
IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009)

Regular Paper

Head-Needed Strategy of Higher-Order Rewrite Systems

and Its Decidable Classes

Hideto Kasuya,†1 Masahiko Sakai†2

and Kiyoshi Agusa†2

The present paper discusses a head-needed strategy and its decidable classes
of higher-order rewrite systems (HRSs), which is an extension of the head-
needed strategy of term rewriting systems (TRSs). We discuss strong sequen-
tial and NV-sequential classes having the following three properties, which
are mandatory for practical use: (1) the strategy reducing a head-needed re-
dex is head normalizing (2) whether a redex is head-needed is decidable, and
(3) whether an HRS belongs to the class is decidable. The main difficulty in
realizing (1) is caused by the β-reductions induced from the higher-order re-
ductions. Since β-reduction changes the structure of higher-order terms, the
definition of descendants for HRSs becomes complicated. In order to overcome
this difficulty, we introduce a function, PV, to follow occurrences moved by β-
reductions. We present a concrete definition of descendants for HRSs by using
PV and then show property (1) for orthogonal systems. We also show prop-
erties (2) and (3) using tree automata techniques, a ground tree transducer
(GTT), and recognizability of redexes.

1. Introduction

Higher-order rewrite systems (HRSs) 14), an extension of term rewriting sys-
tems (TRSs) obtained by introducing higher-order facility, are used in functional
programming, logic programming, and theorem proving as a model that contains
the notion of λ-calculus. Properties of HRSs such as termination and confluence
have been investigated 7),8),11),14)–16). On the other hand, there have been sev-
eral studies on reduction strategies of TRSs, which are related lazy evaluation
or strict analysis of programs. Huet and Lévy presented the following theorem
on the optimal normalizing strategy of an orthogonal TRS 6). They stated that

†1 Faculty of Information Science and Technology, Aichi Prefectural University
†2 Graduate School of Information Science, Nagoya University

a reducible term having a normal form contains at least one needed redex to be
reduced in every reduction sequence to a normal form. They also showed the
normalization property, whereby the normal form of a given term can always be
obtained by repeated reduction of the needed redexes. Middeldorp generalized
this result for head-needed reduction, which computes the head normal forms of
terms 12).

We discuss strong sequential 6) and NV-sequential classes 18) having the follow-
ing three properties, which are mandatory for practical use: (1) the strategy
reducing a head-needed redex is head normalizing (2) whether a redex is head-
needed is decidable, and (3) whether an HRS belongs to the class is decidable.

Arguing the head normalization property requires the concept of descendants of
redex in a given reduction sequence. Oostrom showed a definition of a descendant
of a Pattern Rewriting System 16), but the definition was abstract. The main
difficulty for (1) is caused by the β-reductions induced from the higher-order
reductions. Since β-reduction changes the structure of the higher-order term,
the definition of a descendant of an HRS becomes complicated. Origin tracking 3)

has made it possible to represent descendants for HRSs, but this requires rather
complicated steps. In the present paper, we introduce a function, PV , to follow
occurrence moves caused by β-reduction sequences. More precisely, given a term
t, a substitution σ, a variable F , and a position p in Fσ, PV computes positions
in a β-normal form of tσ corresponding to the position p. The PV function allows
us to treat a β-reduction sequence rather easily. That is, we can use a concrete
procedure to calculate descendants of higher-order reductions by using PV . We
also define developments of HRS, corresponding to parallel reduction of TRS,
and give a concrete proof of the diamond property for the developments. Based
on the results of a previous study 10), we also show properties (2) and (3) using
tree automata techniques, a ground tree transducer (GTT), and recognizability
of redexes.

Oostrom shows the normalizing property of outer-most fair reduction 17). Al-
though, its result strongly relates to the normalizing property of needed reduc-
tion, it is difficult to show the head normalizing property of head-needed reduc-
tion by Oostrom’s result.

Contributions of the present paper are following.

144 c© 2009 Information Processing Society of Japan

145 Head-Needed Strategy of HRSs and Its Decidable Classes

• We propose a variant of position system that ignores λ-position. The system
has a benefit that position movement caused by substitution into patterns
can be treated first-order case.

• We also introduced a recursive definition of patterns. This enables us to
prove properties related patterns formally.

• We give a simple definition of descendant relation by using function PV that
characterizes position movement caused by β-reduction sequences directly.
Unless using our position system and PV, we must compute reverse of β-
reductions, replacement by rewrite rule, and β-reductions in sequence for
descendants.

• We show diamond property for HRSs, in which redexes that must be reduced
are presented explicitly in each arrow in the diagram of the property.

• We defined top-down decomposition of development sequences and define an
order on them. This order is useful for various proofs dealing with develop-
ment sequence.

Many of the results presented in the present paper were first reported in Ref-
erence 9). Since a number of proofs in FLOPS2002 turned out to be incomplete,
we fixed bugs of proofs and redesigned the order of development. Moreover, we
clarified the decidable classes.

2. Preliminaries

Let S be a set of basic types. The set τs of types is generated from S by the
function space constructor → as follows:

τs ⊇ S

τs ⊇ {α → α′|α, α′ ∈ τs}
Let Xα be a set of variables of type α, and let Fα be a set of function symbols of
type α. The set of all variables is denoted as X =

⋃
α∈τs

Xα, and the set of all
function symbols is denoted as F =

⋃
α∈τs

Fα. Simply typed λ-terms are defined
by the following inference rules:

x ∈ Xα

x : α

f ∈ Fα

f : α

s : α→α′ t : α

(s t) : α′
x : α s : α′

(λx.s) : α → α′

If t : α is inferred from the rules, then t is a simply typed λ-term of type α.
The set of all simply typed λ-terms is denoted as T . A simply typed λ-term is

called a higher-order term or a term. We use the concepts of bound variables
and free variables. The sets of bound and free variables occurring in a term t are
denoted as BV (t) and FV (t), respectively. The set FV (t)∪BV (t) is denoted as
V ar(t). A higher-order term without free variables is called a ground term. If a
term s is generated by renaming bound variables in a term t, then s and t are
equivalent and are denoted as s ≡ t. We use F,G,X, Y , and Z for free variables,
and x, y, and z for bound variables unless it is known to be free or bound from
other conditions. We sometimes write �x for a sequence x1x2 · · ·xm (m ≥ 0). We
also use c, d, f, g, and h for function symbols and a for a variable or a function
symbol.

β-reduction is the operation that replaces (λx.s)t in a term by s{x �→ t}, where
(λx.s)t is called a β-redex. Let s be a term of type α → α′, and let x 	∈ V ar(s) be
a variable of type α. Then, η-expansion is the operation that replaces s in a term
by λx.(sx) if the term produces no new β-redex. A term is said to be η-long, if
the term is in normal form with respect to η-expansion. In addition, a term is
said to be normalized if the term is in βη-long normal form. A normalized term
of t is denoted as t↓. Each higher-order term has a unique normalized term 1).

A mapping σ : X �→ T from variables to higher-order terms is called a substitu-
tion if σ(X) has the same type of X and the domain Dom(σ) = {X | X 	≡ σ(X)}
is finite. If Dom(σ) = {X1, . . . , Xn} and σ(Xi) ≡ ti, we also write the mapping
as σ = {X1 �→ t1, . . . , Xn �→ tn}. Let W be a set of variables, and let σ be
a substitution. We write σ|W for the substitution obtained by restricting the
domain of σ to Dom(σ) ∩ W and write σ|W for that obtained by restricting the
domain of σ toDom(σ)∩ (X −W). For a substitution σ, the set of free variables
in the range of σ is defined by VRan(σ) =

⋃
X∈Dom(σ) FV (σ(X)).

A substitution σ = {X1 �→ t1, . . . , Xn �→ tn} is extended to a mapping σ̃ from
higher-order terms to higher-order terms as follows:

σ̃(t) = ((λX1 · · ·Xn.t)t1 · · · tn)↓β

Generally, when we extend a substitution σ to σ̃, we need the condition whereby
the domain and range of σ do not contain any bound variables of a term to
which the substitution σ̃ is applied. Here, note that when we adopt the above
definition of σ̃obtained using β-reduction, we need not mention the condition
explicitly. The above condition can always be satisfied by appropriately renaming

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

146 Head-Needed Strategy of HRSs and Its Decidable Classes

the bound variables.
In the following, we will write simply σ for σ̃ and tσ for σ(t). A substitution σ

is said to be normalized if σ(X) is normalized for all X ∈ Dom(σ).
Each normalized term can be represented by the form λx1 · · ·xm.

(· · · (at1) · · · tn), where m,n ≥ 0, a ∈ F ∪ X , and(· · · (at1) · · · tn) is a basic type.
In the present paper, we denote the term t by λx1 · · ·xm.a(t1, . . . , tn). The top
symbol of t is defined as top(t) ≡ a.

We define the notion of positions in normalized terms based on the form of
λx1 · · ·xm.a(t1, . . . , tn). In order to simplify the definition of descendants given
in the following section, we ignore lambda bindings in assigning positions to
terms. A position of a normalized term is a sequence of natural numbers. The
set of positions in t ≡ λ�x.a(t1, . . . , tn) is defined by Pos(t) = {ε} ∪ {ip | 1 ≤ i ≤
n, p ∈ Pos(ti)}. Let p and r be positions. We write p
 r if pq = r for some
position q. Moreover, if q 	= ε, that is, if p 	= r, we write p ≺ r. If p 	
 r and
p 	� r, we write p|r. The subterm t|p of t at p is defined as follows:

(λ�x.a(t1, . . . , tn))|p ≡
{

a(t1, . . . , tn) if p = ε

ti|q if p = iq

PosFV (t) indicates the set of all positions p ∈ Pos(t) such that top(t|p) is a free
variable in a normalized term t. t[u]p represents the term obtained by replacing
t|p in a normalized term t by normalized term u having the same basic type as
t|p. This is defined as follows:

(λ�x.a(t1, . . . , tn))[u]p ≡
{

λ�x.u if p = ε

λ�x.a(. . . , ti[u]q, . . .) if p = iq

Let t be a normalized term such that top(t) ∈ F , and Let u↓η denote the η-normal
form of u 13). Here, t is said to be a pattern if u1↓η, . . . , un↓η are different bound
variables for the arguments ui of each free variable F in t ≡ C[F (u1, . . . , un)].
Moreover, t is said to be fully-extended if u1↓η · · ·un↓η is a sequence of all bound
variables in the scope of C[]. The recursive definition of patterns is based on the
concept of the B-pattern. Let B be a set of variables. Then, the set of B-patterns
is defined as follows:
(1) F (t1, . . . , tn) is a B-pattern if F 	∈ B and t1, . . . , tn are η-long normal forms

of pairwise distinct variables in B,
(2) a(t1, . . . , tn) is a B-pattern if a ∈ F ∪ B and t1, . . . , tn are B-patterns,
(3) λx1 · · ·xn.t is a B-pattern if t is a (B ∪ {x1, . . . , xn})-pattern.
Patterns are defined using the concept of B-patterns as follows: t is a pattern
if and only if t is a ∅-pattern and top(t) ∈ F . Furthermore, a pattern t is fully-
extended, if t satisfies (1’) rather than (1), where
(1’) F (t1, . . . , tn) is a B-pattern if F 	∈ B, {t1, . . . , tn} = {x↓| x ∈ B}, and

ti 	≡ tj for i 	= j.
Let α be a basic type, let l : α be a pattern, and let r : α be a normalized

term such that FV (l) ⊇ FV (r). Then, l � r : α is called a higher-order rewrite
rule of type α. A higher-order rewrite system (HRS) is a set of higher-order
rewrite rules. Let R be an HRS, let l � r be a rewrite rule of R, and let σ

be a substitution. Then, lσ↓ is said to be a redex. If p is a position such that
s ≡ s[lσ ↓]p and t ≡ s[rσ ↓]p, then s can be reduced to t, which is denoted as
s

p→R t, or simply s
p→ t, s →R t, or s → t. For the case in which p 	= ε, the

reduction of s to t is denoted as s
�ε→ t. Since all rewrite rules are of basic type,

t is normalized if s is so 15).
The reflexive transitive closure of the reduction relation → is denoted as →∗.

If there exists an infinite reduction sequence t ≡ t0 → t1 → · · · from t, t is said
to have an infinite reduction sequence. If there exists no term that has an infinite
reduction sequence, → is said to be terminating. If →R is terminating, HRS
is also said to be R terminating. We sometimes refer to a reduction sequence
A : t0 → t1 → · · · → tn by the label A. We sometimes denote the i-th reduction
ti−1 → ti as Ai. A is also denoted as A1;A2; · · · ;An, where A;B denotes the
concatenation of sequences A and B.

Let BVp(t) denote the set of variables that appears as lambda abstractions in
the path from the position ε to p in normalized term t. BVp(t) is defined as
follows:

BVp(λx1 · · ·xm.a(t1, . . . , tn)) ≡
{

{x1, . . . , xm} if p = ε

{x1, . . . , xm} ∪ BVq(ti) if p = iq

Let l � r and l′ � r′ be rewrite rules. If there exist substitutions σ and σ′ and

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

147 Head-Needed Strategy of HRSs and Its Decidable Classes

a position p 	∈ PosFV (l′) such that lσ ↓≡ l′|p(σ′|
BVp(l′)) ↓, then these rewrite

rules are said to overlap �1. If HRS R has overlapping rules, R is said to be
overlapping. When R is not overlapping and every rule of R is left-linear, R is
said to be orthogonal.

3. Head Normalizing Strategy

3.1 Descendant
Considering a reduction s → t, the term t is obtained by replacing a redex in

s by a term. Since the other redexes in s may appear in different positions in t,
we must take note of the redex positions in order to discuss the needed redex.
Thus, the concept of descendants was proposed 5),6). In the sequel, we extend the
definition of descendants of TRSs to that of HRSs.

In TRSs, it is easy to track descendants of redexes. However, this is not easy in
HRSs because the positions of redexes move considerably by β-reductions taken
in a reduction.

Example 1 Consider the following HRS R1,

R1 =

{
apply(λx.F (x),X) � F (X)

c � d,

and a reduction A1 : s ≡ apply(λx.f(g(x), x), c) → f(g(c), c) ≡ t. Descendants
of a redex c that occurs at position 2 of s are positions 2 and 11 of t. As shown
in Fig. 1, there is no descendant of redex position ε because it is reduced.

In order to follow the positions of redexes correctly, we present mutually recur-
sive functions PV and PT , each of which returns a set of positions. The function
PV that takes a term t, a substitution σ, a variable F , and a position p as ar-
guments computes the set of positions in tσ↓ that originate from (Fσ)|p. The
function PT that takes a term t, a substitution σ, and a position p as arguments
computes the set of positions in tσ↓ that originate from t|p. In Example 1, we
have PV (F (X), {F �→ λx.f(g(x), x),X �→ a},X, ε) = {11, 2}.

Definition 1 (PV) Let t be a normalized term, let σ be a normalized sub-
stitution, and let F be a variable. The function PV is defined as follows for a

�1 The original definition of overlapping 14) is formal but complicated because the concept of
the lifter is used to prohibit the substitution to free variables in a subterm that is bound
in the original term.

Fig. 1 Descendants.

position p ∈ Pos(Fσ).
PV (F, σ, F, p) = {p} (PV1)
PV (a(t1, . . . , tn), σ, F, p) =

⋃
i{iq | q ∈ PV (ti, σ, F, p)}

if n > 0, and a ∈ F ∪ Dom(σ) (PV2)
PV (λx1 · · ·xn.t′, σ, F, p) = PV (t′, σ|{x1,...,xn}, F, p)

if n > 0, and F 	∈ {x1, . . . , xn} (PV3)
PV (G(t1, . . . , tn), σ, F, p) =

⋃
i PV (t′, σ′, yi, PV (ti, σ, F, p))

if n > 0, G ∈ Dom(σ), G 	= F

where Gσ ≡ λy1 . . . yn.t′ and σ′ = {y1 �→ t1σ↓, . . . , yn �→ tnσ↓} (PV4)
PV (F (t1, . . . , tn), σ, F, p) = (

⋃
i PV (t′, σ′, yi, PV (ti, σ, F, p))) ∪ PT (t′, σ′, p)

if n > 0, F ∈ Dom(σ)
where Fσ ≡ λy1 . . . yn.t′ and σ′ = {y1 �→ t1σ↓, . . . , yn �→ tnσ↓} (PV5)

PV (t, σ, F, p) = ∅
if t ≡ G 	= F or t ∈ F (PV6)

Here, PV (t, σ, F, P) denotes
⋃

p∈P PV (t, σ, F, p) for a set P of positions.
Definition 2 (PT) Let t be a normalized term, and let σ be a normalized

substitution. The function PT is defined as follows for a position p ∈ Pos(t).
For p = ε,
PT (t, σ, p) = {ε} (PT1)
For p 	= ε, (let p = ip′)
PT (a(t1, . . . , tn), σ, p) = {iq | q ∈ PT (ti, σ, p′)}

if t ≡, n > 0, and a ∈ F ∪ Dom(σ) (PT2)
PT (λx1 · · ·xn.t′, σ, p) = PT (t′, σ|{x1,...,xn}, p)

if n > 0 (PT3)

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

148 Head-Needed Strategy of HRSs and Its Decidable Classes

PT (G(t1, . . . , tn), σ, p) = PV (t′, σ′, yi, PT (ti, σ, p′))
if n > 0, G ∈ Dom(σ)
where Gσ ≡ λy1 . . . yn.t′ and σ′ = {y1 �→ t1σ↓, . . . , yn �→ tnσ↓}. (PT4)

Here, we sometimes write PT (t, σ, P) for
⋃

p∈P PT (t, σ, p) where P is a set of
positions.

Example 2 The following are examples of PV and PT . Let σ1 = {F �→
λy.f(y)} and σ2 = {y �→ g(λx.h(f(x)))}.
(1) For any substitution σ, PT (f(y), σ, ε) = {ε} by (PT1).
(2) For any substitution σ, PV (y, σ, y, 11)} = {11} by (PV1).
(3) For any substitution σ, PV (f(y), σ, y, 11) = {111} by (PV2) and (2).
(4) For any substitution σ, PV (f(y), σ, y, ∅) =

⋃
p∈∅ PV (f(y), σ, y, p) = ∅.

(5) PV (x, σ1, F, ε) = ∅ by (PV6).
(6) PV (F (x), σ1, F, ε) = {ε} by (PV5), (5), (4), and (1).
(7) PV (h(F (x)), σ1, F, ε) = {1} by (PV2) and (6).
(8) PV (λx.h(F (x)), σ1, F, ε) = {1} by (PV3) and (7).
(9) PV (g(λx.h(F (x))), σ1, F, ε) = {11} by (PV2) and (8).
(10) PV (f(y), σ2, y, 11) = {111} by (PV2) and (2).
(11) PV (F (g(λx.h(F (x)))), σ1, F, ε) = {111, ε} by (PV5), (10), (9), and (1).

Let us demonstrate that PV and PT are well-defined. For this purpose, we
introduce a well-founded order >�β on pairs of a term and a substitution:

〈s, θ〉 >�β 〈t, σ〉 ⇔ sθ →+
β tσ or sθ � tσ,

where � is the proper subterm relation of � defined as follows:

s � t ⇔

⎧⎪⎨
⎪⎩

s ≡ t,

s ≡ λx1 · · ·xn.s′ ∧ s′ � t, or
s ≡ s1 s2 ∧ ∃i si � t.

In the remainder of the present paper, the well-founded order >�β will play an
important role in proving claims in the form of ∀t,∀σ P (t, σ). These proofs will
use Noetherian induction over the set of pairs 〈t, σ〉 with the order >�β .

Lemma 1 PV and PT are well-defined.
Proof. First, we show the termination of the recursive calls in the definitions of
PV and PT by induction on 〈t, σ〉 with >�β . This is trivial for the cases of Defi-
nition 1 and 2, except for (PV4), (PV5), and (PT4). Consider the case of (PV4),

where we have two recursive calls of PV. Let t ≡ G(t1, . . . , tn), Gσ ≡ λy1 · · · yn.t′,
and σ′ = {y1 �→ t1σ ↓, . . . , yn �→ tnσ ↓}. Since tσ ≡ (G(t1, . . . , tn))σ ≡
(λy1 · · · yn.t′)(t1σ, . . . , tnσ) →β t′σ′, we have 〈t, σ〉 >�β 〈t′, σ′〉. We also have
tσ ≡ (λy1 · · · yn.t′)(t1σ, . . . , tnσ) � tiσ. Thus, we know the termination of com-
puting PV for the case of (PV4). The proofs for the cases of (PV5) and (PT4)
can be performed in a manner similar to that described above.

Next, we show the following two claims:
PV (t, σ, F, p) ⊆ Pos(tσ↓) for p ∈ Pos(Fσ)
PT (t, σ, p) ⊆ Pos(tσ↓) for p ∈ Pos(t).

This can be shown by simultaneous induction on the well-founded order >�β over
the pairs 〈t, σ〉. Here, we give the proof only for the case (PV4). Let p ∈ Pos(Fσ),
t ≡ G(t1, . . . , tn), Gσ ≡ λy1 · · · yn.t′, and σ′ = {y1 �→ t1σ↓, . . . , yn �→ tnσ↓}.
Since 〈t, σ〉 >�β 〈ti, σ〉, we have PV (ti, σ, F, p) ⊆ Pos(tiσ↓) by induction. Let
q ∈ PV (ti, σ, F, p). Then, PV (t′, σ′, yi, q) ⊆ Pos(t′σ′↓) follows from induction,
because 〈t, σ〉 >�β 〈t′, σ′〉. The claim follows from tσ↓≡ t′σ′↓. The claims for
the cases (PV5) and (PT4) can be shown in a similar manner. �

Thanks to the position system that ignores λ-positions, we have the following
lemma on PV.

Lemma 2 If l is a pattern, then PV (l, σ, F, p) = {p′p | top(l|p′) = F} for
every F ∈ FV (l). �
The proof of Lemma 2 is found in Appendix A.1.

Next, we present a definition of descendants.
Definition 3 (descendants of HRSs) Let A : s[lσ↓]u →l�r s[rσ↓]u be a

reduction with a rewrite rule l � r ∈ R, a substitution σ, a term s, and a
position u in s. The set of descendants of a position v in Pos(s[lσ↓]u) by A is
then defined as follows:

v\A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{v} if v | u or v ≺ u

{up3 | p3 ∈ PV (r, σ, F, p′2)}
if v = up′ and p′ ∈ PV (l, σ, F, p2)
for some F ∈ FV (l) and p2 ∈ Pos(Fσ)

∅ otherwise.

This definition of descendants is rather general, because we have not considered

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

149 Head-Needed Strategy of HRSs and Its Decidable Classes

that l is a pattern. Since the present paper assumes that l is a pattern, this
definition is simplified as follows by Lemma 2:

v\A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{v} if v | u or v ≺ u

{up3 | p3 ∈ PV (r, σ, top(l|p1), p2)}
if v = up1p2 and p1 ∈ PosFV (l)

∅ otherwise.

For a set D of positions, D\A denotes the set
⋃

v∈D v\A. For a reduction sequence
B : s →∗ t, D\B is naturally defined.

Example 3 Consider the HRS R1 and the reduction sequence A1 in Exam-
ple 1. The descendants of a redex position 2 in s by the reduction A1 are as
follows:

2\A1 = PV (F (X), σ,X, ε) = {11, 2}
where σ = {F �→ λx.f(g(x), x),X �→ c}.

Example 4 Consider the following HRS R2, a substitution σ, and a reduction
sequence A:

R2 = {f(g(λx.F (x))) � F (g(λx.h(F (x))))},
σ = {F �→ λy.f(y)},
A : f(g(λx.f(x))) ≡ f(g(λx.F (x)))σ↓

→ F (g(λx.h(F (x))))σ↓≡ f(g(λx.h(f(x)))).

The descendants of position 11 by the reduction sequence A are 11\A = {111, ε}
because PV (F (g(λx.h(F (x)))), σ, F, ε) = {111, ε} from Example 2.

In the following, we are only interested in descendants of redex positions. For
convenience, we identify redex positions with redexes. We show the property
whereby descendants of a redex are redexes.

Theorem 1 (redex preservation of descendants) Let R be an orthogo-
nal HRS, and let A : s

u→ t be a reduction. If s|v is a redex, then t|p are also
redexes for all p ∈ v\A. �
Note that if u ≺ v then t|p is an instance of s|v. On the other hand, t|p = s|v for
TRSs. The proof of Theorem 1 is found in Appendix A.2.

3.2 Development and Its Properties
Middeldorp 12) discussed the head normalization of TRS using the concept of

parallel reduction ‖−→. He used the property whereby descendants of redexes
on parallel positions are redexes on parallel positions in order to show that the
head-needed strategy is normalizing. However, the property does not hold in
HRSs because of β-reduction. Thus, we cannot discuss the head normalization
of HRS by directly following the discussions of Middeldorp. Thus, we introduce
the concept of development of HRS.

Now, we formalize the development with annotated redex positions and show
the diamond property. The development ◦−→D of normalized terms is defined by
the following inference rules:

Ai:si ◦−→Di ti (i=1,...,n)

a(s1,...,sn) ◦−→D
a(t1,...,tn)

D=
⋃

i
{ip|p∈Di} (A)

A′:s′ ◦−→D
t′

λx1···xn.s′ ◦−→D
λx1···xn.t′

(L)

Ai:si ◦−→Di ti (i=1,...,n) f(s1,...,sn)≡lθ′↓ f(t1,...,tn)≡lθ↓ (l�r)∈R

f(s1,...,sn) ◦−→D
rθ↓ D={ε}∪

⋃
i
{ip|p∈Di}

(R)

where D is a set of redex positions. Sometimes it is convenient to use the following
(R′) for (R).
A′′:lθ′↓ ◦−→D′

lθ↓ (l�r)∈R

lθ′↓ ◦−→D
rθ↓

ε
∈D′ ∧ D=D′∪{ε} (R′)

The development ◦−→D is also simply denoted as ◦−→.
The descendants of developments are defined as follows.
Definition 4 (descendants of developments) Let p be a position in s,

and let A : s ◦−→D t be a development. Then, the set of descendants of p by
A is defined as follows:

p\A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{ε} in case of (A) and p = ε

{ip′′ | p′′ ∈ p′\Ai} in case of (A) and p = ip′

p\A′ in case of (L)
(p\A′′)\A′′′ in case of (R′) where A′′′ : lθ↓→ rθ↓

where Ai, A′, and A′′ are reductions shown in the definition of developments.
Let A and B be developments such that A : s ◦−→D t1 and B : s ◦−→ t2. The

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

150 Head-Needed Strategy of HRSs and Its Decidable Classes

development starting from t2, in which all redexes at positions D\B = {p\B | p ∈
D} are contracted, is denoted as A\B. Let A and B be development sequences
such that A : s1 ◦−→∗ s2 and B : t1 ◦−→∗ t2. Here, A and B are said to be
permutation equivalent, which is denoted as A � B, if s1 ≡ t1, s2 ≡ t2 and
p\A = p\B for every redex position p in s1. The following lemma corresponds to
Lemma 2.4 in Reference 6) , which shows the diamond property 15),16). Raamsdonk
also reported the diamond property of development 19). However, our lemma
shows not only the existence of reduction sequences, but also that the descendants
of a redex in s with respect to two development sequences from s to u are the
same.

Lemma 3 (diamond property) Let R be an orthogonal HRS. If A and B

are developments starting from the same term, then A; (B\A) � B; (A\B). �
The proof of Lemma 3 is found in Appendix A.3.

3.3 Head-Needed Redex
We extend the notion of head normalization of TRSs to that of HRSs. The

remainder of this section assumes the orthogonality of HRSs R.
Definition 5 (head normal form) Let R be an HRS. A term that cannot

be reduced to any redex is said to be in head normal form.
Lemma 4 (Reference 9)) Let t be in head normal form. If there exists a

reduction sequence s
�ε→ ∗t, s is in head normal form. �

Definition 6 (head-needed redex) A redex r in a term t is head-needed if
a descendant of r is reduced in every reduction sequence from t to a head normal
form.

Lemma 5 Let t be in non-head-normal form. Then, the pattern of the first
redex, which appears in every reduction sequence from t to a redex, is unique.
Proof. Similar to the proof of Lemma 4.2 in Ref. 12), the lemma is proved by
Theorem 1 and orthogonality. �

Proposition 1 Let R be fully extended. Assume that we rewrite a term s at
position p by some rewrite rule and obtain the term t. If t ≡ lσ↓ for a substitution
σ and a fully-extended pattern l such that p 	∈ PosF (l), then there exists some
substitution σ′ such that s ≡ lσ′↓.
Proof. We prove the more general claim.

Claim Let B be a set of variables, and let l be a fully extended linear B-pattern.
If s

p→ lσ↓, top(l|p) 	∈ B∪F , and (Dom(σ)∪VRan(σ))∩B = ∅, then there exists
a substitution σ′ such that s ≡ lσ′↓ and (Dom(σ′) ∪ VRan(σ′)) ∩ B = ∅.

Our proposition is the claim for the case in which B = ∅. The claim can be
proved by induction on the structure of l.
(1) Let l ≡ F (x1 ↓, . . . , xn ↓), B = {x1, . . . , xn}, and F 	∈ B. Consider the

substitution σ′ = {F �→ λx1 · · ·xn.s}. Then, lσ′ ↓≡ (λx1 · · ·xn.s)(x1 ↓
, . . . , xn↓)↓≡ s, i.e., lσ′↓≡ s.

(2) Let l ≡ a(t1, . . . , tn) for a ∈ F ∪B and n > 0. Since (Dom(σ)∪VRan(σ))∩
B = ∅, the rewriting s

p→ lσ↓ means s ≡ a(s1, . . . , sn) for some s1, . . . , sn,

and lσ ↓≡ a(t1σ ↓, . . . , tnσ ↓), where sj
p′
→ tjσ ↓ for j such that p = jp′,

and for any i 	= j tiσ ↓≡ si. By induction, there exists a substitution
σ′′ such that tjσ

′′ ↓≡ sj and (Dom(σ′′) ∪ VRan(σ′′)) ∩ B = ∅. Hence,
s ≡ a(s1, . . . , tjσ

′′↓, . . . , sn) ≡ a(t1σ↓, . . . , tjσ′′↓, . . . , tnσ↓). Consider the
substitution σ′ such that σ′ = {x �→ σ′′(x) | x ∈ V ar(tj)} ∪ {x �→ σ(x) |
x 	∈ V ar(tj)∧x ∈ V ar(ti) for some i 	= j}. From the linearity of l, σ′ holds
(Dom(σ′) ∪ VRan(σ′)) ∩ B = ∅ and s ≡ a(t1σ′↓, . . . , tnσ′↓) ≡ lσ′↓.

(3) Let l ≡ λx1 · · ·xn.t, where t is a (B ∪ {x1, . . . , xn})-pattern. Let s ≡
λx1 · · ·xn.s′, and let σ′′ = σ|{x1,...,xn}. Then, (Dom(σ′′) ∪ VRan(σ′′)) ∩
(B ∪ {x1, . . . , xn}) = ∅ and s′

p→ tσ′′ ↓. By induction hypothesis, there
exists a substitution σ′ such that s′ ≡ tσ′ and (Dom(σ′) ∪ VRan(σ′)) ∩
(B ∪ {x1, . . . , xn}) = ∅. Thus, s ≡ λx1 · · ·xn.s′ ≡ λx1 · · ·xn.(tσ′↓) ≡ lσ′↓.

�
Theorem 2 Let R be a fully-extended orthogonal HRS. Every term that is

not in head normal form contains a head-needed redex.
Proof. Similar to the proof of Theorem 4.3 in Ref. 12), the theorem is proved
by Lemma 4, Lemma 5, and Proposition 1. �

We cannot remove the fully-extended condition from this theorem because of
the following counterexample.

Counterexample 1 Consider the following orthogonal HRS:

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

151 Head-Needed Strategy of HRSs and Its Decidable Classes

R =

{
f(λx.z) � c

g(z) � c,

where f , g, and c are function symbols and z and x are variables. The term
f(λx.g(g(x))) is not in head normal form and contains no head-needed redex.
The first rule cannot be applied to the term because the free variable z does
not match g(g(x)), which contains a bound variable x. The second rule can be
applied to two redexes: g(x) and g(g(x)). However, neither redex is head-needed.
By a reduction sequence f(λx.g(g(x))) → f(λx.g(c)) → c, the redex g(g(x)) is
not head-needed. By another reduction sequence f(λx.g(g(x))) → f(λx.c) → c,
the redex g(x) is not head-needed.

In the proof of Theorem 2, the properties shown in Proposition 1 are necessary,
whereas in left-linear TRSs, the property holds trivially.

3.4 Top-down Decomposition of Development
To prove the main theorem of the present paper, we must introduce the cost

of development. First, we define top-down decomposition.
Definition 7 (top-down decomposition) Let A : s ◦−→ t be a development.

If there exists a sequence of positions p1, p2, . . . , pn such that s ≡ s0
p1→ s1

p2→
s2

p3→ · · · pn→ sn ≡ t and pi 	� pj for any i < j (1 ≤ i < j ≤ n), then the
rewrite sequence is called a top-down decomposition of the development A. If the
length of a top-down decomposition is minimal in top-down decompositions of
the descendant A, we call the decomposition a minimal top-down decomposition.

Here, we introduce the concept of the top-down property of a development,
which is recursively defined as follows: Consider a development s ◦−→ t, and let
t ≡ λx1 · · ·xn.a(t1, . . . , tm), where a ∈ F ∪ X and n ≥ 0. The development
s ◦−→ t has the top-down property, (1) if s ◦−→∅ t, i.e. s ≡ t, or (2) if, for some
k ≥ 0, there exists a unique set of positions D(ε 	∈ D), and the term u ≡
λx1 · · ·xn.a(u1, . . . , um), then s

ε→k
u ◦−→D t and ui ◦−→ ti has the top-down

property for all i = 1, . . . , m. We often write
�ε◦−−→ for ◦−→D when ε 	∈ D.

Lemma 6 Any development has a minimal top-down decomposition, the
length of which is uniquely determined. �
The proof of Lemma 6 is found in Appendix A.4.

From Lemma 6, we can define the cost of a development A : s ◦−→ t by the
length of the minimal top-down decomposition of A, which is denoted as |s ◦−→ t|.

3.5 Head Normalizing Strategy

Middeldorp introduced ‖−→
∇

and ‖−→
Δ

in order to divide a parallel reduction

‖−→
D

into two parts with respect to a given set B of parallel redex positions 12).

He used the property ‖−→
∇

· ‖−→
Δ
⊆ ‖−→

Δ
· ‖−→

∇
to prove his main theorem. In this

section, we prove the properties of development of an HRS corresponding to those
of parallel reduction of a TRS. This allows us to follow Middeldorp’s example.

Definition 8 (∇ and Δ) Let D be a set of positions, and let B be another
set of positions. When the set D satisfies the condition ∀p ∈ D,∃q ∈ B, q ≺ p,
we write the set D by D∇B . In contrast, when ∀p ∈ D,∀q ∈ B, q 	
 p, we write
the set D by DΔB .
We sometimes write D∇ for D∇B and ∇ for D∇and DΔ for DΔB and Δ for
DΔ,when D and B are interpreted as trivial.

Here, we prove the following Lemma 7, which means ◦−→∇ · ◦−→Δ⊆ ◦−→Δ · ◦−→∇.

This corresponds to ‖−→
∇
· ‖−→

Δ
⊆ ‖−→

Δ
· ‖−→

∇
in Ref. 12).

Lemma 7 Let B be a set of redex positions of a term t, and let D and D′ be
sets of the redex positions that can be written by D∇B and D′

ΔB , respectively.
Let A1 : t ◦−→D t1 and A2 : t1 ◦−→D′

t2 be developments. Then, there exist

developments A3 : t ◦−→D′
t3 and A4 : t3 ◦−→D′′

t2 such that D′′ = D\A3 can be
written as (D\A3)∇(B\A3) for some t3. �
To prove Lemma 7, we must follow the moves of redexes, which complicates the
proof. Thus, for the purpose of readability, we give he proof in Appendix A.5.
Here, note that |A2| = |A3| holds. In other words, the costs of developments A2

and A3 are equal in Lemma 7 because the reduced positions in A1 are strictly
below D′ or are disjoint from D′.

Now we are at the position to show the main result of this paper. The proof
proceeds in a similar way to that of the main theorem in Ref. 12).

Proposition 2 If a development s ◦−→ t is divided into s ◦−→D s′ and s′ ◦−→D′
t,

where DΔ and D′
∇, then |s ◦−→ t| ≥ |s ◦−→ s′|.

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

152 Head-Needed Strategy of HRSs and Its Decidable Classes

Proof. The sequence obtained by concatenating the decomposition of s ◦−→D s′

and the sequence of s′ ◦−→D′
t is a decomposition of s ◦−→ t.Thus, the proposition

holds. �
Definition 9 Let A = A1;A2; · · · ;An and B = B1;B2; · · · ;Bn be develop-

ment sequences of length n. We write A > B if there exists an i ∈ {1, . . . , n}
such that |Ai| > |Bi| and |Aj | = |Bj | for every i < j ≤ n. We also write A ≥ B

if A > B or |Aj | = |Bj | for every 1 ≤ j ≤ n.
Definition 10 Let A be a development sequence and B be a development

starting from the same term. We write B⊥A if any descendant of redexes reduced
in B is not reduced in A.

The following two lemmas correspond to Lemma 5.4 and 5.5 in Ref. 12). These
lemmas can be proved in the similar way to Ref. 12).

Lemma 8 Let A : s ◦−→∗ sn and B : s ◦−→ t be such that B⊥A. If sn is in
head normal form then there exists a development sequence C : t ◦−→∗ tnsuch that
A ≥ C and tn is in head normal form. �
This lemma is proved using Lemma 3, Lemma 7, and Proposition 2.

Lemma 9 Let A : s ◦−→∗ sn and B : s ◦−→ t, such that B 	⊥A. If sn is in head
normal form, then there exists a development sequence C : t ◦−→∗ tn such that
A > C and tn is in head normal form. �
This lemma is proved using Lemma 3 and Lemma 8.

Theorem 3 Let R be an orthogonal HRS. Let t be a term that has a head
normalizing reduction. There is no development sequence starting from t that
contains infinitely many head-needed rewriting steps. �
Using Lemma 8 and Lemma 9, this theorem is proved in the same manner as
Ref. 12).

From Theorem 2 and Theorem 3, the head-needed reduction is a head nor-
malizing strategy in fully-extended orthogonal HRS. In other words, we obtain
a head normal form by reducing head-needed redexes, if the head normal form
exists.

4. Decidable Classes of Higher-Order Rewrite Systems

Since rewrite relations →∗
R of HRSs are generally undecidable, in the same

manner as TRSs, the neededness of a reduction is undecidable. Therefore, we
give a sufficient condition with approximations of reductions by a manner similar
to that described in Ref. 4). We have shown that →∗

R [L] is recognizable by
Theorem 14 of Ref. 10), which uses a Ground Tree Transducer (GTT) 2).

4.1 Approximations
Let R be an HRS over the signature F . Let •α be a fresh constant of basic

type α. R is extended to an HRS over F• = F ∪ {•α | α ∈ S}. We denote
the set of all normal forms with respect to R over T (F•, ∅) as NFR. Let R• be
R ∪ {•α → •α | α ∈ S}. Thus, NFR• is NFR ∩ T (F , ∅). The type of • will be
omitted if it is explicit from the context.

Lemma 10 Let R be an HRS in which both sides are patterns and share no
variables. The set (→∗

R)[NFR•] is recognizable.
Proof. This lemma follows from Theorem 14 of Ref. 10). �

Here, we define approximations on HRS Rs and Rnv, which correspond to
strong sequential rewriting and NV-sequential rewriting on a TRS 4), respectively.

Definition 11 (approximation) Let R and S be HRSs over the same sig-
nature. If →∗

R⊆→∗
S and NFR = NFS , S is said to approximate R.

Definition 12 (R-needed) Let R be an HRS over a signature F . Let Δ be
a redex of type α in C[Δ] ∈ T (F , ∅). Δ is R-needed if and only if there is no
t ∈ NFR• such that C[•α] →∗

R t

Lemma 11 Let S be an approximation of an HRS R. Each S-needed redex
is R-needed.
Proof. Each redex of S is also a redex of R from Definition 11. Each reduction
relation of R is also a reduction relation of S. Thus, if a redex is S-needed, then
it is also R-needed. �

Definition 13 An approximation Rs is an HRS obtained from R by replacing
the right-hand side of each rewrite rule by new free variables.

Definition 14 An approximation Rnv is an HRS obtained from R by replac-
ing any subterms in the right-hand sides of rewrite rules in which the top is a
free variable by new fully-extended free disjoint variables.
Rs and Rnv satisfy conditions of approximations in Definition 11. Both sides of
the rewrite rules of Rs and Rnv are patterns because the right-hand side of Rs

is a free variable and there are no nesting free variables in the right-hand side

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

153 Head-Needed Strategy of HRSs and Its Decidable Classes

of Rnv. If we can find an Rs(or Rnv)-needed redex, the redex is also R-needed
from Lemma 11. Therefore, we can obtain head normal form on R by rewriting
Rs (or Rnv)-needed redexes repeatedly.

Example 5 Approximations Rs and Rnv are as follows:

R = {map(λx.F (x), cons(X,Y)) � cons(F (X),map(λx.F (x), Y))},
Rs = {map(λx.F (x), cons(X,Y)) � Z},
Rnv = {map(λx.F (x), cons(X,Y)) � cons(Z,map(λx.G(x),W))}.

4.2 Needed Reductions
Next, we discuss the properties of needed reductions on approximations of

HRSs.
Definition 15 (R-NEEDED) Let R be an HRS, and let M• ∈ T (F•, ∅) be

a set of all terms that contain exactly one occurrence of •. If C[•] ∈ M• such
that there is no t ∈ NFR• with C[•] →∗

R t, then the set of all terms that satisfies
C[•] is said to be R-NEEDED.

The following theorem for HRS holds in a manner similar to The TRS version
of this theorem (Theorem 15 in Ref. 4)).

Theorem 4 Let R be an HRS. If (→∗
R)[NFR•] is recognizable, then R-

NEEDED is recognizable. �
Lemma 12 Let R be an HRS. Relations →∗

Rs
and →∗

Rnv
are recognizable.

Proof. For each approximation S ∈ {Rs,Rnv}, there is a GTT that recognizes
→S . Thus, the relation →∗

S is recognizable Theorem 14 of Ref. 10) �
The following theorem follows from Lemma 10, Lemma 12, and Theorem 4.
Theorem 5 Let R be a left-linear HRS over signature F . For each approx-

imation S ∈ {Rs,Rnv}, whether a redex of a term in T (F , ∅) is S-needed is
decidable. �

From this theorem, we can decide needed reductions of approximation of HRSs.
Therefore, the theorem is a sufficient condition of the decision problem of HRSs.

For example, the following HRS R causes infinite reduction when using the
inner-most strategy or the left-most outer-most strategy. However, needed re-
duction leads its result.

Example 6

R = { if (X,Y,True()) � X,

if (X,Y,False()) � Y,

isZero(Zero) � True(),
isZero(Succ(X)) � False(),

apply(λx.F (x),X) � F (X),
fromn(X) � cons(X, fromn(Succ(X))) }

if (fromn(Succ(Zero)), cons(Succ(Zero), []),
apply(λx.isZero(x),Succ(Zero)))

→ if (fromn(Succ(Zero)), cons(Succ(Zero), []), isZero(Succ(Zero)))
→ if (fromn(Succ(Zero)), cons(Succ(Zero), []),False())
→ cons(Succ(Zero), [])

In this example, a function fromn makes an infinite list in the inner-most strategy
or the left-most outer-most strategy. However, the needed reduction strategy
reduces the underlined parts, the functions apply and is Zero of which are not
left-most, but rather outer-most, and obtains its result
The following are approximations Rs and Rnv of the example R. Using a GTT
made from the following rules, whether a redex of R is needed is decidable.

Rs = { if (X,Y,True()) � Z,

if (X,Y,False()) � Z,

isZero(Zero) � X,

isZero(Succ(X)) � Y,

apply(λx.F (x),X) � Y,

fromn(X) � Y }

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

154 Head-Needed Strategy of HRSs and Its Decidable Classes

Rnv = { if (X,Y,True()) � Z,

if (X,Y,False()) � Z,

isZero(Zero) � True(),
isZero(Succ(X)) � False(),

apply(λx.F (x),X) � Y,

fromn(X) � cons(Y, fromn(Succ(Z))) }

4.3 Head-Needed Reductions
In the remainder of the present paper, we generalize the above-mentioned re-

search on needed reduction to relate to head-needed reduction. We can show the
following theorem in the same manner as in the case of a TRS in Ref. 4).

Definition 16 Let F be a signature. Let F◦ = F ∪{f◦ | f ∈ F}, where every
f◦ has the same arity as f . Let R be an orthogonal HRS over the signature F .
Let Δ ∈ T (F , ∅) be a redex. We write t◦ for the term that is obtained from t by
marking its head symbol. R◦ denotes the HRS R∪ {l◦ � r | l � r ∈ R}.
Let R and S be HRSs over the same signature F . Redex Δ in C[Δ] ∈ T (F , ∅) is
said to be (R,S)-head-needed if there is no term t ∈ HNFS◦ such that C[Δ◦] →∗

R
t. The set of all terms C[Δ◦] such that there is no term t ∈ HNFS◦ with
C[Δ◦] →∗

R t is denoted as (R,S)-HEAD-NEEDED.
Theorem 6 Let R and S be HRSs over the same signature F . If (→∗

R)
[HNFS◦] is recognizable and R is left-linear, then (R,S)- HEAD-NEEDED is
recognizable.
Proof. Theorem 37 in Ref. 4), which holds on TRSs, also holds on HRSs. �

Lemma 13 Let R be a left-linear HRS. The set (→∗
Rα

)[HNF (Rβ)◦] is recog-
nizable for α, β ∈ {s, nv}.
Proof. For β ∈ {s, nv}, the set of reducible terms on HRS Rβ is recognizable
from Ref. 10). Therefore, [HNF (Rβ)◦] is also recognizable. For α ∈ {s, nv},
the relation →∗

Rα
is recognizable by Lemma 12. Thus, (→∗

Rα
)[HNF (Rβ)◦] is

recognizable for α, β ∈ {s, nv}, i.e., (Rα,Rβ)-HEAD-NEEDED is recognizable.
�

From Theorem 6 and Lemma 13, the head-neededness of a redex is decidable
for s and nv approximations as follows.

Corollary 1 Let R be a left-linear HRS over a signature F . Whether a redex

in a term is (Rα,Rβ)-head-needed for α, β ∈ {s, nv} is decidable.
4.4 Decidability of Membership Problem
The decidability of the membership problem on a TRS is discussed using an

abstracted model 4). Therefore, we can also discuss that on an HRS using the
same method, i.e., the following theorems hold.

Definition 17 Let α and β be approximation mappings. The class of HRSs R
such that each term in non-Rβ-head normal form has an (Rα,Rβ)-head-needed
redex is denoted as CBN-HNFα,β .

Theorem 7 Let R and S be HRSs such that (R,S)-HEAD-NEEDED is rec-
ognizable. The set of terms that have an (R,S)-head-needed redex is recogniz-
able.
Proof. Theorem 41 in Ref. 4) holds on HRSs. �

Theorem 8 Let R be an HRS, and let α and β be an approximation mapping
such that HNFRβ

and (Rα,Rβ)-HEAD-NEEDED are recognizable. Whether
R ∈ CBN-HNFα,β holds is decidable.
Proof. Theorem 42 in Ref. 4) holds on HRSs. �

5. Conclusions

We have introduced the function PV to follow the moves of an occurrence
caused by β-reduction sequences and have given a concrete procedure to calculate
the descendants for developments of an HRS using PV . The proposed position
system identifies occurrences of λx.t and t in C[λx.t], which has an advantage
in that the behavior of the movement of positions is the same as that in the
first-order case in applying a substitution to a pattern. We believe that PV is
a useful tool to prove a number of properties related to HRSs. This function
has helped us to prove the permutation equivalence of the diamond property. In
addition, we have shown that the head-needed reduction is a normalizing strategy
for orthogonal HRSs. Thus, we can derive a normal form of a term by repeated
reduction of head-needed redexes. Using a GTT and recognizability of redexes,
we have shown that we can find head-needed redex and execute head-needed
reduction. In addition, we have shown that whether the HRS belongs to a class
of head-needed reduction for a given HRS is decidable.

Oostrom showed the (head-)normalizing property of outer-most fair reduc-

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

155 Head-Needed Strategy of HRSs and Its Decidable Classes

tion 17)�1. since the result on this reduction is strongly related to the (head-
)normalizing property of (head-)needed reduction, one may think that the latter
result are derived from the former or vice versa. However, these are difficult.
Based on results for both head-needed reduction and outer-most fair reduction,
the following relationship between head-needed reduction and outer-most fair
reduction is obtained.
(1) Outer-most fair reduction starting from a term having a head normal form

is hyper head-needed reduction.
Since outer-most fair reduction from a term is normalizing 17), it is also
hyper head-needed reduction �2.

(2) Head-needed reduction starting from a term having a head normal form is
outer-most fair reduction.
Since head-needed reduction is head normalizing, if a term has a head
normal form, head-needed reduction from the term is also outer-most fair
reduction.

Acknowledgments We thank anonymous referees for giving useful com-
ments. The present study was supported in part by MEXT. KAKENHI
#18500011, #20300010, and #20500008.

References

1) Andrews, P.B.: Resolution in Type Theory, Journal of Symbolic Logic, Vol.36,
No.3, pp.414–432 (1971).

2) Dauchet, M. and Tison, S.: Decidability of Confluence for Ground Term Rewriting
Systems, Proc. 1st Fundamentals of Computation Theory, LNCS, Vol.199, pp.80–89
(1985).

3) Deursen, A.V. and Dinesh, T.B.: Origin Tracking for Higher-Order Term Rewrit-
ing Systems, Proc. Higher-Order Algebra, Logic, and Term Rewriting (HOA’93),
LNCS, Vol.816, pp.76–95, Springer-Verlag (1994).

4) Durand, I. and Middeldorp, I.: Decidable Call by Need Computations in Term
Rewriting (extended abstract), Proc. 14th International Conference on Automated
Deduction, LNAI, Vol.1249, pp.4–18, Townsville, Springer-Verlag (1997).

5) Huet, G. and Lévy, J.-J.: Call-by-Need Computations in Non-Ambiguous Linear

�1 Outer-most fair reduction is a reduction whereby each outer-most redex is reduced or erased
in the reduction.

�2 Hyper head-needed reduction is a reduction whereby each head-needed redex is reduced or
erased in the reduction.

Term Rewriting Systems, Rapport Laboria 359, INRIA (1979).
6) Huet, G. and Lévy, J.-J.: Computations in Orthogonal Rewriting Systems, I and

II, pp.396–443, The MIT Press (1991).
7) Iawami, M. and Toyama, Y.: Simplification Ordering for Higher-Order Rewrite

Systems, IPSJ Transactions on Programming, Vol.40, SIG 4 (PRO3), pp.1–10
(1999).

8) Jouannaud, J.-P. and Rubio, A.: Rewrite Orderings for Higher-Order Terms in
η-long β-normal Form and the Recursive Path Ordering, Theoretical Computer
Science, Vol.208, pp.33–58 (1998).

9) Kasuya, H., Sakai, M., and Agusa, K.: Descendants and Head Normalization of
Higher-Order Rewrite Systems, Proc. 6th International Symposium on Functional
and Logic Programming, LNCS, Vol.2441, pp.198–211, Springer-Verlag (2002).

10) Kasuya, H., Sakai, M., and Agusa, K.: Recognizability of Redexes for Higher-
Order Rewrite Systems, IPSJ Transaction on Programming, Vol.2, No.2, pp.166–
175 (2009).

11) Mayr, R. and Nipkow, T.: Higher-Order Rewrite Systems and Their Confluence,
Theoretical Computer Science, Vol.192, pp.3–29 (1998).

12) Middeldorp, A.: Call by Need Computations to Root-Stable Form, Proc. 24th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp.94–105 (1997).

13) Miller, D.: A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification, Journal of Logic and Computation, Vol.1, No.4,
pp.497–536 (1991).

14) Nipkow, T.: Higher-Order Critical Pairs, Proc. 6th IEEE Symposium, Logic in
Computer Science, pp.342–349, IEEE Press (1991).

15) Nipkow, T.: Orthogonal Higher-Order Rewrite Systems are Confluent, Proc. Typed
Lambda Calculi and Applications, LNCS, Vol.664, pp.306–317, Springer-Verlag
(1993).

16) Oostrom, V.V.: Confluence for Abstract and Higher-Order Rewriting, Ph.D. thesis,
Vrije Universiteit, Amsterdam (1994).

17) Oostrom, V.V.: Normalisation in Weakly Orthogonal Rewriting, Proc. 10th Inter-
national Conference on Rewriting Techniques and Applications, LNCS, Vol.1631,
pp.60–74 (1999).

18) Oyamaguchi, M.: NV-Sequentiality: A Decidable Condition for Call-by-Need Com-
putations in Term-Rewriting Systems, SIAM Journal of Computing, Vol.22, No.1,
pp.114–135 (1993).

19) Raamsdonk, F.V.: Confluence for Higher-Order Rewriting, Ph.D. thesis, Vrije Uni-
versiteit, Amsterdam (1996).

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

156 Head-Needed Strategy of HRSs and Its Decidable Classes

Appendix

A.1 Proof of Lemma 2
In order to prove Lemma 2, we must first describe a number of properties.
Proposition 3 Let t be a term, let σ be a substitution, let F be a variable,

and Let p be a position.
(a) If F 	∈ FV (t), then PV (t, σ, F, p) = ∅.
(b) If t = G(X1 ↓, . . . , Xn ↓), p ∈ Pos(Xiσ), and G 	∈ Dom(σ), then

PV (t, σ,Xi, p) = {ip}.
Proof. From the definition of PV , this proposition is trivial. �

Lemma 14 Let t be a term, and let σ be a substitution for ∀X ∈ Dom(σ),
Xσ = Y ↓ for some variable Y . If p ∈ Pos(t), then PT (t, σ, p) = {p}.
Proof. We prove the claim by induction on t. We have four cases from the
definition of PT .
(PT1) Since p = ε, we have PT (t, σ, p) = {p}.
(PT2) Let t ≡ a(t1, . . . tn) and p = ip′. Then, by induction, PT (ti, σ, p′) = {p}.
Hence, PT (t, σ, p) = {iq | q ∈ PT (ti, σ, p′)} = {ip′} = {p}.
(PT3) Let t ≡ λx1 · · ·xn.t′. Then, by induction, we have PT (t, σ, p) =
PT (t′, σ|{x1,...,xn}, p) = {p}.
(PT4) Let t ≡ G(t1, . . . , tn), p = ip′, Gσ = Y ↓= λy1 · · · yn.Y (y1↓, . . . , yn↓), and
σ′ = {y1 �→ t1σ↓, . . . , yn �→ tnσ↓}. Then, PT (ti, σ, p′) = {p′} ⊆ Pos(tiσ↓) by
induction and Lemma 1. We have PT (t, σ, p) = PV (Y (y1↓, . . . , yn↓), σ′, yi, p

′) =
{ip′} by Proposition 3 (b), because p′ ∈ Pos(tiσ↓) = Pos(yiσ

′). �
Lemma 15 Let t be a term such that t = F (X1↓, . . . , Xn↓). If p ∈ Pos(Fσ),

F ∈ Dom(σ), and Xi 	∈ Dom(σ) for all i, then PV (t, σ, F, p) = {p}.
Proof. From Proposition 3 (a), PV (Xi↓, σ, F, p) = ∅. Let Fσ = λy1 · · · yn.t′.
Thus, (PV5) shows PV (F (X1 ↓, . . . , Xn ↓), σ, F, p) = PT (t′, σ′, p), where σ′ =
{y1 �→ X1 ↓ σ ↓, . . . , yn �→ Xn ↓ σ ↓} = {y1 �→ X1 ↓ . . . yn �→ Xn ↓}. Since
p ∈ Pos(t′) = Pos(Fσ), we have PT (t′, σ′, p) = {p} by Lemma 14. �

Based on the above lemmas, we obtain the following lemma.
Lemma 2 If l is a pattern, then PV (l, σ, F, p) = {p′p | top(l|p′) = F} for

every F ∈ FV (l).
Proof. We show by induction on the structure of l that PV (l, σ, F, p) = {p′p |

top(l|p′) = F}for every F ∈ (FV (l)−B) and B-pattern l such that Dom(σ)∩B =
∅. From the definition of PV , we have six cases.
(PV1) We have PV (F, σ, F, p) = {p} = {p′p | top(F |p′) = F}.
(PV2) Let l ≡ a(t1, . . . , tn). We have PV (ti, σ, F, p) = {p′′p | top(ti|p′′) =
F} by induction. Thus, PV (l, σ, F, p) =

⋃
i{ip′′p | top(ti|p′′) = F}. Hence,

PV (l, σ, F, p) = {p′p | top(l|p′) = F}.
(PV3) Let l ≡ λx1 · · ·xn.t. Then, by induction, PV (t, σ|{x1,...,xn}, F, p) = {p′p |
top(t|p′) = F}, because Dom(σ|{x1,...,xn}) ∩ (B ∪ {x1, . . . , xn}) = ∅.
(PV4) Let l ≡ G(t1, . . . , tn). Then, G 	∈ B and ti = xi↓, where xi is a pairwise
distinct variable in B. Hence, the claim holds by Lemma 15.
(PV5) Same as for (PV4).
(PV6) Trivial. �
This lemma means that a position p ∈ Pos(Fσ) moves to p′p for the position p′

of F in pattern l, which is the same behavior as that observed in the case of the
first order.

A.2 Proof of Theorem 1
In order to prove this theorem, the following lemma must be prepared.
Lemma 16 Let t be a normalized term, let σ be a normalized substitution,

and let F be a variable.
(a) Let p ∈ Pos(Fσ) be a position. Then, for any q ∈ PV (t, σ, F, p) there exists

a substitution θ such that (tσ↓)|q ≡ ((Fσ)|p)θ↓.
(b) Let p ∈ Pos(t) be a position. Then, for any q ∈ PT (t, σ, p) there exists a

substitution θ such that (tσ↓)|q ≡ (t|p)θ↓.
Proof. We prove (a) and (b) simultaneously by induction on 〈t, σ〉 with >�β .

First, we show the proof of (a). Let p ∈ Pos(Fσ) and q ∈ PV (t, σ, F, p). We
have six cases from the definition of PV .
(PV1) We have q = p from t ≡ F . Hence, the claim holds.
(PV2) Let t ≡ a(t1, . . . , tn). Since a ∈ F ∪Dom(σ) and q ∈ PV (t, σ, F, p), there
exist q′ and i such that q = iq′ and q′ ∈ PV (ti, σ, F, p). Since 〈t, σ〉 >�β 〈ti, σ〉,
there exists θ′ such that (tiσ↓)|q′ ≡ ((Fσ)|p)θ′↓ by induction. Thus, (tσ↓)|q ≡
(a(t1, . . . , tn)σ↓)|i·q′ ≡ (tiσ↓)|q′ ≡ ((Fσ)|p)θ′↓ holds.
(PV3) Let t ≡ λx1 · · ·xn.t′, and let σ′ = σ|{x1,...,xn}. Then, q ∈ PV (t′, σ′, F, p).
Since 〈t, σ〉 >�β 〈t′, σ′〉, there exists θ′ such that (t′σ′ ↓)|q ≡ ((Fσ′)|p)θ′ ↓ by

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

157 Head-Needed Strategy of HRSs and Its Decidable Classes

induction. Then, (tσ ↓)|q ≡ ((Fσ)|p)θ′ ↓ holds from (tσ ↓)|q ≡ (t′σ′ ↓)|q and
F 	∈ {x1, . . . , xn}.
(PV4) Let t ≡ G(t1, . . . , tn), F 	= G, and Gσ ≡ λy1 · · · yn.t′. Then, there
exist q′ and i such that q′ ∈ PV (ti, σ, F, p) and q ∈ PV (t′, σ′, yi, q

′), where
σ′ = {y1 �→ t1σ ↓, . . . , yn �→ tnσ ↓}. Since 〈t, σ〉 >�β 〈t′, σ′〉, there exists θ′

such that (t′σ′↓)|q ≡ ((yiσ
′)|q′)θ′↓ by induction. Thus, (tσ↓)|q ≡ (t′σ′↓)|q ≡

((yiσ
′)|q′)θ′↓≡ ((tiσ↓)|q′)θ′↓ holds. Since 〈t, σ〉 >�β 〈ti, σ〉, there exists θ′′ such

that (tiσ↓)|q′ ≡ ((Fσ)|p)θ′′↓ by induction. Therefore, (tσ↓)|q ≡ ((Fσ)|p)θ′′↓ θ′↓≡
((Fσ)|p)θ′′θ′↓ holds.
(PV5) Let t ≡ F (t1, . . . , tn) and Fσ ≡ λy1 · · · yn.t′. Then, there exists i

such that q ∈ PV (t′, σ′, yi, PV (ti, σ, F, p)) or q ∈ PT (t′, σ′, p), where
σ′ = {y1 �→ t1σ ↓, . . . , yn �→ tnσ ↓}. The former case can be shown in the
same manner as (PV4). In the latter case, since 〈t, σ〉 >�β 〈t′, σ′〉, there exists θ

such that (t′σ′↓)|q ≡ (t′|p)θ↓ by induction. Thus, (tσ↓)|q ≡ (t′σ′↓)|q ≡ (t′|p)θ↓≡
((λy1 · · · yn.t′)|p)θ↓≡ ((Fσ)|p)θ↓ holds.
(PV6) (PV6) is obvious because PV (t, σ, F, p) = ∅.

Next, we show the proof of (b). Let t|p be a redex, and let q ∈ PT (t, σ, p). We
have four cases from the definition of PT .
(PT1) We have q = ε from p = ε. Thus, we have (tσ↓)|q ≡ tσ↓≡ (t|p)σ↓.
(PT2) Let p = ip′ and t ≡ a(t1, . . . , tn). There exists q′ such that q = iq′ and
q′ ∈ PT (ti, σ, p′). Since 〈t, σ〉 >�β 〈ti, σ〉 and t|p ≡ ti|p′ , there exists θ such that
(tiσ↓)|q′ ≡ (ti|p′)θ↓ by induction. From a ∈ F ∪ Dom(σ), we have (tσ↓)|q ≡
a(t1σ↓, . . . , tnσ↓)|iq′ ≡ (tiσ↓)|q′ ≡ (ti|p′)θ↓≡ (a(t1, . . . , tn)|ip′)θ↓≡ (t|p)θ↓.
(PT3) Let t ≡ λx1 · · ·xn.t′, and let σ′ = σ|{x1,...,xn}. Then, q ∈ PT (t′, σ′, p).
Since 〈t, σ〉 >�β 〈t′, σ′〉, and t|p ≡ t′|p, there exists θ′ such that (t′σ′ ↓)|q ≡
(t′|p)θ′↓ by induction. Then, (tσ↓)|q ≡ (t|p)θ′↓ holds from (tσ↓)|q ≡ (t′σ′↓)|q.
(PT4) Let p = ip′, t ≡ G(t1, . . . , tn), and Gσ ≡ λy1 · · · yn.t′. Then, there
exists q′ such that q′ ∈ PT (ti, σ, p′) and q ∈ PV (t′, σ′, yi, q

′), where σ′ =
{y1 �→ t1σ↓, . . . , yn �→ tnσ↓}. Since 〈t, σ〉 >�β 〈t′, σ′〉, there exists θ′ such that
(t′σ′↓)|q ≡ ((yiσ

′)|q′)θ′↓ by induction. Thus, (tσ↓)|q ≡ (t′σ′↓)|q ≡ ((yiσ
′)|q′)θ′↓≡

((tiσ↓)|q′)θ′↓ holds. Moreover, since 〈t, σ〉 >�β 〈ti, σ〉, there exists a position
θ′′ such that (tiσ ↓)|q′ ≡ ((ti|p′)θ′′ ↓). Therefore, (tσ ↓)|q ≡ ((ti|p′)θ′′ ↓)θ′ ↓≡
(G(t1, . . . , tn)|ip′)θ′′θ′↓≡ (t|p)θ′′θ′↓ holds. �

Theorem 1 Let R be an orthogonal HRS, and let A : s → t be a reduction.
If s|v is a redex, then t|p are also redexes for all p ∈ v\A.
Proof. Let s ≡ s[lσ↓]u → s[rσ]u ≡ t. In case of v|u or v ≺ u, the theorem
follows from orthogonality. In case of v = up1p2 for p1 ∈ PosFV (l), the theorem
follows from Lemma 16 and the fact that instances of redex are redexes. �

A.3 Proof of Lemma 3
In this section, we assume orthogonality.
Proposition 4 Let s and t be normalized terms. Let s ◦−→D t be a de-

velopment, and let θ and σ be normalized substitutions. If for each F ∈
Dom(θ) ∩ FV (s) we have some DF such that Fθ ◦−→DF Fσ, then sθ↓ ◦−→D′

tσ↓,
where D′ =

⋃
F PV (s, θ, F,DF) ∪ PT (s, θ,D).

Proof. By Noetherian induction on 〈s, θ〉 with >�β , we prove the claim P (s, θ)
defined as follows:

If s ◦−→D t and Fθ ◦−→DF Fσ for any F ∈ Dom(θ) ∩ FV (s), there exists a

development sθ↓ ◦−→D′
tσ↓, where D′ =

⋃
F PV (s, θ, F,DF) ∪ PT (s, θ,D).

From the definition of developments, we have several cases.
(A) First, we consider the case in which s ◦−→D t is derived by the inference rule
(A) of the definition of developments. We have two subcases:
(1) If top(s) ∈ F ∪ Dom(θ), then we have s ≡ a(s1, . . . , sn), t ≡ a(t1, . . . , tn),

si ◦−→Di ti, and D =
⋃

i{iq | q ∈ Di}. Since 〈s, θ〉 >�β 〈si, θ〉, the induction

hypothesis asserts that siθ ↓ ◦−→D′
i tiσ ↓ for D′

i =
⋃

F PV (si, θ, F,DF) ∪
PT (si, θ,Di). Thus, by the definition of developments, we have sθ ↓≡
a(s1θ↓, . . . , snθ↓) ◦−→D′

a(t1σ↓, . . . , tnσ↓) ≡ tσ↓, where D′ =
⋃

i{iq | q ∈
D′

i}. Furthermore, we can calculate D′ from D′
i:

D′ =
⋃

i{iq | q ∈
⋃

F PV (si, θ, F,DF) ∪ PT (si, θ,Di)}
=

⋃
F

⋃
i{iq | q ∈ PV (si, θ, F,DF)} ∪

⋃
i{iq | q ∈ PT (si, θ,Di)}

=
⋃

F PV (a(s1, . . . , sn), θ, F,DF)∪PT (a(s1, . . . , sn), θ,{iq |q∈Di})
=

⋃
F PV (s, θ, F,DF) ∪ PT (s, θ,D).

(2) If top(s) ∈ Dom(θ), we have s ≡ G(s1, . . . , sn), t ≡ G(t1, . . . , tn), si ◦−→Di ti,
and D =

⋃
i{iq | q ∈ Di}. Since 〈s, θ〉 >�β 〈si, θ〉, as in the case above, we

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

158 Head-Needed Strategy of HRSs and Its Decidable Classes

can assert siθ↓ ◦−→D′
i tiσ↓ for D′

i =
⋃

F PV (si, θ, F,DF)∪PT (si, θ,Di) by in-
duction. Let Gθ ≡ λy1 · · · yn.u, and let Gσ ≡ λy1 · · · yn.u′. Then, we have
sθ↓≡ (Gθ)(s1θ, . . . , snθ)↓≡ uθ′↓, where θ′ = {y1 �→ s1θ↓, . . . , yn �→ snθ↓},
and tσ↓≡ (Gσ)(t1σ, . . . , tnσ)↓≡ u′σ′↓, where σ′ = {y1 �→ t1σ↓, . . . , yn �→
tnσ ↓}. Thus, we have yiθ

′ ≡ siθ ↓ ◦−→D′
i tiσ ↓≡ yiσ

′, where D′
i =⋃

F PV (si, θ, F,DF) ∪ PT (si, θ,Di). Moreover, note that Gθ ◦−→DG Gσ,

and u ◦−→DG u′ follows fromλy1 · · · yn.u ≡ Gθ ◦−→DG Gσ ≡ λy1 · · · yn.u′.

Since sθ↓≡ uθ′↓, i.e., sθ →+
β uθ′, we have 〈s, θ〉 >�β 〈u, θ′〉. Thus, we have

uθ′↓ ◦−→D′
u′σ′↓ for D′ =

⋃
i PV (u, θ′, yi,D

′
i) ∪ PT (u, θ′,DG) by induction.

Hence, sθ↓≡ uθ′↓ ◦−→D′
u′σ′↓≡ tσ↓. Here, we can calculate D′ as follows:

Moreover, we have

D′ =
⋃

i PV (u, θ′, yi, (
⋃

F PV (si, θ, F,DF) ∪ PT (si, θ,Di)))

∪ PT (u, θ′,DG)

=
⋃

i PV (u, θ′, yi,
⋃

F PV (si, θ, F,DF))

∪
⋃

i PV (u, θ′, yi, PT (si, θ,Di)) ∪ PT (u, θ′,DG)

=
⋃

F

⋃
i PV (u, θ′, yi, PV (si, θ, F,DF))

∪ PT (u, θ′,DG) ∪
⋃

i PV (u, θ′, yi, PT (si, θ,Di))

=
⋃

F PV (G(s1, . . . , sn), θ, F,DF) ∪ PT (G(s1, . . . , sn), θ,D).

Thus, we have D′ =
⋃

F PV (s, θ, F,DF) ∪ PT (s, θ,D).
(L) Next, we consider the case of applying rule (L), that is, s ≡ λx1 . . . xn.s′ ◦−→D

λx1 . . . xn.t′ ≡ t. Here, since sθ � s′θ, we have 〈s, θ〉 >�β 〈s′, θ〉. Thus, by induc-
tion, we have s′θ↓ ◦−→D′

t′σ↓ for D′ =
⋃

F PV (s′, θ, F,DF)∪PT (s′, θ,D). Applying

rule (L) to development, we have sθ↓≡ λx1 · · ·xn.(s′θ↓) ◦−→D′
λx1 · · ·xn.(t′σ↓) ≡

tσ↓. Note that the condition Dom(θ) ∩ {x1, . . . , xn} = ∅ is required, but this
problem can be solved trivially.
(R) Let s ≡ f(s1, . . . , sn) = lθ′↓, t = rσ′↓, f(t1, . . . , tn) = lσ′↓, l � r ∈ R,
si ◦−→Di ti, and D = {ε} ∪

⋃
i{iq | q ∈ Di}. Since 〈s, θ〉 >�β 〈si, θ〉, we have

siθ↓ ◦−→D′
i tiσ↓ by induction, where D′

i =
⋃

F PV (si, θ, F,DF)∪PT (si, θ,Di). We

have sθ↓≡ f(s1θ↓, . . . , snθ↓) ≡ (lθ′↓)θ↓≡ lθ′′↓ and f(t1σ↓, . . . , tnσ↓) ≡ (lσ′↓)σ↓
≡ lσ′′↓ for some θ′′ and σ′′. By rule (R) to development, f(s1θ↓, . . . , snθ↓) ◦−→
rσ′′↓. Note that (lσ′↓)σ↓≡ lσ′′↓ implies that tσ↓≡ (rσ′↓)σ↓≡ rσ′′↓ because
FV (l) ⊇ FV (r). Therefore, we have sθ↓ ◦−→D′

tσ↓, where D′ = {ε} ∪
⋃

i{iq | q ∈
D′

i}. Here, we have
D′ = {ε} ∪

⋃
F

⋃
i{iq | q ∈ PV (si, θ, F,DF)} ∪

⋃
i{iq | q ∈ PT (si, θ,Di)}

= PT (f(s1, . . . , sn), θ, {ε}) ∪
⋃

F PV (f(s1, . . . , sn), θ, F,DF)
∪

⋃
i PT (f(s1, . . . , sn), θ, {iq | q ∈ Di})

=
⋃

F PV (s, θ, F,DF) ∪ PT (s, θ,D). �
As a special case of Proposition 4, the following corollary holds.
Corollary 2 Let s be a term, and let θ and σ be normalized substitutions.

Let Fθ ◦−→DF Fσ for each F ∈ Dom(θ) ∩ FV (s). Then, sθ↓ ◦−→D′
sσ↓, where (1)

D′ =
⋃

F PV (s, θ, F,DF). In particular, (2) if s is a pattern, then D′ =
⋃

F {p′p |
top(s|p′) = F, p ∈ DF }. �

From the definition of descendants, the following proposition is trivial.
Proposition 5 Let s1 and t1 be terms, and let A and A′ be developments

such that A : λx.s1 ◦−→DA λx.t1 and A′ : s1 ◦−→DA t1. Their descendants hold
{q}\A′ = {q}\A for any position q. �

Next, we present the following lemma in order to prove the main lemma of this
section.

Lemma 17 Let AF : Fθ ◦−→DF Fσ be a development, for every F ∈ Dom(θ).

In addition, let A : s ◦−→D t and A′ : sθ↓ ◦−→D′
tσ↓ be developments.

(a) PV (s, θ, F, p)\A′ = PV (t, σ, F, p\AF) for any F, p ∈ Occ(Fθ) is a redex on
s, and F ∈ Dom(θ).

(b) PT (s, θ, p)\A′ = PT (t, σ, p\A) for any p ∈ Occ(s), which is a redex on s.
Proof. We prove (a) and (b) simultaneously by induction on s ◦−→D t. First, we
show (a).
(A) Consider the case s ≡ a(s1, . . . , sn) ◦−→D a(t1, . . . , tn) ≡ t and a ∈ F ∪ X .

Let Di = {p′′|ip′′ ∈ D} for each i, and let Ai : si ◦−→Di ti. Let A′
i : siθ↓ ◦−→D′

i

tiσ↓.

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

159 Head-Needed Strategy of HRSs and Its Decidable Classes

PV (si, θ, F, p′)\A′
i = PV (ti, σ, F, p′\AF) if ∃F, p′ ∈ Occ(Fθ)

PT (si, θ, p
′)\A′

i = PT (ti, σ, p′\Ai) if ∃p′ ∈ Occ(si)

holds by induction.
(A-PV2) Consider the case in which p′ ∈ Occ(Fθ) and a ∈ F ∪ Dom(θ).

PV (s, θ, F, p′)\A′

=
⋃

i{iq|q ∈ PV (si, θ, F, p′)}\(a(s1, . . . , sn)θ↓ ◦−→ a(t1, . . . , tn)σ↓)
by PV2

=
⋃

i{iq|q ∈ PV (si, θ, F, p′)\A′
i by Def. 4(A)

=
⋃

i{iq|q ∈ PV (ti, σ, F, p′\AF)} from I.H.
= PV (t, σ, F, p′\AF) by PV2

(A-PV4) Consider the case in which a = G ∈ Dom(θ). Let Gθ ≡ λy1 · · · yn.s′,
s ≡ G(s1, . . . , sn)θ↓, t ≡ G(t1, . . . , tn)σ↓, and θ′ = σ′.

PV (s, θ, F, p′)\A′

=
⋃

i PV (s′, θ′, yi, PV (si, θ, F, p′))\(G(s1, . . . , sn)θ↓ ◦−→ G(t1, . . . , tn)σ↓)
by def. of PV4

=
⋃

i PV (s′, θ′, yi, Pi)\(s′θ′↓ ◦−→ t′σ′↓)
=

⋃
i PV (t′, σ′, yi, Pi\Ayi

) from I.H.
=

⋃
i PV (t′, σ′, yi, PV (ti, σ, F, p′\AF))

= PV (t, σ, F, p′\AF) by def. of PV4.
(A-PV5) Consider the case in which a = F ∈ Dom(θ). Let Fθ ≡ λy1 · · · yn.s′,

s ≡ F (s1, . . . , sn)θ↓, Fσ ≡ λy1 · · · yn.t′, and t ≡ F (t1, . . . , tn)σ↓. Let θ′ =
{y1 �→ s1θ ↓, . . . , yn �→ snθ ↓}, σ′ = {y1 �→ t1σ ↓, . . . , yn �→ tnσ ↓}, and
sθ↓= s′θ′↓. Let Pi = PV (siθ, F, p′).

PV (s, θ, F, p′)\A′

= (
⋃

i PV (s′, θ′, yi, PV (si, θ, F, p′)) ∪ PT (s′, θ′, p′))\A′ by def. of PV5
= (

⋃
i PV (s′, θ′, yi, Pi) ∪ PT (s′, θ′, p′))\(s′θ′↓ ◦−→ t′σ′↓)

by sθ = s′θ′ and tσ = t′σ′

=
⋃

i PV (t′, σ′, yi, Pi\Ayi
) ∪ PT (t′σ′, p′\AF) from I.H. of (a) and (b)

=
⋃

i PV (t′, σ′, yi, PV (ti, σ, F, p′\AF)) ∪ PT (t′σ′, p′\AF)
= PV (t, σ, F, p′\AF) by def. of PV5.

(L) Consider the case in which s ≡ λx1 · · ·xn.s′ ◦−→ λx1 · · ·xn.t′ ≡ t and A1 :

s′ ◦−→D1 t′. Let A′
1 : s′θ↓ ◦−→D′

1 t′σ↓. For developments AF and A1,

PV (s′, θ, F, p′)\A′
1 = PV (t′, σ, F, p′\AF) if ∃F, p′ ∈ Occ(Fθ)

PT (s′, θ, p′)\A′
1 = PT (t′, σ, p′\A1) if ∃p′ ∈ Occ(s′)

holds from induction.
(L-PV3) Consider the case in which p′ ∈ Occ(Fθ). Let s ≡ λx1 · · ·xn.s′,

t ≡ λx1 · · ·xn.t′, sθ ↓= (λx1 · · ·xn.s′)θ ↓= λx1 · · ·xn.(s′θ|{x1,...,xn}) ↓, and
tσ↓= (λx1 · · ·xn.t′)σ↓= λx1 · · ·xn.(t′σ|{x1,...,xn})↓.

PV (s, θ, F, p′)\A′

= PV (s′, θ|{x1,...,xn}, F, p′)\A′ by def. of PV3
= PV (s′, θ|{x1,...,xn}, F, p′)\((λx1 · · ·xn.s′)θ|{x1,...,xn}↓

◦−→ (λx1 · · ·xn.t′)σ|{x1,...,xn}↓)
= PV (s′, θ|{x1,...,xn}, F, p′)\(s′θ|{x1,...,xn}↓ ◦−→ t′σ|{x1,...,xn}↓)
= PV (t′, σ|{x1,...,xn}, F, p′\AF) from I.H.
= PV (t, σ, F, p′\AF) by PV3

(R) Consider the case in which s ≡ f(s1, . . . , sn) ◦−→ f(t1, . . . , tn) ◦−→ rθ′′ ≡ t

and Ai : si ◦−→Di ti. Let A′
i : siθ↓ ◦−→D′

i tiσ↓. For developments AF and Ai,
where pi ∈ Occ(siθ↓),

PV (si, θ, F, p′)\A′
i = PV (ti, σ, F, p′\AF) if ∃F, p′ ∈ Occ(Fθ)

PT (si, θ, p
′
i)\A′

i = PT (ti, σ, p′i\Ai) if ∃p′i ∈ Occ(si)

holds from induction.
(R-PV-1) Consider the case in which p′ ∈ Occ(Fθ), we have

PV (s, θ, F, p′)\(sθ ↓≡ f(s1, . . . , sn)θ ↓ ◦−→ f(t1, . . . , tn)σ ↓ ◦−→ tσ ↓) = {iq|q ∈
PV (ti, σ, F, p′\AF)} \(f(t1, . . . , tn)σ↓ ◦−→ tσ↓) from the case (A). Since we
can denote, f(t1, . . . , tn)σ↓= lθ′′σ, tσ↓= rθ′′σ, letting θ′′ = θ, p′\AF = p,
we have

PV (lθ, σ, F, p)\((lθ)σ ◦−→ (rθ)σ)
=

⋃
y∈V ar(l){p′p|top(l|p′) = y, p ∈ PV (yθ, σ, F, p)}\((lθ)σ ◦−→ (rθ)σ)

=
⋃

y PV (r, θσ, y, PV (yθ, σ, F, p)) from Def. 3
= PV (rθ, σ, F, p)
= PV (t, σ, F, p′\AF)

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

160 Head-Needed Strategy of HRSs and Its Decidable Classes

(R-PV-2) Consider the case in which p′ ∈ Occ(Fθ), p ∈ PV (s, θ, F, p′).
p\(sθ↓≡ f(s1, . . . , sn)θ↓ ◦−→ tθ↓ ◦−→ tσ↓)
= p\(f(s1, . . . , sn)θ↓ ◦−→ f(t1, . . . , tn)θ↓ ◦−→

l�r
tθ↓ ◦−→ tσ↓)

= PV (t, θ, F, p′)\(tθ↓ ◦−→ tσ↓)
Next, we show (b).
(A) Consider the case in which s ≡ a(s1, . . . , sn) ◦−→D a(t1, . . . , tn) ≡ t and

a ∈ F ∪ X . Let Di = {p′′|ip′′ ∈ D} for each i, and let Ai : si ◦−→Di ti. Let

A′
i : siθ↓ ◦−→D′

i tiσ↓.

PV (si, θ, F, p′)\A′
i = PV (ti, σ, F, p′\AF) if ∃F, p′ ∈ Occ(Fθ)

PT (si, θ, p
′
i)\A′

i = PT (ti, σ, p′\Ai) if ∃p′i ∈ Occ(si)

holds from induction.
(A-PT2) Consider the case in which p′ ∈ Occ(s) and a ∈ F ∪ Dom(θ),

PT (s, θ, p′)\A′

= {iq|q ∈ PT (si, θ, p
′
i), p

′ = ip′i}\A′ from PT2
= {iq|q ∈ PT (si, θ, p

′
i)\A′

i, p
′ = ip′i}

= {iq|q ∈ PT (ti, σ, p′\Ai), p′ = ip′i} from I.H.
= PT (t, σ, p′\A) from PT2

(A-PT4) Consider the case in which p′ ∈ Occ(s) and a ∈ Dom(θ),
PT (s, θ, p′)\A′

= PV (s′, θ′, yi, PT (si, θ, p
′
i))\A′ where p′ = ip′i from PT4

since 〈s, θ〉 >�β 〈s′, θ′〉, we use I.H. of (a), then
= PV (t′, σ′, yi, PT (si, θ, p

′
i)\A′

i)
= PV (t′, σ′, yi, PT (ti, θ, p′i\A′

i)) from I.H. of (b)
= PT (t, σ, p′\A) from PT4

(L) Consider the case in which s ≡ λx1 · · ·xn.s′ ◦−→ λx1 · · ·xn.t′ ≡ t and A1 :

s′ ◦−→D1 t′. Let A′
1 : s′θ↓ ◦−→D′

1 t′σ↓. For developments AF and A1,

PV (s′, θ, F, p′)\A′
1 = PV (t′, σ, F, p′\AF) if ∃F, p′ ∈ Occ(Fθ)

PT (s′, θ, p′)\A′
1 = PT (t′, σ, p′\A1) if ∃p′ ∈ Occ(s′)

holds from induction.

(L-PT3) Consider the case in which p′ ∈ Occ(s),
PT (s, θ, p′)\A′

= PT (s′, θ|{x1,...,xn}, p
′)\A′ from PT3

= PT (s′, θ|{x1,...,xn}, p
′)\A′

1

= PT (t′, σ|{x1,...,xn}, p
′\A) from I.H.

= PT (t, σ, p′\A) from PT3
(R) Consider the case in which s ≡ f(s1, . . . , sn) ◦−→ f(t1, . . . , tn) ◦−→ rθ′′ ≡ t

and Ai : si ◦−→Di ti. Let A′
i : siθ↓ ◦−→D′

i tiσ↓. For developments AF and Ai,
where pi ∈ Occ(siθ↓),

PV (si, θ, F, p′)\A′
i = PV (ti, σ, F, p′\AF) if ∃F, p′ ∈ Occ(Fθ)

PT (si, θ, p
′
i)\A′

i = PT (ti, σ, p′i\Ai) if ∃p′i ∈ Occ(si)

holds by induction.
(R-PT-1) Consider the case in which p′ ∈ Occ(s),

PT (s, θ, p′)\(sθ↓≡ f(s1, . . . , sn)θ↓ ◦−→
f(s1, . . . , sn)σ↓ ◦−→ f(t1, . . . , tn)σ↓ ◦−→ tσ↓)
= {iq|q ∈ PT (ti, σ, p′i\Ai)}\(f(t1, . . . , tn)σ↓ ◦−→ tσ↓) from the case (A)
= PT (t, σ, p′\A) where p′ = ip′, D = {iq|q ∈ Di}

(R-PT-2) Consider the case in which p′ ∈ Occ(s), p ∈ PT (s, θ, p′).
p\(sθ↓≡ f(s1, . . . , sn)θ↓ ◦−→ tθ↓ ◦−→ tσ↓)
= p\(f(s1, . . . , sn)θ↓ ◦−→ f(t1, . . . , tn)θ↓ ◦−→

l�r
tθ↓ ◦−→ tσ↓)

= PT (t, θ, p′\A)\(tθ↓ ◦−→ tσ↓) from def. of PT
= PT (t, σ, p′\A)

�
Lemma 18 Let A : s ◦−→D t and B : s

ε→ t′ such that ε 	∈ D. Then, A;B\A �
B;A\B.
Proof. Let s ≡ lθ↓, t ≡ lσ↓, and let t′ ≡ rθ↓. First, we show that rθ↓ ◦−→D\B rσ↓,
because lσ ↓ ε→ rσ ↓ holds trivially. Let F ∈ Dom(θ) ∩ FV (r). Then, from
orthogonality, Fθ↓ ◦−→DF Fσ↓ for some set DF of positions. We have rθ↓ ◦−→D′

rσ↓
by Corollary 2 (1), where D′ =

⋃
F PV (r, θ, F,DF). We also have D =

⋃
F {p′p |

top(l|p′) = F, p ∈ DF } by Corollary 2 (2). On the other hand, D\B =
⋃

v∈D{p3 |

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

161 Head-Needed Strategy of HRSs and Its Decidable Classes

p3 ∈ PV (r, θ, top(l|p1), p2), v = p1p2, p1 ∈ PosFV (l)}.

p ∈ D\B ⇔ ∃p1, p2 p ∈ PV (r, θ, top(l|p1), p2)
where p1p2 ∈ D, p1 ∈ PosFV (l)

⇔ ∃F ∈ FV (l) p ∈ PV (r, θ, F, p2)
where p2 ∈ DF

⇔ p ∈
⋃

F∈FV (l) PV (r, θ, F,DF) = D′

Second, we show q\(A;B\A) = q\(B;A\B) for each redex position q in s. In
the case of q = ε, this is trivial. Consider the case of q 	= ε. From orthogonality,
we assume q = p1p2 and top(l|p1) = F . Let AF : Fθ ◦−→DF Fσ. Since q\A =
{p1p3 | p3 ∈ p2\AF }, we have

q\(A;B\A) =
⋃

p3∈p2\AF
p1p3\(B\A)

=
⋃

p3∈p2\AF
PV (r, σ, F, p3)

= PV (r, σ, F, p2\AF).

Since q\B = PV (r, θ, F, p2), we have
q\(B;A\B) = PV (r, θ, F, p2)\(A\B)

= PV (r, σ, F, p2\AF)
from Lemma 17 (a). Therefore, the claim holds. �

Lemma 3. Let R be an orthogonal HRS. If A and B are developments starting
from the same term, then A; (B\A) � B; (A\B).
Proof. Let A and B be developments such that A : s ◦−→DA t and B : s ◦−→DB t′,
respectively. Then, we show the following:
(1) there exists u such that t ◦−→DB\A u and t′ ◦−→DA\B u, and
(2) ∀p ∈ redex(s), p\(A;B\A) = p\(B;A\B)
by induction on the structure of s. We have several cases, according to the
inference rules of development applied for A and B.
(1) Consider the case in which inference rule (L) is used for both A and B. Let

s ≡ λx1 · · ·xn.s1. Since A1 : s1 ◦−→DA t1 and B1 : s1 ◦−→DB t′1, where
t ≡ λx1 · · ·xn.t1 and t′ ≡ λx1 · · ·xn.t′1, it follows from induction that
t1 ◦−→DB\A1 u1 and t′1 ◦−→DA\B1 u1 for some u1, and p\(A1; (B1\A1)) =

p\(B1; (A1\B1)). Since DB\A1 = DB\A and DA\B1 = DA\B from Defini-
tion 4, we have λx1 · · ·xn.t1 ◦−→DB\A λx1 · · ·xn.u1 and λx1 · · ·xn.t′1 ◦−→DA\B

λx1 · · ·xn.u1. On the other hand, p\(A; (B\A)) = p\(B; (A\B)) holds from
Proposition 5 and p\(A1; (B1\A1)) = p\(B1; (A1\B1)).

(2) Consider the case in which rule (A) is used for both A and B. Let s ≡
a(s1, . . . , sn). We have Ai : si ◦−→DAi ti and Bi : si ◦−→DBi t′i, where t =
a(t1, . . . , tn), t′ = a(t′1, . . . , t

′
n), DAi

= {p | ip ∈ DA}, and DBi
= {p |

ip ∈ DB}. Hence, by induction, we have ti ◦−→DBi
\Ai ui and t′i ◦−→DAi

\Bi

ui. Thus, we have a(t1, . . . , tn) ◦−→D′
a(u1, . . . , un) and a(t′1, . . . , t

′
n) ◦−→D′′

a(u1, . . . , un), where D′ =
⋃

i{ip | p ∈ DBi
\Ai} and D′′ =

⋃
i{ip | p ∈

DAi
\Bi}. Here,

DB\A =
⋃

i{ip′′ | ip′ ∈ DB , p′′ ∈ p′\Ai}
=

⋃
i{ip′′ | p′ ∈ DBi

, p′′ ∈ p′\Ai}
= D′

We also have DA\B = D′′, which proves (1). On the other hand,
p\(A; (B\A)) = {ε} = p\(B; (A\B)) if p = ε. For the case in which
p = iq, we have q\(Ai; (Bi\Ai)) = q\(Bi; (Ai\Bi)) by induction. Since
iq\A = {iq′ | q′ ∈ q\Ai} and iq\B = {iq′ | q′ ∈ q\Bi}, p\(A; (B\A)) =
p\(B; (A\B)).

(3) Consider the case in which (A) is used for A and (R) is used for B. Let s ≡
a(s1, . . . , sn). We have s ≡ a(s1, . . . , sn) ◦−→DB−{ε} a(t′1, . . . , t

′
n) ≡ t′′ ε−→ t′

for some t′′. From case 2, there exist developments B′ : t ◦−→D′
B u′′ and A′ :

t′′ ◦−→D′
A u′′, where ε 	∈ D′

A ∪ D′
B , and p\(A; (B′′\A)) = p\(B′′; (A\B′′)),

where B′ = B′′\A and A′ = A\B′′. Therefore, there exist developments
t′′ ◦−→ u′′ ◦−→ u and t′′ ◦−→ t′ ◦−→ u from Lemma 18. For any p ∈ redex(t′′),

p\(A′; (B′′′\A′)) = p\(B′′′; (A′\B′′′)), where B′′′ : t′′ ε→ t′, from Lemma 18.
Thus, the claim holds (See Fig. 2).

(4) Consider the case in which (R) is used for both of A and B. Let s ≡
a(s1, . . . , sn). We have s ≡ a(s1, . . . , sn) ◦−→DB−{ε} a(t′1, . . . , t

′
n) ≡ t′′ ε−→ t′

and s ≡ a(s1, . . . , sn) ◦−→DA−{ε} a(t1, . . . , tn) ≡ t′′′ ε−→ t for some t′′ and t′′′.

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

162 Head-Needed Strategy of HRSs and Its Decidable Classes

Fig. 2 Case 3 of the proof of Lemma 3.

Fig. 3 Case 4 of the proof of Lemma 3.

From case 2, there exist developments B′ : t′′′ ◦−→D′
B u′′ and A′ : t′′ ◦−→D′

A u′′,
where ε 	∈ D′

A∪D′
B . Therefore, there exist developments t′′ ◦−→ u′′ ◦−→ u′ and

t′′ ◦−→ t′ ◦−→ u from Lemma 18. There also exist developments t′′′ ◦−→ u′′ ◦−→ u

and t′′′ ◦−→ t ◦−→ u from Lemma 18. Since developments u′′ ◦−→ u and u′′ ◦−→ u′

are contracted at the same position ε, u and u′ are the same. We also have
p\(A; (B\A)) = p\(B; (A\B)) from Case 2 and Lemma 18. (See Fig. 3)

�
A.4 Proof of Lemma 6
In order to prove Lemma 6, we need to describe a number of properties.
Proposition 6 For any terms s and t, if s ◦−→ t satisfies the top-down property

then if s ◦−→ t has minimal top-down decomposition, and vice versa.
Proof. We prove this proposition by induction on the structure of t. Since
s ◦−→ t has the top-down property, there exists a development s

ε→k
u ≡

λx1 · · ·xn.a(u1, . . . , um)
�ε◦−−→

D

λx1 · · ·xn.a(t1, . . . , tm) ≡ t for some k, where
u and D are uniquely determined and ui ◦−→ ti has the top-down property
for all i = 1, . . . , m. By induction, ui ◦−→ ti has minimal top-down de-
composition, the length of which is ki. Let k0 be the minimal k such that
s

ε→k
u. Thus, we can make a minimal top-down decomposition such that

s
ε→k0

λx1 · · ·xn.a(u1, . . . , um) →k1 · · · →km λx1 · · ·xn.a(t1, . . . , tm) the length
of which is k0 + k1 + · · · + km. The reverse is trivial. �

Lemma 19 Let s and t be normalized terms, and let θ and σ be normalized
substitutions. If s ◦−→ t satisfies the top-down property and Fθ ◦−→ Fσ satisfies
the top-down property for any F ∈ FV (t)∩Dom(σ), then sθ↓ ◦−→ tσ↓ satisfies the
top-down property.
Proof. Proposition 4 asserts that there exists the development sθ↓ ◦−→ tσ↓. This
development can be proved to have the top-down property as follows.

Since s ◦−→ t has the top-down property, we know that there exists a term u

such that s
ε→∗

u
�ε◦−−→ t and u

�ε◦−−→ t has the top-down property.

First, based on the fact that s
ε→∗

u, we can easily prove that
(1) sθ↓ ε→∗

uθ↓ .

Second, the fact that u
�ε◦−−→ t has the top-down property allows us to prove that

(2) uθ↓ ◦−→ tσ↓ has top-down property.

Combining (1) and (2), we know that sθ↓ ◦−→ tσ↓ has the top-down property.
The above fact (2) can be proved by induction on 〈t, σ〉 with >�β :

(A) Consider the case in which the development u ◦−→ t is generated from defini-
tion rule (A). Let u ≡ a(u1, . . . , un) and t ≡ a(t1, . . . , tn).
(1) If a ∈ F ∪ Dom(σ), then ui ◦−→ ti satisfies the top-down property for

each i, because u ◦−→ t satisfies the top-down property. It follows from
〈t, σ〉 >�β 〈ti, σ〉 that uiθ ↓ ◦−→ tiσ ↓ satisfies the top-down property by

induction. Thus, uθ↓≡ a(u1θ↓, . . . , unθ↓) �ε◦−−→ a(t1σ ↓, . . . , tnσ ↓) ≡ tσ ↓
satisfies the top-down property.

(2) Consider the subcase in which a ∈ Dom(σ). We write G for a.
Let Gθ ≡ λx1 · · ·xn.u′, Gσ ≡ λx1 · · ·xn.t′, θ′ = {x1 �→ u1θ ↓,

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

163 Head-Needed Strategy of HRSs and Its Decidable Classes

. . . , xn �→ unθ ↓}, and σ′ = {x1 �→ t1σ ↓, . . . , xn �→ tnσ ↓}.
Then, uθ ↓≡ (λx1 · · ·xn.u′)(u1θ, . . . , unθ) ↓≡ u′θ′ ↓, and tσ ↓≡
(λx1 · · ·xn.t′)(t1σ, . . . , tnσ)↓≡ t′σ′↓. Since Gθ↓ ◦−→ Gσ↓ satisfies the top-
down property, u′ ◦−→ t′ satisfies the top-down property. Thus, xiθ

′ ≡
uiθ ↓ ◦−→ tiσ ↓≡ xiσ

′ satisfies the top-down property by induction. Since
〈t, σ〉 >�β 〈t′, σ′〉, the development u′θ′ ↓ ◦−→ t′σ′ ↓ satisfies the top-down
property by induction.

(L) Since u ≡ λx1 · · ·xn.u′ ◦−→ λx1 · · ·xn.t′ ≡ t satisfies the top-down property,
the claim is easily shown by induction.

Hence, uθ↓ ε→∗
u′ �ε◦−−→ tσ↓ and u′|i ◦−→ tσ↓ |i satisfies the top-down property for

any i ∈ Pos(u′). Therefore, sθ↓ ◦−→ tσ↓ satisfies the top-down property. �
Lemma 6 Any development has minimal top-down decomposition, the length
of which is uniquely determined.
Proof. We show that any s ◦−→ t has the top-down property. This can be proved
inductively with respect to the definition of developments. Thus, Proposition 6
asserts that there exists a minimal top-down decomposition of the development
for which the length is uniquely determined.
(A) Case in which s ≡ a(s1, . . . , sn) ◦−→ a(t1, . . . , tn) ≡ t and si ◦−→ ti: Develop-
ments si ◦−→ ti have the top-down property by induction. Since we can write the

development s ◦−→ t as s
ε→0

s
�ε◦−−→ t, the development s ◦−→ t has the top-down

property.
(L) The case in which s ≡ λx1 · · ·xn.s′ ◦−→ λx1 · · ·xn.t′ ≡ t: By induction,
development s′ ◦−→ t′ has the top-down property. Thus, development s ◦−→ t also
has the top-down property.
(R’) The case in which s ≡ lθ′ ↓ ◦−→D′

lθ ↓ ε→ rθ ↓≡ t where ε 	∈ D′: For any
F ∈ FV (l), the orthogonality of the HRS under consideration asserts that there
exist developments Fθ′ ◦−→ Fθ, which have the top-down property, by induction.

A development s ◦−→ r also has the top-down property because we can write s
ε→ t.

Thus, by Lemma 19, the development lθ′ ↓ ◦−→ rθ↓ has the top-down property.
Therefore, the development has top-down decomposition by Proposition 6. �

A.5 Proof of Lemma 7
In order to prove Lemma 7, we must prepare three lemmas.
Lemma 20 Let F be a variable, let t be a term, let σ be a substitution, and

let v and v′ be positions such that v′ ≺ v. Then, the following hold:
(a) If Fσ|v′ is a redex, ∀p ∈ PV (t, σ, F, v), ∃p′ ∈ PV (t, σ, F, v′), p′ ≺ p.
(b) If t|v′ is a redex, then ∀p ∈ PT (t, σ, v), ∃p′ ∈ PT (t, σ, v′), p′ ≺ p.
Proof. We prove (a) and (b) simultaneously by induction on 〈t, σ〉 with >�β .
First, we consider (a). Let P = PV (t, σ, F, v), and let P ′ = PV (t, σ, F, v′). We
have six cases according to Definition 1.
(PV1) We have P = {v} and P ′ = {v′}. Hence, the claim holds.
(PV2) Let t ≡ a(t1, . . . , tn) and p ∈ P . Then, we have p = iq for some i

and q ∈ PV (ti, σ, F, v)}. Since 〈t, σ〉 >�β 〈ti, σ〉, we have q′ ≺ q for some
q′ ∈ PV (ti, σ, F, v′) by induction. Thus, we have iq′ ≺ iq = p and iq′ ∈ P ′.
(PV3) Let t ≡ λx1 · · ·xn.t′, we have P = PV (t′, σ′, F, v) and P ′ =
PV (t′, σ′, F, v′), where σ′ = σ|{x1,...,xn}. Since 〈t, σ〉 >�β 〈t′, σ′〉, the claim
follows from induction.
(PV4) Let t ≡ G(t1, . . . , tn) and Gσ ≡ λy1 · · · yn.t′. Let p ∈ P , Q =
PV (ti, σ, F, v), and Q′ = PV (ti, σ, F, v′). Then, p ∈ PV (t′, σ′, yi, q) for some
q ∈ Q and i, where σ′ = {y1 �→ t1σ↓, . . . , yn �→ tnσ↓}. Since tσ >�β tiσ, we have
q′ ≺ q for some q′ ∈ Q′ by induction. Since tσ >�β t′σ′, it follows from q′ ≺ q

by induction that p′ ≺ p for some p′ ∈ PV (t′, σ′, yi, q
′) ⊆ P .

(PV5) Let t ≡ F (t1, . . . , tn) and Fσ ≡ λy1 · · · yn.t′. We only check the subcase
in which p ∈ PT (t′, σ′, v), because the other subcase is similar to (PV4). t′|v′

is a redex because (Fσ)|v′ ≡ (λy1 · · · yn.t′) v′ ≡ t′|v′ . It follows from 〈t, σ〉 >�β

〈t′, σ′〉 by induction that p′ ≺ p for some p′ ∈ PT (t′, σ′, v′).
(PV6) It is obvious from P = P ′ = ∅.

Next, we consider (b). Let P = PT (t, σ, v) and P ′ = PT (t, σ, v′). We have
four cases according to Definition 2.
(PT1) v′ = ε. Based on the assumption that t|v′ is a redex, we have t ≡
f(t1, . . . , tn).Let p ∈ P = PT (f(t1, . . . , tn), σ, v). Then, from the definition of
PT , we have p � ε. Thus, the claim follows from P ′ = {ε}.
(PT2) Let v′ = iw′ and t ≡ f(t1, . . . , tn). We have v = iw and w′ ≺ w

for some w. Let p ∈ P . Then, we have p = iq for some q ∈ PT (ti, σ, w). Since

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

164 Head-Needed Strategy of HRSs and Its Decidable Classes

〈t, σ〉 >�β 〈ti, σ〉, and ti|w′ is a redex, we have q′ ≺ q for some q′ ∈ PT (ti, σ, w′)by
induction. Thus, we have iq′ ≺ iq = p and iq′ ∈ P ′.
(PT3) Let t ≡ λx1 · · ·xn.t′. We have P = PT (t′, σ′, v) and P ′ = PT (t′, σ′, v′),
where σ′ = σ|{x1,...,xn}. Since 〈t, σ〉 >�β 〈t′, σ′〉 and t|v′ ≡ t′|v, the claim follows
from induction.
(PT4) Let v′ = iw′, t ≡ G(t1, . . . , tn), and Gσ ≡ λy1 · · · yn.t′. We have v =
iw and w′ ≺ w for some w. Let p ∈ P . Then, we have p ∈ PV (t′, σ′, yi, q)
for some q ∈ PT (ti, σ, w), where σ′ = {y1 �→ t1σ ↓, . . . , yn �→ tnσ ↓}. Since
〈t, σ〉 >�β 〈ti, σ〉, and ti|w′ is a redex, we have q′ ≺ q for some q′ ∈ PT (ti, σ, w′)
by induction. (yiσ

′)|q′ ≡ (tiσ↓)|q′ is a redex because q′ ∈ PT (ti, σ, w′) and ti|w′

is a redex from Lemma 16 (a). Since 〈t, σ〉 >�β 〈t′, σ′〉, it follows from q′ ≺ q and
induction that p′ ≺ p for some p′ ∈ PV (t′, σ′, yi, q

′). �
Lemma 21 Let l � r be a rewrite rule, let σ be a substitution, and let A be

a development such that A : lσ↓ ◦−→ rσ↓. Let p and p′ be redexes in Pos(lσ↓) such
that ε ≺ p′ ≺ p. Then, ∀q ∈ p\A,∃q′ ∈ p′\A, q′ ≺ q.
Proof. There exists p1 ∈ PosFV (l) such that p′ = p1p2 and p = p1p2p

′
2 for some

p2 and p′2 from orthogonality. From the definition of descendants, we have
p′\A = PV (r, σ, top(l|p1), p2), and
p\A = PV (r, σ, top(l|p1), p2p

′
2).

Here, (top(l|p1)σ)|p2p′ is a redex. By Lemma 20, this claim holds. �
Lemma 22 Let A : t ◦−→{ε} t′ be a development, Let B and D be sets of redex

positions of t such that D∇B , and let ε 	∈ B. Then, (D\A)∇(B\A).
Proof. For all p ∈ D, there exists p′ ∈ B such that ε ≺ p′ ≺ p from D∇B .
Therefore, this lemma holds from Lemma 21. �
Lemma 7. Let B be a set of redex positions of a term t, and let D and
D′ be sets of redex positions such that we can write them by D∇B and D′

ΔB ,
respectively. Let A1 : t ◦−→D t1 and A2 : t1 ◦−→D′

t2 be developments. Then, there

exist developmentsA3 : t ◦−→D′
t3 and A4 : t3 ◦−→D′′

t2 such that D′′ = D\A3 can
be written by (D\A3)∇(B\A3) for some t3.
Proof. If ε ∈ B, the claim holds because D′ is ∅. Consider the case in which
ε 	∈ B. There exists a development A3 corresponding to A2. There exists de-
velopment A4 : t3 ◦−→D\A3 t2 from Lemma 3. We show that (D\A3)∇(B\A3) by

Fig. 4 Proof of Lemma 7.

induction on the definition of the development of A3 (Fig. 4). The cases of (L)
and (A) hold from induction. In the case of (R’), A3 is divided into A′;A′′,
where A′ : t ◦−→D′−{ε} t′′ and A′′ : t′′ ◦−→{ε} t3. Then, (D\A′)∇(B\A′) by induc-
tion. ((D\A′)\A′′)∇((B\A′)\A′′) by Lemma 22. Therefore, from the definition of
developments, (D\A′;A′′)∇(B\A′;A′′). �

(Received September 28, 2008)
(Accepted December 27, 2008)

Hideto Kasuya completed graduate course of Nagoya Univer-
sity in 1997. He is a Research Associate of the Faculty of Infor-
mation Science and Technology, Aichi Prefectural University. He
is interested in term rewriting system and rewriting strategy. He
is a member of IPSJ, IEICE and JSSST.

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

165 Head-Needed Strategy of HRSs and Its Decidable Classes

Masahiko Sakai completed graduate course of Nagoya Univer-
sity in 1989 and became Assistant Professor, where he obtained
a D.E. degree in 1992. From April 1993 to March 1997, he was
Associate Professor in JAIST, Hokuriku. In 1996 he stayed at
SUNY at Stony Brook for six months as Visiting Research Pro-
fessor. From April 1997, he was Associate Professor in Nagoya
University. Since December 2002, he has been Professor. He is

interested in term rewriting system, verification of specification and software
generation. He received the Best Paper Award from IEICE in 1992. He is a
member of IEICE and JSSST.

Kiyoshi Agusa is a professor of Department of Information
Systems, Graduate School of Information Science, Nagoya Uni-
versity. He received Ph.D. degree in computer science from Kyoto
University in 1982. His research area is software engineering, es-
pecially dependable software, programming environment and soft-
ware reusing. He is a member of ACM, IEEE, IPSJ, IEICE and
JSSST.

IPSJ Transactions on Programming Vol. 2 No. 2 144–165 (Mar. 2009) c© 2009 Information Processing Society of Japan

