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Abstract

The present paper describes the result of the error estimation of a numerical solution to
topology optimization problems of domains in which boundary value problems are defined. In
the previous paper, we formulated a problem by using density as a design variable, presented
a regular solution, and called it the H1 gradient method. The main result in this paper is the
proof of the first order convergence in the H1 norm of the solution in the H1 gradient method
with respect to the size of the finite elements if first order elements are used for the design
and state variables.
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1. Introduction

The problem of finding the optimum layout of holes in
a domain in which a boundary value problem is defined
is called the topology optimization problem of continua
[1]. One method for formulating this topology optimiza-
tion problem uses density as a design variable; in this
case the problem is called the SIMP problem. In the
previous paper [2], we formulated the problem and pre-
sented a regular solution by using a gradient method in
a function space, and called this method the H1 gradi-
ent method. The aim of the present paper is to show
the error estimation of the H1 gradient method using
standard finite element analyses.

2. SIMP problem

Let D ∈ Rd, d ∈ {2, 3}, be a fixed bounded domain
with boundary ∂D, ΓD ⊂ ∂D be a fixed subboundary
of |ΓD| > 0, and ΓN = ∂D \ Γ̄D. Following [2], let ϕ ∈
C∞(R; [0, 1]) be the density given by a sigmoidal func-
tion of design variable θ ∈ S = {W 1,∞(D;R) | ∥θ∥1,∞
≤ M} for a constant M > 0. Let u be the solution to
the following problem.

Problem 1 Let f ∈ H1(D;R), p ∈ H3/2(ΓN;R) and
uD ∈ H3(D;R) be given functions, and α > 1 be a con-
stant. For a given θ ∈ S, find u ∈ H1(D;R) such that

−∇ · (ϕα(θ)∇u) = f in D,

ϕα(θ)∂νu = p on ΓN, u = uD on ΓD.

Here, ∂ν = ν · ∇ where ν is the unit outward normal
vector along ∂D. Moreover, we provide cost functions as

J l(θ, u) =

∫
D

gl(θ, u) dx+

∫
∂D

jl(θ, u) dγ + cl (1)

for l ∈ {0, 1, . . . ,m} with constants cl and given func-
tions gl and jl. By using J l, we define the SIMP problem
as follows [2].

Problem 2 Find θ such that

min
θ∈S

{J0(θ, u) | J l(θ, u) ≤ 0, l ∈ {1, . . . ,m}}.

3. θ derivative of J l

The Fréchet derivative of J l with respect to θ is ob-
tained as

J l′(θ, u, vl)[ρ] =

∫
D

(glθ +Gl
a)ρ dx+

∫
∂D

jlθρdγ

= ⟨Gl, ρ⟩ (2)

for all ρ ∈ H1(D;R) [2]. Here, ⟨·, ·⟩ is the dual product,
Gl

a = −αϕα−1(θ)ϕθ∇u ·∇vl, and (·)θ denotes ∂(·)/∂θ.
The function vl is the solution of the following problem.

Problem 3 For the solution u to Problem 1 at θ ∈ S,
find vl ∈ H1(D;R) such that

−∇ · (ϕα(θ)∇vl) = glu(θ, u) in D,

ϕα(θ)∂νv
l = jlu(θ, u) on ΓN, vl = 0 on ΓD.

4. Solution to Problem 2

Following [2], we generate θi, i ∈ {1, 2, . . . , n}, from
θ0 by the simplified steps as follows.

(i) Set a small constant ε > 0 for step size, and i = 0.

(ii) Compute ui = u by solving Problem 1 with θ = θi.

(iii) Compute vli = vl by solving Problem 3 with θ = θi.

(iv) Compute Gl
i = Gl by (2) using ui, v

l
i and θi.

(v) Compute ρlG,i ∈ H1(D;R) by solving∫
D

(∇ρlG,i ·∇y + cρlG,iy) dx = −⟨Gl
i, y⟩ (3)
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for a constant c > 0 and all y ∈ H1(D;R).
(vi) Solve λ = (λl

i)l in Aλ = −b where A = (ajl)jl,

ajl = ⟨Gj
i , ρ

l
G,i⟩ and b = (Jj + aj0)j . Put λ0

i = 1
and construct

ρi =
ρG,i

∥ρG,i∥1,2
, ρG,i =

m∑
l=0

λl
iρ

l
G,i. (4)

(vii) Construct θi+1 = θi + ερi and return to (ii) with
i = i+ 1.

5. Error analysis

We estimate the error of the numerical solution by
the finite element method with respect to θn obtained
in the solution in Section 4. Let Dh = ∪{K} be a fi-
nite element approximation of D with elements {K},
h = maxK∈{K} diam(K). For positive integer k and

even number q ≥ d, we restrict ui, vli and ρlG,i to

W k+1,q(Dh;R), and θi on Dh. We denote θh,i = θi +
δθi is the approximation of θi, ûi = ui + δûi ∈
W k+1,q(Dh;R) and v̂li = vli + δv̂li ∈ W k+1,q(Dh;R) are
the analytical solutions of Problems 1 and 3 replacing
θi by θh,i. Let uh,i = ui + δui, v

l
h,i = vli + δvli, G

l
h,i =

Gl
i + δGl

i, ρ
l
Gh,i = ρlG,i + δρlG,i, ρGh,i = ρG,i + δρG,i, and

ρh,i = ρi + δρi be the approximate functions of ui, v
l
i,

Gl
i, ρ

l
G,i, ρG,i, and ρi, respectively. ρ̂

l
G,i = ρlG,i + δρ̂lG,i ∈

W k+1,q(Dh;R) represents an analytical solution of (3)
replacing Gl

i by Gl
h,i. Also, let λh = (λl

h,i)l be the solu-

tion to Ahλh = −bh with Ah = (ah,jl)jl, ah,jl = ⟨Gj
h,i,

ρlGh,i⟩, bh = (Jj
h + ah,j0)j , J

j
h = Jj(θh,i, uh,i). We use

∥u∥j,q =

( j∑
k=0

|u|qk,q

)1/q
, |u|j,q =

[ ∫
Dh

(∇ju)qdx

]1/q
as the W j,q norm ∥ · ∥j,q and seminorm | · |j,q on Dh for
j ∈ {0, 1}, q ∈ {4, 6, . . . ,∞} with ∇0 = 1. We set the
following necessary hypotheses to evaluate the error.

(H1) We take α ≥ 2 in Problems 1, 3 and (2).

(H2) There exist some positive constants C1, C2, C3

independent of h such that

∥ûi − uh,i∥j,q ≤ C1h
k+1−j |ûi|k+1,q, (5)

∥v̂li − vlh,i∥j,q ≤ C2h
k+1−j |v̂li|k+1,q, (6)

∥ρ̂lG,i − ρlGh,i∥j,q ≤ C3h
k+1−j |ρ̂lG|k+1,q. (7)

(H3) For J l(θ, u), we restrict jl(θ, u) to a function of u,
i.e. jl(u), jl ∈ C2(W 1,q(D;R);L1(D;R)), and gl ∈
C2(Y ;L1(D;R)) for Y = S ×W 1,q(D;R) such that
jlu ∈ C1(W 1,q(D;R);W 1,∞(D;R)), glθ, glu ∈ C1(Y ;
L∞(D;R)), jluu ∈ C0(W 1,q(D;R); W 1,∞(D;R)),
and glθθ, g

l
θu, g

l
uθ, g

l
uu ∈ C0(Y ;L∞(D;R)), respec-

tively.

(H4) There exists C4 > 0 such that ∥A−1∥∞ < C4,
where ∥ · ∥∞ is the maximum norm on Rm and the
corresponding operator norm for m×m matrices.

Then we have the following main theorem.

Theorem 4 (Error of θn) Assume from (H1) to
(H4). Then there exists a constant C > 0 independent
of ε and h such that ∥δθn∥1,q ≤ Cεnhk holds for n.

Here εn = T can be considered as the total amount of
variation of θ. To prove this theorem, we introduce an
induction hypothesis for θh,i:

∥δθi∥1,q ≤ Cεihk (8)

for i ∈ {0, 1, . . . , n− 1} and the lemmas below.

Lemma 5 (Error of ui) Assume (H1), (H2) and (8).
Then there exists a constant C ′

1 > 0 independent of ε
and h such that ∥δui∥1,q ≤ C ′

1(εi+ 1)hk holds.

Proof ui and ûi satisfy∫
Dh

ϕα(θi)∇δûi ·∇vldx

=

∫
Dh

(ϕα(θi)− ϕα(θh,i))∇ûi ·∇vldx. (9)

By taking ∇vl = (∇δûi)
q−1 and m = minθi∈Dh

ϕα(θi)
in (9), we have

m|δûi|q1,q

≤ α∥δθi∥0,∞|ûi|1,q|δûi|q−1
1,q

× max
t∈[0,1]

∥ϕα−1(θi + tδθi)ϕθ(θi + tδθi)∥0,∞. (10)

By substituting (8) into (10) and dividing (10) by
|δûi|q−1

1,q , noticing (H1), we obtain |δûi|1,q ≤ C ′
1εih

k. Us-
ing the Poincaré inequality, we get

∥δûi∥1,q ≤ C ′
1εih

k (11)

by rewriting C ′
1 > 0. By substituting (11) and (5) into

∥δui∥1,q ≤ ∥δûi∥1,q+∥ûi−uh,i∥1,q, the proof is complete.

(QED)

Lemma 6 (Error of vli) Assume from (H1) to (H3)
and (8). Then there exists a constant C ′

2 > 0 indepen-
dent of ε and h such that

∥∥δvli∥∥1,q ≤ C ′
2(εi+1)hk holds.

Proof Noticing (H3), vli and v̂li satisfy∫
Dh

ϕα(θi)∇δv̂li ·∇u′dx

=

∫
Dh

(ϕα(θi)− ϕα(θh,i))∇v̂li ·∇u′dx

+

∫
Dh

(glu(θh,i, uh,i)− glu(θi, ui))u
′dx

+

∫
∂Dh

(jlu(uh,i)− jlu(ui))u
′dγ. (12)

By taking ∇u′ = (∇δv̂li)
q−1 and using the Poincaré in-

equality, we have∫
Dh

(glu(θh,i, uh,i)− glu(θi, ui))u
′dx

≤ ∥δθi∥0,q|δv̂li|
q−1
1,q max

t∈[0,1]
∥gluθ(θi + tδθi, ui)∥0,∞

+ ∥δui∥0,q|δv̂li|
q−1
1,q max

t∈[0,1]
∥gluu(θh,i, ui + tδui)∥0,∞

(13)
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and∫
∂Dh

(jlu(uh,i)− jlu(ui))u
′dγ

=

∫
Dh

∇[(jlu(uh,i)− jlu(ui))u
′] dx

≤ |δui|1,q|δv̂li|
q−1
1,q max

t∈[0,1]
|jluu(ui + tδui)|1,∞

+ ∥δui∥0,q|δv̂li|
q−1
1,q max

t∈[0,1]
∥jluu(ui + tδui)∥0,∞.

(14)

By the same argument as in the proof of Lemma 5, sub-
stituting (13) and (14) into (12), we have

m∥δv̂li∥1,q ≤ C ′′
1m|δv̂li|1,q

≤ C ′′
1α∥δθi∥0,∞∥v̂li∥1,q

× max
t∈[0,1]

∥ϕα−1(θi + tδθi)ϕθ(θi + tδθi)∥0,∞

+ C ′′
1 ∥δθi∥0,q max

t∈[0,1]
∥gluθ(θi + tδθi, ui)∥0,∞

+ C ′′
1 ∥δui∥0,q max

t∈[0,1]
∥gluu(θh,i, ui + tδui)∥0,∞

+ C ′′
1 |δui|1,q max

t∈[0,1]
|jluu(ui + tδui)|1,∞

+ C ′′
1 ∥δui∥0,q max

t∈[0,1]
∥jluu(ui + tδui)∥0,∞ (15)

for some constant C ′′
1 > 0. From (H3), substituting (8)

and (11) into (15) and substituting (15) and (6) into
∥δvli∥1,q ≤ ∥δv̂li∥1,q+∥v̂li−vlh,i∥1,q, the proof is complete.

(QED)

Lemma 7 (Error of Gi) Assume from (H1) to (H3)
and (8). Then there exists a constant C ′

3 > 0 indepen-
dent of ε and h, such that ∥δGl

i∥0,q ≤ C ′
3(εi+1)hk holds.

Proof By (H3), Gl
i and Gl

h,i satisfy

δGl
i = glθ(θi, ui)− glθ(θh,i, uh,i)

+ αϕα−1(θh,i)ϕθ(θh,i)∇uh,i ·∇vlh,i

− αϕα−1(θi)ϕθ(θi)∇ui ·∇vli. (16)

We estimate the bound on the first and the second terms
in the right-hand side of (16) as

∥glθ(θi, ui)− glθ(θh,i, uh,i)∥0,q

≤ ∥δui∥0,∞ max
t∈[0,1]

∥glθu(θi,h, ui + tδui)∥0,∞

+ ∥δθi∥0,∞ max
t∈[0,1]

∥glθθ(θi + tδθi, ui)∥0,∞. (17)

By using triangle inequality, we can estimate the remain-
ing terms as

α∥ϕα−1(θh,i)− ϕα−1(θi)∥0,∞∥ϕθ(θi)∇ui ·∇vli∥0,q

+ α∥ϕθ(θh,i)− ϕθ(θi)∥0,∞∥ϕα−1(θh,i)∇ui ·∇vli∥0,q

+ α∥ϕα−1(θh,i)ϕθ(θh,i)∇vli∥0,∞|uh,i − ui|1,q

+ α∥ϕα−1(θh,i)ϕθ(θh,i)∇uh,i∥0,∞|vlh,i − vli|1,q (18)

and

∥ϕα−1(θh,i)− ϕα−1(θi)∥0,∞
≤ (α− 1)∥δθi∥0,∞

× max
t∈[0,1]

∥ϕα−2(θi + tδθi)ϕθ(θi + tδθi)∥0,∞,

∥ϕθ(θh,i)− ϕθ(θi)∥0,∞
≤ ∥δθi∥0,∞ max

t∈[0,1]
∥ϕθθ(θi + tδθi)∥0,∞.

We can obtain the result in this lemma by substituting
(17) and (18) into (16), using Lemmas 5, 6, (8), (H1)
and (H3).

(QED)

Lemma 8 (Error of ρli) Assume from (H1) to (H3)
and (8). Then there exists a constant C ′

4 > 0 indepen-
dent of ε and h, such that ∥δρlG,i∥1,q ≤ C ′

4(εi + 1)hk

holds.

Proof ρlG,i and ρ̂lG,i satisfy∫
Dh

(∆δρ̂lG,i − cδρ̂lG,i)y dx = ⟨δGl
i, y⟩.

Taking y = (q − 1)δρ̂lG,i(∇δρ̂lG,i)
q−2 and considering

∇δρ̂lG,i = 0 on ∂Dh, we have

|δρ̂lG,i|
q
1,q + c(q − 1)

∫
Dh

(δρ̂lG,i)
2(∇δρ̂lG,i)

q−2 dx

≤ (q − 1)∥δGl
i∥0,q|δρ̂lG,i|

q−2
1,q |δρ̂lG,i|0,q. (19)

Now we divide (19) by |δρ̂lG,i|
q−2
1,q . Then, since q (> d)

is even number and the Poincaré inequality, we get
∥δρ̂lG,i∥1,q ≤ C ′′

4 (q − 1)∥δGl
i∥0,q for some constant C ′′

4 >
0. By substituting (7) into

∥δρlG,i∥1,q ≤ ∥δρ̂lG,i∥1,q + ∥ρ̂lG,i − ρlGh,i∥1,q,

and using Lemma 7, the proof is complete.
(QED)

Lemma 9 (Error of λl
i) Assume from (H1) to (H4)

and (8). Then there exists a constant C ′
5 > 0 indepen-

dent of ε and h, such that |λl
i − λl

h,i| ≤ C ′
5(εi + 1)hk

holds.

Proof λ and λh satisfy

A(λ− λh) = bh − b− (A−Ah)λh

By (H4) and multiplying by A−1, we get

∥λ− λh∥∞

≤ ∥A−1∥∞(∥b− bh∥∞ + ∥A−Ah∥∞∥λh∥∞)

≤ ∥A−1∥∞(1 +m∥λh∥∞) max
j∈{1,...,m},
l∈{0,...,m}

|ajl − ah,jl|

+ ∥A−1∥∞ max
j∈{1,...,m}

|Jj(θi, ui)− Jj(θh,i, uh,i)|.

Here,

|ajl − ah,jl| ≤ |⟨δGj
i , ρ

l
G,i⟩|+ |⟨Gj

h,i, δρ
l
G,i⟩|

≤ ∥δGj
i∥0,2∥ρ

l
G,i∥0,2 + ∥Gj

h,i∥0,2∥δρ
l
G,i∥0,2.
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(0,1)

(0,0)
(1,1)

f

D

(a) f in Problem 1 (b) ϕ(θ1/20,100)

Fig. 1. Setting for Problem 1 and converged ϕ.

Table 1. Results of− log2 ∥δθn∥1,2 with T = εn = 10 to Problem
1.

n h=1/5 h=1/10 h=1/20 h=1/40 h=1/80

50 0.9012 1.8513 2.8614 3.8983 5.0598
incr. 0.9501 1.0101 1.0369 1.1615

100 0.9201 1.8655 2.8397 3.8761 5.0407
incr. 0.9454 0.9742 1.0364 1.1646
200 1.4861 2.4064 3.4106 4.4414 5.6005
incr. 0.9203 1.0042 1.0308 1.1591

400 1.0518 2.0617 3.0481 4.0759 5.2331
incr. 1.0099 0.9864 1.0278 1.1572
800 0.7343 1.6836 2.7203 3.7521 4.9121
incr. 0.9493 1.0367 1.0318 1.1600

and

|Jj − Jj
h|

≤ ∥δθi∥0,∞ max
t∈[0,1]

∥gjθ(θi + tδθi, ui)∥0,∞

+ ∥δui∥0,∞ max
t∈[0,1]

∥gju(θh,i, ui + tδui)∥0,∞

+ |δui|1,∞ max
t∈[0,1]

|jjuu(ui + tδui)|1,∞

+ ∥δui∥0,∞ max
t∈[0,1]

∥jjuu(ui + tδui)∥0,∞.

From (8), Lemmas 5, 6, 7 and 8, the lemma is proven.

(QED)

Lemma 10 (Error of ρi) Assume from (H1) to (H4)
and (8). Then there exists a constant C ′

6 > 0 indepen-
dent of ε and h, such that ∥δρi∥1,q ≤ C ′

6(εi+1)hk holds.

Proof By (4), ρi and ρh,i satisfy ∥δρi∥1,q ≤
2∥δρG,i∥1,q/∥ρG,i∥1,2 and

∥δρG,i∥1,q

≤ (m+ 1) max
l∈{0,...,m}

|λl
h,i| max

l∈{0,...,m}
∥δρlG,i∥1,q

+m max
l∈{1,...,m}

|λl
i − λl

h,i| max
l∈{1,...,m}

∥ρlG,i∥1,q.

By using Lemmas 8 and 9, the theorem is proven.

(QED)

Proof of Theorem 4 If n = 0, we have Theorem 4
by θ0 = θh,0.
If n > 0, for i ∈ {0, . . . , n − 1}, we have ∥δθi+1∥1,q ≤

ε∥δρi∥1,q + ∥δθi∥1,q with ∥δθ0∥1,q = 0. By applying
Lemma 10 and (8) to the previous inequality, we have
∥δθi+1∥1,q ≤ max{C ′

6, C}ε(i + 1)hk + C ′
6ε

2ihk. Since ε
is a small constant, C = max{C ′

6, C}, and n = i+ 1, we
obtain Theorem 4. (QED)

¡D D

p

(a) Boundary condition (b) ϕ(θ1/20,800)

Fig. 2. Setting for linear elastic problem and converged ϕ.

Table 2. Results of − log2 ∥δθn∥1,2 with T = εn = 80 to a linear

elastic problem.

n h=1/5 h=1/10 h=1/20 h=1/40 h=1/80

400 −5.7374 −4.9172 −4.0073 −2.9443 −1.6998
incr. 0.8202 0.9099 1.0630 1.2445
800 −5.7580 −4.9492 −4.0596 −3.0060 −1.7628
incr. 0.8088 0.8896 1.0536 1.2432

1600 −5.7598 −4.9506 −4.0618 −3.0086 −1.7656
incr. 0.8092 0.8888 1.0532 1.2430
3200 −5.7607 −4.9514 −4.0629 −3.0099 −1.7669

incr. 0.8093 0.8885 1.0530 1.2430
6400 −5.7611 −4.9517 −4.0635 −3.0106 −1.7676
incr. 0.8094 0.8882 1.0529 1.2430

6. Numerical examples

For Problem 1, we use the setting D = [0, 1]2, ΓD =
∂D, f = 2[x2

1 + x2
2 − (x1 + x2)], uD = 0, ϕ(θ) = (tanh θ

+1)/2, α = 2. The cost functions are assumed as
J0(θ, u) =

∫
D
fu dx and J1(θ) =

∫
D
ϕ(θ) dx− c1, where

c1 is taken as J1(θ0) = 0 for θ0 = 0. We take c = 1 in
(3). D is approximated as Dh using triangular element.
We take k = 1 in (H2). Fig. 1 shows f and converged
ϕ obtained by the present method. Table 1 shows the
results of − log2 ∥δθn∥1,2 with T = nε = 10.
Another example is a SIMP problem for linear elastic

continuum. Let D = [0, 3] × [0, 2], p ∈ H3/2(ΓN;R2)
be a traction force, uD = 0 ∈ H2(ΓD;R2), and u ∈
H1(D;R2) be a displacement as a solution of the linear
elastic problem for p. A mean compliance J0(θ,u) =∫
ΓN

p ·u dγ and a mass J1(θ) =
∫
D
ϕ(θ) dx− c1 are used

as cost functions. We have G0
a = −αϕα−1ϕθσ(u) · ε(u)

for J0 where σ(u) and ε(u) are denoted by the stress
and the strain, respectively. The space approximation of
D, c1, α, c and k are the same as above. Fig. 2 shows the
problem setting and the result ϕ obtained by the present
method. Table 2 shows the results of− log2 ∥δθn∥1,2 with
T = nε = 80.
From Tables 1 and 2, we can observe ∥δθn∥1,2 achieves

first order convergence in the H1 norm with respect to
h expected by Theorem 4 with k = 1. Also, these tables
show ∥δθn∥1,2 is independent of T = εn.
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