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Abstract— P300 speller is the communication tool based on
Brain Computer Interfaces (BCIs) which allow users to input
letters only by thoughts. It uses P300, one of the event-related
potential (ERP), as the target feature. In P300 speller, another
person starts and closes the system. Therefore, a user cannot
switch P300 speller ON/OFF by himself/herself. To solve this
problem, an asynchronous P300 speller which can control
ON/OFF based on the user’s intention of input is needed. In
recent years, the intention classification method with additional
pre-training has been proposed. In the additional pre-training,
the classifier trains non-control state data which is recorded
when the user does not input. However, the additional pre-
training causes another burden and usage restrictions. In this
paper, we propose and study an intention classification method
using only training data in which a user input letters and
an asynchronous system in P300 speller based on the user’s
intention of input.

I. I NTRODUCTION

BRAIN-COMPUTER-INTERFACES (BCIs) allow users
to control external devices without using muscles based

on the brain signals such as electroencephalogram（EEG）
[1]. BCIs are expected to be developed as a communication
tool for severely paralyzed patients like those with amy-
otrophic lateral sclerosis (ALS) [2]. P300 speller [3] is one of
the BCIs by which a user can input letters only by thoughts
using P300, one of the event related potential (ERP), as the
target feature. P300 speller generally employs the interface
on which letters are allocated in the form of matrix (see Fig.
1). Each row and column is flashed one by one in random
order, which is called stimulus presentation. A user concen-
trates on his/her desired letter by counting how many times it
intensified. When the attended letter is intensified, the P300
is elicited. The system discriminates the user’s desired letter
that includes the P300 most likely as the target one. However,
the patterns of P300 and its features are individually different.
Therefore, just before an actual use, the classifier has to be
trained with training data in which the user inputs a set of
prepared letters (pre-training). Discriminant score for each
recorded data is calculated based on the model generated
in pre-training, and the system discriminates P300/non-P300
based on the discriminant score.

In P300 speller, another person starts and closes the system
generally. Therefore, a user cannot switch P300 speller
ON/OFF by himself/herself when the user wants to input
letters or to stop the system. Asynchronous P300 speller
which can control ON/OFF based on the user’s intention
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Fig. 1. Interface of P300 speller

of input is needed. Recently, several studies have addressed
the issue of the asynchronous control of BCI. Zhang et. al.
proposed a computational approach to implement an asyn-
chronous P300-based BCI [4]. F Aloise et.al. proposed an
asynchronous P300-based BCI for environmental control [5].
In these approaches, in addition to general pre-training, the
classifier trains non-intention training data which is recorded
when the user does not input letters (non-control state), then
the system classifies a user’s intention of input and switches
ON/OFF based on the classification results. However, in
these methods, additional pre-training for non-control state
is needed. Moreover, the non-control state in actual input
basically has to match the state in the pre-training, or the
classifier has to train several types of non-control state.

In this paper, we propose a classification method based on
user’s intention of input using only intention training data
which is recorded when user input letters (control state), i.e.
the proposed method does not need additional pre-training.
We evaluate the performance of the proposed method in the
experiment on classification of input intention and discuss
the results.

II. PROPOSED METHOD

A. A process of Discrimination

Figure 2 shows the flow of the proposed method. In
Fig.2,T is the number of sequences (in one sequence, every
row and column flashes once in random order) on stimulus
presentation. In the beginning or after inputting a letter, the
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Fig. 2. Flow of Proposed method

minimum number of sequences on stimulus presentation to
be classified isT0. This is because of the low signal-to-noise
ratio of P300. Figure 1 shows 7× 10 matrix interface, and
the number of candidates in Fig.1 is 17 (7 rows and 10
columns). Whenith candidate flashes intth sequence, the
recorded EEG data is represented asx

(t)
i . In tth sequence, the

EEG data denotesx(t) = {x(t)
i |i = 1, 2, ..., 17}. When the

classification of input intention is done, EEG data in several
sequences are averaged and the averaged data are used to
reduce the noises and improve the classification accuracy.
After the stimulus presentation inT sequences, classified
EEG data denotesX(T ) = {x(t)|t = Ts, Ts + 1, ..., T}. Ts

is the start of sequence for classification and defined by the
following equation.

Ts =

{
1 (T < TL)

T − TL − 1 (T ≥ TL)

TL is the maximum length of sequences to be classified.
When the system classifies user’s intention into non-control
state, stimuli of 1 more sequence are presented. Then the
system classifies user’s intention again using the latestX(T ).
This intention classification continues until the result of
the classification becomes control-state. When the system
classifies user’s intention into control state, the target letter
is predicted based on the discriminant scores. In the deter-
mination of a target letter, row/column that has the highest
averaged score among all rows/columns is identified, and the
target letter is predicted by the intersection of the identified
row and column.
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Fig. 3. Score distribution

B. model of P300 and non-P300 discriminant score

Discriminant score value is calculated as

d
(t)
i = w ∗ x(t)

i
(1)

wherew is the weights assigned based on the training data
and x

(t)
i denotes the EEG data onith candidate intth

sequence. In a pre-training, a user inputs a set of prepared
letters. Therefore, every training data is labeled as P300 data
or non-P300 data. Averages of the P300 and the non-P300
discriminant scores (µP300，µnon-P300) are calculated from
the training data. Based on the previous the study [6], each
score distribution is assumed as a normal distribution. Figure
3 shows an image of the probability density models of the
discriminant score in a set of training data. We employ these
score models to describe the likelihood of P300 and non-
P300 by the following equations:

p(d
(t)
i |P300) =

1√
2πσ

exp

{
− (d

(t)
i − µP300)

2

2σ2

}
(2)

p(d
(t)
i |non-P300) =

1√
2πσ

exp

{
− (d

(t)
i − µnon-P300)

2

2σ2

}
(3)

where the parameters for the normal distributions can be
learned from the training data.

C. Classification of user’s intention

When a user wants to input a letter, the P300 is elicited
when the row/column including the target letter flashes.
When a user has no intention to input a letter, P300 or a noise
similar to P300 is rarely recorded intensively at a certain
row/column. In the proposed method, input reliabilityR(T )

is calculated byX(T ).
The ensemble of discriminant scores on the target

row/column denotesD(T )
target = {d(T )

i |i = r̂, ĉ}, wherer̂ and
ĉ are the estimated target row and column based onX(T ).



R(T ) is defined by the following equation.

R(T ) = P (P300|D(T )
target) =

P (D
(T )
target|P300)P (P300)

P (D
(T )
target)

=
P (D

(T )
target|P300)P (P300)

P (D
(T )
target|P300) + P (D

(T )
target|non-P300)

(4)

We assume an even probability betweenP (P300)

and P (non-P300) = 1/2. The P (D
(T )
target|P300) and

P (D
(T )
target|non-P300) represent the conditional probability

density of observation whenD(T )
target is given. We assume

each EEG data is independent one another, so we have

P (D
(T )
target|P300) =

∏
t,i

p(d
(t)
i |P300) (5)

P (D
(T )
target|non-P300) =

∏
t,i

p(d
(t)
i |non-P300) (6)

wherep(d(t)i |P300) and p(d
(t)
i |non-P300) is calculated by

ep.(2) and eq.(3), respectively. In the classification of input
intention, ifR(T ) > Rthre whereRthre is a preset threshold,
the system classifies user’s intention into control state. If not,
the system classifies user’s intention into non-control state.

III. E XPERIMENT

A. Data Description

In this paper, the interface containing Japanese charac-
ters shown in Fig.1 was employed for the P300 speller
experiment. The offline experiment was done and it used
a recorded dataset which contained EEG data measured by
four subjects (Sub1，Sub2，Sub3, Sub4)．The EEG data
was recorded with sampling frequency of 1000Hz from nine
electrodes based on the ten-twenty electrode system of the
international federation [7] : Fz, Cz, Pz, O1, O2, P1, P2,
C3 and C4, referenced to the linked ears, A1 and A2.
The P300 speller implemented in BCI2000 [8], a general-
purpose system for brain-computer interface research, was
employed. The stimulus onset asynchrony (SOA) was 175ms.
One letter consisted of ten sequences, and one sequence
contained 17 (10 rows and 7 columns) stimuli. Two types
of EEG data were recorded. One was the control state data
in which the users were concentrating on the target letter
(the users counted how many times the desired letter was
intensified). The other was the non-control state data in
which the users were paying no attention to a target but
looking at the interface. In both cases, EEG for 40 letters
(40 × 10 sequences) were recorded. These EEG signals
were down-sampled to 100Hz, 12 data points after each
stimulus corresponding to 0ms (50ms) to 600ms by averaging
5 data points in every 50ms were extracted. Stepwise Linear
Discriminant Analysis (SWLDA) [9] was employed for the
discrimination of P300/non-P300 in this experiment.

B. Experimental Settings

To evaluate the performance of the proposed method, the
offline experiments using the data described in III-A were

conducted. First, 10 letters (10×10 sequences) of the control
state were utilized for the pre-training. The discrimination
function and the score model of P300 and non-P300 were
calculated by the training data. Then, two types of test data
were generated and the proposed method was applied. One
was consisted of the control state data of 20 letters (20× 10
sequences ). In the control state data, there could be three
different classification results.

1) Correct Discrimination: the target letter was correctly
detected.

2) Failure of Discrimination: The classification of the
input intention was correct, but the target letter was
not correctly detected.

3) Failure of classification: the system classified into a
non-control state, i.e. it could not classify the data into
the control state by the latestTL(=10) sequences.

We calculated the accuracy of classification, the ratio of the
number of sequences needed to classify the user’s intention
into control state over the number of sequences of stimulus
and the information transfer rate (ITR). ITR indicates that
how many bits of information is able to communicate effec-
tively through the interface [10].

ITR =
log2(N) + p log2(p) + (1− p) log2(

1−p
N−1 )

d
(7)

where p denotes the accuracy of classification,N denotes
the number of choices, i.e.N = 70 in this experiment, and
d denotes the average time (minutes) to enter one letter in a
session.

The other test data was consisted of the non-control state
data of 10 minutes (202 sequences). We calculated the false
positive rate (FPR) which indicates how many false events
(the non-control state into the control state) the system
detected on average within 1 minute.

These pre-training and intention classification were con-
ducted for 50 times, and the results were averaged. In this
experience,T0 = 3, TL = 10 andRthre = 0.99.

IV. RESULT AND DISCUSSIONS

Table I shows the result in the control state data. In
table I, Correct Discrimination achieved on average 89.3%
(std.=5.9%), Failure of Discrimination achieved on average
10.5% (std.=5.8%) and Failure of Classification achieved on
average 0.2% (std.=0.7%). It shows that incorrect classifi-
cation was rarely done by the proposed method, while the
number of sequences was 3.3 on average (std.=0.2). Figure
4 shows the result of ITR and Fig. 5 shows FPR in the
offline experiment. A mean value of ITR was 31.06 bit/min
(std.=3.66) and FPR achieved on average 0.11 event/min
(std.=0.12).

Zhang et al. reported on average 1.0 event/min in FPR,
and a mean ITR of 20 bit/min in the offline experiment
[4]. Though there were some differences in the experimental
settings and the classification approach, these results in this
experiment show that the proposed method using only control
state data had good ITR with low FPR.



TABLE I

RESULT OFCONTROL STATE DATA

Correct Discrimination(％) Failure of Discrimination (％) Failure of Classification(％) Number of sequences
Average std. Average std. Average std. Average std.

Sub1 90.4 5.9 9.5 5.8 0.1 0.7 3.2 0.2
Sub2 84.9 5.4 14.7 5.2 0.4 1.4 3.5 0.3
Sub3 88.3 6.5 11.6 6.4 0.1 0.7 3.3 0.2
Sub4 93.7 5.7 6.3 5.7 0.0 0.0 3.1 0.1

Average 89.3 5.9 10.5 5.8 0.2 0.7 3.3 0.2
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Fig. 4. Information transfer rate (bit/min)
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Fig. 5. False positive rate (event/min)

V. CONCLUSIONS

In this paper, we proposed and discussed the intention
classification method using only training data in control state.
In the offline experiment, the proposed method achieved on
average ITR of 31.06 bit/min with a mean FPR of 0.11
event/min. This result showed that the performance of the
proposed method was demonstrated good ITR with low false
FPR in 4 subjects comparing with the conventional method.
We will do online experiments by the proposed method and
investigate the proposed method more.
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