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Abstract: In this paper, we develop a robotic table tennis system in the case of the back spin
with the same measurement method and the ball models of the aerodynamics and the rebounds
as in the study of Nakashima et al. (2011). First, the aerodynamics model is improved for
precise prediction of the ball trajectory with data of the flying back-spin ball. Second, a method
to determine the racket motion is shown where approximated inverse problems of the models are
solved with optimizations. Third, a motion planning of the robot to achieve the racket motion
is proposed with the velocity limitation of the robot joints. Experimental results are shown to
verify the effectiveness of the proposed method.
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1. INTRODUCTION

Dynamic manipulation is dexterous task of humans by
utilizing dynamics of manipulated targets (Mason and
Lynch (1993)). Ball sports are examples of the dynamic
manipulation, where there are intermittent interactions
between balls and players or environments. The ball is
manipulated by the interactions with knowledge of the
dynamics of the ball. Especially in the case of table tennis,
since the ball speed is fast and the distance between players
is close, the fight time of the ball is very short. For example,
it is about 520 [ms] in the case of the usual speed 5.0 [m/s]
(Tamaki et al. (2004)). It is therefore essential to rapidly
recognize the ball in the opponent’s court and predict the
ball trajectory in order to plan the racket motion at the
time when a player hits the ball. Since these issues are very
attractive and challenging, many researchers study and
develop robots playing table tennis (Zhang et al. (2008)).

The robotic table tennis system consists of the subtasks
of 1) the ball recognition; 2) the ball motion prediction;
3) the racket motion determination; and 4) the motion
planning for the racket motion. 1) The ball recognition is
the measurement of the position, translational/rotational
velocities of a flying ping-pong ball, which is usually per-
formed by vision cameras. 2) The ball motion prediction
provides the ball’s position and velocities at the hitting
time using the detected information. With the provided
states, 3) the racket motion determination is performed
which solves the position, orientation and velocity of the
racket attached to the robot in order to hit the ball to a
target point in the opponent’s table area. 4) The motion
planning generates the trajectories of the robot joints to
achieve the solved racket motion in 3).

The prediction and motion determination, the subtasks
2) and 3), are performed with the ball models of the
aerodynamics and the rebounds of the table and racket.
The models have been dealt with by two methodologies,
one of which is based on input-output black-box or grey-
box models, e.g. Miyazaki et al. (2002); Matsushima et al.
(2005), and the other of which is based on explicit physical
models, e.g. Hashimoto et al. (1987); Anderson (1988);
Zhang et al. (2010); Yang et al. (2010). In these studies, the
rotational velocity was not considered although it effects
on the ball trajectory when the ball is flying and rebounds.
Especially in the case of table tennis, since the rotational
velocity is very large (3000 [rpm]) and the ball’s mass is
very light (2.7 [g]), the spin effects are much bigger than
the ones in other ball sports (Tamaki et al. (2004)).

Recently, a high speed camera (1000fps) was developed by
Nakabo et al. (2000). The cameras have been used in real-
time measuring methods, e.g. the case of the rotation (less
than 1000rpm) by Watanabe et al. (2005) and the case of
both the translation and rotation (less than 3500rpm) by
Nakashima et al. (2010b); Liu et al. (2011). The models
where the spin effects are considered have been proposed,
which are the aerodynamics (Nonomura et al. (2010))
and the rebounds (Nakashima et al. (2010a)). With the
method of Liu et al. (2011) and the mentioned models,
the prediction and racket motion determination in the case
of the top spin have been realized by Nakashima et al.
(2011). In our this study, the flying ball of the speed
5 [m/s] and spin 3000 [rpm] can be hit with the speed
less than 1 [m/s] of the racket attached to an articulated
robot arm. However, the trajectory and rebound on the
racket in the case of the back spin differ from them in
the case of the top spin as shown in Fig. 1. The top-
spin ball is flying downward while the back-spin ball is
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Fig. 1. Trajectories and Rebounds of Top and Back Spins.

flying upward. This difference may cause the error of the
prediction of the ball trajectory. On the other hand, the
top-spin ball rebounds upward while the back-spin ball
rebounds downward. These facts imply that the racket
velocity in the case of the back spin should be larger in
the horizontal and upward directions than in the case of
the top spin. This requirement may conflict the limitation
of the joint velocity of the robot.

In this paper, we develop a robotic table tennis system
in the case of the back spin with the same measurement
method and ball motions models as in the study of
Nakashima et al. (2011). First, the coefficients of the air
resistances in the case of the back spin are identified in
the aerodynamics (Nonomura et al. (2010)) by minimizing
the difference between the trajectories of the measured
flying ball and the numerical solution of the aerodynamics
model. Second, a method to determine the racket motion is
shown where approximated inverse problems of the models
are solved with optimizations. Third, a motion planning
of the robot to achieve the racket motion is proposed with
the velocity limitation of the robot joints. The motion is
designed in the joint space with solving the maximization
of the racket speed in the direction given by the racket
motion determination. The planned joint motion generates
the racket speed 2–3 [m/s] for the robot to hit the back-
spin ball to target points. Experimental results are shown
to verify the effectiveness of the proposed method.

2. SYSTEM CONFIGURATION

2.1 Experimental System

Figure 2 (a) illustrates our robotic table tennis system.
The table is an international standard one with the sizes
of 1.525(W)×0.760(H)×2.740(D) [m]. The ball is shot out
from the automatic ball catapult, ROBO-PONG 2040
(SAN-EI Co.). The flying ball is measured by the two
high-speed cameras. Figure (b) shows the target areas
numbered as 1–9 in the opponent’s court. Define the target
positions of the center of the divided areas by pbd(i) ∈
R3, i = 1, · · · , 9. The reference frame ΣB is set at the right
corner of the robot’s court. The table tennis robot is a 7
degrees of freedom manipulator of PA10-7C (Mitsubishi
Heavy Industries, Ltd.) shown in Fig. 3 (a), where the
robot and racket frames, ΣA and ΣR, are set at the base of
the robot and the center of the racket. The robot base ΣA

is set at pA = [−0.393, 1.594, −0.110]T [m] relative to ΣB

and the axes are set as shown in Fig. 2 (b). The joints are
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defined by q ∈ R7 and the speed limitations of the joints
are given by q̇max := [1, 1, 2, 2, 2π, 2π, 2π]T [rad/s]. The
sampling time of control is 2 [ms]. The racket is attached to
the tip and its board and rubber are Fukuhara-Ai Special
and Bryce Speed FX (Butterfly, Ltd.). The distance from
the center to the edge of the racket is about 80 [mm].

Figure 3 (b) is a ping-pong ball with marked feature
areas which are used for the calculation of the rotational
velocity. The mass and radius of the ball are m = 2.7 ×
10−3[kg] and r = 2.0 × 10−2[m]. The cameras are the
intelligent vision sensors (Hamamatsu Photonics K.K.)
with the sampling rate 900 [Hz]. The array sizes are
252×252 and the pixel sizes are αu, αv = 2.0 × 10−5

[pixel/m]. The focal length of the lens is f = 3.5 ×
10−2 [m]. The sampled data are quantized as 2D image
coordinates with the monochrome brightness of 8bit (0–
255). Examples of the measured images are shown in Fig. 1
(b). The rotational velocity is estimated with minimizing
the intensity residuals between the two successive frames
of the cameras (Liu et al. (2011)). The measurement errors
of the translational velocity are about 0.1 [m/s] in the each
axis in the case of the speeds 2.0–7.0 [m/s]. The errors of
the rotational velocity are represented by the magnitude
less than 400 [rpm] and the angle between the true and
measured values less than 30 [deg] in the case of the speeds
1500–3000 [rpm]. The calculation times are in the range
of 15–30 [ms] which is much shorter than the rally time of
about 700 [ms] in the case of the back spin.

The PCs for the control and visual measurment are Dell
Precision T5500 (CPU: Intel(R)Xeon E5503 2.66GHz,
Memory: 2GB RAM) and Dell Precision T5300 (CPU:
Intel(R)Xeon E5430 2.66GHz, Memory: 2GB RAM). The
OS of the PCs are Windows XP Professional sp2 and the
program language is C++. The estimated ball information
is transmitted to the PC for the control by the memolink
(Interface, Ltd.). The ball prediction and motion determi-
nation are executed in the PC for the control.
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Fig. 4. Scheme of hitting back a flying ball.

2.2 Scheme of Hitting back a Flying Ball

Figure 4 shows the scheme of hitting a flying ball. The
subtasks 1)–4) are explained in the followings:

1) [Ball Measurement] The position and transla-
tional/rotational velocities of the ball are measured
around the catapult. The measured values are given to
the PC of the control for 2) the ball prediction.

2) [Ball Prediction] With the measured ball informa-
tion, the ball trajectory to the hitting point is calcu-
lated by the models of the aerodynamics and the re-
bound on the table. The predicted position and transla-
tional/rotational velocities at the hitting point are given
to 3) the motion determination of the racket.

3) [Motion Determination] With the predicted ball
information, the racket motion is determined by solving
inverse problems of the aerodynamics and the rebound
of the racket.

4) [Motion Planning] With the determined racket mo-
tion, the joint trajectory is designed to achieve the
racket motion with the limitation of the joint velocity.

The passage of time from the ball recognition to the arrival
of hitting is illustrated in the lower of Fig. 4. The amount
of time for the subtasks 1), 2) is about 30–50 [ms] because
the processing time of 2) is 15–20 [ms]. Therefore, there is
about 650 [ms] for the subtasks 3) and 4).

The physical models are shown in Appendix A. In the
latter sections, in the case of the back-spin ball, the
improvement of the aerodynamics model and the motion
planning of the robot are described.

3. PARAMETER IDENTIFICATION OF
AERODYNAMICS

The aerodynamics is represented by the differential equa-
tion of (A.1). In order to identify the coefficients of the
lift and drag, CD and CM , the rotational velocity ωb is
assumed to be constant during flying. This assumption has
been verified in the study of Nonomura et al. (2010). The
ball position pb ∈ R3 is measured widely by two middle
speed cameras (150fps) of Radish System (Library, Co.)
because the measuring range of the high speed cameras is
very small, about 15 × 15 [cm]. This system can measure
broad ranges of area (almost same as usual video cameras).
Then, the flying ball can be measured with about 1.5 [m]
flying distance which is sufficient for the identification.

Numerical Solution
jb
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Fig. 5. Difference of Trajectories and Comparison of Coef-
ficients.

Since (A.1) is linear with respect to the coefficients, they
can be identified by the linear least squares method with
the velocity ṗb and acceleration p̈b. However, they need
to be obtained by the calculus of finite difference of the
position pb although pb has the quantization errors and the
sampling time is not short enough to the calculation. Then,
ṗb and p̈b obtained by the calculus of finite difference have
large noises not to be appropriate for the identification.

Therefore, we propose an identification method based on
the difference of the trajectories of the measured ball and
the numerical solution of (A.1). The method is given by

min
C

V (C) (1)

where C := [CD CM ]T and

V (C) :=
Nt∑

j=1

Vj(C)
Nt

, Vj(C) :=
Nj∑

i=1

1
Nj
‖pbj (ti)−p̂bj (ti; C)‖2.

Nt and Nj are the numbers of all the experimental trial
and the measured data at jth trial. The sampled time
ti is defined as ti := i∆t, ∆t = 1/150 [s]. pbj and p̂bj

are the measured and simulated positions. p̂bj is solved
in the interval [t1 tNj ] by Runge Kutta Method of order
4. The concept of the minimization is illustrated in the
left figure of Fig. 5, where the arrows represent the error
at each sampled time. Since it is impossible to obtain the
differentiation of the cost function of V (C), (1) is solved
by Nelder-Method.

The initial states of (p̂bj ,
˙̂pbj , ω̂bj ) for Runge Kutta

Method are measured by the high speed cameras around
the ball catapult, which are composed of the three cases:
Case 1) vbx = −5.1 [m/s], ωby = 270 [rad/s]; Case
2) vbx = −6.6 [m/s], ωby = 320 [rad/s]; and Case 3) vbx =
−7.4 [m/s], ωby = 365 [rad/s]. The values in the other axes
are omitted because they are much smaller. With these
data, the identified coefficients are given by CD = 0.44
and CM = 0.12. The values of V (C) for identification
and verification are as follows: Case 1) VC = 6.49× 10−4,
5.17 × 10−4; Case 2) VC = 0.99 × 10−4, 1.86 × 10−4; and
Case 3) VC = 1.34× 10−4, 1.40× 10−4, where the number
of data for the identification and verification are 20 and 10.
The values in the identification and verification are almost
same in all the cases. These results claim the accuracy of
the identified coefficients.

Note that the drag and lift effects in the case of the
back spin become smaller and larger than CD = 0.54
and CM = 0.069 in the case of the top spin shown in
Appendix A.1. An example of the comparisons of the
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trajectories in the z-axis is shown in the right figure of
Fig. 5, where the lines of the blue, red, magenta and
green represent the cases of the measured data, the top
spin, back spin and no air resistance. It is found that the
magenta line is very close to the blue line and the other
lines are under the blue line. The difference between the
times that the balls of the top and back spins arrive at
the rebound points (pbz = 0.04 [m]) is about 0.3 [s]. Then,
the difference of the rebound points in the x-axis becomes
about 0.15 [m] because the speed in the x-axis is about
5.0 [m/s]. This prediction error may cause big error larger
than the distance 0.08 [m] from the center to the edge of
the racket.

4. MOTION DETERMINATION OF RACKET

4.1 Overview of Determination

The motion determination of the racket means obtaining
the velocity and orientation of the racket at the point to
hit the ball to a target point in the opponent’s court. This
is performed by solving the following two inverse problems:

3-1) Suppose that the position p′b just after the rebound
on the racket and the target point pbd = [pbxd, pbyd, 0]T
are given. Then, find the velocities (v′b,ω

′
b) just after the

rebound on the racket with the equation of (A.1) (See
Fig. 6 (a)).

3-2) Suppose that the velocities (vb, ωb) and (v′b, ω
′
b) just

before and after the rebound on the racket are given.
Then, find the YX -Euler angles (β, α) and the velocity
of the racket VR with the equations of (A.2)–(A.4) and
(A.6) (See Fig. 6 (b)).

Approximated or simplified solutions are described which
give analytical results to decrease the processing times.

4.2 Determination of Velocities after Rebound of Racket

Since the aerodynamics of (A.1) is the nonlinear differen-
tial equation, it is difficult to solve analytically. Therefore,
we use the following simplified aerodynamics model:
p̈bx =−sDv′2bx, p̈by =−sDsgn(pbyd−p′by)v′2by, p̈bz =−g (2)

where D := 1
2mπCDρr2 and s is a parameter used to

optimize the model (2) by minimizing the errors of the
point of arrival between (2) and (A.1). The air resistances
are omitted in the z-axis because they are much smaller
than the gravity. In the x- and y-axes, the drag effect in the
each axis is simplified to the one to be in proportional to
the initial velocity in the own axis because the interactions
between these axes are very small. The deleted lift effect
is considered by the parameter s with some cases of ωb.

),( bb ωv ′′

bp′

T
]0,,[ bydbxdbd pp=p

R
V

),( αβRR

b
ω

b
ω′

b
v

b
v′

(a) Inverse problem (3-1) (b) Inverse problem (3-2)

Fig. 6. The inverse problems for the motion determination.

The model (2) is solved analytically with the boundary
conditions of pb(0) = p′b, vb(0) = v′b and pb(T ) = pbd.
Then, there are 4 variables (v′b, T ) in the 3 solved equations
of (2), we introduce the following free parameter Kθ > 0
to represent the elevation angle of the hit ball:

v′bz = Kθv
′
bx. (3)

Combining the solved equations of (2) and (3) leads to

v′bx =
v′bz

Kθ
, v′by =

1−√1− 2sD

sgn(pbyd − p′by)sDT
, v′bz =

gT 2 − 2p′bz

2T

T =

√
2(sD + Kθ)− 2Kθ

√
1− 2sD(pbxd − p′bx)

sDg
. (4)

The ball velocity v′b just after the rebound is given by (4).

The determination of s is explained. The velocity just
after the rebound v′b is obtained by (4) with the given
target point pbd and the free parameter Kθ. Define the
obtained velocity as v′bs(s; pbd, θ), θ := tan−1 Kθ [deg].
With the initial states v′bs(s;pbd, θ) and the rotational
velocity ω′b, the point of arrival in the opponent’s court
of the aerodynamics of (A.1) is obtained by Runge Kutta
Method. Define this point of arrival as pbds(s;pbd, θ, ω

′
b).

We consider the optimization of the parameter s as follows:
min

s
J(s) (5)

where
J(s) :=

∑

pbd∈P

∑

θ∈Θ

∑

ω′
b
∈Ω

‖pbd − pbds(s; pbd, θ, ω
′
b)‖2

P := { pbd [m] | pbd = pbd(i), i = 1, · · · , 9 }
Θ := { θ [deg] | θ = 5i + 15, i = 1, · · · , 5 }
Ω := { ω′b [rad/s] | ω′by = 10i− 310, i = 1, · · · , 41 }.

pbd(i) is the target point of the 9 divided areas as shown
in Fig. 2. Note that the minimization of (5) is performed
offline. Furthermore, note that the parameter s is deter-
mined with considering the rotational velocity ω′b instead
of the eliminated lift effect in the aerodynamics of (A.1).
The parameter s is optimized as s∗ = 0.54.

4.3 Determination of Velocity and Orientation of Racket

Suppose that the velocities just before the rebound,
(vb, ωb) and the translational velocity just after the re-
bound, v′b, are given. Since the rotational velocity ω′b is
indirectly considered by the parameter s, it is sufficient to
consider only the left equation of (A.2) with (A.6):

RT
R(v′b − VR) = ĀvRT

R(vb − VR) + B̄vRT
Rωb (6)
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Fig. 7. (a) The constraint for the racket velocity; (b) the
free parameters in the inverse problems; (c) the angles
between the racket velocity and the incident ball.
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In addition to (6), a virtual constraint is introduced:

−VRx sin γ + VRy cos γ = 0, γ := tan−1
pbyd − p′by

pbxd − p′bx

(7)

which is illustrated in Fig. 7 (a). The frame ΣM is defined
as the x-axis is rotated about the z-axis through γ. Note
that the x-axis is in the direction to the target point. The
constraint (7) represents MVRy = 0. The left superscript
stands for the frame in which the variable is expressed.

The purpose is to obtain the 5 variables of the angle (β, α)
and the velocity VR ∈ R3 by using 4 equations of (6)
and (7). In order to consider the redundancy explicitly,
we deal with the elevation angle β as the free parameter.
Combining (6) and (7) leads to the following quartic
equation with respect to the angle of direction α:

c4 tan4 α + c3 tan3 α + c2 tan2 α + c1 tanα + c0 = 0, (8)
where
c4 =d2

4, c3 =2d2d4, c2 =d2
2 + 2d1d4, c1 =2d1d2, c0 =d2

1 − d2
3

d1 = (Mv′by −Mvby + aMvby)(1 + en)

d2 = −(Mvbz −Mv′bz + Mvbx −Mv′bx)(1 + en − a) sin β

d3 = raMωbx(1 + en) cos β − raMωbz(1 + en) sin β

d4 = a(er
Mvby + Mv′by).

Eq. (8) is solved by Ferrari’s Solution (MacLane and
Birkoff (1967)). By the obtained α and the free parameter
β, the racket velocity VR is easily solved with (7).

4.4 Determination of the free parameters

In the two inverse problems, we have the two free parame-
ters (β, θ) as in Fig. 7 (b), which are the elevation angles of
the racket and the velocity of the hit ball. Define the racket
velocity with the free parameters (β, θ) as VRa(β, θ). We
consider the optimization of (β, θ) as follows:

max
β∈B, θ∈ΘV

cV (β, θ) s.t. V L
R ≤ ‖VRa(β, θ)‖ ≤ V U

R , (9)

where
cV (β, θ) := VRa(β, θ)T(−vb)/ (‖VRa(β, θ)‖‖vb‖)

B := { β [deg] | β = 2i + 28, i = 1, · · · , 21 }
ΘV := { θ [deg] | θ = 2i + 8, i = 1, · · · , 18 }.

cV is the cosine of the angle between the racket velocity
VR and the inverse incident direction −v′b of the ball as
illustrated in Fig. 7 (c). The bounds (V L

R , V U
R ) = (2.0, 2.5)

[m/s] represent the range of ‖VRa‖ in the optimization.
Note that (9) means the minimization of the angle. Due to
the minimization, the racket motion can be robust against
the errors in the incident direction.

5. MOTION PLANNING IN JOINT SPACE

Suppose that the desired position of the racket pRd and
the desired hitting time Td are given by 2) the prediction of
the ball trajectory. And suppose that the desired velocity
ṗRd and the orientation of the racket RRd are given
by ṗRd := VRa(β∗, θ∗) and RRd := RR(β∗, α∗), where
(β∗, θ∗) are the solutions of the minimization of (9) and
α∗ is the solution of (8) with β∗. With these desired values,
a method to plan the joint trajectory is proposed where
the redundancy and the velocity limitation are considered.

5.1 Inverse Kinematics

It is difficult to solve the inverse kinematics analytically
since the joints q ∈ R7 have one redundant degree of
freedom in the inverse kinematics problem for the desired
values (pRd, RRd). Therefore, the desired joints qd corre-
sponding to (pRd, RRd) are solved by the numerical it-
erative jacobian method with Newton-Raphson technique
(Goldenberg et al. (1985)). Especially, we consider the
axis-angle representation of the orientation. This does not
have the gimbal lock shown in the Euler representation;
and this can interpolate two rotation matrices with the
explicit geometric interpretation (Grassia (1998)).

The translational and rotational velocities of the racket
(ṗR,ωR) at q are related to the joint velocity q̇ with[

ṗR

ωR

]
= J(q)q̇, J(q) :=

[
Jv(q)
Jω(q)

]
, (10)

where Jv ∈ R3×7 and Jω ∈ R3×7 are the linear and
angular jacobians and J ∈ R6×7 is the gemetric jacobian
(Spong et al. (2006)). Suppose that (∆pR, RR∆) repre-
sent the small changes from the position and orientation
(pR(q), RR(q)), which correspond to the small displace-
ment ∆q from q. It is assumed that the velocity kinematics
of (10) holds for ∆q in the joint space:[

∆pR

eR

]
= J(q)∆q, eR := kφ, (11)

where the pair of φ and k ∈ R3 is the axis-angle represen-
tation. The unit vector k is the rotation axis and φ is the
rotation displacement. The representation is defined as

Rφ(k, φ) = Re, Re := RR∆R−1
R , (12)

Rφ(k, φ) := I3 + sin φk∧ + (1− cosφ)(k∧)2, (13)
where k∧ ∈ R3×3 is the skew-symmetric matrix defined as
k∧a = k× a. Solving (12) and (13) for φ and k results in

cosφ=
tr(Re)− 1

2
, k=

sk(Re)∨

sin φ
, sk(R) :=

1
2
(R−RT).

(14)
where (·)∨ is the inverse map of (·)∧, i.e., (a∧)∨ := a. Note
that there is the singularity φ = 0 in (14). Therefore, from
(14), we use the following e′R ∈ R3 instead of eR = kφ:

e′R := k sin φ = sk(Re)∨ (15)
which has no singularity. Note that ‖e′R‖ ∝ ‖eR‖ in the
case of |φ| ≤ π/2 and e′R ' eR in the case of |φ| ¿ 1.

With an initial state q0, the numerical iteration for the
inverse kinematics is given by

qi+1 =qi + KJ+(qi)
[
∆pRi

e′Ri

]
,

{
∆pRi =pR(qi)− pRd

e′Ri
=sk(RRd

R−1
R (qi))∨

(16)
where J+ ∈ R7×6 is the pseudo inverse matrix of J , K ∈
R7×7 is the positive definite gain matrix for the numerical
calculation and the subscript i denotes the ith iteration.
The iteration is stopped for ‖qi+1 − qi‖ < ε, where ε > 0
is a small arbitrary threshold value. Note that pR(qi)
and RR(qi) are calculated by the forward kinematics.
Generally, the convergence of Newton-Raphson method
is not guaranteed globally; and it also depends on the
initial state q0. Therefore, for fast convergence, we obtain
the initial state by solving (16) with the sequence of
the position and orientation, ∆pRi = (pRd − pR0)/N ,
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e′Ri
= k0φ0/N . Here, (k0, φ0) are given by (14) with Re =

RRd
R−1

R0
; (pR0 , RR0) represent a standby configuration;

and N is number of the division of the trajectory. It is not
necessary to set N to a large one for the accuracy of this
calculation because the obtained qN is used for the initial
state q0 of the Newton-Raphson method. Since q0(= qN )
can be around one of the solutions, the inverse kinematics
with the Newton-Raphson method fastly converges to its
solution of qd.

5.2 Joint Velocity with Speed Limitation

Consider the following problem with the desired racket
velocity ṗRd and the solution of the inverse kinematics qd:
Find q̇d s.t. ṗRd = Jv(qd)q̇d, |q̇di

| ≤ q̇i max, i = 1, · · · , 7.
(17)

The solvability of (17) can be checked by solving the
following maximization problem:

max
q̇d

v (18)

subject to
vnv = Jv(qd)q̇d, |q̇di

| ≤ q̇i max, nv := ṗRd/‖ṗRd‖. (19)

Note that nv ∈ R3 is the direction of ṗRd and v(> 0)
represents its magnitude. If the maximized v is greater
than or equal to the magnitude ‖ṗRd‖, there are solutions
of q̇d of (17). Premultiplying (19) by nT

v yields to

v = nT
v J(qd)q̇d. (20)

Eq. (20) is the relation between v and q̇d. On the other
hand, it is required that Jv(qd)q̇d is in the same direction
of nv. This requirement is formulated as

nT
p1

J(qd)q̇d = nT
p2

J(qd)q̇d = 0, (21)
where

nT
p1

nv = nT
p2

nv = nT
p1

np2 = 0.

Eq. (21) represents that Jv(qd)q̇d has no components in
the plane perpendicular to nv. With (20) and (21), (18) is
transformed to the linear programming problem:
min
q̇d

cT
0 q̇d s.t. A0q̇d = b0, − q̇i max ≤ q̇di ≤ q̇i max, (22)

where

c0 := −J(qd)Tnv, A0 :=
[
nT

p1

nT
p2

]
, b0 := 02×1.

Note that the maximized v∗ is given by
v∗ = −cT

0 q̇∗d. (23)
If v∗ ≥ ‖ṗRd‖, there exit solutions of (17). Then, a desired
velocity q̇d is given by

q̇d =
‖pRd‖

v∗
q̇∗d. (24)

5.3 Check of Velocities for Target Points

The racket velocities VR are checked in the cases of the
target points pbd(i), i = 1, · · · , 9. The conditions are set
as follows: The initial conditions of the flying ball are
pb = [2.65, 0.81, 0.32 ]T [m], vb = [−5.27,−0.10, 1.31]T
[m/s] and [−6, 281,−9]T [rad/s]; the x coordinate of the
hitting position is set to 0.30 [m]. The predicted hitting
position and time are pd = [−0.30, 0.77, 0.26]T [m]
and Td = 0.711 [s] with the prediction. Note that VR

is obtained by the motion determination mentioned in

Table 1. Solved and Max Velocities.

Area Number 1 2 3 4 5 6 7 8 9

Solved Velocity [m/s] 2.13 2.09 2.13 2.11 2.13 2.11 2.31 2.25 2.31

Max Velocity [m/s] 3.57 3.30 3.81 3.79 3.44 3.80 3.24 3.92 3.87

Section 4 with pRd = pd. The results are shown in Table
1. It is found that the solved velocities are smaller than
the max velocities in all the cases.

6. EXPERIMENTAL RESULTS

The robot control starts from the time when the desired
angle and velocity of the racket are obtained by the
motion determination. The target position is pbd(5) =
[2.055, 0.763, 0]T [m]. The other conditions are the same
as in Section 5.3.

The initial conditions of the racket trajectory are set to
q0(0) = qs, q̇0(0) = 0 and q̈0(0) = 0, where qs is a
standby configuration. The conditions at the hitting time
Td are given by qh(Td) = qd and q̇h(Td) = q̇d. The
acceleration q̈h is set to 0. The trajectory from the standby
configuration to the hitting one is interpolated by the 5th
order polynominal of time. Since the velocity limitation is
not considered during the time interval, it is important to
set appropriate standby configuration. For example, the
standby configuration should be set such that the robot
does not swing back very much.

The experiment result is illustrated as the top and side
views shown in Fig. 8, where the red squares represent
the racket and the black and light blue arms represent the
standby and hitting configurations. The green and black
lines represent the racket and ball trajectories. The red
arrow represents the direction of the racket velocity at the

Table

Hitting
Position

Standby
Position

Hitting
Position

Table

Ball
Trajectory

Ball
Trajectory

Standby
Position

Hitting
Direction

Fig. 8. The top and side views of hitting the ball.
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Fig. 9. The trajectories of the joint coordinates and veloc-
ities.
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Fig. 10. The trajectories of the position, orientation and
velocity.

hitting time. The followings are found: The swing back is
small due to the appropriate standby configuration; The
angle between the racket and ball velocities at the hitting
time is small due to the minimization of (9); The errors
between the hitting position and the center of the racket
are about [4, 4, 5]T [cm]. The reasons of the errors are
mentioned in the latter paragraph.

The time histories of the joint coordinates and velocities
are shown in Fig. 9, which are represented by the pairs of
the 1st/2nd and 3rd/4th columns respectively. The red and
blue lines represent the desired and real trajectories and
the green lines represents the limitation of the velocities.
The star marks represent the values of the joints and
velocities at the hitting time. There are the larger tracking
errors in the 2nd and 4th joints than the other joints. These
errors may be caused by their bigger inertia than the one of
the others. It is found that the joint velocities are included
in the limitations. The position, orientation and velocity
of the racket are shown in Fig. 10, which are represented
by the 1st, 2nd and 3rd columns respectively. The tracking

errors in the position are almost 0 [cm] in the x- and y-
axes and about 5 [cm] in the z-axis. Recall the position
errors between the racket and ball are about [4, 4, 5]T
[cm]. Therefore, the reasons of the errors in the x- and y-
axes are the prediction errors; and the reason of the error
in the z-axis is the tracking error. The racket velocity in
the x-axis is about 2.8 [m/s] which is enough to hit back
the balls to the opponent’s court. However, there is the
large error in the z-axis which causes the failures of hitting
to the target point. The movie of the experiments can
be watched in the web: http://www.haya.nuem.nagoya-
u.ac.jp/˜ akira/syroco2012.mp4.

The success rate of hitting the balls to the target point
is 70% with the number of trial 20. This rate is smaller
than the rate 91% in the case of top spin. The racket can
not sometimes hit the balls in the case of back spin while
the failures of hitting are rare in the case of top spin. The
averaged success rate of the other target points is 17%.
However, almost all the balls are hit within the opponent’s
court. This is because the directions of the hit balls are
effected on much by the errors of the racket.

7. CONCLUSIONS

We have developed a robotic table tennis system in the
case of the back spin with the same measurement method
and ball motions models. The aerodynamics has been
improved for the case of the back spin. The motion
determination of the racket has been proposed with the
physical models of the aerodynamics and rebound on the
racket. A method to generate the joint trajectory has been
proposed where the redundancy and speed limitation of
the robot are considered. Experimental results have been
shown to verify the effectiveness of the proposed method.

Since the robot dynamics is not considered in this study,
the tracking errors cause the failures of hitting the balls. A
trajectory generation with the dynamics is feature work.
The case of the side-spin ball is also feature work.

Appendix A. MODELS OF BALL MOTION

A.1 Aerodynamics of Flying Ball

Define pb and ωb ∈ R3 as the position and rotation velocity
of the ball. With the assumption that ωb is invariant, the
equation of motion of the flying ball is given by

mp̈b = mg− 1
2
CDπρr2‖ṗb‖ṗb +

4
3
CMπρr3ωb× ṗb, (A.1)

where g = [0, 0,−9.8]T [m/s2] is the acceleration of gravity,
ρ = 1.184 [kg/m3] (25◦C) is the air density, and CD and
CM are the drag and lift coefficients. The 2nd and 3rd
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(a) Air resistances of Flying Ball

Fig. A.1. The drag and lift forces of the rotated flying ball.
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terms in the right hand are the lift and drag forces as
shown in Fig. A.1 (a). The coefficients of the top spin are
CD = 0.54 and CM = 0.069 (Nonomura et al. (2010)).

A.2 Rebound Models on Table and Racket

The rebound situation of the ball on the table is illustrated
in Fig. A.1 (b). Define (vb, ωb) as the translational and
rotational velocities just before the rebound and (v′b, ω

′
b)

as the those just after the rebound. The variables are
expressed in the base frame ΣB . The rebound models of
the table and racket are expressed by

v′b = Avvb + Bvωb, ω′b = Aωvb + Bωωb, (A.2)
where (v′b, ω

′
b) is the input and (vb, ωb) is the output.

In the case of the table, the coefficient matrices Av–
Bω ∈ R3×3 are given by

Av = RaĀv(a)RT
a , Bv = RaB̄v(a)RT

a

Aω = RaĀω(a)RT
a , Bω = RaB̄ω(a)RT

a (A.3)
where Ra = I3 and

Āv(a) :=

[1− a 0 0
1 1− a 0
0 0 −en

]
, B̄v(a) :=

[ 0 ar 0
−ar 0 0
0 0 0

]

Āω(a) :=




0 − 3a
2r 0

3a
2r 0 0
0 0 0


, B̄ω(a) :=




1− 3a
2 0 0

0 1− 3a
2 0

0 0 1


 .

(A.4)
The parameter en is the restitution coefficient in the z-axis
and the parameter a is switched as

a = µ(1 + en) |vbz|
‖vbT ‖ (νs > 0), 2

5 (νs ≤ 0)

νs = 1− 2
5µ(1 + en) |vbz|

‖vbT ‖ , (A.5)

where µ is the dynamical friction coefficient and vbT ∈ R3

is the tangent velocity at the contact point. νs ≤ 0 means
that the contact type changes from sliding to rolling during
the impact and νs > 0 means that the one does not change.
The identified values are µ = 0.25 and en = 0.93.

The situation of the rebound on the racket is shown in
Fig. A.1 (b). ΣR is the racket frame with the z-axis normal
to the racket. The matrices Av–Bω with considering the
orientation of the racket are given by (A.4) with

Ra = RR(β, α), a = kp

m , (A.6)

where RR ∈ R3×3 is the rotation matrix of ΣR relative
to ΣB and a is the fixed value differently from the case
of the table. kp is the coefficient which relates the tangent
velocity to the tangent impulse. The identified values are
en = 0.81 and kp = 1.9× 10−3.
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