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I. INTRODUCTION

Dynamical diffraction theory describes the multiple
elastic scattering of electrons through a crystal. The the-
ory has been formulated almost a century ago, originally
for photons by Bragg1 and von Laue2. Later it was ex-
tended also to electrons on the basis of wave-particle du-
ality, as proven by the famous experiments of Davisson
and Germer3, and Thomson and Reid4. The importance
of inelastic electron scattering and the wealth of informa-
tion contained in this process was for the first time ob-
served by Kikuchi5, who observed a complicated pattern
of lines going beyond the diffraction patterns expected
for elastic scattering of light or electrons. The diffraction
theory that included quantitative description of Kikuchi
patterns was given by Kainuma following qualitative the-
ories of Shinohara and von Laue6. Various sources of en-
ergy loss, such as excitations of phonons or valence elec-
trons to conduction band or core electrons to conduction
band were discussed by Okamoto et al.7

The inelastic electron scattering is typically described
as a three-step process: 1) an elastic scattering of the
probe electron from entrance surface to a selected atom
in the sample, 2) an inelastic event exchanging the mo-
mentum and energy between a probe and sample elec-
tron, and 3) an elastic propagation of the scattered probe
electron towards the exit sample surface. This needs to
be summed over all possible inelastic scattering centers.
Such description holds, when there is only one inelastic
scattering event for each observed probe electron. If its
mean free path is much longer than the thickness of the
sample, then it is a good approximation. Otherwise one
needs to consider multiple inelastic scattering8.

The inelastic event is described by mixed dynamic form
factor (MDFF) introduced by Kohl and Rose10. For cal-
culations of MDFF, there are various levels of sophis-
tication, ranging from an isotropic dipole approxima-
tion q · q′, through a parametrized atomic multiplets
description13, configuration interaction14, to a density
functional theory (DFT) evaluation9,12. Recently a DFT-
based dipole model for MDFFs has been proposed using

local electronic structure properties to set the coefficients
in the dipole approximation11, thereby providing a real-
istic DFT-based MDFF model with efficiency equal to
a simple dipole approximation (at the cost of losing the
fine structure in energy dependence).

The elastic scattering can be simulated by one of the
two major methods widely used today, the multislice
method15,16 and Bloch-waves (BW) method17,18. The
latter one is typically more efficient for periodic struc-
tures without defects, while the multislice method has
an advantage when dealing with large non-periodic struc-
tures or structures with defects. In this article we will
study the convergence properties of the BW method in
electron energy-loss near edge structure (ELNES) calcu-
lations and describe an efficient algorithm for BW sum-
mation.

II. BLOCH-WAVES THEORY OF ELNES

In Ref. 9 we have described our theoretical approach to
simulate general orientation-sensitive ELNES experiment
from first principles. We present here a brief summary
of the key equations.

The first step is a solution of the secular equation for
a fast electron of known energy moving in and out of the
crystal. Expanding the solutions - Bloch waves - into
plane waves (indexed by reciprocal lattice vectors g,h)
the secular equation has the following form:∑

g

[(
K2 − (k(j) + g)2

)
+
∑
h6=0

UhC
(j)
g−h

]
ei(k

(j)+g)·r = 0

(1)
where K2 = U0 + 2meE/~2, m and e are, respectively,
the electron mass and charge, Uh = 2meVh/~2 where
Vh are the Fourier components of the crystal potential
(including the h = 0 case in the definition of K2), E is
acceleration voltage, and k(j) = k+ γ(j)n are Bloch vec-
tors related to the beam direction k and sample surface
normal n.

Solution of the secular equation is a set of Bloch waves
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indexed by j, given by so called Bloch coefficients C
(j)
g

and elongations of the wave vector γ(j).

Evaluation of the double differential scattering cross-
section involves calculation of the following sum [see, e.g.,
Ref. 9, Eq. (24)]
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Here C
(j)
g and D

(l)
h are the Bloch coefficients for the

incoming and outgoing Bloch fields. The quantity
Su(q,q

′,E)
q2q′2 is the mixed-dynamic form-factor (MDFF)10,12

of atom with basis vector u, divided by squares of
momentum transfer vectors q,q′ originating from the
Fourier transform of Coulomb interaction between elec-
trons. Tjlj′l′(t) is a thickness function, which depends on
Bloch wave indices and experimental geometry. Nu is a
number of atoms in the unit cell, where u is a base vector.
Momentum transfer vectors actually depend on several
indices, but to simplify the notation we will not write
this dependence explicity. For evaluation of MDFFs we
typically use an approximation

q = k
(l)
out − k

(j)
in + h− g ≈ kout − kin + h− g (4)

which neglects elongations of the wave vectors γ(j), γ(l).

III. SUMMATION ALGORITHMS

Here we will discuss two known algorithms used in
Bloch wave calculations and propose new algorithms for
improved convergence and efficiency of summation.

A. Manual selection of beams

The simplest one is based on a choice of beams “by
hand” let’s say on a base of visible spots in diffraction
pattern, or all beams from a set of integer indices be-
low certain cut-off, or beams on a systematic row, etc.
For example, in9,20 we used a systematic row approxima-
tion both for secular equation and summation, i.e., we
picked only a set of ∼ 10 beams along the systematic
row of reflections. Pragmatic hand-selection of beams is
widespread in literature, see for example Refs.21–25.

B. Excitation error and extinction distance based
selection of beams

In a previous work9 it was suggested to choose beams
on the base of their excitation error sg and extinction dis-
tances ξg. Their product forms a dimensionless variable
wg, for which one sets a cut-off criterion. This method
picks beams that follow the Ewald sphere and provides
automatically a more economic and accurate description.
A variant of this method uses two different cut-offs for the
wg - one for the secular equation (hundreds or thousands
of beams) and one for the summation (10–15 beams).
We can safely take a rather large set of beams in the first
step – the solution of the secular equation – and then for
the summation we pick only a subset of the beams and
Bloch waves. The selection of the subset of Bloch waves
is based on their norm within the subspace of beams se-
lected for summation9. This has been applied in several
publications.19,20,26,27.

Both this approach and the manual selection of beams
identify a set of beams and Bloch waves and then they
count all the cross-terms. That is, if we have Ng beams
and Nj Bloch waves, the summation runs over N4

gN
4
j

terms, which can be already a huge number for only 10
g-vectors and 10 Bloch waves. A detailed inspection of
these terms shows, that majority of them are actually
negligible. That means summation of many negligible
terms, which is not only inefficient but also contributes
to the propagation of machine rounding off errors.

FIG. 1. Histogram of the distribution of Y jlj′l′

ghg′h′ terms mag-
nitudes as a function of number of g-vectors and Bloch waves
(BW).

To illustrate the finding, we have set up test calcula-
tions for bcc iron at 300 keV acceleration voltage, incom-
ing beam direction [016] resulting in a 3-beam orientation
with G = (200), Laue circle center at (0, 0), and detector
orientation (G

2 ,
G
2 ). By setting the maximum wg = 105

for the secular equation, the program identified a list of
628 and 627 g-vectors for incoming and outgoing beams,
respectively. For the summation we set the maximum
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FIG. 2. Flowchart of the algorithm for automatic selection of
dominant terms.

wg = 500, which filtered the list down to 12 and 14 g-
vectors. These contained (000), ±(200), ±(110), ±(11̄0),
(310), (3̄10), ±(400) and (020). The outgoing beam in-
cluded on top of that (02̄0) and (5̄10). With the criterion
of minimal norm of the Bloch wave in the subspace of
identified beams 0.01 we got 5 and 9 Bloch waves, while
for criterion 0.005 we got 8 and 14 Bloch waves for in-
coming and outgoing beam, respectively. In total that
makes above 57 million vs 354 million terms. The com-
puting time of one thickness profile, that is 100 thickness
values at a fixed energy loss 708 eV, was 45s vs 258s, re-
spectively, performed on a single 2.0 GHz Intel Pentium
4 Xeon CPU.

Instead of increasing number of Bloch waves, we also
tested the effect of enlarging the set of g-vectors in sum-
mation by setting wg = 800. The number of selected
g-vectors grows to 22 and 20, and some of the hkl beams
have nonzero l (higher order Laue zones). Keeping min-
imal norm for Bloch waves 0.01 we got 7 and 9 Bloch
waves. In total it gives 768 milions of terms, which were
summed in 1308s.

Figure 1 shows histograms of distributions of the sizes
of all these terms. If, for example, all of the 1000 domi-
nant terms (for our fixed selection of beams) are included
in the summation, we are also including into the sum
many millions of terms with much smaller magnitudes,
majority of them having negligible influence on results.
As we will show below, 1000 dominant terms might not
always be enough in terms of convergence. Then one can
easily conclude that requiring a summation over, e.g., 105

dominant terms would require such a number of beams
and Bloch waves that we would end up summing billions
of terms, greatly wasting computational resources.

C. Automatic selection of dominant terms

The new methods described below are designed to 1)
avoid summation of negligible terms, 2) improve the scal-
ing of the summation. They are built on top of the wg

based selection of the beams for diagonalization, assum-
ing that we take a sufficiently large set of beams for the
secular equation, typically hundreds up to few thousands
(Ng ∼ 100—5000). The core of our new method is an
algorithm for selection of dominant terms out of all N8

g

terms that are generated by a secular equation with Ng

beams.
The algorithm is controlled by a single cut-off criterion

Pmin. In the first step we create lists of diads of the Bloch

coefficients, |C(j)
0 C

(j)
g | > Pmin and |D(l)

0 D
(l)
h | > Pmin, for

incoming and outgoing beam, respectively. Since none of

|C(j)
g | or |D(l)

h | is larger than one, we can safely ignore all

Bloch waves, for which |C(j)
0 | < Pmin or |D(l)

0 | < Pmin.
The resulting array is sorted according to decreasing
magnitude using QuickSort algorithm. In total, this step
has computational complexity O(N2

g +N2 logN2), where
N2 is length of the list of diads.

The next step is creation of a list of quadruple prod-

ucts |C(j)
0 C

(j)
g D

(l)
0 D

(l)
h | > Pmin. This operation is O(N4),

where N4 is the number of the quadruples larger than
Pmin, because the lists of diads were sorted by magni-
tude. The maximum number of failed comparisons is
O(N2), where N2 is the length of the longer of the two
lists of diads formed in previous step.

The list of quadruples is again sorted with QuickSort
algorithm, but this time first by the q-vector given by
h − g and then by magnitude. This operation costs
O(N4 logN4) operations. Now we have prepared data
for the final step, which is an identification and output
of octuple products larger than Pmin and, simultaneously,
output of the q,q′ diads for the MDFF calculation. Ben-
efiting from the way how we sorted the list of quadruples,
we can serially process the list and output q,q′ and cor-
responding octuples without actually holding the array of
octuples in memory. The number of operations is O(N8),
where N8 is the number of octuples larger than Pmin.
Maximum number of failed comparisons is given by the
number of q,q′ diads, which is well below N8.

As a graphical summary of the main steps of the al-
gorithm, a schematic flowchart diagram has been plotted
in Fig. 2.

Memory requirements are very favorable. Most often,
the largest arrays are the Ng ×Ng matrices used in the
secular equation. The lists of quadruples rarely reach
this lengths, only perhaps for extremely small Pmin of
the order below 10−6. The octuples are never held in
memory, since the array is created and output serially
based on the favorable sorting of the list of quadruples.

As will be shown below, N8 can be orders of magnitude
below the N4

gN
4
j , even if naturally it has to be propor-

tional to that. Its value strongly depends on Pmin, and
it turns out to be approximately inverse proportional to
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Pmin, i.e., N8 ∝ P−1min. Tuning the Pmin allows to find
a suitable compromise between the speed and accuracy,
which will be discussed below. Also note that we are se-
lecting largest terms from a large set of beams, of the
order of 1000, which may not be feasible to treat by
above-mentioned methods. Therefore it can happen that
stricter selections of beams and including all cross-terms
can lead to less accurate calculations because some sin-
gular contributions of considerable magnitude beams can
be missed. Examples of such situations will be shown be-
low.

D. Automatic term selection with consideration of
MDFF asymptotical behavior

A modification of the algorithm is possible if we take
an advantage of the dipole-type asymptotic behavior of
the MDFFs and the 1/q2q′2 denominator. For large q-
vectors the denominator suppresses the terms, therefore
we can do an even more efficient rejection of the negligible
terms.

In the dipole approximation, MDFF is proportional to

S(q,q′, E) ∝ q · N̄(E) · q′ + (q× q′) ·M(E) (5)

where N̄ is a energy-resolved tensor dependent on den-
sity of states, local anisotropies and spin-orbit coupling
and M is an energy-resolved vector function of local mag-
netic properties11. Ignoring the energy dependence, the
asymptotic behavior of MDFF as a function of q,q′ vec-
tors is S(q,q′) ∝ qq′. Combining this with the denomina-
tor 1/q2q′2 accompanying every MDFF, we obtain 1/qq′

asymptotic behavior of terms. Note that the dipole be-
havior of MDFF is valid only for small q,q′. For large
ones, MDFF goes to zero instead of increasing bound-
lessly. In this sense, the 1/qq′ asymptotic behavior can
be considered as an upper bound.

In order to keep a dimensionless variable for the cut-
off criterion, we attach a factor q0/qgh to the lists of
quadruples, where q0 = kf − ki and qgh = q0 + h − g.
A small complication arises from this choice, since it is
possible that the ratio q0/qgh is larger than one for some
larger scattering angles or energy losses. For example,
when q0 = kf − ki ≈ G for some allowed reflection G,
then |q0| > |q0−G|. Then in some of the summed terms
the qgh can be equal to q0 − G, and in such case we
get q0/qgh > 1. For such eventualities we need to make
sure that our lists of diads have a ‘reserve’, therefore the
cut-off for the list of diads needs to be reduced. We have
implemented a cut-off Pmin/10 for the list of diads, which
is an arbitrary choice, yet it turned out to be both safe
and not too costly when compared to other list operations
in the algorithm. The rest of algorithm is unchanged,
only when outputting the list of selected octuples, we
remove the asymptotic factor q20/qghqg′h′ .

In the rest of the article, we use this modified auto-
matic term selection algorithm (MATS).

FIG. 3. Diffraction pattern of iron in 3-beam orientation with
G = (200). Top row corresponds to 30nm sample thickness,
bottom row is at 100nm. From left to right various methods
of calculation have been used, namely systematic row (SR)
approximation, wg-based beam selection (WGBS) and auto-
matic term selection with MDFF asymptotics (MATS) with
two different cut-offs (see text for details). Intensities are on
a logarithmic scale. The qx, qy axes are in multiples of G,
where G = (200). Calculations were performed on a mesh of
201× 201 pixels.

IV. RESULTS

In this section we compare the various methods of per-
forming the Bloch waves summation, and demonstrate
some of new possibilities offered by the MATS.

A. Weakly excited spots

In systematic row geometries, many simulations have
been performed by only choosing beams along the sys-
tematic row. However, depending on the tilt of the beam,
some of the spots outside the systematic row can be
weakly excited. That can be easily missed in the sys-
tematic row approximation (SRA). Here we will show a
simulation of a three-beam orientation for bcc iron with
systematic row index G = (200) at acceleration voltage
300keV. We will consider a beam tilt of approximately
5 degrees from [001] zone axis orientation, which cor-
responds approximately to incoming beam orientation
[0, 1, 10]. In total 201 × 201 pixels were calculated in
the range from −5G to +5G for both qx and qy.

Let’s compare precision and timing of SRA, wg-based
beam selection (WGBS) and the MATS. In the SRA
we included beams up to ±4G, in total 9 beams and
the summation was performed over all 9 resulting Bloch
waves. In the WGBS, for the secular equation we set the
wg cut-off to 100000, which resulted in approximately 630
beams. For the summation, we used cut-off 300, which
was fulfilled by 8–14 beams. For the Bloch waves we re-
quired the subspace norm9 to be larger than 0.01, which
was fulfilled by 4–27 Bloch waves out of the total num-
ber of approximately 630 Bloch waves. Finally, in the
MATS we tested for summation the following two cut-off
criteria: Pmin = 0.01 and 0.0001.
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TABLE I. Computational times (CPU) for the methods ap-
plied in Fig. 3. The third column summarizes statistical in-
formation about the minimum / average / maximum number
of summation terms from the 201× 201 calculated pixels.

Method CPU [h] Min/aver./max no. of terms
SRA, 9 beams 561 constant, 98 = 4.30× 107

WGBS, 300/0.01 2800 0.11/1.05/6.31× 108

MATS, Pmin = 10−2 43 0.37/2.90/45.4× 102

MATS, Pmin = 10−4 98 0.18/7.05/49.7× 104

The resulting diffraction patterns are summarized in
Fig. 3. The SRA calculation (1st column) shows the
Bragg spots and a Kikuchi band perpendicular to the sys-
tematic row direction. Otherwise, no other features can
be seen except for a gradual decrease of the scattering in-
tensity towards larger scattering angles. When using the
WGBS method, the resulting diffraction patterns (2nd
column) show additional features, such as Kikuchi bands
in lower quadrants and some spot-like features around
(qx, qy) = (±5,−1). In the 3rd column there are re-
sults of the new summation method MATS picking only
terms larger than 0.01. This calculation shows even more
features, particularly the much better resolved Kikuchi
bands passing from top corners of the diffraction pat-
tern and crossing at the zone axis point (down, outside
the range) at about 10 degrees tilt from the transmitted
beam direction. In the last column we show a result of
the MATS algorithm considering all terms larger than
0.0001. Visually it is not easy to spot differences from
a calculation with cut-off 0.01, which demonstrates that
already such a low cut-off provides reasonably converged
diffraction pattern.

Regarding the computing costs, analysis is summarized
in Table I. The fastest was the MATS simulation with
Pmin = 0.01, which finished in 43 CPU hours. In this cal-
culation, a large part of the time was spent in diagonal-
ization of the secular matrices of dimension 630. This is
clearly seen on MATS calculation with Pmin = 0.0001—
although it required on average summation of 200 times
more terms, the computing time increased only by fac-
tor of two to 98 CPU hours. The SRA calculation took
considerably more time, despite being much less accu-
rate: the 9-beam calculation finished in 561 CPU hours.
Note that here we are diagonalizing very small matri-
ces, only 9-by-9, therefore practically all the computing
time is spent in summation. Finally, the WGBS calcu-
lation required 2800 CPU hours, almost 70-times more
than MATS with Pmin = 0.01, yet being of lower ac-
curacy. While in our SRA calculation we always sum
98 = 43 × 106 terms, in MATS with Pmin = 0.0001 it
was on average only 70× 103, in maximum reaching half
million.

The most finding from these calculations is that MATS
calculations provide substantially more detailed calcula-
tions and yet they require an order of magnitude less time
than even a simple systematic row approximation with 9
beams.

FIG. 4. Diffraction patterns (top row), relative up-down dif-
ference maps (middle row) and apparent mL/mS ratio maps
(bottom row) a function of convergence parameter Pmin. Cal-
culations were performed for 20nm layer of bcc iron in two-
beam geometry with G = (200), at 300keV. The qx, qy axes
are in multiples of G, where G = (200). Calculations were
performed on a mesh of 51× 51 pixels.

B. EMCD and mL/mS maps of iron

Electron magnetic circular dichroism (EMCD) is a re-
cently developed experimental technique28, which uses
ELNES to extract the atom-specific magnetic character-
istics, such as spin and orbital moments. For quantitative
analyses it used sum rules29,30, with which one can ex-
tract the ratio of orbital and spin moment of the atom of
interest27. These properties are highly sensitive functions
of the edge-dependent ELNES spectra. As in experiment,
also in simulations there is a high demand for precision.
Fig. 4 shows the performance of MATS for the similar
setup as above. A bcc iron sample was assumed oriented
in a two-beam case with G = (200) and beam tilt of 10
degrees from [001] zone axis, i.e., beam direction approx-
imately along [016]. The acceleration voltage was set to
200 keV. The Fig. 4 shows diffraction pattern in the top
row, distribution of the magnetic signal in the middle row
and the map of the ml/ms ratio in the bottom row, as a
function of the cut-off variable Pmin. The maps span an
area of momentum transfers qx, qy from −2.5G to +2.5G
on a mesh of 51× 51 pixels.

The distribution of the magnetic signal is obtained as a
difference of the diffraction pattern and its mirror image
with respect to the systematic row mirror axis. In the
figure, it is shown as a relative quantity, that means it is
divided by the sum of the diffraction pattern and its mir-
ror image. In other words, it is an antisymmetric part of
the diffraction pattern divided by its symmetric part. We
will not dwelve here into details of spectrum processing
on EMCD such as the continuum signal extraction or
post-edge normalization—an interested reader can find
information about these topics in31—since our main fo-
cus is the convergence of the Bloch waves calculation.

The maps of the mL/mS ratio are evaluated pixel-by-
pixel from the magnetic signals ML3

and ML2
by the
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TABLE II. Average lengths of double 〈N2〉, quadruple 〈N4〉
and octuple 〈N8〉 product lists, average number of momentum
transfer diads per energy step 〈Nqq′〉 and computing times
(total and per-pixel average) for maps in Fig. 4 as a function
of convergence parameter Pmin. Times refer to a single Intel
Pentium 4 Xeon processor at 2.5GHz.

Pmin 〈N2〉 〈N4〉 〈N8〉 〈Nqq′〉 ttotal 〈t1〉
10−2 230 72 330 12 2h 16min 3.1s
10−3 1355 750 4710 110 3h 18min 4.6s
10−4 5545 5865 56830 705 11h 13min 15.5s
10−5 23060 39760 570250 3600 83h 35min 115s
10−6 73591 259739 5398841 16860 628h 14min 870s

following formula29,30

mL

mS
=

2

3

ML3 +ML2

ML3
− 2ML2

(6)

The ML3 and ML2 were integrated over the L3 and L2

ionization edge regions, respectively. More precisely, the
energy range was set to 1.5–2.0eV above the Fermi level,
containing 11 energy values. This range covers the peak
of the unoccupied 3d spin-down states and it is the dom-
inant contribution to the mL and mS measured by the
sum rules29. The limited energy range was chosen for
the purpose of saving computational resources, since the
DFT evaluation of MDFFs is rather costly and the focus
here is on the BW part of the calculation. Neverthe-
less, it was tested that this energy range provides results
representative of the whole energy range.

Intuitively, mL/mS should be a constant function
throughout the diffraction plane. However, in fact, large
variations occur due to asymmetries discussed in detail
in32. The map of the mL/mS ratio is a highly sensitive
function of the scattering cross-section and is an excellent
test of the convergence properties for the MATS.

We have used the same wg cut-off as in sub-section
IV A, but we have varied the Pmin from 10−2 down to
10−6 and recorded some statistic information about the
number of terms included in the summation—see Ta-
ble II. Note that, as anticipated, the number of summed
terms is inversely proportional to Pmin. Importantly,
even at the most accurate calculation, the number of
summed terms stays many orders of magnitude below
7008, demonstrating the high efficiency of the selection
of terms by MATS.

Note that the diffaction pattern appears to be rea-
sonably converged already for Pmin = 10−2. An at-
tentive reader might spot slight fuzziness, but neverthe-
less the differences between all five diffraction patterns
are visually negligible. The relative difference map re-
quires better convergence, at least Pmin = 10−3, or better
Pmin = 10−4. Note the numerical noise at Pmin = 10−3,
particularly along the vertical line going through the
transmitted beam. Although slight fuzziness remains at
Pmin = 10−3, but the accuracy is already satisfactory.

The most sensitive quantity presented here is the ap-
parent mL/mS ratio. Since the orbital momentum in

iron is small, the numerator in the sum rule expres-
sion is a difference of two (typically small) differences
of spectra, integrated over L2 or L3 edge, respectivelly.
It requires high accuracy to obtain well converged maps.
Calculation with Pmin = 10−4 seems to produce reason-
ably converged results. The only visible difference at
Pmin = 10−5, when compared to Pmin = 10−4, appears
around (−1,±1)G and (2,±2)G positions. The results of
calculation with Pmin = 10−6 are visually indistinguish-
able from Pmin = 10−5.

Looking back into the Table II, we see that, for most
of our purposes, Pmin = 10−4 provides highly converged
results at average costs 3-times lower than the simplest
testing calculation discussed in Sec. III B. Nevertheless,
this criterion can depend on the crystal structure and
orientation of interest and always should be tested, when
performing simulations of new systems.

C. Tilting crystal from the zone axis orientation

High efficiency of the MATS method allows us to ap-
proach experimental geometries, which require a large
number of beams for a converged simulation. Particu-
larly, the zone axis orientation is highly computationally
intensive. Here we will follow the development of the
diffraction pattern, when tilting from an exact zone axis
towards the 3-beam case with G = (200) in small steps
of the tilt. The incoming beam is gradually tilted from
an exact zone axis [001] direction towards the 3-beam
orientation via [0, 1, 40] ' 1.43 degrees, [0, 1, 20] ' 2.86
degrees, [0, 1, 10] ' 5.71 degrees and [016] ' 9.46 degrees
tilt. At the endpoints we also did calculations with man-
ual selection of beams. For the exact zone axis case we
included kinematically allowed g-vectors from the zero-
order Laue zone (ZOLZ) with hkl indices less than 4 (in
total 25 g-vectors) and for the final 3-beam orientation
we included beams of up to ±5G (in total 11 g-vectors).

The wg cut-off was the same as in previous sections, the
Pmin was set to 10−4, leading to well converged diffrac-
tion patterns and maps of the magnetic signal, as demon-
strated in Sec. IV B. We chose to demonstrate the results
at a sample thickness 50nm, because at this thickness the
Kikuchi patterns appear sharp enough, yet not so sharp
that we would observe aliasing artefacts due to discrete
grid of pixels.

The results are summarized in Fig. 5. At the zone axis
orientation we see a rich pattern, consisting of Bragg
spots and multitude of Kikuchi bands and lines. The
Kikuchi pattern is even better visible on the map of the
magnetic signal. Number of thin lines with varying inten-
sity and sign form a rich symmetric structure. Now let’s
compare them with a calculation with 25 g-vectors from
ZOLZ. The diffraction pattern seems to display the same
structure, except for higher intensity. A cautious eye
would spot some differences in relative intensity around
{220} spots. More differences can be seen in the maps
of the magnetic signal. Particularly at larger scattering
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FIG. 5. Evolution of the diffraction pattern (top row) and
of the map of magnetic signal (bottom row) when tilting the
incoming beam from [001] zone-axis orientation to 3-beam ori-
entation [016], which is approximately 9.5 degrees tilted from
[001]. Intermediate orientations (beam directions [0, 1, 40],
[0, 1, 20] and [0, 1, 10]) are indicated over the top row of pan-
els. Left halfplane of [001] zone axis orientation is calculated
with 25-beams from the zero-order Laue zone, right half-plane
of [016] 3-beam orientation is calculated with 11 beams on the
systematic row, and the other maps are calculated by MATS
algorithm with Pmin = 10−4. The qx, qy axes are in multiples
of G, where G = (200). Calculations were performed on a
mesh of 201× 201 pixels.

angles, the pattern of Kikuchi lines is more rich in the
MATS description.

As we tilt the beam, the pattern of beams is deform-
ing, following the movement of the zone axis spot down.
At beam tilt 1.43 degrees, corresponding to approxi-
mately 25 mrad, the zone axis spot moved down by a
bit less than 2G. The two-fold Bragg angle correspond-
ing to G = (200) in bcc iron is 13.8 mrad, therefore the
2G ≈ 27.6 mrad, which agrees with the position of the
zone axis spot in the map. The dominant Kikuchi bands
are passing around this spot. In the map of the magnetic
signal a noise-like signal forms around the zone axis cen-
ter, and at the same time, there evolves a different dom-
inant sign in the four quadrants of the diffraction plane.
Both these trends continue with the tilt 2.86 degrees.
The zone axis spot has weaker intensity, moves further
down, to around 3.5G under the transmitted beam. At
this angle and thickness, we see relatively strongly ex-
cited beams for h = −3,−1, 1, 3 and k = −1, i.e., spots
under the systematic row of reflections. At the 5.7 de-
grees tilt the zone axis spot is outside the vertical range
of our maps, we see a clean 3-beam pattern, with some
intensities at (1̄1̄0) and (11̄0). Maps of the magnetic sig-
nal are considerably simpler, having a dominant sign in
each quadrant. The four vertical lines represent Kikuchi
lines. Skew lines at larger scattering angles show unex-
pectedly high magnetic signal, which might be a finding
of potential practical importance.

At the final step, almost 10 degrees tilt the patterns
complete the trends: three strongly excited spots along
the systematic row, and three dominant Kikuchi bands.
Magnetic signal showing the four vertical lines with signs
corresponding to their quadrants. Interesting is a com-
parison to a systematic row approximation, where we

used only 11 g-vectors – multiples of the G = (200).
These patterns completely miss the skew Kikuchi bands
and in the maps of the magnetic signal there is a very
reduced pattern of lines.

D. Comparison between MATS and ICSC results

A similar but alternative computer program which cal-
culates inner-shell ionization and backscattering cross
sections for fast electrons incident on a crystal is avail-
able, known as the ICSC code, developed by Oxley and
Allen34. The program calculates the inelastic scattering
coefficients for inner-shell ionization, pertinent to EELS
and energy dispersive X-ray (EDX) analysis, using pa-
rameterizations of the atomic inelastic scattering factors.
The program treats the dynamical scattering in a very
similar way to MATS, but simplifies the calculations of
dynamical form factors, using the approximation where
the integration over all the final states of the scattered
electron is replaced by an analytic expression, which un-
fortunately does not cover general MDFF calculation. As
a consequence, the ICSC code only allows the EELS de-
tector geometry concentric with the incident beam di-
rection, i.e., the detector is aligned with the transmitted
beam and the only variables are the sample orientation,
convergence and collection angles. The ICSC code has
been intensively tested for EDX results of atom location
by channeling enhanced microanalysis (ALCHEMI), but
little was published in testing the ICSC program for ex-
perimental EELS. It is thus a good chance for comparing
the two methods.

As a benchmark we selected a cubic SiC crystal and
the orientation dependent Si K-edge cross sections were
compared. We have done two sets of calculations: 1)
thickness dependence in a beam-rocking experiment in a
systematic row orientation, and, 2) 2-dimensional beam-
rocking in a [001]s zone-axis orientation. In both cases,
we selected parallel illumination and convergence angle
of 10 mrad. The acceleration voltage was set to 300 keV.
ICSC uses Doyle-Turner scattering factors35, therefore
for the sake of consistency, we used these also in calcula-
tions with the new BW code.

In the systematic row calculation, we assumed a beam
tilt of approximately 10 degrees towards the G(220) sys-
tematic row conditions, i.e., the zone axis was [1̄18]. For
ICSC we used as set of 85 beams (hkl) ⊥ [1̄18]. With the
new BW code we did two sets of calculations - one with
the fixed set of 9 beams from the systematic row (SR; up
to ±4G(220)) and another in the MATS approach with

convergence parameter 10−4. Results are summarized
in Fig. 6. The results show good qualitative agreement,
yet there are clear differences in details, even when com-
paring the ICSC calculation to a SR calculation. That
indicates that approximations introduced in ICSC par-
tially neglect some details of the dynamical diffraction
process. Full MATS calculation shows expectedly even
more of a fine structure, especially at larger thicknesses.
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FIG. 6. Comparison of ICSC and MATS. Thickness profiles of
K-edge of Si in SiC in systematic row orientation. Horizontal
axis corresponds to a beam tilt in multiples of G = (220)
and the vertical axis is thickness in nm. Calculations were
performed for 51 tilts and 40 thicknesses. a) ICSC calculation,
b) calculation with the new BW code, adopting the same
parameters as ICSC, c) MATS calculation.

FIG. 7. Comparison of ICSC and MATS. Intensity of K-edge
of Si in SiC in [001] zone-axis orientation as a function of
beam rocking. Axes corresponds to a beam tilt in multiples of
G = (200). Calculations were performed on a mesh of 51×51
pixels. a) ICSC calculation at 100 nm, b) calculation with
the new BW code, adopting the same parameters as ICSC, c)
MATS calculation at 100 nm, d)-f) the same as a)-c), but at
200 nm.

Detailed comparison to experiment would be needed to
verify the fine features observed in MATS calculation.

The dependence of the double-differential scattering
cross-section on beam rocking from the [001] zone axis
orientation is shown in Fig. 7. Results by the ICSC code
are shown in the left column. A set of 197 beams was
used, all from the zero-order Laue zone. The same ones
were used for comparison with the new BW code (shown
in the middle column). Finally, results obtained by the

MATS method are shown in the right column. General
qualitative features are in good agreement between all
three computational approaches, nevertheless, as in the
systematic-row orientation, also here we observe notable
differences. Of particular interest is a soft breaking of
the four-fold symmetry in the case of MATS calculations.
It is easier to spot at 100 nm, where the central inten-
sity maximum has a slighly prolate shape along the main
diagonal of the pattern. This can be explained by pres-
ence of beams from higher-order Laue zones in the sec-
ular equation. They introduce (hkl) beams with l 6= 0
and due to the curvature of the Ewald sphere, (hkl) and
(hkl̄) have different excitation errors and thus their cor-
responding Bloch coefficients differ. In combination with
the four-fold screw axis of this structure and a lack of
inversion symmetry, the resulting beam-rocking pattern
shows deviation from four-fold symmetry.

V. CONCLUSIONS

We have developed a new method for accurate sum-
mation over Bloch waves and their plane wave compo-
nents (beams) named modified automatic term selection
(MATS). The complexity of MATS scales inversely pro-
portional to the cut-off for the term sizes. It allows highly
accurate calculations at much lower computational costs
compared to previous methods. We have demonstrated
advantages of the method on capturing the intensity of
the weakly excited spots outside the systematic row. The
convergence properties of MATS were studied on a two-
beam case simulation with focus on faint effects observed
in EMCD experiments. A rich pattern of Kikuchi bands
and lines was presented in a simulation of a tilting of the
bcc crystal from the zone axis orientation to a three-beam
orientation. We have also compared the new method to
ICSC code and both display qualitatively the same re-
sults. In more detail, MATS calculation seems to provide
more rich structures, most likely due to larger number of
beams included in the secular equation.
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