boundary. Detailed definition of A3 is given in the Supporting

(a) (b)

(c) (d)

FIG. 4. (Color) Statistical features of locomotion in the absence
of external signal. (a) Persistency of motion of the center of cell.
(b) Correlation between the tripole moment of cell shape, |A3|, and
the angle of changing direction of motion. (c) Correlation between
|A3| and the CF polarization, �C, of the amoeba-like cells are
shown by FAC(t) (blue line) and FCA(t) (red line). (d) Distribution
of �C(t) and |A3(t)| of the amoeba-like cells. Color represents
logarithm of the distribution. In panels c and d, the parameters are
(α0,γ ) = (1.4,4.2).

Material [39]. A3 has a large positive value when the leading
edge spreads to exhibit a “Y”-like shape and a large negative
value when the rear side of cell spreads wider than the leading
edge as explained in Fig. S2 [39]. Shown in Fig. 4(b) is
the simulated correlation between |A3| and the turning angle
between vectors ��r(t) = �r(t − �t ′) − �r(t) and ��r(t + �t ′)
with �t ′ = 50 s. This correlation is largest in the amoeboid
regime, showing that the simulated amoeba changes its moving
direction by developing the tripole shape.

Furthermore, such appearance of the tripole cell shape
is intimately related with the loss of CF polarity. Here
the CF polarity is measured by �C(t) = σc(t)/C̄(t), where
σc(t) and C̄(t) are standard deviation and average, re-
spectively, of the CF distribution in each cell. Plotted in
Fig. 4(c) is the cross-correlation, FAC(t) = 〈|A3(τ )|�C(τ +
t)〉τ /(〈|A3|〉τ 〈�C〉τ ) and FCA(t) = FAC(−t). At t ≈ 100 sec,
both FAC(t) and FCA(t) have distinct peaks, showing the delay
of responses of ≈ 100 s. Such delayed responses between |A3|
and �C should be due to the time needed for cells to turn as
exemplified in Fig. 2(a). We can find that FAC(0) or FCA(0) is
almost 0, which implies that �C and |A3| are anticorrelated
at the same instance. This anticorrelation, or the concurrency
of the cell shape deformation and the loss of CF polarity, can
be clearly seen in the two-dimensional distribution pattern of
�C and |A3| as plotted in Fig. 4(d). This distribution shows
that there are two states in locomotion, the persistent state
with small |A3| and large �C, and the turning state with large
|A3| and small �C. In this way the superdiffusive migration is
described by a switchlike dynamics between these states with
the typical switching timescale of around 100 s.

D. Efficiency of migration

Migrating cells such as D. discoideum and keratocytes
show chemotaxis when the chemical signal distributes nonuni-
formly around them. When obstacles prevent cells from
straightforwardly following the chemical gradient, however,
cells may have to employ some trial-and-error strategy to
go around the obstacles to reach the goal at which the
chemical signal is highly concentrated. Motion of the cell
in a maze corridor has been simulated to show that the
zig-zag motion of cell facilitates escape from the maze [21].
From the argument of the previous subsections in this paper,
we expect that the superdiffusive motion of amoeboid cells
should help chemotaxis in such complex situations: The cell
may use the switching behavior underlying the superdiffusive
motion for the efficient trial-and-error finding of the route.
In this subsection we test this hypothesis by comparing
two different types of motion, amoeba- and kertocyte-like
locomotion.

We first show that the persistent motion of keratocyte is
most efficient to reach the target when the environment around
cell is simple enough to allow the straight motion. Shown in
Fig. 5(a) is the efficiency defined by the distance how far the
cell can travel along the gradient of the concentration of the
signal chemoattractant. Here the signal is distributed along
the y direction as Sj = exp[−yj/(100μm)]. Among various
modes of motion simulated in the present model, keratocyte
has the highest efficiency as expected.
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(a) (b)

FIG. 5. (Color) Efficiency of migration. (a) Efficiency for re-
sponding the signal having the simple gradient along the y direction.
The efficiency is defined by 〈y(t0) − y(0)〉 with t0 = 1000 s, where
y(t) is the y coordinate of the position of the center of cell at time t .
(b) Efficiency for the mazelike environment. The efficiency is defined
by 〈1/T 〉, where T is the time needed for cell to reach the target, i.e.,
the source of the chemoattractant.

The keratocyte migration, however, becomes inefficient
when the environment is complex to prevent cells from moving
straightforwardly. Eukaryotic cells in vivo often move in
such a complex environment, which may consist of obstacles
such as tissue cells or extracellular matrices. Leukocytes in
animal bodies, for example, migrate through a web of collagen
fibers [43–45], so that those cells sometimes go against the
chemoattractant gradient to find a detour to approach the target.
To explore the efficiency in such complex environment, we
here consider a two-dimensional xy plane on which obstacles
are arranged in a mazelike manner.

We prepare the membrane walls through which a cell does
not pass: The system is surrounded by a large square wall inside
of which a horizontal (x-directional) wall and a vertical (y-
directional) wall are arranged as shown in Fig. 6, which merge
to form a letter “T”-like obstacle. The signal chemoattractant
does not permeate through these walls except a left part of
the horizontal wall, which is colored red in Fig. 6. In a right
part of the horizontal wall, there is a doorway through which
both signal and cell can pass. A source of signal is placed on
the plane across the obstacle from the initial position of cell.
The distribution of Sj is determined by solving the Laplace
equation, �S(�r) = −Mδ(�r − �rs) with the boundary condition
S(�r) = 0 at the the wall surrounding the system, where �rs is
the position of the signal source. Further explanation of the
Laplace equation is given in the Supporting Material [39].

Shown in Fig. 6 are snapshots of amoebic cell motion.
Since the signal permeates through the red “window” located
near the initial position of the cell, the cell is attracted to
the window. This attractive motion is induced through the CF
feedback with CF accumulated at the rear of cell (40–55 s).
However, the cell can not pass through the window, and hence
the cell is trapped there. It should be noted that the halted
centroid motion upon collision of the cell against the wall
does not completely stop the retrograde flow of CF, but in
the simulated cell, the CF pattern continues to change due to
the continuous deformation of the cell while being trapped to
the window. The retrograde flow of CF, however, is weakened
due to this trapping, and the direction of the flow is largely
changed. This marked decrease and alteration of direction of
the flow is consistent with the observed behavior of the actin
flow in cells colliding against the obstacle [36]. Accumulation
of CF at the rear of cell is ceased in this way, and CF begins to
spread toward the front (95 s), which gives rise to the motion

FIG. 6. (Color) Snapshots of cell movement in the maze-like
environment simulated with (α0,γ ) = (2.0,4.2). Concentration of
cortical factor normalized by 3α is shown in color. A bar at the left
top panel shows the length of 20 μm. The number at the left bottom in
each panel is time lapse. A red colored line is the window in the wall,
through which the extracellular chemical signal permeates but the cell
does not pass. A light blue pattern indicates the extracellular chemical
signal secreted from the point at a white cross. The cell is surrounded
by the rectangular walls, the outside of which is thought of as a
“sink” of the chemical signal. Within the rectangle, the horizontal
and vertical walls prevent the cell from moving toward the signal
source.

“repelled” from the wall (107–198 s). The cell once left the
wall is still attracted by the signal and can come back to be
trapped again (667 s), but after a protruding edge happens to
go over the vertical wall (798 s), that edge is elongated through
the CF feedback effect by sensing the signal gradient coming
from the doorway (864 s) and finally finds the doorway to
reach the signal source (1076 s). In this way, it is apparent that
the localized work of CF feedback is vital to leave the trap
and to find a detour by elongating a searching tip of cell. See
also Movie S3 [39] for the cell locomotion to solve the maze
problem.

Strategy of cells to solve the maze problem can be quantified
by defining the efficiency as the averaged inverse of time
necessary for the cell to reach the source. As shown in Fig. 5(b),
the strategy is most efficient in the amoeboid regime of small
α0 and large γ . This most efficient strategy is based on the same
mechanism to generate the random turns in the superdiffusive
migration: Shown in Fig. 7(a) are the temporal changes of
〈|A3(t)|〉 and 〈�C(t)〉, in which t = 0 is the first time instance
when the amoeba cell collides against the horizontal wall. After
the collision, the cell quickly takes a tripole shape. When the
cell goes through this transient tripole shape and begins to
leave the wall, which is about 100 s after the collision, the CF
polarity is enhanced strongly to drive the cell into a direction
to leave the wall. 〈�C(t)〉 shows a peak at t ≈ 200 s when
the motion to leave the wall is most stable. The distribution
pattern in Fig. 7(b) shows that |A3(t)| and �C(t) anticorrelate
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(a) (b)

FIG. 7. (Color) Relations between the tripole moment, |A3|, and
the CF polarization, �C, of amoeba-like cells in the the maze-like
environment. (a) Temporal change of 〈|A3(t)|〉 (blue line) and 〈�C(t)〉
(red line). The cell collides against the wall at t = 0. Average was
taken over 200 trajectories. (b) The distribution of |A3| and �C at
the same instance. Color represents logarithm of the distribution.
(α0,γ ) = (2.0,4.2) is used in panels a and b.

as was found in Fig. 4(d). See Fig. 4 and Figs. S3 and S4 [39]
to confirm that the relations between |A3(t)| and changes in
moving direction are almost same in simple and complex
environments.

In this way the cell shape deformation and the loss of CF
polarity concurrently take place in a cell colliding against the
wall. The loss of CF polarity erases the memory of motion
toward the wall and gives rise to a tripole cell shape to change
the moving direction. This is the same mechanism of how
the persistent migrations is interrupted by fluctuation in the
simple environment. Thus, the switchlike dynamics between
the persistent state and the turning state, which is a source
of the superdiffusive motion in the simple environment, is a
driving force for the efficient route finding in the complex
environment.

III. DISCUSSION

In this paper the observed non-Brownian dynamics of
amoeboid migration was explained by the slow whole-
cell scale feedback dynamics of inhibitory factor of actin
polymerization. Thus generated positive feedback stabilizes
the persistent migration, but the fluctuation of cell shape
interrupts this motion to turn the cell into a different direction.
Switching behaviors between persistent motions and random
turns are the source of the observed superdiffusive migration
of amoeba-like cells and also drive cells to find a detour in
the complex environment. The model is developed so as to
focus on the proposed feedback mechanism and does not treat
the force-velocity relations and signaling pathways explicitly.
This implicit treatment of important processes should limit the
ability of the model to describe the short-time-scale dynamics,
and hence for more quantitative description, the multiscale
modeling is necessary to integrate these fast processes and
the slow CF dynamics highlighted in the present model. Also
important is to improve the model to take account of effects of
the advective actin flow observed in the substrate-fixed frame.
Such flow should be determined by the balance among the
rate of actin network polymerization, the amplitude of cell
shape deformation, and the efficiency of adhesion of cell to the
substratum [31], and it should be intriguing to examine whether
this advective flow helps cells to solve the maze problem.

Even with the present coarse-grained model, however, it
should be meaningful to quantitatively check the proposed
hypothesis that the same mechanism, the CF feedback mech-
anism, works in both simple and complex environments.
For the maze-solving behaviors, predictions made with the
present model on the redistribution of CF and those on
the development of tripole cell shape can be quantitatively
compared with the experimental observations when the
micrometer-scale fabrication technique [42] is applied to the
construction of the maze-like environment. In particular, when
the deficiency of genes relevant to cellular motility should
be systematically examined, it would be possible to directly
compare the phase diagrams on the (α0, γ ) plane with the
experimental data. In a recent paper of Ambravaneswaran
et al., the chemotactic crawling of a neutrophil cell in a
channel which bifurcates into two symmetric or asymmetric
channels has been reported [46]. This experimental setup has
offered the opportunity to examine the relation between the
cell shape fluctuation and the cell decision of its moving
direction, so that the quantitative comparison with such data
and the simulated results with the present model should be
important.

The amoeboid strategy should be also examined quanti-
tatively with the single-cell tracking experiment in animal
bodies. In animal bodies, we can expect that the amoeboid
strategy is efficient to circumvent other cells or extracellular
matrices, and indeed, random-walk-like behaviors with the
persistent migration and its interruption have been observed in
migrating interneurons within the developing cerebral cortex
[47]. Further quantitative comparison between simulations and
observations in animal bodies should be important.

The present simulation showed that the amoeboid strategy
is the most “intelligent” strategy to solve the maze problem.
Keratocyte-like cells move more persistently, but the infre-
quent turnings make the strategy less efficient in complex
environment. Thus, the way the persistent motion and the
interruption of the persistent motion are combined is a key
to the efficient strategy, and the amoeboid strategy is a method
for the proper combination, though the method inevitably
generates the randomly fluctuating superdiffusive motion in
the absence of an external signal. Other organisms such as
Escherichia coli or Paramecium caudatum also use strategies
based on fluctuating motion. Although molecular and physical
bases for those strategies are quite different from those of
the amoeboid strategy, it would be interesting to compare
their statistical features such as efficiency and persistency of
motion to the data of the present paper to explore the general
principle of strategies that microorganisms take in complex
environments.
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