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Abstract—One of the most important designs for a lot of methods use nonlinear feature extraction based on kernel
machine learning methods is the determination of the similarity feature space such as kernel principal component analysis
between instances. Especially the kernel matrix, which is also (KPCA)[6] or kernel orthonormalized partial least squares

known as the Gram matrix, plays a central role in the kernel . .
machines such as support vector machine. The simplest design(KOPLS)m' These methods used the Gaussian function for

of similarity function is to use the distances between instances designing the kernel. But it is difficult to optimize the param-
or the Gaussian function based on them. It is easy to learn eter of the Gaussian function and it cannot change the topology
the model when the data distribution follows their label, in of data distribution.

which the instances with same label are allocated near and Thi foldi del which
those with different label are allocated far. However, when the IS paper_ p_rop.oses.a Space 1iolding mo .e which can
data distribution is non-linear, it becomes difficult. This paper change the similarity (distance) between the instances, and
discusses the inner products of 2 non-orthogonal basis vectors applies it to the classification problems. The proposed method
and proposes the similarity between instances. This paper also divides each basis vector into positive and negative directions
proposes a space folding model for machine learning based on 5, optimize2m vectors (Space Folding Vectors: SFV) in the
the proposed similarity. This paper applies the proposed method di . | Th th d thod estimat
to pattern recognition problem and shows its effectiveness. m dimensional space. . en, the propose. metho eS_ Imates
the 2m SFVs so that distance between instances with the
l. INTRODUCTION same 'Iabel becomes smaller, and dista.m'cel petween those
o _ _ ~with different labels becomes larger by minimizing the cross
~ For more efficient machine learning, the feature extractionéniropy[8][9] between the labels and the distances. Because
important for a lot of machine learning methods such as Sure proposed method linearly transforms each quadrant dif-
port Vector Machine(SVM)[1] or Neural Networks(NN)[2]. ferently from other quadrants and it can change the topology
When the data distribution itself is not linearly separablgf data distribution, it is expected to improve classification
some kinds of non-linear transformation is used to make th@rformance in comparison with the feature extraction by the

feature space as separable as possible. To do this, a lot@&iventional linear or nonlinear transformations with kernel
conventional machine learning methods considered similarityethods.

between instances. Especially the kernel matrix, which is alsorig paper shows the effectiveness of the proposed method
known as the Gram matrix[3], plays a central role in the kemgl,, gk two experiments of classification. One is those pre-
machines such as SVM. The simplest design of similariiy,eq as a preliminary experiment. The experiment results
function |s.to use the Euclidean dlstance§ between mstancegp&w that the proposed space folding model is effective for
the Gaussian function based on them. Itis easy to leaming {38 hine learning in a case of symmetric data. And in a case of
model if the data distribution follows that the instances W'tHon-symmetric data, this experiment also shows the proposed
the same label are allocated near and those with the differant 4o using a folding point at the center of the class with
label are allocated far. However, when the data distribution gfe largest variance is effective too. The other experiment is
same cla_lss are divided into plural clusters, it becomes difficylf classify the hand-written digits dataset of the UCI Machine
for learning. Learning Repository [10]. Then this experiment shows that the

For more efficient machine learning, the conventional metfragsification rate using the proposed space folding model is
ods extracted the feature from data before designing of thgiter than without using it.

model. It is a popular approach to use linear methods such as

principal component analysis (PCA)[4] or multiple discrimi-

nant analysis (MDA)[5] to extract the feature from the data Il. PROPOSEDMETHOD

distribution. PCA calculates an eigen-value decomposition of

a data covariance matrix. MDA finds a linear combination & |nner Product of Basis Vectors and Distance between
features which best separates two or more classes of objegistances

But, because these linear methods do not consider the relations

between the distances and the labels of the instances, theyhis section explains the definition of inner product of 2
are not appropriate for designing the model when the ddiasis vectors. Using an orthonormal baéis,es,... e, }
distribution is not linear. In other hands, the conventionathich be chosen for a real vector spd&R#, the inner product
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where,x; = zp.1€1 + - Tpaem = Y; Tki€; is the coordi- o Fe

nate of the instanck in m dimensional space. From definition
(1), the distance is calculated al%ﬁl = 37" (T — xl;i)2,

which is also used in conventional methods. This paper utilizes
non-orthogonal basis vectors. Their inner product becomes Fig. 1. Image of space folding model.

€ -€e; =R;; € R. (3)

For a given set of vector§x, = >.." z;,,e; € R™ k =
ﬂ' ..,n} in m-dimensional space, the proposed method divide
axes into negative parts and positive parts. It makes2the

Using these non-orthogonal vectors, the distance of 2 i
stances is calculated as

m d . . .
vectors (SFVs) inm-dimension. Then, the vectdr of SFVs
di,l = Z Z (xkl - ./L'l;i) (mkd - ‘rl?j) € - ej be deflned as,
i g
d m m
= Z Z (T — i) (Tpyy — 215) ki (4) Xk =Y lzuile € R™. (5)
1 J P
2
?é Z (xk;i - xl;i) ’ * €; (xk;i 2 O) ) (6)
i € = €itm (Try <0).

which shows that the distance of 2 instances depends; on Where,e; € R™,i € {1,...,2m} is an SFV which is defined

B. Space Folding Model onm-dimensional space. Then this paper rewrite the vegtor
This section describes space folding model for classifics @ linear combination af;,i € {1,...,2m}, with weight

tion problem. The problem is to infer labels for unknowr@iven by,

unlabeled data when the labe{g;|k € N} of an instance | weal (i (2m+1—260) >0),

setN = {1,...,n} are known. It is easy to be solved if the Esi = { 0 (2: (2m 41— 20) < 0). (1)

instances with the same label are allocated near and those Witt}herefore

the different label are allocated far. However, when the data is '

not linear, the problem becomes more difficult. For example, 2m "

the linear method such as Linear Discriminant Analysis (LDA) Xk = ng;iei €R™. (8)

can not classify correctly when the data distribution of same !

class are divided into plural clusters. It is able to easy classify The problem is how to find the SF¥;,i € {1,...,2m}.

them to two classes if the data with same label gather and th@is paper estimate; by minimizing the energy

distance between the same label data becomes shorter than n-1 n
distances from the different label data. E=Y Y E, (9)
This paper describes how to define the distance between two k=11=k+1

instances:, / € N based on the proposed space folding modglhere £, ; is a cross entropy function between two similarity

using the non-orthogonal vectors. Fig. 1 shows the image fonctionsékJ andp (dy;), which is introduced as,
space folding model. The top shows the data distribution in

the original space. And the bottom shows the data distributiontk:t = —fk1np (di) = (1= le)) In (1= p(dis)) . (10)
after folding the space. The proposed method divides eachThis paper employ® (dy.,) as the similarity function,
basis vector in then dimensional space into positive and 2

negative directions and optimize the SFVs to gather the same p(dis) = exp (_kl> ) (11)
label data each other. ’ 2
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And ¢ ; is defined as whereeiT is the transposed vector ef. The Hessian matrix
can be expressed as

1 R
gk,l = { 0 EZZ 7é zi; ’ (12) 82E n—1 n
— . . — —_— T
Ey, is approached to minimum whefg,; = p (dy,). This  de;0el ;I;ﬂf’“lﬂ gk O —x1) Ok —xa)” - (18)

minimization means the data having the same label are located _ _ _ o _ _
at the same area. Note that, this minimization uses all datd)erel is the identity matrix in then dimensional space, and
not only vectors near the boundary but also ones far frofa,i: 9x,1,; are defined as follows:

the boundary, and it is different from the SVM which uses Gea — p(diy) )

only support vectors. Therefore, our SFM may not improve the fri ﬁ (ks — &)™
performance of the SVM to the best. But, because our method P (d)

can gather the same label data each other by optimizing the Geii = (1*6“—)/’(@;) (Eii — &0)° (19)
SFVs, the output of the machine learning including SVM o (1= p(di1)) ’ '

should become better. D. Pattern Recognition based on Space Folding Model

C. Algorithm of estimating SFVs This section applies the space folding model to classification
The SFVs of proposed space folding model can be calgoroblem. Fig 2 shows the flow of multi-class classification
lated by minimizing the energy function showed as Eq. ®ased on the space folding model. First, the learning data

This paper employs the Newton-Raphson method to estimatt X, = {(Xtrain,i> ¥i),¢ = 1,...,Nyrain} iS Used to
e;. The algorithm of proposed method is as follows: estimate the SFVey, ..., es,. Second, this paper transforms
Stepl Initialize SFVe, ..., €. the coordinate of theXirqin INtO Xtrain by Using Eq. 8.
Step2 Calculate gradient vectoks, , . .., E., . Next, a learning machine is trained witk;,..;,,. This paper
Step3 Selece; such thati = arg max; { || Ee,||*}. employs Linear Discriminant Analysis (LDA)[11] or Neural
Step4 For the selected SFV, calculate modification vectetworks (NN) as the learning machines. This paper in-

Ae;, and updates; by e; = e; + Ae;. fers the labely* of unknown unlabeled data s&;.., =
Step5 Return to Step2. {(Xtest,i, unknown) ,i = 1,...,n } by using the estimated

In the following, this paper gives more details about each st&y VS and the learned model.
of the above algorithm.

In the Stepl, the simplest initialization way is set X X
e1,...,esn, by random, but it is not an effective idea for learn- train test
ing. This paper initialize the SFVs by folding the orthogonal *lf
basis vectorge;} in original space. Estimating

In the case of € {1,...,m}, Non-orthogonal

m SFVs
e, = Zai;jej (13) ¢
J
S {1 (G =1), el.,ze{l,...,2m}
0 (j#i).
And in the case ot € {m +1,...,2m}, l X srain X test
e =—€i_m. (14) Learning .| Learned
In the Step2, this paper calculates the derivative of the Machine Model
energy function with respect te; as follows: \l;
*
OF X N OEg, y
E, = - : 15
T Pe T2 2 e (15)
k=11l=k+1
wherethe derivative ofE} ; is Fig. 2. Flow of classification based on space folding model.

OBk Uiy —p(dey)
oe; 1 —p(dy,) (G = ) (xe —x1) (16) IIl. EXPERIMENTS AND DISCUSSION
In the Step4, this paper employs the Newton-Raphs@ preliminary Experiment
method for updating the current basis vectors. The modifi-

cation vectorAe, can be obtained as This section examined the effectiveness of the proposed

) space folding model by using 2 kinds of data in 2-dimensional
0*E }_ oF space. The first one is symmetric data. And the second one is

Ae; = — {aeiaeiT de; 17 non-symmetric data.
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1) Symmetric Data:This paper uses 2 kinds of symmetrichan classification rate without this transformation (77.8%).
data, one of reflectively symmetric data and one of rotationally
symmetric data. This paper constructs the space folding model,
and learn the LDA for those data. The Fig. 3 shows the data
distribution before and after constructing the model. The left
of Fig. 3 shows the data distribution in the original space. |
The top left shows the reflectively symmetric data and the %=
bottom left shows the rotationally symmetric data. The SFVs
e;,i = 1,...,4 are shown by the filled®, and the data of
two classes are shown by th& and the x’. The right shows
the data distribution after the estimation of the non-orthogonal
basis vectors. And it shows that all instances with the same
label did gather when the model construction finished. Usi ™ . . . .

: . .. L . 4. e result of space folding model using non-symmetric data in the
the coordinates of data in the original space, the classificatigfde where the origin was used as the folding point.
rate of the reflectively symmetric data wad% and the
classification rate of the rotationally symmetric data Wa%.
And using the result of space folding model, the classification
rates of the symmetric data we96.5% and98.5%.

’ Fig.5. The result of space folding model for non-symmetric data after setting
the folding point at the center and the basis vectors by the eigen-vectors of
"4 the class which has the greatest eigen-value.

B. Hand-written Digits

This paper employed Pen-Based Recognition of Handwrit-
ten Digits dataset of the UCI Repository[10] as a two-class
classification problem. The dataset consists of 10992 samples
of 10 classes (‘0" - ‘9’) written by 44 people. This paper used
2110 samples out of 10992, which consist of digit ‘5’ and digit

‘8'. It divided 671 samples written by 14 people into learning
| B! - dataD;, and 1439 samples written by 30 people into test data
' ‘ Ds. In the collection of samples, the pen point coordinates
with 100 msec intervals were measured on a tablet with a
Fig. 3. The result of space folding model using symmetric data. ~ resolution of500 x 500 pixels. Eight points{r;,l =1,---,8}
dividing the orbit of the pen point into 7 equally long segments

2) Non Symmetric DataThe paper uses a data distributionwere chosen, and they were scaled to be that average bécame
showed at the left figure of Fig 4. The right figure of Fig 4and maximal variance along the horizontal or the vertical axes
shows the data distribution after the space folding in the casecame 1. The aspect ratio was not changed in the scaling.
where the origin was used as the folding point. In this cadéig. 6 shows some examples of the handwritten digit ‘5’
the data having the same label\() did not gather when and Fig. 7 shows those of digit ‘8". Though they show the
the model construction finished. Then, this paper make thandwritten trajectories, only the circled points were used for
transformation of setting folding point at the center of maghis experiment.
and the SFVs by the eigen-vectors of the class where the eigenthis section uses the learning daf2;, to learning the
value was the greatest among all classes. The Fig. 5 shapsce folding model. This paper used 3 kind of learning
the data distribution before and after constructing the modehchines (LDA, SVM and NN) to learn the classification
based on this transformation. Becausegot close toey, the model. Next this section uses the multi-dimensional scaling
‘A’ data gathered to one group. And the classification rate (WIDS) method[12],[13] to visualize the learning dafa,
the proposed method using this transformation 8635 better before and after the construction of the space folding model.
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Fig. 6. Examples of hand-written digit ‘5.

X —_—
=
Fig. 9. MDS result of the learning data after the construction of the space
folding model.
performance of 2-class classifications in 2 cases, with the

space folding model (SFM) and without the SFM. Table |
show the classification rate using LDA, SVM and NN. For
Fig. 7. Examples of hand-written digit ‘8'. the SVM, this paper used Gaussian kernel funcidfx,y) =
exp (-3 (x — y)2), where paramete = 1 is the width of
) ) the Gaussian function. For the NN, this paper used 3-layer
Fig. 8 shows the MDS result of the learning dda before ,4ck_propagation network, and the type of activation function
the construction of the space folding model. The data of digj{5; has been used is the sigmoid function. To make a fair
'S" is shown by *<’, and digit ‘8" is shown by &'. In Fig. comparison, this paper set the hidden unit number= 4 in
8, it is interesting that two groups of ‘5’ were cI0_Ser tQ ‘8'the case of without SFM and the hidden unit numbgr= 2
than_the other ‘5’ group, becau_se some ‘5’ were WIILteN In ONg the case of with SFM. Table | showed that the accuracy of
continuous curve from upper-right to lower-left like digit *8'. .o rrect classification by the proposed method was better than
Using the coordinates of original space, it is hard for linegfe cases with only NN, LDA or SVM.
learning machine classify correctly. Fig. 9 shows the MDS
result of the learning data after the construction of the space TABLE |
folding model. Fig. 9 shows the data distribution of ‘5’ and CLASSIFICATION RATE ViA LDA, SVM AND NN.
‘8’ gathering to each group and they are well-separated in the | Without SFM____ With SFM

space folding model. So, it is easy for even a linear learning LDA 90.3% 97.3%
. : SVM 91.2% 99.2%
machine to classify. NN | 96.3(£1.3)% 98.5(£0.7)%

IV. CONCLUSION

This paper proposed the space folding model which can
change the similarity between the instances. The proposed
method divided each basis vectors into positive and negative
| directions, and optimize®m SFVs in them dimensional
space. It showed the algorithm to estimate the SFVs by
minimizing the cross entropy energy function. Because the
proposed method linearly transformed each quadrant differ-
ently from other quadrants and it could change the topology of
data distribution, it could improve classification performance
in comparison with the feature extraction by the conventional
linear or nonlinear transformations with kernel methods. This
Fig. 8. MDS result of the learning data before the construction of the spaB@Per also showed how to apply the space folding model to
folding model. the classification problem. It showed the effectiveness of the

proposed method through two experiments of classification.

Then, this paper used the test daiz to evaluate the The preliminary experiment showed that the proposed space
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folding model is effective for machine learning in the both
cases of symmetric data and non-symmetric data. The numer-
ical experiment applied the proposed method to classifying
of a hand-written digits dataset of the UCI Machine Learning
Repository. This experiment showed that the proposed method
was effective for the machine learning. It showed that the
accuracy of correct classification by the proposed method was
better than the cases with only NN, LDA or SVM.
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