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I 

Abstract 

Traffic congestion is a crucial problem that adversely and significantly affects the 

environment and transport efficiency in numerous cities. Efforts to solve this problem 

lead to the development of intelligent transportation systems (ITS). An essential input 

for ITS is accurate and reliable knowledge about traffic conditions. The objective of 

this research is to estimate traffic conditions from probe vehicle data for urban 

networks. 

In traffic flow theory, flow, speed (or travel time) and density are three 

fundamental macroscopic variables representing traffic conditions in the spatial and 

temporal domains. Therefore, to provide comprehensive knowledge of urban traffic, 

this research explores estimation of various measurements of traffic conditions from 

these three aspects. Specifically, firstly methods are proposed to estimate traffic flow 

(including link flow and origin-destination (O-D) flow) from travel times of probe 

vehicles. Secondly link travel time distribution is modelled and discussed. Then 

methodology of traffic monitoring is explored. 

In Chapter 1, the background of this research is firstly introduced. And then 

measurements of traffic conditions and characteristics of probe vehicle data are 

extracted and discussed. Further, challenges of estimating urban traffic conditions are 

summarized and analyzed. Then, research objectives are explicitly defined. This is 

followed by an organization of this thesis. 

Chapter 2 gives a detailed review of literatures which most relate with this 

research. The mechanism of probe vehicle is firstly introduced. And then issues 

involved in probe vehicle data including data types, polling schemes, penetration and 

applications are reviewed. Finally, methodologies of estimating flow, travel time and 

density using probe vehicle data are reviewed, respectively. 
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Chapter 3 provides a methodology of estimating dynamic link flow from raw 

probe vehicle data. From the view of practical application, this methodology consists 

of three steps: travel time allocation, link performance function fitting, and link flow 

estimation. In the first step, method of proportional allocation is used to decompose 

probe travel time onto individual links. In the second step, link performance function 

is obtained from a speed-density function derived from Gazis’s nonlinear 

follow-the-leader model. In the third step, a Bayesian method that incorporates prior 

distribution of link speed is applied. A traffic network called Kichijoji-Mitaka area is 

developed and validated in VISSIM according to a rather complete benchmark data 

set based on this area. The proposed method is tested by using simulation data in this 

network. Additionally, the effects of polling frequency and penetration of probe 

vehicle are tested and analyzed. Results show, the Bayesian method can give 

acceptable estimates of link flows. This methodology avoids of assumption of random 

sampling and is recommended to be put into practice for urban networks.  

Chapter 4 describes a bi-level generalized least square (GLS) model to estimate 

dynamic O-D flow from estimated link flow in Chapter 3 and historical O-D flow. It 

is an extension of Tavana’s model. Both the distance between the estimated and target 

OD matrices and the distance between the calculated and observed link flows are 

considered in the objective function. Hence the extended Bell algorithm is used to 

solve the upper level of this model. For the lower level, the dynamic traffic 

assignment (DTA) module in VISSIM is applied. Moreover, the GLS formulation can 

utilize the variance of estimated link flow from Chapter 3. However setting an 

identical variance of link flow for links decreases GLS to be ordinary least square 

(OLS) as Tavana’s model. A case study on Kichijoji-Mitaka area validates the superior 

of the bi-level GLS to OLS. And it illustrates the application of microscopic traffic 

simulator like VISSIM in solving the lower level of bi-level estimation of O-D flow. 
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As a whole, the proposed methods in Chapter 3 and Chapter 4 are capable of 

estimating link flow and dynamic O-D flow using probe data in practice, such as in 

probe vehicle-based dynamic route guidance system, or in situation that link counts 

are not available. 

Chapter 5 presents the formulation of link travel time distribution in the 

signalized road section by using truncated distribution. Link travel time is 

decomposed into time-in-motion and time-in-queue. The time-in-motion mainly 

depends on physical attributes of the link and traffic conditions, and is modelled by a 

truncated distribution. The time-in-queue is mainly related to signal timings and the 

signal offset between adjacent intersections, and is derived from hydrodynamic theory 

and horizontal queuing theory. The derived link travel time distribution is 

parameterized by fraction of stationary vehicles, red signal time, and motion behavior 

parameters including truncation points. These parameters are estimated from travel 

times provided by probe vehicles using a maximum likelihood estimator. It is shown 

that it’s better to model time-in-motion with a truncated distribution instead of a 

non-truncated one using AICc and BIC criteria. And the results also validate the 

superiority of applying a truncated distribution to model the distribution of link travel 

times. It is recommended that truncation of travel time should be considered and 

which imposes effects on travel time variability and reliability. 

Researches in Chapter 3-5 utilize link travel times provided by part of probe 

vehicles, which has relative high polling frequency. Link travel times become less 

accurate and reliable for lower polling frequency probe vehicle data because of the 

difficulties of map-matching and path travel time allocation. Therefore, Chapter 6 

explores methodology of mining traffic information from scatted probe vehicle data 

regardless of polling frequency.  

Chapter 6 describes the formulation of a joint probability distribution of vehicle 
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location and speed on arterial road using hydrodynamic theory and horizontal queuing 

theory. By assuming that sample vehicle locations are proportional to the traffic 

densities, the probability distribution function (PDF) of vehicle location is derived. 

Conditioned on certain location, speed is distributed according to a mixture 

distribution of distributions with different densities. Then the joint PDF of vehicle 

location and speed is derived using multiplication rule. Particularly, the joint PDF is 

derived for both under-saturated and saturated regimes. This model is parameterized 

by link parameters (cycle light time, red light time, etc.), parameters of driver 

behavior, and traffic states (densities and remaining queue length). To validate these 

distributions, a Kolmogorov-Smirnov test is performed using probe data collected 

during a field test in Toyota City. The numerical results validate the use of proposed 

models for both under-saturated and congested regimes. Additionally, the proposed 

models capture most features of vehicle location and speed distributions. Additionally, 

the derived models are simplified by neglecting some small details to improve the 

computation efficiency when applying it into network-level estimation. The proposed 

model is a brand new model which models location and speed distributions 

simultaneously. The derived joint PDF makes it possible to learn macroscopic traffic 

parameters and link parameters from location and speed data of probe vehicles.  

Chapter 7 concludes this research by summarizing the proposed models and their 

performance, and pointing out the limitations of this research and indicating the future 

researches. 
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Chapter 1 

Introduction 

1.1 Background 

Traffic congestion has been a crucial problem around the world, especially in cities 

where population and motorization increase rapidly. For example, the number of cars 

in Peking increased 800 000 new vehicles in 2010 from a total of 4 million vehicles at 

the beginning of this year. Both in perception and in reality, traffic congestion wastes 

resources and labors, causes environmental pollution and stress. According to an 

urban mobility report 2012 (Schrank et al., 2012), it was estimated that traffic 

congestion caused Americans to spend 5.5 billion hours more in travel and to 

purchase an extra 2.9 billion gallons of fuel, which results a congestion cost of $121 

billion in 498 U.S. Urban Areas. Besides direct economic loss, there are many kinds 

of externalities from congestion, including the negative impacts on public health and 

happiness because of air pollution and painful wait. 

To alleviate traffic congestion, researchers and planners proposed and 

implemented multiple strategies including increasing transportation infrastructures and 

managing traffic efficiently. Among them, intelligent transportation systems (ITS) 

show significant effects and have been playing an important role in traffic control and 

management (Zhang et al., 2011). 

1.1.1 Intelligent transportation systems 

Intelligent transportation systems (ITS) is defined by the International Standards 

Organization Committee for ITS Standards (ISO TC204) as ‘‘information, 

communication and control systems in the field of urban and rural surface 

transportation, including intermodal and multimodal aspects, traveler information, 
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traffic management, public transport, commercial transport, emergency services and 

commercial services’’ (Williams, 2008). The objective of ITS is to evaluate, develop, 

analyze and integrate new technologies to achieve traffic efficiency, save time, save 

energy, improve environment, enhance safety and comfort drivers, pedestrians, and 

other traffic groups (Vanajakshi, 2010) 

U.S.A., Japan and Europe take the leaderships around the world in the 

development of ITS. Taking these countries as examples, we briefly introduce the 

history of ITS. As showed in Table 1.1, the history of ITS can be divided into three 

stages (Tokuyama, 1996). The first stage began from 1960s with the representatives of 

the Electronic Route Guidance System (ERGS) in the United States, the Japanese 

Comprehensive Automobile Traffic Control System in Japan, and a similar system 

named Autofahrer Leit and Information System (ALI) in Germany. These systems are 

the original prototype of ITS. Due to limitations of advanced technologies, they didn’t 

result in practical applications. Benefiting from the technology reforms (e.g. the 

application of mass memory), the second stage from 1980s experienced a fast 

development. Multiple systems, including the U.S. Intelligent Vehicle Highway 

Systems (IVHS), the Road/Automobile Communication System in Japan (RACS), and 

the Program for a European Traffic System with Higher Efficiency and Unprecedented 

Safety (PROMETHEUS), were formulated and put into practical applications. From 

1995, the ITS entered a new era with the fast development of communications, 

information technology, global poisoning system, etc. More and more advanced ITS 

have been carried out and are running in lots of cities. At present, we are facing good 

opportunities of the development for ITS because of various mature advanced 

technologies. However, due to the complexity, diversity and variability of real traffic 

conditions, developing a real ‘intelligent’ ITS is still a great challenge for traffic 

engineers and researchers. 
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Table 1.1 History of ITS development (Tokuyama, 1996) 

 

Note: ERGS-Electronic Route Guidance System, ARCS-Automatic Route Control System, 

UTCS-Urban Traffic Control System, CACS-Japanese Comprehensive Automobile Traffic Control 

System, ALI-Autofahrer Leit and Information System (ALI) 

The core component of ITS is a Traffic Management Centre (TMC) which is “the 

hub of transport administration, where data is collected, and analyzed and combined 

with other operational and control concepts to manage the transportation network” 

(Vanajakshi, 2010). It is a center point communicating traffic information and the 

public, where traffic participants can regulate their activity decisions in real time 

according to the traffic conditions. Typically, several subsystems, such as Maintenance 

and Construction Management, transit management, Emergency Management and 

Information Service Provider, share the administration of transportation infrastructure 

and traffic information. Raw traffic data and road network information are input into 

center of traffic management, and are processed to obtain traffic conditions. The 
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derived traffic conditions are then transmitted to sub systems. 

The effective performance of TMC and consequently ITS mainly depends on four 

factors: automated data acquisition, accurate analysis of data, fast data communication, 

reliable information to public/traveler. Among them, data acquisition is the foundation 

of all other factors, and critical to success for ITS. 

 

Figure 1.1 Schematic of a TMS (Vanajakshi, 2010) 

1.1.2 Data acquisition methods 

The basic mechanism of ITS is like a factory where raw materials are input and 

products are output. The quality of products highly depends on the materials. ITS 

could only be possible to have credible performance in controlling and managing 

traffic if high quality traffic data is input. 

As shown in Figure 1.2, there are multiple methods of collecting traffic data 

including traditional manual counting, fixed sensors, and off-road technologies. Fixed  
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Figure 1.2 A family map of detector technologies of collecting traffic data (Martin, 2003) 

sensors belong to on-road technologies and refer to detectors located along the roadside. 

Manual counting is the most traditional one. However, it is very inconvenient, 
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inefficiency and uneconomic. Fixed sensors can be divided into two classes: intrusive 

methods and non-intrusive methods. The intrusive methods collect data using a 

recorder receiving data from a sensor place on the road, while the non-intrusive 

methods refer to detectors based on remote observations. According to different 

technologies adopted, the intrusive and non-intrusive methods can be further divided 

into various types of detectors. Currently, off-road detectors include probe vehicle and 

remote sensing. Probe vehicle refers to a vehicle installed an in-vehicle devices which 

can record the vehicle information including time, location, speed etc. Technologies in 

probe vehicles include Global Position System (GPS), cellular phone, Automatic 

Vehicle Identification (AVI) and Automatic Vehicle Location (AVL) (Martin, 2003). In 

this thesis, probe vehicles refer GPS-based and cellular phone-based technologies for 

their wide applications. A family map of detector technologies is summarized in Figure 

1.2. More details can be found in Martin (2003) and Leduc (2008). 

Table 1.2 Data type provided by various detectors 

Detector Type Volume/

Count 

Speed Travel 

time 

Vehicle 

Type 

Occupa

ncy 

Vehicle 

Presence 

Fixed sensors 

(intrusive) 

Inductive loop ○ ○ × ○ ○ ○ 

Magnetic ○ ○ × ○ ○ ○ 

Pneumatic Road Tube ○ ○ × ○ × × 

Fixed 

Sensors(non-

intrusive) 

Active Infrared ○ ○ × ○ × × 

Passive Infrared ○ ○ × ○ ○ ○ 

Microwav

e Radar 

Doppler ○ ○ × ○ ○ U 

True 

Presence 

○ ○ × ○ ○ ○ 

Ultrasonic ○ × × × × ○ 

Passive Acoustic ○ ○ × ○ ○ ○ 

Video Image Processing ○ ○ × ○ ○ ○ 

Probe 

Vehicle 

GPS × ○ ○ ○ ○ ○ 

Cellular Phone × ○ ○ ○ ○ ○ 

Note: ○-can provide the type of data; ×-cannot provide the type of data; U-unknown 

Since fixed sensors and probe vehicles are currently the main technologies for 
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collecting traffic data, we summarize various types of data provided by them by 

referencing (Martin, 2003; Leduc, 2008; Bennett, 2005; IMAGINE, 2006; Schmidt, 

2005), as shown in Table 1.2. 

Fixed sensors have been used to detector vehicle for a long time. Technologies in 

fixed sensors are mature, and researches on fixed sensors and analyses on fixed sensor 

data are rich. However, there are some unavoidable limitations: expensive fee of 

installation and maintenance, limited coverage, low travel time accuracy (derived from 

data), low precision for urban areas because of traffic interruptions. 

In the research, we focus on the application of probe vehicle data, which is 

promising to be an alternative to existing data sources. Probe vehicles are becoming 

crucial in the development of ITS. The reason lies in that probe vehicle can cope with 

some limitations of fixed sensors and at the same time has its own characteristics. 

Compared with fixed sensors, probe vehicle technologies have many advantages: 

 Large coverage area. Probe vehicles cover the entire network where a vehicle 

can travel on, and run in full time. 

 Low cost of installation and maintenance. With no need to additional 

infrastructures, existing vehicles with only an in-vehicle device are used as 

probe vehicles, and these devices can be shared with other systems like 

scheduling system. 

 Low cost per unit of data. Data can be collected easily at low cost after the 

necessary equipment is in place. 

 Abundant and accurate data. Besides the information of time, location, speed, 

direction, more information such as acceleration, weather condition, fuel 

consumption can also be recorded without additional devices. 

 No disruption of traffic. Existing vehicles are used as probe vehicles, which 

would not affect traffic conditions for the purpose of collecting traffic data. 
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 Strong anti-interference. Prove vehicle is seldom interfered by environmental 

conditions such as bad weather and dim light. 

However, as an emerging and advanced technology, probe vehicle technologies 

are not mature and still in development. More details on probe vehicle technologies will 

be reviewed in Chapter 2. 

1.1.3 Traffic conditions 

Traffic condition is a reflection or snapshot of real traffic situations. There are lots of 

measures adopted by traffic engineering for describing traffic conditions: travel time, 

speed, volume, density, occupancy, level of service (LOS) (i.e. volume/capacity), 

delay, or queue length. Any one of them can only reflect one aspect instead of 

characterizing the full picture of traffic condition. All these measures actually belong 

to three categories by their definitions:  

 Flow rate (volume, LOS, queue length). Whereas density is a spatial 

measurement, flow rate is a temporal measurement and is expressed in number of 

vehicles per hour.  

 Mean speed (travel time, delay). Mean speed of a traffic stream is expressed in 

kilometers per hour. Travel time of a vehicle travelling a road is the product of the 

inverse of mean speed and length of this road.  

 Density (occupancy). Density is typically expressed in number of vehicles per 

kilometer, and it measures how crowed a certain section of a road is.  

Density 𝑘, flow rate 𝑞 and mean speed 𝑣 actually are three basic macroscopic 

variables in traffic flow theory. A unique relation called fundamental relation of traffic 

flow theory exists among them: 

𝑞  𝑘𝑣                                                       (1.1) 

In theory, this relation provides a close bond between these three variables: we can 
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calculate one from the other two. However, this is based on two assumptions: (1) 

continuous variables (Maerivoet, 2005); (2) traffic composition follow two 

assumptions: homogeneous traffic (i.e. the same type of vehicles) and stationary traffic 

(all the vehicle’s trajectories should be parallel and equidistant (Maerivoet, 2005). In 

real traffic, these assumptions could not be completely reached. In reality, for one 

certain mean speed, there are multiple possible densities and flows. This is the same for 

certain flow and certain density. Additionally, without loss of generality, for example, 

certain mean speed and certain density does mean a unique flow in certain traffic 

condition. Considering the complexity of real traffic, it’s better for a ITS to obtain all 

the three traffic flow measurements to comprehensively grasp the traffic conditions. 

1.2 Problem statement 

Along with the fast development of technologies of wireless communication, mobile 

internet, computer science, etc., types of probe vehicles become more abundant and 

their penetration is experiencing a fast growth around the world. Although estimating 

urban traffic conditions from probe vehicle data has been getting increasing attention, 

the existing researches have some limitations or local perspectives: the investigations 

are mainly using probe vehicle data as complement of traditional data, and only part 

of information (e.g. travel times) from probe vehicle data is utilized; as described in 

section 1.1.3, in existing literatures certain traffic quantities are used to measure 

traffic conditions instead of providing comprehensive measurements; the 

characteristics of probe vehicle data are not completely considered in the 

methodologies. 

The reasons lie in that, on one hand, the urban traffic are mixed with non-recurrent 

and recurrent traffic, interrupted frequently by signal controllers or occasionally by 

pedestrians, and affected by frequent lane changing and commuting time. The 
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methodologies of estimating the urban traffic conditions have be able to deal with the 

extreme complexity of urban traffic. On the other hand, the aforementioned 

characteristics of probe vehicle data, including the diversity of data types, the lack of 

reliability and ubiquity, and the randomness of spatial-temporal coverage, make it 

challenging to be processed and applied in traffic estimating and monitoring. The 

proposed methods have to be able to properly handle probe vehicle data by carefully 

studying those features. 

This study aims to develop methodologies for estimating comprehensive urban 

traffic conditions using probe vehicle data from the perspective of practical application 

for ITS. Particularly, in order to provide comprehensive measurements of traffic 

conditions, we conduct researches from three aspects as the three basic quantities in 

traffic flow theory. Considering the effects of polling frequency, we classify the 

information of probe vehicle data into types: travel time (the reliability and accuracy of 

travel time become lower with lower polling frequency) and distributed point with 

location and instantaneous speed (not affected by polling frequency). Therefore, the 

research issues we carry out are as follows: 

1. Flow: link flow and origin-destination (O-D) flow estimation. This research 

aims to provide a methodology of estimating link flow (link-level traffic 

demand) and O-D flow (network- level traffic demand) from probe vehicle 

data. The methods of estimating sample link travel times from raw probe 

vehicle data would be discussed; the method of estimating link flow from link 

travel times would be investigated, and the application of prior information 

from achieved probe vehicle data would be analyzed; methods of estimating 

O-D flow would be studied and implemented; the effects of polling frequency 

on the accuracy of estimation results would be analyzed. 

2. Mean speed (travel time): link travel time distribution estimation. The 
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objective of this research is to model the probability distribution function 

(PDF) of link travel time, which is the foundation of measuring variability and 

reliability of link travel time. The composition of link travel time would be 

studied and modelled, and sample link travel times from probe vehicle data 

would be used for estimating the PDF of link travel time. 

3. Density: traffic monitoring and network parameters estimation. The 

motivation of this research is mining traffic and network related information 

from the distributed probe points. The distribution characteristics of probe 

points would be investigated; the traffic densities on a signalized road section 

would be identified in time and space; the spatial-temporal relations between 

traffic on adjacent links of urban network would be studied; the parameters 

learning techniques would be investigated. 

1.3 Organization of the thesis and contributions 

 

Figure 1.3 Flowchart of this research 

As shown in Figure 1.3, firstly, we conduct study 1-link flow estimation and O-D 
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estimation.  In this study, we assume that link travel time follows a normal 

distribution. Through this study, we find that the link travel time distribution plays an 

important role in estimation, and the effect of signal should be considered to obtain 

more accurate link travel time distribution.  

So, the study 2-link travel time distribution is conducted. A multimodal 

distribution considering the effect of signal and truncation is derived. Using this model, 

it is expected to improve the link/O-D flow estimation in study1. However, results from 

both study 1 and 2 are dependent on polling frequency of prove vehicle data.  If probe 

vehicle data are recorded with low polling frequency, the accuracy of results from study 

1 and 2 will decrease.  

So, we conduct study 3-estimationg vehicle location and speed distribution using 

information of locations and speeds from probe vehicle data, which is independent of 

polling frequency. Using this joint distribution, a better link travel time distribution may 

be derived in future for study 2 and then improve flow estimation in study 1. Or using 

Machine learning techniques, this distribution may be directly applied for improving 

link/O-D flow estimation in future for study 1. 

The thesis consists of 7 chapters. The organization of this thesis and contributions 

are described hereafter. 

In Chapter 1, the background of this research including intelligent transportation 

system, data acquisition methods and traffic conditions are introduced. This is followed 

by the problem statement and the organization of this thesis. Chapter 2 gives a detailed 

literature review and assessment of the current state-of-the-art of probe vehicle 

technologies and traffic condition estimation. 

Chapter 3 provides a methodology of estimating dynamic link flow from raw 

probe vehicle data. Chapter 4 describes a bi-level generalized least square (GLS) 

model to estimate dynamic O-D flow from estimated link flow in Chapter 3 and 



13 

historical O-D flow. 

Publication: Cao, P., Miwa, T., Yamamoto, T. and Morikawa, T. (2013). Bilevel 

Generalized Least-Square Estimation of Dynamic Origin-Destination Matrix for Urban 

Network Using Probe Vehicle Data. In Transportation Research Record: Journal of the 

Transportation Research Board, No. 2333 (Presented at the 92nd annual meeting of the 

transportation research board, January 2013, Washington, D.C., USA.), Transportation 

Research board of the National Academies, Washington, D. C., 66–73. 

Publication: Cao, P., Miwa, T., Yamamoto, T. and Morikawa, T. (2013). 

Estimation of Dynamic Link Flows and Origin-Destination Matrices from Lower 

Polling Frequency Probe Vehicle Data. Journal of the Eastern Asia Society for 

Transportation Studies, 10, 762–775. 

Chapter 5 presents the formulation of link travel time distribution in signalized 

road section using truncated distribution. 

Publication: Cao, P., Miwa, T. and Morikawa, T. (2014). Modeling Distribution 

of Travel Time in Signalized Road Section Using Truncated Distribution, 

Procedia-Social and Behavioral Sciences, Vol. 138, pp. 137-147. 

Researches in Chapter 3-5 utilize link travel times provided by part of probe 

vehicles, which has relative high polling frequency. Link travel times become less 

accurate and reliable for lower polling frequency probe vehicle data because of the 

difficulties of map-matching and path travel time allocation. Therefore, Chapter 6 

explores methodology of mining traffic information from scatted probe vehicle data 

regardless of polling frequency.  

Chapter 6 describes the formulation of a joint probability distribution of vehicle 

location and speed on arterial road using hydrodynamic theory and horizontal queuing 

theory. 

Publication: Cao, P., Miwa, T. and Morikawa, T. (2014). Use of Probe Vehicle 
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Data to Determine Joint Probability Distributions of Vehicle Location and Speed on an 

Arterial Road. In Transportation Research Record: Journal of the Transportation 

Research Board, Transportation Research board of the National Academies, 

Washington, D. C. (in press). 

Chapter 7 describes conclusions and future researches. 
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Chapter 2 

Literature review 

2.1 Introduction 

Traffic engineers have witnessed the fast development of probe vehicle technologies 

in the past twenty years. Probe vehicle is promising to be an alternative for collecting 

vehicle data. We introduce the mechanisms of probe vehicle and review some crucial 

technologies in processing probe vehicle data in the chapter. Additionally, methods of 

estimating traffic conditions are reviewed from three aspects of flow, speed and 

density. 

2.2 Probe vehicle technologies 

2.2.1 Probe vehicle 

Probe vehicle, also known as floating car, is a vehicle equipped a recording device 

receiving signals from GPS or antenna (GPS-based or cellular phone-based) and can 

provide series of points with information time stamp, speed and location etc. along the 

vehicle trajectories. There are multiple types of probe vehicles: taxis, delivery 

vehicles and buses with on-board device, vehicles using traditional cellular phone or 

smartphone as probe. 

These types of probe vehicles can be categorized as: the GPS-based and cellular 

phone-based probe vehicle, depending on the principle of positioning. It should be 

noted that smartphone with integrated GPS is regarded as GPS-based. 

For GPS-based probe vehicle (Figure 2.1), the vehicle position is determined 

using signals from at least four satellites firstly. This information will be corrected 

with the differential data that is calculated at the differential correction station. The 

location data together other information of the vehicle is packaged to be transmitted to 
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the control center. For cellular phone-based probe vehicle (Figure 2.2), the vehicle 

locations are determined by calls between the phone and two towers. This is done by a 

geolocating component of the system.  

 

Figure 2.1 A typical GPS-based probe vehicle system (FHWA report, 1998) 

 

Figure 2.2 Cellular phone-based probe vehicle system (FHWA report, 1998) 

2.2.2 Probe vehicle data 

1) Data types 
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The original probe vehicles provide the basic information of time stamp, vehicle 

position and speed. Besides, more and more probe vehicles provide 

acceleration/deceleration, weather condition, ambient temperature and number of 

passengers. In recent years, some probe vehicle can also provide CAN (controller area 

network) data including fuel consumption, engine temperature etc. that reflect the 

status of a vehicle. These kinds of information are also called as extended probe 

vehicle data (xPVD) or extended floating car data (xFCD). Since no additional 

hardware is needed and only software is required, it is easy for probe vehicle to 

provide detail information about the vehicle or passengers. The aforementioned types 

of data can be directly recorded by on-board sensor in probe vehicle. By processing 

these data by some techniques, vehicle trajectory, O-D point, travel time, CO2 

emissions etc. can be derived. 

2) Polling schemes 

Polling scheme is one crucial factor which essentially influences the data quality. The 

polling scheme determines the spatial distribution of probe points on the road network. 

Basically, there are two types of polling scheme: time-based and space-based. The 

former means probe vehicle reports a message every certain time interval. Probe 

points from this scheme are densely distributed on links close to signal controller or 

links of where the traffic is congestion. The later means probe vehicle sends a 

message every certain distance travelled by the vehicle. Probe points from this scheme 

are evenly distributed on links. Liu et al. (2007) compared the feasibility and 

efficiency of time-based and space-based polling schemes using probe vehicle data 

provided by Nagoya probe experiment. They concluded that, there are more missing 

data for space-based scheme than time-based due to communication congestion, and 

time-based data reflects various traffic conditions better than space-based data. 

Sometimes, another polling scheme, which is event-based, is also incorporated as a 
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complement. For example, cellular phone based probe vehicle send a signal when the 

phone is on call.  

One crucial issue involved in polling scheme is polling frequency (alternative 

sampling rate). Polling frequency refers to the rate of sending a message per unit time. 

Polling frequency not only determines the data quality but also communication cost. 

Usually, polling interval, the inverse of polling frequency, is used in common. For the 

time-based polling scheme, the polling time interval can be pre-set to be a constant 

value. But for space-based and event-based scheme, the polling time interval is not a 

constant but random. In principle, high polling frequency means high quality data but 

with high payment for communications and fast battery consumption of sensors. 

Therefore, experimenters have to make a compromise between them. Except some 

particular experiments use high polling frequency (one data point every1-10s), most 

probe vehicles reports data every 30-60s or even longer, or unknown polling time 

interval because of randomly polling. And this trend will continue with the 

development of smartphone. 

3) Penetration 

Penetration is another crucial factor which influences the application of probe data. 

Penetration refers to the ratio of probe vehicle in total vehicle population. The higher 

penetration means more vehicles in the traffic provide their travelling information. 

On-board device-based probe vehicles such as taxis, FedEx, UPS or other delivery 

vehicles reach market penetration of 1% at most, and it will not increase a lot in near 

future because of the limited market demand for these vehicles. Cellular phone-based 

probe vehicles seem to have great potential to increase the total penetration of probe 

vehicles. Cellular phone reached extensive market penetration in many countries 

(Bar-Gera, 2007). For example, a survey conducted at the Phone corridor, Lyon, 

France reported that 77.4% of the vehicles had at least one cellular phone in 2000 
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(Ygance, 2001). In 2004, 83% of households owned one cellular phone and 53% 

owned two or more in Israel (Israeli Central Bureau of Statistics, 2006). In recent 

years, the extensive use of GPS-based smartphone around the world further increases 

the use of cellular phones as probes. Probe vehicles including all kinds of types would 

certainly rise to a high level of penetration. 

4) Applications 

The applications of probe vehicle data have been studied for more than decades. 

Along with the new types of data being collected by probe vehicles, probe vehicle 

data has proven the benefits in many issues and shown great potential in wider fields. 

Leduc (2008) summarized the areas of benefiting from the use of probe vehicle data. 

 Congestion reduction 

 O-D matrix estimation 

 Travel time estimation/prediction 

 Traffic queue detection 

 Dynamic route guidance 

 Incident management 

 Dynamic network traffic control 

 Vehicle fleet management (UPS, taxis, etc.) 

 Fuel consumption and air emissions 

 Digital map construction 

These applications almost cover most key issues in transportation engineering. 

And the use of probe vehicle data is at different degrees to affect all the transportation 

actors: Government/public authorizes, location based service providers, logistics and 

fleet operators, consultants, map providers, and automobile manufactures and 

telecommunications. 

2.2.3 Key technologies in processing probe vehicle data 
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1) Map-matching 

Map-matching refer to the process of associating the reported points by probe vehicles 

onto the digital map of the road network. Map-matching arises from the reasons of 

unavoidable errors of positioning and making digital map. Usually, map-matching 

comprises two stages: path-inference and point matching. The former is to infer the 

links that the reported points are on, and the latter is to identify the locations on the 

inferred links that the reported points should be. 

There exist lots of map-matching algorithms proposed by researchers categorized 

as probabilistic map-matching algorithms and advance map-matching algorithms 

using concept of a Kalama Filter, a fuzzy logic model and an interacting multiple 

model etc. The methods of map-matching are out of the scope of this thesis, details 

can be found in Quddus et al. (2007). 

Besides the performance of the map-matching algorithms, the accuracy of digital 

map and the positioning of probe vehicles, polling frequency is another key factor that 

determines the accuracy of map-matching. The difficult of map-matching would 

dramatically increase and consequently the accuracy would reduce for probe vehicle 

data with lower polling frequency. The reason lies in that it is difficult to infer the real 

path since the vehicle may travel across several links between two consecutive probe 

points of lower polling frequency. The accuracy of map-matching would then affect 

the calculation of travel times. Therefore, polling frequency plays a very important 

role in map-matching and travel time calculation. 

2) Travel time allocation 

In principle, it’s not necessary to allocate travel time from high polling frequency (e.g. 

one point every 1s) probe vehicle data. Whereas travel time allocation should be taken 

carefully for lower frequency data, since the two consecutive polled positions do not 

necessarily correspond to the end points of individual links. Hellinga et al. (2008) 
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proposed an analytical method of travel time allocation by recognizing that vehicles 

are more likely to incur stopping delay at the downstream rather than upstream end of 

a link, especially when the link is influenced by a traffic control device. Soon 

afterwards, Zheng and Van Zuylen (2012) presented a three-layer Artificial Neural 

Network (ANN) model and got higher accuracy estimates than Hellinga’s model. 

However, both models are not capable for network application in which it’s difficult 

to determine the parameters for them. In Hellinga’s model, there are two unknown 

model parameters that are used to reflect the stopping likelihood pattern of a link. In 

Zheng’s model, all parameters are learned from very high polling frequency data (one 

point every 0.3s), while this kind of data are not available in practice. 

Intuitively, the error of the derived link travel time would increase when the 

polling interval becomes longer regardless of methods of travel time allocation. It is 

also validated by an empirical study (Liu et al., 2007). 

2.3 Use of probe vehicle data to estimate traffic conditions 

There are a large number of literatures dealing with the estimating traffic conditions 

from various data sources. The estimation method varies depending on the types of 

data. In this section, we only review the literatures close to our research topics: use of 

probe vehicle data to estimate traffic conditions. As we mentioned in problem 

statement in chapter 1, we concentrate on the discussion from three aspects of traffic 

conditions: flow, travel time and density. 

2.3.1 Flow estimation 

Generally, traffic flow includes link flow at the link-level and O-D flow at the 

network-level. The estimations of them are related with each other but the methods 

are different. We review these methods for them, respectively.  

For link flow estimation, there are only a small amount of researches on the 
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estimation using probe vehicle data. It is because link flows usually are recorded by 

existing fixed sensors. However, for most links without fixed sensors on, the flow 

have to be estimated for better monitoring traffic conditions of these links. Probe 

vehicle data has been used to estimate link flows in a few studies. Yamamoto et al. 

(2009) proposed a Bayesian method to infer link flow from prior and current link 

speed distribution from link travel times provided by probe vehicles. However, the 

experiment results didn’t validate the proposed method because of the limited data. 

Caceres et al. (2012) presented a set of models for inferring traffic volume by means 

of anonymous call data of cellular phone. In their models, the users’ calling behavior 

and hourly intensity in calls and vehicles are contained. However, the inferred traffic 

volume actually is not link flow for a road segment but the number of vehicles from 

one cell to another.  

More studies have been conducted to estimate O-D matrices from probe vehicle 

data. Van Aerde et al. (1993) estimated the level of penetration by calculating the ratio 

of probe vehicles in the population in aggregated time intervals for links, and then 

estimated dynamic O-D matrices using the origin and destination points of probe 

vehicles and the estimated penetration. Eisenman et al. (2004) proposed a method of 

estimating static O-D matrices based on traffic assignment, in which link choice ratios 

are inferred from probe route data. Ásmundsdóttir et al. (2010) discussed the rules of 

determining origins and destinations, route choice and trip length distribution within 

probe data from taxies, and then proposed a method of estimating dynamic O-D 

matrix from archived data and real time data. Nonetheless, the results didn’t support 

the proposed method well. These methods attempt to develop a direct estimation 

process based on the assumption of random sampling. But in practice probe vehicles 

are from one or several types of vehicles (taxis, delivery vehicles, etc.) and 

consequently are not a random sample from the population. To avoid the assumption 
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of random sampling, Yamamoto et al. (2009) suggested a two-step indirect framework. 

In the first step, they inferred link flows from probe vehicle speed using two Bayesian 

methods; then they updated the target O-D matrix using an entropy maximization 

method. However, they didn’t treat the variances of estimated link flows in a 

statistical manner and the results didn’t validate the advantage of applying Bayesian 

methods in estimating the link flow. 

2.3.2 Travel time estimation 

Probe vehicle data has been widely applied in estimation of travel time, since sampled 

travel times can be directly provided by probe vehicles instead of other sensors. 

Hellinga et al. (1999) derived analytical model based on queuing theory, and 

proved that bias in arrival time distributions and the distribution of probe vehicles in 

the total traffic would lead to a systematic bias in the estimation of the mean delay. In 

order to reduce the effect of this bias, Hellinga et al. (2002) proposed a methodology 

based on stratified sampling techniques. At the same time, Cheu et al. (2002) studied 

the probe vehicle sample size and population needed for arterial speed estimation. The 

results indicated that 4% to 5% of active probe vehicles are needed in network, or at 

least 10 probe vehicles must travel across a link in the estimation time interval, then 

the absolute error of estimated link speed can be less than 5 km/hour for more than 95% 

of the time. 

In recent years, researchers developed multiple approaches which are 

model-based or data-driven. Zou et al. (2005) proposed a methodology of estimating 

arterial speed based on a sampling model using high frequency probe data provided 

by taxis. A mathematical model is proposed by Jula et al. (2008) to estimate travel 

times along the arcs and arrival times at the nodes of dynamic stochastic networks. 

The Kalman filter is applied to predict the future travel times along the arcs. Using the 
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“event-based” data including every vehicle actuations over loop detector, Liu (2009) 

presented a method to estimate arterial travel time by tracing a virtual probe vehicle. 

Jenelius et al. (2013) proposed a statistical model for estimating travel time for urban 

road network using low frequency probe vehicle data. By decomposing the trip travel 

times into link travel times and delays in intersection and using a spatial moving 

average (SMA) structure to express the correlation between travel times on different 

links, they presented a way to estimate the parameters including the correlation 

structure. The results revealed the potential of using probe vehicle data for monitoring 

the urban traffic. 

Data-driven approaches are expected to solve the problem of travel time 

estimation by using large amount of data. Li and McDonald (2002) presented a 

pattern recognition method based on the analysis of speed-time profile. The driven 

pattern of a probe vehicle is classified by using fuzzy sets according to the features of 

the speed profile. Then the travel time is estimated by using corresponding methods 

for different driven pattern. Chan and Tam (2008) applied a method of nonparametric 

regression to estimate link travel times using an offline database consisting of average 

link travel times.  

Besides the estimating the average value of travel time, researches are also 

conducted on the probability distribution of travel time. It is because travel time 

distribution determines the variability and reliability of travel time in the network 

performance. 

The common way assumes that link travel time would follow a typical random 

distribution. May et al. (1989) assumed that travel time follow a normal distribution 

for a group of car commuters in north London. Rakha et al. (2010) also assumed a 

normal distribution for travel time on studying trip travel time reliability. Log-normal 

distribution was also applied in the analysis of road network reliability in Beijing in 
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Chen et al. (2007). Kaparias et al. (2008) proposed a new measure of travel time 

reliability based on log-normal distribution. Based on the assumption of log-normal 

distribution, Hollander (2008) estimated travel time distribution by repeated 

simulation. Additionally, Gamma distribution is assumed for travel time distribution 

in some researches. Polus (1979) studied route travel time distribution using a Gamma 

distribution. Guehthner (1985) used Gamma distribution to model the distribution of 

bus transit on-time performance.  

As indicated by Lomax et al. (2003), a normal distribution is appropriate in the 

cases for simplifying the calculation process; when the characteristics of distributions 

like skewness cannot be ignored, the log-normal is more appropriate. However, since 

the urban traffic is complicated and varies along the time and space, a single random 

distribution may not be able to model the travel time satisfactorily. Therefore, some 

researches explored the application of composite distributions with a combination of 

more than one random distribution (May 1990, Feng et al. 2011).  

In empirical experiments, the link travel times usually show multimodal 

distribution. It is because the traffic is interrupted by traffic signals. Feng et al. (2011) 

model arterial travel time distribution as a multi-component mixture of normal 

distributions. However, their model is actually data-driven and the effect of traffic 

signal wasn’t explicitly considered. Hofleitner et al. (2012) formulate a analytical 

model parameterized by red signal time, cycle time etc., for arterial travel time 

distribution based on the hydrodynamic theory. However, delays due to traffic 

congestion and acceleration/deceleration are not considered in their research. 

2.3.3 Density estimation 

The researches on density estimation using probe vehicle are quit few, because the 

data provided by probe vehicles are quite different with density. However, since 
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collection of location- based data become abundant, density-based modelling using 

this kind of data would be meaningful. Hofleitner et al. (2010) formulated an 

analytical model for probability distribution of vehicle locations based on the 

observation: probe points are more likely distributed in dense traffic and on the road 

close to intersections. Together with the model of travel time distribution formulated 

in Hofleitner et al. (2012), they proposed a hybrid approach of flow modeling and 

machine learning for arterial travel time prediction. However, the travel times from 

low frequency data are less reliable and the more reliable information on speed are not 

applied in their researches. 
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Chapter 3 

Estimation of link flow using link travel times by probe vehicles 

3.1 Introduction 

Previous method of estimating link flows using probe vehicle data not only utilized 

the accurate link travel times from high polling frequency probe vehicle points, but 

also ignored the effect of polling frequency on the derived link travel times 

(Yamamoto et al. 2009). However, it is less likely a probe vehicle directly records link 

travel times, since the two consecutive polled positions do not necessarily correspond 

to the end points of individual links. Methods have been proposed to decompose 

travel times measured by probe vehicles into individual road segments (Hellinga, 

2008; Zheng and Van Zuylen, 2012). These researches indicate the link travel time 

become less reliable when it is derived from lower polling frequency probe vehicle 

points. This chapter analyzes the effects of polling frequency and method of 

decomposing travel time on the derived travel time, and then explores method of 

estimating dynamic link flows from probe vehicle data. 

This chapter first discusses the issue of decomposing probe vehicle travel times 

into individual links, and then proposes a method of estimating dynamic link flows. 

Finally, in the experiment, the effect of polling frequency and penetration will be 

analyzed and discussed. 

3.2 Methodology 

The raw probe vehicle data are series of track points including location, time. Usually, 

it requires procedures of map-matching and travel time allocation before link travel 

time being obtained. This research starts from the map-matched probe data, discusses 

travel time allocation that is directly related with polling frequency. To build a bridge 
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between link travel time and link flow, we derive link performance function based on 

the density-versus-space mean speed (k-v) curve. Therefore, the methodology includes 

three steps: travel time allocation, link performance function fitting and dynamic link 

flows estimation. 

3.2.1 Step1-travel time allocation 

To our knowledge, most existing probe vehicle systems still use a simple but practical 

method to obtain link travel time, in which uniform motion is assumed (Miwa et al. 

2004). From the perspective of practical applications, we also use this method 

described as follows. 

 

Figure 3.1 Calculation of link travel time using probe vehicle data 

In Figure 3.1, we assume raw probe data have been map-matched onto road, A 

and B are intersections which are controlled by traffic signals. 𝑡𝑎, 𝑡𝑏,  𝑡𝑐, and 𝑡𝑑 

are the time recorded by the probe vehicle. 𝑡𝐴 and  𝑡𝐵 are the time a probe vehicle 

departs intersection A and B respectively, which need to be estimated. 

Assume a probe vehicle travels in uniform motion between 𝑡𝑎 and 𝑡𝑏, and 

between 𝑡𝑐 and 𝑡𝑑, then 𝑡𝐴 and  𝑡𝐵 can be estimated by: 

𝑡𝐴̂  
𝑡𝑎∗𝐿2+𝑡𝑏∗𝐿1

𝐿1+𝐿2
                                                (3.1) 

𝑡𝐵̂  
𝑡𝑐∗𝐿4+𝑡𝑑∗𝐿3

𝐿3+𝐿4
                                                (3.2) 

Then the travel time of link AB is calculated by: 

𝑇𝐴𝐵̂  𝑡𝐵̂ − 𝑡𝐴̂                                                  (3.3) 

L1 

A B 

L2 L3 L4 

ta tb tc td tA tB 

Map matched probe point Intersection 

Traffic Direction of Movement 
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This method actually allocates travel time according to the distance between 

probe point and intersection point, thus we call it proportional allocation in this thesis. 

Proportional allocation can be easily applied to various kinds of probe vehicle systems 

in spite of probably resulting inaccurate link travel times. Moreover, it has a special 

function of reducing the variance of the derived link travel time. It can be illustrated 

with an example using Figure 3.1 in the following. 

Note that the following calculation is just an illustration example. Without loss of 

generality, we assume the time of a vehicle entering in link AB 𝑡𝐴 is known, the time 

of this vehicle leaving the link should be calculated using Equation (3.2). Intersection 

B is controlled by a traffic signal with 30s red light of 60s cycle. A probe vehicle 

enters link AB at 𝑡𝑎  100s, and runs at a constant speed of 10m/s or stops at the 

intersection B waiting for the red light. And the polling frequency is one point every 

60s. The length of link AB is 300m, values of 𝐿3 and 𝐿4 depend on the time when 

probe vehicle sends data. Since the red light is the main factor causing a vehicle to 

stop, we consider two extreme situations: no stop, stop when red light begins.  

Situation 1: No stop 

In this situation, a vehicle always maintains a speed of 10m/s, and experiences 

the minimum delay. A probe vehicle sends one point on 𝑡𝑐  115s and 𝑡𝑑  175s, 

then we can calculate 𝐿3  150m, 𝐿4  450m, 𝑡𝐵  130s, thus 𝑇𝐴𝐵  𝑡𝐵 − 𝑡𝐴  

30s. If only 𝑡𝑎 and 𝑡𝑑 are assumed known, 𝑡𝐵 is estimated using Equation (2), 

then 𝑡𝐵̂  130𝑠, 𝑇𝐴𝐵̂  30𝑠. We can see the estimated link travel time 𝑇𝐴𝐵̂ equals 

the true link travel time 𝑇𝐴𝐵 in this case 

Situation 2: stop when red light begins 

A probe vehicle travels at a speed of 10m/s, and then stops at intersection B 

waiting for 30s of red light, finally leaves link AB at the speed of 10m/s. In this 

situation, the vehicle experiences the maximum delay. The probe vehicle reports 
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𝑡𝑐  115s and 𝑡𝑑  175s. We can calculate 𝐿3  150m, 𝐿4  150m, 𝑡𝐵  160s, 

thus 𝑇𝐴𝐵  𝑡𝐵 − 𝑡𝐴  60 s. Using Equation (3.2-3.3), we can estimate 𝑡𝐵  as 

𝑡𝐵̂  145𝑠, 𝑇𝐴𝐵 as 𝑇𝐴𝐵̂  45𝑠 Thus, in this case the estimated link travel time 𝑇𝐴𝐵̂ 

is smaller than the true link travel time 𝑇𝐴𝐵. 

From the above calculation, we know the true link travel time 𝑇𝐴𝐵 is distributed 

in range of  [30𝑠, 60𝑠] , whereas the estimated link travel time using proportional 

allocation 𝑇𝐴𝐵̂ is distributed in a smaller range of [30s, 45s]. Therefore, the variance 

of estimated link travel time using proportional allocation is smaller than that of true 

link travel time. 

3.2.2 Step2-link performance function fitting 

Link performance function builds a bridge between link travel time and link flow. The 

average and variance of link flow can be estimated from link travel time if the 

performance function is given. In traffic theory, there is a basic relation among three 

macroscopic variables which is formulated for uninterrupted flow. For urban traffic, 

since we only consider the macroscopic characteristics, the basic relation is applied: 

𝑞  𝑘𝑣̅                                                       (3.4) 

where 𝑞 is link flow, 𝑘 is vehicle density, 𝑣̅ is space mean speed. 

The density 𝑘 cannot be directly obtained from probe vehicle, but can be 

estimated from space mean speed using a k-v function. From Gazis’s nonlinear 

follow-the-leader model (Gazis et al. 1961), we derive a k-v function: 

𝑣̅  𝑣𝑓𝑒𝑥𝑝 (−𝛼 (
𝑘

𝑘𝑗
)
𝛽

)                                           (3.5) 

where 𝑘𝑗 denotes the jam density, 𝑣𝑓 denotes the free flow speed and 𝛼 and 𝛽 

are parameters. 

This formula is essentially a generalized version of the Underwood model 

(Underwood, 1961). As indicated by Wu et al. (2012), the fundamental diagram is 
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significantly affected by signal timings in the case of an urban road, and thus the 

speed-density relationship is different from that for a highway. It should be noted that 

the derived function is a little different from the one given in Yamamoto et al. (2009), 

where link capacity 𝐶 replaces jam density 𝑘𝑗, and 𝛼 and 𝛽 have different meanings. 

The above formula is applied in this study, because 𝑘𝑗 can be easily set for a particular 

link as the length of the link divided by the average vehicle spacing.  

In a probe vehicle system, link travel times and thus link speeds can be easily 

obtained in real-time in aggregated time intervals. However, the observed link travel 

speed of probe vehicle is not necessarily identical to the mean speed, since the speed of 

a probe vehicle depends on the arrival flow rate and distribution, traffic signal timings 

and arrival time, which are random variables. So the link speed of probe vehicle 𝑖 in 

time interval 𝑡 is regarded as a random variable distributed around the mean speed 𝑣̅𝑡: 

𝑣𝑡
𝑖  𝑣̅𝑡 + 𝜀𝑡

𝑖                                                   (3.6) 

where 𝜀𝑡
𝑖 is an error term. 

Assume that 𝜀𝑡
𝑖  follows a normal distribution 𝑁(0, 𝑠𝑡) , then the probability 

density function of 𝑣𝑡
𝑖 can be given as 

𝑓(𝑣𝑡
𝑖|𝑣̅𝑡 , 𝑠𝑡

2 )  
1

√2𝜋𝑠𝑡
𝑒𝑥𝑝 {−

(𝑣𝑡
𝑖−𝑣̅𝑡)

2

2𝑠𝑡2
}                               (3.7) 

A Lagrangian likelihood function can be constructed for Equation (3.7) into which 

Equation (3.5) is substituted, then parameters 𝑣𝑓, 𝛼, 𝛽 and 𝑠𝑡 can be estimated using 

the maximum likelihood method. The reader is recommended to refer to Yamamoto et 

al. (2009) for more details of this procedure. 

3.2.3 Step3-dynamic link flows estimation 

To utilize prior information that can be obtained from archived probe data, a method 

based on Bayes’ inference theory, namely the Bayesian method (BM), is used in this 

study. For each link at time interval 𝑡, the posterior mean and variance of the mean 
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speed 𝑣1, 𝜎1
2 are given as 

𝑣1  
𝜎0
−2∙𝑣0+𝑛∙𝑠

−2∙𝑣̂

𝜎0−2+𝑛∙𝑠−2
                                              (3.8) 

𝜎1
−2  𝜎0

−2 + 𝑛 ∙ 𝑠−2                                           (3.9) 

where 𝑣0,  𝜎0
2 are the prior mean and variance of the mean speed, respectively, 

and 𝑣 is the average link speed of probe vehicles. 

Then using the posterior distribution of link speed, the link performance function 

and the relationship among link flow, traffic density and link speed as in Equation (4), 

the posterior mean and variance of link flow, 𝑞̅ and 𝜎𝑞
2, are given as 

𝑞̅  ∫ 𝐾(𝑣) ∙ 𝑣 ∙ 𝑓(𝑣|𝑣1, 𝜎1)𝑑𝑣
∞

𝑣=0
                                 (3.10) 

𝜎𝑞
2  ∫ (𝐾(𝑣) ∙ 𝑣 − 𝑞̅) ∙ 𝑓(𝑣|𝑣1, 𝜎1)𝑑𝑣

∞

𝑣=0
                          (3.11) 

where 𝐾(𝑣) is the function of density k with respect to speed v solved from 

Equation (3.5). 

An ordinary method (OM) of link flow estimation is also employed to compare 

with the above Bayesian method. This is represented as 

𝑞̅  
1

𝑛
∑ 𝑣𝑖𝐾(𝑣𝑖)
𝑛
𝑖=1                                             (3.12) 

𝜎𝑞
2  

1

𝑛
∑ (𝑣𝑖𝐾(𝑣𝑖) − 𝑞̅)

2𝑛
𝑖=1                                     (3.13) 

where 𝑣𝑖  is the link speed of probe vehicle 𝑖  and 𝑛 is the number of probe 

vehicles observed in a certain time interval. 

Note that we obtain both the link flow and the variance using both BM and OM. 

The variances virtually reflect the difference in the reliability of link flow estimates 

among links. In practice, a huge number of data can be obtained after a probe vehicle 

system has been running for several months. This make it possible get enough data for 

particular time of particular day on particular road, thus provide enough prior 

information for link speed distribution. 
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3.3 Study Network 

The network studied in this research is a western part of central Tokyo, namely 

Kichijoji-Mitaka area, which extends about 2 km from east to west and 1 km from north 

to south (Figure 3.2). This network consists of 138 links and 57 nodes, including four 

major north-south streets and two major east-west streets. Horiguchi et al. (1998) 

carried out a precise traffic survey on this network in morning peak period 7:00 

am-10:00 am on 30 Oct. 1996, and made an open data set. Link volume on 70 links 

were observed and totally 16,043 vehicle trajectories are identified and, after data 

cleaning, link flows and O-D demands for each 10-minute period for the effective time 

interval 7:50 am to 10:00am are derived. There are 26 origins and 26 destinations 

identified in this network. In addition to these data, geometry of most intersections and 

all signal timings can be also found in the Kichijoji-Mitaka open data set. We use this 

network not only because of the rather complete data set, but also because there are 

multiple routes for many O-D pairs. 

 

Figure 3.2 The Kichijoji-Mitaka network (Horiguchi et al., 1998) 

1.2. Traffic Simulator 

In order to reproduce the real traffic conditions, we develop a microscopic traffic 
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simulator based on VISSIM using Kichijoji-Mitaka network and its data set. An equal 

scale road network is drawn on VISSIM. Network geometry including link lengths, 

number of lanes and link connectivity etc. is set the same as in reality. Parameters for 

the simulator, including signal timings and traffic controls are also set using the real 

data. The observed dynamic O-D matrix is mapped onto the developed network to 

validate the simulator. 

 

 
  

  

(a), Scatter plot of observed and simulated link 

volume for each 10-minute period 

(b), Link flows comparison for all time intervals. x-axis is 

the aggregated time interval, and y-axis is link flows per 

10minuts. Blue line denotes observed flow, and red line 

denotes simulated flow 

Figure 3.3 Validation of the developed simulator 

The comparison between the developed simulator and the real traffic network is 

shown in Figure 3.3. Figure 3.3a is the scatter plot of observed link flows given by the 

Kichijoji Benchmark Data Set and simulated link flows obtained from the simulator for 

each 10-minute period. The linear correlation coefficient between them is 0.8901, the 

slope of the linear fitted line is 0.9793, and the root mean square error (RMSE) is 13.56 

vehs/10mins. We also select four links and observe dynamic link flows for various time 

intervals (Figure 3.3b). In Figure 3.3b, the red plots represent observed link flows while 
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the blue plots represent simulated link flows. As we can see, the simulated link flows 

fits the observed values well. These results suggest that the simulator is able to 

reproduce real traffic conditions with high accuracy, although a better simulator would 

be obtained if more parameters of the true network, such as lane widths, stop line 

locations and road gradients were available. 

3.4 Numerical experiment and results 

3.4.1 The assumptions for simulation 

Utilizing the developed VISSIM simulator, we can simulate the traffic within certain 

ratio of probe vehicles. Before implementing this simulator, we make assumptions of 

system as follows: 

 Single class vehicles. All vehicles are assumed vehicles with standard vehicle 

properties like length and width. Multi-class vehicles in the original network have 

been converted using vehicle conversion factors (Horiguchi et al., 1998). 

 Driving behavior. We use the psycho-physical model of Wiedemann 74 (1974), 

which classifies four driving states: free driving, approaching, following and 

braking. Wiedemann 74 is applicable for inner urban road traffic. We assume free 

lane changing for vehicles which would change lane for larger traveling space or 

higher traveling speed. This means overtaking is permitted at any lane as long as 

conditions are satisfied.  

 Dynamic traffic assignment. All vehicles are not equipped route guidance devices, 

thus route choice decision is only based on cost in previous iteration. We assume 

that driver chooses not only the optimal route but also a series of feasible routes. 

The simulation time is the morning peak period from 7:50 am to 10:00 am, the 

length of aggregate time interval is assumed 10 minutes, and thus there are 13 time 

interval during the simulation time. 
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3.4.2 The estimation results for BM and OM 

In principle every link has its own performance function, which is affected by factors 

like number of lanes, width and length of link and signal timings at intersections. 

However, in practice there is usually not enough data for determining performance 

function for each link. Considering the practical application, we choose number of 

lanes as the only criterion that distinguishes one link from another. Thus, two types of 

link are identified for the study network according to the number of lanes: roads with 

one lane and roads with two lanes in one direction. Then the link performance functions 

and k-v functions for them are obtained using method described section 3.2.2. The 

calibrated link performance functions and k-v functions are then used to estimate 

dynamic link flows using Bayesian Method (BM) and Ordinary Method (OM) in 

section 3.2.3. In the Bayesian method, prior distributions of vehicle speed are 

aggregated over each 10 minutes. Since there is some probability that no probe vehicle 

passes along some links in certain time intervals, especially when the probe ratio is low, 

the proportion of records being estimated (PRBE) is counted to indicate the different 

estimation abilities of BM and OM. Additionally, if no probe vehicle is passes in some 

time interval, the OM estimated link flow is set at 0 for that link. To examine the usage 

of prior information in calculating estimation results, three prior distributions of vehicle 

speed are assumed in BM: A (aggregated over each 10 minutes); B (aggregated over 

each 1 hour); and C (aggregated over 2 hours). A, B and C represent three levels of 

accuracy of prior information, with A the highest accuracy, B the second highest and C 

the lowest.  

Table 3.1 shows the estimation results of BM and OM for various probe ratios. 

Two kinds of RMSE are calculated: RMSE for all links and RMSE for travelled links. 

The former is the RMSE calculated for all links in all time intervals, while the latter is 

the RMSE computed for the links in time intervals when at least one probe vehicle 
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travels.  

Table 3.1 Link flow estimation results for BM and OM 

Probe ratio 0.01 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 

PRBE (%) 
BM 100 100 100 100 100 100 100 100 100 

OM 52.64 86.37 93.30 95.82 97.69 99.23 99.45 99.78 99.89 

RMSE for all links 

(vehs) 

BM 

A 53.20 34.41 30.74 29.74 29.65 32.22 33.66 34.57 35.10 

B 55.55 35.59 31.88 31.13 32.62 32.13 33.82 34.79 36.13 

C 55.96 34.63 31.11 32.88 35.54 32.85 34.31 34.99 35.35 

OM 58.44 35.69 31.34 30.10 31.02 32.36 32.22 32.47 32.46 

RMSE for travelled 

links (vehs) 

BM-A 19.72 27.82 28.36 28.67 29.78 32.29 33.73 34.60 35.11 

OM 21.54 28.32 28.77 29.06 31.07 32.46 32.30 32.50 32.47 

The values of PRBE demonstrate, as expected, that the BM gives an estimation 

result even if no probe vehicle uses a certain link in a certain time interval as long as the 

prior information is given, whereas the OM can only estimate those links passed by at 

least one probe vehicle. 

From the RMSE for all links, the BM results indicate that accuracy is best with the 

highest level of prior information, A, especially for low probe ratio data. As the probe 

ratio increases, the RMSE of BM decreases to 29.65 vehs when the probe ratio equals 

0.1, and then begins to increase. There is no significant benefit as the probe ratio rises. 

The reason for this may be, as Equation (3.8-3.9) implies, that the current information 

provided by probe vehicles dominates the posterior distribution of probe vehicles when 

more probe vehicles are used. A comparison of BM and OM results shows that, when 

the probe ratio is lower than 0.2, BM with prior information A (BM-A) gives a better 

estimation than OM, but a worse one when the probe ratio is higher than 0.2.  

The RMSE values for travelled links that are also displayed in Table 3.1 enable 

BM and OM to be compared. In this calculation, the same links set for both BM and 

OM is considered for each probe ratio case. The results show the RMSE of BM-A is 

smaller than that of OM when the probe ratio is less than 0.2 but bigger at higher probe 

ratios. This is consistent with the previous observation and arises because OM has the 
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advantage of making use of all information from the observed probe vehicles, whereas 

BM can only take advantage of part of the current information. 

3.4.3 The effect of polling frequency 

 

Figure 3.4 RMSE of estimated link flows 

The probe ratio is set as 0.1 in the experiment. Figure 3.4 shows the RMSE of estimated 

link flows using various polling frequencies probe data. As we can see, the polling 

frequency does affect the accuracy of link flow estimation. Along with the polling 

interval becoming longer (i.e. the polling frequency becoming lower), the RMSE of 

estimated link flows decreases before polling interval is 50s, later begins to slow down. 

Further, we obtain acceptable estimates of link flows with RMSE 24.6 veh/10 minutes 

when polling interval is longer than 50s. In other words, using the proposed Bayesian 

method, the longer polling interval would produce higher accuracy estimated link 

flows. 

In order to get insight of estimation results, we plot scatter figures of true link flow 

and estimated link flow for four different polling intervals: 1s, 10s, 30s and 60s (Figure 

3.5). In Figure 3.5, we also demonstrate the distribution of estimate with different 𝜎1 

value ranges (the variance of posterior link speed distribution calculated by Equation 8b) 

denoted by different tags. We can observe from these figures that the scatter plots 

become more concentrated on the diagonal line for each 𝜎1  value range with the 
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increase of polling interval, and the correlation coefficient R becomes larger. Therefore, 

we can obtain the conclusion that the estimate link flows are more accuracy for longer 

polling intervals, which consists with that from Figure 3.4. Additionally, from all plots 

in Figure 3.4 we can see the trend that the 𝜎1 increase with the decrease of link flow 

and this trend is clearer for longer polling interval. The reason can be found in Equation 

(3.9). There are more probe vehicles observed in certain time interval for links with 

higher volume of flow. The increase of number of probe vehicles n would bring the 

decrease of 𝜎1 in Equation (3.9).  

  

Polling Interval: 1s Polling Interval: 10s 

  

Polling Interval: 30s Polling Interval: 60s 

Figure 3.5 Scatter plots of true and estimated link flows for various polling intervals 

These results show that the link flow estimates are more accurate for longer 

polling intervals than shorter polling intervals. The reason lies in the proportional 

0

20

40

60

80

100

0 50 100

E
st

im
at

ed
 L

in
k
 F

lo
w

 

True Link Flow 

0

20

40

60

80

100

0 50 100

E
st

im
at

ed
 L

in
k
 F

lo
w

 

True Link Flow 

0

20

40

60

80

100

0 50 100

E
st

im
a
te

d
 L

in
k

 F
lo

w
 

True Link Flow 

0

20

40

60

80

100

0 50 100

E
st

im
a
te

d
 L

in
k

 F
lo

w
 

True Link Flow 



45 

allocation in dealing with signalized intersection. Short polling interval probe data 

might incorrectly reflect the traffic condition in some specific cases. For example, even 

in the free flow situation, a probe vehicle, which arrives at the intersection when the red 

signal begins, will report a long link travel time (free travel time + red signal time, thus 

low link speed). The reported link travel time from short polling interval reflects actual 

travel time of the vehicle but it will lead misunderstanding of the traffic situation in 

some cases. Suppose that penetration of probe vehicle is 0.1 and there are 100 vehicles 

passing an intersection in one cycle. Even when 50 vehicles experience stop and 50 

vehicles don't, it's possible that 8 probe vehicles experience stop and 2 probe vehicles 

don't stop. In this situation, the travel times from shorter interval data will lead biased 

traffic condition. In the long polling interval case, on the other hand, although the 

observed travel times will be relatively inaccurate, they are evened link by link and 

vehicle by vehicle and they can reflect actual traffic condition better than that in short 

polling interval case. As illustrated in section 3.2.1, the variance of derived link travel 

times from longer polling interval data using proportional allocation is smaller than that 

from shorter polling interval data regardless of free flow or congested flow. From these 

analyses, we can find that our conclusion is more suitable for the lower penetration of 

probe vehicle, since the randomness whether a vehicle experiences a stop is larger for 

small number of probe vehicles. Therefore, the proposed method is applicable for 

practice application, because penetration of probe vehicle is usually low in reality. 

Although our method performs better for longer polling interval (lower polling 

frequency), it doesn't mean that very low polling frequency data (e.g. one point every 

2-5 minutes) can still give better results. In reality, polled points become sparser and 

map-matching becomes much more difficult and for lower frequency probe vehicle 

data, which results less reliable information. Based on this consideration, it’s better for 

the proposed Bayesian method to be applied in the situation of lower polling frequency 
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probe vehicle data (e.g. one point every 30-60s). 

3.5 Summary 

In this chapter, method of estimating dynamic link flows using probe vehicle data is 

explored. The probe data is assumed the map-matched points on the road network. We 

proposed a three-step methodology including: travel time allocation, link performance 

function fitting and dynamic link flow estimation. 

In the first step, method of proportional allocation is used to decompose probe 

travel time onto individual links. This method can be easily carried out for network 

application, and it has a function of reducing the variance of the derived link travel time. 

In the second step, link performance function is obtained from a derived speed-density 

function. The speed–density function is derived from Gazis’s nonlinear 

follow-the-leader model. The key feature of this function is that it only has four 

parameters, which are estimated using maximum likelihood method. We only classify 

links into two types by their number of lanes in the experiment from a view of practical 

application. If link performance function is known for each link, the estimate would be 

better. In order to estimate link flow, a Bayesian method that incorporates prior 

distribution of link speed and an ordinary method are applied in third step. It has been 

shown that the Bayesian method can effectively use the prior distribution of vehicle 

speed accumulated from archived probe vehicle data, and produce an acceptable link 

flow estimate even if there is no probe vehicle observed in that link. In addition to the 

average value of link flow, Both the Bayesian method and ordinary method estimate 

the variance of estimated link flow at the same time (see Equation 3.11 and 3.13).  
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Chapter 4 

Application of a bi-level GLS model for estimating dynamic 

origin-destination flow 

4.1 Introduction 

In this chapter, we explore the estimation of O-D flows from probe vehicle data. We 

apply the idea of two-stage proposed by Yamamoto et al. (2009). For the first stage, 

the dynamic link flows are estimated by using the Bayesian method (BM) and 

ordinary method (OM), which are presented in chapter 3. For the second stage, O-D 

flows are estimated from estimated link flows. However, instead of using an entropy 

maximization method in Yamamoto et al. (2009), we describe a dynamic traffic 

assignment (DTA)-based bi-level generalized least squares (GLS) model in this 

chapter. This is an extension of the iterative bi-level estimation framework proposed by 

Tavana et al. (2001a), and we adopt the same notation for variables in the model 

formulation that follows. 

4.2 Methodology 

4.2.1 Bi-level GLS estimator 

We consider a traffic network where L is the number of sensed links, and I and J are the 

numbers of origins and destinations, respectively. We are interested in finding a feasible 

vector O-D demand D for 𝛤 aggregated time intervals, given a target demand vector 𝐷̂, 

and observed link flow vector 𝑉̂ for T observation time intervals. The assignment of 

the O-D matrix onto the links in the network is made according to the link-flow 

proportion matrix 𝑃  {𝑝(𝑙,𝑡)(𝜏,𝑖,𝑗)}, 𝑙  1,2,⋯ , 𝐿; 𝑡  1,2,⋯ , 𝑇; 𝜏  1,2,⋯ , 𝛤; 𝑖  

1,2,⋯ , 𝐼; 𝑗  1,2,⋯ , where each element 𝑝(𝑙,𝑡)(𝜏,𝑖,𝑗)  in the matrix represents the 

proportion of aggregated demand flow 𝑑(𝜏,𝑖,𝑗) in aggregated time interval 𝜏 that flows 
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on link 𝑙  during observation time interval 𝑡 . Further, 𝑣(𝑙,𝑡)  is the element of 𝑉̂ 

representing the observed link flow for link l during observation time interval t, and 

𝑑̂(𝜏,𝑖,𝑗) is the element of 𝐷̂ representing the target O-D demand for trips originating in 

zone 𝑖  in aggregated time interval 𝜏  with destination 𝑗 . It is noteworthy that the 

duration of the aggregated time interval can be one or several departure time intervals, 

and the departure time interval is equal to the observation time interval.  

It has been pointed out that the error between the assigned link flow 𝑉  and 

observed link flow 𝑉̂ is a combined error 𝐸 arising from inconsistencies in traffic 

assignment, measurement of traffic volumes and aggregating demand (Tavana et al., 

2001a). That is: 

𝑉̂  𝑃𝐷 + 𝐸                                                   (4.1) 

or 

𝑣(𝑙,𝑡)  ∑ 𝑝(𝑙,𝑡)(𝜏,𝑖,𝑗) ∙ 𝑑(𝜏,𝑖,𝑗)𝜏,𝑖,𝑗 + 𝜀(𝑙.𝑡)                               (4.2) 

where 𝑉  𝑃𝐷  and combined error 𝐸  is a random vector with 

variance-covariance matrix 𝑊. 

Tavana et al. formulated a bi-level GLS model that minimizes the above combined 

error 𝐸 in objective function (Tavana et al., 2001a): 

𝑚𝑖𝑛𝐹(𝐷)  (𝑉̂ − 𝑃𝐷)𝑇𝑊−1(𝑉̂ − 𝑃𝐷)                              (4.3) 

subject to 𝑃=assignment 𝐷 from DTA                           (4.4) 

                 𝐷 ≥ 0 

In reality a target O-D matrix (e.g. historical O-D demand from survey) when 

available can help to identify the estimated O-D matrices. Also, there are errors 

between the target and estimated O-D. 

𝐷̂  𝐷 + 𝛱                                                     (4.5) 

or 

𝑑̂(𝜏,𝑖,𝑗)=𝑑(𝜏,𝑖,𝑗) + 𝜂(𝜏,𝑖,𝑗)                                           (4.6) 
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where error 𝛱 is a random vector variance-covariance matrix 𝑍. 

The overall objective is thus to minimize the above two sets of errors in Equations 

(4.1 and 4.5). A weighted formulation is adopted to combine the two kinds of deviations, 

with (1 − 𝜔)  and 𝜔 , respectively, reflecting the decision maker’s preference or 

perceived importance for observed link flows and the target O-D matrix. Generally 

speaking, if no target O-D matrix or an unreliable O-D matrix is provided, the value of 

 ω should be small and vice versa. Usually, if no further perceptual information about 

observed link flows and the target O-D matrix is known, ω is given a value of 0.5 for 

both terms to indicate no preference. 

Similarly to the static case, the dynamic bi-level GLS estimator can be formulated 

as 

𝑚𝑖𝑛𝐹(𝐷)  𝜔(𝐷̂ − 𝐷)
𝑇
𝑍−1(𝐷̂ − 𝐷) + (1 − 𝜔)(𝑉̂ − 𝑃𝐷)𝑇𝑊−1(𝑉̂ − 𝑃𝐷) (4.7) 

subject to 𝑃=assignment 𝐷 from DTA                             (4.8) 

                 𝐷 ≥ 0 

For the objective function, if both 𝑍 and 𝑊 are set to be the identity matrix 𝐼, 

our formulation will drop back to the OLS presented by Zhou et al. (2003). Actually, W 

was set to 𝐼 in Tavana’s experiments, so the benefit of 𝑊 has not been validated. In 

this research, the merits of both Z and W will be carefully considered and implemented. 

As already noted, this proposed model is a DTA-based bi-level GLS estimator. 

The upper level is a constrained minimization problem with objective function GLS. 

Both the distance between the estimated and target O-D matrices and the distance 

between the calculated and observed link flows are considered in the objective function. 

The target O-D matrices can be obtained from census data. For example, the Ministry of 

Land, Infrastructure, and Transport of Japan (MLIT) conduct a census every five years 

with a sample rate of 3%, and this can provide hourly O-D matrices (Miwa et al., 2010). 
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The lower level is a user equilibrium-based DTA process that is the same as Tavana’s 

and Zhou’s work (Tavana et al., 2001a; Zhou et al. 2003). 

4.2.2 Solution Method 

The iterative solution procedure presented by Zhou et al. (2003) is applied to the 

proposed bi-level GLS model. This procedure is briefly outlined here, followed by a 

detailed discussion of the upper-level and lower-level procedures. 

Step 1: (Initialization) k=0. Start from the target O-D matrix, obtain link-flow 

proportions 𝑃0 from DTA simulator. 

Step 2: (Optimization) Substituting the link-flow proportion matrix 𝑃𝑘, solve the 

upper level to obtain demand 𝐷𝑘. 

Step 3: (Simulation) Using demand 𝐷𝑘, run the DTA simulator to generate new 

link-flow proportions 𝑃𝑘+1. 

Step 4: (Evaluation) Calculate the deviation between simulated and observed link 

flows, and the deviation between estimated and target O-D matrices. 

Step 5: (Convergence test) If estimated demand is stable or if no significant 

improvement is the overall objective, stop; otherwise k=k+1 and go to Step 2. 

Specifically, regarding the upper level, the problem can be solved by forming the 

Lagrangian equation. 

𝐿(𝐷, 𝛬)  𝐹(𝐷) + 𝛬𝑇(0 − 𝐷)                                     (4.9) 

where 𝛬 (lambda) is a vector of Lagrange multipliers with element 𝜆(𝜏,𝑖,𝑗). 

Following a derivation process similar to that of Bell (1991) and Tavana et al. 

(2001a), we obtain the following equation: 

𝐷∗  𝐺−1(2𝜔𝑍−1𝐷̂ + 2(1 − 𝜔)𝑃𝑇𝑊−1𝑉̂ + 𝛬)                      (4.10) 

where 𝐺  2𝜔𝑍−1 + 2(1 − 𝜔)𝑃𝑇𝑊−1𝑃. 

If 𝛬  is correctly obtained, the optimal estimated dynamic O-D matrix 𝐷∗  is 
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accordingly solved. A constrained algorithm for the one-level GLS estimator with a 

lower limit as proposed by Bell (1991) and extended by Tavana et al. (2001a) is applied 

to solve Equation (4.10) by the following procedure. 

Step 1 (Initialization) 

          Set 𝛬  0 (unconstrained estimation) 

Step 2 (Iteration) 

     Repeat calculation of 𝐷 using Equation (4.10) 

     For 𝜏  1,2,⋯ , 𝛤; 𝑖  1,2,⋯ , 𝐼 𝑎𝑛𝑑 𝑗  1,2,⋯ 𝐽 

        If 𝑑(𝜏,𝑖,𝑗) < 0 then 

            Set  𝜆(𝜏,𝑖,𝑗)   𝜆(𝜏,𝑖,𝑗) + (0 − 𝑑(𝜏,𝑖,𝑗))/𝑔(𝜏,𝑖,𝑗) 

        If 𝑑(𝜏,𝑖,𝑗) > 0 then 

            Set  𝜆(𝜏,𝑖,𝑗)  𝑚𝑎𝑥 (0,  𝜆(𝜏,𝑖,𝑗) +
0−𝑑(𝜏,𝑖,𝑗)

𝑔(𝜏,𝑖,𝑗)
) 

until convergence 

where 𝑔(𝜏,𝑖,𝑗) is the principle element of 𝐺−1. 

For the lower level, we use the DTA module in VISSIM as the simulator. The 

reasons for this choice are twofold: first, microscopic models are more accurate in 

simulating real traffic than mesoscopic or macroscopic models (Jeihani, 2010) and 

while VISSIM is microscopic, DYNASMART-P and DynaMIT are mesoscopic; second, 

commercial packages like VISSIM have already been employed by planners and 

researchers, and are always available to any new users. A detail review of DTA 

computer packages can be found in Jeihani (2010). 

4.3 O-D flow estimation results  

In the O-D matrix estimation experiments, the probe ratio is assumed to be 0.1 and the 

matching link flow estimation results are used as the observed link flows defined in the 

bi-level GLS estimator. The variances as calculated from Equation (3.11) and Equation 
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(3.13) are used as the variances of the observed link flows in matrix W of Equation (4.7). 

A noise level of 50% is added to the true O-D matrix and the resulting O-D matrix is 

used as the target matrix. Therefore, the 50% dispersion in true demand is regarded as 

the variance of the target O-D demand in matrix Z of Equation (4.7). Co-variances of 

both the observed link flow and the target O-D demand are assumed to be 0. The value 

of  𝜔 is assumed to be 0.5 as in most studies. The aggregated time interval for O-D 

demand is taken to be the same as the departure time interval and observation time 

interval for link flows, which is 10 minutes. Therefore, there are 13 departure time 

intervals (denote as, DepIn1, DepIn2 …) in the simulation period from 7:50 am to 

10:00 am. The first (DepIn1) and last (DepIn13) time intervals are not considered 

because of traffic initialization and ending. 

Figure 4.1 shows the performance of GLS-BM, in which the estimated link flows 

obtained by BM are used as the observed link flows. The RMSE of O-D matrix doesn’t 

decrease and remains roughly the same distance from the true O-D matrix for all time 

intervals; however, the calculated link flow is slightly improved by the GLS estimator 

for most time intervals. Then, we can say the initial O-D matrix is improved 

structurally. To explain this, we take a simple example. If a true O-D is [5,10], one 

estimated O-D is [7,11] and another estimated O-D is [4,12], then the RMSE for both 

estimated O-D matrices are the same, but they are different matrices and have 

different calculated link flow. In this case, the O-D matrix having small RMSE of 

calculated link flow is better. 

Figure 4.2 shows the GLS estimation results when the link flows estimated by OM 

are used. It is clear that the estimation results fluctuate through the iterative process. 

Further, neither O-D flows nor link flows are improved by GLS for all time intervals. It 

is also clear that the estimation process is stable with GLS-BM while with GLS-OM it 

is unstable. The reason for this may lie in two differing characteristics of BM and OM:  
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Figure 4.1 Estimation performance of GLS-BM 

 

Figure 4.2 Estimation performance of GLS-OM 
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1) BM can give an acceptable estimated link flow even if there is no probe vehicle 

while OM cannot; and 2) the variance given by BM reflects the weights of links better 

than OM. 

To validate the proposed bi-level GLS estimator, the bi-level Ordinary 

Least-Square estimator, in which Z and W are both set to be the unit matrix, is also 

applied and implemented. Therefore, with link flows estimated using the various 

methods described, there are four O-D estimation variants in the validation: GLS-BM, 

GLS-OM, OLS-BM and OLS-OM. In addition, an OLS estimator using the true link 

flow (OLS-TrueLF) is also tested for comparison. 

Figure 4.3 shows the estimation results for these variants. Among them, the 

performance of GLS-BM and GLS-OM has already been discussed in the section above. 

The RMSE of both estimated O-D flow and calculated link flow for OLS-BM rises 

slightly with the number of iterations. The OLS-OM variant has the same trend, but is 

slightly inferior to OLS-BM. When the true link flow is used in OLS, the estimation 

results are improved slightly for estimated O-D flow and markedly for calculated link 

flow. This confirms that the reliability of observed data in O-D matrix estimation plays 

an important role, as Yamamoto et al. pointed out (Yamamoto et al., 2009). 

It should be noted that, in both diagrams in Figure 4.3, using the link flow 

estimated by BM produces better O-D flow estimation results than that by OM no 

matter whether GLS or OLS are applied. This observation is consistent with that in link 

flow estimation, where the RMSE of estimated link flow by BM is 29.65 vehs/10mins, 

better than the 31.07 vehs/10mins of the estimate by OM (Table 3.1). What is more, 

O-D flows estimated by GLS are more accurate than those by OLS, which confirms that 

GLS has better ability to estimate O-D flows than OLS. 
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Figure 4.3 Comparative performance of various methods 

4.4 Convergence of extended Bell algorithm 

 

Figure 4.4 Convergence process of extended Bell algorithm for OLS-BM 
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less than 10 iterations. In the experiments with other variants, the extended Bell 

algorithm exhibits similar convergence behavior to that shown in Figure 4.4. 

4.5 Discussion of results 

The link flows estimated by BM and OM in chapter 3 are used as the observed link 

flows in the proposed bi-level GLS estimator to obtain O-D matrix estimations. The 

results successfully validate BM as superior to OM in link flow estimation for dynamic 

O-D matrix estimation. This is also true if GLS is substituted by OLS. However, it 

seems it is difficult to improve the target O-D matrix using link flows estimated by 

either BM or OM. There are two possible reasons for this. Firstly, the estimated link 

flows provide information that is no more accurate than the target O-D matrix, because 

the initial RMSE of link flow assignments from the target O-D matrix is 20.17 

vehs/10mins (Figure 4.3), but the RMSEs of estimated link flows for BM and OM are 

29.65 vehs/10mins and 31.07 vehs/10mins, respectively (Table 3.1). This is also 

verified by the demonstration that both O-D matrix and link flows are improved when 

the true link flow is used in OLS. Secondly, the apportioning of link-flows is dependent 

on O-D demand, because the study concerns a congested network during the morning 

peak. The congestion effects make the link flows nonlinear with O-D demand. 

Convergence of the extended Bell algorithm is demonstrated in this study through 

validation experiments. This convergent behavior has not been shown in other studies 

of dynamic O-D estimation. In Tavana’s analysis, convergence of the Bell algorithm is 

not guaranteed in both static and dynamic O-D estimation (Tavana, 2001b). 

Convergence is achieved in this work because, in contrast with Tavana’s work, we 

incorporate the distance between estimated and calculated O-D flows in the objective 

function. This results in matrix G in Equation (4.10) being a positive definite matrix, 

leading to convergence of the solution procedure. 
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4.6 Summary 

Probe vehicle systems have been increasingly implemented in metropolitan areas as a 

way to collect traffic information and provide dynamic route guidance. In this study, we 

propose a method for estimating dynamic O-D matrices from probe vehicle data from 

the perspective of practical applications.  

In the first step of proposed method, link flows are inferred from a prior 

distribution of vehicle speed and current probe vehicle data by using Bayesian 

inference. It has been shown that BM can effectively use the prior distribution of 

vehicle speed accumulated from archived probe vehicle data, and produce more 

accurate link flow estimate than ordinary method when probe ratio is less than 0.2. This 

feature makes BM more applicable in practice, as the probe ratio is low in most current 

probe systems. Additionally, the variance of estimated link flow by BM can better 

capture the difference in the reliability of link flow estimate among links than OM. In 

the second step, a DTA-based bi-level GLS estimator is formulated to estimate dynamic 

O-D matrices from the estimated link flows and historical O-D matrices. It is an 

extension of Tavana’s model, both the distance between the estimated and target O-D 

matrices and the distance between the calculated and observed link flows are 

considered in the objective function. Hence the extended Bell algorithm can be used to 

solve our model. Moreover, the GLS formulation can utilize the variance of estimated 

link flow from the first step, while setting an identical variance of link flow for links 

decrease GLS to be OLS in Tavana’s model. A case study on a mid-size signalized 

urban network illustrates that BM is superior to OM and GLS to OLS. 

To make the proposed method more capable in application, we chose a 

commercial system VISSIM as the DTA simulator for a DTA-based dynamic O-D 

matrix estimation model. As a whole, the proposed method can be applied in practice 
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for estimating dynamic O-D matrices using probe data, such as in probe vehicle-based 

dynamic route guidance system, or in the situation that link counts are not available.  

Although only links equipped with fixed detectors were used in the case study, the 

proposed method does not in fact depend on whether a fixed detector is present in a link 

or not. Since the number of probe vehicles traveling on a link changes with time, 

different link sets can be picked out for different time intervals in future applications of 

the method.  
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Chapter 5 

Modeling link travel time distribution by incorporating truncated 

distribution 

5.1 Introduction 

Travel time is one of the most important measures for evaluating the performance of a 

traffic system. It is a concept that is well understood by both traffic engineers and the 

public. There are multiple factors that affect travel time, including driver behavior, road 

attributes, traffic conditions, and signal timings. As a result, travel times along road 

sections are randomly distributed. Therefore, travel time distribution is an unavoidable 

issue in the researches of travel time estimation, travel time variability and travel time 

reliability. 

Hofleitner et al. (2012) formulate free-flow time and stopping time resperctively, 

and then combine them to obtain link travel time distribution. However, delays due to 

traffic congestion and acceleration/deceleration are not considered in their research. In 

this study, we decompose travel time in signalized road section into time-in-motion (the 

time for which a vehicle is actually moving) and time-in-queue. The time-in-motion, 

which contains free-flow time and delays due to traffic congestion and 

acceleration/deceleration, mainly depends on the physical attributes of the road and 

traffic conditions. The time-in-queue mainly relates to signal timings and the signal 

offset between adjacent intersections. In this way, we first model the time-in-motion 

and time-in-queue separately, and then from the results derive the link travel time 

distribution. 

A further motivation for this work comes from the fact that travel time is 

distributed over a limited range instead of over the whole positive domain of the real 

axis. Wang et al. (2012) first introduced a truncated distribution into traffic quantity 
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modeling. If truncation is ignored, bias may arise in estimating the average and 

variance of travel time. In this chapter, truncation of vehicle time-in-motion is analyzed 

and then a truncated distribution is used to model time-in-motion and link travel time. 

To analyze the effect of polling frequency of probe data on calibrating the 

proposed link travel time distribution, the Kolmogorov-Smirnov test is performed to 

test the estimated models of link travel time distribution from probe data with various 

polling frequencies. 

This chapter is organized as follows. Section 5.2 explains the concept of a 

truncated distribution and the estimation of its parameters. In Section 5.3, the 

probability distribution function of link travel time is derived using the truncated 

distribution. In Section 5.4, numerical experiments are carried out and the results are 

analyzed. Finally, in Section 5.5, a summary of the conclusions of the work is 

presented. 

5.2 Truncated distribution 

5.2.1 Definition 

In statistics, a truncated distribution is a conditional distribution that results from 

restricting the domain of a probability distribution. The following discussion is limited 

to the case of a continuous random variable, since travel time is continuous. Suppose a 

random variable X has infinite support (i.e. non-zero-valued to infinity) according to 

some probability density function (PDF) 𝑓(𝑥, 𝛩) (where 𝛩 represents the vector of 

parameters). Conditional on the value of X being limited in range [𝑎, 𝑏], the variable 

𝑋|𝑎 ≤ 𝑥 ≤ 𝑏 follows a truncated distribution with the following PDF: 

𝑔(𝑥, 𝛩, 𝑎, 𝑏)  
𝑓(𝑥,𝛩)

∫ 𝑓(𝑡)𝑑𝑡
𝑏
𝑎

, 𝑥 ∈ [𝑎, 𝑏]                                 (5.1) 

The threshold points 𝑎, 𝑏 are called truncation points. In the particular case where 
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𝑎  −∞ , the truncated distribution becomes a right-truncated distribution. A 

left-truncated distribution can be similarly obtained. In comparison with the 

non-truncated distribution, the truncated distribution has a limited domain [𝑎, 𝑏] and 

two additional parameters, 𝑎, 𝑏. 

 

Figure 5.1 Non-truncated and truncated distributions 

5.2.2 Parameter estimation 

In literatures relating to parameter estimation, it is generally assumed that the two 

additional parameters in a doubly truncated distribution (i.e. the truncation points) are 

known (Johnson et al. 1994; Cohen 1959). However, the truncation points of travel 

times are not available in practice. We propose a simple method of estimating these 

truncation points and provide a proof for it. The other parameters of the truncated 

distribution can be obtained using methods described in Johnson et al. (1994) and 

Cohen (1959). 

Assume a sample series of travel time variables 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 with observations 

𝑥1, 𝑥2, ⋯ , 𝑥𝑛. These variables all follow the same truncated travel time distribution with 

PDF 𝑔(𝑥, 𝛩, 𝑎, 𝑏) and cumulative distribution function (CDF) 𝐺(𝑥, 𝛩, 𝑎, 𝑏) denoted 

by 𝐹𝑋(𝑥). Then the estimated 𝑎 and 𝑏 are given by: 

𝑎̂  𝑚𝑖𝑛{𝑥1, 𝑥2, ⋯ , 𝑥𝑛}                                          (5.2) 

𝑏̂  𝑚𝑎𝑥{𝑥1, 𝑥2, ⋯ , 𝑥𝑛}                                          (5.3) 
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Explanation: Define a random variable 𝑌  𝑚𝑖𝑛{𝑋1, 𝑋2, ⋯ , 𝑋𝑛}, then the CDF of 

Y can be derived: 𝐹𝑌(𝑥)  𝑃{𝑚𝑖𝑛{𝑋1, 𝑋2,⋯ , 𝑋𝑛} ≤ 𝑥}  1 − (1 − 𝐹𝑋(𝑥))
𝑛. We have 

𝐹𝑌(𝑎)  0, since 𝐹𝑋(𝑎)  0 for a truncated distribution. The probability of Y falling 

within a small interval [𝑎, 𝑎 + ∆] is 𝑃{𝑎 ≤ 𝑌 ≤ 𝑎 + ∆}  𝐹𝑌(𝑎 + ∆) − 𝐹𝑌(𝑎)  1 −

(1 − 𝐹𝑋(𝑎 + ∆))
𝑛. If we set a confidence level 1 − 𝛼, we can calculate a minimum 

sample size 𝑛  ⌈𝑙𝑜𝑔1−𝐹𝑋(𝑎+∆)
𝛼 ⌉ from 𝑃{𝑎 ≤ 𝑌 ≤ 𝑎 + ∆} > 1 − 𝛼 . For example, if 

𝛼  0.05, 𝐹𝑋(𝑎 + ∆)  0.05, then the minimum sample size is 59. This means, in the 

example case, that as long as the sample size is greater than 59, we have a confidence of 

0.95 using 𝑚𝑖𝑛{𝑥1, 𝑥2, ⋯ , 𝑥𝑛} as an estimate of 𝑎 . Using a similar argument, we 

obtain the same result for estimating 𝑏 as 𝑚𝑎𝑥{𝑥1, 𝑥2, ⋯ , 𝑥𝑛}. 

After 𝑎, 𝑏 have been obtained, the other parameters 𝛩 can be estimated by the 

maximum likelihood (or more conveniently the log-likelihood) estimator (MLE). 

𝛩̂  𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑙𝑛𝑔(𝑥𝑖, 𝛩, 𝑎̂, 𝑏̂)𝑖                                    (5.4) 

In traffic research, the normal distribution and lognormal distribution are 

frequently utilized. Further information on truncated distributions can be found in the 

literatures (Cohen 1959; Johnson et al. 1994; Wang et al. 2012). 

5.3 Modeling distribution of travel time 

In arterial networks, traffic is driven by the formation and dissipation of queues at 

intersections. On an urban road, a vehicle is either in motion at a certain speed or 

stationary in a queue waiting at a red signal. The distributions of time-in-queue and 

time-in-motion are first formulated independently and then combined using 

convolution. 

5.3.1 Probability distribution of time-in-queue 

To model the probability distribution of time-in-queue, we adopt an analytical model 

derived by Holfleitnet et al. (2012) based on several assumptions: 1) the fundamental 
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diagram is triangular; 2) Traffic are stable during each estimation interval; 3) arrivals 

are uniform. 

A fraction 𝜂  of the vehicles entering the link would experience a stop. The 

remaining fraction 1 − 𝜂 of the vehicles travel though the link without stopping. For 

vehicles reaching the queue at an intersection, time-in-queue is uniform under the 

assumption that the arrival of vehicles is uniform in time. The uniform distribution has 

support [0, 𝑅] corresponding to the minimum and maximum queuing times, where 𝑅 

is red time. For vehicles that do not experience a stop and travel straight through the 

intersection, the time-in-queue is 0. 

Therefore, the time-in-queue of vehicles going through an intersection is a random 

variable 𝑇𝑞  with a mixed distribution of two components. The first component 

represents vehicles that experience a stop with uniform distribution on [0, 𝑅]. The 

second component represents the vehicles that do not experience a stop with a mass 

distribution in 0. We note 𝟏𝐴 the indicator function of set A, 

𝟏𝐴(𝑥)  {
1, 𝑥 ∈  
0, 𝑥   

 

The Dirac distribution centered in 𝑥 is denoted 𝐷𝑖𝑟{𝑥}(∗). 

The probability distribution of time-in-queue with respect to time-in-queue 𝑡𝑞 is 

then formulated as: 

 (𝑡𝑞)  (1 − 𝜂)𝐷𝑖𝑟{0}(𝑡𝑞) + 𝜂
1

 
𝟏[0, ](𝑡𝑞)                          (5.5) 

where 

𝐷𝑖𝑟{0}(𝑡𝑞)  {
1, 𝑡𝑞  0

0, 𝑡𝑞  0
, 𝟏[0, ](𝑡𝑞)  {

1, 𝑡𝑞 ∈ [0, 𝑅]

0, 𝑡𝑞  [0, 𝑅]
 

5.3.2 Probability distribution of time-in-motion 

In principle, a vehicle on the road can be in only one of two states: in motion or stopping 

in a queue. Hellinga el al. (2008) decomposed total travel time 𝑇𝑡 experienced by a 
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vehicle on a link into four constituent parts: free-flow travel time 𝑇𝑓, delay due to 

traffic congestion 𝑇𝑐, deceleration and acceleration time 𝑇𝑑𝑎, and time-in-queue 𝑇𝑞. 

The first three parts make up the time-in-motion 𝑇𝑚. The sum of the first two parts is 

similar to the travel time on a freeway, which is factored by link attributes (such as link 

length, number of lanes), driver behavior, and level of traffic congestion. 

Time-in-queue is mainly caused by the presence of traffic signals. To simplify the 

modeling process, we also regard deceleration and acceleration time as one component 

of time-in-motion. This simplification actually has little influence on the calculation of 

total travel time because deceleration and acceleration time are relatively minor 

compared with the other components. Thus,  

𝑇𝑚  𝑇𝑓 + 𝑇𝑐 + 𝑇𝑑𝑎                                             (5.6) 

We formulate the probability of time-in-motion as a truncated distribution with 

PDF 𝑔(𝑡𝑚, 𝛩, 𝑎, 𝑏) . Specifically, a truncated normal distribution and a truncated 

lognormal distribution are tested in a later section. 

5.3.3 Link travel time distribution 

As discussed above, total link travel time should be the sum of the free-flow travel time 

𝑇𝑓, delay due to traffic congestion 𝑇𝑐 , deceleration and acceleration time 𝑇𝑑𝑎 , and 

time-in-queue 𝑇𝑞. Thus, we have: 

𝑇𝑡  𝑇𝑚 + 𝑇𝑞                                                  (5.7) 

Assume 𝑇𝑚 and 𝑇𝑞 are independent variables, then the PDF of total travel time 

𝑇𝑡 equals the convolution of the PDFs of 𝑇𝑚 and 𝑇𝑞. According to the linearity of 

convolution, we can derive the PDF of 𝑇𝑡: 

𝑝𝑡 (𝑥)  (1 − 𝜂)𝑔(𝑥, 𝛩, 𝑎, 𝑏) +
 

 
∫ 𝟏[0, ](𝑥 −  )𝑔( , 𝛩, 𝑎, 𝑏)𝑑 
+∞

−∞
       (5.8) 

The integration is not null if and only if 𝑥 −  ∈ [0, 𝑅]. Since 𝑔( , 𝛩, 𝑎, 𝑏) is not 

equal to zero for  ∈ [𝑎, 𝑏], the integration is not null if and only if  ∈ [𝑥 − 𝑅, 𝑥] ∩
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[𝑎, 𝑏]. We assume 𝑏 − 𝑎 ≤ 𝑅, since time-in-motion generally varies within a narrow 

range under the assumptions of stationary of traffic. Then the truncated model of the 

PDF for link travel time reads: 

𝑝𝑡 (𝑥)  

{
  
 

  
 

0,    𝑖𝑓 𝑥 < 𝑎  

(1 − 𝜂)𝑔(𝑥, 𝛩, 𝑎, 𝑏) +
 

 
∫ 𝑔( , 𝛩, 𝑎, 𝑏)𝑑 
𝑥

𝑎
, 𝑖𝑓 𝑥 ∈ [𝑎, 𝑏]

(1 − 𝜂)𝑔(𝑥, 𝛩, 𝑎, 𝑏) +
 

 
∫ 𝑔( , 𝛩, 𝑎, 𝑏)𝑑 
𝑏

𝑎
, 𝑖𝑓  𝑥 ∈ (𝑏, 𝑎 + 𝑅]

(1 − 𝜂)𝑔(𝑥, 𝛩, 𝑎, 𝑏) +
 

 
∫ 𝑔( , 𝛩, 𝑎, 𝑏)𝑑 
𝑏

𝑥− 
, 𝑖𝑓  𝑥 ∈ (𝑎 + 𝑅, 𝑏 + 𝑅]

0,    𝑖𝑓 𝑥 > 𝑏 + 𝑅

(5.9) 

This derived PDF has a support of [𝑎, 𝑏 + 𝑅]. This is true in reality in that link 

travel time only changes over a limited range that is the subset of the domain of positive 

real numbers. 

To validate the application of this truncated distribution, we present the model 

proposed by Hofleitner et al. (2012) as an example of using non-truncated distributions. 

Without considering delay due to traffic congestion or deceleration and acceleration 

time, Hofleitner et al. (2012) use the following equation: 

𝑇𝑡  𝑇𝑓 + 𝑇𝑞                                                 (5.10) 

As with the above derivation process, Hofleitner et al. (2012) obtained the PDF by 

assuming that 𝑇𝑓 follows a non-truncated distribution  𝑔(𝑥, 𝛩) (Hofleitner’s model): 

𝑝𝑛𝑡(𝑥)  {

0,    𝑖𝑓 𝑥 < 0  

(1 − 𝜂)𝑔(𝑥, 𝛩) +
 

 
∫ 𝑔( , 𝛩)𝑑 
𝑥

0
, 𝑖𝑓 𝑥 ∈ [0, 𝑅]

(1 − 𝜂)𝑔(𝑥, 𝛩) +
 

 
∫ 𝑔( , 𝛩)𝑑 
𝑥

𝑥− 
, 𝑖𝑓 𝑥 > 𝑅

           (5.11) 

5.3.4 Fitting the travel time distribution 

The derived PDF 𝑝𝑡 (𝑥) is parameterized by the fraction of stopping vehicles 𝜂 , 

signal red time 𝑅, and the motion behavior parameters left truncation point a, right 

truncation point 𝑏, and 𝛩. In comparison, the PDF 𝑝𝑛𝑡(𝑥) using the non-truncated 

distribution has the same parameters except 𝑎, 𝑏. 

Then, the estimation of the parameters is done by maximizing the log-likelihood 



69 

of the link travel times. The estimation problem is given by: 

𝑚𝑎𝑥𝑖𝑚𝑖 𝑒  ∑ 𝑙𝑛𝑝𝑡 (𝑥𝑖, 𝜂, 𝑅, 𝛩, 𝑎, 𝑏 )𝑖                              (5.12) 

The optimization problem is not convex and can be restrained to a small scale with 

a feasible set by placing additional constraints and bounds that yield physically 

acceptable values. In most cases, link travel times only are available using probe 

vehicle technology or other traffic information collecting tools. Thus, a grid search is 

implemented to obtain the best estimates of parameters. In Section 5.4.3, a method is 

introduced for reducing the computational burden by using the characteristics of 

vehicles’ time-in-motion. In cases like high-frequency probe data (where vehicle 

information consisting of location, time and speed is recorded every second), the 

time-in-motion can be easily extracted. Truncation points 𝑎, 𝑏 can be first estimated by 

using Equations (5.2) and (5.3), then the other parameters can be estimated using 

Equation (5.12) based on the estimated 𝑎, 𝑏. 

5.4 Numerical experiments and results 

5.4.1 Simulation network 

We consider an ideal left-hand traffic network with four identical intersections. The 

network is modeled in VISSIM, as showed in Figure 5.2. The intersections are managed 

by signal controllers with identical signal timings. The three links between the 

intersections are each 300m long. Traffic entering a link from one end comes from three 

directions: left, straight and right. It then leaves the link in three directions. Vehicles 

that exit by turning left or going straight ahead are controlled by one signal. The link 

travel times of these vehicles are used in later experiments. A constant flow of 500 

veh/h is input into the network at each entrance, and 10% probe vehicles are assumed in 

the traffic. In the simulation, vehicle data are recorded every 0.1s so that accurate travel 

times can be obtained for each vehicle. 
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Figure 5.2 A four-intersection simulation network in VISSIM 

5.4.2 Truncation of time-in-motion 

A set of link travel times is obtained by simulating the above network. There is a 

stationary flag indicating whether a vehicle is stationary or not. The time-in-queue of a 

vehicle is calculated by observing the duration of the stationary flag. Time-in-motion is 

then extracted as link travel time minus time-in-queue. Histograms of time-in-motion 

for the three test links is illustrated in Figure 5.3. All times in motion clearly fall within 

a limited range for all links. Further, the truncation of times in motion is quite 

significant on the lower side. 

 

Figure 5.3 Histograms of time-in-motion for various links 

To explicitly analyze this truncation, times in motion are fitted using 

non-truncated distributions and truncated distributions. That is, we model the 

time-in-motion distribution using the normal distribution, the lognormal distribution, 

and the respective truncated versions of these distributions. The distributions are 

measured with a small-sample-size corrected version of the Akaike Information 

Link3 Link2 

300

m 

Link1 

http://en.wikipedia.org/wiki/Akaike_information_criterion
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Criterion (AICc) and the Bayesian Information Criterion (BIC). AICc and BIC are two 

measures of the relative goodness of fit of a statistical model. The preferred model is 

the one with the minimum AICc and BIC value. 

 𝐼𝐶𝑐  2𝑘 − 2 𝑙𝑛(𝐿) +
2𝑘(𝑘+1)

𝑛−𝑘−1
                                  (5.13) 

𝐵𝐼𝐶  −2 ∙ 𝑙𝑛𝐿 + 𝑘𝑙𝑛(𝑛)                                       (5.14) 

where 𝑘 is the number of parameters in the model, 𝑛 is the sample size and 𝐿 is 

the maximized value of likelihood function for the estimated model. 

 

Figure 5.4 Fitted distributions of time-in-motion for various links 

The fitted time-in-motion distributions are shown in Figure 5.4. It is clear that 

there are significant differences between the truncated and non-truncated distributions 

for lower times in motion, but almost no differences for higher values of time-in-motion. 

This feature tells us that careful consideration of left truncation is needed, while right 

truncation can be neglected because it is almost insignificant statistically. 

The values of AICc and BIC for the candidate models are showed in Table 1. 

Values of AICc and BIC for the truncated distributions are all smaller than for the 

non-truncated distributions. This suggests that the truncated distributions are preferred 

as a model for time-in-motion. This is also consistent with the observations made about 

Figure 5.4. Additionally, it seems that the truncated lognormal distribution is slightly 

superior to the truncated normal distribution. The reason for this may be that the 

distributions of time-in-motion have a certain degree of skew, which is better captured 

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Goodness_of_fit
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by the truncated lognormal distribution. However, the difference is not sufficient to 

reach the general conclusion that a truncated lognormal distribution is better than a 

truncated normal distribution for modeling time-in-motion, since the difference here is 

not significant statistically.. 

Table 5.1 Values of AICc and BIC for candidate models of time-in-motion distribution 

Link ID Measure Normal 

distribution 

Lognormal 

distribution 

Truncated 

normal 

Truncated 

lognormal 

Link1 AICc 9971 9785 9597 9552 

BIC 9982 9797 9620 9575 

Link2 AICc 11105 10922 10661 10636 

BIC 11116 10934 10685 10659 

Link3 AICc 11108 10946 10703 10679 

BIC 11119 10958 10726 10703 

5.4.3 Link travel time distribution 

 

Figure 5.5 Estimated link travel time distribution 

From Equation (5.7) ( 𝑇𝑡  𝑇𝑚 + 𝑇𝑞 ), we obtain 𝑚𝑖𝑛 {𝑇𝑡}  𝑚𝑖𝑛{𝑇𝑚 + 𝑇𝑞}  

𝑚𝑖𝑛{𝑇𝑚} + 𝑚𝑖𝑛 {𝑇𝑞} . Since the minimum time-in-queue 𝑇𝑞  is 0, then we have 

𝑚𝑖𝑛 {𝑇𝑡}  𝑚𝑖𝑛{𝑇𝑚}. Using Equation (5.2), the left truncation point a is estimated as 

𝑎̂  𝑚𝑖𝑛 {𝑇𝑡}. We know from Section 5.4.2 that the right truncation of time-in-motion is 

not significant. Thus, we can set the right truncation point b to a large number. Since 

we assumed 𝑏 − 𝑎 ≤ 𝑅 in Section 3.3, 𝑏 is set at 𝑎̂ + 𝑅. After determining 𝑎 and 𝑏 

in this way, we can estimate the other parameters using MLE as described in Section 
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5.3.4. 

The normal distribution is used to model free time in Hofeitner’s model. In this 

truncation model, the truncated normal distribution is used to model time-in-motion. In 

Figure 5.5, we fit the travel time distribution for link 1 using both Hofeitner’s model 

and the truncation model. The truncation model (AICc: 13272; BIC: 13238) provides 

better performance than Hofeitner’s model (AICc: 14505; BIC: 14482). In particular, 

the truncation model fits the lower travel times well. However, the peak in travel time 

seen between 30s and 40s is not matched by either model. The reason for this may be 

that link flows do not fit the hypothesis of constant arrivals due to light synchronization 

(Bails et al. 2012). 

5.4.4 Model estimation using probe vehicle data 

In practice, the polling interval (PI) of most probe vehicles varies from 1s per point to 

60s per point. The recorded travel time from probe vehicle should be allocated to 

individual links to obtain link travel time, since the two consecutive polled positions do 

not necessarily correspond to the end points of individual links. Consequently, the 

polling frequency would directly affect the accuracy of allocated link travel time, and 

the accuracy becomes poorer with lower polling frequency (Hellinga et al. 2008). To 

analyze the effects of polling frequency on the estimation of proposed model, we first 

calculate link travel time assuming uniform motion between consecutive polled 

positions (Miwa et al. 2004) (this travel time allocation method is called proportional 

allocation in this thesis), then estimate model parameters using MLE as described in 

Section 5.3.4. 

The estimated link travel time distributions from probe data with various polling 

frequencies (or polling intervals) for link 1 is plotted in Figure 5.6. We make the 

Kolmogorov-Smirnov (K-S) tests for each estimated distributions by testing the 
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hypothesis H0: the link travel times are distributed according to the estimated 

distributions. The K-S test is a standard non-parametric test to state whether samples 

are distributed according to a hypothetical distribution. This test is based on the K-S 

statistics which is computed as the maximum difference between the empirical and the 

hypothetical cumulative distributions. The test provides a 𝑝-value which informs on 

the goodness of the fit. Low  𝑝 -values indicate that the data does not follow the 

hypothetical distribution. We reject hypothesis  𝐻0  for 𝑝 -values inferior to the 

significant level α. The parameter 𝛼 is commonly set to 0.05 or 0.1.  

 

Figure 5.6 Estimated link travel time distributions from probe data with various polling frequencies 

Table 5.2 The K-S test for estimated link travel distributions 

 Polling interval 

 
1s 3s 5s 7s 10s 20s 30s 60s 

𝑝-value 0.2587 0.2944 0.2936 0.3265 0.0412 
5.13

 10−12 

 .43

 10−10 

6.40

 10−11 

The results of tests show the estimated distributions from probe data with polling 

interval less than 7s pass the test for both 𝛼  0.05 and 𝛼  0.1, while the estimated 

distribution only pass the test for 𝛼  0.1 and fails the test for 𝛼  0.05 if the polling 

interval is 10s (Table 5.2). Additionally, the estimated distributions are significantly 

different from the real distribution when the polling interval is longer than 20s. The 

results of K-S test are also consistent with the observations in Figure 5.6. 

Therefore, we can conclude that the link travel time distribution can be estimated 

at an acceptable level if the polling interval of probe data is less than 10s. However, the 
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results essentially depend on the accuracy of allocated link travel time.  As mentioned 

above, proportional allocation is applied to calculate link travel time from probe data in 

the research. If more accuracy link travel times are obtained from an advanced method 

of travel time allocation, the link travel time distribution probably can be estimated 

from probe data with longer polling interval. 

5.5 Summary 

In this chapter, a truncated distribution is used to model the link travel time distribution 

in a signalized section of road. The probability distribution function of travel time is 

derived and parameterized by fraction of stationary vehicles, red signal time, and 

motion behavior parameters including truncation points. These parameters are 

estimated from travel time data using a maximum likelihood estimator. 

We decompose link travel time into time-in-motion and time-in-queue, modeling 

them independently. The time-in-motion, which is similar to travel time on a freeway, 

mainly depends on physical attributes of the link and traffic conditions. The 

time-in-queue is mainly related to signal timings and the signal offset between adjacent 

intersections. 

We introduce a simple method of estimating truncation points based on a relatively 

small sample size. Time-in-motion is then modeled using both non-truncated 

distributions (normal distribution and lognormal distribution) and truncated 

distributions (truncated normal distribution and truncated lognormal distribution). 

Using AICc and BIC criteria, we show that it is better to model time-in-motion with a 

truncated distribution instead of a non-truncated one. A comparison is carried out 

between the derived travel time distribution and an example model using a 

non-truncated distribution. The results validate the superiority of applying a truncated 

distribution to model the distribution of link travel times. 
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The Kolmogorov-Smirnov test is performed to test the estimated models of link 

travel time distribution from probe vehicle data with various polling frequencies. The 

results show, the link travel time distribution can be estimated from probe data that 

polling interval is less than 10s when the significance level is set to 0.01. 

Following the suggestions given by Wang et al. (2012), we recommend that 

truncation should be considered for many of the quantities (e.g. travel time, speed and 

demand) used in traffic engineering. Truncated distributions should be used in any case 

where truncation cannot be neglected.  
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Chapter 6 

Modeling joint distribution of vehicle location and speed on signalized 

road 

6.1 Introduction 

In numerous cities around the world, traffic congestion is a crucial problem that 

adversely and significantly affects the environment and transport efficiency. Therefore, 

intelligent transportation systems (ITS) are being developed to alleviate traffic 

congestion. An essential input for ITS is accurate and reliable knowledge about traffic 

conditions, but monitoring traffic conditions over large road networks has proven to 

be a significant challenge (Stathopoulos and Karlaftis, 2003; Hellinga et al., 2008; 

Hofleitner et al. 2012a), in part due to unavoidable limitations (cost, limited coverage, 

etc.) of most existing technologies (loop detectors, radars and video cameras) for 

collecting traffic data. Fortunately, this situation has been changing due to the 

availability of a new information collection technique-the probe vehicle. 

Fitted with a positioning device, a probe vehicle records information such as time, 

location and speed at a series of points along the route travelled. Unlike stationary 

sensors, probe vehicles can collect traffic data for any part of the network where they 

operate, and continuously collect data at any time that they are active (Jenelius and 

Koutsopoulos, 2013; Cao et al., 2013 ). As an advanced traffic information collection 

technology, probe vehicles have been experimented and studied for two decades (Van 

Aerde et al., 1993; Miwa et al., 2004). Especially in recent years researches based on 

probe vehicle data began to be widely carried out in both academe and industry. At the 

same time, the characteristics of probe vehicle data have been experiencing changes: 

 Penetration. Probe vehicle data comes from three types of sources (Hofleitner 

et al. 2012): fleet data from dedicated vehicles (FedEx, UPS, taxis, etc.), 
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vehicle re-identification (RFID, magnetic signature) and participatory 

sensing (GPS enabled smartphone). The penetration of the former two is 

typically small (less than 1%) due to the limited types of vehicles and cost 

considerations; while the latter greatly enriches the probe vehicle data, and 

will certainly rise to a high level of penetration as a result of fast 

development of the mobile Internet (Hunter et al., 2013; Bierlaire et al., 

2013; Bar-Gera, 2007). 

 Polling frequency. Although it is easier to control the sampling schedule of 

fleet data, their polling frequencies are still low and uncertain most of the 

time due to cost considerations, the multiplicity of protocols (time-based and 

distance-based) or lost data. Participatory sensing and vehicle 

re-identification yield even more random, sparse and uncontrollable polling 

frequencies. Therefore, polling frequencies are often very low (less than one 

data point per minute) (Hofleitner et al. 2012a, Jenelius and Koutsopoulos, 

2013; Hunter et al., 2013; Lou et al., 2009) and are variable for most probe 

vehicles (Miwa et al., 2004). 

 Accuracy. The accuracy of GPS positioning in civilian use has improved 

from 100 meters in the 1990s to 7.8 meters in 2008 (GPS.gov, 2013). The 

next-generation of GPS (GLONASS in Russia, Galileo in Europe, etc.) in 

the near future is expected deliver an accuracy of 1 meter, which makes it 

possible to accurately map-match recorded point onto its real location. In 

addition, Witte and Wilson (2004) found the recorded speed errors of 

roughly 5% on average, with the largest error at high speeds and when few 

GPS satellites are visible. 

The aforementioned features of probe vehicle data, including merits of increasing 

penetration and improving accuracy but also demerits of the variety of data types, 
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lower polling frequency and randomness of the corresponding spatio-temporal 

coverage, make it challenging for fully characterizing macroscopic traffic model 

parameters and monitoring traffic conditions for large arterial network.  

In light of these challenges, Hofleitner et al. used a well-suited statistical 

approach: traffic patterns are learned from past data, and then real-time data is fused 

with the learned patterns to identify the current state of traffic (Hofleitner et al. 2012a). 

The core of this approach is modeling the observed variables with macroscopic traffic 

model parameters and link parameters. In Hofleitner et al. (2012a), Hofleitner et al. 

modeled the travel time distribution between any two points on a link. Soon later, in 

order to utilize both travel time data and location data from probe vehicles, they 

modeled the probability distribution of vehicle location and incorporated it into their 

approach (Hofleitner et al. 2012b). However, travel times from lower polling 

frequency probe data are less reliable due to the increasing difficulty of route 

identification (Hofleitner et al. 2012a; Hunter et al., 2013; Zheng and Van Zuylen 

2012). And they haven’t made use of the more reliable information on speed. 

Therefore, this research focuses on modeling location and speed as observed variables, 

and expects to mine information from archived reports of location and speed instead 

of travel time from probe vehicles. 

Extending a location distribution derived by Hofleitner et al. (Hofleitner et al. 

2012b), we model the joint probability distribution function (PDF) of vehicle location 

and speed on an arterial road segment using hydrodynamic theory and horizontal 

queuing theory. In this model, we specifically consider the effects of signal controller 

(including deceleration and acceleration, queuing) on the distributions of location and 

speed on arterial roads. This probabilistic model is parameterized by link parameters 

(red signal time, cycle time, and critical flow density), driving behavior (average 

deceleration and acceleration, average travel speed and variation of arrival flow and 
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dissipating flow) and traffic state (arrival flow density) that are learned from historical 

probe location and speed data by maximum likelihood estimation. 

This chapter is organized as follows. Firstly, the problem is briefly described. 

Secondly, traffic dynamics and model assumptions are explained. Thirdly, the PDF of 

vehicle location and speed is modeled for the general case, the under-saturated regime, 

and the saturated regime. Then, a method of estimating parameters is introduced. This 

is followed by validation of the proposed models using actual probe data. Finally, our 

conclusions and future work are elaborated. 

6.2 Problem statement 

For a signalized road segment of length of L, vehicles from upstream travel downstream 

across the intersection under the control of a traffic signal. Some vehicles stop at the 

stop line, forming a queue when the signal is red, and the queue then dissipates during 

the green signal time. The process of queue formation and dissipation is repeated cycle 

by cycle due to the recurrence of red and green signals. Probe vehicles are randomly 

distributed among the traffic, stochastically reporting at intervals with information 

about time, position and speed. After map-matching onto the road segment, a probe 

point can be denoted by a three-dimensional coordinate (t,x,v), where x represents the 

horizontal distance from the map-matched point to the stop line at the downstream 

intersection. We assume that probe points are recorded randomly in the 

spatial-temporal domain and are mutually independent, which is likely in line with the 

actual situation. Therefore, it is reasonable to take location x and speed v as random 

variables. 

In principle vehicles travel freely and fast before they approach the stop line, and 

then more slowly before a queue, becoming stationary in the queue at the stop line. 

Therefore, vehicles generally spend less time per unit distance upstream in a road 
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segment than downstream. This means it is more likely for a reported point to be 

located downstream in a segment. Further, the instantaneous speed is possibly close to 

the free-flow speed upstream in a segment, while it ranges from zero to the free-flow 

speed at the downstream end due to deceleration, acceleration and stopping. An 

example distribution of problem point locations and speeds is drawn in Figure 6.1. The 

objective of this chapter is to derive the probability distribution function (PDF) 𝑝(𝑣, 𝑥) 

using macroscopic traffic model parameters and link parameters. 

 
Figure 6.1 Histogram of sample probe points from simulation along a signalized road 

6.3 Traffic dynamics and model assumptions 

In traffic flow theory, there are three fundamental macroscopic variables of 

flow  𝑞(𝑥, 𝑡)  (veh/s), density 𝜌(𝑥, 𝑡)  (veh/m), and speed 𝑣(𝑥, 𝑡)  (m/s), which 

represent traffic conditions in the spatial and temporal domains. The relation among 

these three variables is given (Lighthill and Whitham, 1955) as: 

𝑞(𝑥, 𝑡)  𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)                                          (6.1) 

In arterial networks, traffic is driven by the formation and the dissipation of 

queues at intersections. The dynamics of queues are characterized by shocks, which 

form at the interfaces of traffic flows with different densities (Lighthill and Whitham, 
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1955). Before detailing our model derivation, we make the following assumptions on 

the dynamics of traffic flow: 

1) Stable traffic. During each time interval of interest, signal timings (red light 

time R and cycle time C) and the arrival traffic density 𝜌𝑎 are constant. 

With these assumptions, traffic dynamics are stable and periodic with period 

C in the estimation interval. 

2) Deceleration and acceleration are considered. A vehicle enters a queue with 

deceleration a before it coming to a halt. It then dissipates from the queue 

with acceleration b. a and b are assumed constant for all vehicles in the 

estimation interval. This treatment of deceleration and acceleration is closer 

to reality than ignoring them in most related studies on arterials (Hofleitner 

et al. 2012a; Bar-Gera, 2007; Ban et al., 2011; Mehran et al., 2012; 

Hofleitner et al., 2011; Liu et al., 2009; Ban et al., 2009; Skabardonis and 

Geroliminis, 2005; Hao et al., 2012) 

3) No spillover. A queue will not extend beyond the link length, which means 

that traffic entering a link is not affected by a queue. Actually, as long as the 

road is not heavily congested or the link length is very short, spillover will not 

occur. 

4) Differences in driving behavior are modeled. The free flow speed is not the 

same for all vehicles. The arrival free flow speed and the dissipating free 

flow speed are modeled by normal distributions 𝑁(𝜇𝑎, 𝜎𝑎) and 𝑁(𝜇𝑑, 𝜎𝑑), 

respectively. 

Let 𝑢 denote the speed at which a queue forms, 𝑤 denote the speed of queue 

dissipation, and Rankine-Hugoniot jump conditions (Evans, 1998) are used to express 

them as 
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𝑢  
𝜌𝑎𝑣𝑓

𝜌𝑚𝑎𝑥−𝜌𝑎
 and 𝑤  

𝜌𝑐𝑣𝑓

𝜌𝑚𝑎𝑥−𝜌𝑐
                                    (6.2) 

The patterns of traffic in such a network can be divided into the under-saturated 

regime and the congested regime, depending on whether a queue remains when the 

traffic signal changes from green to red. We model both of these in the following 

section. 

6.4 Modeling the joint PDF model of vehicle location and speed 

We first derive the joint probability distribution of vehicle locations and speeds for the 

general case without considering the traffic regime. The derivation shows our general 

approach, which is then applied to the under-saturated and congested traffic regimes. 

6.4.1 General case 

In probability theory, the joint distribution of location and speed can be derived using 

the multiplication rule: 

𝑝(𝑣, 𝑥)  𝑝(𝑥)𝑝(𝑣|𝑥)                                          (6.3) 

where 𝑝(𝑥) is the PDF of location, and 𝑝(𝑣|𝑥) is the PDF of speed given 

location 𝑥. As long as 𝑝(𝑥) and 𝑝(𝑣|𝑥) are obtained, 𝑝(𝑣, 𝑥) can be derived using 

Equation (6.3). 

The derivation of 𝑝(𝑥) 

Under the assumption of stable traffic, the traffic density at location 𝑥 is time 

periodic with period C (Hofleitner et al. 2012b). Thus, the average density 𝑑(𝑥) at 

location 𝑥 in one cycle time is: 

𝑑(𝑥)  
1

𝐶
∫ 𝜌(𝑥, 𝑡)𝑑𝑡
𝐶

0
                                           (6.4) 

According to the model assumptions, the density 𝜌(𝑥, 𝑡) at location 𝑥 and time 𝑡 

might be in one of five situations, numbered 1 to 5 for convenience: (1), 𝜌1  𝜌𝑎, 

when vehicles arrive at the link and are not influenced by the queue; (2), 𝜌2  𝜌𝑑𝑒, 
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when vehicles are decelerating for the queue; (3), 𝜌3  𝜌𝑚𝑎𝑥 , when vehicles are 

stationary in the queue. (4), 𝜌4  𝜌𝑎𝑐, when vehicles are accelerating from the queue; 

and (5), 𝜌5  𝜌𝑐, when vehicles are dissipating from the queue and traveling with 

free flow speed. Thus, the average density at location 𝑥 is 

𝑑(𝑥)  ∑ 𝛼𝑖(𝑥)𝜌𝑖
5
𝑖=1                                            (6.5) 

where 𝛼𝑖(𝑥) represents the fraction of time that the density is equal to 𝜌𝑖 at 

location 𝑥, and is calculated as 

𝛼𝑖(𝑥)  
𝑡𝑖(𝑥)

𝐶
                                                  (6.6) 

where 𝑡𝑖(𝑥) is the duration for which the density is equal to 𝜌𝑖 at location 𝑥 in 

one cycle. 

Since probe vehicles record vehicle locations randomly, more densely populated 

areas of the link will have more location measurements. At location 𝑥, the PDF 𝑝(𝑥) 

of vehicle location is proportional to the average density 𝑑(𝑥). Using Equations (6.5) 

and (6.6), we have 

𝑝(𝑥)  
𝑑(𝑥)

∫ 𝑑(𝑥)𝑑𝑥
𝐿
0

 
∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                  (6.7) 

In the under-saturated and congested regimes, the computation of 𝑡𝑖(𝑥) , 

𝑖  1, … ,5 enables the derivation of the probability distribution of vehicle locations. 

The derivation of 𝑝(𝑣|𝑥) 

As the above statement, there are five possible traffic situations with different 

densities at location 𝑥. Assume the speed distribution of a traffic situation with density 

𝜌𝑖 is 𝑔𝑖(𝑣), then the probability distribution of speed given location 𝑥 is a mixed 

distribution with five components. Thus, 𝑝(𝑣|𝑥) is obtained as 

𝑝(𝑣|𝑥)  ∑ 𝛽𝑖(𝑥)𝑔𝑖
5
𝑖=1 (𝑣)                                       (6.8) 

where 𝛽𝑖(𝑥) is the fraction of the number of sample points with density is equal 

to 𝜌𝑖 at location 𝑥, and is calculated as 
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𝛽𝑖(𝑥)  
𝑛𝑖(𝑥)

∑ 𝑛𝑖(𝑥)
5
𝑖=1

                                               (6.9) 

where 𝑛𝑖(𝑥) is the number of sample points that density is equal to 𝜌𝑖. 

Consequently, we can derive the expression of 𝑛𝑖(𝑥) to obtain 𝛽𝑖(𝑥). Consider 

a tiny area [𝑥, 𝑥 + ∆𝑥] around location 𝑥, the velocity of vehicle is 𝑣𝑖 when the 

density is equal to 𝜌𝑖, the during time that density is equal to 𝜌𝑖 at location 𝑥 in one 

cycle is  𝑡𝑖(𝑥).Then, the accumulated number of vehicles travelling across the tiny 

area is  𝑖  𝑞𝑖𝑡𝑖(𝑥)  𝜌𝑖𝑣𝑖𝑡𝑖(𝑥). The total vehicle time traveled (VTT) is 𝑉𝑇𝑇𝑖  

  𝑖
∆𝑥

𝑣𝑖
 𝜌𝑖𝑡𝑖(𝑥)∆𝑥. Assume the average polling rate is 𝛿 (time ∙ vehicle/point), 

then the number of sample points at location 𝑥 is: 

𝑛𝑖(𝑥)  
𝑉𝑇𝑇𝑖

𝛿
 
𝜌𝑖𝑡𝑖(𝑥)∆𝑥

𝛿
                                         (6.10) 

Then, 

𝛽𝑖(𝑥)  
𝜌𝑖𝑡𝑖(𝑥)

∑ 𝜌𝑖𝑡𝑖(𝑥)
5
𝑖=1

                                             (6.11) 

This method of deriving 𝛽𝑖(𝑥) will be applied to derive the speed distribution in 

deceleration and acceleration areas in the next section. 

Using Equation (6.8, 6.11), the PDF of speed given location 𝑥 is  

𝑝(𝑣|𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∑ 𝜌𝑖𝑡𝑖(𝑥)
5
𝑖=1

                                        (6.12) 

Finally, using Equations (6.3, 6.7, and 6.12), the joint probability distribution of 

vehicle location and speed in the general case is 

𝑝(𝑣, 𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                        (6.13) 

In the under-saturated and congested regimes, the computation of 𝑡𝑖(𝑥), 𝜌𝑖 and 

𝑔𝑖(𝑣), 𝑖  1,… ,5 enables the derivation of the joint probability distribution of vehicle 

location and speed. Specifically, in situation 1, vehicles travel with arrival density 𝜌𝑎 

without influence of queues, and the speed distribution 𝑔1(𝑣) is assumed to be 

normal 𝑁(𝜇𝑎, 𝜎𝑎)  to model the differences in driving behavior; in situation 3, 
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vehicles are stationary in a queue with a maximum density 𝜌𝑚𝑎𝑥, and the speed 

distribution 𝑔3(𝑣) is a mass distribution in 0 𝐷𝑖𝑟{0}(𝑣); in situation 5, vehicles 

dissipate from the queue and travel with critical density 𝜌𝑐 (when the flow rate is 

maximum), and the speed distribution 𝑔5(𝑣) is assumed to be normal 𝑁(𝜇𝑑, 𝜎𝑑) to 

model the differences in driving behavior. In situation 2 (deceleration) and situation 4 

(acceleration), traffic densities vary with time. We should derive the average density 

𝜌𝑑𝑒 and speed distribution 𝑔𝑑𝑒(𝑣) for situation 2, and the average density 𝜌𝑎𝑐 and 

speed distribution 𝑔𝑎𝑐(𝑣) for situation 4 in both the under-saturated and congested 

regimes. 

6.4.2 Under-saturated regime 

In the under-saturated regime, a queue that forms at a red signal is fully cleared during 

the green period of the same cycle. Figure 6.2 shows a space-time diagram of vehicle 

trajectories for one cycle in an under-saturated traffic regime for an arterial road 

segment. This diagram is divided into five regions for different traffic densities and 

patterns. As we can see, the first vehicle arriving in a particular cycle begins to 

decelerate before the light changes to red and stops at the stop line when the red light 

have last  𝑣𝑓/2𝑎 seconds. Therefore, the maximum time that a vehicle is stationary in a 

queue is 𝑅 − 𝑣𝑓/2𝑎, instead of 𝑅. The queue forms at a rate of 𝑢 and dissipates at a 

rate of 𝑤. As described in the previous section, the five regions of the diagram represent 

arriving traffic, a deceleration area, the queue, an acceleration area and dissipating 

traffic. The deceleration area links the arriving traffic to the queue, while the 

acceleration area links the queue with the dissipating traffic. 
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Figure 6.2 Space time diagram of vehicle trajectories in under-saturated traffic regime 

In the deceleration area, the speed of a vehicle falls from the free speed to zero and 

traffic density changes with time from 𝜌𝑎 to 𝜌𝑚𝑎𝑥. Similarly, in the acceleration area, 

vehicle speed increases from zero to the free speed and traffic density changes with 

time from 𝜌𝑚𝑎𝑥 to 𝜌𝑐. 

In order to derive the average density 𝜌𝑑𝑒 and 𝜌𝑎𝑐, and the speed distribution 

𝑔𝑑𝑒(𝑣) and 𝑔𝑎𝑐(𝑣), in these two areas, we first derive an expression for the density 

function 𝜌𝑑𝑒(𝜏) and 𝜌𝑎𝑐(𝜏), where 𝜏 represents the duration of the deceleration 

area or acceleration area at location 𝑥 (Figure 6.2).  

Taking the deceleration area that 𝑥 is located in [𝑙1, 𝑙2] as an example (Figure 

6.2), we can easily obtain an expression of 𝑣𝑑𝑒(𝜏) using the basic mathematical 

relationship of distance, speed and acceleration. It is given as 

𝑣𝑓
2−𝑣𝑑𝑒

2 (𝜏)

2𝑎

𝑢
+
𝑣𝑓−𝑣𝑑𝑒(𝜏)

𝑎
 𝜏                                         (6.14) 

Solving Equation (14), we obtain 

𝑣𝑑𝑒(𝜏)  −𝑢 + √(𝑢 + 𝑣𝑓)
2
− 2𝑎𝑢𝜏                               (6.15) 

Using the commonly used density-speed function proposed by Greenshields, 

𝑣𝑓 

𝑣𝑓 

𝑡 

𝑙3 

 

𝑙𝑚𝑎𝑥 

 

𝑙2 

 

𝑙1 𝜌𝑐 

Traffic 
𝜌𝑎 

𝑥 

𝜌𝑑𝑒 

𝜌max 

𝜌𝑎𝑐 

Red Green 

𝑢 
𝑤 

𝑣𝑓 

𝑣𝑓/2𝑎 

𝑣𝑑𝑒(𝜏) 
𝜏 

𝜏 
𝑣𝑎𝑐(𝜏) 
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𝜌  𝜌𝑚𝑎𝑥 (1 −
𝑣

𝑣𝑓
)                                            (6.16) 

And denoting 𝐾𝑑𝑒(𝜏) as 

   𝐾𝑑𝑒(𝜏)  1 +
𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2

                             

(6.17) 

We then get the expression of 𝜌𝑑𝑒(𝜏) as 

𝜌𝑑𝑒(𝜏)  𝜌𝑚𝑎𝑥𝐾𝑑𝑒(𝜏)                                          (6.18) 

If the maximum duration of the deceleration area at location 𝑥 is 𝑇𝑑𝑒(𝑥), then 

the average density 𝜌𝑑𝑒 is 

𝜌𝑑𝑒  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
                                (6.19) 

Now we describe the derivation of speed distribution 𝑔𝑑𝑒(𝑣). At location 𝑥, 

assume a tiny area [𝑣, 𝑣 + ∆𝑣], within which the ratio of sample points is 𝑟[𝑣,𝑣+∆𝑣]. 

Then 𝑔𝑑𝑒(𝑣) is given as 

𝑔𝑑𝑒(𝑣)  
 [𝑣,𝑣+∆𝑣]

∆𝑣
                                               (6.20) 

Actually, the meaning of 𝑟[𝑣,𝑣+∆𝑣] is similar to 𝛽𝑖(𝑥) in Equation (6.9), thus 

using Equation (11), we have 

𝑟[𝑣,𝑣+∆𝑣]  
𝜌𝑑𝑒(𝜏)∆𝜏

∫ 𝜌𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)
0

                                        (6.21) 

Using Equation (6.14) and replacing 𝑣𝑑𝑒(𝜏) with 𝑣  for simplicity, we can 

calculate 

∆𝜏  |𝜏(𝑣 + ∆𝑣) − 𝜏(𝑣)|  
(2𝑢+2𝑣+∆𝑣)∆𝑣

2𝑎𝑢
                           (6.22) 

Finally, using Equations (6.16, 6.18, 6.20 and 6.22), we obtain 

𝑔𝑑𝑒(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)
0

                                         (6.23) 

The above derivation process can also be applied in the case of acceleration area. 

We list the expressions of interest as follows: 
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𝑣𝑎𝑐(𝜏)  −𝑤 + √𝑤
2 + 2𝑏𝑤𝜏                                    (6.24) 

𝜌𝑎𝑐(𝜏)  𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)                                          (6.25) 

 𝜌𝑎𝑐  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
                                (6.26) 

𝑔𝑎𝑐(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

                                        (6.27) 

𝐾𝑎𝑐(𝜏)  1 +
𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
)
2

+
2𝑏𝑤𝜏

𝑣𝑓
2                                 (6.28) 

At this point, we have derived 𝜌𝑑𝑒, 𝜌𝑎𝑐  𝑔𝑑𝑒(𝑣) and 𝑔𝑎𝑐(𝑣). In Equation (6.13), 

we still need to compute 𝑡𝑖(𝑥) 𝑖  1,… ,5, and then the joint PDF of vehicle location 

and speed can be obtained. From Figure 6.2, we can see that the expression of 𝑡𝑖(𝑥) 

might differ at different location intervals. Therefore, we first compute the location 

turning points, and then derive 𝑡𝑖(𝑥) for the locations between them. 

As in Figure 6.2, we can easily compute 𝑙1, 𝑙2, 𝑙𝑚𝑎𝑥 (the maximum queue 

length) and 𝑙3 using the laws of motion and geometry. They are 

𝑙1  𝑣𝑓
2 /2𝑎                                                  (6.29) 

𝑙2  𝑙𝑚𝑎𝑥 − 𝑣𝑓
2 /2𝑏                                            (6.30) 

𝑙𝑚𝑎𝑥  (𝑅 −
𝑣𝑓

2𝑎
)
𝑤𝑢

𝑤−𝑢
                                           (6.31) 

𝑙3  
𝑤

𝑤−𝑢
(
𝑣𝑓(𝑢+𝑣𝑓)

2𝑎
+ 𝑢𝑅)                                       (6.32) 

We omit the details of computing  𝑡𝑖(𝑥) 𝑖  1,… ,5, since this is trivial using the 

above formulas and the laws of motion. We thus summarize the derived PDF of vehicle 

location and speed in the under-saturated regime as follows, 

𝑝𝑢𝑛(𝑣, 𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                       (6.33) 

where, 

𝜌1  𝜌𝑎, 𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝜌3  𝜌𝑚𝑎𝑥 , 
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𝜌4  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
, 𝜌5  𝜌𝑐; 

𝑔1(𝑣)  𝑁(𝜇𝑎, 𝜎𝑎),  𝑔2(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)
0

, 𝑔3(𝑣)  𝐷𝑖𝑟{0}(𝑣), 

𝑔4(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

, 𝑔5(𝑣)  𝑁(𝜇𝑑, 𝜎𝑑); 

𝐾𝑑𝑒(𝜏)  1 +
𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2

, 𝐾𝑎𝑐(𝜏)  1 +
𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
)
2

+
2𝑏𝑤𝜏

𝑣𝑓
2

; 

𝑇𝑑𝑒(𝑥)  𝑡2(𝑥), 𝑇𝑎𝑐(𝑥)  𝑡4(𝑥); 

if 𝑥 ∈ [0, 𝑙1], 

𝑡1(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
5
𝑖=2 , 𝑡2(𝑥)  (

1

𝑣𝑓
+
1

𝑢
) 𝑥 +

𝑣𝑓

2𝑎
, 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) (1 −

𝑥

𝑙𝑚𝑎𝑥
), 

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 𝑡5(𝑥)  (𝑙3 − 𝑥) (

1

𝑣𝑓
+

1

𝑤
) −

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1); 

if 𝑥 ∈ [𝑙1, 𝑙2], 

𝑡1(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
5
𝑖=2 , 𝑡2(𝑥)  

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1) , 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) (1 −

𝑥

𝑙𝑚𝑎𝑥
) , 

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 𝑡5(𝑥)  (𝑙3 − 𝑥) (

1

𝑣𝑓
+

1

𝑤
) −

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1); 

if 𝑥 ∈ [𝑙2, 𝑙𝑚𝑎𝑥], 

𝑡1(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
5
𝑖=2 , 𝑡2(𝑥)  

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1) , 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) (1 −

𝑥

𝑙𝑚𝑎𝑥
) , 

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1)

𝑙3−𝑥

𝑙3−𝑙2
, 𝑡5(𝑥)  (𝑙3 − 𝑥) (

1

𝑣𝑓
+
1

𝑤
−

𝑣𝑓

𝑏(𝑙3−𝑙2)
(
𝑣𝑓

2𝑤
+ 1)); 

if 𝑥 ∈ [𝑙𝑚𝑎𝑥, 𝑙3], 

𝑡1(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
5
𝑖=2 , 𝑡2(𝑥)  𝑅 + (

1

𝑤
−
1

𝑢
) 𝑥 +

𝑣𝑓

2𝑎
(
𝑣𝑓

𝑢
+ 1) , 𝑡3(𝑥)  0 , 

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1)

𝑙3−𝑥

𝑙3−𝑙2
, 𝑡5(𝑥)  (𝑙3 − 𝑥) (

1

𝑣𝑓
+
1

𝑤
−

𝑣𝑓

𝑏(𝑙3−𝑙2)
(
𝑣𝑓

2𝑤
+ 1)); 

if 𝑥 ∈ [𝑙3, 𝐿], 

𝑡1(𝑥)  𝐶, 𝑡2(𝑥)  𝑡3(𝑥)  𝑡4(𝑥)  𝑡4(𝑥)  0. 

6.4.3 Congested regime 

In the congested regime, there is a remaining queue  𝑙  that is not cleared during the 
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green signal time in the current cycle. Vehicles in this queue are stuck ahead of the stop 

line and form the front of a new queue in the next cycle. As shown in Figure 6.3, the 

space-time diagram is again divided into five regions, as in the under-saturated regime 

(shown in Figure 6.2). In this diagram, the area of [𝑙2, 𝐿] is almost the same as the area 

of [𝑙1, 𝐿] in Figure 6.2. However, the deceleration area in [0, 𝑙2] is different from the 

case of under-saturated regime, because queue formation rate is 𝑤  instead of 𝑢 . 

Therefore, we should derive the expression of 𝑡2(𝑥), 𝜌𝑑𝑒 and 𝑔𝑑𝑒(𝑣)  for this area. 

The details of derivation are neglected, since they are similar to the case of the 

under-saturated regime. Firstly we list the calculation of 𝑙1, 𝑙2 , 𝑙3  𝑙𝑚𝑎𝑥  and 𝑙4  in 

Figure 6.3: 

𝑙1  𝑣𝑓
2 /2𝑎                                                  (6.34) 

𝑙2  𝑙 + 𝑣𝑓
2 /2𝑎                                              (6.35) 

𝑙3  (𝑅 −
𝑣𝑓

2𝑎
)
𝑤𝑢

𝑤−𝑢
+ 𝑙 −

𝑣𝑓
2

2𝑏
                                      (6.36) 

𝑙𝑚𝑎𝑥  (𝑅 −
𝑣𝑓

2𝑎
)
𝑤𝑢

𝑤−𝑢
+ 𝑙                                        (6.37) 

𝑙4  𝑙 +
𝑤

𝑤−𝑢
(
𝑣𝑓(𝑢+𝑣𝑓)

2𝑎
+ 𝑢𝑅)                                   (6.38) 



93 

 

Figure 6.3 Space-time diagram of vehicle trajectories in congested traffic regime 

The PDF of vehicle location and speed in the congested regime is summarized as 

follows: 

𝑝𝑐𝑜𝑛(𝑣, 𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                     (6.39) 

where  

𝜌1  𝜌𝑎, 𝜌3  𝜌𝑚𝑎𝑥, 𝜌4  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
, 𝜌5  𝜌𝑐; 

𝑡 

𝑙3 

 𝑙𝑚𝑎𝑥 

 

𝑙2 

 

𝑙1 

𝜌𝑐 

Traffic 

𝜌𝑎 

𝑥 

𝜌𝑑𝑒 

𝜌max 

𝜌𝑎𝑐 

Red Green 

𝑙  

 

𝑙4 

 

𝑣𝑓 

𝑣𝑓 

𝑤 

𝑢 

𝑤 

𝜌𝑐 
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𝑔1(𝑣)  𝑁(𝜇𝑎, 𝜎𝑎), 𝑔3(𝑣)  𝐷𝑖𝑟{0}(𝑣), 𝑔4(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

,  

𝑔5(𝑣)  𝑁(𝜇𝑑, 𝜎𝑑); 

𝐾𝑑𝑒
𝑢 (𝜏)  1 +

𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2

 , 𝐾𝑑𝑒
𝑤 (𝜏)  1 +

𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
+ 1)

2

−
2𝑎𝑤𝜏

𝑣𝑓
2

, 

𝐾𝑎𝑐(𝜏)  1 +
𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
)
2

+
2𝑏𝑤𝜏

𝑣𝑓
2

; 

𝑇𝑑𝑒(𝑥)  𝑡2(𝑥), 𝑇𝑎𝑐(𝑥)  𝑡4(𝑥); 

if 𝑥 ∈ [0, 𝑙1], 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑤 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑤

𝑎𝑤

∫ 𝐾𝑑𝑒
𝑤 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  0 , 𝑡2(𝑥)  (
1

𝑣𝑓
+
1

𝑤
) 𝑥 +

𝑣𝑓

2𝑎
, 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) , 𝑡4(𝑥)  

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1) , 

𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
4
𝑖=1 ; 

if 𝑥 ∈ [𝑙1, 𝑙 ],  

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑤 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑤

𝑎𝑤

∫ 𝐾𝑑𝑒
𝑤 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  0 , 𝑡2(𝑥)  
𝑣𝑓

𝑎
(
𝑣𝑓

2𝑤
+ 1) , 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) , 𝑡4(𝑥)  

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1) , 

𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
4
𝑖=1  

if 𝑥 ∈ [𝑙 , 𝑙2], 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑤 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

𝑡=0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑤

𝑎𝑤

∫ 𝐾𝑑𝑒
𝑤 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  0 , 𝑡2(𝑥)  (𝑥 − 𝑙 ) (
1

𝑢
−
1

𝑤
) +

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑤
+ 1) , 𝑡3(𝑥)  𝑅 −

𝑣𝑓

2𝑎
−

(𝑥 − 𝑙 ) (
1

𝑢
−
1

𝑤
), 𝑡4(𝑥)  

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)

4
𝑖=1 ; 

if 𝑥 ∈ [𝑙2, 𝑙3], 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑢 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒
𝑢 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  (
1

𝑣𝑓
+
1

𝑢
) (𝑥 − 𝑙2) , 𝑡2(𝑥)  

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1) , 𝑡3(𝑥)  𝑅 −

𝑣𝑓

2𝑎
− (𝑥 −



95 

𝑙 ) (
1

𝑢
−
1

𝑤
), 𝑡4(𝑥)  

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)

4
𝑖=1 ; 

if 𝑥 ∈ [𝑙3, 𝑙𝑚𝑎𝑥] 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑢 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒
𝑢 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  (
1

𝑣𝑓
+
1

𝑢
) (𝑥 − 𝑙2) , 𝑡2(𝑥)  

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1) , 𝑡3(𝑥)  𝑅 −

𝑣𝑓

2𝑎
− (𝑥 −

𝑙 ) (
1

𝑢
−
1

𝑤
), 𝑡4(𝑥)  

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1)

𝑙4−𝑥

𝑙4−𝑙3
, 𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)

4
𝑖=1 ; 

if 𝑥 ∈ [𝑙𝑚𝑎𝑥, 𝑙4] 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑢 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒
𝑢 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  (
1

𝑣𝑓
+
1

𝑢
) (𝑥 − 𝑙2) ,  𝑡2(𝑥)  𝑅 + (

1

𝑤
−
1

𝑢
) (𝑥 − 𝑙 ) +

𝑣𝑓

2𝑎
(
𝑣𝑓

𝑢
+ 1) , 

𝑡3(𝑥)  0, 𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1)

𝑙4−𝑥

𝑙4−𝑙3
, 𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)

4
𝑖=1 ; 

if 𝑥 ∈ [𝑙4, 𝐿], 

𝑡1(𝑥)  𝐶, 𝑡2(𝑥)  𝑡3(𝑥)  𝑡4(𝑥)  𝑡4(𝑥)  0. 

6.5 Learning model parameters from probe vehicle data 

From traffic flow theory, we have derived joint probability distributions of vehicle 

location and speed on arterial roads for both under-saturated and congested regimes. 

These distributions are parameterized by network parameters (red signal time R, cycle 

time C, critical flow density 𝜌𝑐), driving behavior  𝜃𝑑  ( 𝜃𝑑  (𝑎, 𝑏, 𝜇𝑎,  𝜎𝑎, 𝜇𝑑,  𝜎𝑑), 

deceleration rate a and acceleration rate b, average travel speed 𝜇𝑎 and variation 𝜎𝑎 

of arrival flow and average travel speed 𝜇𝑑  and variation  𝜎𝑑  of arrival flow 

dissipation flow) and traffic state represented by arrival flow density 𝜌𝑎. We learn 

these parameters using reports of location and speed from probe vehicles. 

In practice, the parameters above might change along with traffic conditions 

during the day. However, it is reasonable to assume constant parameters for certain 

time intervals of interest (for example, 7:00-9:00am, 3:00-5:00pm). During the 
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estimation time interval, let (𝑥𝑗 , 𝑣𝑗) (𝑗  1, … , 𝐽, 𝐽 is the number of reported probe 

points) represent the set of vehicle locations and speeds on the link of interest. We can 

learn the parameters by maximizing the likelihood (or more conveniently the 

log-likelihood) of the locations and speeds on this link with respect to these 

parameters. The estimation problem is given by: 

min ,𝐶,𝜌𝑐, 𝜃𝑑𝑟,𝜌𝑎 ∑ −𝑙𝑛 (𝑝(𝑣𝑗 , 𝑥𝑗)
𝐽
𝑗=1 )                               (6.40) 

𝑠. 𝑡. {
𝑅 < 𝐶

𝜌𝑎 ≤ 𝜌𝑐 < 𝜌𝑚𝑎𝑥
𝑢 ≤ 𝑤

  

Additional constraints and bounds may be added to limit the feasible set to 

physically acceptable values of the parameters and improve the estimation when little 

data is available. The model (6.40) is not convex but it is a small-scale optimization 

problem. Numerous optimization techniques can be used to solve this problem, 

including global optimization algorithms. Moreover, since the parameters should be 

physically meaningful, they can be bounded to limit the feasible set to a compact set. 

It is thus possible to do a grid search. The grid search defines a grid on the feasible set 

and evaluates the objective function for each set of parameters defined by the grid. 

6.6 Data and results 

 

Figure 6.4 The test arterial road in Toyota city, Japan 

Test link 
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To validate the distributions of vehicle location and speed, we use data collected from 

private cars during the Green Project operated in Toyota City, Japan. More than 200 

drivers participated in this exercise, which took place over six months from April 1 to 

September 30, 2011. On-board GPS equipment was installed in private cars and 

recorded points with time, location and speed every 1s. We filter the data to extract 

points recorded during the hours 3:00-5:00pm and 7:00-8:00am on weekdays for the 

test link (Figure 6.4). The traffic in 3:00-5:00pm is in the under-saturated regime, and 

the traffic in 7:00-8:00am is in the congested regime. The test link is an arterial road in 

the downtown area of Toyota City. It has two lanes and is 220 meters long, with traffic 

moving from east to west. For the test link, we compute the maximum likelihood 

estimates of the traffic parameters using the probe locations and speeds (Equation 

6.40).  

 

Figure 6.5 Histogram of data and estimated distribution for the under-saturated regime 

The estimated joint PDF for under-saturated regime is showed in Figure 6.5. The 

estimated joint PDF fits real data well in upstream and motion area of downstream, 

but the fitting is not so good in stationary area of downstream. In particular, the 

Stationary area 

Deceleration and 

acceleration area 

Upstream 

Motion area of 

downstream 
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distribution characteristics in deceleration and acceleration area are captured by the 

joint PDF, which confirms the considerations of deceleration and acceleration in our 

model. On the whole, the proposed model captures most features of vehicle location 

and speed distributions. 

In order to validate the joint PDF statistically, we perform the 

Kolmogrov-Smirnov (K-S) test (Massey, 1951). Because the derived distribution 

𝑝(𝑣, 𝑥) is a two-dimensional joint distribution with random variables 𝑥 and 𝑣, we 

validate its marginal distributions with respect to 𝑥 and 𝑣 instead of validating it 

directly. Thus, we derive the following marginal distributions: 

𝑓𝑥(𝑥)  ∫ 𝑝(𝑣, 𝑥)𝑑𝑣
+∞

0
                                         (6.41) 

𝑓𝑣(𝑣)  ∫ 𝑝(𝑣, 𝑥)𝑑𝑥
𝐿

0
                                           (6.42) 

Actually, the marginal distribution of 𝑥 is the location distribution 𝑝(𝑥) in 

Equation (6.7). Similarly, the marginal distribution 𝑓𝑣(𝑣) of 𝑣 is denoted as 𝑝(𝑣). 

We test the hypothesis 𝐻0: the vehicle locations are distributed according to the 

distribution given by PDF 𝑝(𝑥) and the vehicle speeds are distributed according to 

the distribution given by PDF 𝑝(𝑣) using the K-S test. The K-S test is a standard 

non-parametric test for stating whether samples are distributed according to a 

hypothetical distribution. The test is based on the K-S statistics which are computed 

as the maximum difference between the empirical and hypothetical cumulative 

distributions. The test provides a 𝑝 -value, which informs the goodness of fit. 

Low 𝑝-values indicate that the data does not follow the hypothetical distribution. We 

reject hypothesis  𝐻0 for 𝑝-values inferior to the significance level 𝛼. We set the 

parameter 𝛼 0.01 as common. 

The test results validate the distributions of vehicle locations and speeds proposed 

in this chapter for both under-saturated and congested regimes (See Figure 6.6 and 6.7). 
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The 𝑝-value for the K-S test of vehicle location distribution is 0.1965 and 0.0833, 

while the 𝑝-value for the K-S test of vehicle speed distribution is 0.1574 and 0.0684, 

for under-saturated and congested regimes. All pass the test of 𝛼  0.01. Therefore, 

we accept the hypothesis  𝐻0  with high confidence 1 − 𝛼  0.   and reach the 

conclusion that vehicle locations and speeds are distributed according to the proposed 

joint distribution. However, the 𝑝 -values for both vehicle location and speed 

distributions indicate that the fitting in congested regime is worse than that in 

under-saturated regime. This is because traffic in congested regime is much unstable 

and its state may change from one to another during one hour (7:00-8:00am). 

More observations can be extracted from Figure 6.6 and 6.7. The histograms of 

vehicle locations show that a reported point is more likely to be located downstream 

rather than upstream and that upstream points are uniformly distributed on the road. 

These features are all captured by the derived PDF 𝑝(𝑥). The difference between 

under-saturated regime and congested regime lie in a longer downstream for the latter. 

This can also be observed in Figure 6.2 and 6.3. The histograms of vehicle speeds show 

there are two peaks of speed: one peak is at a speed of 0 (vehicles stationary in the 

queue) and the other is at free-flow speed (vehicles traveling freely before or after the 

queue). These features are all captured by the derived PDF 𝑝(𝑣), which is a mixture of 

the five components: distribution with mass distribution at 0, distribution in 

deceleration area, distribution in acceleration area, distribution approaching the queue 

and distribution dissipating the queue. However, similar with observation in Figure 6.5, 

6.6 and 6.7 also show that the estimated distributions perform worse downstream (in 

the queuing area) than in upstream. This is because of the assumption of constant 

arrival flow density. Due to light synchronization, some links have arrivals with 

platoons with different flow densities (Bails, et al. 2012). 
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Figure 6.6 Histogram of data and estimated marginal distributions for the under-saturated regime 

 

Figure 6.7 Histogram of data and estimated marginal distributions for the congested regime 
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6.7 Simplifying the joint PDF model 

In order to capture the details of distribution of vehicle location and speed, the derived 

joint PDF models for both under-saturated regime and congested regime (section 6.4.2 

and 6.4.3) are fine but complicate. The complexity of these models would limit the 

applications especially for road network where enormous computations are needed. 

The joint PDF models are complex, because we consider most details. In practice, 

some details are not significant comparing to the randomness of traffic. Therefore, it’s 

necessary for us to simplify the joint PDF models while maintaining the major 

features of vehicle and speed distribution. In this section, we introduce our treatments 

for simplifying the joint PDF models for under-saturated regime and congested 

regime, respectively. 

6.4.2 Under-saturated regime 

 

Figure 6.8 The original space-time diagram of under-saturated traffic regime 

𝑣𝑓 𝑒𝑒 

𝑡 

𝑙𝑞′ 

𝑙𝑞 

 

𝑙𝑎𝑐 

 

𝑙𝑑𝑒 

𝜌𝑐 𝑖 

Traffic 

𝜌𝑎   

𝑥 

𝜌𝑑𝑒 

𝜌max 
𝜌𝑎𝑐 

R C-R 

𝑢 

𝑤 
𝑣𝑓 𝑒𝑒 

𝑣𝑓 𝑒𝑒/2𝑎 
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Figure 6.9 The simplified space-time diagram of under-saturated traffic regime 

To clearly show our treatment, the original space-time diagram of under-saturated 

traffic regime is presented again in Figure 6.8. And the simplified one is presented in 

Figure 6.9. In Figure 6.9, we make three minor changes: 

1) Extend the line that the deceleration begins to the stop line. Thus, the deceleration 

behavior in [0, 𝑙𝑑𝑒] is regarded the same as that in [𝑙𝑑𝑒, 𝑙𝑎𝑐]. The area added is 

tiny compared with the total deceleration area, since 𝑙𝑑𝑒 is very small in reality. 

2) Extend the line that the acceleration ends to the location 𝑙𝑞. In this way, he 

deceleration behavior in [𝑙𝑎𝑐, 𝑙𝑞] is regarded the same as that in [𝑙𝑑𝑒, 𝑙𝑎𝑐].  

3) Delete the deceleration area, acceleration area and dissipating area in [𝑙𝑞, 𝑙𝑞′]. 

The driving behavior is regarded as the same as in the free-flow area [𝑙𝑞′, 𝐿]. 

In the original diagram (Figure 6.8), there are five possible cases for a probe 

point in the under-saturated traffic regime: [0, 𝑙𝑑𝑒], [𝑙𝑑𝑒, 𝑙𝑎𝑐], [𝑙𝑎𝑐, 𝑙𝑞], [𝑙𝑞, 𝑙𝑞′], and 

[𝑙𝑞′, 𝐿]. After these treatments, we only need consider two cases for probe point: 

[0, 𝑙𝑞] and [𝑙𝑞, 𝐿]. Then, the joint PDF model for under-saturated traffic regime is 

𝑝(𝑣, 𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                         (6.43) 

𝑣𝑓 𝑒𝑒 

𝑡 

𝑙q 

𝜌𝑐 𝑖 
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𝜌𝑎   

𝑥 

𝜌𝑑𝑒 

𝜌max 
𝜌𝑎𝑐 

R C-R 

𝑢 

𝑤 
𝑣𝑓 𝑒𝑒 

𝑣𝑓 𝑒𝑒/2𝑎 
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where, 

𝑙𝑞  (𝑅 −
𝑣𝑓

2𝑎
)
𝑤𝑢

𝑤−𝑢
  

𝜌1  𝜌𝑎, 𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝜌3  𝜌𝑚𝑎𝑥 , 

𝜌4  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
, 𝜌5  𝜌𝑐; 

𝑔1(𝑣)  𝑁(𝜇𝑎, 𝜎𝑎),  𝑔2(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)
0

, 𝑔3(𝑣)  𝐷𝑖𝑟{0}(𝑣), 

𝑔4(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

, 𝑔5(𝑣)  𝑁(𝜇𝑑, 𝜎𝑑); 

𝐾𝑑𝑒(𝜏)  1 +
𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2

, 𝐾𝑎𝑐(𝜏)  1 +
𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
)
2

+
2𝑏𝑤𝜏

𝑣𝑓
2

; 

𝑇𝑑𝑒(𝑥)  𝑡2(𝑥), 𝑇𝑎𝑐(𝑥)  𝑡4(𝑥); 

if 𝑥 ∈ [0, 𝑙q],  

𝑡1(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
5
𝑖=2 , 𝑡2(𝑥)  

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1) , 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) (1 −

𝑥

𝑙𝑞
) , 

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 𝑡5(𝑥)  (𝑙𝑞 − 𝑥) (

1

𝑣𝑓
+

1

𝑤
) −

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1);  

if 𝑥 ∈ [𝑙𝑞 , 𝐿], 

𝑡1(𝑥)  𝐶, 𝑡2(𝑥)  𝑡3(𝑥)  𝑡4(𝑥)  𝑡4(𝑥)  0. 

We can further simplify model (6.43).  

For 𝑥 ∈ [0, 𝑙q], we have  

∫ 𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
 ∫ (1 +

𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2 )𝑑𝜏

𝑇𝑑𝑒(𝑥)

0
 
𝑣𝑓
2+3𝑢𝑣𝑓

6𝑎𝑢
  (6.44) 

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
 ∫ (1 +

𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
)
2

+
2𝑏𝑤𝜏

𝑣𝑓
2 )𝑑𝜏

𝑇𝑎𝑐(𝑥)

0
 
𝑣𝑓
2+3𝑤𝑣𝑓

6bw
     (6.45) 

Thus  

𝑔2(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)
0

  
6(1−

𝑣

𝑣𝑓
)(𝑣+𝑢)

𝑣𝑓
2+3𝑢𝑣𝑓

                              (6.46) 
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𝑔4(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

 
6(1−

𝑣

𝑣𝑓
)(𝑣+𝑤)

𝑣𝑓
2+3𝑤𝑣𝑓

                              (6.47) 

Moreover, we validate that ∫ 𝑔2(𝑣)𝑑𝑣
𝑣𝑓
0

 1 and ∫ 𝑔4(𝑣)𝑑𝑣
𝑣𝑓
0

 1. And then 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒(𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
  

𝜌𝑚𝑎𝑥(𝑣𝑓
2+3𝑢𝑣𝑓)

3(𝑣𝑓
2+2𝑢𝑣𝑓)

                   (6.48) 

𝜌4  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
 
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑤𝑣𝑓)

3(𝑣𝑓
2+2𝑤𝑣𝑓)

                    (6.49) 

Then,  

𝜌2𝑡2(𝑥)𝑔2(𝑣)  𝜌𝑚𝑎𝑥 (1 −
𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢
                                (6.50) 

𝜌4𝑡4(𝑥)𝑔4(𝑣)  𝜌𝑚𝑎𝑥(1 −
𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤
                                (6.51) 

Assume the speed distributions in free-flow and dissipating traffic are the same 

as a normal distribution, 

𝑔1(𝑣)  𝑔5(𝑣)  𝑁(μ, σ)                                       (6.52) 

Then,  

∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1  𝜌1𝑡1𝑔1 + 𝜌2𝑡2𝑔2 + 𝜌3𝑡3𝑔3 + 𝜌4𝑡4𝑔4 + 𝜌5𝑡5𝑔5  (𝜌𝑎𝑡1 +

𝜌𝑐𝑡5)𝑁(μ, σ) + 𝜌𝑚𝑎𝑥 (1 −
𝑣

𝑣𝑓
) (

𝑣+𝑢

𝑎𝑢
+
𝑣+𝑤

𝑏𝑤
) + 𝜌𝑚𝑎𝑥𝑡3𝐷𝑖𝑟{0}(𝑣)             (6.53) 

And, 

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿

0
 𝐶𝜌𝑎𝐿 + 𝑙q[𝑡2(𝜌2 − 𝜌𝑎) + 𝑡4(𝜌4 − 𝜌𝑎)] +

1

2
𝑙q (𝑅 −

𝑣𝑓

2𝑎
) (𝜌𝑚𝑎𝑥 − 𝜌𝑎) +

1

2
𝑙𝑞
2 (

1

𝑣𝑓
+
1

𝑤
) (𝜌𝑐 − 𝜌𝑎)                             (6.54) 

Finally, we can obtain the simplified version of the joint PDF model for the 

under-saturated traffic regime 

If 𝑥 ∈ [0, 𝑙q],  

𝑝(𝑣, 𝑥)  
(𝜌𝑎𝑡1+𝜌𝑐𝑡5) ( , )+𝜌𝑚𝑎𝑥(1−

𝑣

𝑣𝑓
)(
𝑣+𝑢

𝑎𝑢
+
𝑣+𝑤

𝑏𝑤
)+𝜌𝑚𝑎𝑥𝑡3 𝑖 {0}(𝑣)

𝐶𝜌𝑎𝐿+𝑙 [𝑡2(𝜌2−𝜌𝑎)+𝑡4(𝜌4−𝜌𝑎)]+
1

2
𝑙 ( −

𝑣𝑓

2𝑎
)(𝜌𝑚𝑎𝑥−𝜌𝑎)+

1

2
𝑙𝑞
2(

1

𝑣𝑓
+
1

𝑤
)(𝜌𝑐−𝜌𝑎)

  

If 𝑥 ∈ [𝑙𝑞 , 𝐿],  

𝑝(𝑣, 𝑥)  
𝐶𝜌𝑎 ( , )

𝐶𝜌𝑎𝐿+𝑙 [𝑡2(𝜌2−𝜌𝑎)+𝑡4(𝜌4−𝜌𝑎)]+
1

2
𝑙 ( −

𝑣𝑓

2𝑎
)(𝜌𝑚𝑎𝑥−𝜌𝑎)+

 1

2
𝑙𝑞
2(

1

𝑣𝑓
+
1

𝑤
)(𝜌𝑐−𝜌𝑎)

  

(6.55) 
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6.4.3 Congested regime 

 

Figure 6.10 The original space-time diagram of congested traffic regime 

 

Figure 6.11 The simplified space-time diagram of congested traffic regime 

Basically, the process of simplifying the joint PDF model for congested traffic 

regime is similar with that for under-saturated traffic regime. Compared with the 
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changes made for under-saturated traffic regime, one more is made for saturated 

traffic regime(see Figure 6.10 and 6.11): 

 Extend the line that the deceleration from density 𝜌𝑎   begins to location 𝑙 . 

Thus, the deceleration behavior in [𝑙 , 𝑙 ,𝑑𝑒] is regarded the same as that in  

[𝑙 ,𝑑𝑒, 𝑙𝑎𝑐]. 

In the original diagram (Figure 6.10), there are seven possible cases for a probe 

point in the congested traffic regime: [0, 𝑙𝑑𝑒 ], [𝑙𝑑𝑒 , 𝑙 ], [𝑙 , 𝑙 ,𝑑𝑒 ], [𝑙 ,𝑑𝑒 , 𝑙𝑎𝑐 ], 

[𝑙𝑎𝑐 , 𝑙𝑞], [𝑙𝑞, 𝑙𝑞′], and [ 𝑙𝑞′ , 𝐿]. Among them, [0, 𝑙𝑑𝑒], [𝑙 , 𝑙 ,𝑑𝑒], [𝑙𝑎𝑐 , 𝑙𝑞], and 

[𝑙𝑞 ,  𝑙𝑞′ ] are determined by the deceleration and acceleration. In real situation, 

compared with the other situations, the length of them are very small. Accurately 

modelling them brings us very complex models of joint distribution and heavy 

computation burden. In the simplified traffic regime (Figure 6.11), there are three 

possible cases in the congested traffic regime: [0, 𝑙 ], [𝑙 , 𝑙𝑞], and [𝑙𝑞, 𝐿]. Then, the 

joint PDF model for congested traffic regime is 

𝑝(𝑣, 𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                        (6.56) 

where  

𝑙𝑞  (𝑅 −
𝑣𝑓

2𝑎
)
𝑤𝑢

𝑤−𝑢
+ 𝑙   

𝜌1  𝜌𝑎, 𝜌3  𝜌𝑚𝑎𝑥, 𝜌4  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
, 𝜌5  𝜌𝑐; 

𝑔1(𝑣)  𝑁(𝜇𝑎, 𝜎𝑎), 𝑔3(𝑣)  𝐷𝑖𝑟{0}(𝑣), 𝑔4(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

,  

𝑔5(𝑣)  𝑁(𝜇𝑑, 𝜎𝑑); 

𝐾𝑑𝑒
𝑢 (𝜏)  1 +

𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2

 , 𝐾𝑑𝑒
𝑤 (𝜏)  1 +

𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
+ 1)

2

−
2𝑎𝑤𝜏

𝑣𝑓
2

, 

𝐾𝑎𝑐(𝜏)  1 +
𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
)
2

+
2𝑏𝑤𝜏

𝑣𝑓
2

; 
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𝑇𝑑𝑒(𝑥)  𝑡2(𝑥), 𝑇𝑎𝑐(𝑥)  𝑡4(𝑥); 

if 𝑥 ∈ [0, 𝑙 ],  

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑤 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑤

𝑎𝑤

∫ 𝐾𝑑𝑒
𝑤 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  0 , 𝑡2(𝑥)  
𝑣𝑓

𝑎
(
𝑣𝑓

2𝑤
+ 1) , 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) , 𝑡4(𝑥)  

𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1) , 

𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
4
𝑖=1 ; 

if 𝑥 ∈ [𝑙 , 𝑙𝑞], 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑢 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
, 𝑔2(𝑣)  

(1−
𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒
𝑢 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

,  

𝑡1(𝑥)  (
1

𝑣𝑓
+
1

𝑢
) (𝑥 − 𝑙 ) , 𝑡2(𝑥)  

𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1) , 𝑡3(𝑥)  (𝑅 −

𝑣𝑓

2𝑎
) (1 −

𝑥−𝑙𝑟

𝑙𝑞−𝑙𝑟
) 

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)

4
𝑖=1 ; 

if 𝑥 ∈ [𝑙𝑞 , 𝐿], 

𝑡1(𝑥)  𝐶, 𝑡2(𝑥)  𝑡3(𝑥)  𝑡4(𝑥)  𝑡4(𝑥)  0. 

Further, similar with the calculation in the case of under-saturated traffic regime, 

we can calculate 𝜌4 and 𝑔4(𝑣) for [0, 𝑙𝑞], 

𝜌4  
1

𝑇𝑎𝑐(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)

0
 
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑤𝑣𝑓)

3(𝑣𝑓
2+2𝑤𝑣𝑓)

                    (6.57) 

𝑔4(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑏𝑤

∫ 𝐾𝑎𝑐(𝜏)𝑑𝜏
𝑇𝑎𝑐(𝑥)
0

 
6(1−

𝑣

𝑣𝑓
)(𝑣+𝑤)

𝑣𝑓
2+3𝑤𝑣𝑓

                              (6.58) 

Then, if 𝑥 ∈ [0, 𝑙 ], we have 

∫ 𝐾𝑑𝑒
𝑤 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)

0
 ∫ (1 +

𝑤

𝑣𝑓
−√(

𝑤

𝑣𝑓
+ 1)

2

−
2𝑎𝑤𝜏

𝑣𝑓
2 )𝑑𝜏

𝑇𝑑𝑒(𝑥)

0
 
𝑣𝑓
2+3𝑤𝑣𝑓

6𝑎𝑤
  (6.60) 

Using Equation (6.60), we can easily obtain 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑤 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
 
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑤𝑣𝑓)

3(𝑣𝑓
2+2𝑤𝑣𝑓)

                   (6.61) 

𝑔2(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑤

𝑎𝑤

∫ 𝐾𝑑𝑒
𝑤 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

 
6(1−

𝑣

𝑣𝑓
)(𝑣+𝑤)

𝑣𝑓
2+3𝑤𝑣𝑓

                              (6.62) 

if 𝑥 ∈ [𝑙 , 𝑙𝑞],  
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∫ 𝐾𝑑𝑒
𝑢 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)

0
 ∫ (1 +

𝑢

𝑣𝑓
−√(

𝑢

𝑣𝑓
+ 1)

2

−
2𝑎𝑢𝜏

𝑣𝑓
2 )𝑑𝜏

𝑇𝑑𝑒(𝑥)

0
 
𝑣𝑓
2+3𝑢𝑣𝑓

6𝑎𝑢
 (6.63) 

Using Equation (6.63), we can obtain 

𝜌2  
1

𝑇𝑑𝑒(𝑥)
∫ 𝜌𝑚𝑎𝑥𝐾𝑑𝑒

𝑢 (𝜏)𝑑𝜏
𝑇𝑑𝑒(𝑥)

0
  

𝜌𝑚𝑎𝑥(𝑣𝑓
2+3𝑢𝑣𝑓)

3(𝑣𝑓
2+2𝑢𝑣𝑓)

                   (6.64) 

𝑔2(𝑣)  
(1−

𝑣

𝑣𝑓
)
𝑣+𝑢

𝑎𝑢

∫ 𝐾𝑑𝑒
𝑢 (𝜏)𝑑𝜏

𝑇𝑑𝑒(𝑥)
0

 
6(1−

𝑣

𝑣𝑓
)(𝑣+𝑢)

𝑣𝑓
2+3𝑢𝑣𝑓

                              (6.65) 

Therefore, the simplified joint PDF model for congested traffic regime is 

𝑝(𝑣, 𝑥)  
∑ 𝜌𝑖𝑡𝑖(𝑥)𝑔𝑖(𝑣)
5
𝑖=1

∫ ∑ 𝑡𝑖(𝑥)𝜌𝑖
5
𝑖=1 𝑑𝑥

𝐿
0

                                        (6.66) 

where, 

if 

𝑥 ∈ [0, 𝑙 ] 

𝑡1(𝑥)  0,  

𝑡2(𝑥)  
𝑣𝑓

𝑎
(
𝑣𝑓

2𝑤
+ 1), 

𝑡3(𝑥)  (𝑅 −
𝑣𝑓

2𝑎
),  

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1),  

𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
4
𝑖=1 . 

𝜌1  0, 

𝜌2  
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑤𝑣𝑓)

3(𝑣𝑓
2+2𝑤𝑣𝑓)

, 

𝜌3  𝜌𝑚𝑎𝑥, 

𝜌4  
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑤𝑣𝑓)

3(𝑣𝑓
2+2𝑤𝑣𝑓)

, 

𝜌5  𝜌𝑐. 

𝑔1(𝑣)  𝑁(μ, σ),  

 𝑔2(𝑣)  

6(1−
𝑣

𝑣𝑓
)(𝑣+𝑤)

𝑣𝑓
2+3𝑤𝑣𝑓

, 

𝑔3(𝑣)  𝐷𝑖𝑟{0}(𝑣), 

𝑔4(𝑣)  

6(1−
𝑣

𝑣𝑓
)(𝑣+𝑤)

𝑣𝑓
2+3𝑤𝑣𝑓

, 

𝑔5(𝑣)  𝑁(μ, σ). 

if 

𝑥 ∈ [𝑙 , 𝑙𝑞] 

 

𝑡1(𝑥)  (
1

𝑣𝑓
+
1

𝑢
) (𝑥 −

𝑙 ), 

𝑡2(𝑥)  
𝑣𝑓

𝑎
(
𝑣𝑓

2𝑢
+ 1), 

𝑡3(𝑥)  (𝑅 −
𝑣𝑓

2𝑎
) (1 −

𝑥−𝑙𝑟

𝑙𝑞−𝑙𝑟
)  

𝑡4(𝑥)  
𝑣𝑓

𝑏
(
𝑣𝑓

2𝑤
+ 1), 

𝑡5(𝑥)  𝐶 − ∑ 𝑡𝑖(𝑥)
4
𝑖=1 . 

𝜌1  𝜌𝑎, 

𝜌2  
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑢𝑣𝑓)

3(𝑣𝑓
2+2𝑢𝑣𝑓)

, 

𝜌3  𝜌𝑚𝑎𝑥, 

𝜌4  
𝜌𝑚𝑎𝑥(𝑣𝑓

2+3𝑤𝑣𝑓)

3(𝑣𝑓
2+2𝑤𝑣𝑓)

, 

𝜌5  𝜌𝑐. 

𝑔1(𝑣)  𝑁(μ, σ),  

 𝑔2(𝑣)  

6(1−
𝑣

𝑣𝑓
)(𝑣+𝑢)

𝑣𝑓
2+3𝑢𝑣𝑓

, 

𝑔3(𝑣)  𝐷𝑖𝑟{0}(𝑣), 

𝑔4(𝑣)  

6(1−
𝑣

𝑣𝑓
)(𝑣+𝑤)

𝑣𝑓
2+3𝑤𝑣𝑓

, 

𝑔5(𝑣)  𝑁(μ, σ). 

if 

𝑥 ∈ [𝑙𝑞 , 𝐿] 

𝑡1(𝑥)  𝐶. 𝜌1  𝜌𝑎. 𝑔1(𝑣)  𝑁(μ, σ). 
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6.7 Summary 

In this chapter, we have derived an analytical joint probability distribution function 

(PDF) of vehicle locations and speeds on an arterial link. To validate these distributions, 

a Kolmogorov-Smirnov test is performed using probe data collected during a field test 

in Toyota City. The numerical results show that vehicle locations and speeds are 

distributed according to the proposed model with confidence of 0.99 for both 

under-saturated and congested regimes. Additionally, the proposed model can capture 

most features of vehicle location and speed distributions. 

It should be noted that, the driving behaviors are assumed the same for all 

vehicles in deceleration and acceleration in the proposed model. We make this 

treatment based on three points. (1), unlike in the situation 1 that vehicles travel freely, 

the driving behavior is mainly controlled by the signal in acceleration and 

deceleration and the differences of driver behavior among drivers are not large. (2), 

compared with other areas, the acceleration area and deceleration area are relatively 

small; the ignorance of differences of driving behavior will not bring great negative 

effects. (3), the expression of joint PDF will become more complex if the differences 

of driving behavior are considered. Additionally, the driving behaviors are assumed 

different in arriving and dissipating in the proposed model. In practical application, 

we can assume the same driving behaviors and the free-flow speed as their mean for 

simplicity. 

Although the joint PDF is derived from extending a location distribution 

proposed by Hofleitner et al., it is a brand new model which models location and 

speed distributions simultaneously. The derived joint PDF not only makes it possible 

to learn macroscopic traffic parameters and link parameters from location and speed 

data of probe vehicles, but also provides a way that describes vehicle speed 
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distribution in space and time for arterial roads.  
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Chapter 7 

Conclusion and future work 

In this thesis, we have explored methodologies of estimating urban traffic conditions 

using probe vehicle data for Intelligent Transportation Systems. In order to provide 

comprehensive knowledge of traffic conditions, we measure traffic conditions using 

three fundamental macroscopic variables: flow, speed and density. Considering the 

characteristics of probe vehicle data, travel times from probe vehicle data are applied 

in modeling flow and link travel time, and scatted probe points are applied in the 

density-based model for traffic monitoring. We first summarize the proposed methods 

in this thesis, and then describe the conclusions made from implementations or 

experiments. Furthermore, the limitations of this research are pointed out. Finally, 

several subsequent researches are indicated for future work. 

7.1 Conclusion 

7.1.1 Proposed methods 

1) We proposed a three-step methodology of estimating dynamic link flow including: 

travel time allocation, link performance function fitting and dynamic link flow 

estimation. In the first step, method of proportional allocation is used to 

decompose probe travel time onto individual links. In the second step, link 

performance function is obtained from a derived speed-density function. The 

speed–density function is derived from Gazis’s nonlinear follow-the-leader model. 

In order to estimate link flow, a Bayesian method (BM) that incorporates prior 

distribution of link speed and an ordinary method (OM) are applied in third step. 

In addition to the average value of link flow, Both the BM and OM estimate the 

variance of estimated link flow at the same time.  

2) A two-stage methodology of estimating dynamic origin-destination (OD) matrices 
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using probe vehicle data is presented. In the first stage, dynamic link flows are 

estimated using the aforementioned three-step methodology. In the second stage, 

A DTA-based bi-level generalized least-square (GLS) estimator considering the 

distance between the estimated and target OD matrices as well as the distance 

between the calculated and observed link flows is formulated so as to estimate 

dynamic OD matrices from estimated link flows. In the iterative solution 

procedure, the upper level is solved using the extended Bell algorithm, while the 

commercial DTA system VISSIM is applied to produce the assignment matrix in 

the lower level. 

3) An analytical model incorporated with a truncated distribution is proposed to 

model the probability distribution of travel time in a signalized road section. Link 

travel time is decomposed into time-in-motion (the time a vehicle is actually 

moving) and time-in-queue. Time-in-motion is modeled using a truncated 

distribution, while time-in-queue is modeled as a mixed distribution consisting of a 

mass distribution and a uniform distribution. A probability density function for 

travel time is then derived and parameterized by fraction of queuing vehicles, red 

signal time, and motion behavior parameters including truncation points. These 

parameters are obtained from sample link travel times using a maximum likelihood 

estimator. 

4) The joint probability distribution function (PDF) of vehicle location and speed on 

an arterial road is proposed using hydrodynamic theory and horizontal queuing 

theory. Specifically, the joint PDF models for both under-saturated traffic regime 

and congested traffic regime are derived. The proposed models are parameterized 

by link parameters (red signal time, cycle time, and critical flow density), driving 

behavior (average deceleration and acceleration, average speed and variation of 

arrival flow and dissipating flow) and traffic state (arrival flow density) that are 
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learned from historical probe data (location and speed) by maximum likelihood 

estimation.  

5) The simplified versions for the proposed joint PDF models are presented by 

making some small modifications on those intervals determined by the 

deceleration and acceleration. These simplifications make the proposed joint 

distributions be applicable in urban network with acceptable computation 

efficiency. 

7.1.2 Performance of proposed methods 

1) Proposed methodology of estimating dynamic link flows and O-D flows can 

provide acceptable estimates even for low polling frequency or low penetration 

probe vehicle data, it is recommended for applications in practice. 

2) The Bayesian method can effectively utilize the prior information of travel time 

distribution from archived probe vehicle data, and can even give estimates for 

links no probe vehicle is observed. 

3) The bi-level GLS estimator for dynamic O-D flow estimation is validated, and the 

convergence of extended Bell algorithm is validated. Additionally, the DTA 

module in VISSIM can be applied for solving the lower level of the bi-level 

model. 

4) The truncation of link travel time distribution is significant and has impacts on 

the variability and reliability of travel time, and the proposed link travel time 

distribution can estimated from probe data that polling interval is less than 10s 

when the significance level is set to 0.1. It is recommended that  truncation 

should be considered for many of the quantities (e.g. travel time, speed and 

demand) used in traffic engineering. 

5) The proposed joint PDF model for vehicle location and speed is a brand new 

analytical model which model which models location and speed distributions 
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simultaneously. This joint PDF model can capture most features of empirical 

distribution of probe points. The derived joint PDF not only makes it possible to 

learn macroscopic traffic parameters and link parameters from location and speed 

data of probe vehicles, but also provides a way that describes vehicle speed 

distribution in space and time for arterial roads. 

6) The simplified joint PDF model is more concise than the original one. And it is 

recommended that the simplified joint PDF model is applied for network-level 

traffic monitoring where huge computations are needed.  

7.1.3 Limitations of this research 

1) The polling frequency is assumed to be constant in one experiment. This may be 

not completely consistent with the real probe vehicle data in practice due to data 

missing, communication congestion, invalid record, etc. 

2) Identical vehicles are assumed in all experiments, since the real composition of 

vehicles is unknown.  

3) In the link flow estimation, prior distribution of link mean speed is necessary for 

each link in each time interval. To this end, large amounts of archived probe 

vehicle data are needed. 

4) The arrival traffic for an intersection is assumed to be constant and stable in the 

time interval interested. Particularly, this is suitable for the cases of isolated 

intersections or non-isolated intersections with similar arrival traffic from 

different directions in the upstream. If the arrival traffic varies a lot, the 

performance of proposed models would decrease. 

5) The proposed methods haven’t been implemented and validated in practice, 

where more complex factors are needed to be considered.  
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7.2 Future work 

This research makes a start for estimating comprehensive urban traffic conditions 

using probe vehicle data. Based on this research, there are many possible extension 

studies in future work. 

1) The VISSIM commercial system works well as the traffic simulator in this 

research, but other commercial DTA systems may also be suitable. It is necessary 

to make a comparison of the effects that different DTA systems have on 

DTA-based O-D estimation. 

2) In the O-D flows estimation, only link travel times from probe vehicle data are 

applied. More information provided by probe vehicles such as trip 

origin-destination points and trajectories may be useful to improve the estimation 

results.  

3) Based on the derived model of link travel time distribution, it is possible to assess 

the variability and reliability of link travel time. And the derived model can also 

be applied for link/route travel time estimation. 

4) Stochastic Frontier method can be applied to estimate the truncation points in the 

derived model of link travel time distribution. 

5) The proposed joint PDF model of vehicle location and speed can be applied for 

traffic estimation and prediction. A possible program could be: An extended urban 

traffic network model (Lin and Xi, 2008; Lin et al., 2012) is applied to model the 

spatial-temporal evolution of traffic; a dynamic Bayesian network (DBN) is used 

to model the stochastic dynamics of the traffic states and the dependencies of 

observations (probe data) and traffic states; and then the expectation-maximization 

(EM) algorithm (Dempster et al., 1977) can be used to estimate the maximization 

likelihood parameters of proposed model; finally, traffic states will be estimated in 
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real-time using the estimated parameters and real-time probe data. 

6) The joint PDF may also be applied in traffic control. A rough idea is deriving an 

analytical expression of expected total delay, and then minimizing the expected 

total delay with respect to traffic signal parameters. 

7) The proposed models should be implemented in real network with real probe 

vehicle data. 
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