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Abstract

The present paper describes the result of the error estimation of a numerical solution to
topology optimization problems of domains in which boundary value problems are defined. In
the previous paper, we formulated a problem by using density as a design variable, presented
a regular solution, and called it the H1 gradient method. The main result in this paper is the
proof of the first order convergence in the H1 norm of the solution in the H1 gradient method
with respect to the size of the finite elements if first order elements are used for the design

and state variables.
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1. Introduction

The problem of finding the optimum layout of holes in
a domain in which a boundary value problem is defined
is called the topology optimization problem of continua
[1]. One method for formulating this topology optimiza-
tion problem uses density as a design variable; in this
case the problem is called the SIMP problem. In the
previous paper [2], we formulated the problem and pre-
sented a regular solution by using a gradient method in
a function space, and called this method the H1 gradi-
ent method. The aim of the present paper is to show
the error estimation of the H1 gradient method using
standard finite element analyses.

2. SIMP problem

Let D € R d € {2,3}, be a fixed bounded domain
with boundary 9D, I'p C 9D be a fixed subboundary
of |Tp| > 0, and 'y = D \ T'p. Following [2], let ¢ €
C>(R;[0,1]) be the density given by a sigmoidal func-
tion of design variable § € S = {Wh°(D;R) | [|0]1.00
< M} for a constant M > 0. Let u be the solution to
the following problem.
Problem 1 Let f € HY(D;R), p € H3?(I'x;R) and
up € H3(D;R) be given functions, and o > 1 be a con-
stant. For a given 0 € S, find w € H'(D;R) such that

- V- (¢*(0)Vu)=f inD,
¢>a(0)8,,u =p

Here, 0, = v - V where v is the unit outward normal
vector along 0D. Moreover, we provide cost functions as

Lo u) = Y9, uw)dx iL0. u cl
J4(6,u) /ng )d +/BDJ<9, Jdyrd (1)

onT'n, u=up onlp.

for I € {0,1,...,m} with constants ¢! and given func-
tions ¢! and j'. By using .J', we define the SIMP problem
as follows [2].

Problem 2 Find 6 such that
I@nig{JO(ﬁ,u) | JHO,u) <0, 1€{1,...,m}}.
€

3. 0 derivative of J*

The Fréchet derivative of J' with respect to @ is ob-
tained as

(0, u,0")[o] = / (gb + GLypda + / jbody
D oD

= (G, p) (2)
for all p € H'(D;R) [2]. Here, (-,-) is the dual product,
Gl = —a¢p® 1(0)pgVu - Vol and (-)g denotes 9(-)/90.
The function v is the solution of the following problem.
Problem 3 For the solution u to Problem 1 at 8 € S,
find v' € HY(D;R) such that

=V (67(0) V') = g, (0, u)
¢ ()00 = jiy (6, w)

4. Solution to Problem 2

Following [2], we generate 0;, i € {1,2,...,n}, from
0y by the simplified steps as follows.

m D,

on I'y, vl =0 on I'p.

(i) Set a small constant € > 0 for step size, and i = 0.
(ii) Compute u; = u by solving Problem 1 with 6 = ;.
(iii) Compute v! = v! by solving Problem 3 with 6 = ;.
(iv) Compute G = G! by (2) using u;, v} and 6;.

(v) Compute pf; ; € H'(D;R) by solving

/D (Vo Vy+epey)de =—(GlLy) (3)
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for a constant ¢ > 0 and all y € H'(D;R).

(vi) Solve A = (Al); in AX = —b where A = (aj;) 1,
aj; = <Gg,plG7i> and b = (JJ + Cljo)j. Put )\? =1
and construct

PaG,i

Pi = )
loc,ill2

m
PG, = Z )\éPlG,r (4)
1=0
(vii) Construct ;11 = 0; + ep; and return to (ii) with
t=1+1.

5. Error analysis

We estimate the error of the numerical solution by
the finite element method with respect to 6,, obtained
in the solution in Section 4. Let Dp = U{K} be a fi-
nite element approximation of D with elements {K},
h = maxge(xydiam(K). For positive integer £ and
even number ¢ > d, we restrict u;, v\ and plGJ to
WHHL4(Dy:R), and 0; on Dj. We denote 6y, = 60; +
60; is the approximation of 6;, 4; = wu; + ou; €
WHFHL4(Dys R) and 0F = of + 60! € WkTL4(Dy;R) are
the analytical solutions of Problems 1 and 3 replacing
0; by 0. Let up,; = u; + duy, vf” = vl + dvl, Gﬁm =
GL+0GY, pans = Pa,i+0PG.is PGHi = PG.i+0pG.iy and
Phi = pi + 0p; be the approximate functions of wu;, vﬁ,
G, plGJ, pa,i, and p;, respectively. [)IGJ- = plGJ- + 5[)lG7i €
Wk+La(Dy,:R) represents an analytical solution of (3)
replacing G} by G, ;. Also, let A, = (A, ;)i be the solu-
tion to Ah)\h = 7bh with Ah = (ahdl)jl, ap 51 = <G%7i,

plGhﬂ), by, = (J,JL + anjo)j, J,Z = J7(0h.i,un,;). We use

J 1/q _ 1/q
Ja = (Z “|Z7q> s ulje = [/ (Vju)qdz]
k=0 Dy,

as the W94 norm || - ||, and seminorm |- |;, on D), for

j € {0,1}, ¢ € {4,6,...,00} with V? = 1. We set the

following necessary hypotheses to evaluate the error.

(H1) We take o > 2 in Problems 1, 3 and (2).

(H2) There exist some positive constants Ci, Co, C3
independent of h such that

i — wnilljg < CLRM 7|l kg1, (5)

[[ul

N ktl—jial
|05 — ’Uh,z'”j,q < Csh i J‘vi|k+1,qv (6)
166 — Ponillia < Csh™ |G ks1q. (7)

(H3) For J'(0,u), we restrict 5'(6,u) to a function of u,
ie. jl(u), j' € C](WH9(D;R); LY(D;R)), and ¢' €
C?(Y; LY(D;R)) for Y = S x Wh4(D;R) such that
ju € CHWHI(D;R); W (D;R)), gy, g, € CH (Y
L*(D;R)), ju, € COWHI(D;R); WH(D;R)),
and gtl%v gtl9u7 giev giu € OO(Y;LOO(D§R))7 respec-

tively.
(H4) There exists Cy > 0 such that [[A7!]|. < Cu,
where || - ||oo is the maximum norm on R™ and the

corresponding operator norm for m X m matrices.

Then we have the following main theorem.

Theorem 4 (Error of 6,) Assume from (H1) to
(H4). Then there exists a constant C' > 0 independent
of € and h such that ||60,||1., < Cenh* holds for n.

Here en = T can be considered as the total amount of
variation of 6. To prove this theorem, we introduce an
induction hypothesis for 6y, ;:

60:]|1.4 < Ceih® (8)

fori € {0,1,...,n — 1} and the lemmas below.

Lemma 5 (Error of u;) Assume (H1), (H2) and (8).
Then there exists a constant C7 > 0 independent of €
and h such that ||6u;||1,, < Ci(gi + 1)h* holds.

Proof wu; and u; satisfy

¢ (0;) Vi, - Voldz
Dy,

= /D (¢*(6:) — & (On,:)) Vi, - Vvoldz. (9)

By taking Vv! = (V44;)9"! and m = ming,ep, ¢*(6;)
in (9), we have

m\(mlﬁ’q

< a|603][0,00 |11i 1,410 "

X max ||¢a71(9i + t592)¢>9(92 + t502)||0700 (10)
te[0,1]

By substituting (8) into (10) and dividing (10) by

|5ﬂi|'ffql, noticing (H1), we obtain |§t;|1 , < Cjeih*. Us-

ing the Poincaré inequality, we get
16as1,4 < Clein”

(11)
by rewriting C7 > 0. By substituting (11) and (5) into
l6will1,q < 16@ll1,q+] —un,il|1,4, the proof is complete.

(QED)

Lemma 6 (Error of v!) Assume from (H1) to (H3)
and (8). Then there exists a constant C% > 0 indepen-
dent of € and h such that |60}, S Ch(i+1)h* holds.

Proof Noticing (H3), v! and 9! satisfy

¢*(0;)V S0l - Vu'dx
Dy,

- [ @0) -6 00l Vids
Dy,
+/ (9L, (Oni uny) — g4 (0i, wi))u'da
Dy,

+ /Z9D;L (ji(uh,i) _]L(’U/l))u/d'}/ (12)

By taking Vu' = (V§0})9~! and using the Poincaré in-
equality, we have

/ (g% On iy un.i) — gL (0i,u;))u/'dw
Dy,

< (/66|

N —1
0.41001|1, Jnax 1946 (0 + 365, 1) lo0,00

10 lo.ald0117 5" mack 11 gu(Ons 1+ £91) o.oc

(13)
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and

/ (Gt (unq) = gi(us))u'dy
9Dy,

= V(5L (ung) = gl (w))w'] d

Dy,

< [8uala.gl604]1 " mase | (us + 89us) 1,00

~l1g—1 -l
8o T, s o+ 180 o
(14)

By the same argument as in the proof of Lemma 5, sub-
stituting (13) and (14) into (12), we have

ml||60%|1,q < CYm|00]1,4
< CYal|60;]0,00 |92 |1,

x max ||¢* " (6; + t66;) g (6; + t66:)]]0,00

te(0,1]

CY11665 0.4 nax 194 (6; + t66;, u;)
l
CY [10uillo,q Jnax | Gas (Onis wi + tus)||o,00
+ CY[duil1q ax |t (i + 100|100

C!|6u; iLo(ug 4 tou)|looe (15
1IIUI|o7qtgl[g§]IIJuu(U+ u;)|lo, (15)

for some constant C7 > 0. From (H3), substituting (8)
and (11) into (15) and substituting (15) and (6) into
60t |1.q < [109Y)11,4+ 0 vfm||1,q, the proof is complete.

(QED)

Lemma 7 (Error of G;) Assume from (H1) to (H3)
and (8). Then there exists a constant C} > 0 indepen-
dent of € and h, such that ||6GY||o,q4 < C4(gi+1)h* holds.

Proof By (H3), G! and GZM satisty
5G; = gp (03, ui) — gp (O, unq)
+ ¢ (On,:) b0 (0n,1) Vun, - Vvﬁm-
g™ (0:)69(0:) Vi - V.

We estimate the bound on the first and the second terms
in the right-hand side of (16) as

(16)

196 (0:,ui) — g5 (On.is un.i)llo.q

< [|6willo,00 max [|gh, (6, i + t615)]l0,00
te[0,1]

s

(17)

3 | gho (0i + 860:,1:)]]0.00-

By using triangle inequality, we can estimate the remain-
ing terms as

L /N e (Y
+ allgo(On,:) — do(0;)
+ |6 (Bh,0) 90 (61,i) Vi
+ a6 (0n,4) 0 (0n.i) Vunillo.colv), ; — v

(0:)Vui - Vilog
¢ (On,i) Vg - Vi og

i~ Uilg

éll’q (18)

and
6% (0n.:) —
<(a-1)

X max |I¢“ 2(0; + 60;) do (0; + £66;)]]0,00,

|0 (On,i) — d0(0:)ll0,00
< ) ) ) ]
< 116400 . (65 + €300

¢ (0:)ll0,00

We can obtain the result in this lemma by substituting
(17) and (18) into (16), using Lemmas 5, 6, (8), (H1)

and (H3). (QED)
Lemma 8 (Error of p!) Assume from (H1) to (H3)

and (8). Then there exists a constant Cy > 0 indepen-
dent of € and h, such that ||(5,0lG,i < Ch(ei + 1)R*
holds.

Proof plG’Z- and pAlG,i satisfy
|| (8l =il e = (56l
h

Taking y = (¢ — 1)0p¢;(Vopg,)"
V(sﬁlg,i =0 on 0Dy, we have

2 and considering

|6PG z|1q +C(q - 1)/ (6ﬁlG z) (VépG z)q_2 dz

Dy,
2
(¢ = DII6G ll0.q1056.:1% 4”105 4o

Now we divide (19) by |5pGZ\ q . Then, since ¢ (> d)
is even number and the Poincaré inequality, we get
16660114 < C{ (g —1)]|6G!]l0,q for some constant Cy >
0. By substituting (7) into

(19)

a T ||PG i plGh,iHLCP

and using Lemma 7, the proof is complete.

(QED)

Lemma 9 (Error of \l) Assume from (H1) to (H4)
and (8). Then there exists a constant C§ > 0 indepen-
dent of € and h, such that |\, — )‘lm| < Cl(ei + 1)h*
holds.
Proof X and A, satisfy

AN —An) =br —b— (A — A,
By (H4) and multiplying by A~!, we get
A = Anllso

<A™ oo (16 = brlloo + 1A — Apllos[[Anloo)

<A oM +m[Anlloe)  max |aj — an il
je{1,....m}
le{o,..., m}
A oo max S (6, u;) — J7 (Onis uni)]-
j€{1,....,m}

Here,
laji — anji| < ‘<5GgaplG,i>| + |<G-;L,i’ 5plG,i>|

< 16G lo.2llpG illo.2 + 1G5, illo.2110p% i llo.2-
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)

(0,1)
(a) f in Problem 1 (b) #(81/20,100)
Fig. 1. Setting for Problem 1 and converged ¢.
Table 1. Results of —logs ||00r 1,2 with T = en = 10 to Problem
1.
n ‘ h=1/5 h=1/10 h=1/20 h=1/40 h=1/80
50 0.9012 1.8513 2.8614 3.8983 5.0598
incr. 0.9501 1.0101 1.0369 1.1615
100 0.9201 1.8655 2.8397 3.8761 5.0407
incr. 0.9454 0.9742 1.0364 1.1646
200 1.4861 2.4064 3.4106 4.4414 5.6005
incr. 0.9203 1.0042 1.0308 1.1591
400 1.0518 2.0617 3.0481 4.0759 5.2331
incr. 1.0099 0.9864 1.0278 1.1572
800 0.7343 1.6836 2.7203 3.7521 4.9121
incr. 0.9493 1.0367 1.0318 1.1600
and
j J
7= )

< [166:l0,00 5 (6i + 186:, ui) 0,00
< 1198:llo,c0 max g5 (6: + 005, ws)llo,
+ [[0uillo,c0 max g7, (On,i, ui + tous)|lo,0
t€0,1]
+0us 1,00 max [, (u; +t0u;)[1,00
t€[0,1]
+[[0uillo,cc max |57, (ui +t6u;)lo,c0-
t€0,1]

From (8), Lemmas 5, 6, 7 and 8, the lemma is proven.
(QED)

Lemma 10 (Error of p;) Assume from (H1) to (H4)
and (8). Then there exists a constant C§ > 0 indepen-
dent of & and h, such that ||5p;||1,4 < C§(gi+1)h* holds.

Proof By (4), p; and pp; satisfy [|6pill1, <
2\16pc,ill1q/llpc,illi,2 and
160G ill1,q
< 1 AL Y
<(m+ )ze{%ﬁf‘m}‘ h,ZIZE{lgféfm}H Pa,illig
AL Lol
+mle{T§§m}l i ™ Al gax pG.ill1.q

By using Lemmas 8 and 9, the theorem is proven.
(QED)

Proof of Theorem 4 If n = 0, we have Theorem 4
by 90 = 9}1’0.

If n >0, forie{0,...,n— 1}, we have ||06;11]1,4 <
ell0pillig + (166314 with [[66p[[1,4 = 0. By applying
Lemma 10 and (8) to the previous inequality, we have
160i41]11,4 < max{C§, C}e(i + 1)h* + C§eih*. Since e
is a small constant, C' = max{C{,C}, and n =i+ 1, we
obtain Theorem 4. (QED)

Iy D

. 2D

(a) Boundary condition (b) #(81/20,800)

Fig. 2. Setting for linear elastic problem and converged ¢.
Table 2. Results of —logy |66, ||1,2 with T = en = 80 to a linear
elastic problem.

n ‘ h=1/5 h=1/10 h=1/20 h=1/40 h=1/80
400 —5.7374 —4.9172 —4.0073 —2.9443 —1.6998
incr. 0.8202 0.9099 1.0630 1.2445
800 —5.7580 —4.9492 —4.0596 —3.0060 —1.7628
incr. 0.8088 0.8896 1.0536 1.2432
1600 | —5.7598 —4.9506 —4.0618 —3.0086 —1.7656
incr. 0.8092 0.8888 1.0532 1.2430
3200 | —5.7607 —4.9514 —4.0629 —3.0099 —1.7669
incr. 0.8093 0.8885 1.0530 1.2430
6400 | —5.7611 —4.9517 —4.0635 —3.0106 —1.7676
incr. 0.8094 0.8882 1.0529 1.2430

6. Numerical examples

For Problem 1, we use the setting D = [0,1]?, I'p =
oD, f =2[x? + 23 — (z1 + 72)], up = 0, #() = (tanh 6
+1)/2, o = 2. The cost functions are assumed as
JY(0,u) = [, fudz and J*(0) = [}, ¢() dz — ¢!, where
c! is taken as J1(6y) = 0 for fp = 0. We take ¢ = 1 in
(3). D is approximated as D}, using triangular element.
We take k = 1 in (H2). Fig. 1 shows f and converged
¢ obtained by the present method. Table 1 shows the
results of —log, |[00,]|1,2 with T = ne = 10.

Another example is a SIMP problem for linear elastic
continuum. Let D = [0,3] x [0,2], p € H/?(I'x;R?)
be a traction force, up = 0 € H?(I'p;R?), and u €
H'(D;R?) be a displacement as a solution of the linear
elastic problem for p. A mean compliance J°(6,u) =
Jr P-udy and a mass J'(0) = [, ¢(0) dz —c! are used
as cost functions. We have G0 = —a¢® g0 (u) - e(u)
for JY where o(u) and e(u) are denoted by the stress
and the strain, respectively. The space approximation of
D, ¢!, a, ¢ and k are the same as above. Fig. 2 shows the
problem setting and the result ¢ obtained by the present
method. Table 2 shows the results of — log, [|06,,||1,2 with
T =ne = 80.

From Tables 1 and 2, we can observe ||§6,,||1,2 achieves
first order convergence in the H' norm with respect to
h expected by Theorem 4 with £ = 1. Also, these tables
show ||06,,]/1,2 is independent of T' = en.
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