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Abstract—Clustering is one of the most useful methods to
understand similarity among data. However, most conventional
clustering methods do not pay sufficient attention to geometric
properties of data. Geometric algebra (GA) is a generalization of
complex numbers and of quaternions, and it is able to describe
spatial objects and relations between them. In this study we
introduce GA to systematically extract geometric features from
data. We propose a new clustering method by using various
geometric features extracted with GA. We apply the proposed
method to clarification of human impressions of a product. In the
field of marketing, companies often carry out a questionnaire on
consumers for grasping their impressions. Analyzing consumers
through the obtained evaluation data enables us to know the
tendency of the market and to find problems and/or to make hy-
potheses that are useful for the development of products. Finally,
we discuss clustering results of a questionnaire with/without GA.

I. I NTRODUCTION

Nowadays, it becomes more and more important for compa-
nies to investigate their customers’ willingness to buy a prod-
uct through a questionnaire. A typical questionnaire consists
of various questions. Though it may include a direct question
such as “Are you willing to buy it?”, it is not clear whether the
answer to the question is reliable. In this study, we propose
a method to find latent willingness to buy on the assumption
that if answering patterns to all questions are similar then the
subjects have similar latent willingness.

We analyze a dataset of a questionnaire for a newly devel-
oped product. The characteristics of this dataset are:

1) The samem questions are asked forn different objects
(usage scenes of the product);

2) Each subject answers according to his/her willingness
to buy for either of three different prices, and does not
answer for the other prices.

Considering the first characteristic, we regard a pattern of
answering to the questions by a subject as a tuple ofm
points in an dimensional space. This aims to extract features
of n dimensionalshapeformed by them vectors. For this
purpose, we use geometric algebra (GA) which can describe

spatial vectors and higher order subspace relations between
them [1], [2], [3], to systematically undertake various kinds
of feature extractions, and to predict latent willingness to buy
of subjects. There are already many successful examples of
its use in colored image processing or multi dimensional time-
series signal processing with complex numbers or quaternions,
which are low dimensional GAs [4], [5], [6], [7], [8], [9], [10].
And GA-valued neural network learning methods for learning
input-output relationships [12] are well studied.

For the second characteristic, we utilize harmonic func-
tions [11] for semi-supervised learning. In our proposed
method, geometric features extracted with GA can be used
for defining a weighted graph over unlabeled and labeled data
where the weights are given in terms of a similarity function
between subjects.

To evaluate the effect of features extracted with GA, we
examine kernel matrices induced from the geometric features
using kernel alignment [13] between them. This paper also
reports a result of semi-supervised clustering of subjects taking
geometric properties of a questionnaire into consideration.

II. M ETHOD

A. Feature extraction with GA

GA is also called Clifford algebra. An orthonormal basis
{e1, e2, . . . , en} can be chosen for a real vector spaceRn.
The GA ofRn, denoted byGn, is constructed by an associative
and bilinear product of vectors, the geometric product, which
is defined by

eiej =
{

1 (i = j) ,
−ejei (i 6= j) .

(1)

GAs are also defined for negative squarese2
i = −1 of

some or all basis vectors. Such GAs have many applications
in computer graphics, robotics, virtual reality, etc [3]. But for
our purposes definition (1) will be sufficient.
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Now we consider two vectors{al =
∑

i aliei, l = 1, 2} in
Rn. Their geometric product is

a1a2 =
n∑

i=1

a1ia2i +
n−1∑

i=1

n∑

j=i+1

(a1ia2j − a1ja2i) eij , (2)

where the abbreviationeij = eiej is adopted in the following.
The first term is the commutative inner producta1 · a2 =
a2 ·a1. The second term is the anti-commutative outer product
a1∧a2 = −a2∧a1. The second term is called a 2-blade. Linear
combinations of 2-blades are called bivectors, expressed by∑

I∈I2
wIeI , wI ∈ R, whereI2 = {i1i2 | 1 ≤ i1 < i2 ≤ n}

is the ordered combination set of two different elements from
{1, . . . , n}. For parallel vectorsa1 = κa2, κ ∈ R, and the
second term becomes 0.

Next, we consider the geometric product ofa1a2 =
a2 · a1 + a2 ∧ a1 with a third vector a3. First, because
a1 · a2 ∈ R, (a1 · a2)a3 is a vector. Next,(a1 ∧ a2)a3 =(∑

I∈I2
wIeI

)∑
i a3iei. For a certainI = i1i2,

eIei = ei1ei2ei =





ei1 (i = i2) ,
−ei2 (i = i1) ,
ei1i2i (i1 6= i 6= i2) .

(3)

Therefore(a1 ∧ a2)a3 can be separated into a vector, i.e.
the sum of terms corresponding to the first two lines of eq. (3),
and a 3-bladea1∧a2∧a3, i.e. the sum of terms corresponding
to the bottom line of (3). A linear combination of 3-blades is
called a trivector which can be represented by

∑
I∈I3

wIeI ,
where I3 = {i1i2i3 | 1 ≤ i1 < i2 < i3 ≤ n} is the
combinatorial set of three different elements from{1, . . . , n}.

In the same way the geometric producta1 . . .ak, (k ≤ n)
of linear independent vectorsa1, . . . ,ak has as its maximum
grade term thek-blade a1 ∧ . . . ∧ ak. Linear combinations
of k-blades are calledk-vectors, represented by

∑
I∈Ik

wIeI ,
where Ik = {i1 . . . ik | 1 ≤ i1 < . . . < ik ≤ n} is the
combination set ofk elements from{1, . . . , n}. 1-blades are
vectors withI1 = {i1 | 1 ≤ i1 ≤ n}. 0-blades are scalars with
I0 = {∅}. For the unit real scalar, many authors simply write
e∅ = 1. ForGn,

∧k Rn denotes the set of allk-blades andGk
n

denotes the set ofk-vectors. The relationship betweenk-blades
and k-vectors is

∧k Rn = {A ∈ Gk
n | ∃{b1, . . . ,bk}, A =

b1 ∧ . . . ∧ bk}. The most general element ofGn is A =∑
I∈I wIeI , where I =

⋃n
k=0 Ik = P ({1, . . . , n}), and

P (·) denotes the power set. Concrete examples are the
general elements ofG2 which are linear combinations of
{1, e1, e2, e12}; and general elements ofG3 which are linear
combinations of{1, e1, e2, e3, e12, e13, e23, e123}. A general
element ofGn can always be represented byA =

∑n
k=0〈A〉k

with 〈A〉k =
∑

I∈Ik
wIeI , where〈·〉k indicates an operator

which extracts thek-vector part. The operator that selects the
scalar part is abbreviated as〈·〉 = 〈·〉0.

The geometric product ofk (1 ≤ k ≤ n) vectors yields

a1 ∈ G1
n = Rn =

1∧
Rn,

a1a2 ∈ G0
n ⊕

2∧
Rn,

a1a2a3 ∈ G1
n ⊕

3∧
Rn,

...

a1 . . .ak ∈
{
G1

n ⊕ . . .⊕ Gk−2
n ⊕∧k Rn (odd k) ,

G0
n ⊕ . . .⊕ Gk−2

n ⊕∧k Rn (evenk) .
(4)

Now we propose a systematic derivation of feature extrac-
tions from a set or a series of spatial vectorsξ = {pl ∈
Rn, l = 1, . . . ,m}. Our method is to extractk-vectors of
different gradesk; which encode the variations of the features.
Scalars which appeared in eq. (4) in the case ofk = 2 can
also be extracted.

For ξ, a set ofn dimensional vectors,n′+1 feature extrac-
tions are derived wheren′ = min{n,m}. For k = 1, . . . , n′,

fk (ξ) = {〈pl1 · · ·plke
−1
I 〉, I ∈ Ik} ∈ R(mCk)|Ik|, (5)

f0 (ξ) = {〈pl1pl2〉} ∈ R(mC2+m), (6)

where, |Ik| equals to the number of combinations ofk
elements fromn elements, andmCk is the number of combi-
nations when we choosek elements fromm elements.e−1

I is
the inverse ofeI . For I = i1 . . . ik, e−1

I = eik
. . . ei2ei1 . We

denote byfk a feature vector extracted by a feature extraction
fk. f0 is the scalar part in the geometric product of 2 vectors
which was chosen fromn vectors.fk is the coefficient ofk-
blade in the geometric product ofk vectors which was chosen
from n vectors.

Below we apply the feature extractions with GA to the case
of questionnaire data. Each subject gave evaluation values to
the same 10 questions for 6 objects. We therefore regard a
filled out questionnaire asm(= 10) points in ann(= 6)
dimensional space:ξ = {p1, . . . ,p10} ,pl =

∑6
i xl,iei with

xl,i ∈ {−2,−1, 0, 1, 2}. Using GA, various kinds of feature
extractions can be undertaken systematically. In this paper, we
use 3 kinds of features which extracted fromξ with GA.

The simplest feature extractionf1, which is coordinate
value, also used in conventional methods, is

f1 (ξ) =
[〈p1e−1

1 〉, . . . , 〈p1e−1
6 〉, . . . ,

〈p10e−1
1 〉, . . . , 〈p10e−1

6 〉]

= [x1,1, x1,2, . . . , x10,5, x10,6] ∈ R60. (7)

A second feature extractionf0 uses inner product of 2
points,

f0 (ξ) = [〈p1p1〉, 〈p1p2〉, . . . , 〈p10p10〉] ∈ R55. (8)

If 2 questions are correlated for 6 objects, then the correspond-
ing element off0 becomes large.
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And a third feature extractionf2 uses outer product of 2
points,

f2 (ξ) =
[〈p1p2e−1

12 〉, . . . , 〈p1p2e−1
56 〉, . . . ,

〈p9p10e−1
12 〉, . . . , 〈p9p10e−1

56 〉
] ∈ R675. (9)

Each|I2| elements off2 express independence of 2 questions
and the direction of hyper-plane spanned by the 2 questions in
the 6 dimensional space. If 2 questions are uncorrelated, then
the corresponding element becomes large.

B. GA kernel and alignment

For feature extractionsfk, k = 0, 1, 2 with GA, we define a
similarity funtion between two instancesi, j ∈ {1, . . . , p} as

wij;k = exp
(
−‖fk(ξi)− fk(ξj)‖2

σ2
k

)
, (10)

where,‖·‖ is the Euclidean distance in the feature space. And
a parameterσk is decided by Zhu et al [11] as described in
section II-C. The kernel matrixWk = [wij;k] is a symmetric
matrix with p rows andp columns.

In this study, we combine 3 kinds of feature extractions
to cluster instances. The effect of combinating 2 feature
extractions becomes small if their kernel matrices are aligned.
The alignment [13] between 2 kernel matrices is defined as,

A (Wk,Wl) =
∑

i,j

w̃ij;kw̃ij;l ∈ (0, 1] (11)

where, w̃ij;k = wij;k

(∑
ı, w2

ı;k

)− 1
2

is the element of a

matrix W̃k which is normalizedWk so that its squared sum
of all elements becomes 1.

In addition, cluster structure embedded in the data distribu-
tion is evaluated as alignment with identity matrixE,

A (Wk, E) =
1√
p

∑

i

w̃ii;k ∈ (0, 1]. (12)

The alignment withE becomes 1 when similarity between
any two different instances is 0, i.e. no cluster structure is
embedded.

On the other hand, when binary labelyi ∈ {−1, 1} is given
for each instance, if instances with the same label are allocated
near and those with the different label are allocated far, then
the clustering result of this feature agrees with the labels. This
is evaluated by the alignment betweenWk and Y = [Yij =
yiyj ],

A (Wk, Y ) =
1
p


 ∑

i,j|yi=yj

w̃ij;k −
∑

i,j|yi 6=yj

w̃ij;k




∈ [−1, 1]. (13)

A good combination of two feature extractions has a low
A (Wk,Wl) value. And, if A (Wk, E) is low andA (Wk, Y )
is high, fk induces a feature space with rich cluster structure
and agreement with the given labels.

C. Semi-Supervised Learning for Clustering

Semi-supervised learning is a problem to infer labels for
unlabel dataU = {l+1, . . . , l+u = p} or unknown unlabeled
data when the labelyi ∈ {−1, 1} of a partL = {1, . . . , l} of
the instance set is known. In this paper, we solve a problem
in the case of labelingU . The goal is to find a binary function
γ : U → {−1, 1} so that similar points have the same label.

Referring Zhu et al [11], we decide a parameterσ of the
kernel as the following. During making a minimum spanning
tree over all data points with Kruskal’s Algorithm, we label
temporarily an unlabel dataa ∈ U to the same label as the
labeled datum which connects witha for the first time. Then
we find the median distance of tree edges that connect two
instances with different labels. We regard this this distancedo

as a heuristic to the median distance between class regions.
We arbitrarily setσ = d0

3 following the 3σ rule of Normal
distribution, so that the weight of this edge is close to 0.

Then, we construct ap× p symmetric weight matrixW =
[wij ]. The weight matrix can be separated as

W =
[

WLL WLU

WUL WUU

]
(14)

at thel-th row and thel-th column. For this purpose Zhu et al.
proposed to first compute a real-valued functiong : U → [0, 1]
which minimizes the energy

E (g) =
∑

i,j

wij (g(i)− g(j))2 . (15)

Restrictingg(i) = gL(i) ≡ yi for the labeled data,g for the
unlabeled data can be calculated by

gU = (DUU −WUU )−1
WULgL, (16)

where DUU = diag(di) is the diagonal matrix with entries
di =

∑
j wij , for the unlabeled data. Thenγ(i) is decided

using the class mass normalization proposed by Zhu et al.
Because either of three prices{ϕ1, ϕ2, ϕ3 | ϕ1 < ϕ2 < ϕ3}

is indicated to a subject when he/she indicates willingness to
buy, we subdivide the subjects into three groups according
to the indicated price. Then, we calculateγϕk for eachk ∈
{1, 2, 3} regarding one group of subjects as labeled and the
other groups as unlabeled. After that, we check the consistency
of subject i, i.e. whether the willingness decreases weakly
monotonously with the price.

γϕ1(i) ≥ γϕ2(i) ≥ γϕ3(i). (17)

If subject i contradicts to this condition then we clear the
labelyi and repeat the semi-supervised learning regarding such
subjects as unlabeled from this time on. As shown in Fig. 1,
we repeat this procedure until contradictions do not occur any
more.

III. E XPERIMENTAL RESULT

A. Web Questionnaire Data

We used a web questionnaire data for a new product to
extract features with GA and find the latent willingness to
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Fig. 1. Algorithm to find latent willingness to buy. From questionnaire data
ξi, f ∈ {f0, f1, f2} extracts geometric featuresxi. Label y∗i is initially set
to yi. After calculatingγϕ(i), labels of contradicted subjects are excluded
from {y∗i }. The algorithm ends when no more contradictions occur.

buy. Subjects answered 10 questions about each of 6 objects
i.e. scenes in which the product was used. Subjects were
asked to give an evaluation value to each question in 5 levels
{1, 2, 3, 4, 5}, where “5” means “I agree very much” and “1”
means “I disagree very much”. Subjects answered willingness
to buy the product for a price randomly selected from three
prices.

We carried out the feature extractions with GA after
subtracting 3 from all evaluation values so thatxl,i =
{−2,−1, 0, 1, 2}. For simplicity the five level willingness
values were binarized: “5”, “4”7→ 1 and “3”,“2”,“1” 7→ −1.

B. Kernel Alignment

We calculated alignment of kernel matrixWk derived by
featurefk, k = 0, 1, 2 which extracted with GA. Table I shows
kernel alignmnent with other feature kernels, identity matrixE
and the latent willingness matrixY . The binary labelyi = 1
when the subject had latent willingness as a result of three
analyses via different feature, andyi = −1 otherwise, i.e.
when the subject was judged not having latent willingness at
least one analysis.

TABLE I
KERNEL ALIGNMENT EVALUATION

W0 W1 W2

W0 1 0.92 0.63
W1 0.92 1 0.51
W2 0.63 0.51 1
E 0.71 0.82 0.36
Y 0.048 0.036 0.103

With kernel matrixW1, kernel matrixW2 had a smaller
alignment (0.51) thanW0 had (0.92). Therefore, the effect of
combination with feature extractionf2 was better than withf0.
Also, the result showed that bacause both feature extractions
f0 and f2 had lower alignment withE than f1, they have
more abundant structure of cluster between subjects. And they
comtribute the total inference because alignment withY is
higher thanf1.

C. Web Questionnaire Analysis Results

TABLE II
RESULT WITHOUT GA

C 0.1%
F-F 39.9%

f1 F-T 22.0%
T-F 6.7%
T-T 31.3%

Table II shows the result without introducing GA to find
latent willingness to buy. In the table, “C” shows the per-
centage of subjects whoseγ contradicted to condition (17)
after the algorithm ended, thus we ignore those subjects. “F-
F” shows the percentage of subjects whoseyi = −1, where,
for simplicity, we do not mind what price was indicated to the
subject, andγϕ1(i) = −1, i.e. the subject did not have either
apparent or latent willingness even if the price was the lowest.
“F-T” shows the percentage of subjects whoseyi = −1 but
γϕ1(i) = 1, i.e. the subject answered not to have willingness
but he/she had latent willingness at least for the lowest price.
“T-F” shows the percentage of subjects whoseyi = 1 but
γϕ1(i) = −1, i.e. the subject showed apparent willingness
but from the similarity of answering patterns he/she was not
willing to buy. “T-T” shows the percentage of subjects whose
yi = 1 andγϕ1(i) = 1, i.e. the subject had both apparent and
latent willingness. The analysis made the following clear:

• Out of 38.0% of subjects (“T-F” or “T-T”) who answered
positively to the direct question of willingness, 31.3% of
all subjects were detected as “truely” willing to buy (“T-
T”).

• Out of 61.9% of subjects (“F-F” or “F-T”) who answered
negatively to the direct willingness question, 22.0% of all
subjects were detected as latently willing to buy (“F-T”).

As a conclusion, 53.3% of subjects had a latent willingness to
buy (“F-T” or “T-T”), and the other 46.7% subjects did not.

TABLE III
DETAILED LABELING RESULT

f1(F-F) f2

39.9% F-F F-T
f0 F-F 32.6% 0.2%

F-T 7.0% 0.1%

f1(F-T) f2

22.0% F-F F-T
f0 F-F 6.0% 0.3%

F-T 14.4% 1.3%

f1(T-F) f2

6.7% T-F T-T
f0 T-F 5.5% 0.1%

T-T 0.9% 0.2%

f1(T-T) f2

31.3% T-F T-T
f0 T-F 3.0% 0.9%

T-T 13.7% 13.7%
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Next, we conducted a more detailed analysis introducing
GA to define two more feature spaces which are based on
f0, f2, respectively. Subjects were subdivided into the 5 groups
of “C”, “F-F”, “F-T”, “T-F” and “T-T” for each feature aspect.
Thus Table III shows 4 sub-tables each of which further
divides the corresponding subjects divided byf1 to a matrix
of judgements based onf0 andf2. Though 52.1% of subjects
had the same result by all analyses based onf0, f1, f2 (total
of diagonal cells), the other 47.9% of subjects had different
result. Especially,

• The second table shows that out of 22.0% of subjects who
did not have apparent but had latent willingness according
to analysis based onf1 alone, only 1.3% of all subjects
were judged as so according both to analyses based on
f0 andf2.

• The bottom table shows that out of 31.3% of subjects who
were judged as “truely” willing to buy in the analysis
based onf1 alone, 17.6% of all subjects were judged
differently in at least one aspect of his/her answering
pattern. On the other hand, the remaining 13.7% of all
subjects can be judged as willing to buy with more
confidence supported by the judgements based onf0 and
f2.

As a conclusion, 15.0% of subjects were found to have latent
willingness to buy (“F-T” or “T-T” by all analyses) with more
confidence than in analysis without introducing GA.

Finally, we utilize principal component analysis (PCA) to
visualize the data given byf1. Figure 2 shows apparent and
latent willingness. From figure 2, we can find clusters to which
willing subjects belong.

IV. SUMMARY

In this study, we introduced GA to extract geometric fea-
tures fromm-tuple of n dimensional vectors, and proposed 3
kinds of the kernels based on the extracted features. And we
proposed the clustering algorithm by using the result based on
the similarity funtion in each feature space. Then, we applied
the proposed method to the clustering of answering patterns
for a web questionnaire, deriving 3 kinds of feature extraction
i.e. coordinates, outer products, and inner products. The result
showed that feature extractions based on outer product and
inner product, respectively, had more abundant structure of
cluster between subjects and higher alignment with latent
willingness to buy than inm × n dimensional vector space.
Based on the extracted features, we found latent willingness to
buy from the questionnaire data. The results showed that semi-
supervised learning based on coordinates can detect subjects
who have latent willingness to buy, and that introducing GA
to the analysis can further find subjects who havestronglatent
willingness.
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