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Abstract—One of the most important designs for a lot of
machine learning methods is the determination of the similarity
between instances. Especially the kernel matrix, which is also
known as the Gram matrix, plays a central role in the kernel
machines such as support vector machine. The simplest design
of similarity function is to use the distances between instances
or the Gaussian function based on them. It is easy to learn
the model when the data distribution follows their label, in
which the instances with same label are allocated near and
those with different label are allocated far. However, when the
data distribution is non-linear, it becomes difficult. This paper
discusses the inner products of 2 non-orthogonal basis vectors
and proposes the similarity between instances. This paper also
proposes a space folding model for machine learning based on
the proposed similarity. This paper applies the proposed method
to pattern recognition problem and shows its effectiveness.

I. I NTRODUCTION

For more efficient machine learning, the feature extraction is
important for a lot of machine learning methods such as Sup-
port Vector Machine(SVM)[1] or Neural Networks(NN)[2].
When the data distribution itself is not linearly separable
some kinds of non-linear transformation is used to make the
feature space as separable as possible. To do this, a lot of
conventional machine learning methods considered similarity
between instances. Especially the kernel matrix, which is also
known as the Gram matrix[3], plays a central role in the kernel
machines such as SVM. The simplest design of similarity
function is to use the Euclidean distances between instances or
the Gaussian function based on them. It is easy to learning the
model if the data distribution follows that the instances with
the same label are allocated near and those with the different
label are allocated far. However, when the data distribution of
same class are divided into plural clusters, it becomes difficult
for learning.

For more efficient machine learning, the conventional meth-
ods extracted the feature from data before designing of the
model. It is a popular approach to use linear methods such as
principal component analysis (PCA)[4] or multiple discrimi-
nant analysis (MDA)[5] to extract the feature from the data
distribution. PCA calculates an eigen-value decomposition of
a data covariance matrix. MDA finds a linear combination of
features which best separates two or more classes of objects.
But, because these linear methods do not consider the relations
between the distances and the labels of the instances, they
are not appropriate for designing the model when the data
distribution is not linear. In other hands, the conventional

methods use nonlinear feature extraction based on kernel
feature space such as kernel principal component analysis
(KPCA)[6] or kernel orthonormalized partial least squares
(KOPLS)[7]. These methods used the Gaussian function for
designing the kernel. But it is difficult to optimize the param-
eter of the Gaussian function and it cannot change the topology
of data distribution.

This paper proposes a space folding model which can
change the similarity (distance) between the instances, and
applies it to the classification problems. The proposed method
divides each basis vector into positive and negative directions
and optimize2m vectors (Space Folding Vectors: SFV) in the
m dimensional space. Then, the proposed method estimates
the 2m SFVs so that distance between instances with the
same label becomes smaller, and distance between those
with different labels becomes larger by minimizing the cross
entropy[8][9] between the labels and the distances. Because
the proposed method linearly transforms each quadrant dif-
ferently from other quadrants and it can change the topology
of data distribution, it is expected to improve classification
performance in comparison with the feature extraction by the
conventional linear or nonlinear transformations with kernel
methods.

This paper shows the effectiveness of the proposed method
through two experiments of classification. One is those pre-
pared as a preliminary experiment. The experiment results
show that the proposed space folding model is effective for
machine learning in a case of symmetric data. And in a case of
non-symmetric data, this experiment also shows the proposed
model using a folding point at the center of the class with
the largest variance is effective too. The other experiment is
to classify the hand-written digits dataset of the UCI Machine
Learning Repository [10]. Then this experiment shows that the
classification rate using the proposed space folding model is
better than without using it.

II. PROPOSEDMETHOD

A. Inner Product of Basis Vectors and Distance between
Instances

This section explains the definition of inner product of 2
basis vectors. Using an orthonormal basis{e1, e2, . . . , em}
which be chosen for a real vector spaceRm, the inner product
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of ei andej is defined by

ei · ej =
{

1 (i = j) ,
0 (i ̸= j) .

(1)

The distance between two instancesk, l ∈ {1, . . . , n} is
defined as

d2
k,l = ∥xk − xl∥2,

= ∥
m∑
i

(xk;i − xl;i) ei∥2,

=
m∑
i

m∑
j

(xk;i − xl;i) (xk;j − xl;j) ei · ej , (2)

where,xk = xk;1e1 + · · ·xk;dem =
∑m

i xk;iei is the coordi-
nate of the instancek in m dimensional space. From definition
(1), the distance is calculated asd2

k,l =
∑m

i (xk;i − xl;i)
2,

which is also used in conventional methods. This paper utilizes
non-orthogonal basis vectors. Their inner product becomes

ei · ej = κi,j ∈ R. (3)

Using these non-orthogonal vectors, the distance of 2 in-
stances is calculated as

d2
k,l =

m∑
i

d∑
j

(xk;i − xl;i) (xk;j − xl;j) ei · ej

=
d∑
i

m∑
j

(xk;i − xl;i) (xk;j − xl;j)κi,j (4)

̸=
m∑
i

(xk;i − xl;i)
2
,

which shows that the distance of 2 instances depends onκi,j .

B. Space Folding Model

This section describes space folding model for classifica-
tion problem. The problem is to infer labels for unknown
unlabeled data when the labels{yk|k ∈ N} of an instance
setN = {1, . . . , n} are known. It is easy to be solved if the
instances with the same label are allocated near and those with
the different label are allocated far. However, when the data is
not linear, the problem becomes more difficult. For example,
the linear method such as Linear Discriminant Analysis (LDA)
can not classify correctly when the data distribution of same
class are divided into plural clusters. It is able to easy classify
them to two classes if the data with same label gather and the
distance between the same label data becomes shorter than
distances from the different label data.

This paper describes how to define the distance between two
instancesk, l ∈ N based on the proposed space folding model
using the non-orthogonal vectors. Fig. 1 shows the image of
space folding model. The top shows the data distribution in
the original space. And the bottom shows the data distribution
after folding the space. The proposed method divides each
basis vector in them dimensional space into positive and
negative directions and optimize the SFVs to gather the same
label data each other.

Fig. 1. Image of space folding model.

For a given set of vectors{xk =
∑m

i xk;iei ∈ Rm, k =
1, . . . , n} in m-dimensional space, the proposed method divide
axes into negative parts and positive parts. It makes the2m
vectors (SFVs) inm-dimension. Then, the vectork of SFVs
be defined as,

χk =
m∑
i

|xk;i|e∗i ∈ Rm. (5)

e∗i =
{

ei (xk;i ≥ 0) ,
ei+m (xk;i < 0) .

(6)

Where,ei ∈ Rm, i ∈ {1, . . . , 2m} is an SFV which is defined
onm-dimensional space. Then this paper rewrite the vectorχk

as a linear combination ofei, i ∈ {1, . . . , 2m}, with weight
given by,

ξk;i =
{

|xk;i| (xi (2m + 1 − 2i) ≥ 0) ,
0 (xi (2m + 1 − 2i) < 0) .

(7)

Therefore,

χk =
2m∑
i

ξk;iei ∈ Rm. (8)

The problem is how to find the SFVei, i ∈ {1, . . . , 2m}.
This paper estimateei by minimizing the energy

E =
n−1∑
k=1

n∑
l=k+1

Ek,l, (9)

whereEk,l is a cross entropy function between two similarity
functionsℓk,l andρ (dk,l), which is introduced as,

Ek,l = −ℓk,l ln ρ (dk,l) − (1 − ℓk,l) ln (1 − ρ (dk,l)) . (10)

This paper employsρ (dk,l) as the similarity function,

ρ (dk,l) = exp

(
−

d2
k,l

2

)
. (11)
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And ℓk,l is defined as

ℓk,l =
{

1 (yk = yl) ,
0 (yk ̸= yl) .

(12)

Ek,l is approached to minimum whereℓk,l = ρ (dk,l). This
minimization means the data having the same label are located
at the same area. Note that, this minimization uses all data,
not only vectors near the boundary but also ones far from
the boundary, and it is different from the SVM which uses
only support vectors. Therefore, our SFM may not improve the
performance of the SVM to the best. But, because our method
can gather the same label data each other by optimizing the
SFVs, the output of the machine learning including SVM
should become better.

C. Algorithm of estimating SFVs

The SFVs of proposed space folding model can be calcu-
lated by minimizing the energy function showed as Eq. 9.
This paper employs the Newton-Raphson method to estimate
ei. The algorithm of proposed method is as follows:

Step1 Initialize SFVse1, . . . , e2m.
Step2 Calculate gradient vectorsEe1 , . . . , Ee2m .
Step3 Selectei such thati = arg maxj{∥Eej∥2}.
Step4 For the selected SFV, calculate modification vector

∆ei, and updateei by ei = ei + ∆ei.
Step5 Return to Step2.

In the following, this paper gives more details about each step
of the above algorithm.

In the Step1, the simplest initialization way is set
e1, . . . , e2m by random, but it is not an effective idea for learn-
ing. This paper initialize the SFVs by folding the orthogonal
basis vectors{ej} in original space.

In the case ofi ∈ {1, . . . ,m},

ei =
m∑
j

ai;jej (13)

ai;j =
{

1 (j = i) ,
0 (j ̸= i) .

And in the case ofi ∈ {m + 1, . . . , 2m},

ei = −ei−m. (14)

In the Step2, this paper calculates the derivative of the
energy function with respect toei as follows:

Eei =
∂E

∂ei
=

n−1∑
k=1

n∑
l=k+1

∂Ek,l

∂ei
, (15)

wherethe derivative ofEk,l is

∂Ek,l

∂ei
=

ℓk,l − ρ (dk,l)
1 − ρ (dk,l)

(ξk;i − ξl;i) (χk − χl) . (16)

In the Step4, this paper employs the Newton-Raphson
method for updating the current basis vectors. The modifi-
cation vector∆ei can be obtained as

∆ei = −
[

∂2E

∂ei∂eT
i

]−1
∂E

∂ei
. (17)

whereeT
i is the transposed vector ofei. The Hessian matrix

can be expressed as

∂2E

∂ei∂eT
i

=
n−1∑
k=1

n∑
l=k+1

fk,l,iI + gk,l,i (χk − χl) (χk − χl)
T

. (18)

whereI is the identity matrix in them dimensional space, and
fk,l,i, gk,l,i are defined as follows:

fk,l,i =
ℓk,l − ρ (dk,l)
1 − ρ (dk,l)

(ξk;i − ξl;i)
2
,

gk,l,i =
(1 − ℓk,l) ρ (dk,l)
(1 − ρ (dk,l))

2 (ξk;i − ξl;i)
2
. (19)

D. Pattern Recognition based on Space Folding Model

This section applies the space folding model to classification
problem. Fig 2 shows the flow of multi-class classification
based on the space folding model. First, the learning data
set Xtrain = {(xtrain,i, yi) , i = 1, . . . , ntrain} is used to
estimate the SFVse1, . . . , e2m. Second, this paper transforms
the coordinate of theXtrain into χtrain by using Eq. 8.
Next, a learning machine is trained withXtrain. This paper
employs Linear Discriminant Analysis (LDA)[11] or Neural
Networks (NN) as the learning machines. This paper in-
fers the labely∗ of unknown unlabeled data setXtest =
{(xtest,i, unknown) , i = 1, . . . , ntest} by using the estimated
SFVs and the learned model.

Fig. 2. Flow of classification based on space folding model.

III. E XPERIMENTS AND DISCUSSION

A. Preliminary Experiment

This section examined the effectiveness of the proposed
space folding model by using 2 kinds of data in 2-dimensional
space. The first one is symmetric data. And the second one is
non-symmetric data.
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1) Symmetric Data:This paper uses 2 kinds of symmetric
data, one of reflectively symmetric data and one of rotationally
symmetric data. This paper constructs the space folding model,
and learn the LDA for those data. The Fig. 3 shows the data
distribution before and after constructing the model. The left
of Fig. 3 shows the data distribution in the original space.
The top left shows the reflectively symmetric data and the
bottom left shows the rotationally symmetric data. The SFVs
ei, i = 1, . . . , 4 are shown by the filled ‘2’, and the data of
two classes are shown by the ‘◦’ and the ‘×’. The right shows
the data distribution after the estimation of the non-orthogonal
basis vectors. And it shows that all instances with the same
label did gather when the model construction finished. Using
the coordinates of data in the original space, the classification
rate of the reflectively symmetric data was71% and the
classification rate of the rotationally symmetric data was78%.
And using the result of space folding model, the classification
rates of the symmetric data were96.5% and98.5%.

Fig. 3. The result of space folding model using symmetric data.

2) Non Symmetric Data:The paper uses a data distribution
showed at the left figure of Fig 4. The right figure of Fig 4
shows the data distribution after the space folding in the case
where the origin was used as the folding point. In this case,
the data having the same label (‘△’) did not gather when
the model construction finished. Then, this paper make the
transformation of setting folding point at the center of mass
and the SFVs by the eigen-vectors of the class where the eigen-
value was the greatest among all classes. The Fig. 5 shows
the data distribution before and after constructing the model
based on this transformation. Becausee⃗2 got close to⃗e0, the
‘△ ’ data gathered to one group. And the classification rate of
the proposed method using this transformation was86% better

than classification rate without this transformation (77.8%).

Fig. 4. The result of space folding model using non-symmetric data in the
case where the origin was used as the folding point.

Fig. 5. The result of space folding model for non-symmetric data after setting
the folding point at the center and the basis vectors by the eigen-vectors of
the class which has the greatest eigen-value.

B. Hand-written Digits

This paper employed Pen-Based Recognition of Handwrit-
ten Digits dataset of the UCI Repository[10] as a two-class
classification problem. The dataset consists of 10992 samples
of 10 classes (‘0’ - ‘9’) written by 44 people. This paper used
2110 samples out of 10992, which consist of digit ‘5’ and digit
‘8’. It divided 671 samples written by 14 people into learning
dataD1, and 1439 samples written by 30 people into test data
D2. In the collection of samples, the pen point coordinates
with 100 msec intervals were measured on a tablet with a
resolution of500× 500 pixels. Eight points{rl, l = 1, · · · , 8}
dividing the orbit of the pen point into 7 equally long segments
were chosen, and they were scaled to be that average became0⃗
and maximal variance along the horizontal or the vertical axes
became 1. The aspect ratio was not changed in the scaling.
Fig. 6 shows some examples of the handwritten digit ‘5’,
and Fig. 7 shows those of digit ‘8’. Though they show the
handwritten trajectories, only the circled points were used for
this experiment.

This section uses the learning dataD1 to learning the
space folding model. This paper used 3 kind of learning
machines (LDA, SVM and NN) to learn the classification
model. Next this section uses the multi-dimensional scaling
(MDS) method[12],[13] to visualize the learning dataD1

before and after the construction of the space folding model.
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Fig. 6. Examples of hand-written digit ‘5’.

Fig. 7. Examples of hand-written digit ‘8’.

Fig. 8 shows the MDS result of the learning dataD1 before
the construction of the space folding model. The data of digit
‘5’ is shown by ‘×’, and digit ‘8’ is shown by ‘◦’. In Fig.
8, it is interesting that two groups of ‘5’ were closer to ‘8’
than the other ‘5’ group, because some ‘5’ were written in one
continuous curve from upper-right to lower-left like digit ‘8’.
Using the coordinates of original space, it is hard for linear
learning machine classify correctly. Fig. 9 shows the MDS
result of the learning data after the construction of the space
folding model. Fig. 9 shows the data distribution of ‘5’ and
‘8’ gathering to each group and they are well-separated in the
space folding model. So, it is easy for even a linear learning
machine to classify.

Fig. 8. MDS result of the learning data before the construction of the space
folding model.

Then, this paper used the test dataD2 to evaluate the

Fig. 9. MDS result of the learning data after the construction of the space
folding model.

performance of 2-class classifications in 2 cases, with the
space folding model (SFM) and without the SFM. Table I
show the classification rate using LDA, SVM and NN. For
the SVM, this paper used Gaussian kernel functionK (x,y) =
exp

(
−β (x − y)2

)
, where parameterβ = 1 is the width of

the Gaussian function. For the NN, this paper used 3-layer
back-propagation network, and the type of activation function
that has been used is the sigmoid function. To make a fair
comparison, this paper set the hidden unit numberuh = 4 in
the case of without SFM and the hidden unit numberuh = 2
in the case of with SFM. Table I showed that the accuracy of
correct classification by the proposed method was better than
the cases with only NN, LDA or SVM.

TABLE I
CLASSIFICATION RATE VIA LDA, SVM AND NN.

Without SFM With SFM

LDA 90.3% 97.3%
SVM 91.2% 99.2%
NN 96.3 (±1.3)% 98.5 (±0.7)%

IV. CONCLUSION

This paper proposed the space folding model which can
change the similarity between the instances. The proposed
method divided each basis vectors into positive and negative
directions, and optimized2m SFVs in them dimensional
space. It showed the algorithm to estimate the SFVs by
minimizing the cross entropy energy function. Because the
proposed method linearly transformed each quadrant differ-
ently from other quadrants and it could change the topology of
data distribution, it could improve classification performance
in comparison with the feature extraction by the conventional
linear or nonlinear transformations with kernel methods. This
paper also showed how to apply the space folding model to
the classification problem. It showed the effectiveness of the
proposed method through two experiments of classification.
The preliminary experiment showed that the proposed space
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folding model is effective for machine learning in the both
cases of symmetric data and non-symmetric data. The numer-
ical experiment applied the proposed method to classifying
of a hand-written digits dataset of the UCI Machine Learning
Repository. This experiment showed that the proposed method
was effective for the machine learning. It showed that the
accuracy of correct classification by the proposed method was
better than the cases with only NN, LDA or SVM.
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