AI P I The Journal of /

Chemical Physics | -
A quantum equation of motion for chemical reaction systems on an adiabatic double-
well potential surface in solution based on the framework of mixed quantum-classical

molecular dynamics
Atsushi Yamada and Susumu Okazaki

Citation: The Journal of Chemical Physics 128, 044507 (2008); doi: 10.1063/1.2825611
View online: http://dx.doi.org/10.1063/1.2825611

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/128/4?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon
mixed quantum-classical approximation. |. Proton transfer reaction in water

J. Chem. Phys. 141, 084509 (2014); 10.1063/1.4893933

2D IR spectra of cyanide in water investigated by molecular dynamics simulations
J. Chem. Phys. 139, 054506 (2013); 10.1063/1.4815969

The roles of electronic exchange and correlation in charge-transfer-to-solvent dynamics: Many-electron
nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase
J. Chem. Phys. 129, 164505 (2008); 10.1063/1.2996350

The structures of ozone and H O x radicals in aqueous solution from combined quantum/classical molecular
dynamics simulations
J. Chem. Phys. 124, 194502 (2006); 10.1063/1.2198818

Dissipative mixed quantum-classical simulation of the aqueous solvated electron system
J. Chem. Phys. 116, 8418 (2002); 10.1063/1.1468886

SUBSCRIBE TO



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/327320036/x01/AIP-PT/JCP_ArticleDL_101514/PT_SubscriptionAd_1640x440.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Atsushi+Yamada&option1=author
http://scitation.aip.org/search?value1=Susumu+Okazaki&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.2825611
http://scitation.aip.org/content/aip/journal/jcp/128/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/8/10.1063/1.4893933?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/8/10.1063/1.4893933?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/139/5/10.1063/1.4815969?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/129/16/10.1063/1.2996350?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/129/16/10.1063/1.2996350?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/19/10.1063/1.2198818?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/19/10.1063/1.2198818?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/116/19/10.1063/1.1468886?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 128, 044507 (2008)

A quantum equation of motion for chemical reaction systems on an
adiabatic double-well potential surface in solution based on the framework
of mixed quantum-classical molecular dynamics

Atsushi Yamada and Susumu Okazaki®
Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

(Received 24 August 2007; accepted 27 November 2007; published online 29 January 2008)

We present a quantum equation of motion for chemical reaction systems on an adiabatic double-well
potential surface in solution in the framework of mixed quantum-classical molecular dynamics,
where the reactant and product states are explicitly defined by dividing the double-well potential
into the reactant and product wells. The equation can describe quantum reaction processes such as
tunneling and thermal excitation and relaxation assisted by the solvent. Fluctuations of the
zero-point energy level, the height of the barrier, and the curvature of the well are all included in the
equation. Here, the equation was combined with the surface hopping technique in order to describe
the motion of the classical solvent. Applying the present method to model systems, we show two
numerical examples in order to demonstrate the potential power of the present method. The first
example is a proton transfer by tunneling where the high-energy product state was stabilized very
rapidly by solvation. The second example shows a thermal activation mechanism, i.e., the initial
vibrational excitation in the reactant well followed by the reacting transition above the barrier and
the final vibrational relaxation in the product well. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2825611]

I. INTRODUCTION

The chemical reaction in solution is, in general, de-
scribed by a transition of a solute from the reactant state to
the product state in a double-well potential energy surface.
Then, quantum effects of the nuclei involved in the reaction
play a very important role in various reaction processes. For
example, tunneling is the purely quantum effect, which is
noticeable for the light atoms such as proton. Molecular vi-
bration also shows significant quantum effect in the thermal
activation process surmounting the potential barrier since the
energy gap between the vibrational states is much greater
than the thermal energy even for the ordinary molecules. For
example, it is about 3600 cm~! for OH stretching, which is
about 35 times greater than the thermal energy at room tem-
perature, %kT~ 104 cm™'. The zero-point energy,
~1800 cm™!, is great, too. It pushes up the system energy
from a bottom of the well, contributing to the reaction rate.

In solution, solvent molecules provide the transition en-
ergy to the solute or absorb it from the solute promoting the
vibrational excitation and relaxation, respectively. It acceler-
ates the tunneling and reaction transition, too, by compensat-
ing the difference of the energy level between the reactant
and product states keeping the energy conservation low.

In order to describe the quantum dynamics of chemical
reaction systems in solution according to the earlier picture,
it is essential to define the reactant and product state sepa-
rately. Between the two states, first, the stable position of the
proton is different and, further, the electronic states of the
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donor and acceptor or the partial charges on them are con-
siderably different from each other. Then, the solvent mol-
ecules around them clearly distinguish these two states by
their interaction. Now, it is natural to define the reactant and
product states separately and consider that continuous inter-
action with the moving solvent causes the decoherence be-
tween them. In solution, the system may not be described
permanently by a superposition of the reactant and product
states. The situation in solution is very different from that
found in vacuum.

However, considering the present computational power,
it is impossible to simulate the chemical reaction dynamics
in solution fully quantum mechanically. Then, an approxima-
tion is needed. In order to solve this problem, the path inte-
gral influence functional theoryl’2 and mixed quantum-
classical 21pproximation3_27 have been applied so far. In
particular, the latter mixed quantum-classical approximation
is adequate for simulating realistic molecules, where one or a
few degrees of freedom of interest are handled quantum me-
chanically while the remaining solvent degrees of freedom
are all described classical mechanically.

The mixed quantum-classical molecular dynamics simu-
lation methods have been applied to the proton transfer re-
action on the adiabatic double-well potential surface. At an
early stage of the progress, calculations have been done fix-
ing the proton to a particular state, i.e., the vibrational
ground state in an adiabatic double-well potentialS’4 or the
one in a reactant or product state defined according to a
diabaticlike picture.s’6 The calculated trajectory was analyzed
to obtain a rate constant based upon the reactive flux for-
mula.

After then, the method has been developed to describe

© 2008 American Institute of Physics


http://dx.doi.org/10.1063/1.2825611
http://dx.doi.org/10.1063/1.2825611
http://dx.doi.org/10.1063/1.2825611
http://dx.doi.org/10.1063/1.2825611

044507-2 A. Yamada and S. Okazaki

the transitions among the vibrational states of the proton,7’26

where the coupled equations of motion have been solved to
obtain a trajectory of the both solute and solvent degrees of
freedom. Two conventional methods have been adopted. The
first one is based on the mean-field approximationL“ and the
other the adiabatic surface hopping method.*° In the first
method, the proton spread over the two wells simultaneously
and, at the same time, it spread over a number of adiabatic
vibrational states. On the other hand, the latter adiabatic sur-
face hopping method assumed fast decoherence among the
adiabatic vibrational states. However, the method described
just vibrational excitation and relaxation on the whole adia-
batic double-well potential energy surface. The system still
spread over the two wells without discriminating between
the reactant and product states. Thus, these two calculations
did not take account of the decoherence between the reactant
and product states or give a picture of the chemical reaction.
In other words, the system was always found in a “coherent”
state between the reactant and product states, where no reac-
tion proceeded.

In our previous pape:r,12 a quantum mechanical equation
of motion has been presented, in the framework of the mixed
quantum-classical approximation, for the nuclei involved in
the chemical reaction in solution, explicitly defining the re-
actant and product states following the diabatic representa-
tion. The solvent was assumed to follow the classical equa-
tion of motion, the motion of which presents a time-
dependent potential for the quantum system causing
transitions among the states. The equation can describe the
chemical reaction itself, i.e., the transition from the reactant
state to the product state, as well as the vibrational excitation
and relaxation within each of the reactant and product poten-
tial surfaces. The tunneling was also included in the reaction
dynamics described by this equation. The method may be
applied to the system where the electronically excited states
are important in the reaction.

The surface hopping technique was adopted in our pre-
vious numerical calculations'? for a few model proton trans-
fer reaction systems since force on the classical system is
significantly dependent upon whether the quantum state is in
the reactant state or in the product state. This implies that,
seeing from the classical system, the fast decoherence limit
was assumed. The calculations reproduced both thermal ac-
tivation process and tunneling one as a reaction mechanism.

However, diabatic representation makes no sense when
electronically excited state does not take part in the chemical
reaction of interest, i.e., when the energy level of the elec-
tronically excited states is very high. In this case, the reac-
tion proceeds just on an adiabatic double well potential, i.e.,
the electronic ground state.

In the present study, a quantum mechanical equation of
motion is presented for the reacting nuclei on an adiabatic
ground-state potential surface defining the reactant and prod-
uct states explicitly. The equation can describe thermal acti-
vation process, i.e., vibrational excitation in the reactant state
followed by a reacting transition from the vibrational excited
state in the reactant state to a vibrational excited state in the
product state and the final vibrational relaxation to the vibra-
tional ground state in the product state. It can also represent
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FIG. 1. Schematic pictures for the adiabatic potential energy surface V
(thick solid line), the reactant potential energy surface VX, and the product
one V¥ (thick dotted lines). The vibrational states in the reactant well,
{\QR))}, and those in the product well, {|§§{P)>} (thin solid lines) are also
presented.

the direct proton tunneling between the vibrational states of
the reactant and product states lower than the potential bar-
rier of the double well. In this case, however, the equation is
more complicated than that obtained previously for the case
of the diabatic representation,12 although it is still calculable.
Further, it includes a few approximations which must be
tested before use.

Thus, together with our previous simulation method'? in
the diabatic representation, the present method in the adia-
batic representation must present a set of powerful tools to
simulate the chemical reaction in solution such as proton
transfer reaction.

In Sec. II, we derive a quantum equation of motion for
the nuclei involved in the chemical reaction defining the re-
actant and product states explicitly and, then, it is combined
with the surface hopping method. In Sec. III, two numerical
examples are presented in order to demonstrate the applica-
bility of the present method, reproducing tunneling process
and thermal activation process in model chemical reaction
systems. The method is discussed in more detail in Sec. IV.

Il. THEORY

First, we define a reactant potential energy surface and a
product one by dividing an adiabatic ground state double-
well potential surface into two surfaces. Then, we can write
down a quantum mechanical equation of motion for the sys-
tem of interest on the potential surfaces above. The system is
coupled with the classical motion of the solvent according to
the mixed quantum-classical molecular dynamics. Later, we
combine our equation of motion with the surface hopping
technique as an example.

A. Definition of the reactant and product states

We divide a double-well potential energy surface into the
reactant and product potential energy surfaces and define the
vibrational states in each potential energy surface as shown
in Fig. 1. The two curves are drawn as follows. Below the
potential barrier in the center, each curve is fitted to each of
the two wells as correct as possible. The left and right walls
are also well fitted for the reactant and product surfaces,
respectively. However, slight arbitrariness may enter near the
top of the barrier for the both surfaces. Above the barrier, the
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lines (dotted lines) may be drawn almost arbitrarily. One
primitive choice is to adapt two harmonic oscillators and
another is to assume two Morse oscillators.

The points, here, are (1) each oscillator must reproduce
the low-energy vibration in each of the two potentials below
the barrier, (2) the wave functions of the excited vibrational
states in the reactant and product surfaces must overlap suf-
ficiently with each other at high energy levels above the bar-
rier, and (3) we do not care much about the degree of the
reproduction for the vibration above the barrier. Now, the
vibrational states may be defined by the vibrational eigen-
states in each of the reactant and product potential energy
surfaces. These give a clear picture for the chemical reaction
in the low energy region below the potential barrier. On the
other hand, in the high energy region above the potential
barrier, the system goes back and forth between the reactant
and product states since the overlap of the wave functions
between them is great. This corresponds to crossing and re-
crossing motions of the system above the barrier. If the fre-
quency is much higher than that of the vibrational excitation
and relaxation, then, the choice of the final state by the sys-
tem may be considered to be a stochastic process where the
solvent absorbs the vibrational excess energy of the solute.
This may give a good model for the actual relaxation pro-
cess. The great overlap of the vibrational wave functions
between the reactant and product states above the potential
barrier is essential for the inclusion of this kind of the sto-
chastic relaxation to the final state. Of course, we have arbi-
trariness in the choice of the functional shape above the bar-
rier. However, it is clear that the rate-determining step of the
thermal activation process is not a reaction transition after
the state is vibrationally excited above the barrier but the
vibrational excitation itself. Thus, one candidate of the model
surface is Morse function by which the potential may be well
described below the barrier and, at the same time, the overlap
of the wave functions between the reactant and product states
above the barrier is great (see Fig. 1).

B. Quantum equation of motion

According to the mixed quantum-classical approxima-
tion, we start with the total Hamiltonian for the reacting sol-
ute degrees of freedom ¢ to be quantized of the form

H=T+V,(q) + V/(q:R(t)) =T+ V(q:R(t)), (1)

where 7 is the kinetic energy, \70 is the adiabatic double-well
potential energy surface relevant to the chemical reaction in
vacuum, and f/, is the interaction with the solvent. Since R(z)
represents trajectory of a set of solvent degrees of freedom
including the solute ones to be handled classical mechani-
cally, it works as a time-dependent parameter in the interac-
tion potential, giving a time-dependent total potential V for
q.

Now, in order to define the reactant and product states,
V(q;R(t)) is divided into two surfaces VR(q;R(t)) and
VP(q;R(1)), respectively, according to the recipe presented in
Sec. IT A. Then, the vibrational states in the reactant potential
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surface, { %R) )}, and those in the product one, { 5,(”)}, may be
presented by solving the stationary-state Schrodinger equa-
tion

[T+ VR(g:R(1))]| €8 (q:R(1))) = 6P (R(1))| £ (q:R (1)),
(2)

[T+ VP (q:R0)]|EP (q:R0))) = £ (R(1))| £7 (g:R(1))),
(3)

where 81(6R> and g, ' are the kth eigenvibrational energies

within the reactant and product wells, respectively. Then, a
wave function |W(z,q;R(t))) may be expanded as

(P)
k

[W(1,q:R (1)) = 2 CR(0)|E€P (q;R (1))
k

+ > P& (g:R(1)), (4)
k

where C,((R)(t) and C,((P>(t) are the expansion coefficients for
the kth vibrational state within the reactant well and the
product one, respectively. Here, we must note that although
each set of the vibrational states is orthonormalized, the two
sets are not orthogonal each other. This will be discussed in
detail later.

Substituting Egs. (1) and (4) into the time-dependent
Schrodinger equation, multiplying the vibrational state,
<§§R) , from the left, and integrating over ¢, we obtain

if(C1F + 2 €7 167))
k

= D [(EPHIER) - in(eR |ERy R
k
+ 2 (EPAIED) - in(eR |EM D . (5)
k

This is the equation of motion for the quantum system of
interest. Solving this equation coupled with the classical
equation of motion for the solvent, we can trace the time
evolution of the quantum system in solution.

As a practical matter, it may be helpful to note here that
Eq. (5) is of the form

ihsé =[H - i4D]C. (6)

Here, the vector C={C§€A)} and the matrices S ={<§§A)|§ff)>},
H={<§§A)|I-AI|§]((B))}, and D={<§§A)|E,EB>>}, where each A and B
represents R or P. Since the form is not suitable for solving
the differential equation numerically, we must calculate the
inverse matrix of S. Then, we obtain

ihC=S"'[H - itD]C. (7)

Now, we can make usage of the ordinary numerical methods
such as predictor-corrector method to solve this equation of
motion.
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FIG. 2. Time evolution of the total energy € of the total system.

C. The present basis functions and equation
of motion

Further, we must discuss about the double completeness
of the vibrational states {|§,(<R))} and {|§§€p)>} for the present
reacting system. In principle, when the infinite expansion is
done for the both wells, the description of the state will fail.
Then, the equation of motion, Eq. (5) or (7), is of no sense.
However, as discussed in Sec. II A, the vibrationally excited
state we must take account of is the one which is found just
above the barrier. Vibrationally excited states whose energy
level is much higher than the barrier contribute little to the
reaction dynamics. Thus, expansion may be cutoff at a
proper state such that the probability that the system is found
in the much higher states than the barrier is negligible. Then,
the failure of the completeness of the eigenfunctions may be
small.

In order to confirm the validity of the present quantum
equation of motion, conservation of the total energy e
=(V|H|¥)+e, of the total system was first examined along
the trajectory obtained according to Eq. (5) or (7) together
with the classical equation of motion. Here, &, is the total
energy of the classical degrees of freedom which evolves by
the Hellmann—-Feynman force. The system examined here is
the same as that presented later as example 1 in Sec. III B.
The calculation was done in NVE ensemble for the isolated
system without periodic boundary condition starting from a
superposition of the states, Eq. (4), the diagonal terms of its
density matrix giving the Boltzmann distribution. The result
is presented in Fig. 2. Figure 2 clearly shows that the energy
deviation is as small as 0.00003% of the total energy. Thus,
the total energy is satisfactorily conserved.

D. Comparison with the equation of motion
in the diabatic representation

We compare the present quantum equation of motion in
the adiabatic representation with that in the diabatic
representation.12

In the previous paper, we have presented an equation of
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motion for the quantum system on the diabatic potential sur-
face coupled with the classical degrees of freedom,

iHCW@ = g (E)E Evinrency
n(#m) k

— ih X (EDED ), (8)
k

where ijl) denotes the expansion coefficient of the wave
function for the /th vibrational state in the mth diabatic elec-
tronic state, sfj[) and f;(jl) are the /th eigenvibrational energy
and eigenvibrational function in the mth diabatic electronic
state, respectively, and Vﬁj’z is the electronic coupling element
between the diabatic states m and n. The first term on the
right-hand side of Eq. (8) works just for the phase. The sec-
ond term gives the electronic transition from the (m,[) state
to the (n,k) state, that is, the chemical reaction from the
reactant state to the product state, which is caused by the
electronic coupling V(nfr)l as well as the overlap between the
vibrational states 5551) and 5}(5() . The third term gives rise to the
transition from the (m,) state to the (m,k) state, correspond-
ing to the vibrational excitation and relaxation within the mth
diabatic potential. The equation of motion works well for the
reaction system where an electronically excited state takes
part in the reaction. In this case, the electronically ground
and excited states are mixed in each vibrational state.

On the contrary, the equation of motion obtained in the
present study plays an indispensable role when the electronic
excited state is far from the ground state. Although arbitrari-
ness is included in the definition of the vibrationally excited
states above the barrier, the reactant and product states below
the barrier are well defined. Comparing the shape of these
two equations of motion, the chemical and physical meaning
of each term of Eq. (8) for the diabatic representation is
clearer than the slightly complicated one for the adiabatic
representation in Egs. (5) and (6).

E. Application of the surface hopping approximation

In this subsection, we show the mixed quantum-classical
molecular dynamics method combining Eq. (7) with the
framework of the surface hopping approachm’14 as an ex-
ample of the numerical calculation method. The fewest
switches algorithmB’14 is adopted here, too, in the same way
as our previous study by the diabatic representation.

In the fewest switches algorithm, the time-dependent
Schrodinger equation is solved to obtain the transition prob-
ability from the specified current state to the other states,
then, the switching from the current state to the other state is
determined by comparing a random number with the transi-
tion probability at every step time. In the present study, in
order to conserve the total energy before and after the
switching of the state, the velocity scaling is additionally
performed for the classical particles.

Detail of the numerical method is almost the same as
that of the previous study except for the followings. Due to
the slightly complicated form of the Eq. (7), we adopted the
coupling vector with the classical particle j to be the
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force on it from the current quantum state,

<§(P o R)|0H/0R gf or Ry giving a simple velocity scal-
ing. This is a choice among many possibilities coming from
the arbitrariness of the force from the quantum system on its
transition.

lll. NUMERICAL EXAMPLE

In this section, we show two numerical examples in or-
der to demonstrate the ability of the present method com-
bined with the surface hopping approximation, the first one
representing the tunneling followed by the stabilization of
the system by solvation and the second one the thermal ac-
tivation and the barrier height fluctuation by the solvent.

A. Calculation

A solute is a model molecule constrained linearly in one
dimension composed of a donor atom D and an acceptor
atom A treated classical mechanically as well as a reacting
quantum mechanical atom Q located between the donor and
acceptor. An empirical valence bond model®® was adopted
for the double-well adiabatic potential function, where the
reactant and product potential surfaces in vacuum were as-
sumed to be those of harmonic oscillators described by D-Q
and Q-A distances, respectively. The coupling between the
reactant and the product was approximated to be a constant.
The position of Q was described by the grid points with the
interval of 0.01 A. The solute was immersed in 255 flexible
SPC water molecules®*” in a cubic cell of length 19.4 A in
the periodic boundary condition. The system was controlled
at constant temperature at 300 K using Nose—Hoover
chain.*' The equation of motion was integrated using the
Gear method with a time step of 0.01 fs. The intermolecular
interaction was described by Coulombic and Lennard—Jones
potentials, which was cut off for the pair whose distance is
longer than 9 A.

The vibrational state functions in solution were given by
the linear combination of Hermite polynomial functions
which are the eigenvibrational functions for the reactant and
product surfaces in vacuum. The wave function in Eq. (4)
was expanded by the vibrational eigenfunctions up to the
third excited state for both of the reactant and product states.

B. Example 1: Tunneling process

The first example shows a proton transfer reaction, i.e.,
Q=1 g/mol. Point charges of the donor, proton, and accep-
tor in the reactant state were assumed to be 0.2, 0.1, and
—-0.3, respectively, which change to be —0.6, 0.1, and 0.5,
respectively, in the product state. Positions of D and A were
both constrained by imposing a harmonic potential of
100 kcal/mol A% along the x coordinate with their centers
separated by 2.6 A. During the calculation, their y and z
coordinates were fixed to be constant. The force constants for
the D-Q and A-Q bonds were assumed to be the same as
each other, i.e., 400 kcal/mol A? and these equilibrium bond
lengths were both set to be 1.0 A. Then, the energy gap

J. Chem. Phys. 128, 044507 (2008)
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FIG. 3. Time evolution of the quantum system of example 1. Four thin solid
lines represent the vibrational energy levels in the reactant well, four thin
dotted lines the vibrational energy levels in the product well, and the thick
solid line the current vibrational energy level specified by the surface hop-
ping method.

between the eigenvibrational states in vacuum was
8.7 kcal/mol for each well. The coupling between the reac-
tant and product was 10 kcal/mol.

Figures 3-5 show the result of the time evolution of the
vibrational energy levels for the reactant state and the prod-
uct state. Figures 4 and 5 are the expanded figures of Fig. 3
around r=19.05 and 22.14 ps (arrows in Fig. 3), respectively.

140 — : : :

0
120 ﬁw
100 -
80
60 t

40t

energy(kcal/mol)

20+

19.02 19.04 19.06 19.08 19.10

time(ps)
FIG. 4. Expanded figure of Fig. 3 when a tunneling transition occurred from

the vibrational ground state in the reactant well, |§(R)> to the vibrational
excited state in the product well, |§<P



044507-6 A. Yamada and S. Okazaki

140 |, : i~

—— P
120 \*—\/—»/—%ﬁﬁ—\/\/m

| a‘O(R)>
100 1

energy(kcal/mol)

Z

22.10 22.12 22.14 22.16

time(ps)

22.18 22.20

FIG. 5. Expanded figure of Fig. 3 when a vibrational relaxation occurred
from the vibrational excited state in the product well, |§(]P )), to the vibra-
tional ground state in the same well, |§§,P )).

The thick solid line represents the current vibrational state
chosen by the surface hopping method. An initial state was
set to be the vibrational ground state in the reactant well,
|§E)R)>. A reacting transition from the reactant vibrational
ground state |§E)R)) to the vibrational first excited state in the
product well, §(1P)), occurred at r=19.05 ps as shown in Fig.
4. This is a tunneling transfer. The height of the potential
barrier was, then, about 22.0 kcal/mol, which is higher than
the two vibrational states above. The difference of energy
1.0 kcal/mol between the two states, (()R)) and |§(1P)>, was
supplied by the solvent. Then, after the reaction transition,
stabilization of the product state occurred by the solute-
solvent interaction, i.e., the solvation dynamics after the re-
organization of the electronic state of the solute molecule.
The unstable product state was, thus, stabilized by solvation
by as much as 80 kcal/mol. Subsequent vibrational relaxation
occurred at t=22.14 ps to the vibrational ground state in the
product well, éOP)% as shown in Fig. 5 to complete the
reaction.

C. Example 2: Thermal activation process

The second example is the thermal activation process
where the system surmounts the potential barrier quantum
mechanically. Here, the mass of the atom Q was assumed to
be 10 g/mol. The point charges of D, Q, and A in the reac-
tant well were assumed to be 0.0, 0.2, and —0.2, respectively,
which change to be —0.2, 0.2, and 0.0 in the product well,
respectively. Positions of D and A were both constrained by
imposing a harmonic potential of 200 kcal/mol A? along x
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FIG. 6. Time evolution of the quantum system of example 2. Four thin solid
lines represent the vibrational energy levels in the reactant well, four thin
dotted lines the vibrational energy levels in the product well, and the thick
solid line the current vibrational energy level specified by the surface hop-
ping method.

coordinate with their centers separated by 2.9 A. During the
calculation, their y and z coordinates were fixed to be con-
stant. The force constants for the D-Q and A-Q bonds were
set to be the same as 40 kcal/mol A? and these equilibrium
bond lengths were both set to be 1.2 A. Then, the energy
gap between vibrational states in vacuum was 0.88 kcal/mol
for each well. Vibrational states in solution were described in
the same way as example 1. The coupling between the reac-
tant and product states was assumed to be 2.0 kcal/mol.
The results are shown in Figs. 6-8. All kinds of lines are
the same as the case of the first example in Figs. 3-5. The
transition from the vibrational ground state in the reactant
well, R)), to the vibrational first excited state in the same
well, |§(?e)>’ occurred at r=142.21 ps as shown in Figs. 6 and
7. After the vibrational excitation, the vibrational energy
level became higher than the potential barrier. Then, the re-
acting transition from |§(1R)> to the vibrational first excited
state in the product well, §<1P)>, occurred at =142.31 ps,
which was followed by the vibrational relaxation from Lgﬁ”) )
to the vibrational ground state in the product well, §§)P ), at
t=143.00 ps to complete the chemical reaction as shown in
Figs. 6 and 8. The process gives an example of the thermal
activation combined with the barrier level fluctuation.

IV. DISCUSSION

In the present paper, we have proposed a quantum equa-
tion of motion for a solute in solution on an adiabatic poten-
tial energy surface based on the framework of mixed
quantum-classical molecular dynamics. It was combined
with the surface hopping approach as an example. Then, we
showed two numerical examples of the present method, trac-
ing the model systems for chemical reaction dynamics in
solution.

As shown in the second example, the vibrational excita-
tion in the reactant well was an essential process in the first
stage of the thermal activation mechanism. In the vibrational
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FIG. 7. Expanded figure of Fig. 6 when a vibrational excitation occurred
from the vibrational ground state, | OR )>, to the vibrational excited state,
\g‘,’”), in the reactant well, which was followed by reacting transition above
the barrier from the vibrational excited state in the reactant well, élm), to the

vibrational excited state in the product well, \§<1P>>.

excited state, only one transition occurred from the reactant
state to the product state before the system was stabilized
finally in the product well. Based on the harmonic potential
functions for the two wells in this example, the overlap be-
tween the vibrational excited states in the reactant and prod-
uct wells may be underestimated. This may be improved
when we adopt the Morse potential where the crossing and
recrossing motions must be found frequently in the excited
states. Since the rate determining step of the chemical reac-
tion must be the vibrational excitation in the reactant well,
ambiguity of the definition of the reactant and product po-
tential energy surfaces above the potential barrier may not
matter so much.

In addition to the proton transfer reaction, the method
may be applied to the general double-well potential systems
including isomerization reaction. Furthermore, this method
can be easily extended to QM/MM type calculation to evalu-
ate the accurate adiabatic potential surface in solution at ev-
ery simulation step. Further, if a new approximation theory,
which can describe the dynamics of the classical and quan-
tum systems beyond the surface hopping approximation, is
developed, the present equation of motion may easily be
implemented in such new mixed quantum-classical method.
Together with the previous equation of motion based upon
the diabatic representation, the present method must work as
one of the powerful tools to trace the molecular mechanism
of the chemical reactions in solution.
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FIG. 8. Expanded figure of Fig. 6 when a vibrational relaxation occurred
from the vibrational excited state in the product well, \gﬁ” '), to the vibra-
tional ground state in the same well, éop )>.

V. CONCLUSION

A quantum equation of motion has been presented for
the reacting nuclei on an adiabatic double-well potential sur-
face coupled with the classical solvent degrees of freedom,
where the reactant and product states are defined explicitly
by dividing the double-well potential into reactant and prod-
uct wells. The equation can describe well the quantum ef-
fects of the nuclei relevant to the reaction such as tunneling,
zero-point energy, and thermal activation, that is, vibrational
excitation followed by reacting transition and the final vibra-
tional relaxation. In order to complete the framework of the
mixed quantum-classical molecular dynamics method, the
present quantum dynamics was combined with the surface
hopping technique, as an example. Two numerical examples
were also presented demonstrating the potential power of the
present method, where the first one could trace the tunneling
process followed by the stabilization of the system by the
solvation dynamics and the second one showed the reaction
by the thermal activation mechanism.
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