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The ubiquitous Epstein–Barr virus (EBV) infects not only B cells but also T cells

and natural killer (NK) cells and is associated with various lymphoid malignancies.

Recent studies have reported that histone deacetylase (HDAC) inhibitors exert

anticancer effects against various tumor cells. In the present study, we have eval-

uated both the in vitro and in vivo effects of suberoylanilide hydroxamic acid

(SAHA), an HDAC inhibitor, on EBV-positive and EBV-negative T and NK lym-

phoma cells. Several EBV-positive and EBV-negative T and NK cell lines were trea-

ted with various concentrations of SAHA. SAHA suppressed the proliferation of T

and NK cell lines, although no significant difference was observed between EBV-

positive and EBV-negative cell lines. SAHA induced apoptosis and ⁄or cell cycle

arrest in several T and NK cell lines. In addition, SAHA increased the expression

of EBV-lytic genes and decreased the expression of EBV-latent genes. Next, EBV-

positive NK cell lymphoma cells were subcutaneously inoculated into severely

immunodeficient NOD ⁄ Shi-scid ⁄ IL-2Rcnull mice, and then SAHA was administered

intraperitoneally. SAHA inhibited tumor progression and metastasis in the murine

xenograft model. SAHA displayed a marked suppressive effect against EBV-asso-

ciated T and NK cell lymphomas through either induction of apoptosis or cell

cycle arrest, and may represent an alternative treatment option.

M ore than 90% of the world population is infected by the
Epstein–Barr virus (EBV), which is an oncogenic

c-herpesvirus. Not only B cells but also T cells and natural
killer (NK) cells can be infected by EBV, a condition that is
associated with various lymphoid malignancies, including
Burkitt lymphoma, Hodgkin lymphoma, post-transplant lym-
phoproliferative disorders, extranodal NK ⁄T cell lymphoma,
hydroa vacciniforme-like lymphoma, aggressive NK cell leuke-
mia and chronic active EBV infection.(1,2) The ability of EBV
to establish latent infection and induction of the proliferation
of infected cells make it the significant causative agent in the
pathogenesis of many of these malignancies. Some of these
EBV-associated T and NK cell malignancies are refractory to
conventional chemotherapies and have poor prognoses.(3) For
the treatment and prophylaxis of B cell lymphoma and lym-
phoproliferative disorders, rituximab, a humanized monoclonal
antibody (Ab) against CD20, targets B cell-specific surface
antigens and has been used with marked success.(4,5) However,
novel approaches to molecular targeted therapy are required to
effectively treat T and NK cell malignancies.
Histone deacetylase (HDAC) inhibitors induce acetylation of

histones, thus affecting transcription, and selectively induce
tumor-suppressive genes. In various cancer cell types, HDAC
inhibitors induce differentiation, apoptosis and cell cycle

arrest.(6,7) Moreover, with notable tumor specificity, HDAC
inhibitors have potent anticancer activities, and some exhibit
therapeutic potential through their targeting of epigenetic regu-
lation. Previously, we showed that an HDAC inhibitor, valproic
acid, induced apoptosis and cell cycle arrest in EBV-positive T
and NK lymphoma cells.(8) However, the suppressive effect of
valproic acid in cell lines was modest and was not affected by
the presence of EBV.
Suberoylanilide hydroxamic acid (SAHA) is an FDA-

approved HDAC inhibitor, and its efficacy has been confirmed
by clinical trials for malignant diseases such as non-Hodgkin
lymphoma, acute myeloid leukemia, breast cancer and cutan-
eous T cell lymphoma.(9–12) Micromolar concentrations of
SAHA have anticancer effects and a well-established safety
profile.(9) Furthermore, recent studies have confirmed that
SAHA can induce EBV lytic infection and mediate enhanced
cell death in EBV-positive gastric carcinoma and nasopharyn-
geal carcinoma cells.(13,14) Very recently, a gene expression
profile study identified SAHA as an effective drug candidate
for NK cell neoplasms, including EBV-positive NK lym-
phoma.(15) However, no in vivo study has evaluated the efficacy
of SAHA in EBV-positive T and NK lymphoma cells.
In the present study, we evaluate the antitumor effects of

SAHA on EBV-positive and EBV-negative T and NK cell lines
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and analyze induction of apoptosis, cell cycle arrest and expres-
sion of EBV-encoded genes. To further evaluate the effect of
SAHA, an in vivo model is necessary. A suitable host for
xenotransplantation of human lymphoid cells is the NOD ⁄
Shi-scid ⁄ IL-2Rcnull (NOG) mouse, which is completely immu-
nodeficient and lacks T, B, NK and dendritic cells, as well as
macrophages.(16–19) Recently, the proliferation of EBV-positive
T and NK cells has been confirmed by the xenotransplantation
of human peripheral blood mononuclear cells (PBMC) to the
NOG mouse.(20) Instead of human PBMC, we applied the
xenograft model to evaluate SAHA using an EBV-positive NK
cell line, which is more suitable for the evaluation of drugs.

Materials and Methods

Cell lines. Of the cell lines used, SNT13 and SNT16 are
EBV-positive T cell lines,(21) Jurkat is an EBV-negative T cell
line,(22) KAI3 and SNK6 are EBV-positive NK cell lines,(21,23)

and KHYG1 is an EBV-negative NK cell line.(24) EBV-positive
MT2 ⁄ rEBV ⁄9-7 and MT2 ⁄ rEBV ⁄9-9 cell lines were established
by infection of MT2 cells with the hygromycin-resistant B95-8
strain.(25,26) EBV-negative MT2 ⁄hyg ⁄CL2 and MT2 ⁄hyg ⁄CL3
cell lines were transfected with a hygromycin-resistant gene.
These four cell lines were used to verify the presence ⁄ absence
of EBV in the T cell lines. Similarly, the EBV-negative NKL
cell line was derived from a patient with NK cell leukemia,
and the EBV-positive TL1 cell line was established from NKL
cells infected with an Akata-transfected recombinant EBV
strain containing a neomycin-resistant gene.(27,28) TL1 and
NKL were used to verify the presence ⁄ absence of EBV in the
NK cell lines. The characteristics of each cell line are summa-
rized in Table 1.
Jurkat cells were cultured in RPMI 1640 medium supple-

mented with 10% FBS, penicillin, streptomycin and glutamine
(complete medium). SNT13, SNT16, KAI3, SNK6, KHYG1,
TL1 and NKL cells were grown in complete medium supple-
mented with 100 U ⁄mL human interleukin-2 (IL-2). MT2
⁄ rEBV ⁄9-7, MT2 ⁄ rEBV ⁄9-9, MT2 ⁄hyg ⁄CL2 and MT2 ⁄hyg
⁄CL3 cells were grown in complete medium supplemented
with 0.2 mg ⁄mL hygromycin. For xenotransplantation, the
SNK6 cell line was grown in complete medium supplemented
with human serum and 700 U ⁄mL of human IL-2. All cultures
were maintained at 37°C in 5% CO2.

Cell viability. Suberoylanilide hydroxamic acid (Cayman
Chemicals, Ann Arbor, MI, USA) was dissolved in DMSO. Each

cell line (2 9 105 cells per mL) was cultured in 24-well plates.
Human PBMC were isolated from healthy volunteers using
Ficoll–Paque (GE Heathcare AB BioSciences, Uppsala, Sweden)
gradient centrifugation, and 5 9 105 PBMC per mL were cul-
tured in 24-well plates. Cells were treated with various concen-
trations of SAHA for 96 h. The cell number and viability were
quantified by trypan blue exclusion. Viability was calculated as
the percentage of viable SAHA-treated cells versus DMSO-
treated cells. These experiments were performed in triplicate,
and the results were expressed as mean values with SEM.

Apoptosis assay by flow cytometry. Apoptosis was measured
by flow cytometry using an annexin V-PE ⁄7-AAD apoptosis
assay kit (BD Pharmingen Biosciences, San Diego, CA, USA)
according to the manufacturer’s protocol.(29) Briefly, 2 9 105

cells were treated with SAHA for 24 h, incubated with annex-
in V-PE and 7-AAD for 15 min, and then analyzed by flow
cytometry. Stained cells were analyzed using the FACSCantoII
flow cytometer and the FlowJo software (Tree Star, Ashland,
OR, USA).

Immunoblotting. After 24 and 48 h of treatment with various
concentrations of SAHA, cell pellets were lysed directly in
SDS sample buffer (50 mM Tris-HCl [pH 6.8], 2% SDS, 10%
glycerol, 6% 2-mercaptoethanol and 0.0025% bromophenol
blue). Cell lysates were separated on 10% acrylamide gels by
SDS-PAGE, transferred to PVDF membranes, and immunob-
lotted with Abs. Abs were used against acetyl-histone H3 (Cell
Signaling, Boston, MA, USA), poly (ADP-ribose) polymerase
(PARP; Sigma, St. Louis, MO, USA), latent membrane pro-
tein (LMP) 1 (S12; BD Biosciences, San Jose, CA, USA),(30)

EBV nuclear antigen (EBNA) 1(31) and b-actin (Sigma).
Cell cycle assay. Cells were treated with various concentra-

tions of SAHA for 48 h and fixed with 70% ethanol. Fixed
cells were treated with DNase-free RNase, stained with
propidium iodide (Sigma) for 15 min, and analyzed by flow
cytometry. Stained cells were analyzed using a FACSCalibur
(Becton Dickinson, San Jose, CA, USA) flow cytometer and
the ModFit LT software (Verity Software House, Topsham,
ME, USA).

RT-PCR assay. RNA was extracted using the QIAmp RNeasy
Mini Kit (Qiagen, Hilden, Germany), and contaminating DNA
was removed by on-column DNase digestion using the RNase-
free DNase Set (Qiagen). Viral mRNA expression was quanti-
fied by one-step multiplex real-time RT-PCR using the
Mx3000P real-time PCR system (Stratagene, La Jolla, CA,
USA) as described previously.(32,33) b2-Microglobulin was
used as an endogenous control and reference gene for relative
quantification.(34) Each experiment was performed in triplicate
and was shown as the mean of three samples with the SEM.

Xenograft model using the NOG mouse. Female 6-week-old
or 7-week-old NOG mice were obtained from the Central Insti-
tute of Experimental Animals, Kawasaki, Japan, and main-
tained under specific pathogen-free conditions by the approval
and guidelines of the Nagoya University Experimentation Ani-
mal Committee. On day 0, 1 9 106 SNK6 cells were inocu-
lated subcutaneously as described previously.(35) Each day from
days 4 to 28, the mice were treated i.p. with 100 mg ⁄kg SAHA
or DMSO (control). Tumor volume was quantified using cali-
pers twice per week and calculated using the following for-
mula: p 9 short axis 9 long axis 9 height ⁄6. On day 30,
mice were killed, and the tumor and organs were excised. RNA
was extracted from the tumor and subjected to real-time RT-
PCR to quantify viral gene expression. Peripheral blood was
collected, and plasma was separated. DNA was extracted from
the plasma and quantified by quantitative real-time PCR.(36)

Table 1. Characteristics of the cell lines

Name Cell type EBV Cell origin

SNT13 T + Chronic active EBV infection

SNT16 T + Chronic active EBV infection

Jurkat T � Acute T lymphoblastic leukemia

KAI3 NK + Chronic active EBV infection

SNK6 NK + Extranodal NK ⁄ T cell lymphoma

KHYG1 NK � Aggressive NK cell leukemia

MT2 ⁄ rEBV ⁄ 9-7 T + MT2 cell line

MT2 ⁄ rEBV ⁄ 9-9 T + MT2 cell line

MT2 ⁄ hyg ⁄ CL2 T � MT2 cell line

MT2 ⁄ hyg ⁄ CL3 T � MT2 cell line

TL1 NK + NKL cell line

NKL NK � NK-cell leukemia

EBV, Epstein–Barr virus; NK, natural killer.
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on behalf of Japanese Cancer Association.

Cancer Sci | June 2014 | vol. 105 | no. 6 | 714

Original Article
Effects of suberoylanilide hydroxamic acid www.wileyonlinelibrary.com/journal/cas



The Mann–Whitney U-test was used to compare tumor
volumes, viral mRNA expression and quantity of EBV-DNA.
P-values <0.05 were deemed to indicate statistical significance.

Epstein–Barr virus-encoded small RNA in situ hybridiza-

tion. Formalin (20%)-fixed and sucrose (0.1%)-fixed tissues
were sectioned into 10-lm slices and treated with 1:10 diluted
proteinase K. The tissues were incubated at room temperature
for 30 min, and were then washed with pure water and ethanol
(96%). The tissues were stained for Epstein–Barr virus-
encoded small RNA (EBER) by in situ hybridization (ISH).
EBER-ISH was performed using the EBER PNA Probe
(Y5200; Dako) and the PNA ISH detection kit (Dako, Glostrup
Denmark) according to the manufacturer’s protocol.(33)

Results

Effect of suberoylanilide hydroxamic acid on the viability of T

and natural killer cell lines. Epstein–Barr virus-positive and
EBV-negative T and NK cell lines were cultured with various
concentrations of SAHA. SAHA increased acetylated histone
H3 levels, confirming that SAHA worked as an HDAC inhibitor
(Fig. 1a). SAHA reduced the viability of all treated cell lines in
a dose-dependent manner (Fig. 1b). Next, the same six cell lines
were treated with 5 lM SAHA and assessed at different time
points. The viability of all six cell lines was reduced by treat-
ment with SAHA for 96 h (Fig. 1c). The effects of SAHA
did not differ between EBV-positive and EBV-negative cell
lines. In addition, to compare its effects on EBV-positive and
EBV-negative cell lines, we treated MT2 ⁄ rEBV ⁄9-7 and MT2
⁄ rEBV ⁄9-9 cells (EBV-positive T cell lines), MT2 ⁄hyg ⁄CL2

and MT2 ⁄hyg ⁄CL3 cells (EBV-negative T cell lines), TL1 cells
(EBV-positive NK cell line) and NKL cells (EBV-negative
parental NK cell line) with SAHA. SAHA had similar effects
on the EBV-positive and EBV-negative cell lines (Fig. 2a).
Moreover, human PBMC were treated with SAHA to evaluate
the adverse effects. Viability remained >69% at 96 h, indicating
the absence of adverse effects (Fig. 2b).

Effects of suberoylanilide hydroxamic acid on apoptosis and

the cell cycle of T and natural killer cell lines. To determine
whether apoptosis was induced by SAHA in the tested cell
lines, early apoptotic cells were quantified by annexin V and
7-AAD staining. SAHA increased early apoptotic cells in the
Jurkat, KAI3 and KHYG1 cell lines (Fig. 3a). In other cell
lines, the proportions of early apoptotic cells were not
increased. Next, the cleavage of PARP was analyzed by immu-
noblotting. With the exception of the SNT16 cell line, SAHA
induced the cleavage of PARP in the five cell lines (Fig. 3b).
Next, effects on the cell cycle were investigated. In the SNT16
and KAI3 cell lines, the population of cells in G1 phase was
increased, whereas that in G2 phase was increased in the
SNK6 cell line (Fig. 4). In Jurkat and KHYG1 cells, the cell
cycle assay was indeterminate because of the massive cell
death caused by SAHA.

Effects of suberoylanilide hydroxamic acid on Epstein–Barr

virus-encoded genes of Epstein–Barr virus-positive T and natural

killer cell lines. The expression of eight EBV-related genes,
including lytic genes (BZLF1 and gp350 ⁄220) and latent genes
(EBNA1, EBNA2, LMP1, LMP2, EBER1 and Bam HI-A
rightward transcripts [BART]) were analyzed using real-time
RT-PCR. In the SNT13, KAI3 and SNK6 cell lines, the
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Fig. 1. Suberoylanilide hydroxamic acid (SAHA)
inhibits the deacetylation of histone H3 protein and
decreases the viability of T and natural killer (NK)
cell lines. (a) SNT13, SNT16 (Epstein–Barr virus
[EBV]-positive T cell line), Jurkat (EBV-negative T
cell line), KAI3, SNK6 (EBV-positive NK cell line) and
KHYG1 (EBV-negative NK cell line) cells were
treated with the indicated SAHA concentrations for
24 h, and acetylated histone H3 was detected by
immunoblotting. b-Actin was used as a loading
control. (b) Each cell line was treated with the
indicated concentrations of SAHA for 96 h or
(c) with 5 lM SAHA for the indicated times. Data
are expressed as means � SEM.
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expression of BZLF1, which is an immediate-early gene in the
lytic infection cycle, was increased by SAHA (Fig. 5). How-
ever, the expression of the late lytic gene gp350 ⁄220 was
increased only in the SAHA-treated SNT13 cell line. These
results indicated that SAHA induced lytic infection in some
EBV-positive T and NK cell lines, although it was abortive.
The expression of BZLF1 was decreased in the SAHA-treated
SNT16 as time went by, while that in mock-treated SNT16
was also decreased. Of the EBV latent genes tested, the
expression of EBNA1, LMP1 and BART was decreased in
most of the cell lines, whereas that of LMP2 was increased by
SAHA (Fig. 5). Next, the EBNA1 and LMP1 protein levels
were determined by immunoblotting. SAHA decreased the
EBNA1 protein level in all cell lines, and that of LMP1 in the
SNT16, KAI3 and SNK6 cell lines (Fig. 6).

In vivo effects of suberoylanilide hydroxamic acid using the

mouse xenograft model. After confirmation of the in vitro
effect of SAHA, we extended our work to an in vivo xenograft

model. Initially, we inoculated six T and NK cell lines into
immunodeficient NOG mice via various routes. Of the EBV-
positive T or NK cell lines used, only the SNK6 cell line was
engrafted after subcutaneous or intravenous inoculation (Suppl.
Table S1). The Jurkat cell line, which is EBV-negative and
IL-2 independent, could also be engrafted, raising the possibil-
ity that IL-2 dependency may be associated with the engraft-
ment. We cultured six cell lines with the different
concentration of IL-2, and found that SNK6 was less depen-
dent of IL-2 compared with other T ⁄NK cell lines (Suppl. Fig.
S1). We considered that the independency of IL-2 can explain
the success of engraftment, at least partially. Because evalua-
tion of the former was easier, the subcutaneous model was
used in subsequent experiments.
We subcutaneously inoculated 1 9 106 SNK6 cells into

NOG mice. All of the mice developed tumors at the site of
inoculation. Four days after the inoculation, mice were treated
with SAHA daily up to day 28. The treated mice normally
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Fig. 2. The effects of suberoylanilide hydroxamic
acid (SAHA) do not differ between Epstein–Barr
virus (EBV)-positive and EBV-negative cell lines,
and SAHA exerts no adverse effects on human
peripheral blood mononuclear cells (PBMC).
(a) MT2 ⁄ rEBV ⁄ 9-7, MT2 ⁄ rEBV ⁄ 9-9 (EBV-positive
T cell lines), MT2 ⁄ hyg ⁄ CL2, MT2 ⁄hyg ⁄ CL3 (parental
cell lines), TL1 (EBV-positive natural killer [NK] cell
line) and NKL (parental cell line) cells were treated
with the indicated concentrations of SAHA for
96 h or with 5 lM SAHA for the indicated times.
(b) Human PBMC were isolated from two
volunteers and treated with the indicated
concentrations of SAHA for 48 and 96 h or with 1
and 5 lM SAHA for the indicated times. Data are
expressed as means � SEM.
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tolerated SAHA without showing any obvious toxicity. During
this period, no significant difference in the body weights of
SAHA-treated and control mice was noted (data not shown).
Until the end of the experiment, the size of tumors in SAHA-
treated mice increased gradually, but the tumor volume was
significantly less than the control group (Fig. 7a). EBER ISH
showed the extent of the tumor in each mouse (Fig. 7b). In the
SAHA-treated mouse, the tumor was regressed with degenera-

tion. Additionally, SAHA-treated mice showed a significantly
lower plasma EBV-DNA level (Fig. 7c). Furthermore, SAHA
showed significant inhibitory effects on most EBV-encoded
genes in tumor tissues (Fig. 7d). Finally, we collected samples
from organs at 30 days after inoculation and performed EBER
ISH. EBER-positive cells were detected in the organs of
control mice, but not SAHA-treated mice (Fig. 7e). In the
spleen, liver and lung, EBER-positive cells were sporadically
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Fig. 3. Suberoylanilide hydroxamic acid (SAHA) induces apoptosis in several T and natural killer (NK) cell lines. (a) Epstein–Barr virus (EBV)-posi-
tive and EBV-negative T and NK cell lines were treated with 5 lM SAHA for 24 h. Viable cells were defined as those negative for both annexin
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observed in focal lesions, indicating hematogenous dissemina-
tion of tumor cells. Conversely, the expansion of EBER-posi-
tive cells from the renal capsule to parenchyma was observed
in the kidney, indicating direct invasion. These results indi-
cated that SAHA inhibited metastasis and invasion of lym-
phoma cells.

Discussion

Histone deacetylase inhibitors affect tumor cell growth and
survival through the induction of cell death by their character-
istics of apoptosis.(6) By the upregulation of CDKNIA, HDAC
inhibitors induce cell cycle arrest at the G1 ⁄S-phase. More-
over, through elongation of G2-phase, HDAC inhibitors can
mediate G2 ⁄M-phase arrest, but this event occurs less fre-
quently than G1 arrest. HDAC inhibitors can also reduce the
expression of proangiogenic factors, resulting in the suppres-
sion of angiogenesis. Furthermore, HDAC inhibitors show
immunomodulatory effects, which enhance tumor cell antige-
nicity and alter the expression of key cytokines, such as tumor
necrosis factor-a, interleukin-1 and interferon-c.(6) In the pres-
ent study, SAHA markedly suppressed the proliferation of T
and NK lymphoma cell lines, irrespective of the presence of
EBV. The suppressive effect of SAHA was greater than that of
valproic acid as demonstrated in our previous study.(8) In
several T and NK cell lines, SAHA-induced apoptosis was
confirmed by the increase in annexin V-positive cells and
cleavage of PARP. SAHA also induced cell cycle arrest in
several T and NK cell lines. The mechanism of killing
appeared to differ among the cell lines. A recent study by Kar-
ube et al.(15) shows that suppression of the JAK-STAT path-
way contributes to the suppressive effect of SAHA against NK
cell lymphoma cells. Given the pleiotropic biological effects
of HDAC inhibitors, it is unlikely that a single molecular path-

way leading to tumor cell death will be identified in all cell
types.(6)

Suberoylanilide hydroxamic acid has been reported to
induce EBV lytic infection in EBV-positive gastric and naso-
pharyngeal carcinoma cells.(13,14) For the treatment of EBV-
associated malignant diseases, induction of lytic infection is
advantageous because it causes lysis of EBV-infected tumor
cells. Furthermore, lytic infection should produce viral pro-
teins with antigenicity that could induce host cellular
responses. BZLF1 is an immediate-early gene and a hallmark
to switch from latent gene to lytic infection.(37) In the present
study, SAHA increased the expression of BZLF1 in most
EBV-positive T and NK cell lines, although the late lytic gene
gp350 ⁄220 was increased in only one cell line. The lytic infec-
tion induced by SAHA may play a role in its effects on EBV-
infected T and NK cells. Interestingly, BZLF1, which was not
expressed in the SNK-6 cell line in vitro, was expressed in the
SNK6-derived tumor from both control and SAHA-treated
mice. We speculate that the expression of BZLF1was induced
in in vivo culture conditions presumably by nutrients or cyto-
kines, although there is no direct poof of this.
In the present study, SAHA decreased the expression of the

LMP1 gene and protein in some EBV-positive T and NK cell
lines. LMP1 is a major oncoprotein that is responsible for the
immortalization of primary human B lymphocytes and activa-
tion of the NF-jB, PI3K and JNK pathways.(38) Expression
of LMP1 induces several pleiotropic effects, including the
upregulation of adhesion molecules, anti-apoptotic proteins
and cytokines. Recently, we showed that heat shock protein
90 inhibitors repress the LMP1 expression and proliferation
of EBV-positive NK cell lymphoma.(35) SAHA also decreased
the expression of EBNA1 in all of the cell lines. EBNA1 is
essential for the maintenance of the viral episome, as well as
for the initiation of latent viral replication.(38) EBNA1 also
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arrests the cell cycle in T and natural killer (NK) cell
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Cell cycle profiles were assessed by flow cytometry.
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plays an important role in inhibiting apoptosis.(39) Downregu-
lation of EBNA1 may also be associated with the suppressive
effect on the proliferation of EBV-positive T and NK cell
lines. Although SAHA downregulated EBV-encoded genes
such as EBNA1 and LMP1, the effects of SAHA did not dif-
fer between EBV-positive and EBV-negative cell lines. The
discrepancy is not clear. The EBV-positive and EBV-negative
cell line sets, which were used to verify the presence ⁄ absence
of EBV in the T and NK cell lines (Fig. 2a), might be inap-
propriate for the purpose. The EBV-positive cell lines were
produced by artificial EBV infections using marker selec-
tions.(26,28) The parent cell lines can proliferate vigorously, so
they did not need the help of EBV. It is also possible that
the change of EBV-associated genes and proteins may be not

the cause, but the result. These questions should be clarified
in future studies.
We applied the murine xenograft model to further evaluate

the efficacy of SAHA. Using this model, we have shown that
SAHA prevented not only tumor growth but also metastasis of
EBV-positive NK cell lymphoma. However, the progressive
tumor growth was renewed subsequently, suggesting a limita-
tion of single-agent therapy. Synergistic effects of HDAC
inhibitors and their combination with mTOR inhibitors have
been demonstrated in renal cell and prostate carcinoma cell
lines.(40,41) In nasopharyngeal carcinoma, bortezomib and
SAHA synergistically induced reactive oxygen species-driven
caspase-dependent apoptosis and blocked the replication of
EBV.(42) The combination of these agents and SAHA could
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improve the therapy of EBV-associated T and NK cell lym-
phoma.
In conclusion, SAHA suppressed the proliferation of T and

NK cell lines, although no significant difference was observed
between EBV-positive and EBV-negative cell lines. SAHA
induced apoptosis and ⁄or cell cycle arrest in some T and NK
cell lines. Furthermore, SAHA inhibited tumor progression and
metastasis in a murine xenograft model. Thus, SAHA had a
marked suppressive effect against EBV-associated T and NK
cell lymphomas, which was mediated by either induction of
apoptosis or cell cycle arrest, and could represent an alterna-
tive treatment.
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