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Abstract 

Superconducting Fault Current Limiting Transformer (SFCLT) is expected to have both superconducting 
transformer function and superconducting fault current limiter function. We have so far developed the 2 MVA-class 
SFCLT based on YBCO coated conductors, and experimentally evaluated its current limitation and recovery 
characteristics. In this paper, we constructed a simulation model for current limitation and recovery characteristics of 
SFCLT for different HTS coil characteristics and design, and derived the optimized design for the effective current 
limitation and extended recovery criteria under the rated voltage of the 2 MVA-class SFCLT. 
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1. Introduction 

High temperature superconducting (HTS) power apparatus have been required to have high 
performance and power system coordination. From the viewpoint of these requirements, we have 
proposed Superconducting Fault Current Limiting Transformer (SFCLT) which has both superconducting 
transformer function and superconducting fault current limiter function [1]. SFCLT is expected to 
decrease the leakage impedance as a transformer and limit the fault current due to generate impedance 
during the fault, which can improve the static and transient stability in a power system. Recent years, 
SFCLT is being developed all over the world [2-4]. We have developed a 2 MVA, 22 kV/6.6 kV class 
SFCLT and verified the fundamental functions [5,6]. However, the SFCLT function has not yet been 
optimized, e.g. the balance between current limitation and recovery function. In this paper, for the 
optimization of SFCLT design and operation, we discussed current limitation and recovery functions for 
different HTS coil characteristics and design under the rated voltage of the 2 MVA-class SFCLT. 
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2. Structure of SFCLT 

The fundamental specifications and structure of the 2 MVA-class SFCLT are shown in Table 1 and 
Fig.1. We designed 3-phase SFCLT with the rating of 2 MVA, 22 kV/6.6 kV, and fabricated the single 
phase of a 0.67 MVA, 12.7 kV/3.81 kV (Y-Y). High-voltage and low-voltage coils were arranged in both 
iron core legs (A-leg, B-leg) in series. Low-voltage coils were made of two different kinds of YBCO 
tapes which are YBCO (A1 ~ A3, B1 ~ B3; 6 coils) and YBCO/Cu (A4 ~ A6, B4 ~ B6; 6 coils), while 
high-voltage coils were made of Bi2223 tapes (A7 ~ A10, B7 ~ B10; 8 coils). 

3. Fault current limitation and recovery characteristics 

We evaluated the current limitation and recovery characteristics of SFCLT by using a simulation model 
[6] which was constructed from the equivalent circuit in Fig.2. The load current ILV before fault flows in 
the low-voltage coil of SFCLT with the rated current IN. The prospective fault current IPRO is expected to 
be limited to Ilimit during fault. The fault current limitation and recovery criteria for different load and 
fault conditions are shown in Fig.3. The left vertical axis is the limitation rate Ilimit/IPRO at the 1st peak of 
recoverable fault current, and the right vertical axis is the recoverable overcurrent rate IPRO/IN,
respectively, against load factor ILV/IN. The dotted curve in Fig.3 expresses the boundary between 
recovery and non-recovery cases, where the recovery case is defined as that the temperature rise of 
SFCLT is lower than 1 K after the fault clearance. The current limitation is effective with the low 
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Fig.3.2 Equivalent circuit for current limiting and recovery test
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Fig.2. Equivalent circuit for current limitation and recovery of SFCLT
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Fig.3. Current limitation and recovery criteria of SFCLT 
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limitation rate and the recoverable IPRO/IN increases remarkably with the decrease in the load factor ILV/IN.
This is because the recovery process after the fault clearance strongly depends on the balance between the 
heat generation by the successive load current and the cooling effect by LN2.

4. Extension of current limitation and recovery criteria 

It is expected to increase the recoverable IPRO/IN at the higher load factor ILV/IN for the efficient and 
rational design and operation of SFCLT. In this section, we discuss the extension of current limitation and 
recovery criteria from the viewpoint of HTS coil characteristics and design. 

4.1. HTS coil characteristics (crtical current Ic, n value) 

According to the experiments of the 2 MVA-class SFCLT [5], the critical current Ic of YBCO coil was 
95.6 Apeak and the n value at flux flow state was 2. Taking these YBCO coil characteristics as parameters, 
we evaluated the current limitation and recovery criteria. 

Current limitation and recovery criteria for Ic = 95.6 Apeak and 247 Apeak (= IN) at n = 2 is shown in 
Fig.4, while those for n = 2 and 3 at Ic = 247 Apeak is shown in Fig.5. The plateau region in each figure 
corresponds to the transition region between nucleate boiling and film boiling of heat flux of LN2. In 
Fig.4, the recovery region is extended for the larger Ic. This is due to the decrease in generated resistance 
for the larger Ic under the fixed IPRO and ILV, which means that the heat generation after fault becomes 
smaller, and the cooling effect becomes higher. In Fig.5, the recovery region is extended for the larger n 
value, due to the effective current limitation at the larger current region. 

4.2. HTS coil design (YBCO coil rate YBCO, utilization factor IN/Ic)

We evaluated the current limitation and recovery criteria in terms of HTS coil design, i.e. YBCO coil 
rate YBCO and utilization factor IN/Ic. YBCO is defined as the YBCO coil length divided by the total low-
voltage coil length (275m), which was 46% for the 2 MVA-class SFCLT. 

Figure 6 describes current limitation and recovery criteria for YBCO = 46%, 75% and 100%. The 
recovery region is extended with the increase in YBCO. This is because the electric field per unit length of 
YBCO coil becomes smaller with the increase in YBCO, which means that the heat generation during and 
after fault becomes smaller. Figure 7 describes current limitation and recovery criteria for IN/Ic = 1.0, 0.5 
and 0.33, i.e. the parallel number of HTS tapes are 1, 2 and 3, respectively. The recovery region is 
extended with the decrease in IN/Ic, because the current flow and heat generation in each HTS tape 
becomes smaller with the decrease in IN/Ic.
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different critical current (n = 2) 

Fig.5. Current limitation and recovery criteria for 
different n value (Ic = 247 Apeak)
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Figure 8 shows the current limitation and recovery characteristics at the maximum and recoverable 
load current (point A, i.e. ILV/IN = 0.52, IPRO/IN = 15.8 in Fig.7) under the rated voltage. The limitation 
rates are I1st/IPRO = 0.53 at the 1st peak and I10th/IPRO = 0.11 at the 10th peak. The maximum temperature 
rise is 48 K during fault, and the recovery time is 8.8 seconds after the fault clearance. 

5. Conclusions 

We evaluated the current limitation and recovery characteristics for the YBCO coated conductor based 
the 2 MVA-class SFCLT for different conditions. Simulation results revealed that the current limitation 
and recovery criteria of SFCLT can be extended with the increase in critical current Ic and n value at flux 
flow state of YBCO tapes, as well as with the increase in YBCO coil rate YBCO and the decrease in 
utilization factor IN/Ic. We also derived the optimized design for the 2 MVA-class SFCLT with the 
extension of current limitation and recovery characteristics under the rated voltage. 
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Fig.7. Current limitation and recovery criteria for different 
utilization factor IN/Ic

(Ic = 247Apeak, n = 3, YBCO = 100%) 
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Fig.8. Current limitation characteristics (a) LV current (b) Temperature rise (Ic = 247 Apeak, n = 3, YBCO = 100%, IN/Ic = 0.33) 

Fig.6. Current limitation and recovery criteria for different 
YBCO coil rate YBCO (Ic = 247 Apeak, n = 3, IN/Ic = 1.0) 
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