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Abstract—Genetic Algorithm (GA)[1] is one of the most
effective methods in the application to optimization problems.
Recently, Multi-objective Genetic Algorithm (MOGA) is focused
on in the engineering design field. In this field, the analysis
of design variables in the acquired Pareto solutions, which
gives the designers useful knowledge in the applied problem,
is important as well as the acquisition of advanced solutions.
This paper proposes a new visualization method using Isomap
which visualizes the geometric distances of solutions in the design
variable space considering their distances in the objective space.
The proposed method enables a user to analyze the design
variables of the acquired solutions considering their relationship
in the objective space. This paper applies the proposed method
to the conceptual design optimization problem of hybrid rocket
engine and studies the effectiveness of the proposed method.
It shows that the visualized result gives some knowledges on
the features between design variables and fitness values in the
acquired Pareto solutions.

keywords: Analysis of Design Variables, Visualization,
Isomap, Multi-objective Genetic Algorithm, Conceptual De-
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I. INTRODUCTION

Recently, Multi-objective Optimization Problems (MOPs)
have been focused on the engineering design field. Generally,
it is difficult or impossible to acquire the optimized solution
satisfying all objective functions because of their trade-offs.
Then in MOPs, it is necessary to acquire Pareto solutions
which are superior to other solutions by at least one fitness
value. MOGA, which is the application of GA to MOPs, could
be effective to solve MOPs because GA is multi-point search
and can search various Pareto solutions in one trial[2].

It has been reported in recent years that MOGAs are
applied to engineering design problems due to the improve-
ment of computing[3][4][5]. Obayashi[3] worked on design
optimization of aircraft configuration problem using MOGA.
[3] acquired Pareto solutions by MOGA method and analyzed
the design variables of Pareto solutions to grasp the physical
features in the problem through a visualization using Self Or-
ganizing Map (SOM). Deb[4] studied the method to discover
useful information for designers from the Pareto solutions in
engineering design problems. In engineering design field, it is
important not only to search advanced Pareto solutions using

MOGA, but also to grasp useful knowledge for designers and
analyze physical relationship between fitness values and design
variables[4].

This paper employs the conceptual design optimization
problem of hybrid rocket engine (HRE) as an application of
MOGA to engineering design problem[6]. This problem has
been provided and published on the Web (Japanese)[7] by
Japan Aerospace Exploration Agency (JAXA).

HRE is the rocket engine that holds propellant in two
different conditions, which has a smaller risk of explosion
and a higher safeness. It is also environment-friendly, and
it can adjust the thrust by using a slot ring. However, for
a design of HRE, it is difficult to acquire general design
knowledge because the thrust is generated by burning in the
turbulent boundary layer in the reaction chamber, which is
different from the conventional rocket engines. In the turbulent
boundary layer, the O/F mixture ratio which dictates the thrust
is calculated by the length of fuel, the radius of the port and the
flow rate of oxidant. Thus, the geometric design of a HRE can
be considered as an optimization problem which optimizes the
weight of the rocket and the highest reachable altitude. As for
the design variables of this problem, there are the flow rate of
oxidant[kg/s], length of fuel[m], initial radius of the port[m],
burning time[s], pressure in the reaction chamber[MPa] and
open area ratio. As for the objective functions, there are the
minimization of weight of the rocket[kg] and the maximization
of highest reachable altitude[km].

This paper applies one of the representative multi-objective
optimization method NSGA-II (Non-dominated Sorting Ge-
netic Algorithm-II) [8] to the conceptual design optimization
problem of HRE. It analyzes the relationship between design
variables and fitness values in the acquired Pareto solutions.
To consider their relationships, this paper proposes a new
visualization method using Isomap which considers relative
distance of data in the objective space considering relative
distance of data in the design variable space. In the proposed
method, it calculates the geodetic distance in the design
variable space based on the distance in the objective space
and visualizes the relationship among Pareto solutions using
Isomap [9][10][11][12]. The experimental result shows that we



Fig. 1. Hybrid Rocket

TABLE I
DESIGN VARIABLES AND THERE RANGES

V1 ṁoxi(0) : Initial flow rate of oxidant 1.0− 30.0[kg/s]

V2 Lfuel : Length of fuel 1.0− 10.0[m]

V3 rport(0) : Initial radius of port 0.01− 0.2[m]

V4 tburn: Burning time 15.0− 35.0[s]

V5 Pch: Pressure in reaction chamber 3.0− 4.0[MPa]

V6 ϵ: Open area ratio 5.0− 7.0

TABLE II
FITNESS VALUES

Obj1 Mtot : Weight of rocket [kg] Min

Obj2 Hmax : Highest reachable altitude [km] Max

Obj3 Mpay : Weight of pay load [kg] Max

Obj4 Ltot: Length of rocket [m] Min

Obj5 amax : Maximum acceleration [km/s2] Min

can see the relationship of the design variables considering
that of the fitness values as well, and we can grasp some
knowledges on the features between them.

II. PROBLEM ESTABLISHMENT

This section explains the employed conceptual design opti-
mization problem of HRE. Fig.1 shows the conceptual figure
of a hybrid rocket, and TABLE I and TABLE II show each
design variable and fitness value, respectively. This paper
deals with two objective functions Obj1 and Obj2, though this
problem can be expanded to 5 objective optimization problem
as shown in TABLE II. Weight of the rocket Mtot[kg] and
highest reachable altitude Hmax[km] can be calculated by the
following equation (1) - (15).

In order to calculate the weight of the rocket Mtot[kg],
weight of the oxidant Moxi[kg], weight of fuel Mfuel[kg],
weight of propellant Mprop[kg], weight of the oxidizer tank
Mres[kg] and the weight of the reaction chamber Mch[kg] are
calculated by eq. (1) - (5).

Moxi =

∫ tburn

0

ṁoxi(t)dt (1)

Mfuel =

∫ tburn

0

ṁfuel(t)dt (2)

Mprop(t) = Moxi +Mfuel +

∫
ṁprop(t)dt (3)

Mres = ρresVres (4)
Mch = ρchVch (5)

ṁfuel(t)[kg/s] is the time change of the fuel flow,
ṁprop(t)[kg/s] is the time change of the propellant flow,
ρres[kg/m

3] is the density of the oxidizer tank, Vres[m
3] is the

volume of the oxidizer tank, ρch[kg/m3] is the density of the
reaction chamber and Vch[m

3] is the volume of the reaction
chamber. The weight of the rocket Mtot[kg] is calculated by
eq. (6) - (9). In this paper, the weight of the pay load Mpay[kg]
is set to 50[kg] (constant).

Mtot(t) =

∫
ṁprop(t)dt+Mtot(0) (6)

Mtot(0) = Meng +Mpay +Mex (7)
Meng = Moxi +Mfuel +Mch +Mres (8)

Mex =
2

3
Meng (9)

Next, in order to calculate the highest reachable altitude
Hmax[km], thrust T [N ] and acceleration a[m/s2] are calcu-
lated by eq. (10) - (15).

a(t) =


T (t)−D(t)
Mtot(t)

− g (V (t) > 0)

T (t)
Mtot(t)

− g (V (t) = 0)

T (t)+D(t)
Mtot(t)

− g (V (t) < 0)

(10)

T (t) = ηT
(
λṁprop(t)µe + (Pe − Pa)Ae

)
(11)

O

F
=

ṁoxi(t)

ṁfuel(t)
(12)

λ =
1

2
(1 + cos θ2) (13)

Ae = ϵAth (14)

Ath =
ṁprop(0)Isp(0)ηIsp

CF (0)ηCF
Pch

(15)

D(t)[N ] is the friction at time t, g[m/s2] is the acceleration
of gravity and V (t)[km/s] is the speed of the rocket. ηT is
the loss coefficient of the nozzle (ηT = 1.0) and Pa[Pa] is
the atmosphere pressure. The current velocity of the nozzle
exit ue[m/s] and the pressure of the nozzle exit Pe[Pa] are
calculated by the mixture proportion ratio O/F . λ is the revise
momentum coefficient to estimate the thrust T [N ] and Ae[m

2]
is the area of nozzle exit. Ath[m

2] is the area of nozzle throat,
Isp(0)[s] is the initial specific impulse, ηIsp is the efficient
of Isp, CF (0) is the initial thrust coefficient and ηCF

is the
efficient of the CF .

III. PROPOSED METHOD

The proposed method uses the idea of geodetic distance to
reflect the similarity of the solutions in the objective space into
the geodetic distance in the design variable space. The geodetic
distance represents the shortest path along the surface on the
manifold configuration. Then, it employs Isomap[9][10][11] to
visualize the similarity based on the geodetic distance of the
solutions. Isomap visualizes the similarity between data based
on their geodetic distance using Multiple Dimensional Scaling
(MDS). MDS is one of the multivariate analysis, which is



Fig. 2. Image of Proposed Method

often used as a visualization technique to show the similarities
or dissimilarities between data. It can reduce the number of
dimensions while preserving the distances between data in the
original space as much as possible.

First, it defines “neighborhood” of each data in the objective
space, and links the defined neighborhood data. There are two
ways to define the neighborhood, one is to use the Euclidean
distance in the objective space and the other is to define
the number of neighborhoods around each data. This paper
used the former. Next, the geodetic distance is calculated. In
geodetic distance, the distance between linked data is simply
measured by Euclidean distance and that between not linked
data is calculated by the sum of Euclidean distance of the
data which give shortest way to reach the target data along
the linked ones. The distance at the data which are not able
to reach is given as Due. Usually, Due is set to relatively
large value[12]. The feature of this method is to define the
neighborhood in the objective space and calculate the geodetic
distance in the design variable space.

Fig.2 shows the image of the proposed method. In Fig.2,
the radius ϵ is the parameter to determine the “neighborhood”
in the objective space. For example, data 1 and data 2 become
the neighborhood because the distance between data 1 and 2
is smaller than the radius ϵ, then they are linked each other.
In the same way, data 2, 3 and 4 and data 3, 4 and 5 are the
neighborhood, respectively, but data 2 and 5 are not.

This information of their links is applied to the design
variable space. In the right figure of Fig.2, data 2 and 4 have a
direct link so that the distance between them is simply defined
as the Euclidean distance in the design variable space. Data 2
and 5 do not have a link so that the distance between them is
defined as the minimum of (d24+d45), the sum of the distance
of data 2-4 and that of data 4-5, and (d23 + d35). The data

TABLE III
EXPERIMENTAL PARAMETER

Trial 10

Generation 32

Population Size 64

Crossover Rate 1.0

Mutation Rate 0.033

Fig. 3. Acquired Pareto Solutions

1,2,3,4,5 and 6,7,8 are separated each other because they are
not connected. It is expected that we can grasp the similarity
of data in the design variable space considering those in the
objective space by the proposed method.

IV. EXPERIMENT

A. Acquisition of Pareto Solutions

First, NSGA-II was applied to the conceptual design opti-
mization problem of HRE explained in II. and Pareto solutions
were acquired. TABLE III shows the genetic parameters used
in NSGA-II.

As for the coding, it divided the range of each design
variable V1 - V6 shown in TABLE I into 1024 and they were
expressed by 10 - bit binary number. Then, the length of the
gene became 60 bit. As for the crossover, uniform crossover
which treated one design variable as a unit was used. The
weight of the pay load Mpay[kg] was set to 50[kg], the loss
coefficient of the nozzle ηT was set to 100% and the flow rate
of oxidant ṁoxi[kg/s] was set to a constant.

Fig.3 shows the solutions obtained in 10 trials in all
generations. In Fig.3, horizontal axis is the weight of the
rocket Mtot[kg] and vertical axis is the highest reachable
altitude Hmax[km]. The red dots in Fig.3 are the Pareto



solutions which were non-dominated in all solutions. The
analysis bellow is done to these Pareto solutions.

B. Application of Proposed Method

Fig.4(c) shows the result of the proposed method to the
Pareto solutions above.f Fig.4(a) and Fig.4(b) are the distribu-
tion of the Pareto solutions in the objective space and in the
design variable space visualized by MDS, respectively. The
radius ϵ to define the neighborhood in the objective space was
calculated by eq. (16).

ϵ =
fmax − fmin

10
(16)

Each data in Fig.4(a)-(c) is correspond to same color. The
blue data had higher Mtot and Hmax, i.e., upper-right in
Fig.4(a) and the red data had lower Mtot and Hmax, i.e.,
lower-left in Fig.4(a). Each variable in the data in Fig.4(a)(b)
was standardized to average 0 and variance 1.

V. CONSIDERATION

In this paper, the proposed method visualized the similarity
of the solutions in the design variable space based on the links
defined in the objective space, in which the Pareto solutions
were uniformly distributed. Therefore, the result might be
strongly influenced by the relationship in the objective space.
However, we can see that there are crowding area and sparse
area from the visualized result.

First, it considers this result from the physical side. The
solutions in the bottom-left part in Fig.4(c) are crowding,
which means the geodetic distances are small and the design
variables are similar one another, and correspond to low Mtot

and low Hmax area in the objective space. When we want
to reduce the weight of the rocket rather than getting higher
reachable altitude, there are few variations for the design
variables. Because it is obvious that small amount of fuel
makes the weight of the rocket low but it can not reach high
altitude. On the other hand, The solutions in the upper part
in Fig.4(c) are sparse and have some groups, and correspond
to high Mtot and high Hmax area in the objective space. It
means that there are several variations for design variables to
design rockets reaching high altitude.

TABLE IV
DESIGN VARIABLES OF PARETO SOLUTIONS

Mtot Hmax ṁoxi(0) Lfuel rport(0) tburn Pch ϵ

Group 1 1095 205.5 27.0 4.05 0.041 15.4 36.0 6.77

Group 2 874 199.3 20.6 3.56 0.037 15.8 36.9 6.73

Group 3 728 191.8 15.9 3.28 0.037 16.8 37.2 6.89

Group 4 442 167.4 9.1 2.76 0.041 16.9 37.1 6.81

Max in Pareto 1124 207.5 28.0 4.51 0.054 18.0 39.9 6.99

Min in Pareto 90 24.7 1.03 1.04 0.014 15.1 30.2 5.06

TABLE IV shows the average of design variables of the
group 1-4 in Fig.4(c). In the objective space, these four groups
are in the high Mtot and Hmax area and comparatively have
similar Mtot and Hmax. However, group 1 has large amount

(a) Objective Space

(b) Design Variable Space (using MDS)

(c) Proposed Method

Fig. 4. Visualization Result



of ṁoxi(0) and Lfuel and low Pch, which makes a lot of
difference from group 4. Moreover, though group 2 and 3 are
very close in the objective space, they have different ṁoxi(0)
and Pch in the design variable space.

Next, it considers the feedback into genetic operations from
the visualized result. In the bottom-left crowded area and in
the upper circled area in Fig.4(c), the solutions have similar
fitness values and similar design variables one another. It
means that the area around a gene in the design variable
space is corresponding well to that around the gene in the
objective apace. In these areas, it is expected that Local Search
(LS) methods[13][14][15], which searches around genes with
high fitness values but actually searches in the design variable
space, and NSGA-II, which considers the ranking of genes
by the degree of crowding rate in the objective space, will
work well. On the other hand, in the sparse area in Fig.4(c),
the solutions have similar fitness values but various design
variables. In this area, LS method or the operation of NSGA-
II, which preferentially selects the genes with low density as
parents for genetic operations with expecting that generated
offsprings fill in the sparse area in the objective space, will not
work well. Because the objective space and the design variable
space are not corresponding each other, then the search around
a gene in the design variable space does not mean the search
of the target area in the objective space, and vice versa.

VI. CONCLUSION

This paper applied NSGA-II to the conceptual design opti-
mization problem of HRE to analyze the design variables in
the acquired Pareto solutions. This paper proposed a new visu-
alization method using Isomap which visualized the geometric
distances of solutions in the design variable space considering
their distances in the objective space. The proposed method
enabled a use to analyze the design variables of the acquired
solutions considering their relationships in the objective space.
The experimental result showed that the solutions with low
weight of the rocket and low highest reachable altitude did
not have variations on the design variables while those with
high weight of the rocket and high highest reachable altitude
had several variations on them. The feedback into genetic
operations from the visualized result was also described in
this paper.

For the future work, we will study more on the proposed
method by applying not only to Pareto solutions but also to all
solutions or visualizing the geodetic distance of the objective
space based on the similarity in the design variable space.
The concrete feedback based on the obtained knowledge is
also needed in the future work.
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