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Abstract

We give a classification theorem for certain geometric objects, called torsors over the sheaf of
K-theory spaces, showing that their moduli space is equivalent to the K-theory of Tate vector
bundles. This allows us to present a very natural and simple construction of a canonical ∞-
categorical central extension of the automorphism group of a Tate vector bundle, which we ex-
pect to truncate to Drinfeld’s categorical Tate central extension. The proof relies on two technical
results, one of which is a delooping theorem for non-connective K-theory spectra by Beilinson’s
exact category of locally compact objects, conjectured by L. Previdi and proved by the author
in this thesis. The other one is a theorem of Drinfeld that the first negative K-group vanishes
Nisnevich locally. The recently developed theory of ∞-topoi, which has highly elaborated and
convenient concepts of higher categorical groups, actions and torsors, allows us to combine these
two results to obtain the classification theorem.
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1 Introduction

We present a classification theorem for certain geometric objects, called torsors over the sheaf of K-
theory spaces, showing that their moduli space is equivalent to the K-theory of Tate vector bundles.
In order to prove this we first show that Beilinson’s construction on exact categories gives rise to
a delooping of non-connective K-theory spectra, affirming a conjecture posed by L. Previdi. We
then combine this result, using the theory of ∞-topoi, with Drinfeld’s theorem on the Nisnevich
local vanishing of the first negative K-group to obtain the classification theorem.

Background and aim

The work presented here is related to the infinite-dimensional linear algebra of Tate vector spaces.
Let k be a field, considered as a topological field with the discrete topology. A topological vector
space over k is called a Tate vector space if it is isomorphic to the direct sum of a discrete vector space
and the dual of a discrete vector space. (We refer as the dual of a discrete vector space V to the space
of linear functionals from V to k, endowed with the subspace topology in the product topology of
kV .) A typical example of a Tate vector space is the vector space k((t)) of formal Laurent series with
the t-adic topology, which is the direct sum of the discrete vector space t−1k[t−1] and the dual k[[t]]
of the discrete vector space k[t]. Tate vector spaces provide a framework for the representation
theory of loop groups. Indeed, if G is an algebraic group and V a finite dimensional representation
then there is an induced natural representation of the corresponding loop group G((t)) on a Tate
vector space V((t)).

Let V be a Tate vector space and GL(V) the group of continuous automorphisms (which is con-
sidered as a sheaf of groups on an appropriate site; we will be more precise in the next subsection).
Then there is a canonical central extension

1→ Gm → ĜL(V)→ GL(V)→ 1,

which is called the Tate central extension. Corresponding to a group-stack map GL(V)→ BGm, the
Tate central extension can be seen as an analogue of the determinant in finite dimensional linear
algebra, which is a map of group-sheaves GL(V) → Gm for a finite dimensional V. The Tate
central extension plays important roles in the geometry of curves, representation theory of loop
groups, and in the geometric Langlands program. We refer the reader to an excellent expository
note [8], for more detailed background discussions on Tate vector spaces and the canonical central
extensions of their automorphism groups.

More generally, Drinfeld [9] formulates a notion of a Tate vector bundle on a scheme as fol-
lows. Let R be a commutative ring with the discrete topology. An elementary Tate R-module is a
topological R-module isomorphic to the direct sum of a discrete R-module and the dual of a dis-
crete R-module. (We refer as the dual of a discrete R-module P to the R-module of R-linear maps
from P to R, endowed with the subspace topology in the product topology of RP.) In general, the
additive category of elementary Tate R-modules is not idempotent complete, and the idempotent
completion of it is defined to be the category of Tate R-modules, i.e. a topological R-module is a
Tate R-module if it is isomorphic to a direct summand of an elementary Tate R-module. A very
important and crucial fact on Tate R-modules due to Drinfeld ([9], Theorem 3.4) is that every Tate
R-module is Nisnevich locally elementary. Using this property, he generalizes the definition of the
Tate central extension to Tate R-modules.
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The classical construction (see, e.g. [12], section 1.3), as well as its direct generalization by
Drinfeld ([9], section 3.6), of the Tate central extension is performed by forming a Gm-gerbe for
each Tate vector space or Tate R-module, equipped with a canonical action of the automorphism
group. This construction of the gerbe, however, is not nicely compatible with direct sums of Tate R-
modules. This led Drinfeld [9] and Beilinson et al. [4] to introduce the notion of a torsor over a sheaf
of Picard groupoids, and they enriched the classical Gm-gerbe to a PicZ-torsor, where PicZ denotes
the stack of Z-graded line bundles. The PicZ-torsor is regarded as classifying the categorical Tate
central extension of the automorphism group by PicZ. See [4], section 2, and [9], secion 5, for details.

Their construction of the PicZ-torsor is given by a direct analogy of the classical construction
of the plain Gm-gerbe as in [12], requiring to deal with a bunch of 2-categorical data and condi-
tions. However, Drinfeld proposes in section 5.5 of [9] an interesting idea, attributed to Beilinson,
which vastly simplifies the construction and gives rise to a clarified perspective. The starting ob-
servation is that the stack of graded line bundles PicZ can be interpreted as a truncated K-theory:
Namely, assuming the existence of a precise formulation and proof of the equivalence between the
2-categories of stacks of groupoids and of sheaves of homotopy 1-types, PicZ should correspond
to the sheaf of 1-truncated K-theory spaces. Their idea, posed as a "somewhat vague picture,"
roughly says that, under the identification of PicZ with the 1-truncated K-theory sheaf, the PicZ-
torsor classifying the categorical Tate central extension admits a homotopical interpretation in
terms of algebraic K-theory. Drinfeld’s description of their idea remains in a sketchy state (which
is why it is called a "vague picture"), and he leaves it as a problem to make it precise. See section
5.5 of [9] for details.

The aim of this thesis is to propose and prove a more precisely and more comprehensively
formulated version of Beilinson-Drinfeld’s picture. We show that, behind the fact that each Tate
vector bundles defines a canonical categorical central extension of its automorphism group, there
is a delooping theorem of algebraic K-theory, which gives rise in the geometric setting to a de-
scription of the moduli space of objects called torsors over the sheaf of K-theory spaces. Although
Drinfeld [9] described their picture in the language of 2-categories, the more powerful and general
framework of ∞-categories is available today, with the well-developed and established foundation
thanks to the recent works of Lurie [13] et al. In particular, the theory of ∞-topoi, as developed
in [13], which treats the ∞-categories of sheaves of (not necessarily truncated) spaces, makes it
possible to regard the whole sheaf of K-theory spaces as a group object, allowing us to meaning-
fully speak of torsors over it. We prove that the moduli space of those torsors is equivalent to the
K-theory sheaf of Tate vector bundles (Theorem 1.10), as a geometric incarnation of an abstract de-
looping theorem for non-connective K-theory spectra of exact categories (Theorem 1.2), with the
aid of Drinfeld’s theorem that the first negative K-group vanishes Nisnevich locally ([9], Theorem
3.7). This directly leads to a canonical construction of a torsor over the sheaf of K-theory spaces
for each Tate vector bundle. The torsor thus obtained admits a canonical action by the sheaf of
automorphisms of the Tate vector bundle (Theorem 1.13), thereby resulting an object that should
be regarded as classifying a canonical ∞-categorical central extension of the automorphism group of
the Tate vector bundle by the sheaf of K-theory spaces.

We propose this equivalence between the moduli space of torsors over the sheaf of K-theory
spaces and the K-theory sheaf of Tate vector bundles as our refined version of Beilinson-Drinfeld’s
picture. Although we do not know for the moment whether our canonical torsor is compatible
with (i.e. truncates to) Drinfeld’s PicZ-torsor constructed in terms of infinite dimensional Grass-
mannians, we believe that our approach via a delooping theorem of K-theory, or via its consequent
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description of the moduli space of torsors, is the most comprehensive and conceptually appropri-
ate way of treating categorical central extensions of the automorphism groups of Tate vector bun-
dles. We leave it as a problem to compare these two approaches to the central extensions of the
automorphism groups of Tate vector bundles. It is also an interesting question to ask how the pic-
ture presented in this thesis can be generalized to more higher dimensional contexts of higher Tate
vector bundles. We sketch in the last part of section 5 an idea towards such possible generalizations.

Summary of the results

Let us give here a more detailed and precise summary of our results.
Write Π for the filtered category of pairs (i, j) of integers with i ≤ j, where there is a unique

morphism (i, j)→ (i′, j′) if i ≤ i′ and j ≤ j′. For an exact categoryA in the sense of Definition 2.2-1.
below, let lim

←→
A be the full subcategory of Ind ProA consisting of ind-pro-objects X = (Xi,j)(i,j)∈Π,

indexed by Π, satisfying that for every i ≤ j ≤ k the sequence

0→ Xi,j → Xi,k → Xj,k → 0

is a short exact sequence in A. If the exact category A is an extension-closed, full additive sub-
category of an abelian category F , then lim

←→
A is an extension-closed, full additive subcategory of

the abelian category Ind ProF , so that lim
←→
A is endowed with a structure of an exact category. We

give a more detailed discussion on the exact category lim
←→
A in section 3 below, following [3], A.3,

and [17].
In his thesis [16], L. Previdi investigated categorical properties of the exact category lim

←→
A,

especially its behaviour with respect to K-theoretical constructions under a certain assumption on
A. Call the exact category A to be partially abelian if for every pair of admissible monomorphism
with common target a ↪→ b←↩ b, there is a pullback

d −−−−→ cy y
a −−−−→ b,

and if for every pair of admissible epimorphisms with common source a � d � c, there is a
pushout

d −−−−→ cy y
a −−−−→ b.

Let S(A) be the Waldhausen space of A (see Definition 2.12 below), which is defined as the ge-
ometric realization of the simplicial category iS•(A) given by Waldhausen’s S•-construction [25].
The homotopy groups of its loop space are the algebraic K-theory groups of the exact category A.
(Definition 2.13.) The following is the concluding conjecture of Previdi’s thesis [16].

Conjecture 1.1 (Previdi [16], 5.1.7) If A is partially abelian, then there is a weak equivalence between
S(A) and ΩS(lim

←→
A).
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Our first main result is the proof of Previdi’s conjecture, in a more powerful and convenient
form where the Waldhausen spaces are replaced by the non-connective K-theory spectra. We write
K for Schlichting’s non-connective K-theory spectrum of an exact category, introduced in [22],
whose positive homotopy groups are the positive K-groups of the exact category, and whose 0-
th homotopy group is the 0-th K-group of the idempotent completion of the exact category, and
whose negative homotopy groups recover the classical negative K-groups when the exact cate-
gory is the category of finitely generated projective modules over a ring or the category of vector
bundles on a quasi-compact, quasi-separated scheme with an ample family of line bundles. See
section 2.4 below for details. The following is our refined version of Previdi’s conjecture, which
we prove in section 4 below. Note that we impose no assumption on the exact category A.

Theorem 1.2 There is a weak equivalence of spectra between K(A) and ΩK((lim
←→
A)\), where (−)\ de-

notes the idempotent completion.

Remark 1.3 1. We also prove the original statement of Conjecture 1.1 in section 4.3, under the weaker
assumption that A is idempotent complete.

2. In the case where A is the category of finitely generated projective R-modules, Drinfeld [9] observed
a fact which is essentially the π−1-part of this equivalence. That is, he observed an isomorphism
between the first negative K-group of R and the 0-th K-group of the exact category of Tate R-modules
in his sense. This is Theorem 3.6-(iii) of [9], and combines with Theorem 3.4 of loc. cit. to show that
every element of the first negative K-group is Nisnevich locally trivial ([9], Theorem 3.7).

3. Recent work of Bräunling, Grochenig and Wolfson [7] provides an interpretation of this theorem as
an algebraic analogue of the Atiyah-Janich theorem in topological K-theory.

Let R be a commutative ring, and denote by P(R) the exact category of finitely generated
projective R-modules. Then the idempotent-completed exact category (lim

←→
P(R))\ is very close to

the category TateDr
R of Tate R-modules in Drinfeld’s sense (which is denoted by TR in [9], 3.3.2).

Indeed, if (Mi,j)i≤j is an object of lim
←→
P(R), the R-module lim−→j

lim←−i
Mi,j endowed with the topology

induced from the discrete ones on Mi,j is an elementary Tate R-module . Recent work by Bräunling,
Grochenig, and Wolfson [6] shows this induces a fully faithful functor (lim

←→
P(R))\ ↪→ TateDr

R ,
which is an equivalence onto the full subcategory of Tate R-modules of countable type (that is,
direct summands of elementary Tate R-modules P⊕ Q∗ where P and Q are countably generated
discrete, projective R-modules). See [6], Theorem 5.22.

Definition 1.4 We call (lim
←→
P(R))\ the category of Tate vector bundles over the affine scheme Spec R.

If R′ is an R-algebra we write (−)⊗R R′ for the functor (lim
←→
P(R))\ → (lim

←→
P(R′))\ induced by idem-

potent completion from the functor lim
←→
P(R)→ lim

←→
P(R′) given by (Mi,j)i≤j 7→ (Mi,j ⊗R R′)i≤j.

We write Spec RNis for the site whose underlying category is the opposite category of étale R-
algebras and R-homomorphisms, and whose notion of a covering is given as follows. A collection
of étale morphisms {Spec R′α → Spec R′}α∈A over Spec R is a covering in Spec RNis if it is the
opposite of a family of étale R-homomorphisms {φα : R′ → R′α}α∈A for which there exists a finite
sequence of elements a1, . . . , an ∈ R′ such that (a1, . . . , an) = R′ and for every 1 ≤ i ≤ n there
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exists an α ∈ A and an R-homomorphism ψ : R′α → R′[ 1
ai

]/(a1, . . . , ai−1) whose composition with

φα : R′ → R′α equals the canonical map R′ → R′[ 1
ai

]/(a1, . . . , ai−1). (See [14], section 1, for details.)

Definition 1.5 We refer to Spec RNis as the small Nisnevich site of the affine scheme Spec R.

Let Set∆ denote the category of simplicial sets, which is a combinatorial, simplicial model cat-
egory with the Kan model structure. Recall that there is a Quillen equivalence

|−| : Set∆ � CG : Sing,

where CG is the category of compactly generated weakly Hausdorff spaces with the Serre model
structure, and |−| and Sing the geometric realization and singular complex functors, respectively.

We write Set
Spec Rop

Nis
∆ for the combinatorial, simplicial model category of simplicial presheaves on

the underlying category of Spec RNis with the injective model structure, and (Set
Spec Rop

Nis
∆ )◦ for the

full subcategory of fibrant-cofibrant objects. By Proposition 4.2.4.4 of [13], there is an equivalence
of ∞-categories

θ : N(Set
Spec Rop

Nis
∆ )◦ ∼→ Fun(N Spec Rop

Nis, (Spaces)) = Preshv(Spaces)(N Spec RNis),

where N denotes the simplicial nerve and Fun the ∞-category of functors (see section A.1) and
(Spaces) is the ∞-category of spaces, which is by definition the simplicial nerve of the simpli-
cial category of Kan complexes (section A.2). (We note that, in our notation, the ∞-category of

presheaves of spaces on an ∞-category C is denoted by Preshv(Spaces)(C).) Let Set
Spec Rop

Nis
∆,loc denote

the combinatorial, simplicial model category of simplicial presheaves on the site Spec RNis with

respect to Jardine’s local model structure [11], and (Set
Spec Rop

Nis
∆,loc )◦ the full subcategory of fibrant-

cofibrant objects. Then Proposition 6.5.2.14 of [13], which is recalled as Proposition A.9 in the
Appendix, section A.5 below, shows that the above equivalence θ restricts to the equivalence

θ : N(Set
Spec Rop

Nis
∆,loc )◦ ∼→ Shv(Spaces)(N Spec RNis)∧ ⊂ Shv(Spaces)(N Spec RNis),

where Shv(Spaces)(N Spec RNis) ⊂ Preshv(Spaces)(N Spec RNis) is the ∞-topos of sheaves of spaces
on N Spec RNis (see Definition A.7 and Example A.8 below), and (−)∧ denotes its hypercompletion
([13], 6.5.2).

Suppose R is noetherian and of finite Krull dimension. Then, by Thomason’s Nisnevich descent
theorem of non-connective K-theory ([23], 10.8, which is recalled in section 2 below as Theorem
2.25), the simplicial presheaf on Spec RNis given by K-theory spaces

R′ 7→ Sing Ω∞K(R′)

is a fibrant object of Set
Spec Rop

Nis
∆,loc , so that, by the above equivalence θ, it defines an object of the

∞-topos Shv(Spaces)(N Spec RNis).

Definition 1.6 We denote this object by

K = θ(Sing Ω∞K(−)) ∈ ob Shv(Spaces)(N Spec RNis).
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Note that a presheaf of spectra satisfies Nisnevich descent if and only if it sends elementary Nis-
nevich squares to homotopy pullback-pushout squares. Since the suspension functor Σ preserves
homotopy pullback-pushout squares of spectra, we see that the Nisnevich descent of the non-
connective K-theory K(−) implies the Nisnevich descent of ΣK(−), which is weakly equivalent
by Theorem 1.2 to the presheaf K((lim

←→
P(−))\). Hence the simplicial presheaf on Spec RNis given

by
R′ 7→ Sing Ω∞K((lim

←→
P(R′))\)

is also fibrant in Set
Spec Rop

Nis
∆,loc , and thus defines, via the equivalence θ, an object of the ∞-topos

Shv(Spaces)(N Spec RNis).

Definition 1.7 We denote this object by

KTate = θ(Sing Ω∞K((lim
←→
P(−))\) ∈ ob Shv(Spaces)(N Spec RNis).

We make essential use of the notions of group objects, their actions, and torsors, in an ∞-topos.
These notions we recall in section A.5, as Definitions A.12, A.14, and A.15, respectively, following
[13] and [15].

Proposition 1.8 The object K is a group object in the ∞-topos Shv(Spaces)(N Spec RNis).

Definition 1.9 We refer as a torsor over the sheaf of K-theory spaces to a K-torsor over the final object
Spec R, whereK is regarded by Proposition 1.8 as a group object in the ∞-topos Shv(Spaces)(N Spec RNis).

In general, for every group object G of an ∞-topos X there is an object BG that classifies G-
torsors, in the sense that for each object X of X there is an equivalence between the ∞-groupoid of
G-torsors over X and the mapping space from X to BG; the object BG is just given by the connected
delooping of the group object G. (Theorem 3.19 of [15], recalled in section A.5 below as Theorem
A.16.) We call the object BG the classifying space object of the group object G, or the moduli space of
G-torsors.

The following is the geometric incarnation of Theorem 1.2, which describes the moduli space
of torsors over the sheaf of K-theory spaces. The key technical ingredient of the proof is the fact
that, in an ∞-topos, the classifying space object of a group object is just given by its connected
delooping (Theorems A.16, A.13). We also remark that Drinfeld’s theorem on the Nisnevich local
vanishing of the first negative K-group ([9], Theorem 3.7), which is used in the form of Lemma 5.1
in section 5 below, plays a crucial role in applying this fact to our setting.

Theorem 1.10 The moduli space of torsors over the sheaf of K-theory spaces is given by the K-theory sheaf
of Tate vector bundles. I.e., in the ∞-topos Shv(Spaces)(N Spec RNis) there is an equivalence between BK
and KTate.

Corollary 1.11 A Tate vector bundle M ∈ ob(lim
←→
P(R))\ defines a torsor DM over the sheaf of K-theory

spaces.

Let Aut M denote the sheaf of groups on Spec RNis given by

R′ 7→ Aut
(lim
←→
P(R′))\ M⊗R R′.
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Remark 1.12 To see that Aut M is indeed a sheaf, we have to invoke Theorem 3.3 of Drinfeld [9], which says
that his notion of Tate R-module is local for the fpqc topology, meaning that every faithfully flat morphism
R′ → R induces an equivalence of the category of Tate R-modules to the category of Tate R′-modules
equipped with descent data. This implies that the presheaf AutTateDr

(−)
(−) ⊗R M is a sheaf on the site of

affine R-schemes with the fpqc topology, and in particular on the small Nisnevich site of Spec R. Using the
fully faithful embedding (lim

←→
P(R))\ ↪→ TateDr

R (Theorem 5.22 of [6]), this shows that Aut M is a sheaf
on Spec RNis.

The sheaf Aut M is a group object in the ordinary topos Shv(Sets)(Spec RNis), which is regarded as
the full subcategory of discrete objects of the ∞-topos Shv(Spaces)(N Spec RNis).

Theorem 1.13 There is a canonical action of the group object Aut M on the torsor DM over the sheaf of
K-theory spaces.

Comparison with Drinfeld’s PicZ-torsor

It is not clear for the moment what is the precise relation between our torsor DM over the sheaf of
K-theory spaces described above and Drinfeld’s PicZ-torsor DetM introduced in section 5 of [9],
which classifies the categorical Tate central extension.

For the ∞-topos X = Shv(Spaces)(N Spec RNis) and for an integer k ≥ −2, by Proposition
5.5.6.18 of [13], the inclusion of the subcategory τ≤kX of k-truncated objects in the sense of Def-
inition 5.5.6.1 of [13] into the whole X admits a left adjoint functor τ≤k. Composing the map
[M] : Spec R → BK classifying our torsor DM with the truncation map BK → Bτ≤1K, we get a
map Spec R→ Bτ≤1K in the 2-topos (in the sense of [13], 6.4) τ≤1X, which classifies a τ≤1K-torsor,
which we denote by DM,≤1. The 2-topos τ≤1X should be equivalent, in some appropriate sense,
to the 2-category of stacks of 1-groupoids on the small Nisnevich site Spec RNis, and under this
equivalence the sheaf τ≤1K should correspond to the stack PicZ of graded line bundles.

What is the relation between our τ≤1K-torsor DM,≤1 and Drinfeld’s PicZ-torsor DetM? The
simplest guess is the following: Under this equivalence, DM,≤1 coincides with DetM. In fact, this
is a part of the assertions of Beilinson-Drinfeld’s “vague picture” described in section 5.5 of [9].
We leave the following problem.

Problem 1.14 Establish a precise comparison statement between our τ≤1K-torsor DM,≤1 and Drinfeld’s
PicZ-torsor DetM.

Organization of the thesis

The content of this thesis can be largely devided into two parts. Sections 2 through 4 are devoted
for the proof of Previdi’s delooping conjecture, Theorem 1.2, and section 5 and the Appendix for its
geometric incarnation as a description of the moduli space, Theorem 1.10, together with the con-
struction of the canonical action, Theorem 1.13. The main sections for the former and latter parts
are sections 4 and 5, respectively, where the proofs of of Theorems 1.2, 1.10, and 1.13 are given. The
other sections and the Appendix, based on the existing literature, serve for preliminary purposes.
Section 2 collects the necessary materials on the connective and non-connective K-theory, with
particular emphasis on Schlichting’s machinery [21], [22], which we employ to prove Theorem
1.2. Section 3 recalls, following [3] and [17] the definition and description of Beilinson’s category
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lim
←→
A. We make an essential use of the theory of ∞-topoi in section 5, and the reader who is unfa-

miliar with it is referred to the Appendix where we collect the necessary materials on the theory
of ∞-categories and ∞-topoi, with main references being [13] and [15].

Conventions of the terminology

There is an important difference in the terminology between the former part (sections 2–4) and the
latter part (section 5 and the Appendix): In the former part we work in the framework of ordinary
1-categories, whereas in the latter part we use the higher category theory of (∞,1)-categories, i.e.
of categories equipped with notions of k-morphisms for all k ∈ Z≥0, which are invertible if k > 1.
Also, we adopt the formulation of (∞, 1)-categories in terms of simplicial sets following Lurie [13]
et al., and, accordingly, refer to an (∞, 1)-category simply as an ∞-category. For instance, in the
latter part, basic categorical terms such as object, morphism, and functor, should be understood in
the sense as recalled in section A.1. The terms limit and colimit should be understood in the sense
of Definition A.4, which correspond to the notions of homotopy limit and homotopy colimit in
simplicial categories ([13], Theorem 4.2.4.1).

Other remarks on the conventions of the terminology adopted in this thesis:

1. By a simplicial category we mean a category enriched in simplicial sets.

2. The term space refers to an object of the ∞-category (Spaces) defined in section A.2, the
simplicial nerve of the simplicial category of Kan complexes. Note that (Spaces) is not a
1-category.

3. The term spectrum is used in the sense of Bousfield-Friedlander [5], Definition 2.1. I.e. a spec-
trum is a sequence of pointed compactly generated weakly Hausdorff topological spaces
X = (X0, X1, X2, . . .) equipped with continuous maps Xi → ΩXi+1 for i ≥ 0. For the spec-
trum X = (X0, X1, X2, . . .) we write Ω∞X for the topological space lim−→i

ΩiXi, where the col-
imit is taken in the category of compactly generated weakly Hausdorff topological spaces.
We write (Spectra) for the category of spectra, which has a simplicial model structure as
given in Theorem 2.3 of [5].
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2 Connective and non-connective algebraic K-theory spectra

This section recalls necessary preliminary materials on algebraic K-theory. In subsections 2.1 and
2.2 we recall, with main references being [18], [21], [17], and [16], basic definitions and construc-
tions on exact categories, and give motivational discussions for the definition of connective al-
gebraic K-theory in terms of dimension and determinant theories. In subsections 2.3 and 2.4 we
introduce the connective K-theory spectrum following [25] and the non-connective K-theory spec-
trum following [22], respectively.

2.1 Dimension theories on an exact category and the group K0

Let k be a field. A vector space V over k has a finite dimension dim V = n if there exists a basis
consisting of n vectors, and isomorphism classes of finite dimensional vector spaces are classified
by dimensions. Recall the following theorem from undergraduate linear algebra.

Theorem 2.1 Let
0→ V′ → V → V′′ → 0

be a short exact sequence of finite dimensional k-vector spaces. Then we have dim V = dim V′ + dim V′′.

An assignment χ : ob Vect0 k→ A that assigns to a finite dimensional k-vector space V an element
χ(V) of an abelian group A satisfying χ(V) = χ(V′) + χ(V′′) for every short exact sequence

0→ V′ → V → V′′ → 0,

is called a dimension theory. The theorem above says that dim : ob Vect0 k → Z is a dimension the-
ory. Note that such a χ takes the 0 vector space to 0 and isomorphic vector spaces to an identical
element of A. The fact that the isomorphism class of a finite dimensional vector space is deter-
mined by its dimension then implies that there is a unique map of groups φ : Z → A such that
χ(V) = φ(dim V) for every V ∈ ob Vect0 k. In this sense, the dimension theory dim : ob Vect0 k→
Z is universal among dimension theories, and we express this by saying that the 0-th K-group
K0(k) of the field k is the integers Z.

One can more generally consider the category Vect0(X) of finite dimensional vector bundles
over a scheme X and the assignment rank : ob Vect0(X) → H0(X, Z), which satisfies rank E =
rank E′ + rank E′′ for a short exact sequence

0→ E′ → E→ E′′ → 0

of vector bundles. This assignment rank, however, needs not be universal among dimension the-
ories on the scheme X. Nevertheless, a universal dimension theory exists, whose target abelian
group is formally constructed by considering the free abelian group generated by the set of iso-
morphism classes [E] of finite dimensional vector bundles E and quotienting it out by the relation
[E] = [E′] + [E′′] for short exact sequences

0→ E′ → E→ E′′ → 0.

The abelian group thus constructed is called the 0-th K-group of X and the assignment E 7→ [E] is
by construction universal among dimension theories on X.

There is a general notion of a category equipped with an appropriate class of short exact se-
quences, to which the category Vect0(X) of vector bundles provides a typical example, and the
notion of a universal dimension theory and the group K0 can also be defined for them.
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Definition 2.2 1. An exact category A is a full additive subcategory of an abelian category F , which
is closed under extensions, meaning that if

0→ a′ → a→ a′′ → 0

is a short exact sequence inF and if the left and right terms a′ and a′′ lie in the subcategoryA, then the
middle term a also lies in A. A short sequence in A is called an (admissible) short exact sequence
if it is a short exact sequence in F . Morphisms in A which appear as the second (resp. third) maps
of admissible short exact sequences are called admissible monomorphisms, and depicted ↪→ (resp.
admissible epimorphisms, depicted �).

2. A dimension theory on the exact category A taking values in an abelian group A is an assignment
χ : obA → A that satisfies χ(a) = χ(a′) + χ(a′′) for every short exact sequence of A

0→ a′ → a→ a′′ → 0.

3. The dimension theory χ : obA → A is universal if for every other dimension theory ψ : obA → B
there is a unique map of groups φ : A → B such that ψ(a) = φ(χ(a)) for every a ∈ obA. The
target abelian group A equipped with such a map χ is unique up to unique isomorphism, and is called
the 0-th K-group and denoted by K0(A).

We remark that the universal dimension theory and the group K0(A) admits a similar formal
construction whenever the set of isomorphism classes of A is small. Giving a dimension theory
on A valuing in B is equivalent to giving a map of abelian groups from K0(A) to B.

Before going on to the definition of the K1 group, let us fix the terminology and recall basic
properties of exact categories here.

Definition 2.3 1. An exact functor from an exact categoryA to another exact categoryB is an additive
functor A → B that preserves admissible short exact sequences.

2. An exact functor A → B is cofinal if every object in B is isomorphic to a direct summand of the
image of an object of A.

3. A fully exact embedding of exact categories is a fully faithful exact functorA ↪→ B whose essential
image in B is closed under extensions and a short sequence inA is an admissible short exact sequence
if and only if its image in B is an admissible short exact sequence.

4. An exact category A is idempotent complete if every idempotent (that is, a map p in A such that
p ◦ p = p) has a kernel.

Proposition 2.4 (See [23], Theorem A.9.1-(a)) For every exact category A there is an idempotent com-
plete exact category A\ which contains A as a fully exact cofinal subcategory. Such a A\ is essentially
unique (that is, unique up to equivalence of exact categories respecting the inclusions from A) and called
the idempotent completion of A.

Proposition 2.5 (Quillen [18]) Every exact category A satisfies the following properties:

1. If
0 −−−−→ a′ −−−−→ a −−−−→ a′′ −−−−→ 0

∼
y ∼

y ∼
y

0 −−−−→ b′ −−−−→ b −−−−→ b′′ −−−−→ 0
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is a commutative diagram in A where the upper horizontal sequence is admissible exact and where
the vertical maps are isomorphisms, then the lower horizontal sequence is also an admissible exact
sequence.

2. The composition of two admissible monomorphisms is an admissible monomorphism, and the compo-
sition of two admissible epimorphisms is an admissible epimorphism.

3. If a ↪→ b is an admissible monomorphism and a→ c any map, there is a pushout

a −−−−→ by y
c −−−−→ d

and the map c ↪→ d is an admissible monomorphism.

4. If b � d is an admissible epimorphism and c→ d any map, there is a pullback

a −−−−→ by y
c −−−−→ d

and the map a � c is an admissible epimorphism.

5. For every pair of objects a and b in A, the sequence

0→ a
t(1,0)→ a⊕ b

(0,1)→ b→ 0

is an admissible short exact sequence.

Conversely, every additive category equipped with a distinguished class of short exact sequences satisfying
the above properties is an exact category, i.e. it can be considered as an extension-closed full additive subcat-
egory of an abelian category in a way that the distinguished class of short exact sequence precisely coincides
with the class of short sequences whose image in that abelian category is exact.

2.2 Determinant theories and the group K1

The notion of a determinant theory and the first K-group K1 results from considering a 1-categorical
analogue of dimension theories. The motivational example is provided by the usual notion of de-
terminants in the linear algebra of finite dimensional vector spaces over a field. Recall that for a
finite dimensional vector space V its determinant is the 1-dimensional space det V =

∧dim V V. The
Theorem 2.1 has a determinantal analogue in the following form.

Theorem 2.6 For all short exact sequences

0→ V′ → V → V′′ → 0
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of finite dimensional k-vector spaces, there are canonical isomorphisms α : det V′ ⊗k det V′′ ∼→ det V. The
isomorphisms α are such that for every nested triple V1 ⊂ V2 ⊂ V3 with chosen subquotients Vi/Vj the
diagram

det V1 ⊗k det(V2/V1)⊗k det(V3/V2)
id⊗kα−−−−→ det V1 ⊗k det(V3/V1)

α⊗kid
y α

y
det V2 ⊗k det(V3/V2)

α−−−−→ det V3

commutes (where the associativity constraints for the tensor products are omitted for simplicity).

We interpret this in terms of the following notion of Picard groupoids.

Definition 2.7 A Picard groupoid is a (small) symmetric monoidal groupoid P , whose tensor product
structure ⊗ induces a group structure on the set π0P of isomorphism classes of objects of P .

Example 2.8 1. A typical example of a Picard groupoid is the symmetric monoidal groupoid PicX of
line bundles over a scheme X and their isomorphisms, with the tensor product given by ⊗OX and
the unit being the trivial line bundle. This is a strict Picard groupoid, meaning that the symmetry
constraint σL,L′ : L⊗ L′ ∼→ L′ ⊗ L, l ⊗ l′ 7→ l′ ⊗ l, is such that σL,L = idL⊗L for L = L′.

2. An example of non-strict Picard groupoid is provided by a slight modification PicZ
X of PicX . Its objects

are Z-graded line bundles on X, i.e. pairs (n, L) of locally constant functions n ∈ H0(X, Z) and
line bundles L. A morphism (n, L) → (n′, L′) in PicZ

X is a pair of an equality n = n′ and an
isomorphism L ∼→ L′ of line bundles. The tensor product is the pair of the addition of integers and the
tensor product of line bundles: (n, L)⊗ (n′, L′) = (n + n′, L⊗ L′). The symmetry constraint σZ is
defined by taking the grading into account, i.e. σZ : (n, L)⊗ (n′, L′) ∼→ (n′, L′)⊗ (n, L) is the pair
of the equality n + n′ = n′ + n and the isomorphism L⊗ L′ ∼→ L′ ⊗ L, l ⊗ l′ 7→ (−1)nn′ l′ ⊗ l.

Consider the Picard groupoid PicZ
Spec k = PicZ

k of graded lines over k (Example 2.8-2). By a
slight abuse of notation, we also write det V for the graded k-line (dim V, det V). Then Theorem
2.6 is still true with this notation and the graded determinant functor det : Vect0 k → PicZ

k admits
a universal description analogous to dimensions, as follows.

Definition 2.9 1. A determinant theory on an exact category A taking values in a Picard groupoid
P is a pair (δ, α) of a functor δ : A → P and a collection of isomorphisms α : δ(a′)⊗ δ(a′′) ∼→ δ(a),
one for all short exact sequences in A

0→ a′ → a→ a′′ → 0,

such that for every nested triple a1 ↪→ a2 ↪→ a3 with chosen subquotients ai/aj, the diagram

δ(a1)⊗ δ(a2/a1)⊗ δ(a3/2)
id⊗α−−−−→ δ(a1)⊗ δ(a3/a1)

α⊗id
y α

y
δ(a2)⊗ δ(a3/a2)

α−−−−→ δ(a3)

commutes (where the associativity constraints for the tensor products are omitted for simplicity).
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2. The determinant theory δ : A → P is universal if for every determinant theory δ′ : A → P ′ there
is a symmetric monoidal functor φ : P → P ′such that φ ◦ δ′ is naturally isomorphic to δ, respecting
the isomorphism α, i.e. for every short exact sequence

0→ a′ → a→ a′′ → 0

the diagram
φ(δ′(a′))⊗ φ(δ′(a′′)) α−−−−→ φ(δ′(a))y y

δ(a′)⊗ δ(a′′) α−−−−→ δ(a)
commutes. The group π1P of the target Picard groupoid P is called the first K-group of A and
denoted by K1(A).

It can be shown that the graded determinant functor det : Vect0 k → PicZ
k is universal among

determinant theories on Vect0 k, and hence the first K-group K1(Vect0 k) = K1(k) of the field k is the
group π1 PicZ

k = k∗ = k \ {0}. We remark that for any scheme X we have the graded determinant
functor det : Vect0 X → PicZ

X , E 7→ (rank E,
∧rank E E), together with the canonical isomorphisms

det E′ ⊗ det E′′ ∼→ det E for
0→ E′ → E→ E′′ → 0,

and it forms a determinant theory on the exact category Vect0 X. However, it is not a universal
determinant theory on Vect0 X in general.

One reason for working with graded determinants instead of plain ones is that it is easier to
give a universal description of the pair of the K-groups (K0, K1), rather than the sole group K1. In
the next subsection we will define the K-theory space as the universal target of ∞-determinants,
and the above universal description for the pair (K0, K1) is simply obtained by truncating it. It is
not always possible to truncating out the π1-part only while keeping some universal property.

2.3 Higher categorical analogues of determinant theories and the connective
algebraic K-theory spectrum

The discussions above motivate the idea that there should be a way of associating to each n ≥ 0
and to an exact category A an abelian group Kn(A) defined in terms of an n-categorical ana-
logue of a determinant theory. Namely, the tuple (K0(A), K1(A), K2(A), . . . , Kn(A)) should be
obtained as the sequence of groups (π0P , π1P , π2P , . . . , πnP) encoded in a Picard n-groupoid P
which is the target of a universal n-determinant theory. Moreover, there should be a notion of an
∞-determinant theory valuing in an ∞-Picard groupoid containing the notions of n-determinant
theories.

This idea is elaborated and made precise by a recent paper [2] of Barwick, where he offers a
universal characterization of connective K-theory in an ∞-categorical manner. Waldhausen’s S•-
construction [25] we recall below is considered as giving a concrete construction of the connective
K-theory spectrum thus defined in terms of universality.

Definition 2.10 ([25]) A Waldhausen category is a category C with a distinguished zero object 0, together
with two subcategories co C ⊂ C, whose morphisms are called cofibrations and depicted as ↪→, and wC ⊂ C,
whose morphisms are called weak equivalences and depicted as ∼→, that satisfy the following conditions.
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1. Both co C and wC contain all objects of C and all isomorphisms in C.

2. The unique map 0→ A is contained in co C for every object A of C.

3. Given a pair of maps A ↪→ B and A → C in C, where the first one is contained in co C, there is a
pushout

A −−−−→ By y
C −−−−→ B ∪A C

and the map C ↪→ B ∪A C is in co C.

4. Given a commutative diagram in C
B ←−−−− A −−−−→ Cy y y
B′ ←−−−− A′ −−−−→ C′,

if A ↪→ B and A′ ↪→ B′ are contained in co C and all the three vertical maps are in wC, then the
induced map B ∪A C ∼→ B′ ∪A′ C′ is contained in wC.

Example 2.11 1. Every exact category, e.g. the category Vect0(X) of vector bundles on the scheme X,
is a Waldhausen category, together with a chosen zero object and the subcategories of cofibrations and
weak equivalences given respectively by admissible monomorphisms and isomorphisms. This is the
standard Waldhausen structure on the exact category.

2. The category Perf(X) of perfect complexes of OX-modules on a scheme X with globally finite Tor-
amplitude ([23], section 2) is a Waldhausen category, together with a chosen zero complex and the
subcategories of cofibrations and weak equivalences given respectively by degree-wise split monomor-
phisms and quasi-isomorphisms.

For each n ≥ 0, write Ar[n] for the partially ordered set of pairs (i, j), 0 ≤ i ≤ j ≤ n, where
(i, j) ≤ (i′, j′) if i ≤ i′ and j ≤ j′. Consider Ar[n] as a category whose objects are the pairs (i, j)
and and whose morphisms are the relations (i, j) ≤ (i′, j′). For the Waldhausen category C define
Sn(C) to be the full subcategory of the category of functors from Ar[n] to C, consisting of those
functors A such that:

1. For every 0 ≤ i ≤ n, the object A(i,i) is the chosen 0-object of C.

2. For every 0 ≤ i ≤ j ≤ k ≤ n, the sequence

0→ A(i,j) → A(i,k) → A(j,k) → 0

is a cofibration sequence in C, i.e. A(i,j) ↪→ A(i,k) is a cofibration in C and

A(i,j) −−−−→ A(i,k)y y
0 −−−−→ A(j,k)

is a pushout square.
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Write wSn(C) ⊂ Sn(C) for the subcategory of those morphisms A→ A′ in Sn(C) for which A(i,j)
∼→

A′(i,j) is a weak equivalence in C for every 0 ≤ i ≤ j ≤ n. Taking the nerves of wSn(C) we get a
bisimplicial set ([m], [n]) 7→ NmwSn(C).

Definition 2.12 We write S(C) for the geometric realization of this bisimplicial set, and call it the Wald-
hausen space of the Waldhausen category C.

This construction can be iterated, i.e. for every n the category Sn(C) inherits a structure of a Wald-
hausen category from that of C, and we get a trisimplicial set ([l], [m], [n]) 7→ NlwSm(Sn(C)),
whose geometric realization we denote by SS(C). For every k ≥ 0 there result spaces Sk(C), the
geometric realization of the (k + 1)-simplicial set ([n0], . . . , [nk]) 7→ Nn0 wSn1 · · · Snk (C), and Wald-
hausen [25] constructs a map Sk(C)→ ΩSk+1(C), to get a spectrum K(C), in the sense of [5], Defini-
tion 2.1. This is an Ω-spectrum beyond the first term, so that the canonical map ΩS(C) ∼→ Ω∞K(C)
is a weak equivalence. See [25] for the proofs of these statements.

Definition 2.13 Connective K-theory of Waldhausen categories. The connective spectrum K(C) we
call the connective algebraic K-theory spectrum of the Waldhausen category C. The homotopy
group Kn(C) = πnK(C), n ≥ 0, is called the n-th K-group of C.

Of exact categories. The connective K-theory K(A) of the exact category A is defined by the standard
Waldhausen structure onA. The 0-th and first homotopy groups of K(A) recovers the groups K0(A)
and K1(A) described above. ([16], Theorem 4.2.13.)

Of schemes. The connective K-theory K(X) of the scheme X is the connective K-theory of the Waldhausen
category Perf(X) of perfect complexes of OX-modules on X with globally finite Tor-amplitude.

Remark 2.14 The space Ω∞K(A) is homotopy equivalent to the K-theory space defined by Quillen [18].
(See [25], 1.9.) For a scheme X the K-theory K(Vect0 X) of the exact category Vect0 X of vector bundles
on X agrees with Quillen’s K-theory of the scheme. If X has an ample family of line bundles, K(Vect0 X)
agrees with the K-theory of perfect complexes defined above, but not always. For the explanation of why the
correct K-theory of schemes should be defined by perfect complexes, see [23], sections 8.5 and 8.6.

2.4 Non-connective algebraic K-theory spectrum

The spectrum K(A) is a connective one, i.e. it has trivial negative homotopy groups. There is a
natural way of extending the K-theory spectrum to a spectrum K(A) with possibly non-trivial
negative homotopy groups, which generalize the definition of K-groups to negative degrees. The
first negative K-group measures how far the map K0(X) → K0(U) induced from an open embed-
ding of schemes U ↪→ X is from being surjective, and the second negative K-group does this for
the map K−1(X)→ K−1(U), and so on. For regular schemes the negative K-groups vanish, so that
negative K-theory can be considered as containing information on singular points of schemes.

We use Schlichting’s non-connective K-theory of Frobenius pairs ([21]) as the general frame-
work, and as particular cases introduce the non-connective K-theory of exact categories and of
schemes.

Definition 2.15 ([22], section 3) 1. A Frobenius category is an exact category E which has enough
projective objects and injective objects, and in which projective objects precisely coincide with injective
objects.
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2. The stable category E of the Frobenius category E is the triangulated category with the same objects
as E and with morphisms being equivalence classes of morphisms in E with respect to the equivalence
relation that identifies morphisms factoring through projective-injective objects with zero. (See [10]
for that E has a triangulated category structure.)

3. A Frobenius pair is a pair (E , E0) of Frobenius categories E and E0 together with a fully exact
embedding (in the sense of Definition 2.3-3) E0 ↪→ E which preserves projective-injective objects.

4. A map of Frobenius pairs (E , E0)→ (E ′, E ′0) is an exact functor E → E ′ that preserves projective-
injective objects and that maps E0 into E ′0.

5. The derived category D(E , E0) of the Frobenius pair (E , E0) is the triangulated category obtained
as the Verdier quotient of the fully faithful triangulated functor E0 ↪→ E .

6. To the Frobenius pair (E , E0) we associate a Waldhausen category W(E , E0) whose underlying cate-
gory is E and whose subcategory of cofibrations is given by the subcategory of admissible monomor-
phisms and whose subcategory of weak equivalences is given by the subcategory of maps of E that
become isomorphisms in the derived category D(E , E0). We write K(E , E0) = K(W(E , E0)) for the
resulting connective K-theory spectrum.

Example 2.16 1. Let A be an exact category and consider the category ChbA of bounded complexes
in A and its full subcategory AcbA of those complexes E•, whose differentials Ei → Ei+1 admit
factorizations Ei → Zi+1 → Ei+1 in a way that the sequence

0→ Zi → Ei → Zi+1 → 0

is an exact sequence inA for every i ∈ Z. There is an exact structure on ChbAwhere a short sequence
is exact if it is a degree-wise split short exact sequence, and since the inclusion AcbA ↪→ ChbA
is closed under extensions with respect to this notion of exact sequences, AcbA is also endowed
with an exact structure. Both ChbA and AcbA are Frobenius categories, and since the inclusion
AcbA ↪→ ChbA preserves projective-injective objects, we get the Frobenius pair (ChbA, AcbA)
associated to the exact category A. The derived category D(ChbA, AcbA) is the bounded derived
category DbA of the exact category A. (For the agreement between the connective K-theory spectra
K(A) of the exact category A and K(ChbA, AcbA) of the Frobenius pair (ChbA, AcbA), when A
is idempotent complete, see Theorem 2.17 below.)

2. Let X be a scheme and consider the category Perf(X) of perfect complexes of OX-modules with glob-
ally finite Tor-amplitude as an exact category where a short sequence is defined to be exact if it is
a degree-wise split short exact sequence. Then it is a Frobenius category, and together with the full
Frobenius subcategory Perf(X)0 ⊂ Perf(X) of those complexes E• for which the map E• → 0 is a
quasi-isomorphism it forms a Frobenius pair (Perf(X), Perf(X)0). The category Perf(X) considered
as a Waldhausen category whose cofibrations are degree-wise split monomorphisms and whose weak
equivalences are quasi-isomorphisms, is the same as the Waldhausen category W(Perf(X), Perf(X)0)
associated to the Frobenius pair (Perf(X), Perf(X)0). In particular, the connective K-theory spectra
K(X) and K(Perf(X), Perf(X)0) are identical.

Theorem 2.17 (Gillet-Waldhausen Theorem, [23], 1.11.7.) For every idempotent complete exact cate-
gory A, the embedding A ↪→ ChbA, given by considering an object of A as a complex concentrated in
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degree 0, induces a weak equivalence of spectra K(A) ∼→ K(W(ChbA, AcbA)), where the domain is the
connective K-theory spectrum ofA with respect to the standard Waldhausen structure, and the target is the
connective K-theory spectrum of the Waldhausen category associated to the Frobenius pair (ChbA, AcbA).

Given a Frobenius pair (E , E0), Schlichting constructs ([22], 4.7), in a functorial way, a new
Frobenius pair S(E , E0) (which is, in the notation of section 3 below, the pair (Inda

N E , S0(E , E0)),
where S0(E , E0) is the full Frobenius subcategory of Inda

N E of objects that become trivial in the
Verdier quotient DF (E , E0)/D(E , E0)), together with a canonical map of spaces Ω∞K(E , E0) →
ΩΩ∞K(S(E , E0)). Iterated application of the construction S defines a map Ω∞K(Sn(E , E0)) →
ΩΩ∞K(Sn+1(E , E0)) for every n ≥ 0. See [22], 11.4 for details.

Definition 2.18 Non-connective K-theory of Frobenius pairs. The spectrum K(E , E0) whose n-th
space is the space Ω∞K(Sn(E , E0)), n ≥ 0, and whose structure maps are given by the maps
Ω∞K(Sn(E , E0)) → ΩΩ∞K(Sn+1(E , E0)) above, is called the non-connective K-theory spec-
trum of the Frobenius pair (E , E0).

Of exact categories. The non-connective K-theory spectrum K(A) of an exact category A is the non-
connective K-theory spectrum K(ChbA, AcbA) of the Frobenius pair (ChbA, AcbA).

Of schemes. The non-connective K-theory spectrum K(X) of a scheme X is the non-connective K-
theory spectrum K(Perf(X), Perf(X)0) of the Frobenius pair (Perf(X), Perf(X)0).

Theorem 2.19 ([22], 11.7) For every Frobenius pair (E , E0) there is a map of spectra K(E , E0)→ K(E , E0)
which induces isomorphisms on non-negative homotopy groups.

Theorems 2.19 plus 2.17 shows that for every idempotent complete exact categoryA the connective
and non-connective K-theory spectra K(A) and K(A) have isomorphic non-negative homotopy
groups. The following proposition in addition tells that the positive homotopy groups of K(A)
and K(A) are always isomorphic without assuming the idempotent completeness of A.

Proposition 2.20 (Cofinality, [22], 11.17) If A ↪→ B is a fully exact, cofinal embedding of exact cate-
gories (in the sense of Definition 2.3), then the induced map of non-connective K-theory spectra K(A) ∼→
K(B) is a weak equivalence. In particular, the inclusion into the idempotent completion A ↪→ A\ induces
a weak equivalence K(A) ∼→ K(A\).

From Theorem 2.19 we also see that for a scheme X there is a map K(X) → K(X) which
induces isomorphisms on non-negative homotopy groups.

Proposition 2.21 If X is a regular noetherian scheme then the map K(X) ∼→ K(X) is a weak equivalence
of spectra. In particular, the negative K-groups of X are trivial in this case.

One of the most important properties of non-connective K-theory is the localization theorem
stated as follows.

Definition 2.22 An exact sequence of Frobenius pairs is a composable pair of maps of Frobenius pairs

(E ′, E ′0)
f→ (E , E0)

g→ (E ′′, E ′′0 ), together with a natural transformation η from g ◦ f to the constant func-
tor 0 : E ′ → E ′′ onto the chosen zero object 0, such that for each object E′ of E ′ the map ηE′ : g( f (E′)) ∼→ 0
in E ′′ is a weak equivalence in the Waldhausen category W(E ′′, E ′′0 ), and the functor D(E ′, E ′0)→ D(E , E0)
is fully faithful, and the induced functor from the Verdier quotient D(E , E0)/D(E ′, E ′0) to D(E ′′, E ′′0 ) is
cofinal (meaning that it is fully faithful and every object in the target is a direct summand of the image of an
object of the domain).
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Theorem 2.23 (Localization, [22], 11.10) Let (E ′, E ′0)
f→ (E , E0)

g→ (E ′′, E ′′0 ) be an exact sequence of
Frobenius pairs, together with a natural weak equivalence η : g ◦ f ∼→ 0. Then the sequence of spectra

K(E ′, E ′0)→ K(E , E0)→ K(E ′′, E ′′0 ),

together with the induced null-homotopy of the composed map K(η) : K(g) ◦ K( f ) ∼→ ∗, forms a
homotopy fibration sequence, meaning that the induced map from K(E ′, E ′0) to the homotopy fiber of
K(g) : K(E , E0)→ K(E ′′, E ′′0 ) is a weak equivalence of spectra.

Example 2.24 1. Let A f→ B g→ C be a sequence of exact categories, together with a natural isomor-
phism η : g ◦ f ∼→ 0, such that in the sequence of bouded derived categories

DbA → DbB → DbC,

the functor DbA → DbB is fully faithful and the induced map from the Verdier quotient DbB/DbA
to DbC is cofinal. Then the associated sequence

(ChbA, AcbA)
Chb( f )−→ (Chb B, Acb B)

Chb(g)−→ (Chb C, Acb C)

of Frobenius pairs, together with the natural isomorphism Chb(η) from the composed map to 0, forms
an exact sequence of Frobenius pairs, since the derived category of the Frobenius pair of bounded chain
complexes associated to an exact category is the bounded derived category of that exact category. Hence
in this case there results a homotopy fibration sequence

K(A)→ K(B)→ K(C),

together with the null-homotopy of the composed map given by K(Chb(η))

2. (Thomason’s localization theorem, [23], 7.4.) Let X be a quasi-compact, quasi-separated scheme
and U ⊂ X a quasi-compact open subscheme with closed complement Z = X \ U. We write
PerfZ(X) ⊂ Perf(X) for the fully exact subcategory of perfect complexes which are acyclic over
U. It forms a Frobenius pair (PerfZ(X), PerfZ(X)0) with the subcategory PerfZ(X)0 ⊂ PerfZ(X)
of complexes E• such that E• → 0 is a quasi-isomorphism. Write K(X on Z) for the non-connective
K-theory spectrum of the Frobenius pair (PerfZ(X), PerfZ(X)0). We note that for all complexes E•

in PerfZ(X), the maps ηE• : E•|U → 0 are quasi-isomorphisms in Perf(U) by definition, constituting
a natural quasi-isomorphism η from the composed functor PerfZ(X) → Perf(X) → Perf(U) to the
constant functor to 0. Then the sequence of Frobenius pairs

(PerfZ(X), PerfZ(X)0)→ (Perf(X), Perf(X)0)→ (Perf(U), Perf(U)0),

together with the natural quasi-isomorphism η, forms an exact sequence of Frobenius pairs, and hence
there results a homotopy fibration sequence

K(X on Z)→ K(X)→ K(U),

together with the null-homotopy of the composed map given by K(η).

Thomason’s localization theorem has the following important geometric consequence.
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Theorem 2.25 (Nisnevich descent, [23], 10.8) Let X be a quasi-compact, quasi-separated, noetherian
scheme of finite Krull dimension. Then the presheaf of spectra on the small Nisnevich site XNis of X given
by

K : Xop
Nis → (Spectra), Y 7→ K(Y),

satisfies Nisnevich descent. I.e., it is a fibrant object with respect to Jardine’s local model structure [11] on
the category of presheaves of spectra on XNis.

3 Beilinson’s category lim
←→
A

We first recall in subsection 3.1 the notions of ind- and pro-objects in a category and construc-
tions on exact categories involving them. We then define Beilinson’s category lim

←→
A and its exact

category structure following [3] and [17], in subsection 3.2.

3.1 Ind- and pro-objects in an exact category

If C is any category, the category Ind C (resp. Pro C) of ind-objects (resp. pro-objects) in C is defined
to have as objects functors X : J → C with domain J small and filtering (resp. X : Iop → C
with I small and filtering). The ind-object X : J → C (resp. pro-object X : Iop → C) defines a
functor Cop → (sets), C 7→ lim−→j∈J

HomC(C,Xj) (resp. C → (sets), C 7→ lim−→i∈I
HomC(Xi, C)). A

morphism X → Y of ind-objects (resp. pro-objects) is a natural transformation between the func-
tors Cop → (sets) (resp. C → (sets)) associated to X and Y . Equivalently, the sets of morphisms
of ind- and pro-objects can be defined to be the projective-inductive limits HomInd C(X ,Y) =
lim←−i

lim−→k
HomC(Xi,Yk) and HomPro C(X ,Y) = lim←−l

lim−→j
HomC(Xj,Yl), respectively.

If X and Y have a common index category, a natural transformation X → Y between the
functors X and Y defines a map between the ind- or pro-objects X and Y . Conversely, every map
of ind- or pro-objects X → Y can be “straightened” to a natural transformation, in the sense that
there is a commutative diagram in Ind C or Pro C

X −−−−→ Y

∼
y ∼

y
X̃ −−−−→ Ỹ

with the vertical maps isomorphisms, X̃ and Ỹ having a common index category, and X̃ → Ỹ
coming from a natural transformation. (See [1], Appendix, for details.)

If C is an exact category, the categories Ind C and Pro C possess exact structures. A pair of
composable morphisms in Ind C or Pro C is a short exact sequence if it can be straightened to a
sequence of natural transformations which is level-wise exact in C ([17], 4.15, 4.16). In this article
we are mainly concerned with the full subcategories Inda C and Proa C of admissible ind- and pro-
objects introduced by Previdi [17], 5.6: An ind-object X : J → C (resp. pro-object X : Iop →
C) is admissible if for every map j → j′ in J (resp. i → i′ in I) the morphism Xj ↪→ Xj′ is an
admissible monomorphism in C (resp. Xi � Xi′ an admissible epimorphism). These subcategories
are extension-closed in the exact categories Ind C and Pro C, respectively, so that they have induced
exact structures. Since an object C of C can be considered as an admissible ind- or pro-object
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which is indexed by whatever small and filtering category and takes the constant value C, there
are embeddings of exact categories C ↪→ Inda C and C ↪→ Proa C.

We write Inda
N C and Proa

N C for the full, extension-closed subcategories of Inda C and Proa C
consisting of admissible ind- and pro-objects, respectively, indexed by the filtering category of
natural numbers. (There is precisely one morphism j → k if j ≤ k ∈ N.) The object C of C
defines an object C = C = C = · · · in Inda

N C or Proa
N C. Note that the resulting embedding

C ↪→ Inda
N C ↪→ Inda C (resp. C ↪→ Proa

N C ↪→ Proa C) is naturally isomorphic to the embedding
C ↪→ Inda C (resp. C ↪→ Proa C) mentioned above.

3.2 Definition of lim
←→
A

Let A be an exact category. We write Π for the ordered set {(i, j) ∈ Z × Z | i ≤ j}, where
(i, j) ≤ (i′, j′) if i ≤ i′ and j ≤ j′. A functor X : Π→ A, where Π is viewed as a filtered category, is
admissible if for every triple i ≤ j ≤ k, the sequence

0→ Xi,j → Xi,k → Xj,k → 0

is a short exact sequence in A. We denote by Funa(Π,A) the exact category of admissible func-
tors X : Π → A and natural transformations, where a short sequence X → Y → Z of natural
transformations of admissible functors is a short exact sequence in Funa(Π,A) if

0→ Xi,j → Yi,j → Zi,j → 0

is a short exact sequence in A for every i ≤ j. A bicofinal map φ : Z → Z (φ is said to be bicofinal
if it is nondecreasing and satisfies limi→±∞ φ(i) = ±∞) induces a cofinal functor φ̃ : Π → Π,
(i, j) 7→ (φ(i), φ(j)). If φ and ψ : Z → Z are bicofinal maps such that φ(i) ≤ ψ(i) for all i, and if
X : Π→ A is an admissible functor, there is a natural transformation uX,φ,ψ : X ◦ φ̃→ X ◦ ψ̃.

Definition 3.1 (Beilinson [3], A.3) The category lim
←→
A is defined to be the localization of Funa(Π,A)

by the morphisms uX,φ,ψ, where X ∈ ob Funa(Π,A), and φ ≤ ψ : Z→ Z are bicofinal.

If X : Π→ A is an admissible functor, we have for each j ∈ Z an admissible pro-object in A

X•,j : {i ∈ Z | i ≤ j} → A, i 7→ Xi,j.

We get in turn an admissible ind-object in ProaA

X•,• : Z→ ProaA, j 7→ X•,j.

Thus the admissible functor X can be viewed as an object of the iterated, admissible Ind-Pro cate-
gory Inda ProaA. If φ ≤ ψ : Z→ Z are bicofinal, the map uX,φ,ψ defines an isomorphism between
the ind-pro-objects X ◦ φ̃ and X ◦ ψ̃. We get a functor lim

←→
A → Inda ProaA. In view of the follow-

ing theorem, we regard lim
←→
A as an exact subcategory of Inda ProaA.

Theorem 3.2 (Previdi [17], 5.8, 6.1) The functor lim
←→
A → Inda ProaA is fully faithful. Moreover, the

image is closed under extensions in Inda ProaA. In particular, lim
←→
A has an exact structure where a

sequence in lim
←→
A is exact if and only if its image in Inda ProaA is exact.
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By [17], 6.3, there is an embedding Inda
NA ↪→ lim

←→
A (resp. Proa

NA ↪→ lim
←→
A) of exact categories

that sends X1 ↪→ X2 ↪→ X3 ↪→ · · · ∈ ob Inda
NA (resp. X1 � X2 � X3 � · · · ∈ ob Proa

NA) to
the object in lim

←→
A determined by Xi,j = X0,j = Xj for i ≤ 0 < j (resp. Xi,j = Xi,1 = X−i+1 for

i ≤ 0 < j).
We refer to [17] for detailed discussions on ind/pro-objects in exact categories.

4 The delooping theorem

4.1 Schlichting’s machinery

We prove Theorem 1.2 using the s-filtering localization sequence constructed by Schlichting [21].
Let A ↪→ U be a fully exact embedding of exact categories. Following Schlichting [21], we

define a map in U to be a weak isomorphism with respect to A ↪→ U if it is either an admissible
monomorphism that admits a cokernel in the essential image of A ↪→ U or an admissible epimor-
phism that admits a kernel in the essential image of A ↪→ U . In particular, for every A ∈ obA
the maps 0 → A and A → 0 are weak isomorphisms. The localization of U by weak isomor-
phisms with respect to A is denoted by U/A. Since the maps ηA : A → 0 in U are weak isomor-
phisms for all objects A of A, there results a natural isomorphism η from the composed functor
A ↪→ U → U/A to the constant functor onto the chosen zero object 0. Recall, from [21], that the
fully exact embedding A ↪→ U is a left s-filtering if the following conditions are satisfied.

(1) If A � U is an admissible epimorphism in U with A ∈ obA, then U ∈ obA.

(2) If U ↪→ A is an admissible monomorphism in U with A ∈ obA, then U ∈ obA.

(3) Every map A→ U in U with A ∈ obA factors through an object B ∈ obA such that B ↪→ U
is an admissible monomorphism in U .

(4) If U � A is an admissible epimorphism in U with A ∈ obA, then there is an admissible
monomorphism B ↪→ U with B ∈ obA such that the composition B � A is an admissible
epimorphism in A.

(Here obA denotes by slight abuse of notation the collection of objects of U contained in the es-
sential image of A ↪→ U .) A right s-filtering embedding is defined by dualizing the conditions
above.

The following theorem due to Schlichting [21] we use as the main technical tool for the proof.

Theorem 4.1 (Schlichting [21], 1.16, 2.10) If A ↪→ U is left or right s-filtering, then the localization
U/A has an exact structure where a short sequence is exact if and only if it is isomorphic to the image
of a short exact sequence in U . Moreover, if A is idempotent complete, the sequence of exact categories
A → U → U/A, together with the above natural isomorphism η from the composed functor to the constant
functor onto the chosen zero object, satisfies the conditions in Example 2.24-1. In particular, there results a
homotopy fibration sequence of non-connective K-theory spectra

K(A)→ K(U )→ K(U/A),

together with the null-homotopy of the composed map given by K(η).
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Corollary 4.2 If A is any (possibly not idempotent complete) exact category and A ↪→ U is left or right
s-filtering, then the sequence

K(A)→ K(U )→ K(U/A),

together with the null-homotopy K(η) of the composed map, forms a homotopy fibration sequence.

Proof. The single statement of Theorem 2.10 of [21] assumes the idempotent completeness of A
for this K-theory sequence to be a homotopy fibration. But the theorem holds for generalA in view
of Lemma 1.20 of loc. cit., which assures whenever A ↪→ U is left or right s-filtering the existence
of an extension-closed full subcategory ŨA of U \ such that U is cofinally contained in ŨA, the
induced embedding A\ ↪→ U \ factors through a left or right s-filtering embedding A\ ↪→ ŨA,
and U/A ∼−→ ŨA/A\ is an equivalence of exact categories. We get a weak equivalence of short
sequences of spectra

K(A) −−−−→ K(U ) −−−−→ K(U/A)

∼
y ∼

y ∼
y

K(A\) −−−−→ K(ŨA) −−−−→ K(ŨA/A\),

since a cofinal embedding of exact categories induces a weak equivalence of non-connective K-
theory spectra (Proposition 2.20). Write η for the natural isomorphism from the composed functor
A ↪→ U → U/A to the constant functor onto the chosen zero object 0, given by the weak iso-
morphism ηA : A ∼→ 0 for each A ∈ ob A, and η̃ for the similarly defined natural transformation
for A\ ↪→ ŨA → ŨA/A\. By Theorem 4.1 the null-homotopy K(η̃) induces a weak equivalence
from K(A\) to the homotopy fiber of K(ŨA) → K(ŨA/A\), which is in turn wealy equivalent
to the homotopy fiber of K(U )→ K(U/A) via the weak equivalence induced by the above weak
equivalence of short sequences of spectra. It follows that the map from K(A) to the homotopy
fiber of K(U )→ K(U/A) induced by the null-homotopy K(η) is a weak equivalence, as desired.

Lemma 4.3 ([21], 3.2) For any exact category A, the embedding A ↪→ IndaA is left s-filtering.

Proof. We start by checking condition (3) of left s-filtering. Let X be an object of A and Y an
admissible ind-object in A indexed by a small filtering category J. A morphism f : X → Y in
IndaA is an element of lim−→j∈J

HomA(X, Yj), i.e. represented as the class of a map f j : X → Yj in A
for some j ∈ J. The canonical map Yj ↪→ Y is an admissible monomorphism because the diagram
j/J → A, i 7→ Yi/Yj serves as its cockerel, where j/J is the under-category of j. We get a desired

factorization f : X
f j−→ Yj ↪→ Y.

Condition (1) follows from (3). Indeed, an admissible epimorphism X � Y with X inA factors
through some Z in A such that Z ↪→ Y is an admissible monomorphism. The composition X �
Y � Y/Z is 0, but since this composition is also an admissible epimorphism, Y/Z must be 0. This
forces Y to be essentially constant.

To prove (4), let Y � X be an admissible epimorphism in IndaA with X in A, whose kernel
we denote by Z. The short exact sequence

0→ Z ↪→ Y � X → 0
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is isomorphic to a straight exact sequence

0→ Z′ ↪→ Y′ � X′ → 0,

where Z′, Y′, and X′ are all indexed by an identical small filtering category I and respectively
isomorphic to Z, Y, and X. The isomorphism X′ ∼−→ X is a compatible collection of morphisms
gi : X′i → X inA, i ∈ I, such that there is a morphism h : X → X′i0 for some i0 ∈ I such that gi0 ◦ h =
idX and h ◦ gi0 is equivalent to idX′i0

in lim−→i∈I
HomA(X′i0 , X′i). Since X′ is an admissible ind-object

this implies h ◦ gi0 = idX′i0
, i.e. gi0 is an isomorphism. (Note also that gi are isomorphisms for

all i ∈ i0/I.) The map Y′i0 ↪→ Y′ ∼−→ Y is an admissible monomorphism as noted above, and

its composition with Y � X equals the composition Y′i0 � X′i0
∼−→
gi0

X, which is an admissible

epimorphism in A.
Finally, if Y ↪→ X is an admissible monomorphism with X in A, its cokernel Z is in A by (1).

Let
0→ Y′ ↪→ X′ � Z′ → 0

be a straightening of the exact sequence

0→ Y ↪→ X � Z → 0,

whose common indices we denote by I. Then an argument similar to above shows that there is an
i0 ∈ I such that for every i ∈ i0/I, X′i and Z′i are isomorphic to X and Z, respectively. It follows
that Y′i is essentially constant above i0, and we conclude that Y is contained in the essential image
of A, verifying condition (2).

4.2 Proof of Theorem 1.2

We remark that, given a composable pair of embeddings of exact categories A ↪→ V and V ↪→ U ,
if their composition is naturally isomorphic to a left s-filtering embedding A ↪→ U and if V ↪→ U
detects admissible monomorphisms then A ↪→ V is also left s-filtering. This in particular implies
that the embeddings A ↪→ Inda

NA and Proa
NA ↪→ lim

←→
A are left s-filtering. For an object A of

A (resp. of Proa
NA) write ηA (resp. η′A) for the image in Inda

NA/A (resp. in lim
←→
A/ Proa

N) of the

unique map A → 0 in A (resp. in Proa
N), so that we have a natural isomorphism η (resp. η′) from

the composed functorA ↪→ Inda
NA → Inda

NA/A (resp. Proa
NA ↪→ lim

←→
A → lim

←→
A/ Proa

N) to the
constant functor onto the chosen zero object. Then by Theorem 4.1 we get two homotopy fibration
sequences of non-connective K-theory spectra

K(A)→ K(Inda
NA)→ K(Inda

NA/A),

together with the null-homotopy K(η) of the composed map given by the natural isomorphism η
and

K(Proa
NA)→ K(lim

←→
A)→ K(lim

←→
A/ Proa

NA),

together with the null-homotopy K(η′) of the composed map given by the natural isomorphi η′.

Lemma 4.4 There are canonical contractions for the non-connective K-theory spectra K(Inda
NA) and

K(Proa
NA).
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Proof. The contraction for K(Inda
NA) comes from the canonical flasque structure on Inda

NA
(i.e. an endo-functor whose direct sum with the identity functor is naturally isomorphic to itself)
given as follows. Let X = (Xi)i≥1 ∈ ob Inda

NA be an N-indexed admissible ind-object in A
whose structure maps we denote by ρ = ρi,i′ : Xi ↪→ Xi′ . Write T(X) ∈ ob Inda

NA for the

admissible ind-object 0 −→ X1
(ρ,0)−−→ X2 ⊕ X1

(ρ⊕ρ,0)−−−−→ X3 ⊕ X2 ⊕ X1
(ρ⊕ρ⊕ρ,0)−−−−−−→ · · · . A morphism

f ∈ HomInda
NA(Y, X) = lim←−i

lim−→j
HomA(Yi, Xj) with i-th component represented by fi : Yi → Xj(i)

defines a morphism T( f ) : T(Y) → T(X) whose i-th component is the class of the composition

Yi−1 ⊕ · · · ⊕ Y1
fi−1⊕···⊕ f1−−−−−−→ Xj(i−1) ⊕ · · · ⊕ Xj(1)

ρ⊕···⊕ρ−−−−→ Xk+i−1 ⊕ · · · ⊕ Xk+1 ↪→ T(X)k+i, where k
is chosen to be sufficiently large. The endo-functor T thus defined is a flasque structure on Inda

NA
since (X⊕ T(X))i

=−→ T(X)i+1 give a natural isomorphism of ind-objects.
The contraction for K(Proa

NA) follows from the contraction for K(Inda
N(−)) via the identifi-

cation Proa
NA = (Inda

NAop)op and the general equivalence K(Bop) ∼−→ K(B).

In view of the homotopy fibration sequences above, this gives us that the map K(lim
←→
A) →

K(lim
←→
A/ Proa

NA) is a weak equivalence, and that K(Inda
N /A) deloops K(A) (which is Schlicht-

ing’s delooping, Theorem 3.4 of [21]). We then note:

Lemma 4.5 There is an equivalence Inda
NA/A ∼−→ lim

←→
A/ Proa

NA.

Proof. We have a commutative diagram

A −−−−→ Inda
NAy y

Proa
NA −−−−→ lim

←→
A,

whence there results a functor F : Inda
NA/A → lim

←→
A/ Proa

NA.

To construct a quasi inverse, we start by noticing that the functor Funa(Π,A) → Inda
NA,

(Xi,j)i≤j 7→ X0,1 ↪→ X0,2 ↪→ · · · , induces a functor G̃ : lim
←→
A → Inda

NA/A. Indeed, if φ ≤ ψ :

Z→ Z are bicofinal, the map uX,φ,ψ : X ◦ φ̃→ X ◦ ψ̃ in Funa(Π,A) is sent to the map Xφ(0),φ(•) →
Xψ(0),ψ(•), which factors as Xφ(0),φ(•) ↪→ Xφ(0),ψ(•) � Xψ(0),ψ(•). The map Xφ(0),φ(•) ↪→ Xφ(0),ψ(•) is
an isomorphism in Inda

NA since it consists of natural isomorphisms lim−→j
HomA(A, Xφ(0),φ(j))

∼−→
lim−→j

HomA(A, Xφ(0),ψ(j)), A ∈ obA, as φ and ψ are bicofinal. We also see that Xφ(0),ψ(•) �
Xψ(0),ψ(•) is a weak isomorphism in Inda

NA with respect to A, since it has the constant kernel
Xφ(0),ψ(0) = Xφ(0),ψ(0) = · · · . The functor G̃ thus defined takes weak isomorphisms in lim

←→
A with

respect to Proa
NA to weak isomorphisms in Inda

NA with respect to A, since if X ∈ ob lim
←→
A is in

the image of Proa
NA then its 0-th row is constant X0,1 = X0,1 = · · · , i.e. G̃(X) is in the image of A.

Hence G̃ factors through a functor G : lim
←→
A/ Proa

NA → Inda
NA/A.

We have G ◦ F = idInda
NA/A by definition. On the other hand, if X = (Xi,j)i≤j ∈ ob lim

←→
A,

then F ◦ G(X) is the object X̃ of lim
←→
A determined by X̃i,j = X̃0,j = X0,j, (i ≤ 0 < j). Define an
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admissible epimorphism fX : X � X̃ in Funa(Π,A) (hence in lim
←→
A) by

( fX)i,j =


Xi,j = Xi,j (0 ≤ i ≤ j)
Xi,j � X0,j (i ≤ 0 < j)
Xi,j � 0 (i ≤ j ≤ 0).

The kernel coincides with the image of 0 � X−1,0 � X−2,0 � X−3,0 � · · · ∈ ob Proa
NA in lim

←→
A.

Hence fX is a weak isomorphism in lim
←→
A with respect to Proa

NA. Thus we get an isomorphism

f : idlim
←→
A/ Proa

NA
∼−→ F ◦ G, to conclude that G is a quasi inverse to F.

Proof of Theorem 1.2. Combining this with Schlichtings delooping and the weak equivalence
K(lim
←→
A) ∼→ K(lim

←→
A/ Proa

NA), we obtain that there is a natural zig-zag of weak equivalences

between K(A) and ΩK(lim
←→
A). The statement of Theorem 1.2 follows since the inclusion of an

exact category into its idempotent completion induces a weak equivalence of non-connective K-
theory spectra (Proposition 2.20), and we are done.

4.3 Proof of the original statement of Conjecture 1.1

We can also prove the original statement of Conjecture 1.1, that the Waldhausen space S(lim
←→
A) is

a delooping of S(A), under the assumption that A is idempotent complete.

Theorem 4.6 There is a weak equivalence of spaces between S(A) and ΩS(lim
←→
A) if A is idempotent

complete.

Remark 4.7 (This remark is due to Marco Schlichting.) Theorem 4.6 implies that Conjecture 1.1 is true,
because a partially abelian exact categoryA is always idempotent complete. To see this let A be an arbitrary
object of A\. Since A ↪→ A\ is a cofinal embedding, there is an object B of A\ such that A⊕ B is in A.

The two maps f , g : A ⊕ B ↪→ A ⊕ B ⊕ A ⊕ B given respectively by


1 0
0 0
0 0
0 1

 and


1 0
0 1
0 0
0 0

 are

admissible monomorphisms in A and

A
t(1,0)−−−−→ A⊕ B

t(1,0)
y y f

A⊕ B −−−−→
g

A⊕ B⊕ A⊕ B

is a pullback square. The partially abelian condition then tells A ∈ A. Therefore the fully exact embedding
A ∼

↪→ A\ is essentially surjective, hence an equivalence.

Proof. In [21] Schlichting shows that the a variant of Theorem 4.1 ([21], Theorem 2.1) stating that
a left or right s-filtering embedding A ↪→ U , together with a natural isomorphism η from the
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composed functor A ↪→ U → U/A to the contant functor onto the chosen zero object, induces a
homotopy fibration sequence of K-theory spaces

Ω∞K(A)→ Ω∞K(U )→ Ω∞K(U/A),

with the null-homotopy of the composed map given by Ω∞K(η). The proof of this statement in
[21] in fact shows that the sequence

S(A)→ S(U )→ S(U/A)

is a homotoy fibration, with the null-homotopy of the composed map given by S(η), so that by
taking the Ω of this one gets the homotopy fibration sequence of for Ω∞K.

The space S(Inda
NA) is contractible since π0(S(Inda

NA)) = 0, as the Waldhausen space of a
Waldhausen category is always connected, and we also have πi+1(S(Inda

NA)) ∼= πi(K(Inda
NA))

are trivial for all i ≥ 0 by Lemma 4.3. Hence the homotopy fibration sequence

S(A)→ S(Inda
NA)→ S(Inda

NA/A),

whose null-homotopy of the composed map is given by S(η), gives a weak equivalence between
S(A) and ΩS(Inda

NA/A). On the other hand, the space S(Proa
NA) is also contractible by Lemma

4.4. The homotopy fibration sequence

S(Proa
NA)→ S(lim

←→
A)→ S(lim

←→
A/ Proa

NA),

whose null-homotopy of the coposed map is given by S(η′), shows S(lim
←→
A)→ S(lim

←→
A/ Proa

NA)

is a weak equivalence. Using the weak equivalence of S(Inda
NA/A) to S(lim

←→
A/ Proa

NA) given
Lemma 4.5 we get the desired conclusion.

5 The Classification theorem for torsors over the sheaf of K-theory
spaces

We now turn to prove Theorems 1.10 and 1.13. Throughout this section, we work in the ∞-topos
Shv(Spaces)(N Spec RNis) of sheaves of spaces (Example A.8) on the small Nisnevich site Spec RNis
(Definition 1.5) of a fixed noetherian affine scheme Spec R of finite Krull dimension. See the Ap-
pendix for the necessary materials on the theory of ∞-topoi. We warn the reader that, in this
section, categorical terms should be understood in the ∞-categorical sense. For example, limits
and colimits are not usual limits and colimits in an ordinary category, but are used in the sense of
Definition A.4.

5.1 Proof of Proposition 1.8, Theorem 1.10, and Corollary 1.11

We start with the following key lemma, which is based on Drinfeld’s theorem on the Nisnevich
local vanishing of the first negative K-group ([9], Theorem 3.7).

Lemma 5.1 The object KTate is a connected pointed object of the ∞-topos Shv(Spaces)(N Spec RNis).
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Proof. The point [0] ∈ Ω∞K((lim
←→
P(R))\) associated to the chosen zero object of the exact

category (lim
←→
P(R))\ defines a map of simplicial presheaves ∗ → Sing Ω∞K((lim

←→
P(−)\) on

Spec RNis, which induces via θ the desired pointing Spec R → KTate. The nontrivial part is the
connectedness, which amounts to showing that the 0-th homotopy sheaf π0KTate vanishes. The
sheaf of sets π0KTate is by Definition A.10 the sheafification of the presheaf R′ 7→ π0(KTate(R′)) =
π0(Sing Ω∞K((lim

←→
P(R′))\)), which is by Theorem 1.2 isomorphic to the presheaf given by R′ 7→

π0(Sing Ω∞ΣK(P(R′))) = K−1(R′). Now, it is a theorem of Drinfeld ([9], Theorem 3.7) that for
every element a ∈ K−1(R′) there exists a Nisnevich covering {Spec R′α → Spec R′}α such that the
images of a in K−1(R′α) are zero. Therefore the Nisnevich sheafification of the presheaf K−1 van-
ishes and we get the desired triviality of the 0-th homotopy sheaf π0KTate.

Lemma 5.2 The loop space ΩKTate of the pointed object KTate is equivalent to K.

Proof. Recall that the objects K and KTate of Shv(Spaces)(N Spec RNis) are the images by θ of the
simplicial presheaves Sing Ω∞K(−) and Sing Ω∞K((lim

←→
P(−))\) (Definitions 1.6 and 1.7). In the

simplicial category (Set
Spec Rop

Nis
∆ )◦ we have that the object Sing Ω∞K(−) is equivalent to the ho-

motopy limit holim
←−

(∗ → Sing Ω∞K((lim
←→
P(−))\) ← ∗) by Theorem 1.2. By Theorem 4.2.4.1 of

[13] this translates into an equivalence in N(Set
Spec Rop

Nis
∆ )◦ = Preshv(Spaces)(N Spec RNis) between

K = θ(Sing Ω∞K(−)) and the limit lim←−(Spec R → θ(Sing Ω∞K((lim
←→
P(−))\) ← Spec R), which

is by definition the loop space of the pointed object θ(Sing Ω∞K((lim
←→
P(−))\) = KTate.

Proof of Proposition 1.8. Recall Theorem A.13 which says that for an ∞-topos X there is an equiv-
alence

Ω : X∗,conn � Grp(X) : B
between the ∞-categories X∗,conn of connected pointed objects of X and Grp(X) of group objects of
X. For X = Shv(Spaces)(N Spec RNis) we have by Lemma 5.1 that KTate is in X∗,conn, and by Lemma
5.2 that its loop space ΩKTate is equivalent toK. This provides withK the desired group structure,
and the proof of Proposition 1.8 is complete.

Proof of Theorem 1.10. Applying the inverse functor B to the equivalence between ΩKTate and
K we obtain the desired equivalence between KTate

∼= BΩKTate and BK, where BK serves as the
classifying space object for K-torsors in view of Theorem A.16, and the proof of Theorem 1.10 is
complete.

Proof of Corollary 1.11. Thus we see thatK-torsors over Spec R are classified by maps from Spec R
to BK ∼= KTate. Let M be a Tate vector bundle over Spec R. Then as an object of the exact category
(lim
←→
P(R))\ it defines a point [M] of the K-theory space Ω∞K((lim

←→
P(R))\), inducing a map of

simplicial presheaves ∗ → Sing Ω∞K((lim
←→
P(−))\) on Spec RNis. For the resulting map Spec R→

KTate in Shv(Spaces)(N Spec RNis) we also write [M] by a slight abuse of notation. The desired torsor

DM is the K-torsor classified by this map [M], i.e. it is the pullback DM = lim←−(Spec R
[M]→ BK ←

Spec R), where the map BK ← Spec R denotes the base-point map for the classifying space object
BK. The proof of Corollary 1.11 is complete.
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5.2 Proof of Theorem 1.13

Let M ∈ ob(lim
←→
P(R))\ be a Tate vector bundle over Spec R, and consider the simplicial presheaf

on Spec RNis that assigns to R′ the Kan complex NAut
(lim
←→
P(R′))\ M⊗R R′, the nerve of the

groupoid Aut
(lim
←→
P(R′))\ M⊗R R′ with a single object, the group of whose automorphisms is

the group Aut
(lim
←→
P(R′))\ M⊗R R′. By taking the θ of the fibrant replacement of it we get an ob-

ject NAut M of the ∞-category Preshv(Spaces)(N Spec RNis) of presheaves spaces on N Spec RNis,
whose sheafification is denoted by a(NAut M). We use the following lemma.

Lemma 5.3 The classifying space object of the group object Aut M is given by a(NAut M).

Proof. The proof goes similarly to the proof of Theorem 1.10, once we notice that a(NAut M)
is a connected pointed object with its loop space object equivalent to Aut M. With the obvious
pointing Spec R → NAut M we have that NAut M is a pointed object, and so is its sheafification
a(NAut M). Recall the general fact that for every ordinary group G, the Kan complex NG is
the Eilenberg-MacLane space K(G, 1), where G denotes the groupoid with a single object and
morphisms given by elements of G. The 0-th homotopy sheaf π0a(NAut M) is given by sheafifying
the presheaf R′ 7→ π0(NAut M(R′)), and this vanishes since the Eilenberg-MacLane space NG =
K(G, 1) is always connected. Since the sheafification functor commutes with finite limits, the loop
space Ω(a(NAut M)) is the sheafification of the loop space Ω(NAut M), which can be computed

as the homotopy limit in the simplicial category (Set
Spec Rop

Nis
∆ )◦ by Theorem 4.2.4.1 of [13]. This in

turn can be computed object-wise on the simplicial presheaf R′ 7→ NAut
(lim
←→
P(R′))\ M⊗R R′ =

K(Aut
(lim
←→
P(R′))\ M⊗R R′, 1), and using the general fact that ΩK(G, 1) = G we get the desired

conclusion.

Proof of Theorem 1.13. Now, recall that for a group object G of an ∞-topos X, giving a G-action
on an object P ∈ ob X is equivalent to giving an object σ ∈ ob X/X→BG←∗ for some X → BG, such
that σ is a limit of the diagram X → BG ← ∗ and such that the cone point σ|∆0(0) equals P. (See
Definition A.14 and following discussions in section A.5.) Hence, constructing the desired Aut M-
action on the K-torsor DM amounts to describing DM as a limit DM = lim←−(X → B Aut M ←
Spec R) ∈ ob Shv(Spaces)(N Spec RNis)/X→B Aut M←Spec R for some X and some map X → B Aut M.
It turns out that it suffices to have a map [[M]] : B Aut M → BK whose precomposition with
the base-point map Spec R → B Aut M is equal to the map [M] : Spec R → BK classifying the
K-torsor DM. Indeed, the successive pullback σ = lim←−(X → B Aut M ← Spec R), where X =

lim←−(B Aut M
[[M]]→ BK ← Spec R), has the cone point σ|∆0(0) = DM if [[M]] ◦ (base-point) = [M],

in view of Proposition 2.3 of [15].
To find such a map [[M]], we notice that, in general, for any idempotent complete exact cat-

egory A and an object a of A the space |NAutA a| admits a natural, canonical map to the space
Ω|iS•(A)| = Ω∞K(A), where S• denotes Waldhausen’s S•-construction ([25], 1.3), i(−) the sub-
category of isomorphisms, and |−| the geometric realization. This is the composition of the map
|NAutA a| → |NiA| (recall that we write iA for the subcategory of isomorphisms) with the first
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structure map |NiA| → Ω|iS•(A)| of Waldhausen’s connective algebraic K-theory spectrum ([25],
1.3). By adjunction there in particular results a map NAutA a → Sing Ω∞K(A). Applying this
construction to M ⊗R R′ ∈ ob(lim

←→
P(R′))\ for étale R-algebras R′, we get a map of simplicial

presheaves NAut
(lim
←→
P(−))\ M⊗R (−) → Sing Ω∞K((lim

←→
P(−))\). Via the equivalence θ this

corresponds to a map NAut M → KTate in Preshv(Spaces)(N Spec RNis), which in turn induces
a map [[M]] : B Aut M ∼= a(NAut M) → KTate

∼= BK. Note that the precomposition of the
map of simplicial presheaves NAut

(lim
←→
P(−))\ M⊗R (−) → Sing Ω∞K((lim

←→
P(−))\) with the

canonical pointing Spec R→ NAut
(lim
←→
P(−))\ M⊗R (−) equals the map of simplicial presheaves

Spec R→ Sing ΩK((lim
←→
P(−))\) defined by the point [M] ∈ Ω∞K((lim

←→
P(R))\), so that the map

[[M]] satisfies the desired property [[M]] ◦ (base-point) = [M]. The proof of Theorem 1.13 is com-
plete.

5.3 Towards higher dimensions

We have thus shown that the moduli space of torsors over the sheaf of K-theory spaces on Spec RNis
is equivalent to the K-theory sheaf of Tate vector bundles, and in particular that each Tate vector
bundle M ∈ ob(lim

←→
P(R))\ has a canonically associated torsor over the sheaf of K-theory spaces

DM equipped with an action by the sheaf of automorphisms of M. It would then be natural to
ask if this picture generalizes to higher Tate vector bundles. Here, for every n ≥ 0, an n-Tate
vector bundle we define to be an object of the iterated, idempotent-completed Beilinson category
(lim
←→

nP(R))\. Unfortunately, our argument given above does not apply to higher Tate vector bun-
dles. This is because the negative K-groups K−n does not Nisnevich locally vanish if n > 1, that
is, the object KTaten of the ∞-topos Shv(Spaces)(N Spec RNis) given by θ(Sing Ω∞K((lim

←→
nP(−))\)

is not connected, and hence may differ from the n-times classifying space object BnK of K.
One possible way of adressing this difficulty is to use a stronger topology. For instance, as-

suming resolution of singularities in the sense of Hironaka, the negative K-groups locally vanish
for the cdh topology by Proposition 2.21. A drawback of this approach is, however, that K-theory
does not satisfy cdh descent.

Another possible way to treat the local non-vanishing of negative K-theory while respect-
ing K-theory’s descent property is to use Robalo’s recently developed theory of non-commutative
Nisnevich topology [19], [20]. He defines the opposite NcS(R) of the ∞-category of small dg-
categories of finite type over R in the sense of Toën-Vaquié [24], localized by Dwyer-Kan equiv-
alences, to be the ∞-category of non-commutative spaces over Spec R, and constructs an embedding
N AffSmop

R ↪→ NcS(R) of the category of smooth affine schemes of finite type over Spec R into
NcS(R), by sending Spec R′ to the dg-category of perfect complexes on Spec R′. There are connec-
tive and non-connective K-theory functors K and K on NcS(R), whose restrictions to N AffSmop

R
recoverse the usual ones.

He introduces an analogue of the notion of Nisnevich descent for presheaves of spectra on non-
commutative spaces, formulating it as sending certain distinguished squares of non-commutative
spaces to pullback-pushout squares of spectra. He proves that the non-connective K-theory is the
non-commutative Nisnevich sheafification of the connective K-theory, i.e. K is the image of K by
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the left adjoint of the inclusion FunNis(NcS(R), (Spectra)) ↪→ Fun(NcS(R), (Spectra)) of the ∞-
category of non-commutative Nisnevich sheaves of spectra into the ∞-category of presheaves of
spectra on NcS(R).

This, in particular, implies that all the negative K-groups are non-commutative Nisnevich lo-
cally trivial. Hence, if the ∞-category of non-commutative Nisnevich sheaves of spaces on NcS(R)
is an ∞-topos, the group object K = θ(Sing Ω∞K(−)) admits for every n ≥ 0 an equivalence
between the n-times classifying space BnK and the K-theory of n-Tate vector bundles KTaten =
θ(Sing Ω∞K((lim

←→
nP(−))\). Thus the construction described in the previous subsections applies

to higher Tate vector bundles in the non-commutativce world. However, it is not clear for the
moment that the non-commutative Nisnevich sheaves of spaces actually form an ∞-topos.

We leave it to a future paper to carry out the full details of this story and study its possible
applications.

A Appendix: ∞-topoi

In this appendix we collect material on ∞-topos theory used in section 5. Our exposition is mainly
based on [13], but the definitions and properties of group actions and torsors in ∞-topoi are also
taken from [15]. We begin with a brief introduction to the language of ∞-categories, recalling basic
definitions and constructions on general ∞-categories (subsections A.1 through A.4), and then go
on to survey the theory of ∞-topoi (subsection A.5).

A.1 ∞-categories

Let Set∆ denote the category of simplicial sets, i.e. contravariant functors from the category of
the linearly ordered sets [n] = {0 < 1 < 2 < · · · < n}, n ≥ 0, and order preserving maps to
the category of sets and set maps. We write ∆n for the simplicial set [m] 7→ HomSet∆([m], [n])
represented by [n], called the standard n-simplex. For every 0 < i < n, the i-th horn is the simplicial
set Λn

i ⊂ ∆n given by (Λn
i )m = {p : [m]→ [n] | order preserving, {i} ∪ p([m]) 6= [n]}.

Definition A.1 ([13], 1.1.2.1, 1.1.2.4) A simplicial set S ∈ ob Set∆ is an ∞-category (resp. a Kan com-
plex) if for every 0 < i < n (resp. for every 0 ≤ i ≤ n) and every map f0 : Λn

i → S there is a map
f : ∆n → S which restricts to f0 on Λn

i ⊂ ∆n. We call a map of simplicial sets S → S′ a functor if both S
and S′ are ∞-categories.

There is a model category structure on Set∆, called the Joyal model structure, where fibrant objects
are precisely ∞-categories. The category Cat∆ of small categories enriched over Set∆ also has a
model structure whose fibrant objects are categories enriched over Kan complexes, and there is a
Quillen equivalence

C : Set∆ � Cat∆ : N.

See [13], section 1.1.5, for details. For a small category C enriched over Set∆ we call the ∞-category
NC the simplicial nerve of C. For an ∞-category S, the Set∆-enriched category C(S) has as the set
of objects the set of 0-simplices of S. A functor between ∞-categories is called an equivalence if the
induced functor of Set∆-enriched categories is an equivalence.

A 0-simplex ∆0 → S is called an object of S and a 1-simplex is called a morphism. We write ob S
for the set of objects of S. An object x of S defines the identity morphism idx = s0(x) : ∆1 → S,
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where s0 is the 0-the degeneracy map for the simplicial set S. A morphism φ of S defines a pair
of objects of S: The domain d1(φ) = φ(0) and the target d0(φ) = φ(1), where di are the face maps
for S. If φ and φ′ are morphisms with the same domain x and target y, a homotopy from φ to φ′

is a 2-simplex ∆2 → S with d2 = φ, d1 = φ′, and d0 = idy. For every pair of objects x, y of S we
have the mapping space MapS(x, y) = |HomC(S)(x, y)|, where |−| is the geometric realization of the
simplicial set. A morphism from x to y defines a point in MapS(x, y), and two morphisms from x
to y are homotopic if and only if the associated points in the mapping space lie in the same path
connected component.

An ∞-category S defines an ordinary category h S called the homotopy category, whose objects
are the objects of S and whose morphisms are the homotopy classes of morphisms of S. The
composition of the classes of two morphisms φ and ψ with φ(1) = ψ(0) is given as the classes of
the first face of a chosen 2-simplex σ : ∆2 → S such that d0 = ψ and d2 = φ. By the defining
condition for an ∞-category such a σ exists and it can be shown that the class of the first face of
σ is independent of the choices involved. A morphism is a homotopy equivalence if it induces an
isomorphism in the homotopy category.

If S and S′ are ∞-categories, then the ∞-category Fun(S, S′) of functors from S to S′ is the ∞-
category [n] 7→ HomSet∆(∆n × S, S′).

A.2 The ∞-category of ∞-categories and the ∞-category of spaces

The full subcategory Cat∆
∞ ⊂ Set∆ of ∞-categories has a canonical enrichment over Kan complexes.

The mapping Kan complex from an ∞-category C to an ∞-category D is the largest Kan complex
contained in the ∞-category Fun(C,D). This makes Cat∆

∞ into a fibrant object of the model cate-
gory Cat∆. Recall the Quillen equivalence

C : Set∆ � Cat∆ : N.

The simplicial nerve N(Cat∆
∞) is the ∞-category of ∞-categories and we denote it by Cat∞ ([13],

3.0.0.1).
The full, Kan-complex-enriched subcategory Kan ⊂ Cat∆

∞ ⊂ Set∆ of Kan complexes defines in
the same way an ∞-category N(Kan) which we call the ∞-category of spaces and denote by (Spaces)
([13], 1.2.16.1).

Remark A.2 Strictly speaking, we have to do some universe considerations to avoid set-theoretic inconsis-
tencies in the above argument. If the Quillen equivalence between small simplicial sets and small simplicial-
set enriched categories mentioned in the previous subsection is taken with respect to some Grothendieck
universe U (that is, being “small” means being an element of U), then the one recalled in this subsection
should be considered in a larger universe U′. See [13], sections 1.2.15 and 1.2.16, for a more detailed ac-
count.

A.3 Limits in an ∞-category

Let S and T be ∞-categories. The join is the simplicial set (in fact an ∞-category) S ? T given by

(S ? T)I =

(
ä

I=J ä K,∅ 6=J<K 6=∅
S(J)× T(K)

)
ä S(I) ä T(I),
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where I is a non-empty finite linearly ordered set and the first disjoint union runs over decomposi-
tions of I into two non-empty linearly ordered subsets J and K with empty intersection satisfying
that every element of j in J lies over every element k of K. Note that the join S ? T contains both S
and T as simplicial subsets. For map of simplicial sets p : D → S, called a diagram, the undercategory
S/p and the overcategory Sp/ are the simplicial sets given by (S/p)n = { f : ∆n ? D → S | f |D = p}
and (Sp/)n = { f : D ? ∆n → S | f |D = p}, respectively. It can be shown that S/p and Sp/ are
∞-categories whenever S is. For an object σ ∈ S/p or Sp/, we refer to σ|∆0(0) as the cone point of σ.

Definition A.3 ([13]; 1.2.12.1) Let S be an ∞-category. An object x ∈ ob S = S0 is a terminal object
(resp. an initial object) of S if for every y ∈ ob S the mapping space MapS(y, x) (resp. MapS(x, y)) is
contractible.

Definition A.4 ([13], 1.2.13.4) A colimit of the diagram p : D → S is an initial object lim−→ p of Sp/.
Dually, a limit of the diagram p : D → S is a terminal object lim←− p of S/p. By abuse of language we also
refer to the objects of S given by the cone points (lim−→ p)|∆0(0) and (lim←− p)|∆0(0) as the colimit and limit
of p, respectively.

The limit and colimit are not strictly unique but unique up to contractible ambiguity, in the sense
that if σ and σ′ are both limits (resp. colimits) for the diagram p, the mapping space MapS/p

(σ, σ′)
(resp. MapSp/

(σ, σ′)) is contractible by definition.

A.4 Adjoint functors between ∞-categories

Definition A.5 ([13], 5.2.2.1, 5.2.2.7, 5.2.2.8) A pair of functors between ∞-categories

f : C � D : g

is called an adjunction if there exists a morphism u : idC → g ◦ f in Fun(C, C) such that for every pair of
objects C of C and D of D, the map

MapD( f (C), D)
g→ MapC(g( f (C)), g(D)) u∗→ MapC(C, g(D))

is a weak equivalence of spaces. In this case f is called a left adjoint to g and g is called a right adjoint to
f .

Proposition A.6 ([13], 5.2.3.5) Let f : C → D be a functor between ∞-categories which has a right
adjoint g : D → C. Then f preserves all colimits and g preserves all limits.

A.5 ∞-topoi

If C is an ∞-category and C′ a full subcategory of the homotopy category h C, the pullback (taken
in the category of simplicial sets)

C ′ −−−−→ Cy y
NC′ −−−−→ N h C

is again an ∞-category and called the full ∞-subcategory of C spanned by the objects contained in C′.
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Definition A.7 ([13], 6.1.0.4) An ∞-topos X is a full, accessible (see [13], 5.4.2.1, for the definition) ∞-
subcategory of the ∞-category Preshv(Spaces)(C) = Fun(Cop, (Spaces)) of presheaves of spaces on some
∞-category C, such that the inclusion X ↪→ Preshv(Spaces)(C) has a left adjoint that preserves finite limits.
The left adjoint is called the sheafification functor.

Example A.8 (∞-topos of sheaves of spaces ([13], 6.2.2)) Let C be an ∞-category. A sieve on an object
C of C is a full subcategory C(0)

/C of the overcategory C/C such that if a morphism in C/C has its target in

C(0)
/C then it also has its source in C(0)

/C . By Proposition 6.2.2.5 of [13] there is a canonical bijection between
sieves on the object C and monomorphisms in the ∞-category Preshv(Spaces)(C) whose target is j(C), where
j : C ↪→ Preshv(Spaces)(C) denotes the Yoneda embedding ([13], 5.1.3).

A Grothendieck topology on C is an assignment of a collection of sieves on C to each object C of
C. A sieve on C belonging to that assigned collection is called a covering sieve on C. A presheaf F ∈
Preshv(Spaces)(C) on C is called a sheaf of spaces on C if for every object C of C and for every monomor-
phism U ↪→ j(C) corresponding to a covering sieve on C the induced map MapPreshv(Spaces)(C)(j(C), F) ∼→
MapPreshv(Spaces)

(U, F) is a weak equivalence. The full subcategory Shv(Spaces)(S) ⊂ Preshv(Spaces)(S) of
sheaves of spaces on C is an ∞-topos ([13], 6.2.2.7).

An ∞-category equipped with a Grothendieck topology is called an ∞-site. An ordinary site can be seen
as an ∞-site by taking the nerve.

The following proposition is useful in that it allows to translate descent results stated in terms
of Jardine’s local model structure on simplicial presheaves ([11]) to statements on ∞-sheaves of
spaces.

Proposition A.9 ([13], 6.5.2.14) Let C be an ordinary site. Write A for the simplicial category sSetC
op

of
simplicial presheaves on C, considered with Jardine’s local model structure [11], and A◦ ⊂ A for the full
subcategory of fibrant-cofibrant objects. Then there is an equivalence

θ : N(A◦) ∼→ Shv(Spaces)(NC)∧ ⊂ Shv(Spaces)(NC)

of the simplicial nerve of A◦ to the full ∞-subcategory of hypercomplete sheaves (see [13], 6.5.2) of the
∞-topos Shv(Spaces)(NC) of sheaves of spaces on the ∞-site NC.

Definition A.10 (Homotopy sheaves; [13], 6.5.1.1) Let X ⊂ Preshv(Spaces)(C) be an ∞-topos and X a
pointed object. For each non-negative integer n ≥ 0, the n-th homotopy sheaf of X is the sheaf of sets
on C given by sheafifying the presheaf of sets on C that assigns to each object C of C the n-th homotopy set
πn(X(C)) of the pointed space X(C).

Definition A.11 (Connected objects; [13], 6.5.1.11, 6.5.1.12) An object X of an ∞-topos X is connected
if its 0-th homotopy sheaf π0X is trivial.

Write ∆big for the category of non-empty finite linearly ordered sets. A simplicial object in an ∞-
category C is a functor N(∆op

big)→ C. The notions of group objects and their actions are formulated
in terms simplicial objects, as follows.

Definition A.12 (group objects; [13], 6.1.2.7, 7.2.2.1) A group object of an ∞-topos X is a simplicial
object G : N(∆op

big) → X in X such that G([0]) is a terminal object of X and for every n ≥ 0 and for every
partition [n] = S ∪ S′ with S ∩ S′ = {s}, the maps G([n]) → G(S) and G([n]) → G(S′) exhibit G([n])
as a product of G(S) and G(S′).
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By a slight abuse of language we usually refer to the object G([1]) ∈ ob X as a group object and
call the simplicial object G as the group structure on G([1]).

The following theorem says that in an ∞-topos the classifying space object of a group is ob-
tained just by the connected delooping of the group.

Theorem A.13 ([13], 7.2.2.11-(1)) There is an equivalence

B : Grps(X) � X∗,conn : Ω

between the ∞-category of group objects in an ∞-topos X and the ∞-category X∗,conn ⊂ Fun(∆1, X)
of pointed, connected objects of X (i.e. morphisms ∗ → X in X whose source is a terminal object and
whose target is a connected object). On the level of objects, the functor B takes a group object G to the
colimit BG = lim−→G, where G is seen as a diagram in X indexed by N(∆op

big), with the pointing given by
∗ = G([0]) → lim−→G. The functor Ω takes a connected pointed object X to its loop space ΩX = lim←−(∗ →
X ← ∗).

Definition A.14 (Action of a group object; [15], 3.1) Let G be a group object of the ∞-topos X. An
action of G on an object P ∈ ob X is a map of simplicial objects ρ → G in X such that ρ([0]) = P and
for every n ≥ 0 and for every partition [n] = S ∪ S′ with S ∩ S′ = {s}, the maps ρ([n]) → ρ(S) and
ρ([n])→ G(S′) exhibit ρ([n]) as a product of ρ(S) and G(S′).

An action ρ → G of G on P = ρ([0]) gives rise to a pullback σ = lim←−(X → BG ← ∗) ∈
ob X/X→BG←∗ for a certain map X → BG, such that the cone point σ|∆0(0) equals P, as shown
in [15], Proposition 3.15. Conversely, given a pullback σ = lim←−(X → BG ← ∗) ∈ ob X/X→BG←∗
for some map X → BG, there results an action ρ → G such that ρ([0]) = σ|∆0(0), via the Cech
nerve construction ([13], 6.1.2). These constructions are mutually inverses to each other, due to the
Giraud axiom saying that in an ∞-topos every groupoid object is effective. See [15], section 3, for a
details. Therefore, in an ∞-topos, giving an action of a group object G on an object P is equivalent
to giving a pullback σ = lim←−(X → BG ← ∗) for some map X → BG, such that the cone point
σ|∆0(0) equals P.

Definition A.15 (Torsors; [15], 3.4) Let G be a group object in an ∞-topos X and X an object. A G-torsor
over X is a G-action ρ → G together with a map ρ([0]) → X such that the induced map to X from the
colimit (lim−→ ρ)|∆0(0) is an equivalence.

It is notable that this simple definition automatically implies, in the setting of ∞-topoi, the usual
conditions for torsors, such as the principality condition and the local triviality. See [15], 3.7 and
3.13. Moreover, we have the following very simple classification theorem of torsors.

Theorem A.16 ([15], 3.19) Let X be an ∞-topos and G a group object. The ∞-category (which can be
shown to be an ∞-groupoid; [15], 3.18) of G-torsors over a fixed object X is equivalent to the space (i.e. an
∞-groupoid) MapX(X, BG) of maps from X to BG.

In this sense we call BG the classifying space object of the group object G, or the moduli space of G-
torsors, and say that a map X → BG classifies the G-torsor Č(X×BG ∗ → X)→ G over X, where Č
denotes the Cech nerve ([13], 6.1.2). Theorem A.13 says that, in an ∞-topos, the classifying space
for torsors is just given by the connected delooping of the group.
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