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Introduction

The purpose of this thesis is to report on recent results obtained by the author
in τ -tilting theory and higher Auslander-Reiten theory. These theories, introduced
by Adachi-Iyama-Reiten in [1] respectively Iyama in [56], are generalizations of
classical tilting theory and Auslander-Reiten theory.

Roughly speaking, Auslander-Reiten theory is concerned with the investigation
of the structure of module categories, for which almost-split sequences are an impor-
tant tool. In analogy, the main objects of study in higher Auslander-Reiten theory
are n-almost-split sequences (n ≥ 1), which are a special kind of exact sequences
with n+ 2 terms.

On the other hand, the objective of classical tilting theory is the construction
of derived equivalences of the form Db(A) → Db(modA) where A is an abelian
category and A is a finite dimensional algebra. Tilting modules over hereditary al-
gebras have interesting combinatorics closely related to the mutation combinatorics
of Fomin-Zelevinsky’s cluster algebras [54, 33]. The introduction of τ -tilting the-
ory obeys the desire to extend these combinatorics to arbitrary finite dimensional
algebras.

In what follows, we explain the particular problems in these theories that are
studied in this thesis. These are:

• The classification of the 2-representation-finite derived-canonical alge-
bras, a problem in higher Auslander-Reiten theory.
• The introduction and development of the basic properties of n-abelian

and n-exact categories, motivated by the concept of n-cluster-tilting
which is central in higher Auslander-Reiten theory.
• τ -tilting reduction, which is a combinatorial problem in τ -tilting theory.

Classification of the 2-representation-finite derived-canonical algebras

From the homological viewpoint, the simplest class of algebras is that of hered-
itary algebras, i.e. algebras of global dimension at most 1. Note that a basic fi-
nite dimensional algebra A is hereditary if there exist an acyclic quiver such that
A is isomorphic to the path algebra KQ. On the other hand, an algebra A is
representation-finite if there are only finitely many isomorphism classes of inde-
composable A-modules. The basic representation-finite hereditary algebras were
classified by Gabriel in [35]; these are precisely the path algebras of quivers whose
underlying graph is a disjoint union of Dynkin diagrams.

Recall that an A-module M is n-cluster-tilting if

addM =
{
N ∈ modA | ExtkA(M,N) = 0, k ∈ {1, . . . , n− 1}

}
=
{
N ∈ modA | ExtkA(N,M) = 0, k ∈ {1, . . . , n− 1}

}
.

From the point of view of higher Auslander-Reiten theory, n-representation-finite
algebras were introduced by Iyama-Oppermann in [59]. These are algebras A of
global dimension at most n and such that there exist an n-cluster-tilting A-module.

v



vi INTRODUCTION

Observe that 1-representation-finite algebras are exactly the representation-finite
hereditary algebras.

A natural problem is then to classify the n-representation-finite algebras. Al-
though the general problem seems rather difficult, Herschend-Iyama have obtained
several structure theorems for 2-representation-finite algebras [51]. In particular,
the 2-representation-finite algebras can be characterized as certain quotients asso-
ciated with selfinjective quivers with potentials.

Recall that an algebra A is piecewise hereditary if there exists a hereditary
abelian category H such that Db(modA) and Db(H) are equivalent as triangulated
categories. Moreover, due to a celebrated result of Happel [45], we can assume that
H is either modKQ for some acyclic quiver Q (in which case A is said to be iterated-
tilted), or H is cohX, the category of coherent sheaves over some weighted projective
line (in which case we say that A is derived-canonical) [36]. The 2-representation-
finite iterated-tilted algebras have been classified by Iyama-Oppermann in [60].
Hence, it remains to classify the 2-representation-finite derived-canonical algebras
to complete the classification of the 2-representation-finite piecewise hereditary al-
gebras. This classification is obtained in Chapter 1.

Observe that, as a consequence of Happel’s result, we need to classify the en-
domorphism algebras of tilting complexes in Db(cohX) which are 2-representation-
finite. Also, recall that there exist a distinguished autoequivalence τ : Db(cohX)→
Db(cohX) such that τ [1] is the Serre functor of Db(cohX). Finally, we say that an
algebra is cluster-tilted of canonical type if it is isomorphic to the endomorphism
algebra of a cluster-tilting object in the cluster category CX associated with the
hereditary category cohX. We show the following, see 1.3.1 and 1.3.3:

• A tilting sheaf T ∈ cohX has 2-representation-finite endomorphism alge-
bra if and only if τ2T ∼= T . We call sheaves satisfying this last property
τ2-stable.
• A tilting complex in Db(cohX) has 2-representation-finite endomorphism

algebra if and only if it can be obtain by a process called “iterated 2-APR-
tilting” from a τ2-stable tilting sheaf in cohX. We note that the effect of
2-APR-tilting on these algebras can be easily described combinatorially
in terms of their quivers with relations.
• A cluster-tilting object T ∈ CX has selfinjective endomorphism algebra if

and only if T [2] ∼= T .

Our main result is the following.

Theorem (see Theorems 1.1.1, 1.1.2 and 1.1.3 for details). The following ob-
jects can be classified:

(i) The 2-representation-finite derived-canonical algebras.
(ii) The τ2-stable tilting complexes in Db(cohX).

(iii) The selfinjective cluster-tilted algebras of canonical type.

Moreover, these objects exist if and only if the corresponding weighted projective
line has tubular type (2, 2, 2, 2;λ), (2, 4, 4) or (2, 3, 6).

It is worth noting that the last item in the theorem complements Ringel’s
classification of the selfinjective cluster-tilted algebras [81]. The contents of this
chapter are available in [65].

n-abelian categories and n-exact categories

Recently, the concept of cluster-tilting subcategory was introduced in repre-
sentation theory of algebras; the n-representation-finite algebras described in the
previous section provide examples of these subcategories.
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Cluster-tilting objects in triangulated categories where introduced by Buan-
Marsh-Reineke-Reiten-Todorov in [27] as the crucial concept in the additive cate-
gorification of cluster algebras. More generally, n-cluster-tilting objects in triangu-
lated categories where introduced by Iyama-Yoshino in [62]. Moreover, Geiß-Keller-
Oppermann introduced a new class of additive categories, called (n+ 2)-angulated
categories [39], which are higher analogs of Grothendieck-Verdier’s triangulated
categories. The main examples of (n + 2)-angulated categories are obtained from
n-cluster-tilting subcategories of triangulated categories which are closed under the
n-th power of the shift functor. We also mention that (n+ 2)-angulated categories
have been investigated by Bergh-Thaule in [21, 22, 23].

From a different perspective, n-cluster-tilting subcategories of certain abelian
and exact categories where introduced by Iyama in [56] as the playground of higher
Auslander-Reiten theory. In addition, n-cluster-tilting subcategories have also been
constructed in algebro-geometric contexts. Consider the following example, due to
Herschend-Iyama-Minamoto-Oppermann [52]. Let Pn be the n-dimensional projec-
tive space. Then, the category vectPnK of vector bundles over Pn is an exact subcat-
egory of the category of coherent sheaves over Pn. The category add {O(i) | i ∈ Z}
of direct sums of line bundles is an n-cluster-tilting subcategory of vectPnK .

Although the ambient categories in which n-cluster-tilting subcategories arise
vary, n-cluster-tilting subcategories have several homological properties in common.
In Chapter 2 we introduce n-abelian and n-exact categories to serve as a categorical
framework for the investigation of the intrinsic homological properties of n-cluster-
tilting subcategories. These are higher generalizations of abelian respectively exact
categories with regard to the length of exact sequences. The following result shows
that our main goal is achieved.

Theorem (see Theorems 2.3.16 and 2.4.14 for details). n-cluster-tilting sub-
categories of abelian (resp. exact) categories are n-abelian (resp. n-exact).

As a partial converse, we show that certain n-abelian categories can be realized
as n-cluster-tilting subcategories of abelian categories. More precisely, we prove the
following theorem.

Theorem (see Theorem 2.3.20 for details). Let M be a small projectively gen-
erated n-abelian category, and P the category of projective objects in M. If modP
is injectively cogenerated, then M is equivalent to an n-cluster-tilting subcategory of
modP.

To prove this theorem, we show that projective objects in n-abelian categories
satisfy the following strong property, which is obvious in the case of abelian cate-
gories.

Theorem (see Theorem 2.3.12 for details). Let M be an n-abelian category
and P ∈ M a projective object. Then, for every morphism f : L → M and every
weak cokernel g : M → N of f , the following sequence is exact:

M(P,L) M(P,M) M(P,N).
?·f ?·g

An important result of Happel shows that the stable category of a Frobenius
exact category has a natural structure of a triangulated category. In order to extend
this result, we introduce Frobenius n-exact categories and prove the following result.

Theorem (see Theorem 2.5.11 for details). The stable category of a Frobenius
n-exact category has a natural structure of a (n+ 2)-angulated category.

Finally, we prove the following result also in the direction of Frobenius n-exact
categories.
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Theorem (see Theorem 2.5.16 for details). Let M be an n-cluster-tilting sub-
category of a Frobenius exact category E, and suppose that M is closed under taking
n-th cosyzygies. Then, M is a Frobenius n-exact category.

This theorem is closely related to the results of Geiß-Keller-Oppermann. The
relation between both approaches to construct (n + 2)-angulated categories is ex-
plained in Theorem 2.5.16.

At the end of the chapter we provide a collection of examples which suggest
that the theory we present is far from abstract nonsense. The contents of this
chapter are available in [64].

Reduction of τ-tilting modules

Let A be a finite dimensional algebra. We recall that an A-module M with
p. dim.M ≥ 1 is tilting if Ext1A(M,M) = 0 and the number of pairwise non-
isomorphic indecomposable direct summands of M (which we denote by |M |) equals
the number of simple A-modules or, equivalently, equals |A|. More generally, M
is support tilting if there exists an idempotent e ∈ A such that M is a tilting
(A/〈e〉)-module. Ingalls-Thomas showed that support tilting modules have nice
mutation combinatorics in the case of hereditary algebras [54]. More precisely,
they showed that if M is a basic A-module with p. dim.M ≥ 1 and Ext1A(M,M)
satisfying moreover |M | = |A|−1, then there exist exactly two basic support tilting
modules having M as a direct summand. We note that this result does not hold
for arbitrary algebras.

With the motivation of obtaining an analog of Ingalls-Thomas’ result for arbi-
trary algebras, Adachi-Iyama-Reiten introduced τ -tilting modules in [1]. We say
that an A-module M is τ -rigid if HomA(M, τM) = 0 where τM is the Auslander-
Reiten translate of M . Then, we say that a τ -rigid A-module M is τ -tilting if
|M | = |A|. More generally, we say that M is support τ -tilting if there exists an
idempotent e ∈ A such that M is a τ -tilting (A/〈e〉)-module. From the Auslander-
Reiten formulas it follows that the class of support τ -tilting A-modules contains
that of tilting A-modules; moreover, it is easy to see that these two classes coincide
when A is a hereditary algebra.

One of the main results in [1] is that support τ -tilting modules have nice mu-
tation combinatorics, for any finite dimensional algebra A. Namely, if M is a basic
τ -rigid A-module satisfying |M | = |A|−1, then there exist exactly two basic support
τ -tilting modules having M as a direct summand.

For an algebra A we denote by sτ - tiltA the set of isomorphism classes of basic
support τ -tilting A-modules. Let U be a basic τ -rigid A-module and

sτ - tiltU A := {M ∈ sτ - tiltA | U is a direct summand of M} .

It is important to describe this set in order to enhance our understanding of the
mutation combinatorics of τ -tilting modules. We do so in Chapter 3 where we prove
the following result, which we call τ -tilting reduction. We note that a similar result
regarding tilting modules over hereditary algebras was obtained by Happel-Unger
in [48].

Theorem (see Theorem 3.1.1 for details). Let A be a finite dimensional algebra
and U a basic τ -rigid A-module. Then, there exist a finite dimensional algebra C
and a bijection

sτ - tiltU A sτ - tiltC.

We note that given an A-module U as in the theorem above, Adachi-Iyama-
Reiten constructed a τ -tilting A-module T which is a maximum in sτ - tiltU A with
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respect to a natural partial order. This A-module T is called the Bongartz comple-
tion of U in modA. The algebra C in the theorem is obtained as the quotient of
EndA(T ) by the ideal generated by the idempotent corresponding to the projective
EndA(T )-module HomA(T,U). Also, we observe that when |U | = |A| − 1 we re-
cover Adachi-Iyama-Reiten’s result, as local algebras have only two basic support
τ -tilting modules up to isomorphism.

In the proof of the theorem above, the following result is of crucial importance.

Theorem (see Theorem 3.1.4 for details and definitions). With the hypotheses
of the previous theorem, let T be the Bongartz completion of U in modA. Then,
the functor HomA(T,−) : modA→ mod(EndA(TU )) induces an equivalence of exact
categories

F : ⊥(τU) ∩ U⊥ −→ modC.

In the case of hereditary algebras, the category ⊥(τU) ∩ U⊥ is precisely the
right perpendicular category associated with U in the sense of [37].

Finally, we mention that τ -tilting reduction is compatible with silting reduction
and 2-Calabi-Reduction, see Theorems 3.4.12 and 3.4.23. The contents of this
chapter are available in [63].





CHAPTER 1

τ 2-stable tilting complexes over weighted
projective lines

Let X be a weighted projective line and cohX the associated category of coher-
ent sheaves. We classify the tilting complexes T in Db(cohX) such that τ2T ∼= T ,
where τ is the Auslander-Reiten translation in Db(cohX). As an application of this
result, we classify the 2-representation-finite algebras which are derived-equivalent
to a canonical algebra. This complements Iyama-Oppermann’s classification of
the iterated-tilted 2-representation-finite algebras. By passing to 3-preprojective
algebras, we obtain a classification of the selfinjective cluster-tilted algebras of
canonical-type. This complements Ringel’s classification of the selfinjective cluster-
tilted algebras. This article originated from a note by Prof. H. Lenzing on the
classification of τ2-stable tilting sheaves (Theorem 1.3.5). The contents of this
chapter are available in preprint form in [65].

1.1. Introduction

Let X be a weighted projective line over an algebraically closed field and

τ : Db(cohX)→ Db(cohX)

be the Auslander-Reiten translation in the bounded derived category of cohX, see
[36] for definitions. The following objects, which are closely related to each other,
are classified in this chapter:

(i) The τ2-stable tilting complexes in Db(cohX),
(ii) the 2-representation-finite algebras which are derived equivalent to cohX

and
(iii) the selfinjective cluster-tilted algebras of canonical type.

The interest in classifying the objects above has its origin in higher Auslander-
Reiten theory which was introduced by Iyama in [56]. As the name suggests, it is
a higher-dimensional analog of classical Auslander-Reiten theory for finite dimen-
sional algebras. Higher Auslander-Reiten theory can be developed in distinguished
subcategories of modΛ, nowadays called n-cluster-tilting subcategories. A subcat-
egory M of modΛ is an n-cluster-tilting subcategory if

M =
{
N ∈ modΛ | ExtiΛ(−, N)|M = 0 for i ∈ {1, . . . , n− 1}

}
=
{
N ∈ modΛ | ExtiΛ(N,−)|M = 0 for i ∈ {1, . . . , n− 1}

}
.

One of the most remarkable features of higher Auslander-Reiten theory is the exis-
tence of a functor τn : M→M together with a natural isomorphism

ExtnΛ(X,Y ) ∼= DHomΛ(Y, τnX) for all X,Y ∈M,

which is a higher analog of usual Auslander-Reiten duality.
The simplest class of algebras which have an n-cluster-tilting subcategory are

the so-called n-representation-finite algebras, which where introduced by Iyama and
Oppermann in [59]. A finite dimensional algebra Λ is said to be n-representation-
finite if Λ has global dimension n and there exists a Λ-module M such that addM

1



2 1. τ2-STABLE TILTING COMPLEXES OVER WEIGHTED PROJECTIVE LINES

is an n-cluster-tilting subcategory (in this case M is called a n-cluster-tilting mod-
ule). For example, 1-representation-finite algebras are precisely representation-
finite hereditary algebras. In this sense, n-representation-finite algebras may be
regarded as a higher analog of representation-finite hereditary algebras.

Now we explain what are the objects that we classify in this chapter, and how
do they relate to each other. The 1-representation-finite algebras were classified by
Gabriel in [35]: they are precisely the algebras which are Morita-equivalent to the
path algebras of quivers whose underlying graph is a Dynkin diagram of simply-
laced type. It is then natural to study 2-representation-finite algebras. Important
structural results regarding 2-representation finite algebras in terms of selfinjective
quivers with potential have been obtained by Herschend and Iyama in [51] where
they also have provided large classes of examples of such algebras. Following [46],
we say that a finite dimensional algebra is piecewise hereditary if it is derived
equivalent to a hereditary category H or, equivalently, if it is isomorphic to the
endomorphism algebra of a tilting complex in Db(H). From a homological point
of view, the simplest kind of 2-representation-finite algebras are the ones which are
piecewise hereditary.

By a celebrated result of Happel [45, Thm. 3.1], it is known that there are only
two kinds of hereditary categories (satisfying suitable finiteness conditions) which
have a tilting object: the ones which are derived equivalent to modH where H is
a finite dimensional hereditary algebra, and the ones which are derived equivalent
to cohX where X is a weighted projective line. We distinguish between piecewise
hereditary algebras as follows: We say that a finite dimensional algebra Λ is iterated
tilted if modΛ is derived equivalent to modH where H is a finite dimensional
hereditary algebra. Similarly, we say that Λ is derived-canonical if modΛ is derived
equivalent to cohX for some weighted projective line X.

Taking advantage of Ringel’s classification of the selfinjective cluster-tilted al-
gebras [81], the 2-representation-finite algebras which are iterated tilted were clas-
sified by Iyama and Oppermann in [60, Thm. 3.12]. Note that these algebras
are derived equivalent to representation-finite hereditary algebras whose underly-
ing quiver is of Dynkin type D. In particular, there are no 2-representation-finite
algebras which are derived equivalent to a tame or wild hereditary algebra.

The following result is the main result of this chapter. It gives a classification
of the 2-representation-finite derived canonical algebras, and thus complements
Iyama-Oppermann’s classification [60, Thm. 3.12].

Theorem 1.1.1 (see Theorem 1.3.6). The complete list of all the basic 2-
representation-finite derived-canonical algebras is given in Figures 1.1.1, 1.1.2 and
1.1.3. In this case, the corresponding weighted projective line has tubular type
(2, 2, 2, 2;λ), (2, 4, 4) or (2, 3, 6).

Note that there are no 2-representation-finite algebras which are derived equiv-
alent to cohX for a weighted projective line X of wild type. It is important to note
that in the case (2, 2, 2, 2;λ) all derived-canonical algebras are 2-representation-
finite. The classification of all derived-canonical algebras of type (2, 2, 2, 2;λ) is
known, see for example Skowroński [83, Ex. 3.3], Barot-de la Peña [15, Fig. 1] and
Meltzer in [76, Thm. 10.4.1]. Also, part 1 of Figure 1.1.2 already appeared in [51,
Fig. 1].

We mention that there exist a notion of 2-APR-(co)tilting, which is a higher
analog of classical APR-(co)tilting, and that it preserves 2-representation-finiteness,
see Definition 1.2.14. The algebras in Figures 1.1.1, 1.1.2 and 1.1.3 are related by
2-APR-(co)tilting as indicated.

Let τ : Db(cohX) → Db(cohX) be the Auslander-Reiten translation. We say
that a sheaf X ∈ Db(cohX) is τ2-stable if τ2X ∼= X. Theorem 1.1.1 is a consequence
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of the following result, which gives a classification of the τ2-stable tilting sheaves
over a weighted projective line.

Theorem 1.1.2 (see Theorem 1.3.7). Let X be a weighted projective line and T
a basic tilting complex in Db(cohX). Then T is τ2-stable if and only if EndDb(X)(T )
is isomorphic to one of the algebras in Figures 1.1.1, 1.1.4 and 1.1.5. Moreover, this
determines T up to an autoequivalence of Db(cohX). In this case, the corresponding
weighted projective line has tubular type (2, 2, 2, 2;λ), (2, 4, 4) or (2, 3, 6).

A finite dimensional algebra is cluster-tilted of canonical type if it is isomorphic
to the endomorphism algebra of a cluster-tilting object in the cluster category CX
associated to a weighted projective line X, see Section 1.2.4 for definitions.

By results of Keller [71] and Amiot [4], the basic cluster-tilted algebras of
canonical type are 3-preprojective algebras of basic derived canonical algebras of
global dimension at most 2. Moreover, they are Jacobian algebras of quivers with
potential, see Section 1.2.4. As a consequence of Theorem 1.1.1, we obtain a clas-
sification of the selfinjective cluster-tilted algebras of canonical type. This comple-
ments Ringel’s classification [81].

Theorem 1.1.3 (see Theorem 1.3.8). The complete list of all basic selfinjective
cluster-tilted algebras of canonical type is given by the Jacobian algebras of the quiv-
ers with potential in Figures 1.1.6, 1.1.7 and 1.1.8. In this case, the corresponding
weighted projective line has tubular type (2, 2, 2, 2;λ), (2, 4, 4) or (2, 3, 6).

The algebras listed in Theorem 1.1.3 already appeared in related contexts:
Figure 1.1.6 is precisely the exchange graph of endomorphism algebras of cluster-
tilting objects the cluster category associated to a weighted projective line of type
(2, 2, 2, 2;λ), see [16]. In addition, Figures 1.1.7 and 1.1.8 appeared in [51, Figs. 3
and 2] respectively.

1.2. Preliminaries

We begin by fixing our conventions and notation. Throughout this chapter we
work over an algebraically closed field K. If Λ is a finite dimensional K-algebra, we
denote by modΛ the category of finitely generated right Λ-modules. If Λ is a basic
algebra, we denote its Gabriel quiver by QΛ. More generally, if X is a basic object
in a Krull-Schmidt K-linear category A, we denote by QX the Gabriel quiver of the
algebra EndA(X). If A is an abelian category, we denote by Db(A) the bounded
derived category of A and we identify A with the full subcategory of Db(A) given
by the complexes concentrated in degree zero.

1.2.1. Coherent sheaves over a weighted projective line. We recall the
construction of the category of coherent sheaves over a weighted projective line
together with its basic properties. We follow the exposition of [73].

Choose a parameter sequence λ = (λ1, . . . , λt) of pairwise distinct points of
P1
K and a weight sequence p = (p1, . . . , pt) of positive integers. Without loss of

generality, we assume that t ≥ 3 and that for each i ∈ {1, . . . , t} we have pi ≥ 1.
Moreover, we may also assume that λ1 =∞, λ2 = 0 and λ3 = 1. For convenience,
we set p := lcm(p1, . . . , pt). We call the triple X = (P1

K ,λ,p) a weighted projective
line of weight type p.

The category cohX of coherent sheaves over X is defined as follows. Consider
the rank 1 abelian group L = L(p) with generators ~x1, . . . , ~xt,~c subject to the
relations

p1~x1 = · · · = pt~xt = ~c.
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Figure 1.1.1. Endomorphism algebras of basic tilting complexes
in Db(cohX) for type (2, 2, 2, 2;λ). All complexes are τ2-stable
since τ2 is the identity on cohX. The relations are induced by the
quivers with potential in Figure 1.1.6; those with label λ corre-
spond to relations involving the distinguished parameter. Thick
lines indicate 2-APR-(co)tilting. The algebras that arise as en-
domorphism algebras of tilting sheaves in cohX are enclosed in a
frame.

The element ~c is called the canonical element of L. It follows that every ~x ∈ L can
be written uniquely in the form

~x = m~c+

t∑
i=1

mi~xi

where m ∈ Z and 0 ≤ mi < pi for each i ∈ {1, . . . , t}. Hence L is an ordered group

with positive cone
∑t
i=1 Nxi, and that for every ~x ∈ L we have either 0 ≤ ~x or

~x ≤ ~c+ ~ω where

~ω := (t− 2)~c−
t∑
i=1

xi

is the dualizing element of X.
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Figure 1.1.2. (Part 1 of 2) The basic 2-representation-finite
derived-canonical algebras of type (2,4,4). Thick lines indicate
2-APR-(co)tilting. The algebras that arise as endomorphism al-
gebras of tilting sheaves in cohX are enclosed in a frame.

Next, consider the L-graded algebra K[x1, . . . , xt] where deg xi = ~xi for each
i ∈ {1, . . . , t}. When t = 3, we write x = x1, y = x2, z = x3 and relabel the
generators of L accordingly. Let I = (f3, . . . , ft) be the homogeneous ideal of
K[x1, . . . , xt] generated by all the canonical relations

fi = xpii − λ
′
ix
p2

2 − λ′′i x
p1

1 .

Consequently, we obtain an L-graded algebra R = R(λ,p) := K[x1, . . . , xt]/I. Note
that the group L acts by degree shift on the category grLR of finitely generated L-
graded R-modules. Namely, given an L-graded R-module M and ~x ∈ L we denote
by M(~x) the R-module with grading M(~x)~y := M~x+~y.

Let grLR be te category of finitely generated L-graded R-modules. Note that L
acts on grLR by degree shift: given ~x ∈ L and M ∈ grLR, we define M(~x) ∈ grLR
to be the R-module with M with new grading M(~x)~y := M~x+~y. The category cohX
is defined as the localization qgrLR of grLR by its Serre subcategory grL0 R of finite
dimensional L-graded R-modules. We denote the image of a module M under the

canonical quotient functor grLR→ qgrLR by M̃ . It follows that the action of L on

grLR induces an action on cohX given by M̃(~x) := (M(~x))∼. We call O = OX := R̃
the structure sheaf of X.

Theorem 1.2.1. [36] [73, Thm. 2.2] The category cohX is connected, Hom-
finite, K-linear and abelian. Moreover we have the following:

(i) The category cohX is hereditary, i.e. we have ExtiX(−,−) = 0 for all
i ≥ 2.
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Figure 1.1.2. (Part 2 of 2) The basic 2-representation-finite
derived-canonical algebras of type (2,4,4). Thick lines indicate
2-APR-(co)tilting. The algebras that arise as endomorphism al-
gebras of tilting sheaves in cohX are enclosed in a frame.

(ii) (Serre duality) Let τ : cohX → cohX be the autoequivalence given by
E 7→ E(~ω). Then, there is a bifunctorial isomorphism

D Ext1X(X,Y ) ∼= HomX(Y, τX).

We call τ the Auslander-Reiten translation of cohX.
(iii) Let coh0 X be the full subcategory of cohX of sheaves of finite length

(=torsion sheaves). Also, let vectX be the full subcategory of cohX of
sheaves with no non-zero torsion subsheaves (=vector bundles). Then,
each X ∈ cohX has a unique decomposition X = X+ ⊕X0 where X+ ∈
vectX and X0 ∈ coh0 X.

(iv) The simple objects in coh0 X are parametrized by P1
K as follows: For each

λ ∈ P1
K \λ there exist a unique simple sheaf Sλ called the ordinary simple

concentrated at λ, and for each λi ∈ λ there exist pi exceptional ( i.e. not
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Figure 1.1.3. (Part 1 of 2) The basic 2-representation-finite
derived-canonical algebras of type (2,3,6). Thick lines indicate
2-APR-(co)tilting. The algebras that arise as endomorphism al-
gebras of tilting sheaves in cohX are enclosed in a frame.

ordinary) simple sheaves Sλ,1, . . . , Sλ,pi defined by a short exact sequence

0 O(−m~xi) O((1−m)~xi) Sλi,m 0

for i ∈ {1, . . . , t} and m ∈ {1, . . . , pi}.
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Figure 1.1.3. (Part 2 of 2) The basic 2-representation-finite
derived-canonical algebras of type (2,3,6). Thick lines indicate
2-APR-(co)tilting. The algebras that arise as endomorphism al-
gebras of tilting sheaves in cohX are enclosed in a frame.

(v) For each simple sheaf S we have EndX(S) ∼= K. If S is an ordinary
simple sheaf, then Ext1X(S, S) ∼= K. If S is an exceptional simple sheaf,
then Ext1X(S, S) = 0.

(vi) Let λ ∈ P1
K . The category T(λ) of all sheaves which have a finite filtration

by simple sheaves concentrated at λ form a standard tube. If λ /∈ λ then
T(λ) has rank 1; if λ = λi, then T(λ) has rank pi .

(vii) Let ~a,~b ∈ L. Then HomX(O(~a),O(~b)) = R~b−~a. In particular, there is a

non-zero morphism O(~a)→ O(~b) if and only if ~b− ~a ≥ 0.

The complexity of the classification of indecomposable sheaves cohX is con-
trolled by its Euler characteristic

χ(X) := 2−
t∑
i=1

(
1− 1

pi

)
.

Weighted projective lines of Euler characteristic zero will turn out to be our main
concern in this chapter. An easy calculation shows that χ(X) = 0 if and only if

p ∈ {(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)} ,
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Figure 1.1.4. Endomorphism algebras of τ2-stable basic tilting
complexes in Db(cohX) for type (2, 4, 4). All relations are com-
mutativity or zero relations, cf. Figure 1.1.7. Thick lines indicate
2-APR-(co)tilting along orbits of the action of τ2, which is given by
rotation by π. The algebras that arise as endomorphism algebras
of tilting sheaves in cohX are enclosed in a frame.
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Figure 1.1.5. Endomorphism algebras of τ2-stable basic tilting
complexes in Db(cohX) for type (2, 3, 6). All relations are com-
mutativity or zero relations, cf. Figure 1.1.8. Thick lines indicate
2-APR-(co)tilting along orbits of the action of τ2, which is given
by counter-clockwise rotation by 2π/3. The algebras that arise as
endomorphism algebras of tilting sheaves in cohX are enclosed in
a frame.

if and only if the dualizing element ~ω has finite order p = lcm(p1, . . . , pt) in L. In
this case, we say that X has tubular type and it follows that τ acts periodically on
each connected component of the Auslander-Reiten quiver of cohX.

Let K0(X) be the Grothendieck group of cohX. There are two important linear
forms rk and deg on K0(X). We refer the reader to [73, Sec. 2.2] for information on
these numerical invariants. The rank rk : K0(X)→ Z is characterized by the prop-
erty rk(O(~x)) = 1 for each ~x in L. The degree deg : K0(X)→ Z is characterized by
the property deg(O(~x)) = δ(~x) where δ : L→ Z is the unique group homomorphism
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W = (x2
1

+ x2
3

+ x2
4
)y1 + (x2

2
+ x2

3
+ λx2

4
)y2

W = (x2
1

+ x2
2

+ x2
3
)y1 + (x2

2
+ λx2

3
)y2

2
W = x2

1
(y2

1
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2
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2
(y2

1
+ λy2

2
)

W = x3(x2x1 + y2z1) + y3(z2x1 + w1z1)

+w3(z2y1 + w2w1) + z3(y2w1 + λx2x1)

Figure 1.1.6. The quivers with potential associated to the basic
selfinjective cluster-tilted algebras of type p = (2, 2, 2, 2;λ). All
cluster-tilted algebras are selfinjective since τ2 = 1X. Thick edges
indicate mutation of quivers with potential along the orbits of the
Nakayama permutation, which is trivial in this case. Note that
λ 6= 0, 1, and that we may replace λ by 1− λ, 1

λ , 1
1−λ , λ

1−λ or λ−1
λ

without changing the isomorphism class of the associated Jacobian
algebra.

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Figure 1.1.7. The quivers with potential associated to the ba-
sic selfinjective cluster-tilted algebras of type p = (2, 4, 4). For
each quiver, the potential is given by W =

∑
(clockwise cycles)−∑

(counter-clockwise cycles). Thick edges indicate mutation of
quivers with potential along the orbits of the Nakayama permu-
tation, which is given by rotation by π.
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Figure 1.1.8. The quivers with potential associated to the ba-
sic selfinjective cluster-tilted algebras of type p = (2, 3, 6). For
each quiver, the potential is given by W =

∑
(clockwise cycles)−∑

(counter-clockwise cycles). Thick edges indicate mutation of
quivers with potential along the orbits of the Nakayama permu-
tation, which is given by counter-clockwise rotation by 2π/3.

O

O(~x1)

O(~c)

O(~x2)

O(~x3)

O(~x4)

x1 x1

x2
x2

x3 x3

x4 x4

Figure 1.2.1. The Gabriel quiver of the endomorphism algebra
of the canonical tilting bundle for p = (2, 2, 2, 2;λ).

sending each ~xi to p/pi. Note that we have

(1.2.1) χ(X) =
−δ(~ω)

p
.

Moreover, if a sheaf X ∈ cohX satisfies deg(X) = rk(X) = 0, then X = 0. The
slope of a non-zero sheaf Xis defined as S(X) := rk(X)/ deg(X) ∈ Q ∪ {∞}.

Proposition 1.2.2. [73, Lemma. 2.5] For each non-zero X ∈ vectX we have
S(τX) = S(X) + δ(~ω).

A complex T in Db(cohX) is called a tilting complex if ExtiDb(X)(T, T ) = 0

for all i 6= 0 and if the conditions ExtiDb(X)(T,X) = 0 for all i ∈ Z imply that
X = 0. Equivalently, T is a tilting complex if and only if T is rigid and the
number of pairwise non-isomorphic indecomposable direct summands of T equals
2 +

∑t
i=1(pi − 1), the rank of K0(X).

The vector bundle

T = TO :=
⊕

0≤~x≤~c

O(~x)

is a tilting sheaf whose endomorphism algebra is precisely Λ = Λ(λ,p), the canon-
ical algebra of type (λ,p), see Figure 1.2.1 for an example. It follows that the
bounded derived categories Db(cohX) and Db(modΛ) are equivalent as triangu-
lated categories.
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Proposition 1.2.3. [74, Cor. 3.5]. Let X be a weighted projective line of
tubular type and T a tilting sheaf in cohX. Then there exists an automorphism
F : Db(cohX) → Db(cohX) such that FT ∈ cohX has a simple sheaf as a direct
summand.

Let X be a weighted projective line of tubular type and T a tilting sheaf in
cohX. We say that T is in normal position if T0 6= 0, see Theorem 1.2.1(iii) and
Theorem 1.2.3.

The result below collects further properties of cohX which are needed to prove
Theorem 1.3.5.

Theorem 1.2.4. [37, 73] Let X be a weighted projective line of weight type
(p1, . . . , pt) and T a tilting sheaf in normal position. Then, the following statements
hold:

(i) Let qi be the number of indecomposable direct summands of T0 in T(λi).
Then, the perpendicular category

T⊥0 :=
{
X ∈ cohX | HomX(T0, X) = 0 and Ext1X(T0, X) = 0

}
is equivalent to cohY where Y is a weighted projective line of weight type
(p1 − q1, . . . , pt − qt).

(ii) If X has tubular type, then χ(Y) > 0. In this case, cohY is derived
equivalent to modH for a tame heredirary algebra of extended Dynkin
type ∆, and the Auslander-Reiten quiver of vectY has shape Z∆.

(iii) The embedding cohY ∼= T⊥0 ⊂ cohX preserves line bundles and torsion
sheaves. That is, we have vectY ∼= (vectX∩T⊥0 ) and coh0 Y ∼= (coh0 X∩
T⊥0 ).

(iv) Let ~x ∈ L be such that T (~x) ∼= T . Then the functor ?(~x) : cohX→ cohX
induces an action on cohY which acts freely on line bundles in cohY.

(v) The sheaf T+ is a tilting bundle in cohY. If X has tubular type, then T+

contains a line bundle as a direct summand.

Proof. Statements (i) and (iii) are shown in [37, Thm. 9.5 and Prop. 9.6].
(ii) The first claim is a straightforward computation. The remaining statements

are shown for example in [73, Thm. 3.5, Cor. 3.6].
(iv) First, note that the group L acts freely on line bundles in cohX by degree

shift. Moreover, this action preserves vectX and coh0 X. Let ~x ∈ L be such that
T (~x) ∼= T . Since we have T0(~x) ∼= T0, it follows that (~x) induces an action on
T⊥0
∼= cohY. By part (iii) this action acts freely on line bundles in cohY.
(v) The first claim follows since T+ is also rigid in T⊥0 ⊂ cohX and the number

of indecomposable direct summands of T+ coincides with the rank of K0(Y). The
second claim follows since χ(Y) > 0, and hence every tilting bundle in cohY contains
a line bundle as a direct summand, see [73, Cor. 3.7]. �

We have the following simple observation regarding τ2-stable rigid sheaves.

Lemma 1.2.5. Let X be a weighted projective line and X ∈ cohX be a τ2-stable
rigid sheaf. Then, each indecomposable direct summand of X is an exceptional
simple sheaf.

Proof. Firstly, by Theorem 1.2.1(vii) there are no rigid sheaves in an excep-
tional tube of rank 1. Secondly, since X is a rigid τ2-stable sheaf, we have that

Ext1X(X,X) ∼= DHomX(X, τX) ∼= DHomX(τX,X) = 0.

Let Y be an indecomposable direct summand of X. Then we have HomX(τY, Y ) =
0. This is happens if and only if Y is an exceptional simple sheaf. �
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The Auslander-Reiten translation of cohX extends to an autoequivalence

τ : Db(cohX)→ Db(cohX).

Moreover, the autoequivalence ν := τ [1] gives a Serre functor of Db(cohX).

Definition 1.2.6. A complex X in Db(cohX) is τ2-stable if τ2X ∼= X.

The following result is a particular case of [74, Thm. 3.1]. It allows us to
compute the endomorphism algebra of a tilting sheaf in a given weighted projective
line in terms of a weighted projective line of smaller weights.

Theorem 1.2.7. [74, Thm. 3.1] Let X be a weighted projective line of type
(p1, . . . , pt). Let T be a τ2-stable tilting sheaf in cohX, and suppose that the in-
decomposable direct summands of T0 are exceptional simple sheaves at the points
λii , . . . , λik ∈ λ. We make the identification cohY ∼= T⊥0 , see Proposition 1.2.4(i).
Finally, let E ∈ cohY be the direct sum of all exceptional simple sheaves at the
points λi1 , . . . , λik . Then, there is an isomorphism of algebras

EndX(T ) ∼= EndY(T+ ⊕ E) ∼=
[
EndY(T+) HomY(T+, E)

0 EndY(E)

]
.

Proof. Let r : cohX→ cohY be the right adjoint of the inclusion cohY ∼= T⊥0 .
It is easy to see that r induces a bijection between the indecomposable direct sum-
mands of T0 and the exceptional simple sheaves in cohY at the points λi1 , . . . , λik .
Then the result follows immediately from the proof of [74, Thm. 3.1]. �

1.2.2. Graded quivers with potential and their mutations. Quivers
with potentials and their Jacobian algebras where introduced in [31] as a tool
to prove several of the conjectures of [34] about cluster algebras in a rather general
setting, see [32]. Their graded version was introduced in [6] in order to describe
the effect of mutation of cluster tilting objects in generalized cluster categories at
the level of the corresponding derived category.

Let Q = (Q0, Q1) be a finite quiver without loops or 2-cycles and d : Q1 → Z a
map called a degree function on the set of arrows of Q. Then d induces a Z-grading

on the complete path algebra k̂Q in an obvious way. We endow K̂Q with the J-

adic topology where J is the radical of k̂Q. A potential xin Q is a formal linear
combination of cyclic paths in Q; we are only interested in potentials which are

homogeneous elements of k̂Q. For a cyclic path a1 · · · ad in Q and a ∈ Q1, let

∂a(a1 · · · ad) =
∑
ai=a

ai+1 · · · ada1 · · · ai−1

and extend it linearly and continuously to an arbitrary potential in Q. The maps
∂a are called cyclic derivatives.

Definition 1.2.8. A graded quiver with potential is a triple (Q,W, d) where
(Q, d) is a Z-graded finite quiver without loops and 2-cycles andW is a homogeneous
potential for Q. The graded Jacobian algebra of (Q,W, d) is the Z-graded algebra

Jac(Q,W, d) ∼=
k̂Q

∂(W )

where ∂(W ) is the closure in k̂Q of the ideal generated by the subset

{∂a(W ) | a ∈ Q1} .

For each vertex of Q there is a pair of well defined operations on the right-
equivalence classes of graded quivers with potential called left and right mutations
(see [31, Def. 4.2] for the definition of right-equivalence). Note that right equivalent
quivers with potential have isomorphic Jacobian algebras.
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Let (Q,W, d) be graded quiver with potential with W homogeneous of degree
d(W ) and k ∈ Q0. The non-reduced left mutation at k of (Q,W, d) is the graded
quiver with potential µ̃Lk (Q,W, d) = (Q′,W ′, d′) defined as follows:

(i) The quivers Q and Q′ have the same set of vertices.
(ii) All arrows of Q which are not adjacent to k are also arrows of Q′ and of

the same degree.

(iii) Each path i
a−→ k

b−→ j in Q creates an arrow [ba] : i → j of degree
d(a) + d(b) in Q′.

(iv) Each arrow a : i → k of Q is replaced in Q′ by an arrow a∗ : k → i of
degree −d(a) + d(W ).

(v) Each arrow b : k → j of Q is replaced in Q′ by an arrow b∗ : j → k of
degree −d(b).

(vi) The new potential is given by

W ′ = [W ] +
∑

i
a−→k

b−→j

[ba]a∗b∗

where [W ] is the potential obtained from W by replacing each path i
a−→

k
b−→ j which appears in W with the corresponding arrow [ba] of Q′.

By [6, Thm. 6.6], there exists a so-called reduced graded quiver with potential
(Q′red,W

′
red, d

′
red) which is right equivalent to (Q′,W ′, d′). The left mutation at k

of (Q′,W ′, d′) is then defined as

µLk (Q,W, d) := (Q′red,W
′
red, d

′).

The right mutation at k of (Q,W, d) is defined almost identically, just by replacing
(d) and (e) above by

(d) Each arrow a : i → k of Q is replaced in Q′ by an arrow a∗ : k → i of
degree −d(a).

(e) Each arrow b : k → j of Q is replaced in Q′ by an arrow b∗ : j → k of
degree −d(b) + d(W ).

Finally, the following definition is very convenient for our purposes.

Definition 1.2.9. [51, Sec. 3] Let (Q,W, d) be a graded quiver with poten-
tial with d(W ). Then the truncated Jacobian algebra is the degree zero part of
Jac(Q,W, d), which is given by the factor algebra

Jac(Q,W, d) := Jac(Q,W )/〈a ∈ Q | d(a) = 1〉 = k̂Q/〈∂a(W ) | d(a) = 1〉.
Also, we say that (Q,W, d) is algebraic if Jac(Q,W, d) has global dimension at most
2 and the set

{∂a(W ) | d(a) = 1}
is a minimal set of generators of the ideal 〈∂a(W ) ∈ Q | d(a) = 1〉 of k̂Q.

Note that left and right mutation differ from each other at the level of the
grading only.

1.2.3. 2-representation-finite algebras and 2-APR-tilting. Let Λ be a
finite dimensional algebra of global dimension at most 2. Following [59, Def. 2.2],
we say that Λ is 2-representation-finite if there exist a finite dimensional Λ-module
M such that

addM =
{
X ∈ modΛ | Ext1Λ(M,X) = 0

}
=
{
X ∈ modΛ | Ext1Λ(X,M) = 0

}
.

Such Λ-module M is called a 2-cluster-tilting module. The functors

τ2 := D Ext2Λ(−,Λ) : modΛ→ modΛ
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and

ν2 := ν[−2] : Db(modΛ)→ Db(modΛ),

where ν : − ⊗L
Λ DΛ : Db(modΛ) → Db(modΛ) is the Nakayama functor of

Db(modΛ) play an important role in the theory of 2-representation-finite algebras.
Moreover, they are related by a functorial isomorphism τ2 ∼= H0(ν2−). Note that
τ2 induces a bijection between indecomposable non-projective objects in addM and
indecomposable non-injective objects in addM .

Definition 1.2.10. [50, Def. 1.2] Let Λ be a 2-representation-finite algebra.
We say that Λ is 2-homogeneous if each τ2-orbit of indecomposable objects in addM
consists of precisely two objects. This is equivalent to ν−1

2 (Λ) being an injective
Λ-module.

The class of 2-representation-finite algebras can be characterized in terms of
the so-called 3-preprojective algebras.

Definition 1.2.11. [71] Let Λ be a finite dimensional algebra of global dimen-
sion at most 2. The complete 3-preprojective algebra of Λ is the tensor algebra

Π3(Λ) :=
∏
d≥0

Ext2Λ(DΛ,Λ)⊗d.

We have the following characterization of 2-representation-finite algebras.

Proposition 1.2.12. [51, Prop. 3.9] Let Λ be a finite dimensional algebra of
global dimension at most 2. Then Λ is 2-representation-finite if and only if Π3(Λ)
is a finite dimensional selfinjective algebra.

Following [71], Π3(Λ) can be presented as a graded Jacobian algebra for some
quiver with potential obtained from Λ. For this, let Q be the Gabriel quiver of Λ
and let

Λ ∼= k̂Q/〈r1, . . . rs〉
where {r1, . . . , rs} is a minimal set of relations for Λ. Consider the extended quiver

Q̃ = Qq {r∗i : t(ri)→ s(ri) | ri : s(ri) 99K t(ri)}1≤i≤s ,

i.e. Q̃ is obtained from Q by adding an arrow in the opposite direction for each
relation in Λ. We consider Q̃ as a graded quiver where the arrows in Q1 have
degree zero and the arrows r∗i have degree one. Then we can define a homogeneous

potential W in Q̃ of degree one by

W :=

s∑
i=1

rir
∗
i .

Theorem 1.2.13. [71, Thm. 6.10] Let Λ be a finite dimensional algebra of
global dimension at most 2. Then there is an isomorphism of graded algebras be-
tween Jac(Q̃,W, d) and Π3(Λ).

A useful tool to construct 2-representation-finite algebras which are derived
equivalent to a given one is 2-APR-tilting, which is a higher analog of usual APR-
tilting. The notion of 2-APR-co-tilting is defined dually.

Definition 1.2.14. [59, Def. 3.14] Let Λ be a finite dimensional algebra of
global dimension at most 2 and Λ = P ⊕Q any direct summand decomposition of
Λ such that

(i) HomΛ(Q,P ) = 0.

(ii) ExtiΛ(νQ, P ) = 0 for any 0 < i 6= 2.
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We call the complex
T := (ν−1

2 P )⊕Q ∈ Db(modΛ)

the 2-APR-tilting complex associated with P .

In analogy with APR-tilting for hereditary algebras, 2-APR-tilting preserves
2-representation-finiteness.

Theorem 1.2.15. [59, Thm. 4.7] Let Λ be a 2-representation-finite algebra
and T a 2-APR-tilting complex in Db(modΛ). Then the algebra EndDb(Λ)(T ) is
also 2-representation-finite.

We can describe the effect of 2-APR-tilting using Theorem 1.2.13 as follows:

Theorem 1.2.16. [59, Sec. 3.3] Let Λ be a 2-representation-finite algebra and P
an indecomposable projective Λ-module which corresponds to a sink k in the Gabriel
quiver of Λ and let T be the associated 2-APR-tilting Λ-module. Also, let (Q̃,W, d)
be the graded quiver with potential associated to Π3(Λ), see Theorem 1.2.13. Then
there is an isomorphism of graded algebras

EndΛ(T ) ∼= Jac(Q̃,W, d′)

where d′ coincides with d on arrows not incident to k, for an arrow a ∈ Q̃ incident
to k we have d′(a) = 1 if d(a) = 0, and we have d′(a) = 0 if d(a) = 1.

1.2.4. The cluster category of cohX. Cluster categories associated with
hereditary algebras were introduced in [27] in order to categorify the combinatorics
of acyclic cluster algebras. The cluster category of a weighted projective line was
studied in [18], [16] and [17]. For the point of view of this chapter, they arise as
the categorical environment of 3-preprojective algebras of endomorphism algebras
of tilting sheaves in cohX.

The cluster category associated with cohX is by definition the orbit category

C = CX := Db(cohX)/(τ [−1]).

Thus, the objects of C are bounded complexes of coherent sheaves over X and the
morphism spaces are given by

HomC(X,Y ) :=
⊕
i∈Z

HomDb(X)(X, τ
iY [−i])

with the obvious composition rule. Note that HomC(X,Y ) has a natural Z-grading.
It is known [18] that C is a Hom-finite, Krull-Schmidt, K-linear triangulated cate-
gory with the 2-Calabi-Yau property: There is a natural isomorphism

DHomC(X,Y ) ∼= HomC(Y,X[2])

for every X,Y in C. It follows from [18, Prop. 2.1] that cohX is a complete
system of representatives of isomorphism classes in C and that we have a natural
isomorphism

HomC(X,Y ) ∼= HomX(X,Y )⊕ Ext1X(X, τ−1Y )

for X,Y ∈ cohX. Recall that an object T in C is said to be rigid provided that
HomC(T, T [1]) = 0; more strongly, if we have that

addT = {X ∈ C | HomC(X,T [1]) = 0} ,
then T is called a cluster-tilting object. Identifying isomorphism classes in cohX
with those in CX, it follows that tilting (resp. rigid) sheaves in cohX are precisely
cluster-tilting (resp. rigid) objects in C. Moreover, we have the following description
of the endomorphism algebras of cluster-tilting objects in C.

Proposition 1.2.17. [4, Prop. 4.7] Let T be a tilting sheaf in cohX. Then
there is an isomorphism of graded algebras between EndC(T ) and Π3(EndX(T )).
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The category C has a cluster structure in the sense of [27]. Moreover, muta-
tion of cluster-tilting objects is compatible with mutations of tilting sheaves and
mutation of Jacobian algebras, see [38, Secs. 1, 2.5] for example.

Finally, we have the following characterization of cluster-tilting objects with
selfinjective endomorphism algebra.

Proposition 1.2.18. [51, Prop. 4.4] Let T be a cluster-tilting object in C.
Then T ∼= T [2] if and only if EndC(T ) is a selfinjective algebra.

1.3. Proofs of the main results

In this section we give the proofs of the main results of this chapter, see Theo-
rems 1.3.6, 1.3.7 and 1.3.8.

Note that by the definition of the cluster category associated to X, we have a
commutative diagram of functors

cohX cohX

CX CX

τ

τ

where the vertical arrows correspond to the canonical projection functor. The
following characterization can be easily deduced from known results.

Proposition 1.3.1. Let T be a tilting complex in Db(cohX). Then, the fol-
lowing conditions are equivalent:

(i) The algebra EndX(T ) is a 2-representation-finite algebra.
(ii) The algebra EndC(T ) is a finite-dimensional selfinjective algebra.

(iii) We have T [2] ∼= T in CX and EndDb(X)(T ) has global dimension at most
2.

Moreover, if T ∈ cohX, then any of the three equivalent conditions above is equiv-
alent to T being τ2-stable.

Proof. (i) is equivalent to (ii). Let Λ := EndX(T ). By Proposition 1.2.12,
the algebra Λ is 2-representation-finite if and only if Π3(Λ) is a selfinjective finite
dimensional algebra. Moreover, Proposition 1.2.17 yields an isomorphism between
Π3(Λ) and EndC(T ). The claim follows. The equivalence between (ii) and (iii) is
shown in Proposition 1.2.18.

Finally, let T ∈ cohX. We show that (iii) is equivalent to T being τ2-stable.
Note that, by the definition of C, the functors [1] : C→ C and τ : C→ C are naturally
isomorphic. Hence, we have T [2] ∼= τ2T as objects of C and, since isomorphism
classes in C and cohX coincide, we have T [2] ∼= τ2T in cohX. The claim follows. �

In the case of τ2-stable tilting sheaves we obtain further restrictions on their
endomorphism algebras.

Proposition 1.3.2. Let T be a tilting complex in Db(cohX). Then, T is τ2-
stable if and only if EndDb(X)(T ) is a 2-homogeneous 2-representation-finite algebra.

Proof. Let T be a tilting complex in Db(cohX) and set Λ := EndDb(X)(T ).

Then, we have τ2T ∼= T if and only if (ν[−1])2(Λ) ∼= Λ which is equivalent to
DΛ = νΛ ∼= ν−1

2 Λ. Hence, to show that Λ is a 2-homogeneous 2-representation-
finite algebra, see Definition 1.2.10, we only need to show that if T is τ2-stable then
Λ has global dimension at most 2. Indeed, for each i ≥ 3 we have

ExtiΛ(DΛ,Λ) ∼= HomDb(Λ)(ν
−1Λ[2],Λ[i]) ∼= DHomDb(Λ)(Λ[i− 2],Λ) = 0.

Thus Λ has global dimension at most 2 as required. �
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The following result is crucial in our approach, as it allows to pass from τ2-
stable tilting complex to τ2-stable tilting sheaves using 2-APR-(co)tilting. Recall
that the effect of 2-APR-(co)tilting on the endomorphism algebras of basic tilting
complexes can be described using mutations of graded quivers with potential, see
Theorem 1.2.16.

Proposition 1.3.3. Let T be a basic tilting complex in Db(cohX) such that
EndDb(X)(T ) is a 2-representation-finite algebra. Then, there exists a τ2-stable tilt-
ing sheaf E ∈ cohX obtained by iterated 2-APR-tilting from T .

Proof. Since shifting does not change endomorphism algebras, we can assume
that T is concentrated in degrees −`, . . . ,−1, 0. Since cohX is hereditary, we have
T ∼= T`[−`] ⊕ · · · ⊕ T1[−1] ⊕ T0 where each Ti is a non-zero sheaf. We proceed by
induction on `. The case ` = 0 follows immediately from Proposition 1.3.1, so let
` > 0. We claim that the complex

T ′ := (τ−1T`)[1− `]⊕ T`−1[1− `]⊕ · · · ⊕ T1[−1]⊕ T0

is a 2-APR-tilting complex. Indeed, since there are no negative extensions between
objects of cohX, we have

`−1⊕
i=0

HomDb(X)(Ti[−i], T`[−`]) =

`−1⊕
i=0

HomDb(X)(Ti, T`[i− `]) = 0.

Moreover, using the identity ν = τ [1], we obtain

`−1⊕
i=0

Ext1Db(X)(νTi[−i], T`[−`]) ∼=
`−1⊕
i=0

HomDb(X)(τTi[−i], T`[−`])

∼=
`−1⊕
i=0

HomDb(X)(τTi, T`[i− `]) = 0.

Finally, since EndDb(X)(T ) has global dimension 2 we have that

`−1⊕
i=0

Extj
Db(X)

(νTi[−i], T`[−`]) = 0

for all j ≥ 3. This shows that T ′ is a 2-APR tilting complex and, by Theorem
1.2.15, we have that EndDb(X)(T

′) is a 2-representation-finite algebra. Hence, by

the induction hypothesis, by iterated 2-APR-tilting we can construct a τ2-stable
tilting sheaf E from T . �

Next, we determine which weighted projective lines can have τ2-stable tilting
sheaves.

Proposition 1.3.4. Let T ∈ cohX be a τ2-stable tilting sheaf. Then X has
tubular weight type (2, 2, 2, 2), (2, 4, 4) or (2, 3, 6).

Proof. Since there are no tilting sheaves of finite length, we have S(T ) ∈ Q.
Moreover, as we have τ2T ∼= T , it follows from Proposition 1.2.2 that δ(~ω) = 0.
Then, using equation (1.2.1), we have that χ(X) = 0 hence X has tubular type.

We recall if X has tubular type, then the full subcategory of cohX given of all
sheaves of a fixed slope is equivalent to the category coh0 X of torsion sheaves over
X [73, Thm. 3.10]. Assume now that X is an indecomposable summand of T which
belongs to a tube of odd period 2a + 1, so we have X ∼= τ(τ2aX). By hypothesis,
τ2aX is a direct summand of T . Hence, by Serre duality we have

0 = Ext1X(τ2aX,X) ∼= DHomX(X, τ(τ2aX)) = DHomX(X,X),



1.3. PROOFS OF THE MAIN RESULTS 19

1 1 1

1 0 1

1 1 1

1 1 1

1 0 1

1 1 1

1 1 0

1 2 1

0 1 1

0 1 0

1 0 1

0 1 0
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Y(2, 2, 2) : C5 Y(2, 2, 2) : C6 Y(2, 2, 4) : C7 Y(2, 2, 4) : C8

0 1 0
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1 0 1
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1 0 1

1 0 1
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Y(2, 2, 2) : Cop
1 Y(2, 2, 4) : Cop

2 Y(2, 2, 4) : Cop
3 Y(2, 2, 4) : Cop

4

1 0 1

2 2 2

1 0 1

1 1 0

1 2 1

0 1 1

Y(2, 2, 4) : Cop
5 Y(2, 2, 4) : Cop

7

Figure 1.3.1. Endomorphism algebras of τ2-stable tilting sheaves
in normal position over a weighted projective line of weight type
(2, 4, 4). We have indicated EndX(T+) by gray arrows. Note that τ2

acts on each configuration by rotation by π and that C6 and C8 are
self-opposite. The weight type of the reduced weighted projective
line Y is indicated for reference.

a contradiction. Hence every indecomposable summand of T belongs to a tube
of even period. This rules out weight type (3, 3, 3). Therefore must have tubular
weight type (2, 2, 2, 2), (2, 4, 4) or (2, 3, 6). �

The following result gives a classification of the endomorphism algebras of basic
τ2-stable tilting sheaves in cohX.

Theorem 1.3.5. Let T be a basic τ2-stable tilting sheaf in cohX. Then EndX(T )
is isomorphic to one of the algebras indicated in Figures 1.1.1, 1.3.1 or 1.3.2.

Proof. First, suppose that X has type (2, 2, 2, 2;λ). Since τ2 is the identity in
cohX, all tilting sheaves are τ2-stable in this case. Their endomorphism algebras
are known, see Skowroński [83, Ex. 3.3] (see also Figure 1.1.1).

For the other cases, weight types (2, 4, 4) and (2, 3, 6), we rely on the following
argument. Let T be a τ2-stable tilting sheaf in cohX. By Proposition 1.2.3, we can
assume that T is in normal position. By Lemma 1.2.5 every indecomposable direct
summand of T0 is an exceptional simple sheaf. Also, the perpendicular category T⊥0
is equivalent to a category of the form cohY where Y is a weighted projective line
with χ(Y) > 0. Moreover, there exist a finite dimensional algebra H of extended
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Figure 1.3.2. Endomorphism algebras of τ2-stable tilting sheaves
in normal position over a weighted projective line X of weight type
(2, 3, 6). We have indicated EndX(T+) by gray arrows. Note that
τ2 acts on each configuration by left rotation by π/3. The weight
type of the reduced weighted projective line Y is indicated for ref-
erence.

Dynkin type ∆ such that cohY is derived equivalent to cohY. In addition, we
have T+ ∈ vectY, see Proposition 1.2.4. It follows that EndX(T+) = EndY(T+) is
isomorphic to the endomorphism algebra of a preprojective H-module. Note that
EndY(T+) must admit an action of order p/2 which does not fix any line bundle
summands of T+, see by Proposition 1.2.4(iv). Finally, Proposition 1.2.7 yields an
isomorphism of algebras

EndX(T ) ∼= EndY(T+ ⊕ E) ∼=
[
EndY(T+) EndY(T+, E)

0 EndY(E)

]
where E is the direct sum of all regular simple modules in cohY in the exceptional
tubes concentrated in the λi’s such that qi 6= 0 (note that here qi must be either
zero or pi/2). It follows that EndY(E) is a semisimple algebra with q1 + · · · + qt
simple modules.

Hence, to prove the theorem we only need to do the following:

(i) Take a vector bundle in T+ ∈ cohY whose endomorphism algebra admits
a symmetry of order 2 for X of type (2,4,4) or order 3 for X of type (2,3,6)
not fixing any line bundles.
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X(2, 4, 4)

Y ∆

(1,4,4) Ã4,4

(1,2,4) Ã2,4

(1,2,2) Ã2,2

(2,2,2) D̃4

(2,2,4) D̃6

X(2, 3, 6)

Y ∆

(1,3,6) Ã(3, 6)

(1,3,3) Ã(3, 3)

(2,3,3) Ẽ6

Table 1.3.1. Possible weight types for Y and the extended
Dynkin type ∆ of the associated hereditary algebra.

(ii) Compute the algebra EndX(T+ ⊕ E).
(iii) Check if EndX(T+⊕E) is a 2-representation-finite algebra, see Proposition

1.3.1.

This process, although lengthy, is straightforward. We illustrate part of it for X of
weight type (2, 4, 4). The case were X has type (2, 3, 6) is completely analogous.
The cases we need to deal with are stated in Table 1.3.1.

Y(1, 4, 4) In this case we have ∆ = Ã4,4. The only possibility for the Gabriel
quiver of EndY(T+) is a non-oriented cycle with 8 vertices. Moreover, it must have
4 arrows pointing in clockwise direction and 4 arrows pointing in counterclockwise
direction. These are the quivers highlighted in the algebras C1 and C2 Figure 1.3.1.
All of these algebras are 2-representation-finite algebras, as can be readily verified
by checking that their 3-preprojective algebras are selfinjective, see Proposition
1.2.12. The reader can verify that they indeed arise by the procedure described in
Theorem 1.2.7.

The cases Y(1, 2, 4) and Y(1, 2, 2) are completely analogous, The resulting 2-
representation finite algebras correspond to C3 and C4 respectively in Figure 1.3.1.

Y(2, 2, 2) In this case we have ∆ = D̃4. The only possible endomorphism
algebras of preprojective tilting H-modules are orientations of the Dynkin diagram
of type D̃6

1

1 2 1

1

or the canonical algebra of type (2, 2, 2), see Happel-Vossieck’s list [49]. The only
quivers which admit an action of order 2 which does not fixes any line bundle
summand of T+ are the ones highlighted in algebras Cop

1 , C5 and C6 in Figure
1.3.1, corresponding to symmetric orientations of the Dynkin diagram above.

Y(2, 2, 4) We have ∆ = D̃6. In this case (and only in this case), there are
algebras in Happel-Vossieck’s list which have an action of order p/2 which do not
extend to a 2-representation-finite algebra. One way to rule out these algebras
before doing any computation is to determine the action induced by τ2 on the
Auslander-Reiten quiver of vectY, which has shape ZD̃6, see Theorem 1.2.4(ii)
and [73, Table 1]. We prove below that this action is given by rotation along
the horizontal axis of vectY, corresponding to the action given by degree shift
by ~y + 2~ωY ∈ L(2, 2, 4). Taking this into account, according to [49] the possible
endomorphism algebras of preprojective tilting H-modules are given in Figure 1.3.3.
The only quivers in Figure 1.3.3 which are stable under rotation by π along the
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1
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Figure 1.3.3. Endomorphism algebras of preprojective tilting
modules of type D̃6 with dimension vectors. The orientation of
simple edges can be chosen arbitrarily and the relations indicate
that the sum of all paths with the corresponding endpoints is zero.

horizontal axis of the Auslander-Reiten quiver of vectY are the ones highlighted in
algebras Cop

2 , Cop
3 , Cop

4 , Cop
5 , C7, Cop

7 and C8 in Figure 1.3.1.
Finally, let us prove that the action induced by τ2 on vectY is indeed given by

rotation along the horizontal axis. This also serves as an example of the method to
compute EndX(T ) using Theorem 1.2.7.

Let X be a weighted projective line of tubular type (2, 4, 4). Let X be an
exceptional simple sheaf concentrated at λ2 and set T0 := X ⊕ τ2X. We write
L(2, 2, 4) = 〈~x, ~y, ~z,~c | 2~x = 2~y = 4~z = ~c〉 and ~ω = ~ωY. Also, we put R := R(2, 2, 4)

Let T+ ∈ vectY be the tilting bundle indicated in Figure 1.3.4 and E = S ⊕S′
be the direct sum of the two exceptional simple sheaves in cohY concentrated at
the point λ2. Put T := T+ ⊕ T0. By Theorem 1.2.7 we have an isomorphism of
K-algebras

EndX(T ) ∼=
[
EndY(T+) HomY(T+, E)

0 EndY(E) ∼= K ×K

]
.

We need to compute EndY(T+, E). For this, recall from Theorem 1.2.1(iv) that we
have short exact sequences

(1.3.1) 0 OY(−~y) OY S 0

and

(1.3.2) 0 OY(−2~y) OY(−~y) S′ 0.

We shall compute dimHomY(O(~z), S) and dimHomY(O(~z), S′) by applying the func-
tor HomY(O(~z),−). Before that, it its convenient to make some preliminary calcu-
lations.

Firstly, by Theorem 1.2.1(vii) we have HomY(O(~z),O) = 0 and using Serre
duality we obtain

Ext1Y(O(~z), E) ∼= DHomX(E,O(~z + ~ω)) = 0,
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O(~y + 3~ω) O(~y + 2~ω) O(~y + ~ω)

• O(~x+ 3~ω) • O(~x+ 2~ω) • O(~x+ ~ω) •

· · · • U • · · ·

• O(~z + 2~ω) • O(~z + ~ω) • O(~z) •

O(~ω) O O(−~ω)

Figure 1.3.4. Tilting bundle in vectY. Black vertices indicate
vector bundles of rank 2.

since there are no non-zero morphisms from a torsion sheaf to a vector bundle.
Secondly, again by Theorem 1.2.1(vii) and Serre duality we have

Ext1Y(O(~z),O) ∼= DHomY(O,O(~z + ~ω)) ∼= R~x−~y = 0.

Simlarly, we have

Ext1Y(O(~z),O(−~y)) ∼= DHomY(O(−~y),O(~z + ~ω)) = R~ω+~y+~z = R~x.

In addition, we have

HomY(O(~z),O) = R−~z = 0 HomY(O(~z),O(−~y)) = R−~y−~z = 0.

Hence, applying the functor HomY(OY(~z),−) to the sequences (1.3.1) and (1.3.2)
yields exact sequences

0 HomY(O(~z), S) Ext1Y(O(~z),O(−~y)) 0

and

0 HomY(O(~z), S′) Ext1Y(O(~z),O(−2~y)) Ext1Y(O(~z),O(−~y)) 0

Then, by Theorem 1.2.1(vii) we have

dimHomY(O(~z), S) = dimExt1Y(O(~z),O(−~y))

= dimHomY(O(−~y),O(~z + ~ω))

= dimR~ω+~z+~y

= dimR~x = 1

and

dimHomY(O(~z), S′) = dimExt1Y(O(~z),O(−2~y))− dimExt1Y(O(~z),O(−~y))

= dimHomY(O(−2~y),O(~z + ~ω))− 1

= dimR2~y+~z+~ω − 1

= dimR~x+~y − 1 = 0.
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A similar argument shows that

HomY(O(~x+ ~ω), S) = 0

and

dimHomY(O(~x+ ~ω), S′) = 1.

Proceeding in the same fashion, the reader can verify the equalities

dimHomY(O(~x+ 3~ω), S) = 0, dimHomY(O(~x+ 3~ω), S′) = 1,

dimHomY(O(~y + 2~ω), S) = 0, dimHomY(O(~y + 2~ω), S′) = 1,

dimHomY(O(~z + 2~ω), S) = 1, dimHomY(O(~z + 2~ω), S′) = 0,

dimHomY(O, S) = 1, dimHomY(O, S′) = 0.

It remains to compute dimHomY(U, S) and dimHomY(U, S′). We have an exact
sequence

0 O(~ω) U O(~z) 0.

Applying the contravariant functor HomY(−, S) yields an exact sequence

0 HomY(O(~z), S) HomY(U, S) HomY(O(~ω), S) Ext1Y(O(~z), S) = 0.

We already know that dimHomY(O(~z), S) = 1. Proceeding as before, apply-
ing the functor HomY(O(~ω),−) to the short exact sequence (1.3.1), we can show
that dimHomY(O(~ω), S) = 0. Hence dimHomY(U, S) = 1. We can show that
dimHomY(U, S′) = 1 in a similar manner.

It follows, by a suitable change of basis of EndY(T+), that the quiver with
relations of EndX(T )op is given by

O O(~z) S

O(~z + 2~ω) U O(~x+ 3~ω)

S′ O(~x+ ~ω) O(~y + 2~ω)

where each relation is a zero relation or a commutative relation.
Using Proposition 1.2.12 it is easy to check that EndX(T ) is a 2-representation-

finite algebra. Therefore T is a τ2-stable tilting sheaf, see Proposition 1.3.1. Then,
we can see in Figure 1.3.4 that the only action of order 2 on the Auslander-Reiten
quiver of vectY which fixes T+ given by rotation by π along the horizontal axis,
which can be interpreted as degree shift by ~y + 2~ωY. This concludes the proof of
the theorem. �

As a consequence of Theorem 1.3.5 we obtain the following classification results.

Theorem 1.3.6. Let X be a weighted projective line and basic T a tilting com-
plex in Db(X) = Db(cohX). Then, EndDb(X)(T ) is a 2-representation-finite algebra
if and only if EndDb(X)(T ) is one of the algebras in Figures 1.1.1, 1.1.2 and 1.1.3.

Moreover, this determines T up to an autoequivalence of Db(cohX).

Proof. The first claim follows immediately from Proposition 1.3.3 and The-
orem 1.3.5, since 1.1.2 and 1.1.3 are all algebras that can be obtained by 2-APR-
(co)tilting from the algebras in Figures 1.1.4 and 1.1.5. The second claim is a
standard application of [75, Thm. 3.2]. �
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Theorem 1.3.7. Let T be a basic complex in Db(cohX). Then, T is τ2-stable
if and only if EndDb(X)(T ) is one of the algebras in Figures 1.1.1, 1.1.4, or 1.1.5.

Moreover, this determines T up to an autoequivalence of Db(cohX).

Proof. By Theorem 1.3.6, the algebra EndX(T ) can be obtained from one
of the algebras in Figures 1.1.1, 1.3.1 or 1.3.2 by iterated 2-APR-(co)-tilting. By
Proposition 1.3.1, we have that T is τ2-stable is a 2-homogeneous 2-representation-
finite algebra. These are precisely the algebras in Figures 1.1.1, 1.1.4, or 1.1.5. �

Theorem 1.3.8. Let T be a basic τ2-stable tilting sheaf in cohX. Then the
cluster-tilted algebra EndC(T ) is isomorphic to the Jacobian algebra associated to
one of the quivers with potential in Figures 1.1.6, 1.1.7 or 1.1.8, and all of the
Jacobian algebras associated to one of these quivers with potential arise in this
way.

Proof. Let T be a basic τ2-stable tilting sheaf in cohX and set Λ = EndX(T ).
It follows from Theorem 1.3.5 that Λ is isomorphic to one of the algebras in Fig-
ures 1.1.1, 1.3.1 or 1.3.2. Then, by Proposition 1.2.17 there exist an isomorphism
EndC(T ) ∼= Π3(Λ). By Theorem 1.2.13, we have that Π3(Λ) is isomorphic to the
Jacobian algebra to one of the quivers with potential in Figures 1.1.6, 1.1.7 or 1.1.8.

Conversely, each Jacobian algebra associated to one of the quivers with poten-
tial in Figures 1.1.6, 1.1.7 or 1.1.8 is of the form Π3(Λ) for some Λ in Figures 1.1.1,
1.3.1 or 1.3.2, see [51, Secs. 5.1, 9.2 and 9.3]. The theorem follows. �





CHAPTER 2

n-abelian and n-exact categories

We introduce n-abelian and n-exact categories, these are analogs of abelian and
exact categories from the point of view of higher homological algebra. We show
that n-cluster-tilting subcategories of abelian (resp. exact) categories are n-abelian
(resp. n-exact). These results allow to construct several examples of n-abelian
and n-exact categories. Conversely, we prove that n-abelian categories satisfying
certain mild assumptions can be realized as n-cluster-tilting subcategories of abelian
categories. In analogy with a classical result of Happel, we show that the stable
category of a Frobenius n-exact category has a natural (n+ 2)-angulated structure
in the sense of Geiß-Keller-Oppermann. We give several examples of n-abelian
and n-exact categories which have appeared in representation theory, commutative
algebra, commutative and non-commutative algebraic geometry. The contents of
this chapter are available in preprint form in [64].

2.1. Introduction

Let n be a positive integer. In this article we introduce n-abelian and n-
exact categories, these are higher analogs of abelian and exact categories from
the viewpoint of higher homological algebra. Throughout we use the comparative
adjective “higher” in relation to the length of exact sequences and not in the sense
of higher category theory.

Abelian categories were introduced by Grothendieck in [43] to axiomatize the
properties of the category of modules over a ring and of the category of sheaves over
a scheme. It is often the case that interesting additive categories are not abelian
but still have good homological properties with respect with a restricted class of
short exact sequences. Exact categories were introduced by Quillen in [79] from
this perspective to axiomatize extension-closed subcategories of abelian categories.

Derived categories play an important role in the study of the homological prop-
erties of abelian and exact categories. Their properties are captured by the notion
of triangulated categories, introduced by Grothendieck-Verdier in [84]. By a result
of Happel, the stable category of a Frobenius exact category has a natural structure
of a triangulated category, see [44, Thm. I.2.6]. Triangulated categories arising in
this way have been called algebraic by Keller in [68]. Algebraic triangulated cate-
gories have a natural dg-enhancement in the sense of Bondal-Kapranov [25], thus
are often considered as a more reasonable class than that of general triangulated
categories.

Recently, a new class of additive categories appeared in representation theory.
The 2-cluster-tilting subcategories were introduced by Buan-Marsh-Reiten-Reineke-
Todorov in [27] as the key concept involved in the additive categorification of the
mutation combinatorics of Fomin-Zelevinsky’s cluster algebras [33] via 2-Calabi-
Yau triangulated categories. It was then observed by Iyama-Yoshino [62] that the
notion of mutation can be extended to the class of n-cluster-tilting subcategories
of triangulated categories.

From a different perspective, n-cluster-tilting subcategories of certain exact
categories were introduced by Iyama in [56] and further investigated in [57, 55]

27
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from the viewpoint of higher Auslander-Reiten theory. In this theory, the notion of
n-almost-split sequence, which are certain exact sequences with n+ 2 terms, plays
an important role.

With motivation coming from these examples in representation theory, the
class of (n+ 2)-angulated categories was introduced by Geiß-Keller-Oppermann as
categories “naturally inhabited by the shadows of exact sequences with n+2 terms”,
to paraphrase the authors. We note that the case n = 1 corresponds to triangulated
categories. Their main source of examples of (n + 2)-angulated categories are n-
cluster-tilting subcategories of triangulated categories which are closed under the
n-th power of the shift functor [39, Thm. 1]. The properties of (n + 2)-angulated
categories have been investigated by Bergh-Thaule in [21, 22, 23].

The aim of this article is to introduce n-abelian categories which are categories
inhabited by certain exact sequences with n + 2 terms, called n-exact sequences.
The case n = 1 corresponds to the classical concepts of abelian categories. We do
so by modifying the axioms of abelian categories in a suitable manner. We prove
several basic properties of n-abelian categories, including the existence of n-pushout
(resp. n-pullback) diagrams which are analogs of classical pushout (resp. pullback)
diagrams, see Theorem 2.3.8.

An important source of examples of n-abelian categories are n-cluster-tilting
subcategories. This is made precise by the following theorem.

Theorem (see Theorem 2.3.16 for details). Let M be an n-cluster-tilting sub-
category of an abelian category. Then M is an n-abelian category.

We introduce the notion of projective object in an n-abelian category, and
study their properties. Remarkably, projective objects satisfy the following strong
property which is obvious in the case of abelian categories.

Theorem (see Theorem 2.3.12 for details). Let M be an n-abelian category
and P ∈ M a projective object. Then, for every morphism f : L → M and every
weak cokernel g : M → N of f , the following sequence is exact:

M(P,L) M(P,M) M(P,N).
?·f ?·g

Using this result, we show that certain n-abelian categories can be realized as
n-cluster-tilting subcategories of abelian categories. More precisely, we prove the
following theorem.

Theorem (see Theorem 2.3.20 for details). Let M be a small projectively gen-
erated n-abelian category, and P the category of projective objects in M. If modP
is injectively cogenerated, then M is equivalent to an n-cluster-tilting subcategory of
modP.

After introducing n-abelian categories, it is natural to introduce n-exact cat-
egories as higher analogs of exact categories. For this, we modify Keller-Quillen’s
axioms of exact categories. We prove that the class of n-exact categories contains
that of n-abelian categories, see Theorem 2.4.5. Similarly to the case of n-abelian
categories, we prove the following theorem.

Theorem (see Theorem 2.4.14 for details). Let M be an n-cluster-tilting sub-
category of an exact category. Then M is an n-exact category.

We also introduce Frobenius n-exact categories. These are n-exact categories
with enough projectives and enough injectives, and such that these two classes
of objects coincide. Frobenius n-exact categories are related to (n + 2)-angulated
categories as shown by the following theorem.
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Theorem (see Theorem 2.5.11 for details). Let M be a Frobenius n-exact cat-
egory. Then, the stable category M has a natural structure of an (n+ 2)-angulated
category.

Finally, we prove the following result also in the direction of Frobenius n-exact
categories.

Theorem (see Theorem 2.5.16 for details). Let M be an n-cluster-tilting sub-
category of a Frobenius exact category E, and suppose that M is closed under taking
n-th cosyzygies. Then, M is a Frobenius n-exact category.

This theorem is closely related to the results of Geiß-Keller-Oppermann. The
relation between both approaches to construct (n + 2)-angulated categories is ex-
plained in Theorem 2.5.16.

Now we explain the notion of 2-exact category with concrete examples. The
first example is due to Herschend-Iyama-Minamoto-Oppermann [52] (see also The-
orem 2.6.8 and the example after it). Let cohP2

K be the category of coherent sheaves
over the projective plane over K, and denote the category of vector bundles over
P2
K by vectP2

K . Note that vectP2
K is closed under extensions in cohP2

K , and hence
is an exact category. Then, the category

U := add {O(i) | i ∈ Z}

of direct sums of line bundles on P2
K is a 2-cluster-tilting subcategory of vectP2

K . In
view of the previous theorem, the category U is a 2-exact category. An interesting
consequence of the 2-cluster-tilting property is that for every exact sequence

(2.1.1) 0 A B C D 0

with terms in U the sequences of functors

0 Hom(−, A)|U Hom(−, B)|U Hom(−, C)|U Hom(−, D)|U,

0 Hom(D,−)|U Hom(C,−)|U Hom(B,−)|U Hom(A,−)|U

are exact. In general, we call a sequence of the form (2.1.1) satisfying these prop-
erties a 2-exact sequence. In this case, the Koszul complexes

0 O(i− 3) O(i− 2)3 O(i− 1)3 O(i) 0 (i ∈ Z)

gives a special class of 2-exact sequences called 2-almost-split sequences in higher
Auslander-Reiten theory.

Let us provide the reader with another example of a 2-exact category, following
Iyama [56, Sec. 2.5]. Let K be an algebraically closed field and S := KJx0, x1, x2K
be the ring of power series three commuting variables. Also, let G be a finite
subgroup of SL3(K) and R := SG the associated invariant subring of S. Finally,
we denote the category of Cohen-Macaulay R-modules by CMR, see Section 2.6.4
for details and definitions. Note that CMR is a Frobenius exact category. Then,
the category

S := addS = {M ∈ CMR |M is a direct summand of Sm for some m}

is a 2-cluster-tilting subcategory of CMR, i.e. we have

S =
{
M ∈ CMR | Ext1R(S,M) = 0

}
=
{
M ∈ CMR | Ext1R(M, S) = 0

}
.
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An important example of a 2-exact sequence in this case is given by the Koszul
complex of S:

K(S) : 0 S S3 S3 S K 0.

As a complex of R-modules, K(S) is the direct sum of 2-almost-split sequences and
a 2-fundamental sequence.

Let us mention other examples of n-cluster-tilting subcategories, which give us
then examples of n-abelian and n-exact categories.

Finite dimensional algebras of finite global dimension whose module category
contains an n-cluster-tilting subcategory are one of the central objects of study
of higher Auslander-Reiten theory. A distinguished class of such algebras, the so-
called n-representation-finite algebras, were introduced by Iyama-Oppermann in
[59] and have been studied in greater detail by Herschend-Iyama in the case n = 2,
see [51].

In a parallel direction, 2-cluster-tilting subcategories of the module category
of a preprojective algebra of Dynkin type, which has infinite global dimension, are
central in Geiß-Leclerc-Schröer’s categorification of cluster algebras arising in Lie
theory, see [41] and the references therein.

Further examples of n-cluster-tilting subcategories of abelian and exact cat-
egories have been constructed by Amiot-Iyama-Reiten in the category of Cohen-
Macaulay modules over an isolated singularity [5].

Finally, let us give a brief description of the contents of this article. In Section
2.2 we introduce the basic concepts behind the definitions of n-abelian and n-exact
categories: n-cokernels, n-kernels, n-exact sequences, and n-pushout and n-pullback
diagrams (the reader will forgive the author for his lack of inventiveness in naming
these concepts). The class of n-abelian categories is introduced in Section 2.3,
where we also give a characterization of semisimple categories in terms of n-abelian
categories. In Theorems 2.3.16 and 2.3.20 we explore the connection between n-
abelian categories and n-cluster-tilting subcategories of abelian categories. Later,
in Section 2.4 we introduce n-exact categories and establish a connection with
n-cluster-tilting subcategories of exact categories in Theorem 2.4.14. Frobenius n-
exact categories and their main properties are introduced in Section 2.5. At last,
in Section 2.6 we provide several examples to illustrate our results.

2.2. Preliminary concepts

We begin by fixing our conventions and notation, and by reminding the reader
of basic concepts in homological algebra that we use freely in the remainder.

2.2.1. Conventions and notation. Throughout this article n always de-
notes a fixed positive integer. Let C be a category. If A,B ∈ C, then we denote the
set of morphisms A→ B in C by C(A,B). We denote the identity morphism of an
object C ∈ C by 1 = 1C . We denote composition of morphisms by concatenation:
if f ∈ C(A,B) and g ∈ C(B,C), then fg ∈ C(A,C). If F : C→ D is a functor, then
the essential image of F is the full subcategory of D given by

FC := {D ∈ D | ∃C ∈ C such that FC ∼= D} .
A morphism e ∈ C(A,A) is idempotent if e2 = e. We say that C is idempotent

complete if for every idempotent e ∈ C(A,A) there exist an object B and morphisms
r ∈ C(A,B) and s ∈ C(B,A) such that rs = e and sr = 1B .

Let C be an additive category in the sense of [86, Sec. A.4.1]. If X is a class of
objects in C, then we denote by addX the full subcategory whose objects are direct
summands of direct sums of objects in X.
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We denote the category of (cochain) complexes in C by Ch(C). Also, we denote
the full subcategory of Ch(C) given by all complexes concentrated in non-negative

(resp. non-positive) degrees by Ch≥0(C) (resp. Ch≤0(C)). For convenience, we
denote by Chn(C) the full subcategory of Ch(C) given by all complexes

X0 X1 · · · Xn Xn+1d0 d1 dn−1 dn

which are concentrated in degrees 0, 1, . . . , n+ 1. A morphism of complexes

X · · · X0 X1 X2 · · ·

Y · · · Y 0 Y 1 Y 2 · · ·

f

d−1
X d0

X

f0

d1
X

f1

d2
X

f2

d−1
Y d0

Y d1
Y d2

Y

is null-homotopic if for all k ∈ Z there exists a morphism hk : Xk → Y k−1 such
that

fk = hkdk−1
Y + dkXh

k+1.

In this case we say that h =
(
hk | k ∈ Z

)
is a null-homotopy. We say that two

morphisms of complexes f : X → Y and g : X → Y are homotopic if their difference
is null-homotopic. A homotopy between f and g is a null-homotopy h of f − g
and we write h : f → g. It is easily verified that being homotopic induces an
equivalence relation on Ch(C)(X,Y ). The homotopy category of C, denoted by
H(C), is the category with the same objects as Ch(C) and in which morphisms are
given by morphisms of complexes modulo homotopy. For further information on
chain complexes and the homotopy category we refer the reader to [86, Ch. 1].

We remind the reader of the notion of functorially finite subcategory of an
additive category. Let C be an additive category and D a subcategory of C. We say
that D is covariantly finite in C if for every C ∈ C there exists an object D ∈ D and
a morphism f : C → D such that, for all D′ ∈ D, the sequence of abelian groups

C(D,D′) C(C,D′) 0
f ·?

is exact. Such a morphism f is called a left D-approximation of C. The notions
of contravariantly finite subcategory of C and right D-approximation are defined
dually. A functorially finite subcategory of C is a subcategory which is both covari-
antly and contravariantly finite in C. For further information on functorially finite
subcategories we refer the reader to [13, 12].

2.2.2. n-cokernels, n-kernels, and n-exact sequences. Let C be an addi-
tive category and f : A→ B a morphism in C. A weak cokernel of f is a morphism
g : B → C such that for all C ′ ∈ C the sequence of abelian groups

C(C,C ′) C(B,C ′) C(A,C ′)
g·? f ·?

is exact. Equivalently, g is a weak cokernel of f if fg = 0 and for each morphism
h : B → C ′ such that fh = 0 there exists a (not necessarily unique) morphism
p : C → C ′ such that h = gp. These properties are subsumed in the following
commutative diagram:

A B C

C ′

f

0

g

∀h
∃p

Clearly, a weak cokernel g of f is a cokernel of f if and only if g is an epimorphism.
The concept of weak kernel is defined dually.
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The following general result, together with its dual, plays a central role in the
sequel.

Comparison Lemma 2.2.1. Let C be an additive category and X ∈ Ch≥0(C)

a complex such that for all k ≥ 0 the morphism dk+1
X is a weak cokernel of dkX . If

f : X → Y and g : X → Y are morphisms in Ch≥0(C) such that f0 = g0, then there
exists a homotopy h : f → g such that h1 is the zero morphism.

Proof. Let u := f − g and for all k ≤ 1 let hk : Xk → Y k−1 be the zero
morphism. Note that u0 = 0 by hypothesis. We proceed by induction on k. Let
k ≥ 1 and suppose that for all ` ≤ k we have constructed a morphism

h` : X` → Y `−1

such that

u`−1 = h`−1d`−2
Y + d`−1

X h`.

Since u is a morphism of complexes, we have

dk−1
X (uk − hkdk−1

Y ) =dk−1
X uk + (hk−1dk−2

Y − uk−1)dk−1
Y

=dk−1
X uk − uk−1dk−1

Y

=0.

Hence, given that dkX is a weak cokernel of dk−1
X , there exists a morphism

hk+1 : Xk+1 → Y k

such that uk − hkdk−1
Y = dkXh

k+1 or, equivalently,

uk = hkdk−1
Y + dkXh

k+1.

This finishes the construction of the required null-homotopy h : f − g → 0. �

The following terminology will prove convenient in the sequel.

Definition 2.2.2. Let C be an additive category and d0 : X0 → X1 a morphism
in C. An n-cokernel of d0 is a sequence(

d1, . . . , dn
)

: X1 X2 · · · Xn+1d1 d2 dn

such that for all Y ∈ C the induced sequence of abelian groups

0 C(Xn+1, Y ) C(Xn, Y ) · · · C(X1, Y ) C(X0, Y )dn·? dn−1·? d1·? d0·?

is exact. Equivalently, the sequence
(
d1, . . . , dn

)
is an n-cokernel of d0 if for all

1 ≤ k ≤ n − 1 the morphism dk is a weak cokernel of dk−1, and dn is moreover a
cokernel of dn−1. The concept of n-kernel of a morphism is defined dually.

Remark 2.2.3. If n ≥ 2, then n-cokernels are not unique in general. Indeed, for

each object C ∈ C the sequence 0→ C
1−→ C is a 2-cokernel of the morphism 0→ 0.

This shortcoming can be resolved if one considers n-cokernels up to isomorphism
in H(C), see Proposition 2.2.7.

As explained in the Introduction, n-exact sequences, defined below, are the
object of study of higher homological algebra. The investigation of their properties
is our main concern for the rest of this article.
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Definition 2.2.4. Let C be an additive category. An n-exact sequence in C is
a complex

X0 X1 · · · Xn Xn+1d0 d1 dn−1 dn

in Chn(C) such that
(
d0, . . . , dn−1

)
is an n-kernel of dn, and

(
d1, . . . , dn

)
is an

n-cokernel of d0.

Let C be an additive category. We remind the reader that a complex X ∈ Ch(C)
is contractible if the identity morphism of X is null-homotopic or, equivalently, X is
isomorphic to the zero complex in H(C). As a first analogy with the classical theory,
let us show that the class of n-exact sequences is closed under isomorphisms in H(C).

Proposition 2.2.5. Let C be an additive category and X and Y be complexes
in Chn(C) which are isomorphic in H(C). Then the following statements hold.

(i) The complex X is an n-exact sequence if and only if Y is an n-exact
sequence.

(ii) Every contractible complex with n+ 2 terms is an n-exact sequence.

Proof. Note that the second claim follows immediately from the first one since
the zero complex in Chn(C) is clearly an n-exact sequence. Suppose that X is an
n-exact sequence. By hypothesis, there exist morphisms of complexes

Y Y 0 Y 1 · · · Y n Y n+1

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Y n+1

f

g

together with a homotopy h : fg → 1Y . Hence, for all k ∈ {1, . . . , n} we have

(2.2.1) 1Y k = fkgk − hkdk−1
Y − dkY hk+1.

In particular, we have

(2.2.2) 1Y n+1 = fn+1gn+1 − hn+1dnY .

We claim that for all k ∈ {1, . . . , n} the morphism dkY is a weak cokernel of dk−1
Y .

Indeed, let k ∈ {1, . . . , n} and u : Y k → C be a morphism such that dk−1
Y u = 0. It

follows that

(dk−1
X gk)u = gk−1(dk−1

Y u) = 0.

Since dkX is a weak cokernel of dk−1
X there exists a morphism v : Xk+1 → C such

that gku = dkXv. Therefore,

(2.2.3) fk(gku) = (fkdkX)v = dkY f
k+1v.

By composing the identity (2.2.1) on the right with u and substituting the identity
(2.2.3) we obtain

u = (fkgk)u− (dkY h
k+1)u = dkY (fk+1v − hk+1u).

Therefore u factors through dkY . This shows that dkY is a weak kernel of dk−1
Y .

We need to show that dnY is moreover a cokernel of dn−1
Y . For this it is enough

to show that dnY is an epimorphism for we already know that it is a weak cokernel

of dn−1
Y . Let w : Y n+1 → C be a morphism such that dnY w = 0. It follows that

dnX(gn+1w) = gn(dnY w) = 0.
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Given that dnX is an epimorphism we deduce that gn+1w = 0. By composing (2.2.2)
on the right with w, we obtain

w = fn+1(gn+1w)− hn+1(dnY w) = 0.

Therefore dnY is an epimorphism. This shows that
(
d1
Y , . . . , d

n
Y

)
is an n-cokernel of

d0
Y . By duality, the sequence

(
d0
Y , . . . , d

n−1
Y

)
is an n-kernel of dnY . Hence Y is an

n-exact sequence. The converse implication is analogous. �

We have the following useful characterization of contractible n-exact sequences.

Proposition 2.2.6. Let C be an additive category and X a complex in Chn(C)
such that

(
d1, . . . , dn

)
is an n-cokernel of d0. Then, d0 is a split monomorphism if

and only if X is a contractible n-exact sequence.

Proof. Suppose that d0 is a split monomorphism. Hence there exists a mor-
phism h1 : X1 → X0 such that d0h1 = 1X0 . We shall extend h1 to a null-homotopy
of 1X . Inductively, let k ∈ {0, 1, . . . , n} and suppose that for all ` ≤ k we have
constructed a morphism h` : X` → X`−1 such that

1X`−1 = h`−1d`−2 + d`−1h`.

Composing this identity, for ` = k, on the left with dk−1 we obtain

dk−1 = (hk−1dk−2 + dk−1hk)dk−1 = dk−1(hkdk−1).

Since dk is a weak cokernel of dk−1, there exists a morphism hk+1 : Xk+1 → Xk

such that dkhk+1 = 1Xk − hkdk−1 or, equivalently,

1Xk = hkdk−1 + dkhk+1.

This finishes the induction step. It remains to show that 1Xn+1 = hndn. For this,
let k = n and note that composing the previous equality on the right by dn yields

dn = (hndn−1 + dnhn+1)dn = dn(hn+1dn).

Since dn is an epimorphism, we have 1Xn+1 = hndn, which is what we needed to
show. This shows that X is a contractible complex, and so it is also an n-exact
sequence. The converse implication is obvious. �

The following result implies that n-cokernels and n-kernels are unique up to
isomorphism in H(C).

Proposition 2.2.7. Let C be an additive category and f : X → Y a morphism
of n-exact sequences in C such that fk and fk+1 are isomorphisms for some k ∈
{1, . . . , n}. Then, f induces an isomorphism in H(C).

Proof. Using the factorization property of weak cokernels and weak kernels
we can construct a morphism of n-exact sequences g : Y → X where gk and gk+1

are the inverses of fk and fk+1 respectively:

X X0 · · · Xk−1 Xk Xk+1 Xk+2 · · · Xn+1

Y Y 0 · · · Y k−1 Y k Y k+1 Y k+2 · · · Y n+1

X X0 · · · Xk−1 Xk Xk+1 Xk+2 · · · Xn+1

f fk fk+1

g gk gk+1
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Then, the Comparison Lemma 2.2.1 and its dual applied to diagrams

X0 · · · Xk−1 Xk

Y 0 · · · Y k−1 Y k

X0 · · · Xk−1 Xk

fk+1

gk+1

and

Xk+1 Xk+2 · · · Xn+1

Y k+1 Y k+2 · · · Y n+1

Xk+1 Xk+2 · · · Xn+1

fk+1

gk+1

respectively imply that f and g induce mutually inverse isomorphisms in the ho-
motopy category H(C). �

Remark 2.2.8. The statement of Proposition 2.2.7 can be interpreted as saying
that each morphism in an n-exact sequence determines the others “up to homo-
topy”. To prove that equivalences of n-exact sequences also induce isomorphisms in
H(C) we need to impose a richer structure on the category C, see Proposition 2.4.10.

Definition 2.2.9. Let C be an additive category. A morphism of n-exact
sequences in C is a morphism of complexes

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Y n+1

f f0 f1 fn fn+1

in which each row is an n-exact sequence. We say that f is an equivalence if
f0 = 1X0 and fn+1 = 1Xn+1 .

Remark 2.2.10. In Proposition 2.4.10 we show that, in the case of n-exact
categories, equivalences of n-exact sequences are in fact an equivalence relation on
the class of n-exact sequences.

2.2.3. n-pushout diagrams and n-pullback diagrams. Let C be an addi-
tive category. A pushout diagram of a pair of morphisms

X Z

Y

g

f

in C can be identified with a cokernel of the morphism [−g f ]> : X → Z ⊕ Y . This
motivates us to introduce the following concept.

Definition 2.2.11. Let C be an additive category, X a complex in Chn−1(C),
and f0 : X0 → Y 0 a morphism in C. An n-pushout diagram of X along f0 is a
morphism of complexes

X X0 X1 · · · Xn−1 Xn

Y Y 0 Y1 · · · Y n−1 Y n

f f0

such that in the mapping cone C = C(f)

X0 X1 ⊕ Y 0 · · · Xn ⊕ Y n−1 Y n.
d−1
C d0

C dn−2
C dn−1

C
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the sequence
(
d0
C , . . . , d

n−1
C

)
is an n-cokernel of d−1

C , where we define

(2.2.4) dkC :=

[
−dk+1

X 0
fk+1 dkY

]
: Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

for each k ∈ {−1, 0, 1, . . . , n− 1}. In particular,

d−1 =

[
−d0

X

f0

]
and dn−1 =

[
fn dn−1

Y

]
.

Note that the fact that C(f) is a complex encodes precisely that X and Y are
complexes and that f is a morphism of complexes. The concept of n-pullback
diagram is defined dually.

We now state some of general properties of n-pushout diagrams.

Proposition 2.2.12. Let C be an additive category. Suppose that we are given
an n-pushout diagram

X X0 X1 · · · Xn−1 Xn

Y Y 0 Y 1 · · · Y n−1 Y n

f g0

and let k ∈ {0, 1, . . . , n− 2}. If dk+1
Y is a weak cokernel of dkY , then dk+1

X is a weak
cokernel of dkX .

Proof. Put C := C(f) and let u : Xk+1 → M be a morphism such that
dkXu = 0. Consider the solid part of the following commutative diagram:

Xk Xk+1 Xk+2

Y k−1 Y k Y k+1 Y k+2

M

fk fk+1

u

fk+2

h

0
v

w

Given that dkC : Xk+1⊕Y k → Xk+2⊕Y k+1 is a weak cokernel of d−1
C : Xk⊕Y k−1 →

Xk+1 ⊕ Y k, there exist morphisms v : Y k+1 → M and h : Xk+2 → M such that
dkY v = 0 and u− fk+1v = dk+1

X h. Since dk+1
Y is a weak cokernel of dkY there exists

a morphism w : Y k+2 →M such that v = dk+1
Y w. Therefore we have

u =dk+1
X h+ fk+1v

=dk+1
X h+ fk+1(dk+1

Y w)

=dk+1
X (h+ fk+2w).

This shows that dk+1
X is a weak cokernel of dkX . �

Our choice of terminology in Definition 2.2.11 is justified by the following prop-
erty.

Proposition 2.2.13. Let C be an additive category, g : X → Z a morphism of
complexes in Chn−1(C) and suppose there exists an n-pushout diagram of X along
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g0

X X0 X1 · · · Xn−1 Xn

Y Y 0 = Z0 Y 1 · · · Y n−1 Y n

f g0

Then, there exists a morphism of complexes p : Y → Z such that p0 = 1Z0 and a
homotopy h : fp→ g with h1 = 0. Moreover, these properties determine p uniquely
up to homotopy.

Proof. Let h1 : X1 → Z0 be the zero morphism, p0 = 1Z0 and C := C(f).
Inductively, suppose that 0 ≤ k ≤ n and that for all ` ≤ k we have constructed a
morphism p` : Y ` → Z` such that

d`−1
Y p` = p`−1d`−1

Z

and a morphism h`+1 : X`+1 → Z` such that

f `p` − g` = h`d`−1
Z + d`Xh

`+1.

We claim that the composition

Xk ⊕ Y k−1 Xk+1 ⊕ Y k Zk+1

−dkX 0

fk dk−1
Y

 [
gk+1−hk+1dkZ pkdkZ

]

vanishes. Indeed, on one hand we have

fk(pkdkZ) = (gk + dkXh
k+1)dkZ = dkX(gk+1 − hk+1dkZ).

On the other hand, we have

dk−1
Y (pkdkZ) = pk−1dk−1

Z dkZ = 0.

The claim follows.
Next, since dkC is a weak cokernel of dk−1

C , there exists a morphism pk+1 : Y k+1 →
Zk+1 such that

dkY p
k+1 = pkdkZ

and a morphism hk+2 : Xk+2 → Y k+1 such that

gk+1 + hk+1dkZ = −dk+1
X hk+2 + fk+1pk+1.

This finishes the induction step, and the construction of the required morphism
p : Y → Z. Moreover, h : fp → g is a homotopy (note that hn+1 = 0). The last
claim follows immediately from the Comparison Lemma 2.2.1. �

Definition-Proposition 2.2.14. Let C be an additive category and g0 : X0 →
Z0 a morphism in C. Suppose that there exists an n-pushout diagram of X along
g0

X X0 X1 · · · Xn−1 Xn

Y Y 0 = Z0 Y 1 · · · Y n−1 Y n

f g0

Then, the following statements hold:

(i) There exists an n-pushout diagram f̃ : X → Ỹ of X along g0 such that
for every morphism g : X → Z of complexes lifting g0 there exists a
morphism of complexes p : Y → Z such that p0 = 1Z0 and f̃p = g.

(ii) For each 2 ≤ k ≤ n the morphism f̃k is a split monomorphism.

(iii) We have Ỹ = Y ⊕X ′ for a contractible complex X ′ ∈ Chn−1(C).
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We call the morphism f̃ : X → Ỹ a good n-pushout diagram of X along g0.

Proof. If n = 1 the result is trivial, so we may assume that n ≥ 2. For C ∈ C

and k ∈ Z, let ik(C) be the complex with dk = 1C and which is 0 in each degree
different from k and k + 1. We define

X ′ :=

n⊕
k=2

ik−1(Xk)

and Ỹ := Y ⊕ X ′. Note that Ỹ 0 = Y 0 and that X ′ is a contractible complex. It
readily follows that the diagram

X X0 X1 X2 · · · Xk · · · Xn

Ỹ Y 0 Ỹ 1 Ỹ 2 · · · Ỹ k · · · Ỹ n

f̃ f0=g0

 f1

dX1



f2

1

d2
X



fk

1

dkX


fn

1



commutes. Observe that for each 2 ≤ k ≤ n the morphism f̃k is a split monomor-
phism. Using Proposition 2.2.13, it is easy to show that f̃ has the required factor-
ization property; the details are left to the reader. �

2.3. n-abelian categories

In this section we introduce n-abelian categories and establish their basic prop-
erties; we give a characterization of semisimple categories in terms of n-abelian cat-
egories. We also introduce projective objects in n-abelian categories and study their
basic properties. Finally, we show that n-cluster-tilting subcategories of abelian cat-
egories are n-abelian; we give a partial converse in the case of n-abelian categories
with enough projectives.

2.3.1. Definition and basic properties. The following definition is moti-
vated by the axioms of abelian categories given in [86, Def. A.4.2].

Definition 2.3.1. Let n be a positive integer. An n-abelian category is an
additive category M which satisfies the following axioms:

(A0) The category M is idempotent complete.

(A1) Every morphism in M has an n-kernel and an n-cokernel.

(A2) For every monomorphism f0 : X0 → X1 in M and for every n-cokernel(
f1, . . . , fn

)
of f0, the following sequence is n-exact:

X0 X1 · · · Xn Xn+1.
f0 f1 fn−1 fn

(A2op) For every epimorphism gn : Xn → Xn+1 in M and for every n-kernel(
g0, . . . , gn−1

)
of gn, the following sequence is n-exact:

X0 X1 · · · Xn Xn+1.
g0 g1 gn−1 gn

Let us give some important remarks regarding Definition 2.3.1.

Remark 2.3.2. By Proposition 2.2.5 and Proposition 2.2.7 we can replace
axiom (A2) by the following weaker version:

(A2’) For every monomorphism f0 : X0 → X1 in M there exists an n-exact
sequence:

X0 X1 · · · Xn Xn+1.
f0 f1 fn−1 fn

Naturally, we can weaken axiom (A2op) in a dual manner.
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Remark 2.3.3. Let M be an n-abelian category. An immediate consequence of
axioms (A1) and (A2) (resp. (A2op)) is that every monomorphism (resp. epimor-
phism) in M appears as the leftmost (resp. rightmost) morphism in some n-exact
sequence.

Remark 2.3.4. Let m and n be distinct positive integers. Note that the only
categories which are both n-abelian and m-abelian are the semisimple categories,
see Corollary 2.3.10.

Note that 1-abelian categories are precisely abelian categories in the usual sense.
It is easy to see that abelian categories are idempotent complete; thus, if n = 1,
then axiom (A0) in Definition 2.3.1 is redundant. However, if n ≥ 2, then axiom
(A0) is independent from the remaining axioms as shown by the following example.

Example 2.3.5. Let n ≥ 2 and K be a field. Consider the full subcategory
V of modK given by the finite dimensional K-vector spaces of dimension different
from 1. Then, V is not idempotent complete but it satisfies axioms (A1), (A2) and
(A2op).

Proof. Firstly, note that V is an additive subcategory of modK. The fact that
V is not idempotent complete is obvious (consider the idempotent 0⊕1K : K2 → K2

whose kernel is one-dimensional, for example). Let us show that V satisfies axiom
(A1). Indeed, let f : V →W be a morphism in V . If coker f has dimension different
from 1, then

V W coker f 0 · · · 0

gives an n-cokernel of f in V. If coker f has dimension 1, then we can construct an
n-cokernel of f in V by a commutative diagram

V W K3 K2 0 · · · 0

coker f

f

where coker f → K3 → K2 is a kernel-cokernel pair. We can construct an n-kernel
of f in a dual manner. This shows that V satisfies axiom (A1). That V satisfies
axioms (A2) and (A2op) follows from Proposition 2.2.6 since contractible complexes
with n+ 2 terms are in particular n-exact sequences by Proposition 2.2.5. �

Lemma 2.3.6. Let C be an idempotent complete additive category and suppose
that we are given a sequence of morphisms in C of the form

A B C D
f g h

If g is a weak cokernel of f , and h is both a split epimorphism and a cokernel of g,
then f admits a cokernel in C.

Proof. Since h is a split epimorphism there exists a morphism i : M → Y
such that ih = 1D. It follows that the morphism e := 1C − hi is idempotent. Since
the category C is idempotent complete, there exists an object E ∈ C and morphisms
r : C → E and s : E → C such that sr = 1E and rs = e. Note that this implies
that r is an epimorphism and sh = 0 for we have

r(sh) = (1− hi)h = h− h = 0.
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We claim that gr is a cokernel of f . Indeed, let u : B → B′ be a morphism such
that fu = 0. Since g is a weak cokernel of f there exists a morphism v : C → B′

such that u = gv. It follows that

u = gv = g(1− hi)v = (gr)(sv).

This shows that gr is a weak cokernel of f . It remains to show that gr is an
epimorphism. For this, let w : E → E′ be a morphism such that (gr)w = 0. Since
h is a cokernel of g there exists a morphism x : D → E′ such that rw = hx. It
follows that

w = (sr)w = s(hx) = 0.

This shows that gr is an epimorphism. Therefore gr is a cokernel of f . �

Proposition 2.3.7. Let M be an additive category which satisfies axioms (A0)
and (A1), and let X a complex in Chn−1(C). If for all 0 ≤ k ≤ n− 1 the morphism
dk is a weak cokernel of dk−1, then dn−1 admits a cokernel in M.

Proof. If n = 1, then the result follows trivially from axiom (A1). Hence we
may assume that n ≥ 2. By axiom (A1) there exists an n-cokernel(

dk : Xk → Xk+1 | n ≤ k ≤ 2n− 1
)

of dn−1. Using axiom (A1) again together with the factorization property of weak
cokernels we obtain a commutative diagram

X0 X1 X2 · · · Xn Xn+1 Xn+2 · · · X2n

Y 0 Y 1 Y 2 · · · Y n Y n+1 0 · · · 0

X0 X1 X2 · · · Xn Xn+1 Xn+2 · · · X2n

d0 d1 d2

f2

dn−1 dn

fn

dn+1

fn+1

dn+2 d2n−1

g2 gn gn+1

d0 d1 d2 dn−1 dn dn+1 dn+2 d2n−1

in which the middle row gives an n-cokernel of d0. The Comparison Lemma 2.2.1
implies that there exists a morphism h : X2n → X2n−1 such that hd2n−1 = 1.
Hence we may apply Lemma 2.3.6 and reduce the length of the n-cokernel of dn−1

by one morphism. Proceeding inductively, we deduce that dn−1 has an n-cokernel
in M. �

The importance of axiom (A0) becomes apparent in the following result, which
asserts that n-abelian categories have n-pushout diagrams and n-pullback diagrams.

Theorem 2.3.8 (Existence of n-pushout diagrams). Let M be an additive cat-
egory which satisfies axioms (A0) and (A1). Let X be a complex in Chn−1(C), and
a morphism f : X0 → Y 0. Then, the following statements hold:

(i) Then, there exists an n-pushout diagram

X0 X1 · · · Xn−1 Xn

Y 0 Y 1 · · · Y n−1 Y n

f

(ii) Moreover, if M is n abelian and d0
X is a monomorphism, then so is d0

Y .

Proof. (i) We shall construct the complex Y inductively. Set f0 := f and

d−1
C =

[
−d0

X

f0

]
: X0 X1 ⊕ Y 0.
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Let 0 ≤ k ≤ n− 2 and suppose that for each ` ≤ k we have constructed an object
Y ` and morphisms f ` : X` → Y ` and d`−1

Y : Y `−1 → Y ` such that d`−2
C d`−1

C = 0
where

d`−1
C :=

[
−d`X 0

f ` d`−1
Y

]
: X` ⊕ Y `−1 X`+1 ⊕ Y `

(compare with (2.2.4)). Then, by axiom (A1), the morphism dk−1
C has a weak

cokernel gk := [fk+1 dkY ] : Xk+1 ⊕ Y k → Y k+1. We claim that

dkC :=

[
−dk+1

X 0
fk+1 dkY

]
: Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

is also a weak cokernel of dk−1
C . Indeed, it is readily verified that dk−1

C dkC = 0.

Let u : Xk+1 ⊕ Y k → M be a morphism such that dk−1
C u = 0. Since gk is a weak

cokernel of dk−1
C , there exists a morphism v : Y k+1 → M such that u = gkv. It

follows that the following diagram is commutative:

Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

M

dkC

u
[
0 v

]

This shows that dkC is a weak cokernel of dk−1
C . Finally, Proposition 2.3.7 implies

that the morphism dn−2
C admits a cokernel

dn−1
C : Xn ⊕ Y n−1 → Y n.

This shows that the tuple
(
d0
C , d

1
C , . . . , d

n−1
C

)
is a weak cokernel of d−1

C . The ex-
istence of the required commutative diagram follows from the fact that C is a
complex.

(ii) Finally, suppose that M is n-abelian and d0
X is a monomorphism. Note

that this implies that d−1
C is also a monomorphism. Then, axiom (A2) implies that

the C is an n-exact sequence. In order to show that d0
Y is a monomorphism, let

u : M → Y 0 be a morphism such that ud0
Y = 0. It follows that the composition

M X1 ⊕ Y 0 X2 ⊕ Y 1

0

u

 −d1
X 0

f1 d0
Y



vanishes. Given that d−1
C is a kernel of d0

C , there exists a morphism v : M → X0

such that vd0
X = 0 and vf0 = u. Since d0

X is a monomorphism, we have u = 0.
This shows that d0

Y is a monomorphism. �

We remind the reader that an additive category C is semisimple if every mor-
phism f : A → B in C factors as f = pi, where p is a split epimorphism and i is
a split monomorphism. The following result characterizes semisimple categories in
terms of n-abelian categories.

Theorem 2.3.9. Let C be an additive category and n a positive integer. Then,
the n-abelian categories in which every n-exact sequence is contractible are precisely
the semisimple categories.

Proof. Suppose that C is a semisimple category. We only show that C is
idempotent complete. It is straightforward to verify that C satisfies the remaining
axioms of n-abelian categories, the fact that every n-exact sequence in C is con-
tractible follows immediately from Proposition 2.2.6. Let us show then that C is
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idempotent complete. Let e : A→ A be an idempotent in C. Since C is semisimple,
e factors as e = pi where p : A→ B is a split epimorphism and i : B → A is a split
monomorphism. We claim that ip = 1B . Indeed, let h : A → B be a morphism
such that ih = 1B . Given that e2 = e we have

p = p(ih) = eh = e2h = (pipi)h = p(ip).

Since p is an epimorphism we have ip = 1B as claimed. This shows that C is
idempotent complete.

Conversely, suppose that C is an n-abelian category in which every n-exact
sequence is contractible and let f : A → B be a morphism in C. We claim that f
admits both a kernel and a cokernel in C. Indeed, by axiom (A1) there exists an
n-cokernel

(
f1, · · · , fn

)
of f . By hypothesis, the epimorphism fn must split. Then,

Lemma 2.3.6 implies that fn−2 has a cokernel in C. By applying this argument
inductively we deduce that f admits a cokernel in C. By duality, f also admits a
kernel in C. The remaining part of the proof is classical, compare for example with
the proof of [29, Prop. 4.8].

We need to show that f factors as f = pi where p is a split epimorphism and
i is a split monomorphism. Given that f has both a kernel and a cokernel in C, is
easy to construct a commutative diagram

K A B C

J I

i f

p′

p

g

i′

where i is a kernel of f , and p is a cokernel of f , and the sequences K → A → J
and I → B → C are kernel-cokernel pairs. We claim that g is an isomorphism, for
which it is enough to show that is both a monomorphism and an epimorphism as
all such morphisms split by hypothesis. By duality we only need to show that g is
an epimorphism.

Let h : I → I ′ be a morphism such that gh = 0. Firstly, by Theorem 2.3.8
there exists a commutative diagram

I Y C

I ′ B′

i′

h

p

h′

i′′

where i′′ is a monomorphism. Secondly, we claim that fh′ = 0. Indeed, we have

fh′ = (p′gi′)h′ = p′(gh)i′′ = 0.

Therefore, since p is a cokernel of f , there exists a morphism j : C → B′. It follows
that

hi′′ = i′h′ = i′(pj) = 0.

Finally, since i′′ is a monomorphism, we have h = 0. This shows that g is an
epimorphism. �

Corollary 2.3.10. Let m and n be two distinct positive integers and C an
additive category. If C is both m-abelian and n-abelian, then C is a semisimple
category.

Proof. Without loss of generality we may assume that m < n. By Theo-
rem 2.3.9 and Proposition 2.2.6 it is enough to show that every monomorphism in
C splits. Let f0 : X0 → X1 be a monomorphism in C and let (f1, . . . , fn) be an
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n-cokernel of f0, and (g1, . . . , gm) be an m-cokernel of f0. It follows that there
exists a commutative diagram

X0 X1 X2 · · · Xm+1 Xm+2 · · · Xn+1

Y 0 Y 1 Y 2 · · · Y n+1 0 0 0

X0 X1 X2 · · · Xm+1 Xm+1 · · · Xn

f0 f1 f2 fm fm+1 fm+2 fn

g1 g2 gn

f0 f1 f2 fm fm+1 fm+2 fn

By the Comparison Lemma 2.2.1 there exists a morphism h : Xn+1 → Xn such
that hfn = 1. Thus fn is a split epimorphism. Then, as (f0, f1, . . . , fn) is an
n-exact sequence by axiom (A2), the dual of Proposition 2.2.6 implies that f0 is a
split monomorphism. �

2.3.2. Projective objects in n-abelian categories. We remind the reader
of the following classical definition.

Definition 2.3.11. Let C be an additive category. We say that P ∈ C is
projective if for every epimorphism f : A→ B the sequence of abelian groups

C(P,A) C(P,B) 0
?·f

is exact. The concept of injective object in C is defined dually.

Our aim is to prove the following important property of projective objects in
an n-abelian category.

Theorem 2.3.12. Let M be an n-abelian category and P ∈ M a projective
object. Then, for every morphism f : L → M and every weak cokernel g : M → N
of f , the sequence of abelian groups

(2.3.1) M(P,L) M(P,M) M(P,N)
?·f ?·g

is exact.

For the proof of Theorem 2.3.12 we need the following result which, albeit
technical, is interesting in its own right.

Proposition 2.3.13. Let M be an n-abelian category, f0 : X0 → X1 a mor-
phism in M and

(
fk : Xk → Xk+1 | 1 ≤ k ≤ n

)
an n-cokernel of f0. Then, for

every k ∈ {0, 1, . . . , n} there exists a commutative diagram

(2.3.2)

Y nk Y n−1
k · · · Y 1

k Xk Xk+1

0 Y nk+1 · · · Y 2
k+1 Y 1

k+1

gnk gn−1
k

pn−1
k

g2
k g1

k

p1
k

fk

p0
k

gnk+1 g3
k+1 g2

k+1

g1
k+1

satisfying the following properties:

(i) The sequence
(
gnk , . . . , g

1
k

)
is an n-kernel of fk.

(ii) The diagram

Y nk Y n−1
k · · · Y 1

k Xk

0 Y nk+1 · · · Y 2
k+1 Y 1

k+1

gnk gn−1
k

pn−1
k

g2
k g1

k

p1
k

p0
k

gnk+1 g3
k+1 g2

k+1
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is both an n-pullback diagram and a good n-pushout diagram, see Definition-
Proposition 2.2.14. In particular, the morphism[

p0
k g2

k+1

]
: Xk ⊕ Y 2

k+1 Y 1
k+1

is an epimorphism.
(iii) If k 6= 0, then the sequence

(
gk−1
k , . . . , g1

k, f
k, . . . , fn

)
is an n-cokernel of

the morphism gkk .

Proof. We proceed by induction on k, beginning with the case 1 6= k = n.
By axiom (A1) there exists an n-kernel (gnn , . . . , g

n
1 ) of fn and by axiom (A2op) the

sequence
(
gnn , . . . , g

1
1 , f

n
)

is an n-exact sequence. Note that this implies that the
diagram

Y nn Y n−1
n · · · Y 1

n Xn Xn+1 0

0 0 · · · 0 Xn

gnn gn−1
n g2

n g1
n fn

fn

1

is a both an n-pullback diagram and an n-pushout diagram. By Definition-Proposition 2.2.14
we can replace this diagram by a good n-pushout diagram

Y nn Y n−1
n · · · Y 1

n Xn Xn+1 0

0 Y n−2
n · · · Y 1

n ⊕Xn Xn ⊕Xn

gnn gn−1
n g2

n g1
n fn

fn

1

 [
1 0

]

Note that this passage does not change the fact that the bottom row gives an
n-kernel of fn. This shows that the result is holds in this case.

Let 2 ≤ k ≤ n and suppose that we have constructed a commutative diagram
of the form (2.3.2) with the required properties. Since fk−1fk = 0 and g1

k is a weak
kernel of fk there exists a morphism p0

k−1 : Xk−1 → Y 1
k such that fk−1 = p0

k−1g
1
k.

We claim that the morphism[
p0
k−1 g2

k

]
: Xk−1 ⊕ Y 2

k Y 1
k

is an epimorphism. Indeed, let u : Y 1
k → M be a morphism such that p0

k−1u = 0

and g2
ku = 0. Given that g1

k is a weak cokernel of g2
k there exists a morphism

v : Xk →M such that u = g1
kv. It follows that

fk−1v = (p0
k−1g

1
k)v = p0

k−1u = 0.

Then, since fk is a weak cokernel of fk−1, there exists a morphism w : Xk+1 →M
such that v = fkw. Thus, we have

u = g1
kv = g1

k(fkw) = 0.

The claim follows. By Theorem 2.3.8 there exists an n-pullback diagram

Y nk−1 Y n−1
k−1 · · · Y 1

k−1 Xk−1

0 Y nk · · · Y 2
k Y 1

k

gnk−1 gk−1

pn−1
k−1

g2
k−1 g1

k−1

p1
k−1

p0
k−1

gnk g3
k g2

k
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Note that axiom (A2op) implies that it this diagram is also an n-pushout diagram,
and that Proposition 2.2.12 implies that it has the required properties, except that
it need not be a good n-pushout diagram. Using Definition-Proposition 2.2.14 we
may replace this diagram by a good n-pushout diagram. Note that since the passage
to a good n-pushout diagram amounts to adding a contractible n-exact sequence it
does not alter the properties of the previously constructed diagrams.

Finally, let k = 1. We have a commutative diagram

Y n0 Y n−1
0 · · · Y 1

0 X0 X1

0 Y n1 · · · Y 2
1 Y 1

1

gn0 gn−1
0

pn−1
0

g2
0 g1

0

p1
0

f0

p0
0

gn1 g3
1 g2

1

g1
1

where the leftmost n squares form an n-pullback diagram; we claim that they form
moreover an n-pushout diagram. To show this, by axiom (A2op) it is enough to
show that the morphism [

p0
0 g2

1

]
: X0 ⊕ Y 2

1 Y 1
1

is an epimorphism. Let u : Y 1
1 → M be a morphism such that p0

0u = 0 and g2
1 =

0. Put Y 0
0 := X0 and u0 := u. Proceeding inductively, since the diagrams we

constructed are good n-pushout diagrams, for each k ∈ {1, . . . , n− 1} we obtain a
commutative diagram

Y k+1
k Y kk

Y k+2
k+1 Y k+2

k+1 Y k+1
k+1

M

uk
pkk

0

uk+1

Moreover, by Theorem 2.3.8 there exists a commutative diagram

Y nn Y n−1
n

M N

un pn−1
n

v

where v is a monomorphism. It readily follows that

u = p1
1 · · · pn−1

n−1u
n and uv = g1

1p
0
1 · · · pn−1

n .

Next, observe that

f0(p0
1 · · · pn−1

n ) = p0
0g

1
1p

0
1 · · · pn−1

n = p0
0uv = 0.

Given that f1 is a weak cokernel of f0, there exists a morphism w : X1 → N such
that f1w = p0

1 · · · pn−1
n . Finally, we have

uv = g1
1(p0

1 · · · pn−1
n ) = g1

1f
1w = 0.

Since v is a monomorphism, we have u = 0 which is what we needed to show. �

We are ready to give the proof of Theorem 2.3.12.
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Proof of Theorem 2.3.12. By Proposition 2.3.13 there exists a commuta-
tive diagram

L M N

K2 K1

f

p

g

q

i

where i is a weak kernel of g, we have qi = 0, and[
p q

]
: L⊕K2 K1

is an epimorphism.
Let h : P → M be a morphism such that hg = 0. Since i is a weak kernel

of g, there exists a morphism j : P → K1 such that h = ji. Given that P is
projective and L⊕K2 → K1 is an epimorphism, there exist morphisms j′ : P → L
and j′′ : P → K2 such that j = j′p+ j′′q. It follows that

h = ji = (j′p+ j′′q)i = j′pi = j′f.

Hence h factors through f . This shows that the sequence (2.3.1) is exact. �

2.3.3. n-abelian categories and cluster-tilting. Recall that a subcategory
C of an abelian category A is cogenerating if for every object X ∈ A there exists an
object Y ∈ C and a monomorphism X → Y . The concept of generating subcategory
is defined dually. We use the following variant of the definition of a cluster-tilting
subcategory of an abelian category.

Definition 2.3.14. Let A be an abelian category and M a generating-cogenerating
subcategory of A. We say that M is an n-cluster-tilting subcategory of A if M is
functorially finite (see Subsection 2.2.1) in A and

M =
{
X ∈ A | ∀i ∈ {1, . . . , n− 1} ExtiA(X,M) = 0

}
=
{
X ∈ A | ∀i ∈ {1, . . . , n− 1} ExtiA(M, X) = 0

}
.

Note that A itself is the unique 1-cluster-tilting subcategory of A.

Remark 2.3.15. Let A be an abelian category and M an n-cluster-tilting sub-
category of A. Since M is a cogenerating subcategory of A, for all A ∈ A each left
M-approximation of A is a monomorphism.

The following result provides us with a way of recognizing n-abelian categories.

Theorem 2.3.16. Let A be an abelian category and M an n-cluster-tilting sub-
category of A. Then, M is an n-abelian category.

To prove Theorem 2.3.16 we need the following technical results.

Proposition 2.3.17. Let A be an abelian category and M an n-cluster-tilting
subcategory of A. Then, for all A ∈ A there exists an exact sequence

0 A M1 · · · Mn−1 Mn 0

C1 Cn−1 Cn

f0 f1 fn−2

gn−2

fn−1

gn−1h1 hn−1

satisfying the following properties:

(i) For each k ∈ {1, . . . , n} we have Mk ∈M.
(ii) For each k ∈ {1, . . . , n− 1} the morphism hk : Ck → Mk is a left M-

approximation.
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(iii) For each k ∈ {1, . . . , n− 1} the morphism gk : Mk → Ck+1 is a cokernel
of hk : Ck →Mk.

(iv) For all M ∈M the induced sequence of abelian groups

0 A(Mn,M) · · · A(M1,M) A(A,M) 0

is exact.

Proof. This proof is an adaptation of the proof of [56, Thm. 2.2.3]. Given
that for all k ∈ {1, . . . , n− 1} the morphism hk : Ck →Mk is a left M-approximation,
it readily follows that the sequence

0 A(Mn,M) · · · A(M1,M) A(A,M) 0

is exact. It remains to show that Cn ∈M.
We claim that for each M ∈M and each k ∈ {2, . . . , n} we have ExtiA(Ck,M) =

0 for all 1 ≤ i ≤ k − 1. We proceed by induction on k. First, note that for
all M ∈ M applying the contravariant functor A(−,M) to the exact sequence

0→ A
f0

−→M2 → C2 we have an exact sequence

A(M1,M) A(A,M) Ext1A(C2,M) Ext1A(M1,M) = 0.
f0·?

Moreover, the morphism A(M1,M)→ A(A,M) is an epimorphism for f0 is a left
M-approximation of A. Thus we have Ext1A(C2,M) = 0 as required.

Let 2 ≤ k ≤ n − 1 and suppose that the claim holds for all ` ≤ k. Note that
since M is a cogenerating subcategory of A, the morphism hk is a monomorphism.
In particular, we have that hk is a kernel of gk. For all M ∈ M and for each
2 ≤ i ≤ k, applying the contravariant functor A(−,M) to the exact sequence
0→ Ck →Mk → Ck+1 → 0 yields an exact sequence of the form

0 = Exti−1
A (Ck,M) ExtiA(Ck+1,M) ExtiA(Mk,M) = 0.

Therefore ExtiA(Ck+1,M) = 0 for all 2 ≤ i ≤ k. Moreover, since hk is a left
M-approximation of Y k, the induced morphism A(Mk,M) → A(Ck,M) is an
epimorphism. Hence, applying the contravariant functor A(−,M) to the exact
sequence 0→ Ck →Mk → Ck+1 → 0 yields an exact sequence

A(Mk,M) A(Ck,M) Ext1A(Ck+1,M) Ext1A(Mk,M) = 0

where the left morphism is an epimorphism. Thus Ext1A(Ck+1,M) = 0. This fin-

ishes the induction step. We have shown that for allM ∈M we have ExtiA(Cn,M) =
0 for all i ∈ {1, . . . , n− 1}. Since M is an n-cluster-tilting subcategory of M, this
implies Cn = Mn ∈M as required. �

Proposition 2.3.18. Let A be an abelian category, B ∈ A, and M a subcate-
gory of A such that ExtkA(M, B) = 0 for all k ∈ {1, . . . , n− 1}. Consider an exact
sequence

Mn Mn−1 · · · M1 M0 A 0

in A such that Mk ∈M for all k ∈ {0, 1, . . . , n− 1}. Then, for each k ∈ {1, . . . , n− 1}
there is an isomorphism between ExtkA(A,B) and the cohomology of the induced
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complex

(2.3.3) A(M0, B) A(M1, B) · · · A(Mn−1, B) A(Mn, B)

at A(Mk, B).

Proof. Let Ak := coker(Mk+1 → Mk). Note that A0 = A. Firstly, let us
show that for each k ∈ {1, . . . , n− 1} there exist isomorphisms

ExtkA(A0, B) ∼= Extk−1
A (A1, B) ∼= · · · ∼= Ext1A(Ak−1, B).

The case k = 1 is obvious. If 2 ≤ k ≤ n− 1, then for each 2 ≤ ` ≤ k applying the
functor A(−, B) to the exact sequence 0 → Ak−`+1 → Mk−` → Ak−` → 0 yields
an exact sequence

0 = `−1
A (Mk−`, B) `−1

A (Ak−`+1, B) `
A(Ak−`, B) `

A(Mk−`, B) = 0

where we omitted ExtA because of lack of space. The claim follows.
Secondly, let us show that Ext1A(Ak−1, B) is isomorphic to the cohomology of

the complex (2.3.3) at A(Mk, B). This follows by definition from the commutative
diagram

A(Mk−1, B) A(Mk, B) A(Mk+1, B)

A(Ak, B)

0 Ext1A(Ak−1, B)

Ext1A(Mk−1, B) = 0

which is the glueing of two exact sequences. This concludes the proof. �

Now we give the proof of Theorem 2.3.16.

Proof of Theorem 2.3.16. We shall show that M satisfies the axioms of
Definition 2.3.1.

(A0) Since the abelian category A is idempotent complete, it follows immedi-
ately from the definition of n-cluster-tilting subcategory that M also is idempotent
complete.

(A1) Let f : A → B be a morphism in M. Let B → C be a cokernel of f ,
applying Proposition 2.3.17 to C gives the desired n-cokernel of f . By duality, f
has an n-cokernel.

(A2) Let f0 : X0 → X1 be a monomorphism in A such that X0, X1 ∈ M and
let
(
fk : Xk → Xk+1 | 1 ≤ k ≤ n

)
be an n-cokernel of f0 in M obtained as in the

previous paragraph. Applying the dual of Proposition 2.3.18 to the exact sequence

0 X0 X1 · · · Xn Xn+1,
f0 f1 fn−1 fn

we obtain that for all Y ∈ M and for all k ∈ {1, . . . , n− 1} the cohomology of the
induced complex

A(Y,X1) · · · A(Y,Xn) A(Y,Xn+1)

at A(Y,Xk+1) is isomorphic to ExtkA(Y,X0) which vanishes since M is an n-cluster-
tilting subcategory of A. This shows that (f0, . . . , fn−1) is an n-kernel of fn in
M. That M also satisfies axiom (A2op) now follows by duality. This concludes the
proof of the theorem. �
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Definition 2.3.19. Let M be an n-abelian category. We say that M is projec-
tively generated if for every object M ∈ M there exists a projective object P ∈ M

and an epimorphism P →M . The notion of injectively cogenerated n-abelian cate-
gory is defined dually.

Our next aim is to show that a partial converse of Theorem 2.3.16 holds for
projectively generated n-abelian categories. For this, we remind the reader of the
notion of coherent modules on an additive category.

Let C be a small additive category. A C-module is a contravariant func-
tor F : C → ModZ. The category ModC of C-modules is an abelian category.
Morphisms in ModC are natural transformations of contravariant functors. If
M,N ∈ modC, then we denote the set of natural transformations M → N by
HomC(M,N). As a consequence of Yoneda’s lemma representable, functors are pro-
jective objects in ModC. The category of coherent C-modules, denoted by modC, is
the full subcategory of ModC whose objects are the C-modules F such that there
exists a morphism f : X → Y in C and an exact sequence of functors

C(−, X) C(−, Y ) F 0.
?·f

Note that modC is closed under cokernels and extensions in ModC. Moreover,
modC is closed under kernels in ModC if and only if C has weak kernels, in which
case modC is an abelian category. For further information on coherent C-modules
we refer the reader to [9].

Our aim is to prove the following theorem.

Theorem 2.3.20. Let M be a small projectively generated n-abelian category.
Let P be the category of projective objects in M and F : M → modP the functor
defined by FX := M(−, X)|P. Also, let

FM := {M ∈ modP | ∃X ∈M such that M ∼= FX}
be the essential image of F . If modP is injectively cogenerated, then FM is an
n-cluster-tilting subcategory of modP.

Remark 2.3.21. The requirement in Theorem 2.3.20 of modP being injectively
cogenerated is satisfied, for example, if P is a dualizing variety in the sense of [11].

In fact, instead of proving Theorem 2.3.20, we prove the following more general
statement.

Lemma 2.3.22. Let M be a small projectively generated n-abelian category. Let
P be the category of projective objects in M and F : M→ modP the functor defined
by FX := M(−, X)|P. Also, let

FM := {M ∈ modP | ∃X ∈M such that M ∼= FX}
be the essential image of F . Then, the following statements hold:

(i) The category modP is abelian.
(ii) The functor F : M→ modP is fully faithful.

(iii) For all k ∈ {1, . . . , n− 1} we have ExtkP(FM, FM) = 0.
(iv) We have

FM =
{
X ∈ modP | ∀k ∈ {1, . . . , n− 1} ExtkP(X,M) = 0

}
.

(v) We have

FM =
{
X ∈ modP | ∀k ∈ {1, . . . , n− 1} ExtkP(M, X) = 0

}
.

(vi) The subcategory FM is contravariantly finite in modP.
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(vii) If modP is injectively cogenerated, then FM is covariantly finite in modP.
Hence, FM is a functorially finite subcategory of modP in this case.

(viii) If modP is injectively cogenerated, then FM is a generating-cogenerating
subcategory of modP.

Proof. (i) This statements follows from the fact that M has weak kernels [9].
(ii) Let M ∈ M. Since M is projectively generated, there exists an n-exact

sequence

(2.3.4) Kn · · · K1 K0 M.u

where K0 is a projective object. For the same reason, there exist a projective object
P 1 and an epimorphism v : P 1 → K1. Let f = vu and put P 0 := K0. It follows
that the sequence

FP 1 FP 0 FM 0
Ff

is exact in ModP. This shows that FM ∈ modP. That F is fully faithful follows

from Yoneda’s lemma and the existence of a sequence of the form FP 1 Ff−−→ FP 0 →
FM → 0 with P 0, P 1 ∈M for each M ∈M.

(iii) Let us show that for every M,N ∈M we have ExtkP(FM,FN) = 0 for all
k ∈ {1, . . . , n− 1}. Consider an n-exact sequence of the form (2.3.4). Applying F
to (2.3.4) yields an exact sequence

(2.3.5) 0 FKn FKn−1 · · · FK1 FK0 FM 0.

Since F is fully faithful there is an isomorphism of complexes

HomP(FK0, FN) · · · HomP(FKn−1, FN) HomP(FKn, FN)

A(K0, N) · · · A(Kn−1, N) A(Kn, N)

Note that the bottom row is exact by the property of n-exact sequences, hence the
top row is also exact. Put C` := coker(FK`+1 → FK`). Note that C0 := FM .
There is an exact sequence

HomP(FK0, FN) HomP(C1, FN) Ext1P(FM,FN) Ext1P(FK0, FN) = 0

(recall that FK0 is projective in modP). Since the top row of the above diagram is
exact, this implies that Ext1P(FM,FN) = 0. Hence we have Ext1P(FM, FM) = 0.
We shall that we have a sequence of isomorphisms

Ext`P(C0, FN) ∼= Ext`−1
P (C1, FN) ∼= · · · ∼= Ext1P(C`−1, FN) = 0

for all ` ∈ {1, . . . , n− 1}. If ` = 1, then the claim is trivial. Inductively, suppose
that we have shown that ExtmP (FM, FM) = 0 for all 1 ≤ m ≤ ` − 1. Firstly,
note that applying the functor HomP(−, FN) to the exact sequence 0 → C` →
FK`−1 → C`−1 → 0 gives an exact sequence

HomP(FK`−1, FN) HomP(C`, FN) Ext1P(C`−1, FN) Ext1P(FK`−1, FN) = 0,

Since the top row of the above diagram is exact, this implies that Ext1P(C`−1, FN) =
0. Secondly, by the induction hypothesis, for each 1 ≤ m ≤ ` − 1 applying the
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functor HomP(−, FN) to the exact sequence 0→ C`−m → FK`−m−1 → C`−m−1 →
0 yields an exact sequence

0 = m
P (FK`−m−1, FN) m

P (C`−m, FN) m+1
P (C`−m−1, FN) m+1

P (FK`−m−1, FN) = 0

where we omitted Ext because of lack of space (for m = ` − 1, recall that FK0 is
projective in modP). The claim follows.

(iv) Let G ∈ modP be such that for all N ∈ M and for all k ∈ {1, . . . , n− 1}
we have ExtkP(G,FN) = 0. We need to show that there exists M ∈M such that G
and FM are isomorphic. For this, let

FP1 FP0 G 0
Ff0

be a projective presentation of G in modP and let

Xn · · · X1 X0
fn f1

be an n-kernel of f0 (by convention, X0 := P1). Let N ∈M. Applying the functor
HomP(F (−), FN) to the sequence (fn, . . . , f1, f0) together with the fact that F is
fully faithful yields a commutative diagram

HomP(FP0, FN) HomP(FX0, FN) · · · HomP(FXn, FN)

A(P0, N) A(X0, N) · · · A(Xn, N)

where the vertical arrows are isomorphisms. By what we showed in the previous
paragraph and Proposition 2.3.18, for all k ∈ {1, . . . , n− 1} the homology of the

top row at HomP(FXk−1, FN) is isomorphic to ExtkP(G,FN) which vanishes by
hypothesis. It follows that the bottom row is an exact sequence. By applying
Proposition 2.3.7 to fn−1 and the sequence (fn−2, . . . , f1, f0) we deduce that f0

admits a cokernel P0 →M in M. Finally, Theorem 2.3.12 implies that the sequence

FP1 FP0 FM 0
Ff0

is exact in modP. Therefore G is isomorphic to FM which is what we needed to
show.

(v) Let us show that if G ∈ modP is such that for all M ∈ M and for all

k ∈ {1, . . . , n− 1} we have ExtkP(FM,G) = 0, then G ∈ FM. Indeed, let

FP1 FP0 G 0
Ff0

be a projective presentation of G in modP. By axiom (A1), there exists an n-
cokernel

(
fk : Mk−1 →Mk | 1 ≤ k ≤ n

)
of f0 in M (by convention, M0 := P 0).

Then, Theorem 2.3.12 implies that the sequence

FP 1 FP 0 FM1 · · · FMn 0
Ff0 Ff1 Ff2 Ffn

is exact in modP. It follows that there is an exact sequence

0 G FM1 · · · FMn 0.
Ff2 Ffn

For each k ∈ {1, . . . , n− 1} let Gk := kerFfk+1; we claim that Gk ∈ FM. Note
that Ext1P(FMk, Gk) = 0 by hypothesis. In particular, Gn−1 is a direct summand
of FMn−1. Since M is idempotent complete, there exists an object L ∈ M such
that Gn−1 ∼= FL ∈ FM. Inductively, we deduce that G1 = G ∈ FM.
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(vi) Let G ∈ modP and take a projective presentation

FP 1 FP 0 G 0
Ff p

of G in modP. Let g : P 0 →M be a weak cokernel of f in M. We obtain the solid
part of the following commutative diagram:

FP 1 FP 0 FM

G FN

Ff Fg

p

h

Let h : G → FN be a morphism in modP. Since g is a weak cokernel there exists
a morphism ? · q : FM → FN such that the diagram

FP 0 FM

G FN

Fg

p Fq

h

is commutative. Finally, given that p is an epimorphism, we conclude that the
diagram

G FM

FN

h
Fq

commutes. This shows that G→ FM is a right FM-approximation of G.
(vii) and (viii) Suppose that modP is injectively cogenerated. From part (iii)

we deduce that for every injective object I ∈ modP we have I ∈ FM. Hence (vii)
follows by duality from part (vi). Also, (viii) follows since it is now clear that FM
is a cogenerating subcategory of modP. �

2.4. n-exact categories

In this section we introduce n-exact categories and establish their basic proper-
ties. We show that n-cluster-tilting subcategories of exact categories have a natural
n-exact structure.

2.4.1. Definition and basic properties. The treatment of this section is
parallel to Bühler’s exposition of the basics of the theory of exact categories given
in [29, Sec. 2].

Let C be an additive category. If X is a class of n-exact sequences in C, then
we call its members X-admissible n-exact sequences. Furthermore, if

X0 X1 · · · Xn Xn+1d0 d1 dn−1 dn

is an X-admissible n-exact sequence, we say that d0 is an X-admissible monomor-
phism and that dn is an X-admissible epimorphism. In analogy with [29], we depict
X-admissible monomorphisms by � and X-admissible epimorphisms by �. A se-
quence �→ · · · →� of n + 1 morphisms always denotes an X-admissible n-exact
sequence. When the class X is clear from the context, we write “admissible” instead
of “X-admissible”.
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Definition 2.4.1. We say that a morphism f : X → Y of n-exact sequences
in Chn(C) is a weak isomorphism if fk and fk+1 are isomorphisms for some k ∈
{0, 1, . . . , n+ 1} with n + 2 := 0 (this terminology is borrowed from the theory
of (n + 2)-angulated categories, see Section 2.5.1). Note that weak isomorphisms
induce isomorphisms in H(C) by Proposition 2.2.7.

Definition 2.4.2. Let n be a positive integer and M an additive category. An
n-exact structure on M is a class X of n-exact sequences in M, closed under weak
isomorphisms of n-exact sequences, and which satisfies the following axioms:

(E0) The sequence 0� 0→ · · · → 0� 0 is an X-admissible n-exact sequence.

(E1) The class of X-admissible monomorphisms is closed under composition.

(E1op) The class of X-admissible epimorphisms is closed under composition.

(E2) For each X-admissible n-exact sequence X and each morphism f : X0 →
Y 0, there exists an n-pushout diagram of (d0

X , . . . , d
n−1
X ) along f such

that d0
Y is an X-admissible monomorphism. The situation is illustrated

in the following commutative diagram:

X0 X1 · · · Xn( Xn+1)

Y 0 Y 1 · · · Y n

d0
X

f

d1
X dn−1

X dn+1
X

d0
Y d1

Y dn−1
Y

(E2op) For each X-admissible n-exact sequenceX and each morphism g : Y n+1 →
Xn+1, there exists an n-pullback diagram of (d1

X , . . . , d
n
X) along g such

that dnY is an X-admissible epimorphism. The situation is illustrated in
the following commutative diagram:

Y 1 · · · Y n Y n+1

(X0 )X1 · · · Xn Xn+1

d1
Y dn

1

Y dnY

g

d0
X d1

X dn−1
X dnX

An n-exact category is a pair (M,X) where M is an additive category and X is an
n-exact structure on M. If the class X is clear from the context, we identify M with
the pair (M,X).

Remark 2.4.3. Our choice of axioms for n-exact categories is inspired by
Keller’s minimal list of axioms for exact categories [66, App. A], although we
opt for a more convenient self-dual collection. In particular, we point out to the
reader who is more familiar with Quillen’s axioms that the so-called “obscure ax-
iom”, axiom c) of [79, Sec. 2], is redundant, see [29, p. 4, Prop. 2.16].

Remark 2.4.4. Let (M,X) be an n-exact category. The fact that X is closed
under isomorphisms in H(M) together with axiom (E0) implies that all contractible
n-exact sequences are admissible. Moreover, it is easy to show that the class of all
contractible n-exact sequences in an additive category M is an n-exact structure;
in fact, this is the smallest n-exact structure on M. In particular, every additive
category can be considered as an n-exact category with a “contractible n-exact
structure”. integer n.

The following result shows that n-abelian categories have a canonical n-exact
structure. Therefore the class of n-exact categories contains the class of n-abelian
categories.

Theorem 2.4.5. Let M be an n-abelian category and X the class of all n-exact
sequences in M. Then, (M,X) is an n-exact category.
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Proof. We shall show that (M,X) satisfies the axioms of Definition 2.4.2. It
is obvious that the class X is closed under weak isomorphisms and that axiom (E0)
is satisfied. By axioms (A1) and (A2) in Definition 2.3.1, every monomorphism
in M is the leftmost morphism in an n-exact sequence, see Remark 2.3.3. Since
the composition of two monomorphisms is again a monomorphism, axiom (E1)
is satisfied. That axiom (E1op) is also satisfied then follows by duality. Finally,
Theorem 2.3.8 and its dual show that axioms (E2) and (E2op) are satisfied. This
shows that (M,X) is an n-exact category. �

We begin our investigation of the properties of n-exact categories with a simple
but useful observation.

Lemma 2.4.6. Let (M,X) be an n-exact category and X0 � X1 and admissible
monomorphism. If the sequence

(
Xk → Xk+1 | 1 ≤ k ≤ n

)
is an n-cokernel of f0,

then the sequence

X : X0 X1 · · · Xn Xn+1

is an admissible n-exact sequence.

Proof. Since X0 � X1 is an admissible monomorphism, there exists an ad-
missible n-exact sequence Y whose first morphism is X0 � X1. By the factor-
ization property of n-cokernels, there exists a weak isomorphism X → Y . Then,
X ∈ X since the class X is closed under weak isomorphisms. �

The next result shows that the n-exact structure of an n-exact category is
closed under direct sums.

Proposition 2.4.7. Let (M,X) be an n-exact category, and X and Y be ad-
missible n-exact sequences. Then, their direct sum X ⊕ Y is an admissible n-exact
sequence.

Proof. This is an adaptation of the proof of [29, Prop. 2.9]. Clearly, X ⊕ Y
is an n-exact sequence. We claim that d0

X ⊕ 1Y 0 is an admissible monomorphism.
Indeed, the sequence

X0 ⊕ Y 0 X1 ⊕ Y 0 X2 · · · Xn+1
d0
X⊕1Y 0 (d1

X 0) d2
X dnX

is an n-exact sequence. Since dnX is an admissible epimorphism, it follows from the
dual of Lemma 2.4.6 that this sequence is moreover an admissible n-exact sequence
and therefore d0

X⊕1Y 0 is an admissible monomorphism. We can show that 1X1⊕d0
Y

is an admissible monomorphism with a similar argument. Next, observe that

d0
X ⊕ d0

Y = (d0
X ⊕ 1Y 0) · (1X1 ⊕ d0

Y ).

By axiom (E1) we have that d0
X ⊕ d0

Y : X0 ⊕ Y 0 → X1 ⊕ Y 1 is an admissible
monomorphism. Since X ⊕ Y is an admissible n-exact sequence, the claim follows
from Lemma 2.4.6. �

The following characterization of n-pushout diagrams of n-exact sequences
should be compared with [29, Prop. 2.12].

Proposition 2.4.8. Let (M,X) be an n-exact category. Suppose that we are
given a commutative diagram

(2.4.1)

X0 X1 · · · Xn( Xn+1)

Y 0 Y 1 · · · Y n

d0
X

f0

d1
X

f1

dn−1
X

fn

dnX

d0
Y d1

Y dn−1
Y
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in which the top row is an admissible n-exact sequence and d0
Y is an admissible

monomorphism. Then the following statements are equivalent:

(i) Diagram (2.4.1) is an n-pushout diagram.
(ii) The mapping cone of diagram (2.4.1) is an admissible n-exact sequence.

(iii) Diagram (2.4.1) is both an n-pushout and an n-pullback diagram.
(iv) There exists a commutative diagram

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Xn+1

f

d0
X

f0

d1
X

f1

dn−1
X

fn

dnX

d0
Y d1

Y dn−1
Y dnY

whose rows are admissible n-exact sequences.

Proof. (i) implies (ii). This is an adaptation of the proof of [29, Prop. 2.12].
Since the leftmost n squares in (2.4.1) form an n-pushout diagram, by definition
its mapping cone gives an n-cokernel of the morphism

d−1
C = [−d0

X f0]> : X0 → X1 ⊕ Y 0.

Hence, by Lemma 2.4.6, it is sufficient to show that d−1
C is an admissible monomor-

phism. For this, observe that d−1
C equals the composition

X0 X0 ⊕ Y 0 X0 ⊕ Y 0 X1 ⊕ Y 0

1

0

 −1 0

f0 1


∼

d0
X 0

0 1



where the rightmost morphism is an admissible monomorphism by Proposition 2.4.7
and the remaining morphisms are admissible monomorphisms by Remark 2.4.4.
Thus d−1

C is an admissible monomorphism by axiom (E1).
That (ii) implies (iii) follows directly from the definitions of n-pushout and

n-pullback diagrams. That (iii) implies (i) is obvious. Therefore statements (i), (ii)
and (iii) are equivalent.

(i) implies (iv). We begin by constructing the morphism dnY : Y n → Xn+1.

Since dn−1
C is a cokernel of dn−2

C , there exists a unique morphism dnY : Y n → Xn+1

such that dnX = fndnY and dn−1
Y dnY = 0, see (2.2.4). Since dnX is an epimorphism, it

follows immediately that so is dnY . It remains to show that dnY is a cokernel of dn−1
Y .

For this, let u : Y n →M be a morphism such that dn−1
Y u = 0. Then we have that

dn−1
X (fnu) = (fn−1dn−1

Y )u = 0.

Since dnX is a cokernel of dn−1
X , there exists a morphism v : Xn+1 → M such that

fnu = dnXv. It follows that

fnu = dnXv = fn(dnY v)

and
dn−1
Y u = 0 = dn−1

Y (dnY v).

Since dn−1
C is a cokernel of dn−2

C , we have u = dnY v. This shows that the epimorphism

dnY is a cokernel of dn−1
Y .

Let 2 ≤ k ≤ n. We need to show that dkY is a weak cokernel of dk−1
Y . Let

u : Y k →M be a morphism such that dk−1
Y u = 0. Then we have

dk−1
X (fku) = (fk−1dk−1

Y )u = 0.

Since dkX is a weak cokernel of dk−1
X , there exists a morphism v : Xk+1 → M such

that fku = dkXv. Hence, given that dk−1
C is a weak cokernel of dk−2

C , there exists
a morphism w : Y k+1 → M such that dkY w = u, see (2.2.4). Therefore dkY is a
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weak cokernel of dk−1
Y , as required. This shows that (d1

Y , . . . , d
n
Y ) is an n-cokernel

of d0
Y , so we have finished the construction of the required commutative diagram.

Moreover, by Lemma 2.4.6, the sequence Y is an admissible n-exact sequence.
(iv) implies (ii). We assume that n ≥ 2. The case n = 1 can be shown

by combining the arguments below, and is easily found in the literature, see for
example [29, Prop. 2.12]. By definition, we need to show that in the mapping cone
C = C(f) we have that (d0

C , d
1
C , . . . , d

n
C) is an n-cokernel of d−1

C .

Let 2 ≤ k ≤ n. We shall show that dk−1
C is a weak cokernel of dk−2

C , see (2.2.4).

Indeed, let u : Y k−1 →M and v : Xk →M be morphisms such that dk−2
Y u = 0 and

dk−1
X v = fk−1u. Since dk−1

Y is a weak cokernel of dk−2
Y , there exists a morphism

w : Y k →M such that u = dk−1
Y w. Moreover, note that

dk−1
X v = fk−1u = fk−1(dk−1

Y w) = dk−1
X (fkw)

for f is a morphism of complexes. Given that dkX : Xk → Xk+1 is a weak cokernel of

dk−1
X : Xk−1 → Xk, there exists a morphism hk+1 : Xk+1 →M such that fkw−v =
dkXh

k+1. If k 6= n, then the claim follows. If k = n, then let w′ := w − dnY hn+1. It

follows that dn−1
Y w′ = dn−1

Y w = u and

fnw′ = fnw − fndnY hn+1 = v + dnXh
k+1 − dnhk+1 = v.

This shows that dn−1
C is a weak cokernel of dn−2

C .

We need to show that dn−1
C is a cokernel of dn−2

C . For this it is enough to

show that dn−1
C is an epimorphism. Let p : Y n → M be a morphism such that

dn−1
Y p = 0 and fnp = 0. Then, since dnY is a cokernel of dn−1

Y , there exists a
morphism q : Xn+1 →M such that p = dnY q. Thus,

dnXq = (fndnY )q = fnp = 0.

Since dnX is an epimorphism, we have q = 0 which implies that p = 0. This shows

that dn−1
C is an epimorphism.

It remains to show that d0
C is a weak cokernel of d−1

C . Let y : Y 0 → Z0 and
v : X0 → Z0 be morphisms such that f0u = d0

Xv. By axiom (E2) there exists an

n-pushout diagram of (d0
Y , . . . , d

n−1
Y ) along u. Moreover, since we have shown the

implication from (i) to (iv), we can construct a commutative diagram

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Xn+1

Z Z0 Z1 · · · Zn Xn+1

f

g u

where the leftmost n squares of the two bottom rows form a pushout diagram. It
follows that the following diagram commutes

X0 X1 X2 · · · Xn Xn+1

Z0 Z1 Z2 · · · Zn Xn+1

d0
X

0

d1
X

f0u−vd0
Z f2g2

dnX

fnγn

d0
Z d1

Z

Then, by the Comparison Lemma 2.2.1, there exists a morphism h : Xn+1 → Zn

such that hdnZ = 1Xn+1 . Therefore dn+1
Z is a split epimorphism. From the dual
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of Proposition 2.2.6 we conclude that d0
Z is a split monomorphism. It follows that

there exists a morphism w : Z1 → Z0 such that d0
Zw = 1Z0 . Finally,

d0
Y (g1w) = u(d0

Zw) = u

and

f0(uw)− d0
X(vw) = (f0u− d0

Xv)w = (vd0
Z)w = v

which is what we needed to show. This concludes the proof. �

The following property is a refinement of Proposition 2.2.13.

Proposition 2.4.9. Let (M,X) be an n-exact category and g : X → Z a mor-
phism of admissible n-exact sequences. Then, for every morphism of admissible
n-exact sequences g : X → Y there exists a commutative diagram

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Y n+1

Z Z0 Z1 · · · Zn Zn+1

f g0

p gn+1

where f0 = g0 and pn+1 = gn+1. Moreover, there exists a homotopy h : fp → g
with h1 = 0 and hn+1 = 0.

Proof. By Propositions 2.2.13 and 2.4.8, we only need to show that pndnZ =
dnY g

n+1. Indeed, on one hand we have

fn(gndnZ) = dnXg
n+1 = fn(dnY g

n+1).

On the other hand,

dn−1
Y (gndnZ) = gn−1(dn−1

Z dnZ) = 0 = dn−1
Y (dnY g

n+1).

Since in the mapping cone C(f) we have that dn−1
C is a cokernel of dn−2

C , we have
pndnZ = dnY g

n+1, see (2.2.4). This concludes the proof. �

The next result shows that, in an n-exact category, equivalences of admissi-
ble n-exact sequences induce isomorphisms in the homotopy category, cf. Proposi-
tion 2.2.7 and the remark after it.

Proposition 2.4.10. Let (M,X) be an n-exact category, f : X → Y an equiva-
lence of admissible n-exact sequences. Then, there exists an equivalence of n-exact
sequences g : Y → X such that f and g are mutually inverse isomorphisms in H(M).

Proof. By Proposition 2.4.8, the mapping cone C = C(f) of the diagram

X0 X1 · · · Xn−1 Xn

Y 0 Y1 · · · Y n−1 Y n

f1 fn−1 fn

is an admissible n-exact sequence. Since d−1
C : X0 → X1 ⊕X0 is a split monomor-

phism, C is a contractible n-exact sequence, see Proposition 2.2.6. Hence there
exists a null-homotopy h : 1C → 0. It is straightforward to verify that h induces
an equivalence of admissible n-exact sequences g : Y → X. Finally, the Compar-
ison Lemma 2.2.1 implies that f and g induce mutually inverse isomorphisms in
H(M). �
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By axiom (E1), the class of admissible morphisms in an n-exact category is
closed under composition. The next result, an analog of Quillen’s obscure axiom
for exact categories, shows that a partial converse also holds, cf. [29, Prop. 2.16].

Proposition 2.4.11 (Obscure axiom). Let (M,X) be an n-exact category. Sup-
pose there is a commutative diagram

(2.4.2)

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Y n+1

f

where the bottom row is an admissible n-exact sequence and (d1
X , . . . , d

n
X) is an

n-cokernel of d0
X . Then, the top row is also an admissible n-exact sequence.

Proof. This is an adaptation of the proof of [29, Prop. 2.16], which is due to
Keller. Since a pushout of the bottom row along d0

X exists, by Proposition 2.4.8 the
morphism [−d0

Y d0
X ]> : X0 → Y 1⊕X1 is an admissible monomorphism. Moreover,

the diagram

X0 Y 1 ⊕X1

X0 Y 1 ⊕X1

[
−d0

Y d0
X

]>
1 f1

0 1

[
0 d0

X

]>

commutes. Hence [0 d0
X ]> : X0 → Y 1 ⊕ X1 is the composition of an admissible

monomorphism with an isomorphism and, by axiom (E1) and Remark 2.4.4, we
conclude that itself is an admissible monomorphism. Using the factorization prop-
erty of weak cokernels we can construct a commutative diagram

X X0 X1 X3 · · · Xn+1

Z X0 Y 1 ⊕X1 Z3 · · · Zn+1

X X0 X2 X3 · · · Xn+1

p

d0
X 0

1



q

[
0 d0

X

]>
[
0 1

]
d0
X

where the middle row is an admissible n-exact sequence. By the Comparison
Lemma 2.2.1, the morphisms p and q induce mutually inverse isomorphisms in
H(M). By Proposition 2.2.5 we have that X is an n-exact sequence. Then, Propo-
sition 2.4.9 gives an equivalence between X and an admissible n-exact which is ob-
tain by n-pullback from Y along fn+1. Since X is closed under weak isomorphisms
(in particular, equivalences) of n-exact sequences, we have that X is moreover an
admissible n-exact sequence. �

The following result shows that the class of n-exact sequences in an n-exact
category is closed under direct summands.

Proposition 2.4.12. Let (M,X) be an n-exact category, and X and Y com-
plexes in Cn(C). If X ⊕ Y is an n-exact sequence, then so are X and Y .
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Proof. This is an adaptation of the proof of [29, Cor. 2.18]. Clearly, X and
Y are n-exact sequences. In particular, d0

X admits an n-cokernel. Moreover, we
have a commutative diagram

X0 X1

X1 X0 ⊕X1 X1 ⊕ Y 1

d0
X 1X1

0

1X0

0


d0
X⊕d

0
Y

We conclude from Proposition 2.4.11 that X is an admissible n-exact sequence.
Analogously one can show that Y is an admissible n-exact sequence. �

2.4.2. n-exact categories and cluster-tilting. Let (E,X) be an exact cat-
egory. Recall that a morphism X → Y in E is proper if it has a factorization
X � Z � Y through an X-admissible epimorphism and an X-admissible monomor-
phism. A sequence of proper morphisms

· · · Xk−1 Xk Xk+1 · · ·

Y k−1 Y k

is an X-acyclic complex if for each k ∈ Z the sequence Y k−1 � Xk � Y k is an
X-admissible exact sequence. If the class X is clear from the complex, then we may
write “acyclic” instead of “X-acyclic”.

Following Neeman [78], the derived category D = D(E,X) is by definition the
Verdier quotient H(E)/ thick(Ac(X)). Then, for all k ≥ 1 and for all E ∈ E we can

define the functor ExtkX(E,−) : E→ ModZ by F 7→ HomD(E,F [k]).
We use the following variant of the definition of n-cluster-tilting subcategory of

an exact category. Note that in the case of abelian categories this definition agrees
with Definition 2.3.14, see Remark 2.3.15.

Definition 2.4.13. Let (E,X) be a small exact category and M a subcategory
of E. We say that M is an n-cluster-tilting subcategory of (E,X) if the following
conditions are satisfied:

(i) Every object E ∈ E has a left M-approximation by an X-admissible
monomorphism E �M .

(ii) Every object E ∈ E has a right M-approximation by an X-admissible
epimorphism M ′ � E.

(iii) We have

M =
{
E ∈ E | ∀i ∈ {1, . . . , n− 1} ExtiX(E,M) = 0

}
=
{
E ∈ E | ∀i ∈ {1, . . . , n− 1} ExtiX(M, E) = 0

}
.

Note that E itself is the unique 1-cluster-tilting subcategory of E.

Our aim in this section is to prove the following result, which is analogous to
Theorem 2.3.16 in the case of exact categories.

Theorem 2.4.14. Let (E,X) be an exact category and M an n-cluster-tilting
subcategory of (E,X). Let Y = Y(M,X) be the class of all X-acyclic complexes

(2.4.3) X0 X1 · · · Xn Xn+1

such that for all k ∈ {0, 1, . . . , n+ 1} we have Xk ∈M. Then (M,Y) is an n-exact
category.
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To prove Theorem 2.4.14, we need the following result, whose proof is com-
pletely analogous to the proof of Proposition 2.3.17.

Proposition 2.4.15. Let (E,X) be an exact category and M an n-cluster-tilting
subcategory of E. Then, for each E ∈ E there exists an acyclic complex sequence

0 E M1 · · · Mn−1 Mn 0

C1 Cn−1 Cn

f0 f1 fn−2

gn−2

fn−1

gn−1h1 hn−1

satisfying the following properties:

(i) For each k ∈ {1, . . . , n} we have Mk ∈M.
(ii) For each k ∈ {1, . . . , n− 1} the morphism hk : Ck � Mk is an X-

admissible monomorphism and a left M-approximation of Ck.
(iii) For each k ∈ {1, . . . , n− 1} the pair Ck � Mk � Ck+1 is an X-

admissible exact sequence.

We now give the proof of Theorem 2.4.14.

Proof of Theorem 2.4.14. If n = 1, then the result is trivial. Let n ≥ 2.
We observe that the class Y indeed consists of n-exact sequences. To see this, given
X ∈ Y and M ∈M, apply the functor E(M,−) to X to obtain a sequence

0 E(M,X0) E(M,X1) · · · E(M,Xn) E(M,Xn+1)

which is exact at E(M,X0) and E(M,X1). By the version of the dual of Propo-
sition 2.3.18 for exact categories, for each k ∈ {1, . . . , n− 1} the homology of this

complex at E(M,Xk+1) is isomorphic to ExtkX(M,X0) which vanishes by assump-
tion. Combining with the dual argument, this shows that X is an n-exact sequence.

We only show that (M,Y) satisfies axioms (E1) and (E2) in Definition 2.4.2,
since the remaining axioms are dual. Note that axiom (E0) is obviously satisfied.

The pair (M,Y) satisfies axiom (E1): LetM � N be an X-admissible monomor-
phism such that M,N ∈ M and N � E a cokernel of M � N . Applying Propo-
sition 2.4.15 to N yields an acyclic complex in Y with M � N as the leftmost
morphism. This shows that the class of Y-admissible monomorphisms coincides
with the class of X-admissible monomorphisms. Therefore (M,Y) satisfies axiom
(E1). That (M,Y) satisfies axiom (E1op) then follows by duality.

The pair (M,Y) satisfies axiom (E2): Let X be a Y-admissible n-exact sequence
and f0 : X0 → Y 0 a morphism in M. We need to construct a commutative diagram

(2.4.4)

X0 X1 · · · Xn Xn+1

Y 0 Y 1 · · · Y n

d0
X

f0

d1
X

f1

dn−1
X

fn

dnX

d0
Y d1

Y dn−1
Y

such that d0
Y is a Y-admissible monomorphism or, equivalently by the previous

paragraph, an X-admissible monomorphism.
Step 1: We claim that there is a Y-admissible n-exact sequence

(2.4.5) C : X0 X1 ⊕ Y 0 · · · Xn ⊕ Y n−1 Y n

with differentials

dk−1
C :=

[
−dkX 0

fk dk−1
Y

]
: Xk ⊕ Y k−1 Xk+1 ⊕ Y k.
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We shall construct C inductively. Set Z0 := X0, u0 := 1X0 , p0 := −d0
X and

q0 := f0. Let 0 ≤ k ≤ n− 2 and suppose that we have constructed a commutative
diagram

Xk ⊕ Y k−1 Xk+1 ⊕ Y k

Zk

−dkX 0

fk dk−1
Y



[
uk vk

] pk
qk


Since Zk � Xk+1 ⊕ Y k is an X-admissible monomorphism, there exist morphisms
uk+1 : Xk+1 → Zk+1 and vk+1 : Y k → Zk+1 such that [uk+1 vk+1] : Xk+1 ⊕ Y k �
Zk+1. Therefore the square

(2.4.6)

Zk Xk+1

Y k Zk+1

pk

qk uk+1

vk+1

is a pushout diagram.
It is readily verified that the composition

Xk ⊕ Y k−1 Xk+1 ⊕ Y k Xk+2

−dkX 0

fk dk−1
Y

 [
dk+1
X 0

]

is zero. Then, given that Xk ⊕ Y k−1 � Zk is an epimorphism, the composition

Zk Xk+1 ⊕ Y k Xk+2

pk
qk

 [
dk+1
X 0

]

is also zero. Hence we have pkd0
X = 0.

Since (2.4.6) is a pushout diagram, there exists a morphism pk+1 : Zk+1 →
Xk+2 such that uk+1pk+1 = −dk+1

X and vk+1pk+1 = 0. Let qk+1 : Zk+1 � Y k+1 be
a left M-approximation of Zk+1. Given that −qk+1 is an X-admissible monomor-
phism, Proposition 2.4.8 applied to the exact category (E,X) implies that the mor-
phism [qk+1 pk+1] : Zk+1 � Xk+2 ⊕ Y k+1 is an X-admissible monomorphism. Set
fk+1 := uk+1qk+1 and dkY := vk+1qk+1. It is readily verified that the following
diagram commutes:

dkC : Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

Zk+1

−dk+1
X 0

fk+1 dkY



[
uk+1 vk+1

] pk+1

qk+1



Finally, let dn−1
C : Xn⊕Y n−1 → Y n be a cokernel of Zn−1 � Xn⊕Y n−1. It follows

that C ∈ Y, and hence is an n-exact sequence.
Step 2: We claim that the morphism d0

Y is a Y-admissible monomorphism.
Indeed, we have d0

Y = v1q1. Moreover, v1 is an X-admissible monomorphism for it
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is defined by the following pushout diagram in the exact category (E,X):

X0 X1

Y 0 Z1

d0
X

f0
u1

v1

Therefore d0
Y is the composition of two X-admissible monomorphisms, hence itself

is an X-admissible monomorphism. Since X-admissible monomorphisms and Y-
admissible morphisms coincide, the claim follows. The existence of a commutative
diagram of the form (2.4.4) follows since C is a complex. This shows that (M,Y)
satisfies axiom (E2). That (M,Y) satisfies axiom (E2op) then follows by duality. �

2.5. Frobenius n-exact categories

In this section we introduce Frobenius n-exact categories and show that their
stable categories have the structure of an (n+ 2)-angulated category; this allows us
to introduce algebraic (n+ 2)-angulated categories. We give a method to construct
Frobenius n-exact categories (and thus also algebraic n-angulated categories) from
certain n-cluster-tilting subcategories of Frobenius exact categories. We show that
our construction is closely related to the standard construction of (n+2)-angulated
categories given in [39, Thm. 1], see Theorem 2.5.16.

2.5.1. Reminder on (n+ 2)-angulated categories. We follow the exposi-
tion of [39, Sec. 2] although our conventions on indexation are different.

Let n be a positive integer and F an additive category equipped with an auto-
morphism Σ: F → F. An n-Σ-sequence in F is a sequence of morphisms

(2.5.1) X0 X1 X2 · · · Xn+1 ΣX0.α0 α1 α2 αn αn+1

Its left rotation is the n-Σ-sequence

X1 X2 · · · Xn+1 ΣX0 ΣX1α1 α2 αn αn+1 (−1)nΣα0

A morphism of n-Σ-sequences is a commutative diagram

X0 X1 X2 · · · Xn+1 ΣX0

Y 0 Y 1 Y 2 · · · Y n+1 ΣY 0

α0

ϕ0

α1

ϕ1

α2

ϕ2

αn αn+1

ϕn+1 Σϕ0

β0 β1 β2 βn βn+1

where each row is an n-Σ-sequence. The mapping cone C(ϕ) of the above morphism
is the n-Σ-sequence

X1 ⊕ Y 0 X2 ⊕ Y 1 · · · ΣX0 ⊕ Y n+1 ΣX1 ⊕ ΣY 0γ0 γ1 γn γn+1

where for each k ∈ {0, . . . , n} we define

γk :=

[
−αk+1 0
ϕk+1 βk

]
: Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

(by convention, αn+2 := Σα0, ϕn+2 := Σϕ0). A weak isomorphism is a mor-
phism of n-Σ-sequences such that ϕk and ϕk+1 are isomorphisms for some k ∈
{0, 1, . . . , n+ 1}. Abusing the terminology, we say that two n-Σ-sequences are
weakly isomorphic if they are connected by a finite zigzag of weak isomorphisms.
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Definition 2.5.1. [39] A pre-(n + 2)-angulated category is a triple (F,Σ, S)
where F is an additive category, Σ: F → F is an automorphism1, and S is a class of
n-Σ-sequences (whose members we call (n+ 2)-angles) which satisfies the following
axioms:

(F1) The class S is closed under taking direct summands and making direct
sums. For all X ∈ F the trivial sequence

X X 0 · · · 0 ΣX
1X

belongs to S. For each morphism α in M there exists an n-angle whose
first morphism is α.

(F2) An n-Σ-sequence of the form (2.5.1) is a (n + 2)-angle if and only if its
left rotation is a (n+ 2)-angle.

(F3) Each commutative diagram

X0 X1 X2 · · · Xn+1 ΣX0

Y 0 Y 1 Y 2 · · · Y n+1 ΣY 0

α0

ϕ0

α1

ϕ1

α2

ϕ2

αn αn+1

ϕn+1 Σϕ0

β0 β1 β2 βn βn+1

whose rows are (n + 2)-angles can be completed to a morphism of n-Σ-
sequences.

If moreover the following axiom is satisfied, then (F,Σ, S) is called an n-angulated
category.

(F4) In the situation of axiom (F3), the morphisms ϕ2, . . . , ϕn+1 can be chosen
in such a way that the mapping cone C(ϕ) is a (n+ 2)-angle.

An n-Σ-sequence X is exact if for all F ∈ F and for all k ∈ Z the induced
sequence of abelian groups

F(F,Σk−1Xn+1) F(F,ΣkX0) · · · F(F,ΣkXn+1) F(F,Σk+1X0)

is exact. We need the following result.

Proposition 2.5.2. [39, Prop. 2.5(c)] Let (F,Σ, S) be a pre-(n+ 2)-angulated
category. If S′ is a pre-(n+ 2)-angulation of F such that S′ ⊆ S, then S = S′.

Let (F,ΣF, SF) and (G,ΣG, SG) be (n+ 2)-angulated categories. We say that a
functor F : F → G is exact if there exists a natural transformation η : FΣF → ΣGF
such that for every (n+ 2)-angle in F

X0 X1 X2 · · · Xn+1 ΣFX
0.α0 α1 α2 αn αn+1

we have that

FX0 FX1 FX2 · · · FXn+1 ΣGFX
0.Fα0 Fα1 Fα2 Fαn β

is a (n+ 2)-angle in G, where β := (Fαn+1)ηX0 .

1 One may consider the more general case when Σ: F → F is an autoequivalence. As
mentioned in [39, 2.2 Rmks.], it can be shown that the assumption of Σ being invertible is but a
mild sacrifice, cf. [72, Sec. 2].
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2.5.2. Frobenius n-exact categories and algebraic (n + 2)-angulated
categories. Our approach in this subsection is analogous to [44, Sec. I.2].

Definition 2.5.3. Let (M,X) be an n-exact category. An object I ∈ M is X-
injective if for every admissible monomorphism f : M � N the sequence of abelian
groups

M(N, I) M(M, I) 0
f ·?

is exact. We say that (M,X) has enough X-injectives if for every object M ∈ M

there exists X-injective objects I1, . . . , In and an admissible n-exact sequence

M I1 · · · In N

The notion of having enough X-projectives is defined dually.

Remark 2.5.4. If n = 1, then the notions of X-injectively cogenerated exact
category and of an exact category with enough X-injectives coincide. On the other
hand, if n ≥ 2, then there are n-exact categories which are X-injectively cogener-
ated but do not have enough X-injectives. Indeed, let Λ be a finite-dimensional
selfinjective algebra. By Theorem 2.3.16 we know that an n-cluster-tilting sub-
categories M of modΛ is an injectively cogenerated n-abelian category. However,
M has enough injectives if and only if M is stable under taking n-th cosyzygies,
cf. Theorem 2.5.16.

Let (M,X) be an n-exact category. For objects M,N ∈ M, we denote by
I(M,N) the subgroup of M(M,N) of morphisms which factor through an X-

injective object. The X-injectively stable category of M, denoted by M, is the
category with the same objects as M and with morphisms groups defined by

M(M,N) := M(M,N)/I(M,N).

If α : M → N is a morphism in M, we denote its equivalence class in M(M,N)

by α. It easy to see that M is also an additive category. The X-projectively stable
category of M, denoted by M, is defined dually.

Definition 2.5.5. We say that an n-exact category (M,X) is Frobenius if it
has enough X-injectives, enough X-projectives, and if X-injective and X-projective
objects coincide. In this case one has M = M, and we refer to this category as the
stable category of M.

Remark 2.5.6. In keeping the convention of the classical theory, if (M,X) is a
Frobenius n-exact category, then we denote its stable category by M.

Our aim is to show that the stable category of a Frobenius n-exact category, has
a natural structure of a (n+2)-angulated category. We begin with the construction
of an autoequivalence Σ: M → M. The following result should be compared with
[44, Lemma I.2.2].

Lemma 2.5.7. Let (M,X) be an n-exact category. Suppose that we are given
two admissible n-exact sequences X and Y such that X0 = Y 0 and, for k ∈ {1, n},
the objects Xk and Y k are X-injective. Then, Xn+1 and Y n+1 are isomorphic in
M.
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Proof. Since X1 and Y 1 are X-injective and X and Y are admissible n-exact
sequences, we can construct a commutative diagram

X X0 X1 · · · Xn Xn+1

Y Y 0 Y 1 · · · Y n Y n+1

X X0 X1 · · · Xn Xn+1

f

g

By the Comparison Lemma 2.2.1 there exists a morphism h : Xn+1 → Xn such
that

fn+1gn+1 − 1 = hdnX .

Since Xn is X-injective, we have fn+1gn+1 = 1. A similar argument shows that
gn+1fn+1 = 1. Therefore Xn+1 and Y n+1 are isomorphic in M. �

Let (M,X) be an n-exact category with enough X-injectives. For each M ∈M

we choose an admissible n-exact sequence

I(M) : M I1(M) · · · In(M) SM.

such that for each k ∈ {1, . . . , n} the objects Ik(M) are X-injective. It follows from
Lemma 2.5.7 that the isomorphism class of SM in M does not depend on the choice
of I(M).

Let f : M → N be a morphism in M. Since I1(N) is X-injective, there is a
commutative diagram of admissible n-exact sequences

I(M) M I1(M) · · · In(M) SM

I(N) N I1(N) · · · In(N) SY

I(f) f I1(f) In(f) Sf

The Comparison Lemma 2.2.1 implies that Sf does not depend on the choices of
I1(f), . . . , In(f). It is readily verified that the correspondences M 7→ SM and

f 7→ Sf define a functor Σ: M→M.
The proof of the following result is straightforward, cf. [44, Prop. 2.2.]. We

leave the details to the reader.

Proposition 2.5.8. Let (M,X) be a Frobenius n-exact category. Then Σ: M 7→
M is an autoequivalence. Moreover, any two choices of assignments M 7→ SM and
M 7→ S′M yield isomorphic functors.

Remark 2.5.9. Let (M,X) be a Frobenius n-exact category. In analogy with
[39, Rmk. 2.2(d)] we assume that Σ: M → M is not only an autoequivalence but
an automorphism of M (see also [72, Sec. 2]).

Let (M,X) be a Frobenius n-exact category. We define a class S = S(X) of
n-Σ-sequences in M as follows. Let α0 : X0 → X1 be a morphism in M. Then, for
every morphism of n-exact sequences of the form

X0 I1(X0) · · · In(X0) SX0

X1 X2 · · · Xn+1 SX0

α0

α1 α2 αn αn+1
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the sequence

X0 X1 X2 · · · Xn+1 ΣX0α0 α1 α2 αn αn+1

is called a standard (n + 2)-angle. An n-Σ-sequence Y in M belongs to S if and
only if it is isomorphic to a standard (n+ 2)-angle.

We need the following result, which shows how admissible n-exact sequences
give rise to standard (n+ 2)-angles, cf. [44, Lemma I.2.7].

Lemma 2.5.10. Let (M,X) be a Frobenius n-exact category and X an admissible
n-exact sequence in M. The following statements hold:

(i) There exists a commutative diagram

(2.5.2)

X X0 X1 · · · Xn Xn+1

I(X0) X0 I1(X0) · · · In(X0) SX0

f

(ii) The sequence

X0 X1 · · · Xn+1 ΣX0d0 d1 dn (−1)nfn+1

is a standard (n+ 2)-angle.

Proof. (i) The existence of the required commutative diagram follows from
the fact that I1(M) is X-injective and X is an n-exact sequence.

(ii) The dual of Proposition 2.4.8 implies that the mapping cone C(f) is an
admissible n-exact sequence. For each k ∈ {1, . . . , n} we define

gk :=
[
0 (−1)k−1

]>
: Ik(X0) Xk+1 ⊕ Ik(X0).

It readily follows that the diagram

X0 I1(X0) · · · In(X0) SX0

X1 X2 ⊕ I1(X0) · · · Xn+1 ⊕ In(X0) SX0

α0
g1 gn

d−1
C d0

C dn−2
C (−1)ndn−1

C

is commutative, and that it gives rise to the standard (n+ 2)-angle

X0 X1 · · · Xn+1 ΣX0. �d0 d1 dn (−1)nfn+1

The following result is a higher analog of [44, Thm. I.2.6].

Theorem 2.5.11. Let (M,X) a Frobenius n-exact category. Then, (M,Σ, S(X))
is an (n+ 2)-angulated category.

Proof. We need to show that (M,Σ, S(X)) satisfies the axioms of (n + 2)-
angulated categories, see Definition 2.5.1. For axioms (F1), (F2) and (F3), our
proof is an adaptation of the proof of [44, Thm. I.2.6].

(F1) Firstly, recall that X is closed under direct sums and direct summands,
see Propositions 2.4.7 and 2.4.12. It is easy to show that this implies that the same
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is true for S. Secondly, the diagram

M I1(M) · · · In(M) SM

X I1(M) · · · In(M) SM

shows that the n-Σ-sequence

X X 0 · · · 0 ΣX.1

is a standard (n+2)-angle. Finally, by the definition of the class S, every morphism
is the first morphism of some standard (n+ 2)-angle. This shows that (M,Σ, S(X))
satisfies axiom (F1).

(F2) It suffices to consider the case of standard (n+ 2)-angles. Let

(2.5.3)

I(X0) X0 I1(X0) · · · In(X0) SX0

X X1 X2 · · · Xn+1 SX0

f α0

α1 α2 αn αn+1

be a commutative diagram giving rise to the standard (n+ 2)-angle

(2.5.4) X0 X1 · · · Xn+1 ΣX0.α0 α1 αn αn+1

We need to show that its left rotation is a standard (n+ 2)-angle.
Firstly, by the definition of Σ: M→M we have a commutative diagram

X0 I1(X0) · · · In(X0) SX0

X1 I1(X1) · · · In(X1) SX1

α0 S(α0)

Secondly, Proposition 2.4.9 yields a commutative diagram

I(X0) X0 I1(X0) · · · In(X0) SX0

X X1 X2 · · · Xn+1 SX0

I(X1) X1 I1(X1) · · · In(X1) SX1

f α0

p

α1 α2 αn+1

Sα0

By the dual of Proposition 2.4.8, the mapping cone C = C(p) is an admissible exact
sequence. Thirdly, for each k ∈ {1, . . . , n} we define

gk :=
[
0 (−1)k−1

]>
: Ik(X1) Xk+2 ⊕ Ik(X1)

(by convention, Xn+1 := ΣX0). It follows that the diagram

X1 I1(X1) · · · In(X1) SX1

X2 X3 ⊕ I1(X1) · · · SX0 ⊕ In(X1) SX1

α2
g1 gn

d−1
C d0

C dn−2
C (−1)ndn−1

C
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is commutative. Note that the bottom row is an admissible n-exact sequence for it
is isomorphic to C. Finally, the standard (n+ 2)-angle induced by this diagram is
isomorphic in M to the left rotation of (2.5.4).

Conversely, suppose that there is a commutative diagram

I(X1) X1 I1(X1) · · · In(X1) SX1

Y X2 X3 · · · SX0 SX1

f α1

α2 α3 αn+1 (−1)dSα0

which gives rise to a standard (n+ 2)-angle of the form

X1 X2 · · · Xn+1 ΣX0 ΣX1α1 α2 αn αn+1 (−1)nΣα0

On one hand, the definition of Σ: M→M yields the top two rows in the following
commutative diagram:

I(X0) X0 I1(X0) · · · In(X0) SX0

I(X1) X1 I1(X1) · · · In(X1) SX1

Y X2 X3 · · · SX0 SX1

I(α0) α0

dn

Sα0

f α1

α2 α3 αn+1 (−1)dSα0

On the other hand, we have a commutative diagram

I(X0) X0 · · · In−1(X0) In(X0) SX0

Y X2 · · · Xn+1 SX0 SX1

q 0 0

dn

(−1)ndn Sα0

α2 αn αn+1 (−1)nSα0

Then, the dual of the Comparison Lemma 2.2.1 implies the existence of a homotopy
h : I(α0)f → q. For each k ∈ {1, . . . , n} we define

gk :=
[
[(−1)kIk(α0) (−1)k−1hk]

]>
: Ik(X0) Ik(Xk)⊕Xk+1.

It is straightforward to verify that the diagram

X0 I1(X0) · · · In(X0) SX0

X1 I1(X1)⊕X2 · · · In(X1)⊕Xn+1 SX0

α0
g1 gn

d−1
C d0

C dn−2
C dn−1

C

commutes, where the bottom row is given by C(f). Finally, the standard (n+ 2)-
angle induced by this diagram is isomorphic to the n-Σ-sequence

X0 X1 · · · Xn+1 ΣX0.α0 α1 αn αn+1

This shows that (M,X, S(X)) satisfies axiom (F2).
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(F3) for standard (n+ 2)-angles. Let

I(X0) X0 I1(X0) · · · In(X0) SX0

X X1 X2 · · · Xn+1 SX0

f

d0
IX

α0

d1
IX dn−1

IX dnIX

α1 α2 αn αn+1

and

I(Y 0) Y 0 I1(Y 0) · · · In(X0) SY 0

Y Y 1 Y 2 · · · Y n+1 SY 0

g

d0
IY

β0

d1
IY

g1

dn−1
IY dnIY

β1 β2 βn βn+1

be pushout diagrams in M. We set C := C(f).

Also, let ϕ0 : X0 → Y 0 and ϕ1 : X1 → Y 1 be morphisms such that ϕ0β0 =
α0ϕ1. Thus, we have a diagram

(2.5.5)

X0 X1 X2 · · · Xn+1 ΣX0

Y 0 Y 1 Y 2 · · · Y n+1 ΣY 0

α0

ϕ0

α1

ϕ1

α2 αn αn+1

Σϕ0

β0 β1 β2 βn βn+1

whose rows are standard (n+2)-angles. Recall that by the definition of Σ: M→M,
there is a commutative diagram

I(X0) X0 I1(X0) · · · In(X0) SX0

I(Y 0) Y 0 I1(Y 0) · · · In(Y 0) SY 0

I(ϕ0) ϕ0 Sϕ0

We shall construct a commutative diagram

X X1 X2 · · · Xn+1 SX0

Y Y 1 Y 2 · · · Y n+1 SY 0

ϕ

α1

ϕ1

α2

ϕ2

αn αn+1

ϕn+1 Sϕ0

β1 β2 βn βn+1

together with a homotopy h : fϕ → I(ϕ0)g such that hn+1 : SX0 → Y n+1 is the
zero morphism. Note that this gives the required completion of diagram (2.5.5).

We begin with the construction of h1 and ϕ2. Since ϕ0β0 = α0ϕ1, there exists
an X-injective object I ∈ M and morphisms u : X0 → I and v : I → Y 1 such that
α0ϕ1 −ϕ0β0 = uv. Then, given that d0

IX is an admissible monomorphism and I is
X-injective, we can construct a commutative diagram

X0 I1(X0)

I Y 1

d0
IX

u h1

v

Hence α0ϕ1 − ϕ0β0 = d0
IXh

1, as required. Then we have

d0
IX(I(ϕ0)1g1 + h1β1) =ϕ0d0

IY g
1 + (α0ϕ1 − ϕ0g1)β1

=α0ϕ1β1.
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Since d0
C is a weak cokernel of d−1

C , there exists morphisms ϕ2 : X2 → Y 2 and
h2 : I2(X0) → Y 2 such that ϕ1β1 = α1ϕ2 and f1ϕ2 − (I(ϕ0)1g1 + h1β1) = d2

IXh
2

or, equivalently,

f1ϕ2 − I(ϕ0)1g1 = h1β1 + d1
IXh

2

Let 2 ≤ k ≤ n and suppose that for each ` ≤ k we have constructed morphisms
ϕ` : X` → Y ` and h` : I`(X0)→ Y ` such that α`−1ϕ` = ϕ`−1β`−1 and

f `−1ϕ` − I(ϕ0)`−1g`−1 = h`−1β`−1 + d`−1
IX h`.

Then we have

dk−1
IX (I(ϕ0)kgk + hkβk) =I(ϕ0)k−1dk−1

IY gk + (fk−1ϕk − I(ϕ0)k−1gk−1 − hk−1βk−1)βk

=fk−1ϕkβk.

Moreover, αk−1(ϕkβk) = Since dk−1
C is a weak cokernel of dk−2

C , there exists mor-
phisms ϕk+1 : Xk+1 → Y k+1 and hk+1 : Ik+1(X0) → Y k+1 such that αkϕk+1 =
ϕkβk and

fkϕk+1 − I(ϕ0)kgk = hkβk + dkIXh
k+1.

This finishes the induction step.
It remains to show that αn+1Sϕ0 = ϕn+1βn+1. Indeed, we have αn(αn+1Sϕ0) =

0 and αn(ϕn+1βn+1) = ϕn(βnβn+1) = 0. Moreover,

fn+1(ϕn+1βn+1) = (In(ϕ0)gn − hnβn)βn+1 = dnIXS(ϕ0) = fn+1(αn+1Sϕ0).

Since dn−1
C is a cokernel of dn−2

C , we have αn+1S(ϕ0) = ϕn+1βn+1, as required.
This shows that (M,Σ, S(X)) satisfies axiom (F3) in the case of standard (n+2)-

angles. The general case is left to the reader.
(F4) for standard (n+ 2)-angles. We shall show that the mapping cone of the

morphism of standard (n+2)-angles that we constructed in the proof of axiom (F3)
is a (n+2)-angle. We keep the notation and morphisms of the previous paragraphs.

For each k ∈ {0, 1 . . . , n− 1} we define

rk := [ϕk+1 gk] : Xk+1 ⊕ Ik(Y 0) Y k+1.

Also, we define

rn :=

[
αn+1 0
ϕn+1 gn

]
: Xn+1 In(Y 0)→ Y n+1

and

rn+1 :=

[
1SX0 0
Sϕ0 1SY 0

]
: SX0 ⊕ SY 0 SX0 ⊕ SY 0.

It is straightforward to check that this defines a morphism of admissible n-exact
sequences

r : X ⊕ I(Y 0) T (SX0, 0)⊕ Y.

(recall that the direct sum of two admissible n-exact sequences is again an admis-
sible n-exact sequence, see Proposition 2.4.7). Since rn+1 is an isomorphism, we
have that the mapping cone C(r) is an admissible n-exact sequence, see Proposi-
tion 2.4.8.
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Next, by the definition of Σ: M→M there is a commutative diagram

I(X0) X0 I1(X0) · · · In(X0) SX0

I(X1) X1 I1(X1) · · · In(X1) SX1

I(α0) α0 Sα0

Then, by Proposition 2.4.9 and the dual of Proposition 2.4.8 there exists a commu-
tative diagram

X X1 X2 · · · Xn+1 SX0

I(X1) X1 I1(X1) · · · In(X1) SX1

s Sα0

Let t := 1X1 ⊕ 1Y 0 . For each k ∈ {1, . . . , n} we define

tk :=

[
sk 0 0
0 1Ik(Y 0) 0

]
: Xk+1 ⊕ Ik(Y 0)⊕ Y k Ik(X1)⊕ I1(Y 0)

and

tn+1 := (−1)n
[
Sα0 0
−Sϕ0 βn+1

]
: SX0 ⊕ Y n+1 SX1 ⊕ SY 0.

It is readily verified that these morphisms define a morphism of admissible n-exact
sequences

t : C(r) I(X1)⊕ I(Y 0).

Finally, applying Lemma 2.5.10 to the morphism t yields that the sequence

X1 ⊕ Y 0 X2 ⊕ Y 1 · · · ΣX0 ⊕ Y n+1 ΣX1 ⊕ ΣY 0γ0 γ1 γn γn+1

where for each k ∈ {0, . . . , n} we have

γk =

[
−αk+1 0

ϕk+1 β
k

]
: Xk+1 ⊕ Y k Xk+2 ⊕ Y k+1

is a standard (n+ 2)-angle.
This shows that (M,Σ, S(X)) satisfies axiom (F4) in the case of standard (n+2)-

angles. The general case is left to the reader. �

Theorem 2.5.11 allows us to define the following class of (n + 2)-angulated
categories.

Definition 2.5.12. We say that a (n+ 2)-angulated category (F,ΣF, S) is al-
gebraic if there exists a Frobenius n-exact category (M,X) together with an equiv-
alence of (n+ 2)-angulated categories between (M,ΣM, S(X)) and (F,ΣF, S).



72 2. n-ABELIAN AND n-EXACT CATEGORIES

2.5.3. Standard construction. We remind the reader of the definition of an
n-cluster-tilting subcategory of a triangulated category.

Definition 2.5.13. Let (T,Σ, S) be a triangulated category and M a subcate-
gory of T. We say that M is an n-cluster-tilting subcategory of T if M is functorially
finite (see subsection 2.2.1) in T and

M =
{
X ∈ T | ∀i ∈ {1, . . . , n− 1} ExtiT(X,M) = 0

}
=
{
X ∈ T | ∀i ∈ {1, . . . , n− 1} ExtiT(M, X) = 0

}
.

In [39, Sec. 4], Geiß-Keller-Oppermann give a standard construction of (n+2)-
angulated categories from n-cluster-tilting categories of a triangulated category
which are closed under the n-th power of the suspension functor. More precisely,
they prove the following theorem.

Theorem 2.5.14. [39, Thm. 1] Let (T,Σ3, S) be a triangulated category with
an n-cluster-tilting subcategory C such that Σn3 (C) ⊆ C. Then, (C,Σn3 , S(C)) is an
(n+ 2)-angulated category where S(C) is the class of all sequences

X0 X1 X2 · · · Xn+1 ΣX0.α0 α1 α2 αn αn+1

such that there exists a diagram

X1 X2 · · · Xn

X0 X1.5 X2.5 · · · Xn−1.5 Xn+1

α1

αnα0

| | |

with Xk ∈ C for all k ∈ Z such that all oriented triangles are triangles in T, all
non-oriented triangles commute, and αn+1 is the composition along the lower edge
of the diagram.

Our aim is to give an analogous construction for Frobenius n-exact categories.
For this, we need some terminology.

Let (E,X) be a Frobenius exact category and E ∈ E. An n-th cosyzygy fn(E)
of E is defined by an acyclic complex

E I1 · · · In fn(E)

where for all k ∈ {1, . . . , n} the object Ik is X-injective.

Proposition 2.5.15. Let (E,X) be an exact category, M an n-cluster-tilting
subcategory of E and M ∈M. If an n-th cosyzygy fn(M) of M satisfies fn(M) ∈
M, then so does any other n-th cosyzygy f̃n(M) of M .

Proof. Note that for all k ∈ {1, . . . , n− 1} we have

ExtkE(−,fn(E)) ∼= Extk+n
E (−, E) ∼= ExtkP(−, f̃n(E)).

Then, it follows from the definition of n-cluster-tilting subcategory that fn(E) ∈M

if and only if f̃n(E) ∈M. �

Let (E,X) be a Frobenius exact category and for each E ∈ E fix a choice of n-th
cosyzygy fn(E) of E. This defines a map on objects fn : Obj(E)→ Obj(E). Note
that if M is an n-cluster-tilting subcategory of E, then Proposition 2.5.15 shows
that the condition fn(M) ⊆ M is independent of the choice of fn. We have the
following result, which is closely related to Theorem 2.5.14.
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Theorem 2.5.16. Let (E,X) be a Frobenius exact category with an n-cluster-
tilting subcategory M such that fn(M) ⊆M, and let (M,Y) be the n-exact structure
on M given in Theorem 2.4.14. Then, the following statements hold:

(i) The pair (M,Y) is a Frobenius n-exact category.
(ii) Let (E,ΣE, S(X)) be the standard triangulated structure of E. Then, M is

an n-cluster-tilting subcategory of E.
(iii) Let (M,Σ, S(M)) be the standard (n+2)-angulated structure of M. Then,

we have an equivalence of (n+2)-angulated categories between (M,Σ, S(M))
and (M,ΣnE, S(M)).

Proof. (i) By Theorem 2.4.14 we have that (M,Y) is an n-exact category;
thus we only need to show that it is Frobenius. Indeed, note that the defini-
tion of n-cluster-tilting subcategory implies that M contains all X-injective objects.
Moreover, since X-admissible monomorphisms with terms in M are precisely the
Y-admissible monomorphisms, all X-injectives are also Y-injectives. Finally, the con-
dition f(M) ⊆ M implies that (M,Y) has enough Y-injectives. By duality, (M,Y)
has enough Y-projectives (and they are the X-projectives). Since X-projectives and
X-projectives coincide, this shows that (M,Y) is a Frobenius n-exact category.

(ii) This statement follows readily from the definitions.
(iii) For simplicity, we assume that ΣM = ΣnE. By Proposition 2.5.2 it is enough

to show that S(M) ⊆ S(Y). For this, recall that a standard triangle A
u−→ B

v−→
C

w−→ ΣEA in S(X) is given by a morphism of admissible X-exact sequences

A I(A) SA

B C SA

u′

u

u

v′

v w

where I(A) is an X-injective object. By Proposition 2.4.8 this gives rise to an
X-admissible exact sequence

A I(A)⊕B C.

u′
u

 [
v′ v

]

Consider a (n+ 2)-angle X ∈ S(M)

X :
X1 X2 · · · Xn

X0 X1.5 X2.5 · · · Xn−1.5 Xn+1

α1

αnα0

| | |

such that each of the involved triangles is a standard triangle in (E, S(X)). By gluing
the associated X-admissible exact sequences associated to each of these triangle we
obtain a Y-admissible n-exact sequence

X0 I(X0)⊕X1 · · · I(Xn−1.5)⊕Xn Xn+1.

Lemma 2.5.10 implies that this n-exact sequence induces a standard (n+ 2)-angle
X ′ ∈ S(Y)

X ′ : X0 X1 · · · Xn+1 ΣMX
0.α0 α1 αn

Finally, a straightforward verification shows that one can take Xn+1 → ΣMX
0 in

X ′ equal to αn+1 showing that X = X ′ and the result follows. For example, for
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n = 2 the last claim follows from Lemma 2.5.10 and the existence of a commutative
diagram

X0 I(X0)⊕X1 I(X1.5)⊕X2 X3

X1.5

X0 I(X0)⊕X1 I(X1.5) ΣX1.5

X1.5

X0 I(X0) I(ΣMX
0) Σ2

MX
0

ΣMX
0

−β3

−ΣMβ1.5

−β1.5

The diagram needed for the general case can be easily inferred from the diagram
above. �

2.6. Examples

We conclude this article with a collection of examples of n-abelian, n-exact
categories and algebraic (n + 2)-angulated categories. Most of the examples we
present are known, and all of them arise as n-cluster-tilting subcategories in different
contexts. Our main tools in this section are Theorems 2.3.16, 2.4.14, and 2.5.16.
In the remainder, K denotes an algebraically closed field and all algebras are finite
dimensional over K.

2.6.1. n-representation finite algebras. The class of n-representation fi-
nite algebras was introduced by Iyama-Oppermann in [59] in the context of higher
Auslander-Reiten theory as higher analogs of representation-finite algebras.

Definition 2.6.1. [59, Def. 2.2] Let Λ be a finite dimensional algebra over a
field K.

(i) A Λ-module M ∈ modΛ is an n-cluster-tilting module if addM is an n-
cluster-tilting subcategory of modΛ. Note that Theorem 2.3.16 implies
that addM is an n-abelian category.

(ii) We say that Λ is n-representation-finite if gl. dim.Λ = n and there exists
an n-cluster-tilting Λ-module.

The following result, observed jointly with Martin Herschend, gives examples
of n-abelian categories for every positive integer n.

Proposition 2.6.2. Let n ≥ 1 and m ≥ 0. Also, let ~Anm+1 be the linearly
oriented quiver of Dynkin type A with nm+ 1 vertices, J be the Jacobson radical of

the path algebra K ~Anm+1, and Λ := K ~Anm+1/J
2. Then, the following statements

hold:

(i) There exists a unique basic n-cluster-tilting Λ-module M .
(ii) The category addM ⊆ modΛ is n-abelian.
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Proof. We assume that ~Anm+1 has vertices 0, 1, . . . , nm. Let Si be the simple
module concentrated at the vertex i, and Pi the indecomposable projective Λ-
module with top Pi. The Auslander-Reiten quiver of modΛ is given by

P0 = S0

P1 P2

S1 S2 Snm−1

Pnm

Snm· · ·

It is straightforward to verify that the module

M := Λ⊕ Sn ⊕ S2n ⊕ · · · ⊕ S(m−1)n ⊕ Snm
is the unique basic n-cluster-tilting Λ-module. �

For a finite dimensional algebra Λ of global dimension n and define

τn := D ExtnΛ(−,Λ): modΛ modΛ.

The following result gives concrete information on the n-cluster-tilting Λ-modules
when Λ is n-representation-finite.

Proposition 2.6.3. [57, Prop. 1.3(b)] Let Λ be an n-representation-finite
algebra and let I1, . . . , Id be a complete set of representatives of the isomorphism
classes of indecomposable injective Λ-modules. Then, the following statements hold:

(i) There exists a permutation σ ∈ Sd and positive integers `1, . . . , `d such
that for all k we have τ `kn (Ik) ∼= Pσ(k).

(ii) There exists a unique basic n-cluster-tilting Λ-module M . Moreover, M
is given by the direct sum of the following pairwise non-isomorphic inde-
composable Λ-modules:

I1, τn(I1), τ2
n(I1), · · · τ `1−1

n (I1), τ `1n (I1) ∼= Pσ(1)

I2, τn(I2), τ2
n(I2), · · · τ `2−1

n (I2), τ `2n (I2) ∼= Pσ(2)

...
...

...
...

...
Id, τn(Id), τ2

n(Id), · · · τ `d−1
n (Id), τ `dn (Id) ∼= Pσ(d)

Let Λ be a finite dimensional algebra such that gl. dim.Λ ≤ n. Following [71],
the (n+ 1)-preprojective algebra of Λ is defined as the tensor algebra

Πn+1(Λ) :=
⊕
d≥0

ExtnΛ(DΛ,Λ)⊗Λd.

The following is a structure theorem for 2-representation-finite algebras; it al-
lows to produce examples of such algebras rather easily. We refer the reader to
[51, 31] for details and definitions.

Theorem 2.6.4. [51, Thm. 3.11] Let Λ be a finite dimensional algebra such
that gl. dim.Λ = 2. Then, the following statements are equivalent:

(i) The algebra Λ is 2-representation-finite.
(ii) The algebra Π3(Λ) is a finite dimensional selfinjective algebra.

(iii) There exists a quiver with potential with a cut (Q,W ;C) such that the
Jacobian algebra J(Q,W ) is a finite dimensional selfinjective algebra and
the truncated Jacobian algebra J(Q,W ;C) is isomorphic to Λ.

Let Λ be a representation-finite algebra, i.e. such that the set of isomorphism
classes of indecomposable Λ-modules is finite. We remind the reader that the
Auslander algebra associated to Λ is the endomorphism algebra of a basic Λ-module
M such that addM = modΛ.
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Example 2.6.5. Typical examples of 2-representation-finite algebras, hence
sources of 2-abelian categories, are the Auslander algebras associated to KQ where

Q is a Dynkin quiver ~Am, see [51, Sec. 9.2].

2.6.2. n-representation infinite algebras. The class of n-representation-
infinite algebras was introduced by Herschend-Iyama-Oppermann in [53] as a higher
analog of representation-infinite hereditary algebras from the viewpoint of higher
Auslander-Reiten theory. These class of algebras complements that of n-representation-
finite algebras.

Let Λ be a finite dimensional algebra with finite global dimension. Then,
Db(modΛ), the bounded derived category of modΛ, has a Serre functor

ν := −⊗LΛ DΛ: Db(modΛ) Db(modΛ).

We define νn := ν[−n].

Definition 2.6.6. [53, Def. 2.7] Let Λ be a finite dimensional algebra such
that gl. dim.Λ = n. We say that Λ is n-representation-infinite if for all i ≥ 0 we
have ν−in (Λ) ∈ modΛ.

Let T be a triangulated category. Following [20], a t-structure on T is a pair
(T≤0,T≥0) of strictly full subcategories of T which satisfies the following properties:

(i) We have ΣT≤0 ⊆ T≤0 and Σ−1T≥0 ⊆ T≥0.
(ii) For all X ∈ T≤0 and for all Y ∈ T≥0 we have T(X,Σ−1Y ) = 0.

(iii) For each X ∈ T there exists a triangle X ′ → X → X ′′ → ΣX ′ with
X ′ ∈ T≤0 and X ′′ ∈ Σ−1T≥0.

The heart of (T≤0,T≥0) is by definition T≤0 ∩ T≥0. The heart of a t-structure is
always an abelian category.

Note that Db(modΛ) has a standard t-structure (D≤0,D≥0) defined by

D≤0 :=
{
X ∈ Db(modΛ) | ∀i > 0 Hi(X) = 0

}
,

D≥0 :=
{
X ∈ Db(modΛ) | ∀i < 0 Hi(X) = 0

}
.

The heart of (D≤0,D≥0) is precisely modΛ.

Theorem 2.6.7. [77, Thm. 3.7] Let Λ be an n-representation infinite algebra
such that Πn+1(Λ) is noetherian. Let (D≤0,D≥0) be the standard t-structure of
Db(modΛ) and define

X≤0 :=
{
X ∈ Db(modΛ) | ν−in (X) ∈ D≤0 ∀i� 0

}
X≥0 :=

{
X ∈ Db(modΛ) | ν−in (X) ∈ D≥0 ∀i� 0

}
.

Then, the pair (X≤0,X≥0) is a t-structure in Db(modΛ). Moreover, the heart of this
t-structure is equivalent to the non-commutative projective scheme qgrΠn+1(Λ), see
[7] for the definition.

The following result gives examples of n-exact categories.

Theorem 2.6.8. [52] Let Λ be an n-representation infinite algebra such that
Πn+1(Λ) is noetherian. Let (X≤0,X≥0) be the t-structure defined in Theorem 2.6.7
and H be its heart. Then, the following statements hold:

(i) The category

E :=
{
X ∈ H | νin(X) ∈ (modΛ)[−n] ∀i� 0

}
.

is an extension closed subcategory of H.
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(ii) The category

U := add
{
ν−in (Λ) | i ∈ Z

}
is an n-cluster-tilting subcategory of E.

With the notation of Theorem 2.6.8, note that E is an exact category hence
Theorem 2.4.14 implies that U is an n-exact category.

We now give a concrete example of an n-exact category constructed using
Theorem 2.6.8.

Example 2.6.9. Let cohPnK be the category of coherent sheaves over the pro-
jective n-space over K, and let Λ be the endomorphism algebra of the tilting bundle
O ⊕ O(1) ⊕ · · · ⊕ O(n), see [19]. It is known that Λ is an n-representation-infinite
algebra and that Πn+1(Λ) is noetherian, see [53, Ex. 2.15]. Moreover, there is an
equivalence of triangulated categories

Db(modΛ) ∼= Db(cohPnK).

This equivalence induces an equivalence of exact categories between the category E

given in Theorem 2.6.8 and vectPnK , the category of vector bundles over PnK . Also,
it induces an equivalence of additive categories

U ∼= add {O(i) | i ∈ Z} .

Finally, Theorem 2.4.14 implies that U is an n-exact category with respect to the
class of all exact sequences

0 X0 X1 · · · Xn Xn+1 0

with all terms in U.

2.6.3. Relative n-cluster-tilting subcategories. Let Λ be a finite-dimensional
algebra and T a Λ-module. It is easy to see that the perpendicular category

T⊥>0 :=
{
M ∈ modΛ | ∀k > 0, ExtkΛ(T,M) = 0

}
is exact for it is an extension closed subcategory of modΛ. We have the following
result.

Proposition 2.6.10. [57, Cor. 1.15] Let Q be a Dynkin quiver. Then, there
exists a tilting KQ-module T of projective dimension 1 such that T⊥>0 contains a
2-cluster-tilting subcategory M.

Remark 2.6.11. With the notation of Proposition 2.6.10, the category M is
2-exact by Theorem 2.4.14.

More generally, in [57, Cor. 1.16] for each n an algebra of global dimension at
most n such that there exists a tilting Λ-module of finite T projective dimension
and T⊥>0 has an n-cluster-titling subcategory was constructed.

2.6.4. Isolated singularities. Let R be a commutative complete Gorenstein
ring of dimension n with residue field K. The category of Cohen-Macaulay R-
modules is by definition

CMR := {M ∈ modR | depthM = n} .

Note that CMR is a Frobenius exact category.
We remind the reader that R is an isolated singularity if R is not regular and

for all non-maximal prime ideals p ⊂ R we have that Rp is a regular ring. In this
case, CMR has almost-split sequences [14, 87].
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Theorem 2.6.12. [56, Thm. 2.5] and [62, Cor. 8.2] Let K be an algebraically
closed field of characteristic 0 and set S := KJx0, x1, . . . , xnK. Also, let G be a finite
subgroup of SLn+1(K) such that every element σ 6= 1 of G does not have eigenvalue
1. Then G acts on S in a natural way and we define

SG := {s ∈ S | ∀g ∈ G, g · s = s} .
Then, the following statements hold:

(i) The ring SG is an isolated singularity.
(ii) We have S ∈ CMSG.

(iii) The category addS is an n-cluster-tilting subcategory of CMSG.

With the notation of Theorem 2.6.12, note that Theorem 2.4.14 implies that
addS is an n-exact category with respect to the class of all exact sequences

0 X0 X1 · · · Xn Xn+1 0

in modSG with terms in addS.

2.6.5. Algebraic (n+2)-angulated categories. In this subsection we revisit
the examples of [39, Sec. 6.3] from the viewpoint of algebraic (n + 2)-angulated
categories. We remind the reader that we say that an object T in a triangulated
category C is n-cluster-tilting if addT is an n-cluster-tilting subcategory of C.

Let C be a algebraic triangulated category. Hence, there exists a Frobenius
exact category (E,X) such that E is equivalent to C as triangulated categories. It is
easy to see that each n-cluster-tilting subcategory of C lifts to an n-cluster-tilting
subcategory of E by including all the X-injective objects in E. By Theorem 2.5.16,
every (n + 2)-angulated category constructed using Theorem 2.5.14 from an al-
gebraic triangulated category is in turn an algebraic (n + 2)-angulated category.
Known examples of algebraic (n + 2)-angulated categories arising in this way are
the following:

• Let C = CQ be the cluster category associated with an acyclic quiver
Q, see [27] for details. It is known that C is an algebraic triangulated
category [70]. Moreover, a basic 2-cluster-tilting object T ∈ C satisfies
Σ2T ∼= T if and only if C(T, T ) is a selfinjective algebra, see [60, Cor. 3.8].
All such algebras were classified by Ringel in [81]. In particular, such
algebras exist only if Q is a Dynkin quiver of type D (including D3 = A3).
Hence, if T is a 2-cluster-tilting object in C such that Σ2T ∼= T , then
addT ⊆ C is an algebraic 4-angulated category.
• Let C = CX be the cluster category associated with a weighted projective

line, see [18] for details. As in the previous case, a 2-cluster-tilting object
T ∈ C satisfies Σ2T ∼= T if and only if C(T, T ) is a selfinjective algebra.
All such algebras are classified in [65, Thm. 1.3]. Such algebras exist if
and only if X has tubular weight type (2, 2, 2, 2), (2, 4, 4), or (2, 3, 6). If
T is a 2-cluster-tilting object in C such that Σ2T ∼= T , then addT ⊆ C is
an algebraic 4-angulated category.
• Let Λ be the preprojective algebra of type An. Recall that modΛ is a

Frobenius abelian category hence the stable category modΛ is triangu-
lated. It is known that the standard 2-cluster-tilting Λ-module T corre-
sponding to the linear orientation of An satisfies f2(T ) ∼= T , see [40].
It follows that addT ⊆ modΛ is a Frobenius 2-exact category and thus
addT ⊆ modΛ is an algebraic 4-angulated category.
• Let Λ be an n-representation-finite algebra. Then, [60, Cor. 3.7] implies

that the canonical n-cluster-tilting object πΛ in the associated Amiot
n-cluster category C is stable under the Serre functor Σn. It is known



2.6. EXAMPLES 79

that C is an algebraic triangulated category, see [60, Thm. 4.15], hence
addπΛ ⊆ C is an algebraic (n+ 2)-angulated category.

We refer the reader to [39] for more details.





CHAPTER 3

Reduction of τ-tilting modules and torsion classes

The class of support τ -tilting modules was introduced recently by Adachi,
Iyama and Reiten. These modules complete the class of tilting modules from the
point of view of mutations. Given a finite dimensional algebra A, we study all basic
support τ -tilting A-modules which have a given basic τ -rigid A-module as a direct
summand. We show that there exist an algebra C such that there exists a bijec-
tion between these modules and all basic support τ -tilting C-modules; we call this
process τ -tilting reduction. An important step in this process is the formation of
τ -perpendicular categories which are analogs of ordinary perpendicular categories.
We give several examples to illustrate this procedure. Finally, we show that τ -tilting
reduction is compatible with silting reduction in triangulated categories (satisfying
suitable finiteness conditions) with a silting object and Calabi-Yau reduction in
2-Calabi-Yau categories with a cluster-tilting object. The contents of this chapter
are available in preprint form in [63].

3.1. Introduction

Let A be a finite dimensional algebra over a field. Recently, Adachi, Iyama and
Reiten introduced in [1] a generalization of classical tilting theory, which they called
τ -tilting theory. Motivation to study τ -tilting theory comes from various sources,
the most important one is mutation of tilting modules. Mutation of tilting modules
has its origin in Bernstein-Gelfand-Ponomarev reflection functors [24], which were
later generalized by Auslander, Reiten and Platzeck with the introduction of APR-
tilting modules [10], which are obtained by replacing a simple direct summand of
the tilting A-module A. Mutation of tilting modules was introduced in full general-
ity by Riedtmann and Schofield in their combinatorial study of tilting modules [80].
Also, Happel and Unger showed in [47] that tilting mutation is intimately related
to the partial order of tilting modules induced by the inclusion of the associated
torsion classes.

We note that one limitation of mutation of tilting modules is that it is not
always possible. This is the motivation for the introduction of τ -tilting theory.
Support τ -tilting (resp. τ -rigid) A-modules are a generalization of tilting (resp.
partial-tilting) A-modules defined in terms of the Auslander-Reiten translation, see
Definition 3.2.8. Support τ -tilting modules can be regarded as a “completion” of
the class of tilting modules from the point of view of mutation. In fact, it is shown
in [1, Thm. 2.17] that a basic almost-complete support τ -tilting A-module is the
direct summand of exactly two basic support τ -tilting A-modules. This means that
mutation of support τ -tilting A-modules is always possible.

It is then natural to consider more generally all support τ -tilting A-modules
which have a given τ -rigid A-module U as a direct summand. Our main result is
the following bijection:

Theorem 3.1.1 (see Theorem 3.3.15 for details). Let U be a basic τ -rigid A-
module. Then there exists a finite dimensional algebra C such that there is an order-
preserving bijection between the set of isomorphism classes of basic support τ -tilting

81
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A-modules which have U as a direct summand and the set of isomorphism classes
of all basic support τ -tilting C-modules. We call this process τ -tilting reduction.

As a special case of Theorem 3.1.1 we obtain an independent proof of [1, Thm.
2.17].

Corollary 3.1.2 (Corollary 3.3.17). Every almost-complete support τ -tilting
A-module is the direct summand of exactly two support τ -tilting A-modules.

If we restrict ourselves to hereditary algebras, then Theorem 3.1.1 gives the
following improvement of [48, Thm. 3.4], where U is assumed to be faithful.

Corollary 3.1.3 (Corollary 3.3.18). Let A be a hereditary algebra and U be
a basic partial-tilting A-module. Then there exists a hereditary algebra C such that
there is an order-preserving bijection between the set of isomorphism classes of
basic support tilting A-modules which have U as a direct summand and the set of
isomorphism classes of all basic support tilting C-modules.

Now we explain a category equivalence which plays a fundamental role in the
proof of Theorem 3.1.1, and which is of independent interest. Given a τ -rigid
module U , there are two torsion pairs in modA which are naturally associated
to U . Namely, (FacU,U⊥) and (⊥(τU),Sub(τU)). We have the following result
about the category ⊥(τU) ∩ U⊥, which is an analog of the perpendicular category
associated with U in the sense of [37], see Example 3.3.4.

Theorem 3.1.4 (Theorem 3.3.8). With the hypotheses of Theorem 3.1.1, let
TU be the Bongartz completion of U in modA. Then, the functor HomA(TU ,−) :
modA→ mod(EndA(TU )) induces an equivalence of exact categories

F : ⊥(τU) ∩ U⊥ −→ modC.

It is shown in [1, Thm. 2.2] that basic support τ -tilting A-modules are precisely
the Ext-progenerators of functorially finite torsion classes in modA. The proof of
Theorem 3.1.1 makes heavy use of the bijection between functorially finite torsion
classes in modA and basic support τ -tilting A-modules. The following result ex-
tends the bijection given in Theorem 3.1.1, as the torsion classes involved do not
need to be functorially finite:

Theorem 3.1.5 (Theorem 3.3.12). With the hypotheses of Theorem 3.1.1, the
map

T 7→ F (T ∩ U⊥)

induces a bijection between torsion classes T in modA such that FacU ⊆ T ⊆ ⊥(τU)
and torsion classes in modC, where F is the equivalence obtained in Theorem 3.1.4.

We would like to point out that support τ -tilting modules are related with
important classes of objects in representation theory: silting objects in triangulated
categories and cluster-tilting objects in 2-Calabi-Yau triangulated categories. On
one hand, if T is a triangulated category satisfying suitable finiteness conditions with
a silting object S, then there is a bijection between basic silting objects contained
in the subcategory S∗S[1] of T and basic support τ -tilting EndT(S)-modules, see [1,
Thm. 3.2] for a special case. On the other hand, if C is a 2-Calabi-Yau triangulated
category with a cluster-tilting object T , then there is a bijection between basic
cluster-tilting objects in C and basic support τ -tilting EndC(T )-modules, see [1,
Thm. 4.1].

Reduction techniques exist both for silting objects and cluster-tilting objects,
see [3, Thm. 2.37] and [62, Thm. 4.9] respectively. The following result shows that
τ -tilting reduction fits nicely in these contexts.



3.2. PRELIMINARIES 83

Theorem 3.1.6 (see Theorems 3.4.12 and 3.4.23 for details). Let A be a finite
dimensional algebra. Then we have the following:

(i) τ -tilting reduction is compatible with silting reduction.
(ii) If A is 2-Calabi-Yau tilted, then τ -tilting reduction is compatible with

2-Calabi-Yau reduction.

These results enhance our understanding of the relationship between silting
objects, cluster-tilting objects and support τ -tilting modules. We refer the reader
to [26] for an in-depth survey of the relations between these objects and several
other important concepts in representation theory.

3.2. Preliminaries

Let us fix our conventions and notations, which we kindly ask the reader to
keep in mind for the remainder of this chapter.

Conventions 3.2.1. In what follows, A always denotes a (fixed) finite dimen-
sional algebra over a field k. We denote by modA the category of finite dimensional
right A-modules. Whenever we consider a subcategory of modA we assume that it
is full and closed under isomorphisms. If M is an A-module, we denote by FacM the
subcategory of modA which consists of all factor modules of direct sums of copies
of M ; the subcategory SubM is defined dually. Given morphisms f : X → Y and
g : Y → Z in some category C, we denote their composition by g ◦ f = gf . Given
a subcategory X of an additive category C, we denote by ⊥X the subcategory of
C whose objects are all objects M in C such that HomC(M,X) = 0; the category
X⊥ is defined dually. Also, we denote by [X] the ideal of C of morphisms which
factor through X. For an object X of C, we denote by addX the smallest additive
subcategory of C containing X and closed under isomorphisms. If X = addX for
some object X in C we write ⊥X instead of ⊥X and so on. If C is a k-linear category
we denote by D the usual k-duality Homk(−, k).

There is a strong interplay between the classical concept of torsion class in
modA and the recently investigated class of support τ -tilting modules. In this
section we collect the basic definitions and main results relating this two theories.

3.2.1. Torsion pairs. Recall that a subcategory X of an additive category C

is said to be contravariantly finite in C if for every object M of C there exist some
X in X and a morphism f : X →M such that for every X ′ in X the sequence

HomC(X ′, X)
f ·−→ HomC(X ′,M)→ 0

is exact. In this case f is called a right X-approximation. Dually we define co-
variantly finite subcategories in C and left X-approximations. Furthermore, a sub-
category of C is said to be functorially finite in C if it is both contravariantly and
covariantly finite in C.

A subcategory T of modA is called a torsion class if it is closed under extensions
and factor modules in modA. Dually, torsion-free classes are defined. An A-module
M in T is said to be Ext-projective in T if Ext1A(M,T) = 0. If T is functorially finite
in modA, then there are only finitely many indecomposable Ext-projective modules
in T up to isomorphism, and we denote by P (T) the direct sum of each one of
them. For convenience, we will denote the set of all torsion classes in modA by
torsA, and by f- torsA the subset of torsA consisting of all torsion classes which
are functorially finite in modA.

A pair (T,F) of subcategories of modA is called a torsion pair if F = T⊥ and
T = ⊥F. In such case T is a torsion class and F is a torsion-free class in modA. The
following proposition characterizes torsion pairs in modA consisting of functorially
finite subcategories.
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Proposition 3.2.2. [1, Prop. 1.1] Let (T,F) be a torsion pair in modA. The
following properties are equivalent:

(i) F is functorially finite in modA (or equivalently, F is contravariantly
finite).

(ii) T is functorially finite in modA (or equivalently, T is covariantly finite).
(iii) T = FacP (T).
(iv) P (T) is a tilting (A/ annT)-module.

(v) For every M in T there exists a short exact sequence 0 → L → T ′
f−→

M → 0 where f is right (addP (T))-approximation and L is in T.

A torsion pair in modA which has any of the equivalent properties of Propo-
sition 3.2.2 is called a functorially finite torsion pair. In view of property (c), we
call the A-module P (T) the Ext-progenerator of T.

3.2.2. τ-tilting theory. Now we recall the definition of support τ -tilting mod-
ules and the results relating such modules with functorially finite torsion classes in
modA.

Definition 3.2.3. [1, Def. 0.1(a)] Let A be a finite dimensional algebra. An
A-module M is said to be τ -rigid if HomA(M, τM) = 0 where τ is the Auslander-
Reiten translation.

Remark 3.2.4. By the Auslander-Reiten duality formula [8, Thm. IV.2.13],
for every A-module M we have an isomorphism DHomA(M, τM) ∼= Ext1A(M,M).
Thus M is rigid (i.e. Ext1A(M,M) = 0) provided M is τ -rigid.

The following classical result of Auslander and Smalø characterizes τ -rigid mod-
ules in terms of torsion classes.

Proposition 3.2.5. [13, 5.8] Let M and N be two A-modules. Then the fol-
lowing holds:

(i) HomA(N, τM) = 0 if and only if Ext1A(M,FacN) = 0.
(ii) M is τ -rigid if and only if M is Ext-projective in FacM .

(iii) FacM is a functorially finite torsion class in modA.

For an A-module M and an ideal I of A contained in annM , the following
proposition describes the relationship between M being τ -rigid as A-module and
τ -rigid as (A/I)-module. We denote by τA/I the Auslander-Reiten translation in
mod(A/I).

Proposition 3.2.6. [1, Lemma 2.1] Let I be an ideal of A and M and N two
(A/I)-modules. Then we have the following:

(i) If HomA(M, τN) = 0, then HomA/I(M, τA/IN) = 0.
(ii) If I = 〈e〉 for some idempotent e ∈ A, then HomA(M, τN) = 0 if and

only if HomA/I(M, τA/IN) = 0.

The following lemma, which is an analog of Wakamatsu’s Lemma, cf. [12,
Lemma 1.3], often comes handy.

Lemma 3.2.7. [1, Lemma 2.5] Let 0→ L→ M
f−→ N be an exact sequence. If

f is a right (addM)-approximation of N and M is τ -rigid, then L is in ⊥(τM).

We denote the number of pairwise non-isomorphic indecomposable summands
of an A-module M by |M |. Thus |A| equals the rank of the Grothendieck group of
modA.
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Definition 3.2.8. [1, Defs. 0.1(b), 0.3] Let M be a τ -rigid A-module. We say
that M is a τ -tilting A-module if |M | = |A|. More generally, we say that M is a
support τ -tilting A-module if there exists an idempotent e ∈ A such that M is a
τ -tilting (A/〈e〉)-module. Support tilting A-modules are defined analogously, see
[54].

Remark 3.2.9. Note that the zero-module is a support τ -tilting module (take
e = 1A in Definition 3.2.8). Thus every non-zero finite dimensional algebra A
admits at least two support τ -tilting A-modules: 0 and A.

The following observation follows immediately from the Auslander-Reiten for-
mulas and Definition 3.2.8.

Proposition 3.2.10. [1] Let A be a hereditary algebra and M an A-module.
Then M is a τ -rigid (resp. τ -tilting) A-module if and only if M is a rigid (resp.
tilting) A-module.

We also need the following result:

Proposition 3.2.11. [1, Prop. 2.2] Let A be a finite dimensional algebra. The
following statements hold:

(i) τ -tilting A-modules are precisely sincere support τ -tilting A-modules.
(ii) Tilting A-modules are precisely faithful support τ -tilting A-modules.

(iii) Any τ -tilting (resp. τ -rigid) A-module M is a tilting (resp. partial tilting)
(A/ annT )-module.

The following result provides the conceptual framework for the main results
of this chapter. It says that basic support τ -tilting A-modules are precisely the
Ext-progenerators of functorially finite torsion classes in modA.

Theorem 3.2.12. [1, Thm. 2.2] There is a bijection

f- torsA −→ sτ - tiltA

given by T 7→ P (T) with inverse M 7→ FacM .

Remark 3.2.13. Observe that the inclusion of subcategories gives a partial
order in torsA. Thus the bijection of Theorem 3.2.12 induces a partial order in
sτ - tiltA. Namely, if M and N are support τ -tilting A-modules, then

M ≤ N if and only if FacM ⊆ FacN.

Hence, as with every partially ordered set, we can associate to sτ - tiltA a Hasse
quiver Q(sτ - tiltA) whose set of vertices is sτ - tiltA and there is an arrow M → N
if and only if M > N and there is no L ∈ sτ - tiltA such that M > L > N .

The following proposition is a generalization of Bongartz completion of tilting
modules, see [8, Lemma VI.2.4]. It plays an important role in the sequel.

Proposition 3.2.14. [1, Prop. 2.9] Let U be a τ -rigid A-module. Then the
following holds:

(i) ⊥(τU) is a functorially finite torsion class which contains U .
(ii) U is Ext-projective in ⊥(τU), that is U ∈ addP (⊥(τU)).

(iii) TU := P (⊥(τU)) is a τ -tilting A-module.

The module TU is called the Bongartz completion of U in modA.

Recall that, by definition, a partial-tilting A-module T is a tilting A-module
if and only if there exists a short exact sequence 0 → A → T ′ → T ′′ → 0 with
T ′, T ′′ ∈ addT . The following proposition gives a similar criterion for a τ -rigid
A-module to be a support τ -tilting A-module.
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Proposition 3.2.15. Let M be a τ -rigid A-module. Then M is a support
τ -tilting A-module if and only if there exists an exact sequence

(3.2.1) A
f−→M ′

g−→M ′′ → 0

with M ′,M ′′ ∈ addM and f a left (addM)-approximation of A.

Proof. The necessity is shown in [1, Prop. 2.22]. For the sufficiency, suppose
there exists an exact sequence of the form (3.2.1). Let I = annM , we only need
to find an idempotent e ∈ A such that e ∈ I and |M | = |A/〈e〉|. By Proposition
3.2.11(c) M is a partial-tilting (A/I)-module. Moreover, f induces a morphism
f̄ : A/I →M ′. We claim that the sequence

0→ A/I
f̄−→M ′

g−→M ′′ → 0

is exact, for which we only need to show that the induced morphism f̄ is injective.
It is easy to see that f̄ : A/I → M ′ is a left (addM)-approximation of A/I. Since
M is a faithful (A/I)-module, by [8, VI.2.2] we have that f̄ is injective, and the
claim follows. Thus M is a tilting (A/I)-module, and we have |M | = |A/I|. Let e
be a maximal idempotent in A such that e ∈ I. Then by the choice of e we have
that |M | = |A/I| = |A/〈e〉|. �

The following result justifies the claim that support τ -tilting modules complete
the class of tilting modules from the point of view of mutation. We say that a basic
τ -rigid A-module U is almost-complete if |U | = |A| − 1.

Theorem 3.2.16. [1, Thm. 2.17] Let U be an almost-complete τ -tilting A-
module. Then there exist exactly two basic support τ -tilting A-modules having U as
a direct summand.

Definition 3.2.17. It follows from Theorem 3.2.16 that we can associate with
sτ - tiltA an exchange graph whose vertices are basic support τ -tilting A-modules
and there is an edge between two non-isomorphic support τ -tilting A-modules M
and N if and only if the following holds:

• There exists an idempotent e ∈ A such that M,N ∈ mod(A/〈e〉).
• There exists an almost-complete τ -tilting (A/〈e〉)-module U such that
U ∈ addM and U ∈ addN .

In this case we say that M and N are obtained from each other by mutation. Note
that this exchange graph is n-regular, where |A| = n is the number of simple A-
modules. It is shown in [1, Cor. 2.31] that the underlying graph of Q(sτ - tiltA)
coincides with the exchange graph of sτ - tiltA.

We conclude this section with some examples of support τ -tiling modules.

Example 3.2.18. Let A be a hereditary algebra. By Proposition 3.2.11 support
τ -tilting A-modules are precisely support tilting A-modules. For example, let A be
the path algebra of the quiver 2 ← 1. The Auslander-Reiten quiver of modA is
given by

2

1
2

1

where modules are represented by their radical filtration. Then Q(sτ - tiltA) is given
by
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2⊕ 1
2

1
2⊕ 1

1 0

2

Note that the only τ -tilting A-modules are 2⊕ 1
2 and 1

2⊕ 1, and since A is hereditary
they are also tilting A-modules.

Example 3.2.19. Let A be the algebra given by the quiver

2 1
y

x

subject to the relation yx = 0. The Auslander-Reiten quiver of modA is given by

1

2
1

1
2
1

1
2

2 1

where the two copies of S1 = 1 are to be identified. Then Q(sτ - tiltA) is given as
follows:

1
2
1
⊕ 2

1

2⊕ 2
1

2

0

1

1
2
1
⊕ 1

Example 3.2.20. Let A be a self-injective algebra. Then the only basic tilting
A-module is A. On the other hand, in general there are many basic support τ -tilting
modules. For example, let A be the path algebra of the quiver

2

1

3

x

y

z

subject to the relations xy = 0, yz = 0 and zx = 0. Thus A is a self-injective
cluster-tilted algebra of type A3, see [28, 81]. It follows from [1, Thm. 4.1] that
basic support τ -tilting A-modules correspond bijectively with basic cluster-tilting
objects in the cluster category of type A3. Hence there are 14 support τ -tilting
A-modules, see [27, Fig. 4].

The following example gives an algebra with infinitely many support τ -tilting
modules.
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Example 3.2.21. Let A be the Kronecker algebra, i.e. the path algebra of the
quiver 2 ⇔ 1. Then Q(sτ - tiltA) is the following quiver, where each module is
represented by its radical filtration:

1
22⊕ 2

1
22⊕

11
222

111
2222⊕

11
222

...

11
2 ⊕

111
22

1

0

2

3.3. Main results

This section is devoted to prove the main results of this chapter. First, let us
fix the setting of our results.

Setting 3.3.1. We fix a finite dimensional algebra A and a basic τ -rigid A-
module U . Let T = TU be the Bongartz completion of U in modA, see Proposition
3.2.14. The algebras

B = BU := EndA(TU ) and C = CU := BU/〈eU 〉
play an important role in the sequel, where eU is the idempotent corresponding to
the projective B-module HomA(TU , U). We regard modC as a full subcategory of
modB via the canonical embedding.

In this section we study the subset of sτ - tiltA given by

sτ - tiltU A := {M ∈ sτ - tiltA | U ∈ addM} .
In Theorem 3.3.15 we will show that there is an order-preserving bijection between
sτ - tiltU A and sτ - tiltC.

3.3.1. The τ-perpendicular category. The following observation allows us
to describe sτ - tiltA in terms of the partial order in torsA.

Proposition 3.3.2. [1, Prop. 2.8] Let U be a τ -rigid A-module and M a
support τ -tilting A-module. Then, U ∈ addM if and only if

FacU ⊆ FacM ⊆ ⊥(τU).

Recall that we have M 6 N for two basic support τ -tilting A-modules if and
only if FacM ⊆ FacN , see Remark 3.2.13. Hence it follows from Proposition 3.3.2
that sτ - tiltU A is an interval in sτ - tiltA, i.e. we have that

(3.3.1) sτ - tiltU A = {M ∈ sτ - tiltA | P (FacU) 6M 6 TU}
In particular there are two distinguished functorially finite torsion pairs associated
with P (FacU) and TU . Namely,

(FacU,U⊥) and (⊥(τU),Sub τU)

which satisfy FacU ⊆ ⊥(τU) and Sub τU ⊆ U⊥.
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Definition 3.3.3. The τ -perpendicular category associated to U is the subcat-
egory of modA given by U := ⊥(τU) ∩ U⊥.

The choice of terminology in Definition 3.3.3 is justified by the following exam-
ple.

Example 3.3.4. Suppose that U is a partial-tilting A-module. Since U has
projective dimension less or equal than 1. Then, by the Auslander-Reiten formulas,
for every A-module M we have that HomA(M, τU) = 0 if and only if Ext1A(U,M) =
0. Then

U =
{
M ∈ modA | Hom(U,M) = 0 and Ext1A(U,M) = 0

}
.

Thus U is exactly the right perpendicular category associated to U in the sense of
[37].

We need a simple observation which is a consequence of a theorem of Brenner
and Butler.

Proposition 3.3.5. With the hypotheses of Setting 3.3.1, the functors

F := HomA(T,−) : modA→ modB and(3.3.2)

G := −⊗B T : modB → modA(3.3.3)

induce mutually quasi-inverse equivalences F : FacT → SubDT and G : SubDT →
FacT . Moreover, these equivalences are exact, i.e. F sends short exact sequences
in modA with terms in FacT to short exact sequences in modB, and so does G.

Proof. In view of Proposition 3.2.11, we have that T is a tilting (A/ annT )-
module. Then it follows from [8, Thm. VI.3.8] that F : FacT → SubDT is an
equivalence with quasi-inverse G : SubDT → FacT .

Now we show that both F and G are exact. For this, let 0→ L→M → N → 0
be a short exact sequence in modA with terms in FacT . Then F induces an exact
sequence

0→ FL→ FM → FN → Ext1A(T, L) = 0

as T is Ext-projective in ⊥(τU). Consequently F is exact.
Next, let 0 → L′ → M ′ → N ′ → 0 be a short exact sequence in modA with

terms in SubDT , then there is an exact sequence

0 = TorB1 (N ′, T )→ GL′ → GM ′ → GN ′ → 0.

as N ′ ∈ SubDT = ker TorB1 (−, T ), see [8, Cor. VI.3.9(i)]; hence G is also exact. �

The following proposition gives us a basic property of U.

Proposition 3.3.6. Let 0→ L→M → N → 0 be an exact sequence in modA.
If any two of L, M and N belong to U, then the third one also belongs to U.

Proof. First, U is closed under extensions since both ⊥(τU) and U⊥ are closed
under extensions in modA. Thus if L and N belong to U, then so does M .

Secondly, suppose that L and M belong to U. Since ⊥(τU) is closed under
factor modules we only need to show that HomA(U,N) = 0. In this case we have
an exact sequence

0 = HomA(U,M)→ HomA(U,N)→ Ext1A(U,L) = 0

since by Proposition 3.2.14(b) we have that U is Ext-projective in ⊥(τU), hence N
is in U.

Finally, suppose that M and N belong to U. Since U⊥ is closed under sub-
modules, we only need to show that HomA(L, τU) = 0. We have an exact sequence

0 = HomA(M, τU)→ HomA(L, τU)→ Ext1A(N, τU).
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By the dual of Proposition 3.2.14(b) we have that τU is Ext-injective in U⊥, so we
have Ext1A(N, τU) = 0, hence HomA(L, τU) = 0 and thus L is in U. �

Remark 3.3.7. Since U is closed under extensions in modA, it has a natu-
ral structure of an exact category, see [79, 67]. Then Proposition 3.3.6 says that
admissible epimorphisms (resp. admissible monomorphisms) in U are exactly epi-
morphisms (resp. monomorphisms) in modA between modules in U.

The next result is the main result of this subsection. It is the first step towards
τ -tilting reduction.

Theorem 3.3.8. With the hypotheses of Setting 3.3.1, the functors F and G in
Proposition 3.3.5 induce mutually quasi-inverse equivalences F : U → modC and
G : modC → U which are exact.

Proof. By Proposition 3.3.5, the functors (3.3.2) and (3.3.3) induce mutually
quasi-inverse equivalences between FacT and SubDT . Hence by construction we
have F (U) ⊆ (FU)⊥ = modC. Thus, we only need to show that F : U→ modC is
dense.

Let N be in modC and take a projective presentation

(3.3.4) FT1
Ff−−→ FT0 → N → 0

of the B-module N ; hence we have T0, T1 ∈ TU . Let M = Coker f . We claim that
FM ∼= N and that M is in U. In fact, let L = Im f and K = Ker f . Then we have
short exact sequences

0→ K → T1 → L→ 0 and(3.3.5)

0→ L→ T0 →M → 0.(3.3.6)

Then L is in ⊥(τU) since ⊥(τU) is closed under factor modules. In particular we
have that Ext1A(T, L) = 0. Apply the functor F to the short exact sequences (3.3.5)
and (3.3.6) to obtain a commutative diagram with exact rows and columns

FT1 FT0 FM

0 FL FT0 FM Ext1A(T, L) = 0

Ext1A(T,K)

Ff

To prove that FM ∼= N it remains to show that Ext1A(T,K) = 0. Since T is Ext-
projective in ⊥(τU), it suffices to show that K is in ⊥(τU). Applying the functor
HomA(−, τU) to (3.3.5), we obtain an exact sequence

0 = HomA(T1, τU)→ HomA(K, τU)→ Ext1A(L, τU)
Ext1A(f,τU)−−−−−−−→ Ext1A(T1, τU).

Thus we only need to show that the map Ext1A(f, τU) : Ext1A(L, τU)→ Ext1A(T1, τU)
is a monomorphism. By Auslander-Reiten duality it suffices to show that the map

HomA(U, T1)
f◦−−−−→ HomA(U,L)

is an epimorphism. For this, observe that we have a commutative diagram
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HomA(U, T1) HomA(U,L)

HomA(U, T1) HomA(U,L)

f◦−

f◦−

where the vertical maps are natural epimorphisms. Hence it is enough to show that
the map

(3.3.7) HomA(U, T1)
f◦−−−−→ HomA(U,L)

is surjective. Applying the functor HomB(FU,−) to the sequence (3.3.4) we obtain
an exact sequence

HomB(FU,FT1)
HomB(FU,Ff)−−−−−−−−−→ HomB(FU,FT0)→ HomB(FU,N) = 0

since FU is a projectiveB-module andN is in modC = (FU)⊥. Thus HomB(FU,Ff)
is surjective, and also the map (3.3.7) is surjective by Proposition 3.3.5. Hence we
have that K belongs to ⊥(τU) as desired. This shows that FM ∼= N .

Moreover, we have that

0 = HomB(FU,N) ∼= HomB(FU,FM) ∼= HomA(U,M).

Hence M is in U. This shows that F : U → modC is dense, hence F is an
equivalence with quasi-inverse G. The fact that this equivalences are exact follows
immediately from Proposition 3.3.5. This concludes the proof of the theorem. �

Definition 3.3.9. We say that a full subcategory G of U is a torsion class in U

if the following holds: Let 0→ X → Y → Z → 0 be an admissible exact sequence
in U, see Remark 3.3.7:

(i) If X and Z are in G, then Y is in G.
(ii) If Y is in G, then Z is in G.

We denote the set of all torsion classes in U by torsU. We denote by f- torsU the
subset of torsU consisting of torsion classes which are functorially finite in U.

Example 3.3.10. If A is hereditary and U a basic partial-tilting A-module then
by [37] the algebra C is hereditary and Theorem 3.3.8 specializes to a well-known
result from op. cit. .

The following corollary is an immediate consequence of Theorem 3.3.8.

Corollary 3.3.11. The following holds:

(i) The functors F and G induce mutually inverse bijections between torsU
and torsC.

(ii) These bijections restrict to bijections between f- torsU and f- torsC.
(iii) These bijections above are isomorphisms of partially ordered sets.

Proof. It is shown in Theorem 3.3.8 that F and G give equivalences of exact
categories between U and modC. Since the notion of torsion class depends only on
the exact structure of the category, see Definition 3.3.9, part (a) follows. Now (b)
and (c) are clear. �

3.3.2. Reduction of torsion classes and τ-tilting modules. Given two
subcategories X and Y of modA we denote by X ∗ Y the full subcategory of modA
induced by all A-modules M such that there exist a short exact sequence

0→ X →M → Y → 0

with X in X and Y in Y. Obviously we have X,Y ⊆ X∗Y. The following two results
give us reductions at the level of torsion pairs.
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U FacU T ⊥(τU)U⊥

Figure 3.3.1. Reduction of torsion classes in modA with respect
to FacU , see Theorems 3.3.12 and 3.3.13.

Theorem 3.3.12. With the hypotheses of Setting 3.3.1, we have order-preserving
bijections {

T ∈ torsA | FacU ⊆ T ⊆ ⊥(τU)
} red−→ torsU

F−→ torsC

where red is given by red(T) := T ∩U⊥ with inverse red−1(G) := (FacU) ∗G, and F
is given in Corollary 3.3.11.

The situation of Theorem 3.3.12 is illustrated in Figure 3.3.1. Also, the follow-
ing diagram is helpful to visualize this reduction procedure:

⊥(τU) ⊥(τU) ∩ U⊥ = U

⊆ ⊆

T T ∩ U⊥

⊆ ⊆

FacU (FacU) ∩ U⊥ = {0}

Moreover, we have the following bijections:

Theorem 3.3.13. The bijections of Theorem 3.3.12 restrict to order-preserving
bijections {

T ∈ f- torsA | FacU ⊆ T ⊆ ⊥(τU)
} red−→ f- torsU

F−→ f- torsC.

For readability purposes, the proofs of Theorems 3.3.12 and 3.3.13 are given in
Section 3.3.3. First we use them to establish the bijection between sτ - tiltU A and
sτ - tiltC.

Recall that the torsion pair (FacU,U⊥) gives functors t : modA → FacU and
f : modA→ U⊥ and natural transformations t→ 1modA → f such that the sequence

(3.3.8) 0→ tM →M → fM → 0

is exact for each A-module M . The sequence (3.3.8) is called a canonical sequence,
and the functor t is called the idempotent radical associated to the torsion pair
(FacU,U⊥). Any short exact sequence 0 → L → M → N → 0 such that L is in
FacU and N is in U⊥ is isomorphic to the canonical sequence of M , see [8, Prop.
VI.1.5]. Note that since ⊥(τU) is closed under factor modules we have

(3.3.9) f(⊥(τU)) ⊆ U.

Proposition 3.3.14. Let T be a functorially finite torsion class in modA. Then
fP (T) is Ext-projective in T∩U⊥ and for every A-module N which is Ext-projective
in T ∩ U⊥ we have M ∈ add(fP (T)).
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Proof. Applying the functor HomA(−, N) to (3.3.8), for any N in T∩U⊥, we
have an exact sequence

0 = HomA(tP (T), N)→ Ext1A(fP (T), N)→ Ext1A(P (T), N) = 0

This shows that fP (T) is Ext-projective in T ∩ U⊥.
Now let N be Ext-projective in T ∩ U⊥. Since N ∈ T, by Proposition 3.2.2(e)

there exist a short exact sequence 0→ L→M → N → 0 with M ∈ add(P (T)) and
L ∈ T. Since fN = N as N ∈ U⊥, by the functoriality of f we have a commutative
diagram with exact rows:

0 L M N 0

0 K := Ker ff fM fN = N 0

f

ff

As the map M → fM is surjective and the map N → fN is bijective, by the snake
lemma we have that the map L→ K is surjective. Thus, since L ∈ T, we have that
K also belongs to T. Moreover, K is a submodule of fM ∈ U⊥, hence K is also
in U⊥. Since N is Ext-projective in T ∩ U⊥ and we have K ∈ T ∩ U⊥, the lower
sequence splits. Thus N ∈ add(fP (T)). �

We are ready to state the main result of this chapter, which gives the procedure
for τ -tilting reduction.

Theorem 3.3.15. With the hypotheses of Setting 3.3.1, we have an order-
preserving bijection

red : sτ - tiltU A −→ sτ - tiltC

given by M 7→ F (fM) with inverse N 7→ P ((FacU) ∗G(FacN)). In particular,
sτ - tiltC can be embedded as an interval in sτ - tiltA.

Proof. By Theorems 3.2.12 and 3.3.13 we have a commutative diagram{
T ∈ f- torsA | FacU ⊆ T ⊆ ⊥(τU)

}
f- torsC

sτ - tiltU A sτ - tiltC

in which arrow is a bijection, and where the dashed arrow is given by M 7→
P ((FacM) ∩ U⊥) and the inverse is given by N 7→ P ((FacU) ∗ G(FacN)). Hence
to prove the theorem we only need to show that for any M ∈ sτ - tiltU A we have
P (F (FacM ∩ U⊥)) = F (fM). Indeed, it follows from Proposition 3.3.14 that fM
is the Ext-progenerator of (FacM) ∩ U⊥; and since F is an exact equivalence, see
Theorem 3.3.8, we have that F (fM) is the Ext-progenerator of F (FacM ∩ U⊥)
which is exactly what we needed to show. �

Corollary 3.3.16. The bijection in Theorem 3.3.15 is compatible with muta-
tion of support τ -tilting modules.

Proof. It is shown in [1, Cor. 2.31] that the exchange graph of sτ - tiltA
coincides with the Hasse diagram of sτ - tiltA. Since τ -tilting reduction preserves
the partial order in f- tors (and hence in sτ - tilt) the claim follows. �

As a special case of Theorem 3.3.15 we obtain an independent proof of [1, Thm.
2.17].

Corollary 3.3.17. Every almost-complete support τ -tilting A-module U is the
direct summand of exactly two support τ -tilting A-modules: P (FacU) and TU .



94 3. REDUCTION OF τ -TILTING MODULES AND TORSION CLASSES

Proof. Let U be an almost complete support τ -tilting A-module. Clearly, we
have {P (FacU), TU} ⊆ sτ - tiltU A. On the other hand, |U | = |A|−1 = |TU |−1 and
thus |C| = 1, see Setting 3.3.1. By Theorem 3.3.15 we have a bijection between
sτ - tiltU A and sτ - tiltC, and since |C|=1 we have that sτ - tiltC = {0, C}, see [1,
Ex. 6.1]. Thus |sτ - tiltU A| = |sτ - tiltC| = 2 and we have the assertion. �

For a finite dimensional algebra A let s- tiltA be the set of (isomorphism classes
of) basic support tilting A-modules and, if U is a partial-tilting A-module, let
s- tiltU A be the subset of s- tiltA defined by

s- tiltU A := {M ∈ s- tiltA | U ∈ addM} .

If we restrict ourselves to hereditary algebras we obtain the following improvement
of [48, Thm. 3.2].

Corollary 3.3.18. Let A be a hereditary algebra. With the hypotheses of
Setting 3.3.1, we have the following:

(i) The algebra C is hereditary.
(ii) There is an order-preserving bijection

red : s- tiltU A −→ s- tiltC

given by M 7→ F (fM) with inverse N 7→ P ((FacU) ∗G(FacN)).

Proof. Since A is hereditary, the τ -rigid module U is a partial-tilting module.
Moreover, as explained in Example 3.3.10 we have that C is also a hereditary
algebra. Then by Proposition 3.2.10 we have sτ - tiltU A = s- tiltU A and sτ - tiltC =
s- tiltC. Then the claim follows from Theorem 3.3.15. �

We conclude this section with some examples illustrating our results.

Example 3.3.19. Let A be the algebra given by the quiver 3
y←− 2

x←− 1 with the
relation xy = 0, see [1, Ex. 6.4]. Consider the support τ -tilting A-module U = P3.
Then

U = ⊥(τU) ∩ U⊥ = (modA) ∩ U⊥ = U⊥.

Moreover, the Bongartz completion of U is given by T = P1⊕P2⊕P3, which is the
basic progenerator of ⊥(τU) = modA. Hence C = EndA(P1 ⊕ P2) ∼= k(• ← •), see
Example 3.2.18. We may visualize this in the Auslander-Reiten quiver of modA,
where each A-module is represented by its radical filtration:

3

2
3

2

1
2

1

The indecomposable summands of T are indicated with rectangles and U is enclosed
in a triangle. Note that U is equivalent to modC as shown in Theorem 3.3.8.

By Theorem 3.3.15 we have that sτ - tiltC can be embedded as an interval in
sτ - tiltA. We have indicated this embedding in Q(sτ - tiltA) in Figure 3.3.2 by
enclosing the image of sτ - tiltC in rectangles.

Example 3.3.20. Let A be the preprojective algebra of Dynkin type A3, i.e. the
algebra given by the quiver

3 2 1
y2

x2

y1

x1
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3⊕ 2
3⊕

1
2

3⊕ 1
2⊕ 1

3⊕ 1 3

3⊕ 2
3

2⊕ 2
3⊕

1
2

1
2⊕ 1

1 0

2⊕ 2
3

2⊕ 1
2

2

Figure 3.3.2. Embedding of sτ - tiltC in Q(sτ - tiltA), see Exam-
ple 3.3.19.

with relations x1y1 = 0, y2x2 = 0 and y1x1 = x2y2.
Let U = 2

1, then U is τ -rigid and not a support τ -tilting A-module. The

Bongartz completion of U is given by T = P1 ⊕ P2 ⊕ 2
1 =

1
2
3
⊕

2
13
2
⊕ 2

1; hence C is

isomorphic to the path algebra given by the quiver

• •
y

x

with the relations xy = 0 and yx = 0, that is C is isomorphic to the preprojective
algebra of type A2. In this case ⊥(τU) consists of all A-modules M such that
τU = S3 is not a direct summand of topM . On the other hand, it is easy to see
that the only indecomposable A-modules in ⊥(τU) which do not belong to U⊥ are

U , P2, S2 and 1
2. We can visualize this in the Auslander-Reiten quiver of modA as

follows (note that the dashed edges are to be identified to form a Möbius strip):

2
13

3

3
2
1

1
2
3

2
13
2

1

2

2
1

2
3

13
2

3
2

1
2

1

2
13
2

3

The indecomposable summands of T are indicated with rectangles and U is
encircled. Note that U is equivalent to modC as shown in Theorem 3.3.8. By
Theorem 3.3.15 we have that sτ - tiltC can be embedded as an interval in sτ - tiltA.
We have indicated this embedding in Q(sτ - tiltA) in Figure 3.3.3 by enclosing the
image of sτ - tiltC in rectangles. with double arrows.
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3⊕ 11
3 ⊕

3
2
1

3⊕ 3
2⊕

3
2
1

3⊕ 3
2

3

3⊕ 1

3⊕ 13
2 ⊕ 1

1
2
3
⊕

2
13
2
⊕

3
2
1

2
3⊕

2
13
2
⊕

3
2
1

2
3⊕ 2

2

1
2⊕ 1

1
2
3
⊕ 1

2⊕ 1

1
2
3
⊕

2
13
2
⊕ 2

1

2
3⊕

2
13
2
⊕ 2

1

2
3⊕ 2⊕ 2

1

2⊕ 2
1

1
2⊕

2
1

1
2
3
⊕ 1

2⊕
2
1

2
3⊕

3
2⊕

3
2
1

2
3⊕

3
2

1
2
3
⊕ 13

2 ⊕
3
2
1

1
2
3
⊕ 13

2 ⊕ 1

1

0

Figure 3.3.3. Embedding of sτ - tiltC in Q(sτ - tiltA), see Exam-
ple 3.3.20.

Example 3.3.21. Let A be the algebra given by the path algebra of the quiver

2

1

3

modulo the ideal generated by all paths of length two.
Let U = 11

222. The Bongartz completion of U is given by T = P1 ⊕ 11
222 ⊕ P3 =

1
22 ⊕

11
222 ⊕

3
11; hence C ∼= k × k. It is easy to see that Q(sτ - tiltC) is given by the

quiver

1⊕ 2

1

0

2
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1
22⊕

2
33⊕

3
1133

111⊕
2
33⊕

3
11

33
111⊕

2
33⊕

333
1111

· · ·

3⊕ 2
33⊕

33
1

3⊕ 2
33

22
333⊕

2
33

22
333⊕

222
3333

· · ·

22
3 ⊕ 2

2

0

1
22⊕

2
33⊕

22
333

1
22⊕

222
3333⊕

22
333

· · ·

1
22⊕

22
3 ⊕ 2

1
22⊕ 2

1
22⊕

11
222

111
2222⊕

11
222

· · ·
11
2 ⊕ 1

1

1
22⊕

11
222⊕

3
11

111
2222⊕

11
222⊕

3
11

...

11
2 ⊕

111
22 ⊕

3
11

1⊕ 3
11

33
111⊕

3
11

33
111⊕

333
1111

...

33
1 ⊕ 3

3

1
22⊕

11
222⊕

3
11

111
2222⊕

11
222⊕

3
11

...

11
2 ⊕

111
22 ⊕

3
11

1⊕ 3
11

33
111⊕

3
11

33
111⊕

333
1111

...

33
1 ⊕ 3

3

Figure 3.3.4. Embedding of sτ - tiltC in Q(sτ - tiltA), see Exam-
ple 3.3.21.

By Theorem 3.3.15 we have that sτ - tiltC can be embedded as an interval in
sτ - tiltA. We have indicated this embedding in Q(sτ - tiltA) in Figure 3.3.4 by
drawing Q(sτ - tiltC) with double arrows.

3.3.3. Proof of the main theorems. We begin with the proof of Theorem
3.3.12. The following proposition shows that the map T 7→ T ∩ U⊥ in Theorem
3.3.12 is well defined.

Proposition 3.3.22. Let T be a torsion class in modA such that FacU ⊆ T ⊆
⊥(τU). Then the following holds:

(a) T ∩ U⊥ is in torsU.
(b) T ∩ U⊥ = fT.

If in addition T is functorially finite in modA, then we have:

(c) T ∩ U⊥ = Fac(fP (T)) ∩ U⊥.
(d) F (T ∩ U⊥) is in f- torsC.

Proof. (a) T ∩U⊥ is closed under extensions since both T and U⊥ are closed
under extensions in modA. Now let 0 → L → M → N → 0 be a short exact
sequence in modA with terms in U. If M ∈ T, then N ∈ T since T is closed under
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factor modules. Thus N ∈ T ∩ U = T ∩ U⊥. This shows that T ∩ U⊥ is a torsion
class in U.

(b) Since T is closed under factor modules in modA we have that fT ⊆ T∩U⊥,
hence we only need to show the reverse inclusion. Let M ∈ T ∩ U⊥. In particular
we have that M ∈ U⊥, hence fM = M and the claim follows.

(c) Since Fac(fP (T)) ⊆ T, we have that Fac(fP (T)) ∩ U⊥ ⊆ T ∩ U⊥. Now we
show the opposite inclusion. Let M be in T ∩ U⊥, then there is an epimorphism
f : X → M with X in add(P (T)). Since there are no non-zero morphisms from
FacU to U⊥ we have a commutative diagram

0 tX X fX 0

M

0
f

Hence M is in Fac(fP (T))∩U⊥ and we have the equality T∩U⊥ = Fac(fP (T))∩U⊥.
(d) By Proposition 3.3.14 we have that fP (T) is the Ext-progenerator of T ∩

U⊥ ⊆ U, and since F : U→ modC is an exact equivalence, see Theorem 3.3.8, we
have that F (fP (T)) is the Ext-progenerator of F (T ∩ U⊥). Then by Proposition
3.2.2 we have that F (T ∩ U⊥) = Fac(F (fP (T))) is functorially finite in modC. �

Now we consider the converse map G 7→ (FacU)∗G. We start with the following
easy observation.

Lemma 3.3.23. Let G be in torsU and M be an A-module. Then M is in
(FacU)∗G if and only if fM belongs to G. In particular, if M is in (FacU)∗G then
0 → tM → M → fM → 0 is the unique way to express M as an extension of a
module from FacU by a module from G.

Proof. Both claims follow immediately from the uniqueness of the canonical
sequence. �

The following lemma gives canonical sequences in U.

Lemma 3.3.24. Let G be a torsion class in U. Then there exist functors tG :
U → G and fG : U → G⊥ ∩ U and natural transformations tG → 1U → fG such that
the sequence

0→ tGM →M → fGM → 0

is exact in modA for each M in U.

Proof. Since (FG, F (G⊥ ∩ U)) is a torsion pair in modC by Theorem 3.3.8,
we have associated canonical sequences in modC. Applying the functor G, we get
the desired functors. �

The following proposition shows that the map G 7→ (FacU) ∗ G in Theorem
3.3.13 is well-defined.

Proposition 3.3.25. Let G be in torsU. Then (FacU) ∗ G is a torsion class in
modA such that FacU ⊆ (FacU) ∗ G ⊆ ⊥(τU).

Proof. First, it is clear that FacU ⊆ (FacU) ∗ G ⊆ ⊥(τU) since G and FacU
are subcategories of ⊥(τU) and ⊥(τU) is closed under extensions.

Now, let us show that (FacU) ∗ G is closed under factor modules. Let M be in
(FacU) ∗ G, so by Lemma 3.3.23 we have that fM is in G, and let f : M → N be
an epimorphism. We have a commutative diagram
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0 tM M fM 0

0 tN N fN 0

0 0

tf f ff

with exact rows and columns. Since fM ∈ G ⊆ ⊥(τU), we have that fN ∈ ⊥(τU).
Thus fN ∈ ⊥(τU) ∩ U⊥ = U. Since fM belong to G which is a torsion class in U,
we have that fN ∈ G. Finally, since tN ∈ FacU we have that N ∈ (FacU) ∗G. The
claim follows.

To show that (FacU) ∗G is closed under extensions it is sufficient to show that
G ∗ FacU ⊆ (FacU) ∗ G since this implies

((FacU) ∗ G) ∗ ((FacU) ∗ G) =(FacU) ∗ (G ∗ (FacU)) ∗ G
⊆(FacU) ∗ (FacU) ∗ G ∗ G = (FacU) ∗ G

by the associativity of the operation ∗. For this, let 0 → N → M → L → 0
be a short exact sequence with N in G and L in FacU . We only have to show
that fM ∈ G, or equivalently that fG(fM) = 0. Since N ∈ G and fG(fM) ∈ G⊥

we have HomA(N, fG(fM)) = 0. Also, HomA(L, fG(fM)) = 0 since L ∈ FacU and
fG(fM) ∈ U⊥. Thus we have HomA(M, fG(fM)) = 0. But fG(fM) is a factor module
of M so we have that fG(fM) = 0. Thus fM = tG(fM) belongs to G. �

Now we give the proof Theorem 3.3.12.

Proof of Theorem 3.3.12. By Corollary 3.3.11 we have that the functors
F and G induce mutually inverse bijections between torsU and torsC. It follows
from Proposition 3.3.22(a) that the correspondence T 7→ T∩U⊥ gives a well defined
map {

T ∈ torsA | FacU ⊆ T ⊆ ⊥(τU)
}
−→ torsU.

On the other hand, it follows from Proposition 3.3.25 that the association G 7→
(FacU) ∗ G gives a well defined map

torsU −→
{
T ∈ torsA | FacU ⊆ T ⊆ ⊥(τU)

}
.

It remains to show that the maps

T 7→ T ∩ U⊥ and G 7→ FacU ∗ G
are inverse of each other. Let T be a torsion class in modA such that FacU ⊆ T ⊆
⊥(τU). Since T is closed under extensions, we have that (FacU) ∗ (T ∩ U⊥) ⊆ T.
Thus we only need to show the opposite inclusion. Let M be in T, then we have
an exact sequence

0→ tM →M → fM → 0

with tM ∈ FacU and fM in T ∩ U⊥ since T is closed under factor modules. Thus
M ∈ (FacU) ∗ (T ∩ U⊥) holds and the claim follows.

On the other hand, let G be a torsion class in U. It is clear that G ⊆ ((FacU) ∗
G) ∩ U⊥, so we only need to show the opposite inclusion. But if M is in ((FacU) ∗
G)∩U⊥, then M ∈ U⊥ implies that M ∼= fM . Moreover, by Lemma 3.3.23 we have
that M ∼= fM belongs to G. This finishes the proof of the theorem. �

Now we begin to prove Theorem 3.3.13. For this we need the following technical
result:

Proposition 3.3.26. [60, Prop 5.33] Let X and Y be covariantly finite subcat-
egories of modA. Then X ∗ Y is also covariantly finite in modA.
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We also need the following observation.

Lemma 3.3.27. U is covariantly finite in ⊥(τU).

Proof. Let M be in ⊥(τU) and consider the canonical sequence

0→ tM →M
f−→ fM → 0.

Then fM is in U by (3.3.9) and clearly f is a left U-approximation (mind that
U ⊆ U⊥). Thus U is covariantly finite in ⊥(τU) as required. �

The following proposition shows that the map G 7→ (FacU) ∗ G in Theorem
3.3.13 preserves functorial finiteness, and thus is well defined.

Proposition 3.3.28. Let G be in f- torsU. Then (FacU) ∗ G is a functorially
finite torsion class in modA such that FacU ⊆ (FacU) ∗ G ⊆ ⊥(τU).

Proof. By Proposition 3.3.25, we only need to show that (FacU)∗G is covari-
antly finite in modA. Since FacU is covariantly finite in modA, see Proposition
3.2.2(b), by Proposition 3.3.26 it is enough to show that G is covariantly finite in
modA. By Lemma 3.3.27 we have that U is covariantly finite in ⊥(τU). Since G

is covariantly finite in U and ⊥(τU) is covariantly finite in modA, see Proposition
3.2.2(b), we have that G is covariantly finite in modA. �

We are ready to give the proof of Theorem 3.3.13.

Proof of Theorem 3.3.13. We only need to show that the bijections in The-
orem 3.3.12 preserve functorial finiteness. But this follows immediately from Propo-
sition 3.3.22(d) and Proposition 3.3.28. The theorem follows. �

3.4. Compatibility with other types of reduction

Let A be a finite dimensional algebra. Then support τ -tilting A-modules
are in bijective correspondence with the so-called two-term silting complexes in
Kb(projA), see [1, Thm. 3.2].

On the other hand, if A is a 2-Calabi-Yau-tilted algebra from a 2-Calabi-Yau
category C, then there is a bijection between sτ - tiltA and the set of isomorphism
classes of basic cluster-tilting objects in C, see [1, Thm. 4.1].

Reduction techniques were established (in greater generality) in [62, Thm. 4.9]
for cluster-tilting objects and for silting objects in [3, Thm. 2.37] for a special
case and in [61] for the general case. The aim of this section is to show that these
reductions are compatible with τ -tilting reduction as established in Section 3.3.

Given two subcategories X and Y of a triangulated category T, we write X ∗ Y
for the full subcategory of T consisting of all objects Z ∈ T such that there exists
a triangle

X → Z → Y → X[1]

with X ∈ X and Y ∈ Y. For objects X and Y in T we define X ∗ Y := (addX) ∗
(addY ).

3.4.1. Silting reduction. Let T be a Krull-Schmidt triangulated category
and S an object in T. Following [3, Def. 2.1], we say that M is a presilting object
in T if

HomT(M,M [i]) = 0 for all i > 0.

We call S a silting object if moreover thick(S) = T, where thick(S) is the smallest
triangulated subcategory of T which contains S and is closed under direct summands
and isomorphisms. We denote the set of isomorphism classes of all basic silting
objects in T by siltT.
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Let M,N ∈ siltT. We write N 6M if and only if HomT(M,N [i]) = 0 for each
i > 0. Then 6 is a partial order in siltT, see [3, Thm. 2.11].

Setting 3.4.1. We fix a k-linear, Hom-finite, Krull-Schmidt triangulated cat-
egory T with a silting object S, and let

A = AS := EndT(S).

The subset 2S- silt T of siltT given by

2S- silt T := {M ∈ siltT |M ∈ S ∗ (S[1])}
plays an important role in the sequel. The notation 2S- silt T is justified by the
following remark.

Remark 3.4.2. Let A be a finite dimensional algebra and T = Kb(projA).
Then A is a silting object in T. In this case a silting complex M belongs to
2A- silt T if and only if M is isomorphic to a complex concentrated in degrees −1
and 0, i.e. if M is a two-term silting complex.

Following [3, Sec. 2], we consider the subcategory of T given by

T60 := {M ∈ T | HomT(S,M [i]) = 0 for all i > 0} .
We need the following generating properties of silting objects. Recall that a pair
(X,Y) of subcategories of T is called a torsion pair in T if HomT(X,Y) = 0 and
T = X ∗ Y.

Proposition 3.4.3. [3, Prop. 2.23] With the hypotheses of Setting 3.4.1, we
have the following:

T =
⋃
`>0

S[−`] ∗ S[1− `] ∗ · · · ∗ S[`],

T60 =
⋃
`>0

S ∗ S[1] ∗ · · · ∗ S[`],

⊥(T60) =
⋃
`>0

S[−`] ∗ S[1− `] ∗ · · · ∗ S[−1].

Moreover, the pair (⊥(T60),T60) is a torsion pair in T.

The following proposition describes 2S- silt T in terms of the partial order in
siltT. It is shown in [2, Prop. 2.9] in the case when T = Kb(projA) and S = A.

Proposition 3.4.4. Let M be an object of T. Then, M ∈ S ∗ S[1] if and only
if S[1] 6M 6 S.

Proof. Before starting the proof, let us make the following trivial observation:
Given two subcategories X and Y of T, for any object M of T, we have that HomT(X∗
Y,M) = 0 if and only if HomT(X,M) = 0 and HomT(Y,M) = 0.

Now note that we have M 6 S if and only if HomT(S[−i],M) = 0 for each
i > 0, or equivalently by the above observation, HomT(S[−`] ∗ · · · ∗ S[−1],M) = 0
for each ` > 0. Thus, by Proposition 3.4.3 we have that

(3.4.1) M 6 S if and only if HomT(⊥(T60),M) = 0

or equivalently, since (⊥(T60),T60) is a torsion pair by Proposition 3.4.3, M ∈
T60 = (S ∗ S[1]) ∗ T60[2]. By a similar argument, we have that

(3.4.2) S[1] 6M if and only if HomT(M,T60[2]) = 0.

Then it follows from (3.4.1) and (3.4.2) that S[1] 6 M 6 S if and only if M ∈
S ∗ S[1]. �

We need the following result:
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Proposition 3.4.5. [62, Prop. 6.2(3)] The functor

(3.4.3) (-)
¯

= HomT(S,−) : S ∗ S[1]→ modA

induces an equivalence of categories

(3.4.4) (-)
¯

:
S ∗ S[1]

[S[1]]
−→ modA.

where [S[1]] is the ideal of T consisting of morphisms which factor through addS[1].

Proof. Take X = addS, Y = addS[1] and Z = addS in [62, Prop. 6.2(3)]. �

In view of Proposition 3.4.5, for every M,N ∈ S ∗ S[1] we have a natural
isomorphism

HomT(M,N)

[S[1]](M,N)
∼= HomA(M

¯
,N

¯
).

Setting 3.4.6. From now on, we fix a presilting object U in T contained in
S ∗ S[1]. For simplicity, we assume that U has no non-zero direct summands in
addS[1]. We are interested in the subset of 2S- silt T given by

2S- siltU T := {M ∈ 2S- silt T | U ∈ addS} .

The following theorem is similar to [1, Thm. 3.2].

Theorem 3.4.7. [58, Thm. 4.5] With the hypotheses of Setting 3.4.1, the
functor (3.4.3) induces an order-preserving bijection

(-)
¯

: 2S- silt T −→ sτ - tiltA

which induces a bijection

(-)
¯

: 2S- siltU T −→ sτ - tiltU
¯
A.

Silting reduction was introduced in [3, Thm. 2.37] in a special case and [61] in
the general case. We are interested in the following particular situation:

Theorem 3.4.8. [61] Let U be a presilting object in T contained in S ∗ S[1].
Then the canonical functor

(3.4.5) T −→ U :=
T

thick(U)

induces an order-preserving bijection

red : {M ∈ siltT | U ∈ addM} −→ siltU.

We need to consider the following analog of Bongartz completion for presilting
objects in S ∗ S[1], cf. [30, Sec. 5] and [85, Prop. 6.1].

Definition-Proposition 3.4.9. [2, Prop. 2.16] Let f : U ′ → S[1] be a
minimal right (addU)-approximation of S[1] in T and consider a triangle

(3.4.6) S → XU → U ′
f−→ S[1].

Then TU := XU ⊕ U is in 2S- silt T and moreover TU has no non-zero direct sum-
mands in addS[1]. We call TU the Bongartz completion of U in S ∗ S[1].

Proof. It is shown in [2, Prop. 2.16] that TU is a silting object in T. Moreover,
since HomT(S, S[1]) = 0 we have

TU ∈ S ∗ (S ∗ S[1]) = (S ∗ S) ∗ S[1] = S ∗ S[1],

hence TU ∈ 2S- silt T. Finally, since HomA(S, S[1]) = 0 and U has no non-zero
direct summands in addS[1], it follow from the triangle (3.4.6) that TU has no
non-zero direct summands in addS[1]. �
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We recall that by Proposition 3.3.2 we have that sτ - tiltU
¯
A equals the interval{

M ∈ sτ - tiltA | P (FacU
¯

) 6M 6 TU
¯

}
⊆ sτ - tiltA;

hence TU
¯

is the unique maximal element in sτ - tiltU
¯
A. The following proposition

relates the Bongartz completion TU of U in S ∗ S[1] with the Bongartz completion
TU

¯
of U

¯
in modA.

Proposition 3.4.10. (i) TU is the unique maximal element in 2S- siltU T.
(ii) TU ∼= TU .

Proof. First, note that (b) follows easily from part (a). Indeed, since TU has
no non-zero direct summands in addS[1], see Definition-Proposition 3.4.9, we have
that |A| = |S| = |TU | = |TU |. By Theorem 3.4.7 we have that TU is a τ -tilting
A-module. Since P (⊥(τU)) is the unique maximal element in sτ - tiltU A, to show

part (b), i.e. that TU ∼= P (⊥(τU)), we only need to show that TU is the unique
maximal element in 2S- siltU T.

For this, let M ∈ 2S- siltU T and fix i > 0. Applying the functor HomT(−,M [i])
to (3.4.6) we obtain an exact sequence

HomT(U ′,M [i])→ HomT(XU ,M [i])→ HomT(S,M [i]).

Now, since M is silting and U ′ ∈ addM we have that HomT(U ′,M [i]) = 0 for
each i > 0. On the other hand, since M ∈ S ∗ S[1], by Proposition 3.4.4 we have
HomT(S,M [i]) = 0 for each i > 0. Thus he have HomT(XU ,M [i]) = 0 for each
i > 0. Since TU = XU ⊕ U we have HomT(TU ,M [i]) = 0 for each i > 0, hence
M 6 TU . The claim follows. �

From this we can deduce the following result:

Proposition 3.4.11. Let TU ∈ 2S- silt T be the Bongartz completion of U in
S ∗ S[1]. Then TU ∼= S in U and the canonical functor (3.4.5) induces an order
preserving map

red : 2S- siltU T −→ 2TU
- silt U.

Proof. By (3.4.6) we have that S ∼= TU in U = ⊥(τU) ∩ U⊥, hence the
canonical functor T → U restricts to a functor S ∗ S[1] → TU ∗ TU [1] ⊂ U. The
claim now follows from Theorem 3.4.8. �

We are ready to state the main theorem of this section. We keep the notation
of the above discussion.

Theorem 3.4.12. With the hypotheses of Settings 3.4.1 and 3.4.6, we have the
following:

(i) The algebras EndU(TU ) and C = EndA(TU )/〈eU 〉 are isomorphic, where

eU is the idempotent corresponding to the projective EndA(TU )-module

HomA(TU , U).
(ii) We have a commutative diagram

2S- siltU T sτ - tiltU A

2TU
- silt U sτ - tiltC

HomT(S,−)

red red

HomU(TU ,−)

in which each arrow is a bijection. The vertical maps are given in Propo-
sition 3.4.11 and Theorem 3.3.15 respectively.
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We begin by proving part (a) of Theorem 3.4.12. For this we need the following
technical result.

Let V be the subcategory of T given by

V := {M ∈ T | HomT(M,U [i]) = 0 and HomT(U,M [i]) = 0 for each i > 0} .
Note that if M is an object in siltU T then M ∈ V. The following theorem allows
us to realize U as a subfactor category of T.

Theorem 3.4.13. [61] The composition of canonical functors V → T → U

induces an equivalence
V

[U ]
∼= U

of additive categories. In particular, for every M in V there is a natural isomor-
phism

HomT(TU ,M)

[U ](TU ,M)
∼= HomU(TU ,M)

Now we can prove the following lemma:

Lemma 3.4.14. For each M in V we have a functorial isomorphism

HomA(TU ,M)

[U ](TU ,M)
∼= HomU(TU ,M).

Proof. By (3.4.4) we have the following functorial isomorphism

HomA(TU ,M)

[U ](TU ,M)
∼=

HomC(TU ,M)
[S[1]](TU ,M)]

[U ](TU ,M)+[S[1]](TU ,M)
[S[1]](TU ,M)

.

We claim that [S[1]](TU ,M) ⊆ [U ](TU ,M), or equivalently

[S[1]](XU ,M) ⊆ [U ](TU ,M)

since TU = X ⊕ U . Apply the contravariant functor HomT(−, S[1]) to the triangle
(3.4.6) to obtain an exact sequence

HomT(U ′, S[1])→ HomT(XU , S[1])→ HomT(S, S[1]) = 0.

Hence every morphism XU → S[1] factors through U ′, and we have [S[1]](XU ,M) ⊆
[U ](XU ,M). Thus by Theorem 3.4.13 we have isomorphisms

HomA(TU ,M)

[U ](TU ,M)
∼=

HomC(TU ,M)

[U ](TU ,M)
∼= HomU(TU ,M),

which shows the assertion. �

Now part (a) of Theorem 3.4.12 follows by putting M = TU in Lemma 3.4.14.
In the remainder we prove Theorem 3.4.12(b).

For X ∈ modA we denote by 0→ tX → X → fX → 0 the canonical sequence

of X with respect to the torsion pair (FacU,U
⊥

) in modA.

Proposition 3.4.15. For each M in V there is an isomorphism of C-modules

HomA(TU , fM) ∼= HomU(TU ,M)

Proof. By Lemma 3.4.14 it is sufficient to show that

HomA(TU ,M)

[U ](TU ,M)
∼= HomA(TU , fM).

Apply the functor HomA(TU ,−) to the canonical sequence

0→ tM
i−→M → fM → 0
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to obtain an exact sequence

0→ HomA(TU , tM)
i◦−−−→ HomA(TU ,M)→ HomA(TU , fM)→ Ext1A(TU , tM) = 0,

since TU is Ext-projective in ⊥(τU) by Proposition 3.4.10 and tM is in FacU ⊆
⊥(τU). Thus

HomA(TU , fM) ∼=
HomA(TU ,M)

i(HomA(TU , tM))
.

Thus we only have to show the equality HomA(TU , tM) = i([U ](TU , tM)). First,
HomA(TU , tM) ⊆ i([U ](TU , tM)) since i is a right (FacU)-approximation of M .
Next we show the reverse inclusion. It is enough to show that every map TU → tM
factors through addU . Let r : U ′ → tM be a right (addU)-approximation. Since
tM ∈ FacU we have a short exact sequence

0→ K → U ′
r−→ tM → 0.

Moreover, by Lemma 3.2.7, we have K ∈ ⊥(τU). Apply the functor HomA(TU ,−)
to the above sequence to obtain an exact sequence

HomA(TU , U ′)→ HomA(TU , tM)→ Ext1A(TU ,K) = 0.

Thus the assertion follows. �

We are ready to prove Theorem 3.4.12(b).

Proof of Theorem 3.4.12(b). Let M ∈ 2S- siltU T. Then M ∈ V. We
only need to show that HomU(TU ,M) coincides with the τ -tilting reduction of
M ∈ sτ - tiltA with respect to U , which is given by HomA(TU , fM), see Theorem
3.3.15. This is shown in Proposition 3.4.15. �

Corollary 3.4.16. The map

red : {M ∈ 2S- silt T | U ∈ addM} −→ 2TU
- silt U.

is bijective.

3.4.2. Calabi-Yau reduction. Let C be a Krull-Schmidt 2-Calabi-Yau tri-
angulated category. Thus C is k-linear, Hom-finite and there is a bifunctorial iso-
morphism

HomC(M,N) ∼= DHomC(N,M [2])

for every M,N ∈ C, where D = Homk(−, k) is the usual k-duality. Recall that an
object T in C is called cluster-tilting if

addT = {X ∈ C | HomC(X,T [1]) = 0} .
We denote by c- tiltC the set of isomorphism classes of all basic cluster-tilting objects
in C.

Setting 3.4.17. We fix a Krull-Schmidt 2-Calabi-Yau triangulated category C

with a cluster-tilting object T . Also, we let

A = EndC(T ).

The algebra A is said to be 2-Calabi-Yau tilted.

Note that the functor

(3.4.7) (−) = HomC(T,−) : C −→ modA

induces an equivalence of categories

(3.4.8) (−) :
C

[T [1]]
−→ modA
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where [T [1]] is the ideal of C consisting of morphisms which factor through addT [1],
[69, Prop. 2(c)]. Thus for every M,N ∈ C we have a natural isomorphism

HomA(M,N) ∼=
HomC(M,N)

[T [1]](M,N)
.

We have the following result:

Theorem 3.4.18. [1, Thm. 4.1] With the hypotheses of Setting 3.4.17, the
functor (3.4.7) sends rigid object in C to τ -rigid objects in modA, and induces a
bijection

(−) : c- tiltC −→ sτ - tiltA

which induces a bijection

(−) : c- tiltU C −→ sτ - tiltU A.

Setting 3.4.19. From now on we fix a rigid object U in C, i.e. HomC(U,U [1]) =
0. To simplify the exposition, we assume that U has no non-zero direct summands
in addT [1] although our results remain true in this case. We are interested in the
subset of c- tiltC given by

c- tiltU C := {M ∈ c- tiltC | U ∈ addM} .

Calabi-Yau reduction was introduced in [62, Thm. 4.9]. We are interested in
the following particular case:

Theorem 3.4.20. [62, Sec. 4] The category U has the structure of a 2-Calabi-
Yau triangulated category and the canonical functor

⊥(U [1]) −→ U :=
⊥(U [1])

[U ]

induces a bijection

red : c- tiltU C −→ c- tiltU.

We need to consider the following analog of Bongartz completion for rigid
objects in C.

Definition-Proposition 3.4.21. Let f : U ′ → T [1] be a minimal right
(addU)-approximation of T [1] in C and consider a triangle

(3.4.9) T
h−→ XU

g−→ U ′
f−→ T [1].

Then TU := XU ⊕U is cluster-tilting in C and moreover TU has no non-zero direct
summands in addT [1]. We call TU the Bongartz completion of U in C with respect
to T .

Proof. (i) First we show that TU is rigid. Our argument is a triangulated
version of the proof of [42, Prop. 5.1]. We give the proof for the convenience of the
reader.

Apply the functor HomC(U,−) to the triangle (3.4.9) to obtain an exact se-
quence

HomC(U,U ′)
f◦−−−−→ HomC(U, T [1])→ HomC(U,XU [1])→ HomC(U,U ′[1]) = 0.

But f : U ′ → T [1] is a right (addU)-approximation of T [1], thus f ◦ − is an
epimorphism and we have HomC(U,XU [1]) = 0 and, by the 2-Calabi-Yau property,
HomC(XU , U [1]) = 0. It remains to show that HomC(XU , XU [1]) = 0. For this
let a : XU → XU [1] be an arbitrary morphism. Since HomC(XU , U

′[1]) = 0 there
exists a morphism h : XU → T [1] such that the following diagram commutes:



3.4. COMPATIBILITY WITH OTHER TYPES OF REDUCTION 107

T XU U ′ T [1]

U ′ T [1] XU [1] U ′[1]

g

a
h

h[1]

Now, since HomC(T, T [1]) = 0 there exist a morphism c : U ′ → T [1] such that
h = cg. Then we have

h[1](cg) = (h[1] ◦ c)g = 0,

since (h[1] ◦ c) ∈ HomC(U ′, XU [1]) = 0. Hence HomC(XU , XU [1]) = 0 as required.
Thus we have shown that TU is rigid.

(ii) Now we show that TU is cluster-tilting in C. By the bijection in Theorem
3.4.18, we only need to show that TU is a support τ -tilting A-module. Since TU is
rigid, we have that TU is τ -rigid (see Theorem 3.4.18). Apply the functor (3.4.7)
to the triangle (3.4.9) to obtain an exact sequence

A
ḡ−→ XU → U ′ → 0.

We claim that g is a left (addTU )-approximation of A. In fact, since we have
HomC(U [−1], TU ) = 0, for every morphism h : T → TU in C we obtain a commuta-
tive diagram

U [−1] T XU U

TU

0

g

h

Thus g is a left (addTU )-approximation of T and then by the equivalence (3.4.8)
we have that ḡ is a left (addTU )-approximation of A. Then by Proposition 3.2.15
we have that TU is a support τ -tilting A-module.

Finally, since HomA(T, T [1]) = 0 and U has no non-zero direct summands in
addT [1], it follow from the triangle (3.4.9) that TU has no non-zero direct summands
in addT [1]. �

The following proposition relates the Bongartz completion TU of U in C with
respect to T with the Bongartz completion TU of U in modA. Recall that TU is
the unique maximal element in sτ - tiltU A.

Proposition 3.4.22. We have TU ∼= TU .

Proof. By Proposition 3.3.2, P (⊥(τU)) is the unique maximal element in
sτ - tiltU A. Hence to show that TU ∼= P (⊥(τU)) we only need to show that if M is a

support τ -tilting A-module such that U ∈ addM , then M ∈ FacTU . By definition,
this is equivalent to show that there exists an exact sequence of A-modules

HomC(T,X)→ HomC(T,M)→ 0

with X ∈ addTU .
Let f : T ′ → M be a right (addT )-approximation of M . By the definition of

XU , there exist a triangle

T ′
g−→ X → U ′′ → T [1]
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whereX ∈ addXU and U ′′ ∈ addU . Since HomC(U ′[−1],M) = DHomC(M,U ′[1]) =
0 by the 2-Calabi-Yau property of C, the following diagram commutes:

U ′′[−1] T ′ X U ′′

M

0 f

g

h

It follows that there exist a morphism h : X →M such that f = hg. Now it is easy
to see that the sequence

HomC(T,X)
h·?−−→ HomC(T,M)→ 0

is exact. Indeed, let u : T → M . since f is a right (addT )-approximation of M ,
there exist a morphism v : T → T ′ such that u = fv. It follows that

u = fv = (hg)v = h(gv).

This shows that u factors through h, which is what we needed to show. �

We are ready to state the main theorem of this section. We keep the notation
of the above discussion.

Theorem 3.4.23. With the hypotheses of Settings 3.4.17 and 3.4.19, we have
the following:

(i) The algebras EndU(TU ) and C = EndA(TU )/〈eU 〉 are isomorphic, where

eU is the idempotent corresponding to the projective EndA(TU )-module

HomA(TU , U).
(ii) We have a commutative diagram

c- tiltU C sτ - tiltU A

c- tiltU sτ - tiltC

HomC(T,−)

red red

HomU(TU ,−)

in which each arrow is a bijection. The vertical maps are given in Theo-
rem 3.4.20 and Theorem 3.3.15.

We begin with the proof of part (a) of Theorem 3.4.23.

Lemma 3.4.24. For each M in ⊥(U [1]) we have an isomorphism of vector spaces

HomA(TU ,M)

[U ](TU ,M)
∼= HomU(TU ,M).

Proof. By the equivalence (3.4.8), we have the following isomorphism

HomA(TU ,M)

[U ](TU ,M)
∼=

HomC(TU ,M)
[T [1]](TU ,M)]

[U ](TU ,M)+[T [1]](TU ,M)
[S[1]](TU ,M)

.

We claim that [T [1]](TU ,M) ⊆ [U ](TU ,M), or equivalently [T [1]](XU ,M) ⊆ [U ](XU ,M)
since TU = XU ⊕U . Apply the contravariant functor HomC(−, T [1]) to the triangle
(3.4.9) to obtain an exact sequence

HomC(U ′, T [1])→ HomC(XU , T [1])→ HomC(T, T [1]) = 0.

Hence every morphismXU → T [1] factors through U ′, and we have [T [1]](XU ,M) ⊆
[U ](XU ,M). Thus we have the required isomorphisms

HomA(TU ,M)

[U ](TU ,M)
∼=

HomC(TU ,M)

[U ](TU ,M)
∼= HomU(TU ,M),
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so the assertion follows. �

Now part (a) of Theorem 3.4.23 follows by putting M = TU in Lemma 3.4.24.
In the remainder we prove Theorem 3.4.23(b).

For X ∈ modA we denote by 0→ tX → X → fX → 0 the canonical sequence

of X with respect to the torsion pair (FacU,U
⊥

) in modA.

Proposition 3.4.25. For each M in ⊥(U [1]) there is an isomorphism of C-
modules

HomU(TU ,M) ∼= HomA(TU , fM).

Proof. By Lemma 3.4.24 it is enough to show that

HomA(TU ,M)

[U ](TU ,M)
∼= HomA(TU , fM).

We can proceed exactly as in the proof of Proposition 3.4.15. �

We are ready to give the prove Theorem 3.4.23(b).

Proof of Theorem 3.4.23(b). Let M ∈ c- tiltC be such that U ∈ addM .
Since τ -tilting reduction of M is given by F (fM) = HomA(TU , fM), see Theorem
3.3.15, we only need to show that

HomU(TU ,M) = HomA(TU , fM).

But this is precisely the statement of Proposition 3.4.25 since TU ∼= TU by Propo-
sition 3.4.22. �

We conclude this section with an example illustrating the bijections in Theorem
3.4.23.

Example 3.4.26. Let C be the cluster category of type D4. Recall that C is a
2-Calabi-Yau triangulated category, see [27]. The Auslander-Reiten quiver of C is
the following, where the dashed edges are to be identified to form a cylinder, see
[82, 6.4]:

C : •

•

T4

U [1]

•

T3

•

U

•

•

T2

•

•

T1

•

•

•

T4

U [1]

We have chosen a cluster-tilting object T = T1⊕T2⊕T3⊕T4 and a rigid indecom-
posable object U in C. The Bongartz completion of U with respect to T is given by
TU = U⊕T2⊕T3⊕T4, and is indicated with squares. Also, the ten indecomposable
objects of the subcategory ⊥(U [1]) have been encircled.

On the other hand, let A = EndC(T ) and (−) = HomC(T,−). Then A is
isomorphic to algebra given by the quiver

Q′ =

2 1

3 4

x2

x1

x3

x4

with relations x1x2x3 = 0, x2x3x4 = 0, x3x4x1 = 0 and x4x1x2 = 0. Thus A
is isomorphic to the Jacobian algebra of the quiver with potential (Q′, x1x2x3x4).
The Auslander-Reiten quiver of modA is the following:
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modA : 4
1

4
1
2

1

3
4

3
4
1

4

2
3

2
3
4

3

1
2

1
2
3

2

4
1
2

1

We have indicated the indecomposable direct summands of the Bongartz comple-
tion TU of U = S4, with rectangles. The six indecomposable objects of the category
⊥(τU) ∩ U⊥ are encircled. Finally, let C = EndA(TU )/〈eU 〉. Not that C is isomor-
phic by the algebra by the quiver

Q = 2

1

3

x1

x2

x3

with relations x1x2 = 0, x2x3 = 0 and x3x1 = 0, see Example 3.2.20. Thus C is
isomorphic to the Jacobian algebra of the quiver with potential (Q, x1x2x3), see [31]

for definitions. By Theorem 3.3.8 we have that ⊥(τU)∩U⊥ is equivalent to modC.
The Auslander-Reiten quiver of modC is the following, where each C-module is
represented by its radical filtration:

modC : 1

3
1

3

2
3

2

1
2

1

On the other hand, let U = ⊥(U [1])/[U ]. The Auslander-Reiten quiver of U

is the following, note that the dashed edges are to be identified to form a Möbius
strip:

U : •

•

T4

•

T3

•

•

•

T2

T4

•
Observe that U is equivalent to the cluster category of type A3. Moreover, by
Thorem 3.4.23(a) we have an isomorphism between EndU(TU ) and C. By Theorem
3.4.23(b) we have a commutative diagram

c- tiltU C sτ - tiltU A

c- tiltU sτ - tiltC

HomC(T,−)

red red

HomU(TU ,−)
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[26] T. Brüstle and D. Yang. Ordered exchange graphs. arXiv:1302.6045, Feb. 2013.
[27] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov. Tilting theory and cluster

combinatorics. Adv. Math., 204(2):572–618, Aug. 2006.
[28] A. B. Buan, R. Marsh, and I. Reiten. Cluster-tilted algebras. Trans. Amer. Math. Soc.,

359(1):323–332, 2007.

[29] T. Bühler. Exact categories. Expo. Math., 28(1):1–69, 2010.
[30] H. Derksen and J. Fei. General presentations of algebras. arXiv:0911.4913, Nov. 2009.

[31] H. Derksen, J. Weyman, and A. Zelevinsky. Quivers with potentials and their representations

i: Mutations. Selecta Math., 14(1):59–119, Oct. 2008.
[32] H. Derksen, J. Weyman, and A. Zelevinsky. Quivers with potentials and their representations

II: applications to cluster algebras. J. Amer. Math. Soc., 23(03):749–790, Feb. 2010.

[33] S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. J. Amer. Math. Soc.,
15(02):497–529, Dec. 2001.

[34] S. Fomin and A. Zelevinsky. Cluster algebras IV: coefficients. Compos. Math., 143(01):112–

164, 2007.
[35] P. Gabriel. Unzerlegbare darstellungen i. Manuscripta Math, 6(1):71–103, Mar. 1972.

[36] W. Geigle and H. Lenzing. A class of weighted projective curves arising in representation
theory of finite dimensional algebras. In G.-M. Greuel and G. Trautmann, editors, Singu-

larities, Representation of Algebras, and Vector Bundles, number 1273 in Lecture Notes in

Mathematics, pages 265–297. Springer Berlin Heidelberg, Jan. 1987.
[37] W. Geigle and H. Lenzing. Perpendicular categories with applications to representations and

sheaves. J. Algebra, 144(2):273–343, Dec. 1991.
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[83] A. Skowroński. Selfinjective algebras of polynomial growth. Math. Ann., 285(2):177–199, Oct.
1989.
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