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Abstract—This paper presents a new visualization method
based on Higher Order Singular Value Decomposition(HOSVD).
This method enables us to select any pairs of vectors from loading
matrices, and visualizes features of loading vectors in the form
of biplots of respondents, questions and objects. An experiment
is carried out using artificial data. The results shows that the
proposed method can visualize the interrelationships between
features of selected loading vectors and we can find respondent
groups who marked uniquely on particular objects and questions.
Some groups are unable to be found by the conventional PCA.

I. INTRODUCTION

Questionnaire researches have been carried out in various
occasions. Questionnaires often consist of questions on several
objects. The obtained data become third-order tensors with
elements of objects x questions x respondents. To these
data, tensor factorization and decomposition could be applied
to extract knowledge[4][9]. However, there have been few
reports on application of tensor analysis to questionnaire data.
This might be due to very recent development of computer
applications of tensor analysis to data mining[1][7][8]. This
paper presents a basic study on visualization of question-
naire data in third-order tensor form. One of the conven-
tional approaches is to unfold or matricize the third-order
tensor to second-order tensor, i.e. matrix and apply Prin-
cipal Component Analysis(PCA). This might lose informa-
tion contained in the higher-order tensor structure. Three-
Mode PCA[5] utilizing the decomposition models such as
the CANDECOMP/PARAFAC|2][3] and Tuker model[10] is
a tool to preserve the information and visualizes the interrela-
tionships between either objects and questions, or objects and
respondents, or questions and respondents.

This paper presents a new visualization method based on
Higher Order Singular Value Decomposition(HOSVD)[6]. The
proposed method visualizes the interrelationships between
respondents and objects and questions in a two-dimensional
space. The 2D space is spanned by principal component
vectors obtained by SVD of object-mode matrix and question-
mode matrix. The proposed method preserves the information
contained in third-order tensor more than the conventional
PCA does, and is suited for visualizing various respondent
groups who evaluated the objects uniquely. This paper is
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organized as follows: Section 2 describes the conventional
three-mode PCA, joint plot and HOSVD. In section 3, we
presents our visualization method. Section 4 shows the results
of application of the proposed method to artificial data and
compares them to those by the conventional PCA. Section 5
is the summary of this paper.

I1I. CONVENTIONAL METHODS
A. Three-Mode PCA
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Fig. 1. Example of third-order tensor

Figure | shows an example of third-order tensor X. Its
element {i,j,k} is denoted by mj, ¢ = 1,---,I, j =
1,---,J, k=1,---,K. In the case of Fig.1, I =3, J =
4, K = 2. This tensor is a data obtained from three
respondents Ry, Ry, R3 by asking four questions @1, -+, Q4
on two objects O1, 0. A tensor is sliced into matrices and
vectors. Frontal slice is a matrix denoted by X..,. Figure
2 shows examples of frontal slices obtained from the tensor
in Fig.1. The elements are assumed to be given with integer
marks. Fig.2(a)(b) are frontal slices X..;, X..2, respectively.
Horizontal slice X7.. and lateral slice Xy, are expressed as

1 13
1 2 3 4
Xy = < ) 7X:1: = 5 17 . (D
13 14 15 16 9 921

The tensor in Fig.1 has eight column vectors x.jx, Six Tow
vectors .k, and twelve tube vectors x;5.. In Fig.2, @.11 is
given by

z.11 = (1,5,9)7 2)



where 1" means transpose.

Ql Q2 Q3 Ql Q2 Q3
R1 1 2 3 4 R1| 13 14 15 16
R2 | 5 6 7 8 R2| 17 | 18 | 19 | 20
R3 9 10 11 12 R3| 21 22 23 24
(a) Xy b)X
Fig. 2. Example of frontal slices with hypothetical marks
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(a) mode- matrix X,
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(b) mode-g matrix X
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(¢) mode-o matrix X

Fig. 3.
marks

Examples of matricization of third-order tensor with hypothetical

Figure 3 shows examples of matricization, also called un-
folding or flattening, of the tensor X € R3***2 in Fig.1.
Marks are hypothetical ones as given in Fig.2. Mode-r matrix
X ;) is obtained as

1 2 3 4 13 14 15 16
Xp=1|95 6 7 8 17 18 19 20 |. 3)
9 10 11 12 21 22 23 24

Three-Mode PCA[4][5] is a method of data compression
that applies Tucker 3 decomposition[10]. A third-order tensor
X € RI*/*Kig decomposed into a core tensor multiplied by
three factor matrices A € RI*L B € R/*M  C € RE*N | 1t
is an approximation expressed as

X~Gx Ax, Bx,C 4)

where G X; A is [-mode product. Figure4 shows the obtained
core tensor G and three factor matrices A, B,C from the
tensor with the hypothetical data in Fig.2. Tucker 3 decom-
position is easily carried out by using tucker_als algorithm
available in MATLAB toolbox. The factor matrices A, B, C
are orthogonal and the principal components in mode-r, mode-
¢, and mode-o matrices, respectively.
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Fig. 4. Tucker 3 decomposition

l—mode product G x; A in Fig.4 is done by, first, multi-
plying matrx A to mode-/ matrix G ;)as

042 081
AGy = | 056 0.12
0.71 —0.57
69.63 —0.09 —0.02 -2.21
~0.03 —0.10 —6.72 —0.93
20.03 —0.89 —5.47 —1.68
= | 3931 -018 -0.82 -1.36 5)
496 053  3.83 —1.04

and, then, transforming this matrix into third-mode tensor. -
mode product is then carried out by multiplying matrix B to
mode-m matrix (G X; A) ()
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Fig. 5. Joint plot

B. Joint Plot

Joint plot[5][9] is a way to visualize information contained
in the decomposed core tensor and factor matrices. Figure 5
shows the Tucker 3 decomposition. A component [ of the
matrix A is selected and for this component a joint plot is
to be made. The corresponding matrix Gj.. is calculated by
multiplying the vector a.; to the core tensor G. The content



of G.. is distributed between matrix B and C' as follows:

E, = BG..CT =B[sV'?D|c”

[BSVY4Yvi/iDc!] = B,CF (6)

G.. is decomposed into SV''/2 D by singular value decompo-
sition and the eigenvalues are distributed equally between B
and C'. From the matrices By, Cj, a biplot of two variables, i.e.
questions and objects, is made. There are L possible biplots
by selecting the component .

C. HOSVD

Higher-order SVD (HOSVD)[6] is a method to obtain
truncated Tucker decomposition. In this paper, the procedure
of HOSVD is explained by using the hypothetical data in
Fig.2. First, SVD is applied to mode-r, mode-q, and mode-o
matrices X (), X(,), X (o) as follows:

Xy =58, V,D,, X, =8,V,Dy, X(,y =S,V,D, (1)

The loading matrices S,., S, S, are shown in Fig.6. The core
tensor G is given by

G =X x; 8! x,8) x,8]. (8)

Figure 7 shows an example of this calculation where zero
vectors in S,., S, are neglected.

QL [0.453]0.704| 0 0
Rl |0.417{0.812| 0

Q2 10.483(0.258] © 0 Ol |0.353]0.936

R2 |os65]0.12] 0

Q3 [0.514(-0.19] © 0 02 {0.936(-0.35

R3 |0.712]-0.57] 0

Q4 [0.545]-0.63| 0 0

(a) Loading matrix S, (b) Loading matrix S, (c) Loading matiix S,

Fig. 6. Loading matrices after SVD
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Fig. 7. Transformation of tensor X and loading matrices S, Sy, S, to core
tensor G

III. NEW VISUALIZATION METHOD BASED ON HOSVD

This paper presents a visualization method based on
HOSVD. Different from the joint plot in II-B, this method
makes biplots of respondents and “questionsxobjects”. The
key idea is to select a pair of vectors from loading matrices
Sy and S, and define a score vector and a principal vector
of the third-order tensor. A component m of S, and another
component n of S, is assumed to be selected. These vectors

are denoted by s, . and s, . The score vector of third-order
tensor d,,,, is expressed as

dmn = X Xq Stim X0 8o, (9)

Figure 8 shows an example of calculation of score vector of
third-order tensor d;,. Here, s,, and s, are selected and
calculation of mode product is carried out. The result dy; is
shown in Fig.9.

The principal component vector p,,,, is defined by using
Kronecker product as

(10)

Pmn = 8¢, © So,,-

The obtained principal component vector p;; is shown in
Fig.9. In order to explain how the Kronecker product is calcu-
lated, let us use a simple case where s, = (1,2,3)T, s, =
(4,5)T. It is calculated as follows:

Sgm @ So.,,, = (1 X 4,2x4,3x4,1x52x53x57T (11)
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Fig. 8. Calculation of scores of third-order tensor
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(a) Score vectors (b) Principal vectors

Fig. 9. Score vectors and principal component vectors of third-order tensor

The eigen value of principal component vector p,,,,, is given
by variance of the scores of third-order tensor d,,, as
1

>\mn - mdﬁndmn
After selecting two pairs of vectors from S, and S,, we can
make a biplot. The significant contribution of this method is

(12)



that we can select any pairs of vectors, which have features
of respondents’ markings, from the loading matrices S,
and S,, and grasp the features in biplot.

1V. EXPERIMENT

In order to demonstrate the performance of the proposed
method, we carried out an experiment using artificial data in
Table 1. This data is assumed to be obtained from twenty
respondents by asking five questions on three objects. The
respondents marked from -2 to 2. From this table, a third order
tensor X € R?9>%5%3 is made. The element of X is denoted
by i, ¢ =1,---,20, j=1,---,5, k=1,2,3. Figure 10
shows loading vectors of mode-¢ and mode-o matrices after
applying SVD to each mode matrix. The horizontal axis is
the question number(top figures) and object number(bottom
figures), and the vertical axes are the amount of loadings. First,
we selected the first and second loading vectors of mode-q
matrixs,,, and s,,, and the first one of mode-o matrix s, , . We
calculated the score vectors of third-order tensor dy1, d»1, and
the principal component vectors of third-order tensor py1, p21.

TABLE I
ARTIFICIAL DATA
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(a) 1st loading vector of mode-g matrix 5S¢ (b) 2nd loadings vector of mode-g matrix Sq.5
1 1 r
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(c) 1st loading vector of mode-o matrix S0y (d) 2nd loading vector of mode-o matrix 5o,
Fig. 10. Loading vectors of mode-¢g and mode-o matrices

Figure 11 shows the biplot. In this paper, the score vectors
and the principal component vectors were normalized so that
the norms of vectors were 1. The eigen values were omitted,
ie. set to be 1. The circle dots are principal component
coefficients of {objects} x {questions} and the diamond dots
are scores of respondents. It is known from the loadings s, ;
and s,,, in Fig.10 that the coefficients {O1, 02} x {Ql, Q5}
and {03} x {Q2, Q3, Q4} are on the right hand side, and
those {03} x {Q1,Q5} and {O1, 02} x {Q2, Q3, Q4} are
on the left hand side. from the loadings s,, and s,,,, {O1,
02} x {Q2,Q5} and {03} x {Ql, Q3, Q4} are on the upper
side, and those {O3} x {Q2,Q5} and {O1, 02} x {Ql, Q3,
Q4} are on the lower side. Respondents can be divided into
four major groups circled by solid, dashed, one-dot chain, and
two-dot chain lines. The corresponding marks are circled in
the Table II. The same types of lines are corresponding to each
other in Fig.11 and Table II. In the first quadrant, respondents
14, 15, 16 are plotted because they marked high on {Object!}
x {Qestion5} (O1Q5 for short), 02Q5, 03Q3, and 04Q4.
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Fig. 11. Biplot obtained by the proposed method(pi1,p21,d11,d21)

For comparison, we applied the conventional PCA to mode-
r matrix and made a biplot of the first and the second
principal components. Figure 12 shows the result. Three major
groups are found. Table III shows the corresponding marks.
Respondents encircled in the solid line are found in the solid
and dashed lines in Fig.11. Respondents in the dashed line in
Fig.12 are in one-dot, and two-dot chain lines in Fig.11. A
new group consisting of respondents 17, 18, 19, 20 was found
in Fig.12. These respondents are near the origin in Fig.11.

Then we selected the first and second loading vectors of
mode-¢g matrixs,, and s, and the second one of mode-o
matrix S,,. The obtained biplot is shown in Fig.13. From
the loadings s,, and s,, in Fig.10, the coefficients {O2}
x {Q1, Q5} are on the right hand side, and those {02} x
{Q2, Q3, Q4} are on the left hand side. The loadings s, and
So,, in Fig.10 tell us that the coefficients {02} x {Q2, Q5}
are on the upper side, and those {02} x {Ql, Q3, Q4} are
on the lower side. The group consisting of respondents 17,
18, 19, 20 found by the conventional method in Fig.12 were
extracted, and divided into two smaller groups in Fig.13. The



TABLE II
FEATURES EXTRACTED BY THE PROPOSED METHOD(P11,P21,d11,d21)

o1 02 03
Q|| |||l e|es|o || ||
R1 2 2 1 1 2 2 2 0 0 1 2 2 -1 1 1
R2 2 2 0 0 1 2 2 1 1 2 2 2 -2 2 2
R3 2 2 0 1 2 2 2 0 1 2 2 2 -1 2 1
R4 2 2 1 0 1 2 2 1 0 2 2 2 2 1 2
Rs| 2 f2g 1| o | 2| 202s 1|0 12 2 1] 1| 2
Y Ny .
R6| -1 0 2 1. -1 -1 0 1 1, -2 1 -1 -1 2 1
R7| -1 0 1 2 2 -1 0 2 2 -1 1 -1 -2 -2 1
! |
R8| -1 0 2 2, 1 -1 0 1 1, -2 1 -1 -1 -1 1
R9 2 2 1 1 0 2 -2 2 2 1 2 2 0 0 -1
R10| 2 2 2 2 1 2 2 1 1 0 2 2 1 0 2
RI11| 2 2 1 -2 1 2 2 2 1 0 2 2 0 1 1
RI12[ 2 2 1 -1 0 2 2 1 2 1 2 2 1 0 -1
RIBL 24 2| 0 | -1 | 0 K2ug 2| 0 1o | 22 1 | 1|2
R14| 0 -1 -2 -1 2 0 1 2 2 1 -1 0 1 1 -1
RI15| 0 -1 1 -2 1 0 1 1 2 1 -1 0 2 1 -1
R16| 0 -1 2 1 2 0 1 2 -1 2 -1 0 2 2 -1
R17| -2 2 1 2 2 2 2 1 -1 1 2 2 1 1 2
R1g| -2 2 2 1 1 2 2 1 -1 1 2 2 -1 2 1
R19| -2 2 1 1 1 1 1 2 2 2 2 2 -2 1 2
R20 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1
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Fig. 12.  Biplot of 1st and 2nd principal components obtained by the
conventional PCA on mode-r matrix

corresponding marks are shown in Table.IV. Respondents 19,
20 evaluated 0O2Q5 higher than respondents 17,18 did, and on
02Q1, their marks were reversed. Respondents 19, 20 marked
negatively to 02Q3 and O2Q4 more than respondents 17, 18
did. On the other hand, they marked reversely on O2Q?2. These
markings made them be separated.

Figure 14 shows the biplot of the second and the third
principal components obtained by the conventional PCA.
Corresponding marks are shown in Table V. Respondents 17,
.-+, 20 were plotted away from other respondents, but they
were not separated unlike the case in Fig.13.

V. CONCLUSIONS

This paper presented the new visualization method based
on HOSVD. We were able to select any pairs of vectors from
loading matrices, obtained by SVD on mode matrices, and
grasp features of loading vectors in biplots of respondents
and questionsxobjects. The experiment was carried out by
using the artificial data. The results showed that the proposed

TABLE III
FEATURES OF 1ST AND 2ND PRINCIPAL COMPONENTS EXTRACTED BY
THE CONVENTIONAL PCA ON MODE-r MATRIX

o1 02 03
Ql | Q2| Q3| Q4| Q5] Ql | Q2| Q3| Q4| Q5| Ql|Q2|Q3|Q4]|Qs
R1| 2 lrz 1Y 2] 2 r2 o] o¥ a2 2 | 1 11
R2 2 2 0 0 1 -2 2 1 1 -2 2 2 -2 2 2
R3 -2 2 0 1 2 2 2 0 1 -2 2 2 -1 2 1
R4 ,gl 2 1 0 1 -2 2 1 0 -2 2 2 -2 1 2
RS -2 2 -1 0 -2 -2 2 -1 0 -1 2 -2 1 -1 2
R6 -1 0 2 1 -1 -1 0 1 1 -2 1 -1 -1 2 1
R7 -1 0 1 2 -2 -1 0 2 2 -1 1 -1 -2 2 1
R8 -1 0 2 2J -1 -1 0 1 1J -2 1 -1 -1 -1 1
RO ’2—‘. 1 T(O 2\‘72 2 T’l— 2 (2 0 O\ -1
R10| 2 -2 2 -2 1 2 2 1 -1 0 2 2 1 0 -2
RI1| 2 -2 1 -2 1 2 -2 2 -1 0 2 2 0 1 -1
RI2] 2 -2 1 -1 0 2 -2 1 -2 1 2 2 1 0 1
R13| 2 -2 0 -1 0 2 -2 0 -1 0 -2 2 1 1 -2
Rr14| 0o S R I § 2 0 a2 2 1 -1 0 1 1 -1
RI15] 0 -1 1 -2 1 0 -1 1 -2 1 -1 0 2 1 -1
R16| O -1 -2 -1 N 2 01 -1 -2 -1 2 -1 \O 2 2) -1
R17 2 2 1 2 -2 2 -2 1 -1 1 2 -2 -1 1 2
R18 2 2 2 1 1 2 -2 1 -1 1 2 2 -1 2 1
R19 2 2 1 1 1 1 1 2 -2 2 2 2 -2 1 2
R20 1 1 1 1 2 1 1 2 -2 2 1 1 -1 1 1
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Fig. 13. Biplot obtained by the proposed method(pi2, P22, d12, d22)

method visualized the interrelationships between the features
of selected loading vectors and we could find respondent
groups who marked uniquely on some particular objects and
questions. Some groups were not found by the conventional
PCA. We are currently applying the proposed method to actual
questionnaire data and is going to publish the results soon.
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