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Abstract

In clathrin-mediated endocytosis (CME), specificity and selectivity
for cargoes are thought to be tightly regulated by cargo-specific
adaptors for distinct cellular functions. Here, we show that the
actin-binding protein girdin is a regulator of cargo-selective CME.
Girdin interacts with dynamin 2, a GTPase that excises endocytic
vesicles from the plasma membrane, and functions as its GTPase-
activating protein. Interestingly, girdin depletion leads to the
defect in clathrin-coated pit formation in the center of cells. Also,
we find that girdin differentially interacts with some cargoes, which
competitively prevents girdin from interacting with dynamin 2
and confers the cargo selectivity for CME. Therefore, girdin
regulates transferrin and E-cadherin endocytosis in the center of
cells and their subsequent polarized intracellular localization, but
has no effect on integrin and epidermal growth factor receptor
endocytosis that occurs at the cell periphery. Our results reveal
that girdin regulates selective CME via a mechanism involving
dynamin 2, but not by operating as a cargo-specific adaptor.
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Introduction

Eukaryotic cells utilize clathrin-mediated endocytosis (CME)

to internalize various cargoes (e.g. receptors, nutrients) in a

well-organized manner. This process can be dissected into five

stages: nucleation, cargo selection, clathrin coat assembly, vesicle

scission, and clathrin uncoating (McMahon & Boucrot, 2011). CME

determines various cellular behaviors and biological properties

(Doherty & McMahon, 2009), such as cell signaling pathways,

migration, and polarity.

Due to the vital role of CME in cells and the diversity of cargoes

that are internalized via CME, there is no doubt that the specificity

and selectivity for cargoes and their timing and spacing must be

precisely controlled to maintain cell homeostasis. Previous studies

have demonstrated that cargo specificity is determined by the recog-

nition of different cargoes by cargo-specific adaptors at the cargo

selection stage (Traub, 2009). For example, the major clathrin adap-

tor, the heterotetrametric complex AP-2 (also termed adaptin),

controls the endocytosis of many cargoes such as transferrin (Tf).

However, ablation of AP-2 has only limited effects on low-density

lipoprotein endocytosis, which is controlled by two other adaptors,

disabled-2 and autosomal recessive hypercholesterolemia protein

(ARH) (Keyel et al, 2006). Other examples of cargo-specific adaptors

include epsin, b-arrestin, and numb, which are responsible for

epidermal growth factor receptor (EGFR), G protein-coupled recep-

tors (GPCR), and integrin b1 endocytosis, respectively (Huang et al,

2007; Nishimura & Kaibuchi, 2007; Marchese et al, 2008). However,

even cargo-specific adaptors cannot discriminate every cargo (e.g.

b-arrestin is involved in the internalization of many GPCRs, and

numb regulates both integrin b1 and E-cadherin endocytosis)

(Nishimura & Kaibuchi, 2007; Marchese et al, 2008; Sato et al,

2011). Given the limited number of known adaptor proteins and the

variety of cargoes that are selectively internalized, additional

mechanism(s) that govern selective CME remain to be identified.

During the process of endocytosis, the large GTPase dynamin

plays a critical role in endocytic membrane fission events through

assembling into helical polymers at the necks of budding vesicles
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(Ferguson & De Camilli, 2012). As a GTPase, the function of dynamin

is largely dependent on binding to nucleotide and its transition from

the GTP-bound form to the GDP-bound form. This process requires

the involvement of GTPase-activating protein (GAP). Unlike small

GTPases such as the Rho family of proteins, the activities of which

are regulated by many intermolecular GAPs, dynamin GTPase

activity is primarily controlled by self-assembly and its intra-

molecular GAP domain termed dynamin GTPase effector domain

(GED) (Schmid & Frolov, 2011). So far, the only intermolecular GAP

that has been identified for dynamin is phospholipase D (PLD),

which selectively regulates EGFR but not Tf endocytosis (Lee et al,

2006; Padrón et al, 2006). Interestingly, some other dynamin-

interacting proteins also regulate selective endocytosis, including

growth factor receptor-bound protein 2 (Grb2) that is essential for

EGFR endocytosis and sorting nexin 9 (SNX9) that is required for Tf

endocytosis (Martinu et al, 2002; Soulet et al, 2005). All of these

raise the possibility that selective endocytosis is regulated at the late

stage of endocytosis through cooperation between dynamin and its

interacting proteins.

We and others previously characterized the actin-binding protein

girdin (girders of actin filament) as a critical regulator of migration

of endothelial cells, cancer cells, and neuroblasts, all of which

depend on extracellular cues including growth factor stimulation

(Enomoto et al, 2005, 2009; Le-Niculescu et al, 2005; Jiang et al,

2008; Kitamura et al, 2008; Ohara et al, 2012). Although girdin was

reported to be a component of a protein complex that included

dynamin (Simpson et al, 2005), the role of girdin in CME has not

been investigated. Also, our previous finding that girdin colocalizes

with submembranous actin network (Enomoto et al, 2005), which

possess critical roles in CME (Kaksonen et al, 2006), led to the idea

of girdin’s involvement in CME.

In this study, we revealed that girdin regulates cargo-selective

CME. Our results showed that girdin functions as an intermolecular

GAP for dynamin 2 and is involved in the internalization of Tf and

E-cadherin, but not EGFR or integrin b1. We also provide sets of

data showing that the selective function of girdin in CME is achieved

through (i) spatially controlled clathrin-coated pit (CCP) formation

and (ii) competitive interaction among cargoes, dynamin, and

girdin.

Results

Girdin interacts with dynamin 2

Previous study indicated girdin as the component of dynamin

complex (Simpson et al, 2005). To confirm this finding, the endoge-

nous interaction between girdin and dynamin was investigated by

co-immunoprecipitation (Co-IP). We observed that the endogenous

girdin/dynamin interaction could be detected in the presence of

either GTPcS (a non-hydrolyzable GTP analogue) or GDP; however,

dynamin preferentially interacted with girdin in the presence of

GTPcS (Fig 1A), indicating that their interaction was regulated by

GTP binding to dynamin. To further show that girdin is associated

with dynamin, protein fractionation experiment was performed by

gel filtration (Fig 1B). Consistent with our previous report, native

girdin from HeLa cells was eluted with an apparent molecular mass

much greater than that of the monomeric protein, which is mediated

by self-oligomerization via girdin N-terminal (NT) and coiled-coil

domains (Enomoto et al, 2005). Significantly, the elution pattern of

girdin largely overlapped with that of dynamin, further supporting

the idea that girdin interacts with dynamin in vivo (Fig 1B).

Mapping the interacting domains indicated that the middle region

(N2) of the girdin NT domain was responsible for the association

with dynamin 2 (Fig 1C–E). Moreover, the GTPase and GED

domains of dynamin 2 contained girdin-binding sites (Fig 1F). The

interaction was further confirmed by in vitro binding assays using

purified recombinant proteins, which revealed that girdin NT

domain interacted with both dynamin GTPase and GED domain

directly in a GTP-dependent manner (Fig 1G and H).

Girdin selectively regulates CME

Knowing that dynamin is a key regulator for endocytosis in eukary-

otic cells, we asked whether girdin is also involved in this process

using HeLa cervical carcinoma cells. The internalization of Tf,

EGFR, integrin b1, and E-cadherin, which are internalized through

CME (Paterson et al, 2003; Nishimura & Kaibuchi, 2007; Sigismund

et al, 2008; Ezratty et al, 2009; Sato et al, 2011), was evaluated

using confocal microscopy (Fig 2A and B) and antibody-capture

enzyme-linked immunospecific assays (ELISA) after labeling cell

surface proteins with sulfo-NHS-SS-Biotin (Fig 2C–F). The results

revealed that RNA interference-mediated depletion (knockdown) of

girdin reduced the internalization of Tf, although modestly, and

E-cadherin, but not EGFR or integrin b1. The effect of girdin knock-

down on Tf uptake was greater in the fluorescence-based assay than

the ELISA assay (Fig 2B and C), which could be due to the different

sensitivity between these assays. These data raised several ques-

tions: (i) how did girdin regulate CME and (ii) how did girdin selec-

tively regulate the endocytosis of specific cargoes?

Girdin functions as a GAP for dynamin 2 to regulate CME

To address the mechanism for girdin-mediated regulation of CME,

we first hypothesized that girdin regulates CME through interaction

with dynamin. It is known that overexpression of protein interaction

domains taken from endocytic proteins results in the dysregulation

of CME (McMahon & Boucrot, 2011). We utilized this experimental

system to test whether girdin regulated CME through interaction

with dynamin 2. Tf internalization was inhibited by the overexpres-

sion of the girdin NT and N2 domains that are able to bind to

dynamin 2, but not other domains (N1, N3, M1, M2, and CT)

(Fig 3A–C). The effect of overexpressing the girdin NT domain was

partly rescued by the expression of exogenous dynamin 2 (Fig 3B

and C), further supporting the view that balanced and regulated

interaction between dynamin 2 and girdin is essential for Tf endocy-

tosis. In girdin-depleted cells, the expression of RNA-resistant wild-

type girdin, but not its mutants lacking the NT domain (DNT), could
restore Tf uptake (Supplementary Fig S1A and B), further proving

that girdin regulates CME through interaction with dynamin 2.

We next examined whether girdin regulated dynamin 2 GTPase

activity using a colorimetric GTPase assay (Quan & Robinson, 2005;

Takahashi et al, 2010). This test indicated that the girdin NT

domain increased the GTPase activity of dynamin 2 in a time- and

dose-dependent manner (Fig 3D). Some SH3 domain-containing

proteins, such as Grb2, increase dynamin GTPase activity indirectly
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Figure 1. Interaction between girdin and dynamin.

A Co-IP illustrating the guanine nucleotide-regulated interaction between endogenous girdin and dynamin in HeLa cells. IP, immunoprecipitation; WB, Western blot.
B Whole-cell lysates from HeLa cells were loaded onto Superose 6 10/300 GL column for gel filtration. Following fractionation, each fraction was examined by

Western blot analyses with anti-girdin (upper panel) and anti-dynamin (lower panel) antibodies to determine their elution profiles. The elution positions of
calibration proteins with known molecular masses (kDa) are indicated, and an equal volume from each fraction was analyzed.

C Domain structures of human girdin and dynamin 2.
D, E The dynamin 2-binding site mapped to the N2 domain of girdin. Lysates from COS7 cells transfected with the indicated plasmids were immunoprecipitated with

anti-GFP antibody. The girdin fragments and bound myc-dynamin 2 are indicated by red asterisks and a black asterisk, respectively. TCL, total cell lysate.
F The girdin-binding sites mapped to the GTPase and GED domains of dynamin 2. COS7 cells were transfected with the indicated combination of each domain of

dynamin 2, GST, and GST-NT. The lysates were incubated with glutathione beads, followed by Western blot analysis. Dynamin 2 GTPase and GED domains that
bound to GFP-NT are indicated by red asterisks.

G Direct interaction between the girdin NT domain and dynamin 2. The purified recombinant girdin NT (NT-His) was incubated with recombinant GST fusion
proteins containing the GTPase, GED, and PRD domains of dynamin 2 conjugated to glutathione beads. The complexes were eluted with 1× SDS sample buffer,
separated on SDS–PAGE, and subjected to Coomassie brilliant blue staining (CBB) and Western blot analyses using anti-His antibody. Red and black asterisks
indicate GST fusion proteins and bound girdin NT, respectively.

H The in vitro binding assays indicated a direct interaction of the girdin NT domain with dynamin 2 in a guanine nucleotide-regulated manner. Purified recombinant
dynamin 2 was diluted with GTPase IP buffer and loaded with GTPcS or GDP and then incubated with recombinant GST-NT conjugated to glutathione beads. The
complexes were eluted, separated on SDS–PAGE, and subjected to CBB staining and Western blot analyses. Asterisks indicate GST fusion proteins.
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via promoting the self-assembly of dynamin 2 into higher-ordered

oligomers (Barylko et al, 1998). We found that, in contrast with

Grb2, that binds to dynamin independently of GTPcS loading, girdin

failed to increase the self-assembly of dynamin 2 into higher-ordered

oligomers (Fig 3E and F). These results suggested that girdin func-

tioned as an intermolecular GAP for dynamin 2 to directly increase

its GTPase activity through a different mode of action compared to

Grb2.

Comparative analysis of the sequences of the girdin NT domain

and other GAP proteins led to the identification of several arginine

residues that we predicted were essential for GAP activity (Supple-

mentary Fig S1C). We purified mutant girdin proteins in which the

arginines were replaced with alanines (R63A, R75A, R84A, R144A)

in the NT domain. We then examined the function of those mutants

by dynamin GTPase assays (Supplementary Fig S1C). We found that

two mutations (R63A and R84A) significantly reduced the GTPase

activity of dynamin versus the wild type. In accord with this, re-

expression of the girdin double alanine mutant (R63A/R84A) could

not restore Tf uptake in girdin-depleted cells (Supplementary Fig

S1A and B). These results further supported the critical role of those

two arginines in girdin’s function as a GAP for dynamin.

The importance of girdin in CME was further demonstrated by

transmission electron microscopic analysis. These studies revealed

that the morphology of electron-dense CCPs and vesicles was dereg-

ulated in girdin knockdown cells (Fig 3G and H). This phenotype

partially recapitulated abnormal tubulation and fission of CCPs

found in cells expressing the dominant-negative mutant (K44A) of

dynamin or dynamin-deficient cells (Damke et al, 2001; Tosoni

et al, 2005; Ferguson et al, 2009), further implicating the impor-

tance of girdin/dynamin 2 interaction in the proper fission of CCPs.

Selective scission of CCPs by a competitive mechanism that
involves girdin

Dynamin 2 is ubiquitously expressed and non-selectively controls

vesicle scission of all CCPs (Schmid & Frolov, 2011; Ferguson & De

Camilli, 2012). Thus, the above data indicating that girdin func-

tioned as a GAP for dynamin 2 cannot explain how girdin selectively
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Figure 2. Girdin regulates selective endocytosis.

A Western blot evaluation of the knockdown efficiency of girdin and clathrin HC siRNAs in HeLa cells.
B The effect of girdin knockdown on the endocytosis of several cargoes (red) in HeLa cells was visualized using confocal microscopy. The nuclei were visualized by

staining with 40 ,6-diamidino-2-phenylindole (DAPI, blue). Scale bar, 20 lm.
C–F The effects of girdin knockdown on endocytosis were assessed using ELISA assays in which the knockdown of clathrin HC served as a positive control (blue). The

asterisks indicate statistical significance compared with the control (black) (P < 0.05). Data are presented as means � SE (n = 3).
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regulated endocytosis and suggested the existence of other mecha-

nisms. Previous studies have revealed that a CCP subpopulation

located at the cell periphery is responsible for EGFR endocytosis,

suggesting that different CCPs contain distinct cargoes and selective

endocytosis may be spatially controlled (Miaczynska et al, 2004;

Tosoni et al, 2005; Lakadamyali et al, 2006; Leonard et al, 2008;
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Zoncu et al, 2009). We confirmed this notion by visualizing the

endocytic sites of different cargoes using total internal reflectance

fluorescence (TIRF) microscopy, which illuminates the bottom

100–200 nm of the cell (Fig 4A). Our data indicated that Tf and

E-cadherin were internalized diffusely throughout the cells, whereas

integrin b1 and EGFR endocytosis were mediated by peripheral

CCPs, hinting at the idea that girdin may be involved in the endocy-

tosis of CCP subpopulation that include distinct type of cargoes. In

our observation by TIRF microscopy, however, girdin colocalized,

at least partially, with endocytic sites for all of the four cargoes

tested (Supplementary Fig S2A–D), suggesting that colocalization

per se is not sufficient to determine the selectivity for the cargoes.

A clue in revealing the mechanism for girdin-mediated selective

CME has come from a previous study, which showed that girdin

bound to EGFR through its NT domain, leading to the modification

of the EGFR signaling (Ghosh et al, 2010). We hypothesized that, in

EGFR-containing CCPs, the competition between EGFR and

dynamin 2 for interaction with girdin inhibited dynamin 2/girdin

interaction, which makes the EGFR endocytosis out of regulation by

girdin. Indeed, co-IP experiments using antibodies recognizing the

extracellular domain of cargoes indicated that girdin interacted with

EGFR and integrin b1, the endocytosis of which was not regulated

by girdin (Fig 4B). In contrast, girdin did not efficiently bind with

TfR or E-cadherin, the endocytosis of which is prone to regulation

by girdin (Fig 4B and C). Interestingly, the knockdown of clathrin

or dynamin 2 did not affect the interaction between girdin and EGFR

or integrin b1 (Supplementary Fig S2E), indicating that these inter-

actions occurred prior to and independently of dynamin-mediated

scission of membranes. Binding assays using purified proteins

exhibited direct interaction of the girdin NT domain with the cyto-

plasmic domains of both EGFR and integrin b1 (Fig 4D and E),

which competitively inhibited dynamin 2/girdin interaction in a

dose-dependent manner (Fig 4F and G). Taken together, these data

suggest that the competitive mechanism, which prevented girdin

from interacting with dynamin 2 and executing its GAP function in

EGFR- or integrin b1-positive CCPs, contributed to the selective

nature of endocytosis (Fig 7).

Girdin spatially controls CCP formation

We next examined the localization of girdin in HeLa cells at the

ultrastructural level by quick-freeze deep-etch electron microscopy,

which detected girdin surrounding CCPs throughout the early to

late stages of CME (Fig 5A, and Supplementary Fig S3A–C). TIRF

observation confirmed that endogenous girdin partially colocalized

with clathrin adaptor AP-2 that is one of the CCP markers (Supple-

mentary Fig S3D). Also, consistent with our biochemical data that

the girdin NT domain is responsible for the binding with dynamin 2,

we observed the consistent colocalization of the girdin NT

domain, but not other girdin domains, with AP-2 and clathrin

heavy chain (HC), on the cell membrane (Fig 5B, and Supplemen-

tary Fig S3E and F). Interestingly, TIRF observation revealed that

girdin knockdown significantly reduced the density of AP-2/clathrin

HC-positive CCPs in the center of cells but had no effect on the

formation of CCPs at the cell periphery (Fig 5C), implicating

the involvement of girdin in spatial control of CCP formation. The

heterogeneous distribution of CCPs induced by girdin knockdown

was more apparent in cells defective for Tf internalization, as they

exhibited accumulation of CCPs at the cell periphery and few CCPs

formed in the centers of such cells (Fig 5D and E). These data

suggest that girdin’s function seems to be involved in spatial

control of CCP formation.

Time-lapse TIRF recordings revealed that girdin was consistently

located at CCPs even before the nucleation stage of CME (Fig 5F,

Supplementary Fig S4A and Supplementary Video S1), suggesting

the possible involvement of girdin in the early steps of CCP forma-

tion. It is of note that previous studies have shown that the knock-

down of clathrin or dynamin inhibits CME without affecting the

recruitment of AP-2 to the CCPs, which indicates that different CCP

components are recruited there and regulated at distinct stages

(McMahon & Boucrot, 2011). Consistent with this notion, we

observed that colocalization between girdin and AP-2 was not

affected by the knockdown of clathrin or dynamin 2 (Supplementary

Fig S4B), which further confirmed girdin’s role in the early stage of

CME. Next, to know how girdin controls CCP formation, we tested

the possibility that girdin had the capacity to bind to and recruit the

constituents of CCPs such as the AP-2 protein complex. Co-IP exper-

iments showed that girdin interacted with the AP-2 a subunit,

although whether the interaction was direct or indirect was not

determined (Fig 5G). The data indicated that via an unknown mech-

anism, girdin participated in central CCP formation partially through

recruitment of the AP-2 protein complex.

Because different cargoes were internalized via different

subpopulation of CCPs (Fig 4A), we speculated that girdin also

Figure 3. Girdin regulates endocytosis as a dynamin 2 GAP.

A–C The GFP-fused domains or fragments of girdin were transfected into HeLa cells, followed by Tf internalization assays. Note that the cells transfected with GFP-NT
or GFP-N2 (yellow arrows) but none of the other domains or fragments (white arrows) demonstrated decreased Tf internalization compared with non-transfected
cells. In the experiment shown in the lower panel of (B), dynamin 2 expression partially rescued the defects in Tf internalization in cells overexpressing GFP-NT.
Note that cells expressing both GFP-NT (green) and myc-dynamin (blue) tended to restore Tf internalization (indicated by the stars) compared with cells
transduced only with GFP-NT (indicated by an asterisk). The percentage of cells with internalized Tf in each group (100 cells from three independent experiments)
is quantified in (C). Scale bar, 20 lm. Data are presented as means � SE (n = 3).

D Dynamin GTPase activity assays demonstrated that the girdin NT domain increased dynamin 2 GTPase activity in a time- and dose-dependent manner. The
numbers indicate the molar ratio of GST-NT to dynamin 2 used in this assay. The asterisks indicate statistical significance compared with control (P < 0.05). Data
are presented as means � SE (n = 3).

E The self-assembly of dynamin 2 was assessed using velocity sedimentation, followed by SDS–PAGE analysis of the pellets (P) and supernatants (S). Assembled
dynamin 2 was discovered in the pellet fraction. GST and GST-Grb2 were used as negative and positive controls, respectively.

F The interaction between dynamin and Grb2 was not regulated by nucleotide binding to dynamin. HeLa cell lysates were loaded with GTPcS or GDP and then
incubated with recombinant GST-Grb2 conjugated to glutathione beads. Asterisks indicate GST fusion proteins.

G Representative transmission electron microscopic images of shallow, constricted, and budded CCPs (control HeLa cells) and tubulated, unshaped, and unconstricted
CCPs (girdin knockdown cells). Scale bar, 250 nm.

H Morphometric analysis of electron microscopic images of CCPs shows the accumulation of tubulated, unshaped, and unconstructed pits in girdin knockdown cells.
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D, E In vitro binding assays using purified recombinant proteins demonstrated the direct interaction of girdin NT with the cytoplasmic domains of EGFR (EGFRc) (D) and
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specifically regulates endocytosis occurred in cell center through

controlling CCP formation in this region. Indeed, compared with

control cells (Fig 4A), we found that girdin knockdown affected

Tf internalization in the center of cells, maintaining Tf and EGF

endocytosis at the cell periphery (Fig 5H, and Supplementary Fig

S5A and B). Consistent with this finding were observations made

by immunoelectron microscopic analysis that revealed that girdin

knockdown led to a defect of the localization of Tf receptor

(TfR), but not EGFR, on clathrin-coated vesicles (CCVs), suggest-

ing the involvement of girdin in selective endocytosis (Supple-

mentary Fig S5C and D). In addition, consistent with a previous

report that dynamin-null cells had normal CCP formation

(Ferguson et al, 2009), we also found the overexpression of the

dynamin K44A mutant did not affect the formation of CCPs

(Supplementary Fig S5E), which was not identical to changes

induced by girdin depletion (Fig 5C). Thus, these results indicate

that, besides competitive mechanism involving dynamin, girdin

also regulates spatially controlled endocytosis in distinct regions

of cells, which must be distinguished from its function as a GAP

for dynamin 2.

Girdin-mediated selective endocytosis is involved in maintaining
cell polarity

Finally, to investigate the physiological function of girdin-mediated

selective endocytosis, we studied the involvement of girdin in the

establishment of epithelial cell polarity, which is determined by

endocytosis (Wirtz-Peitz & Zallen, 2009; Levayer et al, 2011). To

this end, we utilized Madin–Darby canine kidney (MDCK) cells,

which have polarized endocytic trafficking with apical-basolateral

protein sorting. Knockdown of girdin in MDCK cells depolarized the

localization of TfR and E-cadherin, but had no effect on the locali-

zation of integrin b1 (Fig 6A, B and E). Of note, the localization of

E-cadherin at the basal membrane was significantly deregulated

with patchy distribution, especially in the cells defective for Tf

endocytosis (Fig 6C–E). These data highlight the relationship

between girdin-mediated selective endocytosis and polarized cellu-

lar function.

Discussion

In this study, we revealed that a new dynamin GAP protein girdin

regulated cargo-selective CME via a novel mechanism (Fig 7).

Girdin preferentially regulated CME that occurred in central cell

membranes by controlling CCP formation, although its mechanisms

remain unknown at present. In addition, girdin also selectively

controlled the scission of CCPs in this area via competition between

cargoes, dynamin, and itself. However, the generality of our hypoth-

esis in other cargo-selective endocytosis remains to be proven,

which should await further studies.

Dynamin is an atypical multidomain GTPase containing a large

GTPase domain, which is well known for its critical role in budding

or scission of transport vesicles (Schmid & Frolov, 2011; Ferguson &

De Camilli, 2012). Distinct from other GTPases, previous biochemi-

cal studies and recent structural analyses showed that its GTPase

catalytic activity is stimulated by oligomerization, which requires

the involvement of the middle domain and the GED domain, where

the GED domain serves as an intramolecular GAP to regulate its

GTPase activity (Chappie et al, 2011; Faelber et al, 2011). However,

how dynamin GTPase activity is regulated in cells is unclear.

Although many Src homology 3 domain-containing proteins, such

as Grb2 and SNX9, stimulate dynamin GTPase activity, they are not

GAPs because they increase GTPase activity indirectly via modulat-

ing the oligomerization of dynamin by interacting with its proline-

rich domain (PRD) (Gout et al, 1993). So far, the only intermolecu-

lar GAP that has been identified is PLD, which increases dynamin

GTPase activity directly to regulate EGFR endocytosis (Lee et al,

2006). In the current study, we identified girdin as a second inter-

molecular GAP for dynamin. Interestingly, it seems that the func-

tions of these two dynamin GAPs are complementary to each other.

In contrast to PLD, girdin was required for Tf endocytosis but not

EGFR, indicating the possibility that selective CME is differentially

regulated by dynamin and its different types of GAPs.

Although many types of cargoes are internalized via CME, they

are not competitive even in the same area of a cell, indicating that

the endocytosis of different cargoes is differentially controlled. It

has been suggested that selective CME is achieved through

Figure 5. Girdin regulates CCP formation in the central regions of the cells.

A Ultrastructural analysis performed using quick-freeze deep-etch electron microscopy of unroofed cells. Immunogold labeling, which exhibited a clear dot
surrounded by a halo of platinum–carbon coating (pseudo-colored red), revealed that girdin molecules localized with CCPs. The regions within the boxes are
shown at a higher magnification in adjacent panels. Scale bar, 200 nm.

B GFP-NT (green)-expressing HeLa cells were fixed and stained for AP-2 (red). The region within the box is shown at a higher magnification in lower panels. Scale bar,
20 lm.

C HeLa cells transfected with control or girdin siRNA were stained with the indicated antibodies, followed by TIRF microscopic analysis. Girdin knockdown affected
the formation of AP-2/clathrin HC-positive CCPs in the center of the cells, maintaining those in the cell periphery intact. Arrowheads indicate the CCPs
accumulated at the cell periphery. Scale bar, 20 lm.

D, E Tf internalization (red) and AP-2 localization (green) were examined in girdin knockdown HeLa cells. Note that girdin knockdown cells defective for Tf
internalization exhibited fewer CCPs in the centers of the cells, leading to accumulation of CCPs at the cell periphery (indicated by asterisks). In (E), the percentages
of cells with CCP accumulation at the cell periphery were evaluated in control cells, girdin knockdown cells, and girdin knockdown cells with defective Tf
internalization (100 cells from three independent experiments). The asterisks indicate statistical significance compared with the control cells (P < 0.05). Data are
presented as means � SE (n = 3). Scale bar, 20 lm.

F Kymograph (top) of a representative endocytic CCPs labeled with mCherry-NT (red) in BS-C-1 cells stably expressing AP2 r2-GFP (green). This site showed two
lifetimes of the CCP within the observed interval of 460 s, as indicated by the dotted boxes. Shown below are sequential images of the dynamic localization of
mCherry-NT and AP2 r2-GFP in the first lifetime of the CCP.

G Co-IP experiments illustrating the interaction of girdin with the AP-2 a subunit (adaptin-a) in HeLa cells.
H HeLa cells transfected with BFP (blue fluorescent protein) clathrin and girdin siRNA were incubated with fluorescence-conjugated EGF and Tf to induce their

internalization, followed by observation of endocytic sites using TIRF microscopy. Arrowheads indicate CCPs responsible for EGF and Tf internalization at the
periphery of the cells. Shown in the right panel is the illustration indicating the endocytic sites for each cargo. Scale bar, 20 lm.
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cargo-specific adaptors that interact with and recruit specific cargoes

to CCPs (Traub, 2009). One concern about this hypothesis is that,

considering the huge number of cargoes, it is impossible for cells to

evolve an equivalent number of adaptors. Previous studies found

that the CCPs on the cell membrane are functionally heterogeneous,

that is, peripheral CCPs are utilized by EGFR for its internalization

and transition to APPL1 (adaptor protein containing pleckstrin

homology domain, PTB domain and leucine zipper motif 1)-positive

endosomes. In contrast, central CCPs are responsible for Tf endocy-

tosis (Miaczynska et al, 2004; Tosoni et al, 2005; Lakadamyali et al,
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2006; Leonard et al, 2008; Zoncu et al, 2009). However, how this

heterogeneity is determined and whether this contributes to selec-

tive endocytosis are unknown. In our study, we showed that girdin

might be involved in the determination of the functional heterogene-

ity of CCPs. Girdin consistently localized around the sites of CCPs

on the membrane to control the formation of CCPs in the center of

cells. Accordingly, the knockdown of girdin induced the accumula-

tion of CCPs around the cell periphery.

At present, the mechanism by which girdin spatially controls

CCP formation in the center of cells but not the periphery is

unknown and should be addressed in further. Recently, two studies

have systematically identified the CCV components using proteomic

approaches (Borner et al, 2006, 2012). Although girdin has not been

identified in the hit list in those studies, it is tempting to see the

difference between CCVs in control and girdin knockdown cells

using the same approach, which will be helpful to uncover how

girdin spatially regulates the formation of heterogeneous CCPs.

We propose that heterogeneity of CCPs is another mechanism for

selective CME. CCP heterogeneity makes it possible for Tf and

E-cadherin to be internalized in the central regions of cells through

the action of girdin, whereas EGFR and integrin b1 can be internal-

ized via CCPs at the cell periphery independent of girdin (Fig 7).

Together, selective CME is achieved by heterogeneous CCPs and the

corresponding dynamin GAP girdin, which seems to be crucial for

cellular functions such as establishment of cell polarity that depends

on the endocytic pathway (Fig 6). Interestingly, several genomewide

screen studies identified that cell polarity proteins such as Par-6

(partitioning defective 6 homolog) and Cdc42 were involved in the

endocytic pathway (Balklava et al, 2007; Collinet et al, 2010; Kozik

et al, 2013). We previously reported that girdin interacted with the

Figure 6. Girdin-mediated selective endocytosis regulates polarized localization of TfR and E-cadherin in epithelial cells.

A Western blot evaluation of the knockdown efficiency by girdin shRNA in MDCK cells.
B Knockdown of girdin depolarized the localization of TfR and E-cadherin in MDCK cells (upper and middle panels). In control cells, TfR and E-cadherin were mainly

located around the cell–cell contact sites. In contrast, in girdin knockdown cells, TfR and E-cadherin were not limited to the cell–cell contact sites, as they were
also localized at the basal and apical membranes (arrowheads). Note that girdin knockdown had no apparent effect on the localization of integrin b1 (lower
panel). Scale bar, 20 lm.

C, D MDCK cells starved and incubated with Alexa-594-conjugated Tf (red) were stained by E-cadherin antibody (green), followed by the visualization of the basal
membrane by confocal microscopy. In control cells (C, upper panel), E-cadherin localized at the cell–cell contact sites. In contrast, in girdin knockdown cells that
were defective for Tf endocytosis (C, lower panel), E-cadherin was preferentially located at the basal membrane in a dotted manner (lower panel, inset). The
regions within the boxes are shown at a higher magnification in insets. Shown in (D) is another representative image of girdin-depleted cells taken from the same
experiment. Note that in the cells with intact and defective Tf endocytosis (marked with asterisks and triangle, respectively), E-cadherin was localized at the cell–
cell contact sites and the basal membrane, respectively. The data indicated the relationship between girdin knockdown efficiency and polarized localization of
E-cadherin. Scale bar, 20 lm.

E The number of cells with polarized localization for each cargo in (B–D) was counted and quantified. The asterisks indicate statistical significance (P < 0.05). Data
are presented as means � SE (n = 3).

◀

CCPs for EGFR/ integrin β1 endocytosis (Controlled by unknown dynamin GAPs)
CCPs for TfR and E-cadherin endocytosis (Controlled by girdin)

Girdin

EGFR/integrin β1

Girdin

TfR/E-cadherin

NT

CT
Dynamin 2

(i) Spatial control of endocytic sites (ii) Competition mechanism involving girdin

Scission

Adaptor/clathrin

Figure 7. A proposed model for spatially controlled selective endocytosis regulated by girdin.
A proposed model for spatial control of CME by dynamin GAP girdin and its specific interaction with cargoes conferring the selectivity for CME. The dynamin 2 GAP protein
girdin preferentially controlled CME that occurred in the center of cells by controlling the formation of CCPs, although the mechanism remains unclear at present. In TfR- or
E-cadherin-containing CCPs, girdin functioned as a GAP for dynamin 2, resulting in the scission of CCPs. In contrast, girdin interacted with the cytoplasmic region of those
cargoes in EGFR- or integrin b1-containing CCPs, inhibiting the dynamin 2/girdin interaction. In that case, other unknown dynamin GAPs would be mobilized to regulate
dynamin activity.
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Par-3/Par-6/atypical protein kinase C protein complex to determine

cell polarity during cell migration (Ohara et al, 2012), which further

implicates the linkage between endocytosis and cell polarization

and the involvement of girdin in both processes.

Knowing that girdin spatially controlled the formation of CCPs,

we also examined whether girdin spatially regulated CCP scission as

a GAP of dynamin. Based on our results, we found that girdin inter-

action with some cargoes, such as integrin b1 and EGFR, competi-

tively disrupted dynamin 2/girdin interaction, which prevented

girdin from executing its GAP function. Thus, it had no function in

the scission of integrin b1/EGFR-containing CCPs at the cell periph-

ery. We note that more recombinant integrin b1 is required for

competitively disrupting the dynamin 2/girdin interaction compared

with EGFR (Fig 4F and G), which may reflect the difference in the

stoichiometry and affinity between girdin and these cargoes. It is

well known that cargoes determine the fate of CCPs (Loerke et al,

2009; Liu et al, 2010; Mettlen et al, 2010; Henry et al, 2012). Here,

we showed that cargoes also determine the specificity of CME at the

scission stage, which challenges the earlier common view that the

specificity of CME is determined only in the early stages of CME.

In summary, in this study, we revealed girdin, a dynamin GAP,

regulates selective endocytosis in a new spatial regulatory mecha-

nism. Further identification of other dynamin GAPs and their inter-

acting cargoes is necessary to determine whether this mechanism is

a general feature of other selective, accurate, and efficient CMEs

targeting different types of cargoes.

Materials and Methods

Cell culture, transfection, and RNAi

HeLa, COS7, and MDCK cells were purchased from American Tissue

Type Culture (Rockville, MD) and cultured in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal bovine

serum (FBS). BS-C-1 cells stably expressing AP-2 r2-EGFP or LCa

(clathrin light-chain A)-EGFP (Ehrlich et al, 2004) were kindly

provided by Tomas Kirchhausen (Harvard Medical School) and

cultured in DMEM supplemented with 10% FBS and 1 mg/ml of

geneticin (Invitrogen). siRNA or plasmids were transfected into cells

using Lipofectamine 2000 (Invitrogen) according to the manufac-

turer’s instructions. Lipofectamine LTX (Invitrogen) or FuGene HD

(Roche Diagnostics, Indianapolis, IN) was used to obtain a high

expression level of plasmid in HeLa or BS-C-1 cells, respectively.

The targeted sequences of siRNA used in this study, the specificity

of which has been previously demonstrated, were as follows: girdin

(50-AAGAAGGCTTAGGCAGGAATT-30), clathrin heavy chain (50-AA
TCCAATTCGAAGACCAATT-30), dynamin 2 (50-CTGCAGCTCATCTTC
TCAAAA-30). For short hairpin RNA (shRNA)-mediated knockdown of

girdin, the targeted sequence 50-GAAGGAGAGGCAACTGGAT-30 was

inserted into pSIREN-RetroQ retroviral shRNA expression vector

(Clontech, Palo Alto, CA) as previously described (Enomoto et al, 2009;

Ohara et al, 2012).

Plasmids

The construction of plasmids encoding GFP-girdin fragments, pEF-

BOS-GST, and pEF-BOS-GST-Girdin-NT, were previously described

(Enomoto et al, 2005, 2009). cDNA fragments encoding the girdin

NT (1–256) or integrin b1 cytoplasmic domain (752–798) were

inserted into the pGEX-5X-2 vector (GE Healthcare, Waukesha, WI)

or pET-21a vector (Novagen, Madison, WI). The pGEX-4T-2-Grb2,

pGEX-4T-2-EGFRe (extracellular domain), and pGEX-4T-2-EGFRc

(cytoplasmic domain) plasmids were previously generated in our

laboratory. cDNAs encoding human dynamin 2, which were

purchased from Open Biosystems (Huntsville, AL), were inserted

into the pEF1/Myc-His A (Invitrogen) or pET-21a vector. cDNA

encoding the EGFR cytoplasmic domain (669–1210) was inserted

into the pET-24d vector. cDNA encoding human dynamin 2 was

inserted into the pRetroQ-AcGFP vector (Clontech). cDNA encoding

human dynamin 2 GTPase (1–300), Middle (301–518), PH (519–

625), GED (626–744), or PRD (745–867) domains were subcloned

into the pFlag-CMV-2 vector (Sigma). cDNA encoding the clathrin

light-chain A (generously provided by Katsuhiro Kato, Nagoya

University) was inserted into the pTagBFP vector (Evrogen,

Moscow, Russia). cDNA encoding E-cadherin was inserted into the

pRetroQ-AcGFP-C1 vector to replace the sequence encoding AcGFP.

To generate mCherry-girdin-NT plasmid, the GFP sequence in

pcDNA3.1-GFP-girdin-NT was substituted with the mCherry

sequence.

Endocytosis assays

Cargo endocytosis was investigated using conventional immunofluo-

rescent imaging technique. For the evaluation of transferrin inter-

nalization, HeLa cells starved in binding buffer (DMEM containing

20 mM HEPES and 0.1% BSA) for 3 h were incubated with 50 lg/
ml of Alexa-594-conjugated transferrin (Invitrogen) diluted in bind-

ing buffer at 37°C for 10 min, washed using ice-cold PBS, washed

using acid buffer (0.5 M NaCl, 3% acetic acid) on ice to remove

surface-bound transferrin, and then subjected to immunofluores-

cence studies using the confocal microscope. In assays investigat-

ing EGFR, integrin b1, and E-cadherin endocytosis, cells starved in

the binding buffer for 3 h were incubated with either anti-EGFR

(Santa Cruz Biotechnology, clone 528; 5 lg/ml), anti-integrin b1
(Santa Cruz Biotechnology, clone P5D2; 5 lg/ml), or anti-E-cadherin

(TaKaRa, clone HECD-1; 2 lg/ml) antibody in ice-cold binding

buffer on ice for 1 h. The cells were washed using ice-cold PBS

three times and incubated with warmed binding buffer at 37°C for

10 min to stimulate cargo internalization. In the experiments test-

ing EGFR endocytosis, a binding buffer containing 2 ng/ml EGF

was used to ensure EGFR internalization through clathrin-mediated

endocytosis. The cells were washed using ice-cold PBS and acid

buffer to remove surface-bound antibodies; they were then fixed,

permeabilized, and incubated with secondary antibodies and used

for fluorescence imaging studies. The HeLa cells stably expressing

E-cadherin were used in the experiments testing E-cadherin

endocytosis.

In the experiments examining the endocytic sites of cargoes, the

cells starved in the binding buffer for 3 h were incubated with

50 lg/ml fluorochrome-conjugated transferrin, 1 lg/ml fluoro-

chrome-conjugated EGF, 5 lg/ml of anti-integrin b1 antibody, or

2 lg/ml anti-E-cadherin antibody in the binding buffer for 10 min.

The cells were washed with ice-cold PBS, fixed, permeabilized, and

incubated with secondary antibodies, and then, the bottom of the

cells was observed using the TIRF system.
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Quantification of cargo endocytosis

Cells starved in the binding buffer for 3 h were quickly washed twice

using ice-cold PBS on ice and then incubated with 250 lg/ml of

sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate (sulfo-

NHS-SS-Biotin, Thermo Scientific) at 4°C for 30 min. The cells were

washed three times using ice-cold PBS and incubated with binding

buffer (or binding buffer containing 2 ng/ml of EGF in the assay

used to examine EGFR endocytosis) at 37°C to allow internalization

to occur. After internalization, the medium was aspirated, and the

cells were transferred onto ice and washed twice using ice-cold PBS.

Surface-bound biotin was removed via incubation with stripping

buffer (20 mM sodium 2-mercaptoethanesulfonate (MesNa), 50 mM

Tris, 100 mM NaCl, pH 8.6) for 30 min. The cells were washed

three times using ice-cold PBS, lysed in IP lysis buffer, and centri-

fuged. The biotinylated cargoes in the supernatants were deter-

mined by a capture ELISA. For the ELISA assays, 96-well plates

(Thermo Scientific, #439454) were pre-coated overnight with 50 ll
of antibodies (5 lg/ml of anti-a5 integrin or anti-EGFR1 antibody,

2 lg/ml of anti-transferrin receptor or anti-E-cadherin antibody) in

50 mM Na2CO3 (pH 9.6) and blocked using 5% BSA in PBS-T at

room temperature for 1 h. The plates were extensively washed

using PBS-T, incubated overnight with 100 ll of cell lysates at 4°C,

washed five times using PBS-T, and incubated with 1 lg/ml of

streptavidin-peroxidase (Sigma, S5512) in PBS-T containing 1%

BSA for 1 h. After washing, biotinylated cargoes were detected by

means of a chromogenic reaction with ortho-phenylenediamine

(Sigma, P5412). The reaction was terminated by adding 100 ll of
8 M H2SO4. The ELISA titers were calculated using optical density

readings at 490 nm obtained using an Infinite M200 plate reader

(Tecan, Research Triangle Park, NC).

Dynamin GTPase activity assays

A malachite green-based colorimetric dynamin GTPase activity

assay was performed as previously described (Quan & Robinson,

2005; Takahashi et al, 2010). Purified histidine-tagged human or

mouse dynamin 2 (0.39 lg/well, 100 nM) and GST fusion proteins

(1,000 nM) were mixed in 5× dynamin diluting buffer (30 mM Tris–

HCl, 100 mM NaCl, 0.1% Tween-80, pH 7.4) (8 ll per well) at room

temperature for 30 min. During the incubation period, 32 ll of

complete GTPase assay buffer (4 ll of 10× GTPase assay buffer

[100 mM Tris–HCl, 100 mM NaCl, 20 mM MgCl2, 0.5% Tween-80,

pH 7.4], 4 ll of 10× leupeptin [10 lg/ml in distilled water], 4 ll of
10× phenylmethyl sulfonyl fluoride (PMSF) [1 mM in distilled

water], 4 ll of 10× GTP [3 mM GTP (Cytoskeleton, Denver, CO) in

20 mM Tris–HCl, pH 7.4] and 16 ll of distilled water) was added to

96-well plates. The plates were incubated on a Thermomixer

Comfort (Eppendorf, Hamburg, Germany) with continuous shaking

at a rate of 300 rpm at 30°C. Subsequently, 8 ll of protein mixture

was added to each well, and the incubation was continued for the

indicated times. The reaction was terminated by adding 10 ll of

0.5 M EDTA, and then 150 ll of malachite green reagent (1 mg/ml

malachite green [Wako, Osaka, Japan] and 100 mg/ml ammonium

molybdate tetrahydrate [Sigma] in 1 M HCl filtered through a

0.45 lm filter) was added to develop the color. The absorption spec-

tra at 650 nm were measured using an Infinite M200 plate reader.

To obtain a standard calibration curve, 8 ll of 5× phosphate

standards (500, 250, 150, 100, 50, 25 and 5 lM NaH2PO4 in distilled

water) was added to each well containing 32 ll of the complete

GTPase assay buffer.

Dynamin sedimentation assays

Purified recombinant dynamin 2 (2 lM) was incubated in sedimen-

tation buffer (10 mM HEPES, 2 mM MgCl2, 150 mM KCl, pH 7.2) at

room temperature for 30 min with increasing amounts of tested

GST fusion proteins (GST, GST-NT, or GST-Grb2). The reaction

mixture (50 ll) was centrifuged at 4°C for 10 min at 19,200 g. Equal

volumes of the pellets and supernatant fractions were separated by

SDS–polyacrylamide gels (SDS–PAGE), followed by Coomassie blue

staining.

Freeze-replica electron microscopy of the cytoplasmic
cell surface

Electron microscopy of the cytoplasmic surface of the cell

membrane and immunolabeling of girdin molecules were performed

as previously described (Enomoto et al, 2005). HeLa cells were

cultured on glass coverslips (3 mm in diameter, standard #1

Matsunami, Osaka, Japan). Immediately after being unroofed from

the apical cell membrane, the cells were fixed for 30 min in 2.5%

glutaraldehyde in buffer A (70 mM KCl, 5 mM MgCl2, 3 mM EGTA,

30 mM HEPES buffer adjusted at pH 7.4 with KOH). After being

washed with buffer A/distilled water, specimens were quickly

frozen with liquid helium by using the rapid-freezing device (Eiko,

Tokyo, Japan, and Variant Instruments, MO, USA). Samples were

then freeze-etched and rotary shadowed with platinum–carbon, in a

newly developed freeze-etching device (FR9000, HITACHI, Ibaraki,

Japan, and JEOL EM-1950 JFDII, Tokyo, Japan). For immunolabel-

ing of girdin molecules, the unroofed cells were fixed for 30 min in

4% paraformaldehyde/0.5% glutaraldehyde in buffer A. After being

washed three times with buffer B (100 mM NaCl, 30 mM HEPES,

2 mM CaCl2), the samples were quenched and blocked, and then

labeled for 1 h at 37°C with primary and secondary 10 nm gold-

conjugated antibodies (Amersham, and BBI Solutions) in buffer B

containing 1% BSA. Finally, specimens were rapidly frozen and

freeze-etched as described above. The replica was separated,

washed three times on water, and picked up on the forvar-coated

EM grids. The replica was observed in JEOL JEM1200EX and 1400

(Tokyo, Japan) at 80 kV. The stereo-anaglyph was prepared from

an image pair at � 10° by using the Photoshop, which should be

observed by the red and green stereo glasses.

Data analysis

The data are presented as means � SE. Statistical significance was

evaluated using the Student’s t-test. All of the experiments were

repeated at least three times.

Supplementary information for this article is available online:

http://emboj.embopress.org
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