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Error Control for Performance Improvement of Brain-Computer
Interface: Reliability-Based Automatic Repeat Request

Hiromu TAKAHASHI†a), Student Member, Tomohiro YOSHIKAWA†, Nonmember,
and Takeshi FURUHASHI†, Member

SUMMARY Brain-Computer Interfaces (BCIs) are systems that trans-
late one’s thoughts into commands to restore control and communication
to severely paralyzed people, and they are also appealing to healthy people.
One of the challenges is to improve the performance of BCIs, often mea-
sured by the accuracy and the trial duration, or the information transfer rate
(ITR), i.e., the mutual information per unit time. Since BCIs are communi-
cations between a user and a system, error control schemes such as forward
error correction and automatic repeat request (ARQ) can be applied to BCIs
to improve the accuracy. This paper presents reliability-based ARQ (RB-
ARQ), a variation of ARQ designed for BCIs, which employs the maxi-
mum posterior probability for the repeat decision. The current results show
that RB-ARQ is more effective than the conventional methods, i.e., better
accuracy when trial duration was the same, and shorter trial duration when
the accuracy was the same. This resulted in a greater information transfer
rate and a greater utility, which is a more practical performance measure in
the P300 speller task. The results also show that such users who achieve a
poor accuracy for some reason can benefit the most from RB-ARQ, which
could make BCIs more universal.
key words: brain-computer interfaces, information transfer rate, error
control, automatic repeat request

1. Introduction

Brain-Computer Interfaces (BCIs) are promising technolo-
gies that translate one’s thoughts into commands to restore
control and communication to severely paralyzed people
such as those with amyotrophic lateral sclerosis (ALS), and
also appealing to healthy people. Among various ways to
record brain activities, Electroencephalogram (EEG) is said
to be the most practical way due to its non-invasiveness and
relatively small cost [1]. In fact, EEG-based BCIs have been
considerably researched [2]–[4]. The typical performance
measures for BCIs are the accuracy and the speed, and there
is a trade-off between them in general. Hence, the infor-
mation transfer rate (ITR), the amount of information trans-
ferred from a user to a BCI system per unit time, is often em-
ployed alternatively. Much research aiming to improve the
accuracy have been reported. For instance, adaptive learn-
ing is to re-train a classifier to adapt to changing features
of EEGs [5], [6]; feedback training is to feed some informa-
tion, e.g., classification results, back to users and help them
adjust their EEGs [7]. By contrast, the most straightforward
way to improve the accuracy is to lengthen the duration per
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classification, e.g., the more EEG samples are averaged, the
greater the accuracy becomes. Nonetheless, the accuracy
and the speed need to be balanced to maximize the ITR [8],
[9].

In the field of data transmission, there are some strate-
gies against errors in noisy channels. For instance, forward
error correction (FEC) allows the receiver to detect and cor-
rect errors, automatic repeat request (ARQ) asks the sender
to re-transmit, and Hybrid ARQ is a combination of FEC
and ARQ. These strategies do not decrease errors per se, but
correct or detect them to recover corrupted data. If the trans-
mission is between a human and a computer, other types of
error controls are normally used; for example, confirmation
is to ask users if their inputs are correctly interpreted [10]. In
fact, the confirmation has been long used for BCIs [11], [12].
Additionally, the error-related potentials (ErrPs), occurring
on erroneous feedbacks, have been reported to be usable for
error detection in BCIs [13]. This ErrP-based error detection
requires a few hundred milli-seconds to see if the ErrPs have
occurred, which is much shorter than confirmation requires.

In the past several years, reliability-based hybrid ARQ
(RB-HARQ) has been proposed [14]. This is a variant of
hybrid ARQ, in which the re-transmissions are requested
based on the reliability of transmitted data. It has been re-
ported that RB-HARQ can provide performance close to the
channel capacity. This paper presents reliability-based ARQ
(RB-ARQ), which uses the reliability, or the maximum pos-
terior probability, as the criterion for the request like RB-
HARQ. It is worth noting that the proposed method does
not include FEC since humans, i.e., the senders in BCIs,
can hardly handle complicated error control codings. The
proposed method needs only a fraction of time in the re-
peat decision, and is very simple because users only have
to keep doing the required task until being told to stop. Al-
though there exist some other error reduction methods such
as the rejection rule for the mental imagery task [15] and
the dynamic subtrial limiting for the P300 speller task [9],
[16], this paper presents that the proposed method effec-
tively works for both the P300 speller and the mental im-
agery task. Moreover, this study is the first attempt to ex-
plicitly apply the ARQ strategy to BCIs, and one of the ad-
vantages of the idea to apply error controls developed in the
data transmission area to BCIs is that various existing meth-
ods could also possibly be applied to BCIs, e.g., a simple
FEC might be applicable and more effective.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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2. Methods

2.1 Proposed Method

There exists three types of ARQ; and the stop-and-wait
ARQ is the simplest one [17], where the receiver sends
back an ACK (Acknowledge) or a NAK (Not Acknowledge)
frame to ask the sender to transmit the next frame or the
same frame, respectively (see Fig. 1). It is normally neces-
sary to send extra information in order for the receiver to de-
tect errors. RB-ARQ, however, utilizes solely the reliability
of data as criterion for the request decision not to increase
the burden on the sender, i.e., the user in BCIs. Moreover,
the sender keeps sending the same data until receiving an
ACK in the proposed method (see Fig. 2), as it would not be
wise to disturb the user by telling a NAK.

Let K be a set of possible states, e.g., motor imagery
of left or right hand, and x be the corresponding EEGs, be-
longing to u ∈ K . The Bayes classifier classifies x as such
k ∈ K that the posterior probability P(k|x) is maximum:

û = argmax
k∈K

P(k|x), (1)

where û denotes a predicted label [18]. The maximum of
the posterior probability, which can be seen in Eq. (1), is
equivalent to the probability of correct classification; thus,
it can be regarded as the reliability of data. Given that xn

i

Fig. 1 Stop-and-wait ARQ. The receiver sends back a NAK on detecting
an error, otherwise it sends an ACK. Tp and Tc are the delays in propaga-
tion and in processing, respectively. Ts and Ta denote the transmission
durations of a data frame and of an ACK/NAK frame, respectively. TT

denotes the total time, i.e., TT = Tp + Ts + Tc + Tp + Ta + Tc.

Fig. 2 Reliability-based ARQ. The sender keeps sending the same data
until receiving an ACK. Ni, Ti and Tr denote the overall number of sending
ui, the overall duration, i.e., Ti = Ts × Ni, and the time for a rest, respec-
tively. Given that the forward channel is electrodes, cables, etc., and that
the feedback one is via a monitor, Tp and Tc are negligibly shorter than Ts

and Tr; thus, they were omitted.

can be obtained at time n in the ith of Ntrial trial and belongs
to ui, each of which is independent of each other, and let
XN

i = {x1
i , x

2
i , . . . , x

N
i } be a set of data at time N, then the

reliability λN
i can be defined and calculated as follows:

λN
i ≡ max

k∈K
P(k|XN

i ),

= max
k∈K

P(k)
∏

n P(xn
i |k)∑

l∈K P(l)
∏

n P(xn
i |l)
,

= max
k∈K

P(k)
∏

n
P(k|xn

i )
P(k)∑

l∈K P(l)
∏

n
P(l|xn

i )
P(l)

. (2)

If each class has the same prior probability, the reliability
can be expressed as

λN
i = max

k∈K

∏
n P(k|xn

i )∑
l∈K
∏

n P(l|xn
i )
. (3)

Consequently, P(k|XN
i ) can be calculated using each P(k|xn

i )
and the prior probabilities. Note that P(k|XN

i ) is equivalent
to P(k|x̄N

i ) when normal distributions are assumed, where
x̄N

i denotes 1
N

∑
n xn

i . In RB-ARQ, a user keeps thinking the
same thought, e.g., in mental tasks, or keeps being exposed
to stimuli, e.g., in the P300 speller, unless the following con-
dition is satisfied:

λN
i > λ, (4)

where λ is a given threshold. On the other hand, the re-
jection rule and the standard averaging employ the stopping
condition, maxk∈K P(k|xN

i ) > λ, and N = Ntarget, respec-
tively, where Ntarget denotes the number of samples to be av-
eraged (see Table 1). Let Ni and Ts be the time point when
the stopping criterion is satisfied and the duration of EEG
data needed to obtain x, respectively. A trial duration d is
defined as the average length of time per class estimation
in this paper; thus, d = 1

Ntrial

∑Ntrial
i Ti = Ts × 1

Ntrial

∑Ntrial
i Ni,

and d = 1
Ntrial

∑Ntrial
i Ti +Tr when the resting duration is taken

into considered. An algorithmic description of the proposed
method at the ith trial is shown in Algorithm 1.

The authors have proposed two methods, which apply
the binary erasure model to BCIs [19], which are essentially
equivalent to the rejection rule and RB-ARQ, respectively.
However, the methods presented in [19] are applicable nei-
ther to multi-class problems nor the support vector machine
(SVM) since they are based on two-class normal distribu-
tions. On the other hand, RB-ARQ employs the maximum
posterior probability as the reliability; thus, it can be applied
to both multi-class problems [20] and the SVM [21].

Table 1 Stopping criterion and class estimation in each method.

Method Stopping criterion Class estimation

Averaging N = Ntarget ûi = argmaxk P(k|XN
i )

Rejection maxk P(k|xN
i ) > λ ûi = argmaxk P(k|xN

i )

RB-ARQ maxk P(k|XN
i ) > λ ûi = argmaxk P(k|XN

i )
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Algorithm 1 The algorithm of the proposed method
N ← 0
XN

i ← {}
repeat

N ← N + 1
get xN

i
XN

i ← XN−1
i ∪ {xN

i }
until (4) holds
estimate the class label ûi

Ni ← N
return ûi and Ni

2.2 Performance Evaluation

The information transfer rate is defined as

ITR =
log2|K| + p log2 p + (1 − p) log2

1−p
|K|−1

d
, (5)

where |K| is the number of elements in K , e.g., |K| = 3 for
the first and the second experiments and |K| = 36 for the
last experiment, p is the classification accuracy, and d is the
trial duration defined in Sect. 2.1. ITR is one of the popular
performance measures in BCI research [1]. However, ITR
defined in Eq. (5) does not represent the actual performance
in practice since it represents the maximum rate, i.e., the
channel capacity, and ITR should be below the upper limit
to make the error rate arbitrary small [26]. Therefore, note
that Eq. (5) is the “maximum” ITR. A new measure called
Utility has been proposed for the P300 speller [27], defined
as follows:

U =
(2p − 1) log2(|K| − 1)

d
(6)

if p > 0.5, otherwise U = 0. This measure assumes that
the backspace is contained in the interface matrix to delete
a previously misspelled letter if needed, and that the user
tries to spell perfectly using it; thus, the transferred infor-
mation is log2(|K| − 1) and the expected length of time per
letter is d/(2p − 1). That is, the utility is the ITR when the
backspace is available and letters are perfectly spelled. The
utility seems to be more practical than the ITR; thus, this pa-
per utilized it as a performance measure for the P300 speller
experiment in addition to the ITR.

3. Experiments

To evaluate the effectiveness of the proposed method, three
experiments were carried out: a simulation using normal
samples, and applications to mental imagery tasks includ-
ing two motor imagery tasks and to the P300 speller task.
The first experiment aimed at grasping the theoretical rela-
tionship between the accuracy and the average trial dura-
tion, especially when data were normally distributed since
linear discriminant analysis (LDA), which is a popular clas-
sifier for BCIs and was used in all the experiments, assumed
that data were normally distributed with equal covariances.

The rest two experiments aimed at evaluating the proposed
method when applied to the most famous BCI paradigms:
motor imagery tasks and the P300 speller task [25].

The three experiments focused on a comparison of
ARQs for BCIs. In the first two experiments, the proposed
method, RB-ARQ, was compared with the standard aver-
aging and the rejection rule because both could also be re-
garded as ARQs as described in Sect. 2.1 and the rejection
rule had been proposed for the mental imagery task in the
second experiment [15]. In the last experiment, the proposed
method was compared with the standard averaging and the
dynamic subtrial limiting method, hereafter referred to as
Lenhardt’s method [16]. Lenhardt’s method is also an ARQ
proposed for the P300 speller and it employs two criteria
for repeat decision. Through the following experiments, it
can be shown that the proposed method is the most effective
ARQ for BCIs.

3.1 Experiment I: Simulation Using Normally Distributed
Samples

3.1.1 Experimental Settings

Let fk(x) be the kth class-conditional probability and be
a two-dimensional Gaussian distribution, each of which is
equally-spaced on a circle of radius r:

fk(x) =
1

2π|Σk |1/2 exp

{
−1

2
(x − µk)′Σ−1

k (x − µk)

}
(7)

with the following parameters,

µ′k = r (cos(2πk/|K|), sin(2πk/|K|)) , (8)

Σk = I, (9)

where a′ and I denote the transpose of a and an identity
matrix, respectively. It was assumed that the set of classes
was K = {0, 1, 2} and that each sample x took a half second
to measure, i.e., Ts = 0.5 [s]; thus, d = 0.5 × 1

Ntrial

∑Ntrial
i Ni.

Note that the posterior probability can be calculated as

P(k|x) =
πk fk(x)∑
l∈K πl fl(x)

, (10)

where πk denotes the prior probability and was set to be
one-third. For each threshold, 1000 trials, Ntrial = 1000,
were performed; and the thresholds were determined by the
false position method so that the average trial durations were
equal to a target duration within a tolerance of 0.05 s. For
each target duration of 0.5 s, 1.0 s, . . . , 7.5 s, the procedure
above was repeated for 100 times to calculate the ultimate
average accuracy and trial duration. The algorithm is de-
scribed in Algorithm 2.

3.1.2 Result and Discussion

Figures 3 (a), 3 (b) and 3 (c) compare the trial duration with
the threshold, the accuracy and the information transfer rate,
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(a) Time vs. threshold (b) Time vs. accuracy (c) Time vs. information transfer rate

Fig. 3 Theoretical relationships between the trial duration and the thresholds (Fig. 3 (a)), the trial
duration and the accuracy (Fig. 3 (b)), and the trial duration and the ITR (Fig. 3 (c)), obtained using
samples from normal distribution with the radius r = 1.

Algorithm 2 The algorithm to acquire the target trial dura-
tion and its corresponding accuracy

for j = 1 to 100 do
initialize λ
repeat

for i = 1 to 1000 do
ui ← mod (i, 3)
estimate ui by Algorithm 1

end for
calculate the accuracy p using the returned {ûi}, and update λ by the
false position method

until |d − dtarget | ≤ 0.05
store the accuracy p and the trial duration d

end for
calculate the ultimate accuracy and the trial duration

Fig. 4 Theoretical percentage gain of the information transfer rate with
respect to Averaging, when the radius r changes.

respectively, with the radius (Eq. (8)) r = 1. Figure 4 shows
the relationship between the radius r and the gain of the ITR
with respect to Averaging. The gain was defined as

max(each method’s ITR)−max(averaging’s ITR)
max(averaging’s ITR)

. (11)

Figures 3 (a) and 3 (b) tell that as the threshold in-
creases, the trial duration lengthens and the accuracy im-
proves, and that RB-ARQ is superior to the others. It also
tells that the rejection is superior to the averaing when the
time is small, and vice versa when the time is large. It

is worth noting that when the threshold is transformed as
Eq. (12), the trial duration is roughly proportional to the
transformed threshold, which simplifies the search for the
threshold appropriate for a target trial duration using the
false position method (see Algorithm 2).

λ̃ =

{
arctanh(λ) (RB-ARQ)

1
1−λ (rejection)

(12)

Figure 3 (c) tells that the ITR was maximized when the trial
duration was 1 s using RB-ARQ, which was greater than the
maximum ITR obtained using the averaging by about 20
percents. According to Fig. 4, as the radius r decreases, the
gain of the ITR increases in the case of RB-ARQ, while the
gain is almost zero in the case of the rejection. Three distri-
butions were equally-spaced on a circle of radius r; thus, the
smaller r was, the more the distributions were overlapped,
leading to a poor accuracy. Therefore, this result suggests
that untrained users could benefit more from RB-ARQ.

3.2 Experiment II: Mental Imagery Tasks

3.2.1 Data Description

The data used in this experiment was the data set V in BCI
Competition III† [15]. It contains EEG data recorded from
three subjects, i.e., subject 1, 2, and 3, when they were do-
ing one of three different mental tasks. The three classes
were left hand movements (class 2), right hand movements
(class 3) and word generation (class 7), i.e., K = {2, 3, 7}.
Each data set of each subject includes four sessions: the first
three as training data, and the last as test data. Each session
lasted about 4 mins, in which the subject was doing a given
task for about 15 s, then switched to another task on the op-
erator’s request. The data sets are provided in two styles:
raw EEG signals, and precomputed features; and the latter
one was employed in this experiment. Every 62.5 ms, i.e.,
Ts = 62.5 [ms], the power spectral density of the previous
one second was estimated with a resolution of 2 Hz for eight

†Available: http://www.bbci.de/competition/ (accessed Aug.
12th, 2009)
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channels, i.e., C3, Cz, C4, CP1, CP2, P3, Pz, and P4 [22]
and then twelve frequency components: 8 Hz, 10 Hz, . . . ,
30 Hz were extracted and concatenated into a feature vector;
therefore, the feature vector lied on 96 dimensional space.
The number of the samples in one session was around 3,500.

3.2.2 Further Preprocessing and Application of Proposed
Method

Considering the rule in the competition, requiring outputs
of classifications every 0.5 s, i.e., Ts = 0.5 [s], consecu-
tive eight samples in the provided data were averaged; thus,
the number of the averaged samples per session was around
440. Then a variable selection was carried out, where the
jth ( j = 1, 2, . . . , 20) subset candidate contained the most j
separable variables in terms of the Fisher’s ratio [23], and
the subset with the best classification accuracy of five-hold
cross validation with LDA as a classifier was selected. The
reason for limiting the maximum number of variables to 20
was because the resultant number was about 10 in a preced-
ing pilot study and it was desirable to reduce the computa-
tional cost. The dimension of the feature vector was reduced
down to 2 by linear projection based on LDA [18], in which
the projection matrix was different for each subject. Three
normal distributions with equal covariances were estimated,
and the posterior probabilities of test data was calculated by
Eq. (10) with the prior probabilities being one-third for each
class. Note that the variable selection and the distribution es-
timations were carried out separately for each subject. The
rest procedure followed Algorithm 2; thus, Ntrial = 1000
and d = 0.5 × 1

Ntrial

∑Ntrial
i Ni. It should be noted that new

data sets were re-sampled with replacement from the origi-
nal data sets, since the experimental task was performed in a
way such that the proposed method was not applicable to the
data sets as they were, i.e., the subject was doing the same
task for 15 s regardless of the reliability

3.2.3 Result and Discussion

Figure 5 shows the scatter plots in the canonical variate
space, i.e., LD1 and LD2, (Figs. 5 (a)–(c)), and comparisons
of the methods in terms of the accuracy (Figs. 5 (d)–(f)), and
of the ITR (Figs. 5 (g)–(i)). Table 2 shows the results of the
Shapiro-Wilk’s normality test [28], testing whether the sam-
ples in the canonical variate space were from the normal

Table 2 Results of Shapiro-Wilk normality test for experiment II.

Subject Class W

1
2 0.91**
3 0.98
7 0.96**

2
2 0.95**
3 0.77**
7 0.99

3
2 0.99
3 0.94**
7 0.98*

** p < 0.01, * p < 0.05

distributions. Figure 6 is the Q-Q plot of subject 2’s class
3, whose W statistic is the lowest in Table 2, based on the
fact that the Mahalanobis distance of a D-dimenstional mul-
tivariate normal sample follows the chi-square distribution
of D degrees of freedom [29].

According to Figs. 5 (a)–(c) and Table 2, it is hard to
say from the statistical viewpoint that the samples were
from normal distributions with equal covariance. However,
Figs. 5 (d)–(f) show that the accuracy improved as the trial
duration lengthened and the threshold became higher in the
cases of RB-ARQ and the averaging, whereas it was not the
case for the rejection. According to the central limit theo-
rem, the distribution of the sample mean from any distribu-
tion approaches the normal distribution as the sample size
increases [30]. In RB-ARQ and the averaging, where the re-
liability is maxk P(k|XN

i ), or equivalently maxk P(k|x̄N
i ), the

number of samples to be averaged increases as the trial du-
ration and the threshold becomes larger; thus, the distribu-
tion of the sample mean x̄N

i approaches the normal distribu-
tion. This would be the reason why RB-ARQ and the aver-
aging improved the accuracy, though each xn

i is not neces-
sarily from the normal distribution. As shown in Fig. 6, al-
most all plots were on the regression line except for several
outliers, indicating that some technique for outlier removal
could make the distribution more Gaussian. In terms of ITR,
the maximum ITR obtained by using RB-ARQ was larger
than those obtained by using other methods in the cases of
the subjects 2 and 3, whereas they were almost equal in the
case of the subject 1. This result is consistent with the ex-
periment I, since the three distributions of the subject 1 were
least overlapped as shown in Fig. 5 (a), while Fig. 4 shows
the least overlapped case, i.e., r = 1, resulted in the least
ITR gain.

3.3 Experiment III: P300 Speller

3.3.1 P300 Speller

The P300 speller is one of the BCI applications, which al-
lows users to select letters just by thoughts [24], and is avail-
able in the BCI2000 [25]. The current study employed the
ordinary 6 × 6 matrix interface composed of 26 alphabets, 9
numbers, and the whitespace. Each run consisted of spelling
twenty letters “THE QUICK BROWNY FOX” in the copy
mode. The subjects were given 3 s for moving their gaze
to the target letter before the following stimulus presenta-
tions. Each row and column was successively and randomly
intensified for 100 ms with an interval of 75 ms, the subject
was asked to count how many times the row and the column
containing the target letter flashed. The P300 response is
elicited when the attended target letter flashes; accordingly,
the target can be selected. Each sequence consisted of 12
flashes, i.e., 6 rows and 6 columns; and 5 sequences were
performed to spell a letter. Immediately after the stimuli fin-
ished, the selected letter was shown for 1 s to elicit the ErrPs
when the selected letter was wrong. However, only in the
first two experiments involving subject A and B, a fixation
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(a) Scatter plot (subject 1) (b) Scatter plot (subject 2) (c) Scatter plot (subject 3)

(d) Trial duration vs. accuracy (subject 1) (e) Trial duration vs. accuracy (subject 2) (f) Trial duration vs. accuracy (subject 3)

(g) Trial duration vs. ITR (subject 1) (h) Trial duration vs. ITR (subject 2) (i) Trial duration vs. ITR (subject 3)

Fig. 5 The first row: scatter plots in the canonical variate space [18]. Each ellipse represents 95
percent confidence region for each distribution. The second and the third rows: comparison of methods
in terms of the accuracy, and of the ITR, respectively. Each column represents subject 1, 2, and 3,
respectively.

Fig. 6 Q-Q plot of subject 2’s class 3.

point appeared at the center of the monitor after the stimuli
and it was replaced by the result 1 s later.

3.3.2 Data Collection and Preprocessing

Five male volunteer subjects: A, B, C, D, and E in their
early 20’s with no prior experience in the P300 speller task
participated in this experiment. Each subject was sitting on
an armchair in a darkroom, facing a 20-inch LCD moni-
tor. Their EEGs were recorded from Fz, C3, Cz, C4, and
Pz referenced to the linked-ears with the sampling rate of
1000 Hz using a Polymate AP216 (DIGITEX LAB. CO.,
LTD, Tokyo, Japan). Their EEGs were down-sampled to
20 Hz and filtered with a pass-band of 1 Hz to 10 Hz since
the P300 is a relatively slow potential change. Fourteen time
points after the stimulus presentations were extracted from
all five electrodes, and then they were concatenated into a
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feature vector; thus, the feature vector had 5 × 14 = 70 di-
mensions. Similar to the experiment II, the feature vector
was projected onto 1 canonical variate by LDA [18]. The
datasets of the first two runs were used to estimate two nor-
mal distributions: the P300 and the non-P300, which was
different for each subject. The rest nine were used for eval-
uation: successive three runs were assumed to be a single
run so that the results could be comparable to the conven-
tional 15 sequences per letter paradigm. Hence, the number
of sequences was 15 and that of spelled letters was 60.

3.3.3 Application of Proposed Method

Let r ∈ {1, 2, . . . , 6} and c ∈ {1, 2, . . . , 6} be the row and the
column number, respectively, so that the letter in the rth row
and the cth column can be expressed as (r, c). Suppose that
yr

R is an observed EEG, corresponding to rth row, and that
YR = {yr

R} is a set of observed EEGs, only one of which
contains the P300 response. Let zr

R ∈ {0, 1} denotes whether
yr

R contains the P300 (zr
R = 1) or not (zr

R = 0). The posterior
probability that the P300 appears in the rth row given YR is

P(P300 in the rth row|YR)

= P(zr
R = 1|YR)

∏
r′�r

P(zr′
R = 0|YR),

= P(zr
R = 1|yr

R)
∏
r′�r

P(zr′
R = 0|yr′

R ), (13)

assuming that only yr
R depends on zr

R. Taking that the P300
appears only once into consideration,

P(P300 in the rth row|YR)

=
P(zr

R = 1|yr
R)
∏

r′�r P(zr′
R = 0|yr′

R )∑
r

{
P(zr

R = 1|yr
R)
∏

r′�r P(zr′
R = 0|yr′

R )
} (14)

Similarly, YC can be defined for columns. Let YN
iR and YN

iC
be the YR and YC in the Nth sequence of the ith letter, re-
spectively. A letter is selected so that the following posterior
probability is maximized,

(r̂, ĉ) = argmax
(r,c)

P(P300 in the rth row|YN
iR)

× P(P300 in the cth column|YN
iC),

= argmax
(r,c)

P
(
P300 in (r, c)

∣∣∣YN
i

)
, (15)

where YN
i = YN

iR ∪ YN
iC . The proposed method employs

the posterior probability appeared in Eq. (15) for the request
decision.

Similar to the experiment II, the proposed method was
not applicable to the data sets as they were. Therefore, the
proposed method was modified so that the number of se-
quences was limited to 15 (see Algorithm 3). Note that ac-
cording to the experimental setting, the trial duration was
defined as d = 1

Ntrial

∑Ntrial
i (3+Ti+2) = 1

Ntrial

∑Ntrial
i (3+0.175×

12× Ni + 2) for subject A and B, d = 1
Ntrial

∑Ntrial
i (3+ 0.175×

12 × Ni + 1) for the rest subjects.

Algorithm 3 The modified algorithm of the proposed
method

N ← 0
XN

i ← {}
while N < 15 do

N ← N + 1
get xn

i
XN

i ← XN−1
i ∪ {xN

i }
if (4) holds then

break
end if

end while
estimate the attended letter (r̂, ĉ)
Ni ← N
return ûi and Ni

Table 3 Accuracy of spelling letters using all 15 sequences [%].

A B C D E Avg.
95.0 98.3 83.3 91.7 91.7 92.0

Table 4 Results of Shapiro-Wilk normality test for experiment III.

Subject Class W

A
P300 0.9980*

Non-P300 0.9926**

B
P300 0.9991

Non-P300 0.9996

C
P300 0.9985

Non-P300 0.9939**

D
P300 0.9982*

Non-P300 0.9997

E
P300 0.9994

Non-P300 0.9996
** p < 0.01, * p < 0.05

3.3.4 Result and Discussion

Table 3 shows the accuracy of spelling letters using all the
15 sequences. Figure 7 describes the performance curves
of subject B and C, whose accuracies were the best and the
worst in Table 3, respectively. Figure 8 shows the percent
gain of ITR and utility with respect to the Averaging. Ta-
ble 4 also shows the results of the Shapiro-Wilk’s normality
test for the data sets in the experiment III.

Table 3 tells the accuracy was about 90 percents on
average. This result can compare with the result of the
data set II of the third BCI competition, where several
competitors achieved the accuracy of over 90 percents [31].
Consequently, the following results could hold for data
sets recorded in the conventional 15 sequences per letter
paradigm. As shown in Fig. 7, the accuracy improved as the
trial duration lengthened like the experiment I. The ITR and
the utility were maximized when the number of sequences
was 3 to 5 and 5 to 6, respectively, by RB-ARQ. Accord-
ing to Fig. 8, the maximum ITR and the maximum utility
achieved by RB-ARQ were larger by about 20 and 30 per-
cents on average, respectively, than those by the averaging.
Moreover, RB-ARQ achieved more than double gains com-
pared to the Lenhardt’d method. Table 4 tells that some
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(a) Accuracy (subject B) (b) ITR (subject B) (c) Utility (subject B)

(d) Accuracy (subject C) (e) ITR (subject C) (f) Utility (subject C)

Fig. 7 Performance curves of the accuracy versus the duration of spelling a letter [(a), (d)], the ITR
versus the number of sequences [(b), (e)], and the Utility versus the number of sequences [(c), (f)]. The
first and the second row represent those for the subject B and the subject C, respectively.

Fig. 8 Percentage gain of information transfer rate (left) and utility
(right), obtained from the experiment III.

sample sets were not from normal distributions from the
statistical viewpoint. However, the W statistic of all sam-
ple sets was almost equal to one, meaning that they could
be practically regarded as the samples from the normal dis-
tributions. This implies that RB-ARQ works more effec-
tively in the P300 speller task than in the mental tasks. It
should be noted that the posterior probability can be esti-
mated also when the support vector machine (SVM) is used
as a classifier; however, the current result shows no statisti-
cal difference in performance between the uses of posterior
probabilities given by the estimated Gaussian distributions
and SVM [21]. This is partially because the posterior prob-
abilities are poorly estimated by SVM [32]; thus, a novel es-
timation method is necessary to make RB-ARQ more useful
also in mental tasks.

4. Conclusions

This paper presented reliability-based automatic repeat re-
quest (RB-ARQ), an error control method for BCIs, where
a user keeps thinking or keeps being exposed to stimuli
until the reliability, or the maximum posterior probability
becomes larger than a given threshold. In order to eval-
uate the effectiveness of the proposed method, three ex-
periments were conducted with different settings: a simu-
lation using normally distributed samples, mental imagery
tasks, and the P300 speller task. The experimental results
showed that RB-ARQ was more effective than conventional
methods, i.e., better accuracy when trial duration was the
same, and shorter trial duration when the accuracy was the
same. This resulted in a greater information transfer rate
and a greater utility, which was a more practical perfor-
mance measure in the P300 speller task. The results also
showed that such users who achieved a poor accuracy for
some reason could benefit the most from RB-ARQ, which
could make BCIs more universal. In addition, since the pos-
terior probabilities were calculated using estimated normal
distributions, normality tests were carried out, whose results
showed that samples were not necessarily from normal dis-
tributions from the statistical viewpoint. However, RB-ARQ
worked successfully, partially because they could be prac-
tically regarded as normal samples and the sample mean
approached the normal distribution as the sample size in-
creased according to the central limit theorem. A further
performance improvement could be possible by applying
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some outlier removal or other estimation methods for the
posterior probabilities. Finally, on-line experiments are nec-
essary to investigate the usefulness of the proposed method
in the real environment.
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A. Schögl, G. Pfurtscheller, J.R. Millán, M. Schröder, and N.
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