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Abstract

This thesis presents a new methodology for visual scene analysis. This methodology con-
sists of analyzing the kurtosis of responses of independent component (IC) filters. Here,
our methodology is applied on three problems or subjects of visual scene analysis. The
first subject is segmentation of depth-of-field images. The second subject is segmentation

of nature-made and man-made structures. The third subject is measuring the perception

of complexity in streetscapes.
In the first studied subject of visual scene analysis, i.e., segmentation of depth-of-

field images, the goal is to recognize and segment focused and unfocused regions in the
visual scene. In our proposed method, two di↵erent sets of IC filters are united or joined
together. One set of IC filters is designed to respond to focused image regions. The
other set of IC filters is designed to respond to unfocused image regions. By measuring
the kurtosis of responses of the whole filter population, our method is able to recognize
when a region in the scene is focused or unfocused. In terms of objective criteria, our
method exhibits the highest performance among the fast methods of segmentation of
depth of field. The performance of our method is only lower in comparison to that of
time-consuming methods.

In the second studied subject of visual scene analysis, i.e., segmentation of natural and

man-made structures, the goal is to recognize and segment natural and artificial objects
in the visual scene. Similar to the method of depth-of-field segmentation, two di↵erent
sets of IC filters are united or joined together. One set of IC filters is designed to respond
to natural objects. The other set of IC filters is designed to respond to artificial or man-
made objects. By measuring the kurtosis of responses of the whole filter population,
our method is able to recognize when between the two di↵erent types of objects. In
comparison to other methods, our proposed system exhibits the highest performance in
terms of objective criteria.

In the third studied subject of visual scene analysis, i.e., measuring the perception

of complexity in streetscapes, the goal is to create a measure to quantify the human
perception of visual complexity in streetscapes. Our proposed measure of complexity
is based on the statistics of local contrast and spatial frequency of the visual scene.
Notice that the kurtosis-based methodology proposed in this thesis is used to extract
the statistics of local spatial frequency. In comparison to classic and new methods, the
proposed measure of complexity exhibits higher correlation with the subjective opinion
of human participants. Furthermore, we show that our measure can be used to analyze
perception in nighttime images.

For all three subjects of visual scene analysis, this manuscript presents motivation,
state of art, open problems, and finally our experiments and results using the proposed
methodology. In this regard, our methods exhibit competitive or higher performance
than that of the state of art for all subjects. It is also important to highlight that the
proposed methodology is computationally simple and fast. Therefore, our methodology
is attractive for industry and consumer real-time vision applications. Notice that we also
clearly present the shortcomings of our methods for each studied application.

keywords: visual scene analysis, segmentation, independent component analysis, depth-
of-field, man-made object, visual complexity, streetscapes
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Chapter 1

Introduction

1.1 Motivation and Objective

Visual scene analysis may be divided into two perceptual processes [1]. The first process
is segmentation, i.e., segregating the scene into di↵erent partitions or regions. The sec-
ond perceptual process is recognition, i.e., classifying the scene or the scene regions into
categories defined a priori.

In scientific literature and in the industry, many computer methods have been pro-
posed for visual scene analysis. The number of applications of such technologies is exten-
sive. For instance, we can cite applications such as visual inspection, text and document
handling, surveillance, medical image processing and assisted diagnostic, biometrics, ob-
ject detection and tracking, etc.

Visual scene analysis can also be used for environmental understanding, i.e., under-
standing the physical features of the environment. In robotics, environmental under-
standing is required for applications related to autonomous navigation and driving.

Besides the large number of applications, another motivation is the large number
of platforms implementing methods of visual scene analysis. For instance, visual scene
analysis is implemented in platforms such as automotive, airborne and space, medical
equipment, and general low-power consumer electronics such as mobile computers.

Those platforms involve di↵erent trade-o↵s between energy consumption, time con-
sumption, memory consumption, size and weight of the processor device. In this regard,
methodologies of visual scene analysis which are computationally complex may not con-
form to the consumption requirements.

Therefore, there is a need for studies which focus on developing computationally low-
cost methods of visual scene analysis. The goal of this thesis is exactly to introduce a
original and simple methodology which can be used for both segmentation and recog-
nition. The proposed methodology consists of extracting and analyzing the kurtosis of
responses of independent component filters. Figure 1.1 illustrates the basic idea of the
proposed methodology. The details of this methodology are fully described in the next
chapter.

Based on the proposed methodology, we have built new computer methods for subjects
or applications of visual scene analysis. These subjects are presented later in this chapter.
For reproducibility or extension of this research, data and software source-code are made
available on-line at http://github.com/andrecavalcante/thesis/.
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Input: image patch

Independent component filters
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KurtosisOutput: kurtosis of filter
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Figure 1.1: Basic view of the proposed methodology. Firstly, the responses of
independent component filters are calculated for an input scene. Then, the kurtosis (i.e.,
the normalized fourth-order moment) of the filter responses is extracted and analyzed.

1.2 Related work

Image segmentation techniques are mainly classified as region-based methods or bound-
ary detection methods [2]. In region-based methods, di↵erent image regions are defined
based on the homogeneity or similarity between neighboring pixels. This similarity is
computed as a function of image characteristics such as pixel intensity, color, etc. Notice
that determining the best function to cluster pixels or form regions may be considered as
pattern recognition problem. In this regard, cluster algorithms such as k-means, expec-
tation maximization and mean shift clustering may be considered region-based methods
when applied for image segmentation. In fact, one should notice that the methodology
proposed in Figure 1.1 is a region-based methodology.

Another important aspect of region-based methods is how the segmentation process
is executed in space. In this regard, region-based methods may be classified as region-
growing methods or region-split methods [3, 4]. In region-growing methods, a pixel is
chosen as starting point of a region. Then, additional neighboring pixels are added based
on the similarity function. In split methods, the whole image is considered as one region.
If all pixels within this region does not satisfy the similarity criteria, then the region is
split into subregions. This process is then repeated.

Being di↵erent from region-based methods, boundary detection methods focus on
detecting the boundaries between image regions. In order to detect boundaries, these
methods may also use simple image characteristics such pixel intensity. One example is
the watershed segmentation method [5]. In this technique, an image is interpreted as a
topographic relief. Specifically, pixel intensities are considered as altitudes or elevations
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in the relief. Boundaries are then detected by gradient or “flooding” techniques applied
on the relief. Another example is the method quite recently proposed to recover occlusion
boundaries from single image [6]. In this method, a very large number of 2D and 3D clues
are used to characterize occlusion. Based on this clues, a conditional random field model
is trained to determine the likelihood of boundaries in the image.

In case of image recognition, methods can be mainly classified as template match-
ing methods, statistical approaches and neural networks based methods [7]. Template
matching methods are based on predefined templates for each possible image category.
These templates are images or feature vectors which represent the main characteristics
of the categories to be recognized. Template methods work by measuring the similarity
between the image and templates. The similarity is usually computed as the correlation
or some distance metric between the image and the template.

Defining the template and the similarity function is an important issue in template
matching. However, template match research strongly focus on increasing the speed
of the matching procedure itself [8]. Examples are fast matching based on hierarchical
partitioning [9] and based on projection kernels [10].

Statistical methods generally work by calculating the probabilities of an image or
image pixels belonging to di↵erent categories [7]. The recognition procedure in these
methods is usually divided into a feature extraction phase and a learning or classification
phase. Many methods have been proposed for feature extraction. For instance we can
cite principal component analysis, linear discriminant analysis, independent component
analysis, self-organizing maps, etc. Many methods have also been proposed for learning
or classification, for instance, logistic classifier, Fisher linear discriminant, support vector
classifier, Bayes plug-in, conditional random field, radial basis network, etc.

Neural networks methods use a massive parallel processing architecture formed by
artificial neurons. Such architecture is able to learn and generalize di↵erent patterns
for later inference or recognition. Recently, works have been proposed for recognition,
sometimes called deep-learning systems. For instance, a method for face recognition using
3D face modeling and a deep neural network which consists of nine layers involving more
than 120 million parameters [11].

There are also methodologies of visual scene analysis which are similar to that pro-
posed in Figure 1.1. One example is the methodology proposed by Haralick et al. [12].
Their methodology consists of extracting and analyzing the statistics of the distribution
of intensity spatial co-occurrence. This methodology has been largely used for texture
segmentation and recognition [13].

Another methodology widely used for visual scene analysis is the selective visual at-
tention model proposed by Kock et al. [14, 15]. In this methodology, the input image
is filtered in di↵erent frequency, color and orientation channels. Conspicuity maps (fre-
quency map, color map and orientation map) are generated and transformed into a unique
saliency map. Many computer methods have been proposed based on this methodology.

Another similar methodology is proposed by Hansen et al. [16]. This method consists
of calculating the sum of thresholded responses of log-Gabor filters. They have used this
method to characterize the structure of visual scenes. Besides these methodologies, we
are going to cite other related works throughout this thesis.
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Figure 1.2: Applications of depth-of-field image segmentation. (a) Background
removal [17]. (b) Extension or enhancement of depth-of-field in microscopy images [18].

1.3 Subjects studied in the thesis

This section presents three subjects or applications in which the proposed methodology
(Figure 1.1) is used.

1.3.1 Segmentation of depth-of-field image

Depth-of-field (DOF) is a photographic technique generally used to separate an object
of interest from background. This separation is achieved by focusing the camera sensor
only on the object of interest. In the problem of segmentation of DOF images, the goal
is to use image processing to extract the object of interest.

Segmentation of DOF image can be applied in amateur and professional photography.
Specifically, DOF image segmentation can be used to remove or change the background
of a scene. This process can be easily implemented in smartphones and other computer
systems. Figure 1.2(a) illustrates this application.

Segmentation of DOF image is also commonly applied in microscopy image analy-
sis [18, 19]. Specifically, DOF image segmentation is used to enhance biological speci-
men’s profile in microscopy imaging. During a microscopy imaging test or experiment,
depth-of-field may change for di↵erent profile images. Segmentation of depth-of-field is
used to select areas of the profile that are in focus. Then, focused areas are combined to
form a clear profile image. Figure 1.2(b) illustrates this application.

1.3.2 Segmentation of natural and man-made structures

Here, the goal is to classify visual objects into two categories: nature-made or man-
made. One should notice the importance of segmentation of natural and man-made
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structures for real-world artificial vision systems. Specifically, this type of segmentation
can be used as a preprocessing step for many vision applications. For example, the
vision system of an autonomous machine might execute tasks such as people detection,
building detection, car detection, street sign detection, lane detection, etc. For these
tasks, spending battery power and computer resources for processing image areas with
purely vegetation or sky information seems unprofitable. Therefore, segmentation of
natural and man-made structures can be used to select image areas of potential interest
and save computer resources.

This type of segmentation has also been applied in several areas such as autonomous
navigation [20–22], urban planning [23, 24], damage assessment [25–27], and military
applications such as terrain and underwater surveillance [28, 29], mapping and recon-
naissance [30, 31], and target detection [32, 33]. In this section, we briefly describe each
case.

In autonomous navigation supported by aerial data, the segmentation of natural and
man-made structures has been used for terrain classification [22]. In aerial images, the
terrain contains roads and buildings which can be used for determining route and desti-
nation. However, such information may be found corrupted by bodies of vegetation and
“o↵-road” areas. In this case, it is important to proper segment those structures.

Furthermore, this type of segmentation has been used for detecting vegetation ob-
stacles which can be driven over by vehicles [20, 21]. Specifically, obstacles such as tall
grass, large bushes and other types of vegetation are not rigid. In this case, the au-
tonomous vehicle does not need to change route nor avoid the obstacle. Figure 1.3(a)
shows illustrations of the above applications on autonomous navigation.

In urban planning, the segmentation of natural and man-made structures has been
used for analyzing urban spaces [23, 24]. Specifically, this type of segmentation is used
to extract information about road networks and buildings from Geographic Information
Systems (GIS) image data [23]. Also, it has been used to segment rural regions from urban
areas from single aerial images [24]. Furthermore, it can be used to evaluate changes in
the amount of vegetation in rural and urban areas (e.g., deforestation).

The segmentation of natural and man-made structures has also been used in damage
assessment after natural disasters [25–27]. Specifically, the segmentation is applied on
pre-event images and post-event images to detect potential changes in natural and man-
made structures present in the environment. Figure 1.3(b) and 1.3(c) shows illustrations
of the above applications in urban planning and damage assessment, respectively.

In military applications, the segmentation of natural and man-made structures is
the core of many systems. For instance, this type of segmentation has been used to
detect patterns associated with civil construction in desert areas [28,31]. Furthermore, it
has been used to analyze underwater sonar images to detect man-made objects such as
mines [29]. Finally, many target detection and tracking systems are based on segmenting
man-made objects from natural backgrounds [32,33]. Figure 1.3(d) shows illustrations of
the applications in the military domain.

1.3.3 Measuring the perception of complexity in streetscapes

Here, the goal is to create a computer method to quantify the visual complexity per-
ceived in streetscapes. Streetscapes are a specific category of urban scenes. According to
Rapoport [34], a streetscape is a more or less narrow and straight urban space lined up
by buildings, used for circulation and other activities. Figure 1.4(a) shows an illustration
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Figure 1.3: Application of segmentation of natural and man-made structures.
Images were extracted from the following researches: (a) Autonomous navigation [20,22].
(b) Urban planning [23,24]. (c) Damage assement [25]. (d) Military applications [29,32].
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(a) (b)

Figure 1.4: The characteristics of streetscapes. (a) Illustration of a streetscape
(extracted from Google). According to Rapoport [34], a streetscape is a more or less
narrow and straight urban space lined up by buildings, used for circulation and other
activities. (b) Objective and subjective characteristics of streetscapes. Image extracted
from [35].

of a streetscape.
Figure 1.4(b) shows examples of objective and subjective characteristics of streetscapes.

It has been suggested that these characteristics directly influence how people locally be-
have in the city [35, 36]. Visual complexity is one example of subjective characteristic.

In general, the complexity of the environment heavily influences perception processes
such as visual attention and visual search [37–41]. Specifically, visual complexity gener-
ally reflects the amount of time, eye fixations, and di�culty of finding an object in the
environment [37–41].

These perceptual processes are fundamental for activities performed at streetscapes
such as driving vehicles and shopping. Let’s briefly explore how streetscape complexity
influences these activities.

During driving, streetscape complexity a↵ects the perception of driving speed, choice
of driving speed, perception of safety and hazard, time for peripheral detection and time
for reaction [43–48]. Specifically, driving speed is generally perceived higher in complex
streetscapes. In this situation, drivers tend to decrease speed as a form of compensation.
Furthermore, there is an additional issue related to driving in complex streetscapes.
Namely, complex streetscapes make drivers slower to detect and react to events occurring
at the peripheral vision [44].

Notice that the e↵ects of visual complexity in driving are independent of on-street
parking [45]. Specifically, it is suggested that drivers anticipate the potential activity of
pedestrians in commercial environments, or the contribution of purely visual components
of a complex environment (such as increased optical flow), or some combination of these
e↵ects [45].

For example, Figure 1.5 shows streetscapes with increasing complexity (in this case,
images were evaluated only by the author). According to [45], the increasing complexity
evokes di↵erent perceptions for hazard and potential activity of pedestrians at those
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Figure 1.5: Streetscapes with increasing complexity. Complexity increases from
the top to the bottom. Images extracted from the KITTI Vision Benchmark Suite [42].
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streets. In case this hypothesis is true, a computer method created to measure the
complexity of streetscapes could be used in driving applications. For instance, the method
could allow robots and autonomous vehicles anticipate potential activity of pedestrians
(similarly to the ability of human drivers).

In fact, the complexity of streetscapes is known to influence the interest and prefer-
ence of pedestrians. Specifically, people express higher interest for streetscapes perceived
higher in complexity [35, 36,49,50].

In the field of urban planning, researchers try to understand how to properly increase
the complexity of streetscapes. Their goal is to increase interest and hold the attention of
pedestrians. This is important for streetscapes in commercial districts. In this regard, a
computer method which mimics our perception of complexity can be useful for automatic
analysis of streetscapes.

1.4 Thesis characteristics

1.4.1 Originality and contributions

1. A new methodology for visual scene analysis. This new methodology is general and
it can be applied in many subjects or problems of visual scene analysis.

2. A new computer method for segmentation of depth-of-field image.

3. A new computer method for segmentation of natural and man-made structures.

4. A new computer method for measuring the perception of complexity in streetscapes.

5. In regard of measuring the perception of complexity in streetscapes, our results re-
veal mechanisms related to the perception of visual complexity. Furthermore, our
proposed measure of visual complexity is a helpful tool for research studies on visual
perception.

6. For the fields of visual neuroscience and image coding, we provide an original anal-
ysis of di↵erences between IC filters and Gabor functions. We show how these
di↵erences are related to the receptive fields of cells from the primary visual cortex.
Also, we show how these di↵erences influence error in image coding.

1.4.2 Chapter overview

This manuscript is organized according to the outline presented in Figure 1.6. Chapter
2 presents theoretical background of independent component filters and kurtosis. Fur-
thermore, Chapter 2 provides the complete description of the proposed methodology for
visual scene analysis, which is illustrated in Figure 1.1.

Chapter 3 presents the application of our methodology for segmentation of depth-of-

field images. Firstly, Chapter 3 describes state-of-art and open problems of DOF segmen-
tation. Secondly, Chapter 3 describes the details of our method for DOF segmentation.
Finally, experiments, results and remarks are presented.

Chapter 4 presents the application of our methodology for segmentation of natural and

man-made structures in streetscapes. For this subject, state-of-art and open problems are
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Figure 1.6: Chapter overview. The first chapter states the motivation and objective of
this thesis on visual scene analysis. The second chapter introduces the necessary concepts
and formally presents the proposed methodology of visual scene analysis. Chapters three,
four and five reports three di↵erent applications of the proposed methodology. Chapter
six summarises the thesis presenting applicability and limitation issues of the proposed
methodology and future works.
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also presented. Furthermore, the proposed method is described and experiments, results
and remarks are presented.

Chapter 5 presents the application of our methodology for measuring the perception

of complexity in streetscapes. Chapter 5 briefly introduces the research field of perception
of visual complexity. Specifically, this chapter discusses works which pioneered compu-
tational modeling of perception of complexity. Furthermore, Chapter 5 discusses studies
about perception of complexity in urban environments such as streetscapes. In this
regard, this chapter states open problems of measuring the perception in streetscapes.
Finally, Chapter 5 presents the proposed method, experiments, results and remarks.

Chapter 6 presents a summary and discussion about the use of the proposed method-
ology in visual scene analysis, especially regarding the subjects of Chapter 3, 4 and 5.
Furthermore, Chapter 6 discusses shortcomings of the methodology, and also, shortcom-
ings of the overall work carried out by us. Finally, this chapter presents the future works
for this research.

Appendix sections are introduced in the end of this thesis. The appendixes contain
mathematical proofs, derivation of algorithms and computer methods previously proposed
by the author for visual scene analysis. These appendix sections are referenced as needed
throughout the text.
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Chapter 2

Proposed methodology

2.1 Background

2.1.1 Independent component filters

This section explains how independent component filters are learned. In independent

component analysis (ICA), input variables x1, x2, . . . , xn

2 R are transformed into output
variables y1, y2, . . . , yn 2 R. The goal of ICA is to maximize the mutual statistical
independence among variables y1, y2, . . . , yn. The ICA transformation is executed as
follows.

The first step consists of transforming the input variables x1, x2, . . . , xn

into mutually
uncorrelated variables z1, z2, . . . , zn 2 R. This can be represented as

z

i

= vT
i

x, (2.1)

where x = [x1x2 . . . xn

]T and vectors v
i

2 Rn represent the decorrelation transformation.
For the FastICA algorithm [51], vectors v

i

are computed as

v
i

= d

� 1
2

i

ei, (2.2)

where coe�cients d1, d2, . . . , d

n

2 R and vectors e1, e2, . . . , e
n

2 Rn represent the
eigenvalues and eigenvectors of the covariance matrix of the input variables, respectively.

The second step consists of transforming variables z1, z2, . . . , zn into variables y1, y2, . . . , yn 2
R according to

y

i

= hT
i

z, (2.3)

where z = [z1z2 . . . zn]T and h
i

2 Rn. For the FastICA algorithm, vectors h
i

are computed
by the following iterative rule.

h
i

 E{zg(hT
i

z)}� E{g0(hT
i

z)}h
i

, (2.4)

where g(.) = tanh(.). The derivation of Equation (2.4) is demonstrated in Appendix A.
After one iteration of (2.4), vectors h

i

should be normalized and orthogonalized, i.e.,

h
i

 h
i

kh
i

k ; (2.5)

h
i

 h
i

�
i�1X

k=1

(hT
i

h
k

)h
k

. (2.6)
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After convergence of (2.4), vectors h
i

can be used in Eq. (2.3) to obtain y

i

. Only in
this case, variables y1, y2, . . . , yn become maximally mutually statistically independent.
This completes the ICA procedure for the FastICA algorithm.

Now, denoting h
i

= [h
i1hi2 . . . hin

]T, Eq. (2.3) can be rewritten as

y

i

= h

i1z1 + h

i2z2 + · · ·+ h

in

z

n

. (2.7)

Substituting Eq. (2.1) into Eq. (2.7),

y

i

= h

i1v
T
1 x+ h

i2v
T
2 x+ · · ·+ h

in

vT
n

x. (2.8)

Denoting v
i

= [v
i1vi2 . . . vin]T, Eq. (2.8) can be written as

y

i

= h

i1[v11x1 + v12x2 + · · · v1nxn

]
+h

i2[v21x1 + v22x2 + · · · v2nxn

]
...

+h

in

[v
n1x1 + v

n2x2 + · · · v
nn

x

n

].

(2.9)

Grouping x

i

terms in Eq. (2.9),

y

i

= x1[hi1v11 + h

i2v21 + · · ·h
in

v

n1]
+x2[hi1v12 + h

i2v22 + · · ·h
in

v

n2]
...

+x

n

[h
i1v1n + h

i2v2n + · · ·h
in

v

nn

].

(2.10)

Let us denote
w

ij

= h

i1v1j + h

i2v2j + · · ·+ h

i2vnj. (2.11)

Using Eq. (2.11) into Eq. (2.10),

y

i

= w

i1x1 + w

i2x2 + · · ·+ w

in

x

n

. (2.12)

Finally, for w
i

= [w
i1wi2 . . . win

]T,
y

i

= wT
i

x. (2.13)

Here, vectors w
i

are called independent component (IC) filters. They represent the full
ICA transformation from input variables x1, x2, . . . , xn

to output variables y1, y2, . . . , yn.
Notice that from (2.11), IC filters could be written as

w
i

= h

i1v1 + h

i2v2 + · · ·+ h

in

v
n

. (2.14)

2.1.2 Kurtosis

Kurtosis is generally defined as the normalised fourth-order moment of a random variable.
For instance, let’s assume that u1, u2, . . . , uk

2 R represent k realizations of a random
variable U . The sample kurtosis for a random variable U is represented here by K

U

, and
computed as

K

U

=

1
k

kP
i=1

[u
i

� µ

U

]4

⇢
1
k

kP
i=1

[u
i

� µ

U

]2
�2 , (2.15)
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Figure 2.1: Analysis of center and tails of well-known probability distributions.
(a) Plots of Gaussian and Student’s-t probability distributions. The distributions have
the same mean and variance. The t-distribution has five degrees of freedom (5 df). (b)
Magnification of the right-hand tails. In comparison to the Gaussian distribution, the
t-distribution has a higher peak and thicker tails.

where µ

U

is the sample mean of U , i.e.,

µ

U

=
1

k

kX

i=1

u

i

. (2.16)

Dyson and Finucan showed that the higher the peak and tails of a distribution, the
higher kurtosis [52,53]. For instance, let’s analyze peak, tails and kurtosis for well-known
probability distributions, i.e., the Gaussian distribution and the t-distribution.

These two distributions are shown in Figure 2.1. Notice that both distributions
have the same mean and variance. In comparison to the Gaussian distribution, the
t-distribution has a higher center peak and higher tails.

In accordance with higher peak and thicker tails, kurtosis of Student’s distribution is
higher than that of Gaussian distribution. Specifically, the kurtosis of these distributions
can be calculated analytically. Appendix B of this thesis shows the calculation of kurto-
sis for Gaussian and Student’s-t distributions. From Appendix B, kurtosis of Gaussian
distribution is 3. Kurtosis of t-distribution with five degrees of freedom is 9.

The consequences of lower or higher kurtosis (or lower or higher peak and tails) can
be observed on the following experiment. Figure 2.2 shows random numbers generated
from Gaussian and t-distributions in Figure 2.1. From each distribution, 10,000 numbers
are generated.

For both distributions, the majority of generated numbers have amplitude in the range
[�5, 5]. However, t-distribution generated numbers of very high amplitude. The Gaussian
distribution does not generate such values because probability at the tail is very low (See
Figure 2.1(b)).

Thicker tails might suggest that the variance of t-distribution is higher than that of
Gaussian distribution. In this case, however, variances are equal because t-distribution
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Figure 2.2: Random numbers generated from the probability distributions. (a)
10.000 realizations from Gaussian distribution. (b) 10.000 realizations from Student’s-t
distribution (5 df). Both probability distributions have equal mean and variance. For
both distributions, the majority of numbers have amplitude in the range [�5, 5]. However,
t-distribution generated numbers of very high amplitude. Examples of these very high
amplitude realizations are indicated by blue arrows on plot (b). K

Gauss

and K

t

are the
sample kurtosis of each set of realizations. Here, Matlab is used for random number
generation.

has a center peak higher than that of Gaussian distribution. If only tails were higher
(i.e., without higher peak), then t-distribution would have higher variance [54, 55].

In Figure 2.2, the sample kurtosis of random numbers generated from Gaussian distri-
bution is K

Gauss

= 2.95. Meanwhile, the sample kurtosis of random numbers generated
from Student’s-t distribution is K

t

= 8.73. These kurtosis values are close to those
calculated analytically.

Notice that since variance is the same, the kurtosis value must be used to discriminate
or distinguish the pattern in Figure 2.2(b) from that in Figure 2.2(a).

2.2 The proposed method

This section formalizes the proposed methodology. The goal of our methodology is to
determine if an image exhibits either a visual characteristic “A” or a visual characteristic
“B”. Here, “A” and “B” could represent a simple image characteristic such as spatial
orientation. For example, if A = 90 degrees and B = 30 degrees, then our goal is to
determine if the image exhibits a dominant spatial orientation of 90 degrees or 30 degrees.

Instead of spatial orientation, characteristics “A” and “B” could represent spatial
frequency. For example, if A = high-frequency and B = low-frequency, our goal is to
determine if the image exhibits either a high-frequency-like visual structure or a low-
frequency-like visual structure. On the other hand, “A” and “B” could represent more
complex characteristics such as image category. For example, if A = nature-made and
B = man-made, then our goal is to determine if the image contains nature-made or
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Output: kurtosis of 

response vector

Input image patch

Figure 2.3: The proposed methodology for visual scene analysis based on the
kurtosis of responses of IC filters. An input image patch is represented by n. Two
sets of IC filters are represented by a1, a2, . . . , ap

and b1,b2, . . . ,bq

, respectively. Notice
that p � q, i.e., the number of filters a

i

is much greater than the number of b
i

. The
responses of filters a

i

and b
i

to the input image patch n are represented by ↵

i

and �

i

,
respectively. The vector u contain all responses. Finally, the kurtosis of u is calculated.

man-made structures.
Figure 2.3 shows the block diagram of our methodology. Assume that vector n 2 Rn

represents an input image (this image exhibits either characteristic “A” or “B”). Vectors
a1, a2, . . . , ap

2 Rn and b1,b2, . . . ,bq

2 Rn represent two sets of filters learned by ICA.
Also, assume that p � q, i.e., the number of filters a

i

is much greater than the number
of filters b

i

. This assumption is necessary because our method uses the kurtosis of filter
responses. This is further explained and illustrated below.

Assume that filters a
i

share characteristic “A”. For example, if A = 90 degrees, then
all filters a

i

have spatial orientation equal to 90 degrees. Similarly, if A = high frequency,
then all filters a

i

are centered at high frequencies. On the other hand, if A = nature-made,
then all filters a

i

are learned from natural scenes.
Assume that filters b

i

share characteristic “B”. For example, if A = nature-made and
B = man-made, then filters a

i

were learned from nature scenes, and filters b
i

are learned
from man-made scenes.

Responses of filters a
i

and b
i

to the input image n are calculated as

↵

i

= aT
i

n, (2.17)

�

i

= bT
i

n. (2.18)
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(a) (b)
Input image         exhibits characteristc “B”Input image         exhibits characteristc “A”

Figure 2.4: Response of IC filters to an input image patch n. For (a) and (b),
vertical axis represent amplitude of responses ↵

i

(black) and �

i

(red). Horizontal axis
represent filter name and index, i.e., a

i

(black) or b
i

(red). (a) Input image patch n
and filters a

i

share the same characteristic “A”. In this case, responses ↵

i

have higher
magnitude than that of �

i

. (b) Input image patch n and filters b
i

share characteristic
“B”. In this case, �

i

have higher magnitude than that of ↵
i

. Notice that since p � q,
the number of responses ↵

i

is much greater than the number of �
i

. This can be observed
by comparing the number of black and red responses.

Let vector
u = [↵1,↵2, . . . ,↵p

, �1, �2, . . . , �q

]T (2.19)

contain the all responses ↵
i

and �

i

. For a simpler notation, let us rewrite u as

u = [u1, u2, . . . , uk

]T, (2.20)

where u

i

= ↵

i

for i  p, u
i

= �

i�p

for i > p, and k = p + q. Finally, the output of the
methodology is the kurtosis of vector u. This kurtosis is calculated as

K

u

=

1
k

kP
i=1

[u
i

� µ

u

]4

⇢
1
k

kP
i=1

[u
i

� µ

u

]2
�2 , (2.21)

where µ

u

is the sample mean of u. This completes the methodology description.
Now, our hypothesis is as follows. If input n and filters a

i

share characteristic ”A”,
then responses ↵

i

are more likely to have higher magnitude than those of �
i

. On the
other hand, if input n and filters b

i

share characteristic “B”, then responses �
i

are more
likely to have higher magnitude than those of ↵

i

. This is illustrated in Figure 2.4. In
Figure 2.4(a), responses ↵

i

have magnitude higher than that of �
i

. In Figure 2.4(b),
responses �

i

have magnitude higher than that of ↵
i

.
Since p � q, the number of responses ↵

i

is much greater than the number of �
i

.
Thus, only few responses have high magnitude in Figure 2.4(b). In our hypothesis, this
e↵ect is similar to that observed for numbers generated from Student’s t distribution in
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Figure 2.2(b). For this reason, we use kurtosis of u to discriminate or distinguish the
response pattern in Figure 2.4(b) from that in Figure 2.4(a). Specifically, we expect that
the response pattern in Figure 2.4(b) have higher kurtosis than that in Figure 2.4(a).
In this way, the kurtosis of responses of IC filters is used to detect or recognize if input
image patch n exhibits either a characteristic “A” or a characteristic “B”.
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Chapter 3

Segmentation of depth-of-field
(DOF) image

3.1 Introduction

Generally, segmentation of depth-of-field (DOF) image is achieved by two approaches:
edge-based (or boundary detection) and region-based methods. For edge-based methods
such as [56], the first step is to detect object boundaries based on the local characteristics
of image edges. Then, the focused object is segmented based on an edge-linking procedure.

In region-based methods, DOF segmentation is achieved by analyzing the local high-
frequency content of the scene. Specifically, focused areas generally have higher energy
in high-frequency than at low-frequency. Therefore, region-based methods usually work
by quantifying the di↵erence between the energy in high-frequency and the energy in
low-frequency in the image. One example of region-based method is to calculate the
energy of responses of wavelet filters centered at high-frequencies [57]. Whenever an
image regions presents low energy in high-frequencies, these filters will exhibit responses
of low magnitude.

A region-based method has also been proposed based on local (non-normalized) fourth-
order moment [58]. Specifically, a map is computed based on the block-wise fourth-order
moment of pixel intensities. This map is further processed by morphological operations
in order to fill holes and exclude image “blobs”. This approach has been improved in [59]
by applying further bilateral filtering.

Another method firstly detects edges, then classify image regions into focused object
or unfocused background based on a type of fuzzy membership degree [60]. Another
approach is proposed based on five stages [61]. These stages are as follows. Firstly,
“sharp” pixels are detected. Secondly, these pixels are clustered together. In the third
stage, a binary mask is generated by connecting clusters into a contiguous area. The forth
stages consists of color segmentation. Finally, pixels in the binary mask are removed or
not based on the color segmented groups.

Notice that there are also hybrid approaches formed by combining elements from edge-
and region-based methods. For instance, [17] firstly creates an edge map by applying
Sobel operator on the input image. Furthermore, it calculates the local kurtosis map
from [58]. Then, it generates a third map by dividing the each value in the edge map
by the maximum value of the kurtosis map. This process is then repeated for a low-pass
filtered version of the input image. In this way, two maps are generated, one for the
original image and one for the low-pass image. These two maps are then combined into a
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unique map by subtracting the first from the latter. The resulting map is then processed
by a series of segmentation processes to generate the final result.

Another hybrid approach has been recently proposed in [62]. This method firstly ap-
plies a Gabor filter to the input image and calculates its output. Secondly, it creates an
initial segmented map by subtracting the original image from the Gabor filtered image.
The resulting map is processed by a method called curve evolution or active contour
model. The goal of active contour model is to find the boundaries of the focused object
in the depth-of-field image. In active contour model, inner pixels (i.e., pixels within the
focused object) and outer pixels (i.e., pixels external to the focused object) are described
by di↵erent probability distributions. By calculating the parameters of these distribu-
tions, the method is able to segment the boundaries pixels from the rest of image pixels.
After this first stage, the active contour model in [62] employs the Chan-Vese energy
function [63] for a secondary segmentation of boundaries pixels. The final result is com-
puted by summing the segmented image from probability distribution estimation process
and the segmented image generated by Chan-Vese energy function.

It is also important to discuss research on general segmentation of objects of interest.
Specifically, objects of interest are not always determined by depth-of-field. For instance,
a method has been recently proposed to detect image regions which are perceptually
salient [64]. That method uses a Gaussian mixture model to decompose the input image
in di↵erent components. The method then computes the probability of image pixels
belonging to the each of those components. The segmented map is generated by using
only components of high probability in the Gaussian mixture model.

Another proposed work creates a window which slides over the input image [65]. Im-
age characteristics such as pixel intensity, contrast, color and motion information are
firstly computed for pixels internal to the window. Then, these image characteristics are
computed for pixels external to the window. Given the image characteristics values, the
method calculates a conditional probability distribution of image pixels being internal
to the window. Given the image characteristics values, it also calculates the conditional
probability distributions of pixels being external to the window. These conditional prob-
ability distributions are approximated simply as low-pass filtered histograms of the image
characteristics for internal and external pixels. In that method, the conditional probabil-
ities of internal pixels are considered as saliency values. The method then finally uses a
conditional random field to determine which image pixels have maximum saliency.

In regard of saliency detection, a method proposes to measure saliency in the CIELAB
color space [66]. That method computes the CIELAB space representation of the input
image. Also, it computes the CIELAB space representation of a Gabor filtered version
of the original image. The saliency map is generated by computing the local or block-
wise di↵erence between the two CIELAB representations. Another method for saliency
detection is the famous Koch’s visual attention model [14,15] previously discussed in the
introductory chapter.

Applications

The introductory chapter of this thesis describe several applications of DOF segmentation.
For instance, the use of DOF segmentation for enhancing microscopy image profiles [18,
19]. This section describes the characteristics of methods for this application.

Generally, the enhancing of microscopy image profiles is based on a technique known
as extended depth-of-field. In extended depth-of-field, several images of the same scene are
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taken but with di↵erent DOF. These di↵erent DOF images are then combined into a single
image in which all regions are (maximally) in focus. The combination process is generally
performed in wavelet domain rather than in the spatial domain [18]. The combination
process consists of selecting wavelet components which have high contribution to focused
pixels, and excluding wavelet components which have low contribution to focused pixels.
This contribution is quantified in terms of pre-defined measures of focus. These pre-
defined measures of focus represent the depth-of-field of wavelet components rather than
that of pixels in the image.

Open problems

One of the main open problems of methods for DOF segmentation is time consumption.
For instance, the very recently proposed active contour approach for DOF segmenta-
tion [62] has one of the highest accuracy to date. However, it can be more extremely slow
in comparison to other methods. This may not be satisfactory for a real-world applica-
tion. Furthermore, accuracy of the active contour approach largely varies over di↵erent
image sizes.

Another problem is computational complexity. For instance, methods which rely on
many stages of segmentation or on probability estimation algorithms may be very di�cult
to implement in hardware platforms used for image segmentation in real-time industrial
and consumer applications.

3.2 DOF segmentation method

Our method for DOF segmentation is based on the methodology proposed in section 2.2.
This methodology requires the definition of characteristics “A” and “B”. Furthermore,
the methodology requires IC filters a

i

and b
i

which exhibit characteristics “A” and “B”,
respectively.

Since DOF segmentation consists of discriminating unfocused and focused images
areas, characteristics “A” and “B” could be chosen as A = unfocused and B = focused.
In this way, IC filters a

i

could be learned from unfocused images, and filters b
i

could
be learned from focused images. We use a simpler approach. It is noticed that focused
images have higher energy in high frequencies than that of unfocused images. Thus, we
choose characteristics “A” and “B” as A = high-frequency and B = low-frequency. In this
way, filters a

i

should be centered at high-frequencies, and filters b
i

should be centered at
low-frequencies. The next section describes how filters a

i

and b
i

are learned. The block
diagram of our method for DOF segmentation is shown in Figure 3.1.

In the first step, the RGB color bands of the input image are collapsed generating a
grayscale image I. Around a pixel I

x,y

of this grayscale image, let us consider a neighbor-
hood of 2L + 1⇥ 2L+ 1 pixels. This neighborhood is represented by the column vector
n
x,y

. This vector is created by reading the pixels in the neighborhood in a column-wise
fashion, i.e., from top to bottom and left to right.

The second step consists of log-transforming luminance values in the neighborhood,
i.e.,

n0
x,y

= log⇤(n
x,y

), (3.1)

where log⇤(a) = 0 for a < 1 and log⇤(a) = log(a) for a � 1. This non-linear transfor-
mation reduces large di↵erences between luminance intensities in di↵erent parts of the
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Input image
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Kurtosis of response vector
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Figure 3.1: Overview for proposed DOF segmentation. An input image is con-
verted into a grayscale image I. Around a pixel I

x,y

of this grayscale image, consider a
neighborhood of pixels represented by n

x,y

, where (x, y) represents coordinates of a pixel.
The luminance of pixels are log-transformed generating n0. Two sets of IC filters are
represented by a

i

and b
i

. Notice that p � q. Filters a
i

are centered at high frequen-
cies. Filters b

i

are centered at low frequencies. The responses of filters a
i

and b
i

are
represented by ↵

x,y,i

and �

x,y,i

, respectively. Vector u
x,y

contain both responses ↵
x,y,i

and
�

x,y,i

. The kurtosis map K is generated by computing the kurtosis of u
x,y

for every (x, y).
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image.
After luminance normalization, the responses of filters a

i

and b
i

are calculated as

↵

x,y,i

= aT
i

n0
x,y

, (3.2)

�

x,y,i

= bT
i

n0
x,y

, (3.3)

respectively. Let a vector

u
x,y

= [↵
x,y,1,↵x,y,2, . . . ,↵x,y,p

, �

x,y,1, �x,y,2, . . . , �x,y,q

]T (3.4)

contain the all responses ↵
x,y,i

and �

x,y,i

. For an simpler notation, let us rewrite u
x,y

as

u
x,y

= [u
x,y,1, ux,y,2, . . . , ux,y,k

]T, (3.5)

where u

x,y,i

= ↵

x,y,i

for i  p, u
x,y,i

= �

x,y,i�p

for i > p, and k = p + q. Finally, the
kurtosis of u

x,y

is computed as

K

x,y

=

1
k

kP
i=1

[u
x,y,i

� µ

u

]4

⇢
1
k

kP
i=1

[u
x,y,i

� µ

u

]2
�2 , (3.6)

where µ

u

is the mean value of vector u
x,y

. Since kurtosis of u
x,y

is calculated for every
possible (x, y), values K

x,y

form a kurtosis map.
Now, let us revisit our hypothesis illustrated in Figure 2.4. When image n exhibits

characteristic “A”, the response pattern is similar to Figure 2.4(a). When image n
exhibits characteristic “B”, the response pattern is similar to Figure 2.4(b). Finally, the
kurtosis of the response pattern in Figure 2.4(a) is expected to be higher than that of
Figure 2.4(b).

Applying our hypothesis for the problem of DOF segmentation, we have that charac-
teristic A = high-frequency and B = low-frequency. Therefore, if input image n

x,y

has
low energy in high frequencies, kurtosis of u

x,y

is expected to be high. If input image
n
x,y

has high energy in high frequencies, kurtosis of u
x,y

is expected to be low. This is
verified in the section Experiments and results.

Generating final segmented image

After computing the kurtosis mapK, it is necessary to generate the final segmented image.
This process consists of two steps, i.e., morphological reconstruction and thresholding. The
goal of morphological reconstruction is to fill “holes” inside K. This process is as follows:
1. Define

J

x,y

=

(
�K

x,y

if x, y is on the map borders,

M otherwise,

where M < �K
x,y

8x, y. Here, it is used M = min
x,y

{�K
x,y

}� 1.

2. While J

z+1 6= J

z

do

J

x,y

 min{[J � B]
x,y

,�K
x,y

}, (3.7)
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where [J � B]
x,y

= max
(x0

,y

0)2N
B

{J(x � x

0
, y � y

0)} is the dilation of matrix J by a flat

structuring elementB. Here, it is used a 3 ⇥ 3 flat element so that N
B

is an 8-connectivity
neighborhood.
end of while.
3. Return J⇤.

After this procedure is executed, the resulting map after filling holes given by J⇤. The
goal of the second step, i.e., thresholding, is to binarize map J⇤. Specifically,

A

x,y

=

(
1 if J⇤

x,y

> T

0 otherwise,
(3.8)

where T 2 R is a threshold, and A is the binarized version of J⇤. T is determined by
Otsu’s method [67]. Ostu’s method chooses the threshold so as to minimize the intraclass
variance of 0 and 1 values. Finally, the segmented image is found by multiplying the
original image I by the binary image A.

3.3 Experiment and results

Learned IC filters

This section describes how IC filters a
i

and b
i

are learned. In our model for DOF
segmentation, filters a

i

must be centered at high-frequencies, and filters b
i

must be
centered at low-frequencies. Furthermore, the number of filters a

i

must be much greater
than that of filters b

i

.
In order to learn IC filters, a dataset of nature scenes was obtained from the McGill

Calibrated Color Image Database [68]. From this database, we have randomly selected
100 natural scenes. From these images, 100,000 patches of 16 x 16 pixels were extracted
in a non-overlapping fashion. This set of image patches was used as input for the FastICA
algorithm. Figure 3.2 exhibits the learned IC filters.

Notice that IC filters learned from natural images are visually similar to two-dimensional
Gabor functions. A two-dimensional Gabor function is defined as the product between a
Gaussian envelop and a cosine grating, i.e.,

g(x, y) = e

1
2

�
� x

0
�

x

2
� y0

�

y

2
�
cos(2⇡fx0 + �), (3.9)

where
x

0 = (x� x

c

) cos ✓ + (y � y

c

) sin ✓,
y

0 = �(x� x

c

) sin ✓ + (y � y

c

) cos ✓,
(3.10)

and �

x

, �

y

represent horizontal and vertical lengths. f,� are center frequency and phase.
And x

c

, y

c

are the center position coordinates. The orientation ✓ determines the direction
of oscillation of the cosine component.

In order to quantify the characteristics of IC filters in Figure 3.2, we have approxi-
mated each filter by a Gabor function using a fitting algorithm. The fitting algorithm
works by minimizing the following error

min
x

c

,y

c

,�

x

,�

y

,f,�,✓

kw
i

� g
i

k2, (3.11)
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Figure 3.2: Independent component filters learned from natural images. There
are 256 IC filters exhibited in the figure. Each filter is represented by a square of dimen-
sions 16 x 16 pixels. This bank of IC filters has been learned when the input variables
were pixels of natural images. The ICA algorithm used for learning was the FastICA
algorithm [69]. The filter surrounded by red line is the direct-component filter.
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Figure 3.3: IC filters and estimated Gabor functions. For each IC filter in Fig-
ure 3.2, we have estimated a Gabor function by using a fitting algorithm. This algorithm
works by minimizing the error in Eq. (3.11). (a) Examples of IC filters w

i

and the esti-
mated Gabor functions g

i

. (b) Histogram of signal-to-distortion ratio (SDR) between IC
filters and Gabor functions, i.e., SDR = 10 log10

kw
i

k2
kw

i

�g
i

k2 . The statistics of the histogram
are also shown, i.e., mean, standard deviation, skewness and kurtosis. The high SDR
values suggests that Gabor functions are good approximations of IC filters.

where vectors w
i

and g
i

represent the IC filter and the estimated Gabor function g(x, y),
respectively. Vector g

i

is obtained by reading values of the two-dimensional function
g(x, y) in raster scan fashion, i.e, from left to right and top to bottom.

Figure 3.3(a) shows examples IC filters and fitted Gabor functions. Figure 3.3(b)
shows the histogram of signal-to-distortion ratio (SDR) between IC filters and fitted
Gabor functions. The histogram shows that the distortion between the majority of IC
filters and Gabor functions is between 10 dB and 20 dB.

The high SDR (i.e., SDR = 10 log10
kw

i

k2
kw

i

�g
i

k2 ) suggests that Gabor functions are good
approximations of IC filters. Therefore, we can use the parameters of Gabor functions to
characterize the IC filters. These parameters are center frequency f , orientation ✓ and
the area in the frequency domain approximated by 1

�

x

�

y

. These parameters are shown in
Figure 3.4.

In the polar plot in Figure 3.4(a), each circle represents an IC filter. The distance of
the circle to the origin of the plot represents center frequency f (given in cycles per pixel).
The orientation of the circle (given in degrees) represents orientation ✓. The color of the
circle represents the area in frequency domain occupied by the IC filter. The respective
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Figure 3.4: Estimated parameters for the IC filters in Figure 3.2. (a) In the polar
plot, each circle represents an IC filter. The distance of the circle to the origin of the plot
represents the frequency f (given in cycles per pixel). The orientation of the circle (given
in degrees) represents the orientation ✓. The color of the circle represents the area in
frequency domain occupied by the IC filter. (b) The respective colormap and histogram
for area in frequency domain. The polar plot shows that the IC filters are centered at
high frequencies. Furthermore, the number of filters close to oblique orientations (✓ = 45
degrees and ✓ = 135 degrees) is higher than that at normal orientations (✓ = 0 degrees and
✓ = 90degrees). According to the color of circles, however, filters at oblique orientations
have smaller area in the frequency domain. Only a few number of filters have larger areas
in the frequency domain.
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colormap and histogram for area in frequency domain is shown in Figure 3.4(b).
The polar plot shows that 255 IC filters are centered at high frequencies. The FastICA

algorithm also learned one very-low frequency filter, which is generally named as direct-
component filter. This filter is highlighted in Figure 3.2 by a red square.

In Figure 3.4(b), notice that the number of filters close to oblique orientations (✓ = 45
degrees and ✓ = 135 degrees) is higher than that at normal orientations (✓ = 0 degrees and
✓ = 90 degrees). According to the color of circles, however, filters at oblique orientations
have smaller area in the frequency domain. Notice that the histogram in Figure 3.4(b)
shows a high concentration of small areas in frequency domain. Only a few number of
filters have larger areas in the frequency domain. In our paper [70], we demonstrate how
to control the characteristics of IC filters such as center frequency.

Notice that these IC filters match the requirements for our DOF segmentation method.
Specifically, the learned set of IC filters consists of 255 high-frequency filters and one
low-frequency filter. Therefore, we use those filters as the required filters a

i

and b
i

,
respectively. In this way, there are 255 filters a

i

and one filter b
i

.

Di↵erences between IC filters and Gabor functions

Before presenting results for DOF segmentation, let us discuss the following issue. Al-
though Gabor functions are good approximations of IC filters, there are di↵erences be-
tween them [71]. In order to analyze these di↵erences, we compute the average 2D Fourier
amplitude spectrum of IC filters, and the average 2D Fourier amplitude spectrum of Ga-
bor functions. These spectra are shown in Figure 3.5.

In both Figures 3.5(a) and 3.5(b), for a fixed spatial frequency, amplitude is higher at
oblique orientations (45 degrees and 135 degrees) than at normal orientations (0 degrees
and 90 degrees). Now, let us analyze the “isolines” or profile curves of the amplitude
spectra. Specifically, let’s analyze isolines for low spatial frequencies, i.e., frequencies close
the origin of the Fourier domain (u = 0, v = 0). For the average amplitude spectrum
of IC filters (Figure 3.5(a)), isolines have an almost perfect “diamond” shape. For the
average amplitude spectrum of Gabor functions (Figure 3.5(b)), isolines have a more
circular shape. This di↵erence between IC filters and Gabor functions is an important
issue and deserves a discussion on its own. This discussion is presented in Appendix C.

Results for DOF segmentation

In order to demonstrate how kurtosis of IC filters represents depth-of-field, we have
chosen two images from the famous Berkeley Segmentation Dataset and Benchmark500
(BSDS500) [72]. These images are shown in Figure 3.6(a). The kurtosis maps generated
by our methodology are shown in Figure 3.6(b). As expected, kurtosis is higher for
unfocused areas. Figure 3.6(c) shows the segmented images obtained from the kurtosis
maps in Figure 3.6(b).

For the rest of this section, two image datasets are used for evaluation. The first
dataset consists of 86 DOF images selected from the Berkeley Segmentation Dataset
and Benchmark500 (BSDS500). These images are encoded in JPEG format. Their size is
321⇥481 pixels. The second dataset is the GraKriWei Dataset [61]. This dataset consists
of 63 DOF images. These images are encoded in a very high quality JPEG format. The
sizes of these images are very large and not identical.
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(b)(a)

Figure 3.5: Average 2D Fourier amplitude spectra. (a) Average amplitude spectrum
of IC filters. (b) Average amplitude spectrum of Gabor functions. The origin of the
Fourier domain is represented by the point (u = 0, v = 0). The plots at the bottom
show the profile curves or “isolines” for di↵erent levels of amplitude. Notice that for a
fixed spatial frequency, amplitude is higher at oblique orientations (45 degrees and 135
degrees) than at normal orientations (0 degrees and 90 degrees).
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Figure 3.6: Segmentation of depth of field by using kurtosis of responses of
IC filters. (a) Original images. (b) Kurtosis maps. Unfocused regions exhibit higher
Kurtosis K

x,y

than that of focused regions. (c) Segmented images.
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Table 3.1: Segmentation performance on Berkeley Segmentation Dataset and
Benchmark500.

Fuzzy [60] NonNorm4 [59] Proposed method [73] Score [61] Cur.Evo [62]

Average of F-values 0.29 0.68 0.72 0.77 0.85

Standard deviation of F-values 0.28 0.21 0.20 0.16 0.11

Average processing time 46 s 3 s 6 s 73 s 241 s

Table 3.2: Segmentation performance on GraKriWei Dataset.
Fuzzy [60] NonNorm4 [59] Proposed method [73] Score [61] Cur.Evo. [62]

Average of F-values 0.38 0.61 0.71 0.83 0.86

Standard deviation of F-values 0.25 0.21 0.18 0.18 0.11

Average processing time 51 s 3 s 6 s 79 s 249 s

For all these images, ground-truth masks are provided. These masks are binary images
in which pixels with values “0” and “1” indicate unfocused and focused pixels in the
original image, respectively. In this way, ground-truth masks are used to determine
which pixels are correctly or wrongly classified in segmented images. For these two image
datasets, the performance of recently proposed methods for DOF segmentation [62] has
been quantified using the F-measure. Therefore, we also use the F-measure. The F-
measure is defined as

F = 2
precision · recall
precision + recall

. (3.12)

Precision and recall are computed as

precision = tp

tp+fp

,

recall = tp

tp+fn

,

(3.13)

where tp is the number of focused pixels correctly classified as focused, fp is the number
of unfocused pixels wrongly classified as focused, and fn is the number of focused pixels
wrongly classified as unfocused. In general, larger F-values indicate larger number of
correctly segmented pixels.

Tables 3.1 and 3.2 show the results for Berkeley Segmentation Dataset and GraKriWei
Dataset, respectively. In these tables, columns indicate di↵erent methods. The first row
shows the average of F-values over the images in the dataset. The second row shows the
standard deviation of F-values. The last row shows the average time required to process
an image.

In Tables 3.1 and 3.2, the second and third columns are the Zhang’s fuzzy segmen-
tation approach [60] and Li’s method based on the non-normalized fourth-order mo-
ment [59], respectively. The fourth column is the proposed method. The fifth column is
Graf’s method based on score region and color segmentation [61]. The last column is the
active contour approach proposed by Mei et al. [62].

From Tables 3.1 and 3.2, it is said that our method has competitive performance in
terms of average F-value and time consumption. Notice that the methods with higher
average F-value are far slower than our method. The method with highest average F-
value is the curve evolution approach described in [62]. Notice, however, that this method
is the most time consuming. It is important to highlight that for the majority of state-
of-art methods, time consumption is dependent on the input image. Time consumption
for our method is almost constant over di↵erent images.
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Here, it should be noticed that our method and the active contour methods are exe-
cuted in Matlab environment. The other methods are executed in compiled software. In
this way, a point could be made that our method and the active contour approach could
be faster than that reported on Tables 3.1 and 3.2.

For subjective evaluation, Figure 3.7 shows examples of images segmented by our
method and by the curve evolution approach with highest performance. For these images,
ground-truth masks and objective measures are provided as well.

It is important to discuss the above results in regard of the applications of DOF seg-
mentation cited in the introductory chapter. In this regard, the datasets used to evaluate
methods of DOF segmentation consists of general photographs. Thus, the performance
reported in our analysis should reflect the performance in applications with general im-
age and video data. However, in relation to applications such as enhancing microscopy
images, one should consider the following issues when interpreting the results. For the
problem of enhancing microscopy images, the segmentation or processing of depth-of-field
is only an intermediate step in the solution. This step is carried out in wavelet domain
and not in the space domain for methods based on extended depth-of-field [18]. Further-
more, the final result or output produced in this subject is not a segmented image in
which di↵erent regions have di↵erent depth-of-fields. Rather, the result or output image
is an image in which all regions are in focus. In this way, a direct comparison between the
performance of methods for enhancing microscopy images and general DOF segmentation
is not straightforward.

However, one can compare how extended depth-of-field techniques and general DOF
segmentation methods handle depth-of-field. In the extended depth-of-field methodology,
one intermediate step calculates depth-of-field contribution of wavelet components based
on pre-defined measures of focus. These measures of focus include standard luminance
contrast, gradient energy of luminance and the energy of high-frequency components.
Although researches on enhancing microscopy images do not generally report objective
evaluation of performance for the employed measures of focus, these measures are ba-
sically the same criteria used in many methods for general DOF segmentation. In this
way, the performance level in our analysis should be satisfactory for application on the
subject enhancing microscopy images.

Shortcomings of the proposed method

In order to provide more information about the performance of our method, we show
images in which our method fails. There are two main shortcomings in our method
for DOF segmentation. The first shortcoming is related to the boundaries of focused
objects. The second shortcoming is related to low-frequency image regions which are in
focus. Figure 3.8 illustrates these shortcomings.

In Figure 3.8(b), Notice that between the “true boundary” and the “false boundary”,
our method (wrongly) segments pixels which are not in focus. Furthermore, notice that
our method doesn’t segment low-frequency regions which are in focus. These problems
can also be observed at the results shown in Figure 3.7(c).

Better segmentation of boundaries are actually achieved by active contour method-
ologies. However, such methods are extremely time consuming. Better segmentation of
low-frequency regions in focus is also a di�cult problem. The reason is that low-frequency
regions generally lack features such as image edges. Thus, algorithms do not have clues
or “what” to process. Human perception may solve this problem by using some type
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F = 0.88    t = 6 seconds F = 0.37     t = 255 seconds

F = 0.88     t = 6 seconds F = 0.88     t = 203 seconds

F = 0.75    t = 6 seconds F = 0.89     t = 221 seconds

F = 0.80     t = 7 seconds F = 0.94     t = 232 seconds

F = 0.82     t = 285 secondsF = 0.75     t = 7 seconds

(a) (b) (c) (d)

Figure 3.7: DOF segmentation. (a) Original images. (b) Ground-truth masks. (c)
Proposed method. (d) Active contour approach [62]. F-values and processing time in
seconds are shown below each segmented image.
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Low frequency region is 
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Figure 3.8: Shortcomings of the proposed method. (a) Original image. (b) Seg-
mented image. Notice that between the “true boundary” and the “false boundary”, our
method (wrongly) segments pixels which are not in focus. Furthermore, our method
doesn’t segment low-frequencies regions which are in focus.

higher-order processing architecture. Such architectures usually consist of di↵erent lay-
ers of filters. According some defined criteria, filters in higher layers are more complex
than those in lower layers. The obvious drawback is that processing time will increase
considerably.

3.4 Conclusion

This chapter has presented the method for segmenting depth-of-field images based on our
methodology for visual scene analysis. Here, the required filters a

i

and b
i

consists of IC
filters centered at high frequencies and low frequencies, respectively. Since filters b

i

are
centered at low frequencies, the kurtosis of filter responses is high for low-frequency input
images, and it is low for high-frequency input images.

The main advantages of the proposed method are the unsupervised and fast execu-
tion. Furthermore, our method is quite easy to implement. All these characteristics are
attractive for real-time industrial and consumer applications.

The performance of our method was evaluated on image datasets used by several
other works on depth-of-field segmentation. For these datasets, our method exhibits a
competitive performance in comparison to the state of art. However, our method is not
without shortcomings, i.e., processing of boundaries and low-frequency image regions in
focus.

Still, by observing our results, we conclude that our method improves the state of art
among fast DOF segmentation methods. Future works must focus on achieving better
segmentation of boundaries and low-frequencies regions, but using processing architec-
tures which are fast.
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Chapter 4

Segmentation of natural and
man-made structures

4.1 Introduction

Much of research on segmentation of natural and man-made structures focus on aerial
images. For instance, Anderson applied edge detection on aerial photographs to identify
objects such as buildings, cars, statues and sidewalks [74]. Her methodology consists
of extracting length and spatial frequency of image edges. Then, objects are recognized
based on the levels or amplitude of these characteristics. Notice that many other methods
have been proposed for detecting man-made objects in aerial scenes [32, 75–78].

In a di↵erent line of research, Torralba et al. proposed to classify visual scenes into two
categories, i.e., nature scene or urban scene [79]. Their methodology consists of analyzing
the shape of the power spectra of the image. Specifically, the shape of the average power
spectra of nature scenes is similar to a “diamond” pattern. On the other hand, the shape
of the average power spectra of urban scenes is similar to a “star” pattern. Notice that
their methodology is used to classify the entire image. In other words, their methodology
does not determine spatial position of man-made structures within the scene.

Caron et al. proposed to determine spatial position of man-made object in a natural
scene [80]. Their methodology consists of calculating Zipf’s law distribution of image
patches. Man-made objects are detected based on the amplitude of Zipf’s law distri-
bution. Kumar et al. also proposed to detect man-made structures in scenes [81, 82].
Their methodology consists of using variations of Markov random fields such as multi-
scale random fields (MSRF) and discriminative random Fields (DRF) for segmentation
and classification of image regions. Vishwanathan et al. proposed a similar approach
using conditional random fields (CRF) instead of DRF [83].

We have also previously proposed a method for segmentation of natural and man-made
structures [84]. Our previous method uses two image generative models for modeling
image regions. In the first model, image patches are modeled as the sum of IC basis
functions learned from natural images. In the second model, patches are modeled as
the sum of IC basis functions learned from man-made scenes (a matrix containing IC
basis functions can be computed as the inverse of a matrix containing IC filters). After
modeling, the mean squared errors between original image patches and image patches
reconstructed by the two generative models are computed. Image patches are finally
classified as nature-made or man-made based on the generative model which generates
the smaller error.
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Applications

The introductory chapter of this thesis describes several applications of segmentation of
natural and man-made structures. For instance, detection of vegetation obstacles during
autonomous navigation [20, 21], terrain classification from aerial data to support ground
vehicle navigation [22], military applications such as target detection and tracking [32].
This section describes the properties of methods for these applications.

For the detection of vegetation obstacles, [20] proposes a two stage method. The first
stage consists of calculating a saliency map of the input scene. This saliency map is
calculated based on the product of unidimensional distributions given by the output of
independent component filters. The second stage consists of using a multi-class image
labeling system for classification of image regions. This image labeling system is based on
conditional random fields. [21] also proposes a two stage approach for detecting vegetation
in complex driving environments. The first stage consists of calculating a quantity based
on near-infrared reflectance known as normalized di↵erence vegetation index (NDVI),
which varies from -1 (blue sky) to 1 (chlorophyll-rich vegetation). The second stage
consists of computing a three-dimensional point distribution in which surface, rectilinear
and scattered structures can be discriminated. Based on the output of both stages, a
logistic classifier is trained to detect vegetation.

For terrain classification from aerial data to support ground navigation, [22] uses
high-density, colorized, three-dimensional laser data. This data is then used as input of
a neural network classifier. For target detection and tracking, [32] proposes a method
based on the human visual attention mechanism and texture perception. The initial
step of that method consists of preprocessing for noise reduction and image contrast
enhancement. Then, a stage of feature extraction is started. In this stage, features are
extracted to characterize texture. Based on these features for texture characterization,
an image segmentation is performed so as to indicate which image regions are likely to
contain a target or background. For image regions which likely contain targets, a second
feature extraction stage is performed. In this stage, features are extracted to characterize
the geometric structure of the object rather than its texture. Based on texture and
geometric structure from man-made objects know a priori (e.g., airplanes, tanks, trucks,
etc), the system is able to detect targets.

Open problems

There are two problems which all proposed methods have di�culty to handle. The first
problem is generalization. Specifically, within nature-made or man-made categories, the
characteristics of objects can largely vary. For example, a tree is di↵erent from the sky
or a river. However, these structures are nature-made. Similarly, a building may look
di↵erent from a car. But these two structures are man-made.

The second problem is depth. Specifically, the distance of the object from the camera
may influence classification results. For instance, a car may look like a nature-made
object from a large distance. These problems motivate us to evaluate new methodologies
for segmenting natural and man-made structures.
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4.2 Method for segmenting natural and man-made

structures

Our method for segmentation of natural and man-made structures is based on the
methodology proposed in section 2.2. Here, characteristics “A” and “B” are chosen
as “A” = nature-made and “B” = man-made. Therefore, IC filters a

i

are learned from
natural scenes, and IC filters b

i

are learned from urban scenes. The block diagram of our
method is shown in Figure 4.1.

In the first step, the RGB color bands of the input image are collapsed generating a
grayscale image I. Around a pixel I

x,y

of this grayscale image, let us consider a neighbor-
hood of 2L + 1⇥ 2L+ 1 pixels. This neighborhood is represented by the column vector
n
x,y

. This vector is created by reading the pixels in the neighborhood in a raster scan
fashion, i.e., from top to bottom and left to right.

The responses of filters a
i

and b
i

are calculated as

↵

x,y,i

= aT
i

n
x,y

, (4.1)

�

x,y,i

= bT
i

n
x,y

, (4.2)

respectively. Let vector

u
x,y

= [↵
x,y,1,↵x,y,2, . . . ,↵x,y,p

, �

x,y,1, �x,y,2, . . . , �x,y,q

]T (4.3)

contain the all responses ↵
x,y,i

and ↵

x,y,i

. For an simpler notation, let us rewrite u
x,y

as

u
x,y

= [u
x,y,1, ux,y,2, . . . , ux,y,k

]T, (4.4)

where u

x,y,i

= ↵

x,y,i

for i  p, u
x,y,i

= �

x,y,i�p

for i > p, and k = p + q. Finally, the
kurtosis of u

x,y

is computed as

K

x,y

=

1
k

kP
i=1

[u
x,y,i

� µ

u

]4

⇢
1
k

kP
i=1

[u
x,y,i

� µ

u

]2
�2 , (4.5)

where µ

u

is the mean value of vector u
x,y

. Since kurtosis of u
x,y

is calculated for every
possible (x, y), values K

x,y

form a kurtosis map.
For this application of our methodology, it is noticed that some locations x, y may

produce extremely high K

x,y

values. These singular high values impairs the visualization
and segmentation of the entire kurtosis map. Therefore, a simple luminance compression
is applied to the kurtosis map. Specifically,

K

0
x,y

= log⇤(K
x,y

), (4.6)

where log⇤(a) = 0 for a < 1 and log⇤(a) = log(a) for a � 1.
Now, let’s revisit our hypothesis illustrated in Figure 2.4. When image n exhibits

characteristic “A”, the response pattern is similar to Figure 2.4(a). When image n
exhibits characteristic “B”, the response pattern is similar to Figure 2.4(b). Finally,
kurtosis of the response pattern in Figure 2.4(a) is expected to be higher than that of
Figure 2.4(b).
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IC learned from natural scenes (black)
and from man-made scenes (red)

Response vector

Kurtosis map

Grayscale conversion

Input image

Grayscale conversion

Kurtosis of response vector

Neighborhood           around pixel 

Figure 4.1: Overview for proposed method for segmentation of natural and
man-made structures. An input image patch is converted into a grayscale image I.
Around a pixel I

x,y

of this grayscale image, consider a neighborhood of pixels represented
by n

x,y

, where (x, y) represents coordinates of a pixel. Two sets of IC filters are repre-
sented by a

i

and b
i

. Notice that p� q. Filters a
i

are learned from natural scenes. Filters
b
i

are learned from urban scenes, i.e., scenes which contain only man-made objects. The
responses of filters a

i

and b
i

are represented by ↵

x,y,i

and �

x,y,i

, respectively. Vector u
x,y

contain both responses ↵
x,y,i

and �

x,y,i

. The kurtosis map K is generated by computing
the kurtosis of u

x,y

for every (x, y). Notice that there are two di↵erences between this
block diagram and that for DOF segmentation shown in the previous chapter. The first
di↵erence is that there is no log-transformation. The second di↵erence is the choice of
filters b

i

. Here, they are learned from urban scenes. For DOF segmentation, there is only
one filters b

i

, which is a very low frequency filter.
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Applying our hypothesis for the problem of segmentation of natural and man-made
structures, we have that characteristic A = nature-made and B = man-made. Therefore,
when input image n

x,y

contains a man-made object, kurtosis of u
x,y

is expected to be
higher than that when n

x,y

contains a nature-made object. This is verified in the section
Experiment and results.

Generating final segmented image

After computing the kurtosis map, it is necessary to generate the final segmented image.
This process consists of two steps, i.e., morphological reconstruction and thresholding.
The first process is as follows:
1. Define

J

x,y

=

(
�K

x,y

if x, y is on the map borders,

M otherwise,

where M < �K
x,y

8x, y. Here, it is used M = min
x,y

{�K
x,y

}� 1.

2. While J

z+1 6= J

z

do

J

x,y

 min{[J � B]
x,y

,�K
x,y

}, (4.7)

where [J � B]
x,y

= max
(x0

,y

0)2N
B

{J(x � x

0
, y � y

0)} is the dilation of matrix J by a flat

structuring elementB. Here, it is used a 3 ⇥ 3 flat element so that N
B

is an 8-connectivity
neighborhood.
end of while.
3. Return J⇤.

After this procedure is executed, the resulting map after filling holes is given by J⇤.
The thresholding step is as follows:

A

x,y

=

(
1 if J⇤

x,y

> T

0 otherwise,
(4.8)

where T 2 R is a threshold, and A is the binarized version of J⇤. The threshold is
set simply as T = 130 (after rescaling J

⇤
x,y

values in the range [1, 255]). Finally, the
segmented image is found by multiplying the original image I by the binary image A.

4.3 Experiment and results

Learned IC filters

This section describes how IC filters a
i

and b
i

are learned. In our model for segmentation
of natural and man-made structures, filters a

i

must be learned from natural scenes, and
filters b

i

must be learned from man-made scenes. Furthermore, the number of filters a
i

must be much greater than that of filters b
i

.
Filters learned from natural scenes were previously presented in Figure 3.2. There-

fore, we use that set of 255 IC filters as filters a
i

. Notice that the low-frequency filter
highlighted in red in Figure 3.2 is not used. If the low-frequency filter is used the system
will segment depth of field. And this is not the goal.
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Figure 4.2: Independent component filters learned from urban scenes. There are
256 IC filters exhibited in the figure. Each filter is represented by a square of dimensions
16 x 16 pixels. This bank of IC filters has been learned when the input variables were
pixels of urban scenes which did not contain nature-made structures. The ICA algorithm
used for learning was the FastICA algorithm [69]. There are four IC filters highlighted
in red. These four IC filters are used as filters b

i

in our method.

In order to learn filters b
i

, urban scenes which do not contain nature-made structures
were carefully chosen from di↵erent image datasets. From these images, 50,000 patches
of 16⇥ 16 pixels were extracted in a non-overlapping fashion. This set of image patches
was used as input for the FastICA algorithm. The IC filters learned from urban scenes
are shown in Figure 4.2.

Since the number of filters b
i

should be very small, only four IC filters in Figure 4.2
were used as filters b

i

. These four IC filters are highlighted in red. The reason why these
specific filters are chosen is that they are not localized in space like IC filters learned from
natural scenes. In this way, there are 255 filters a

i

learned from natural scenes, and four
filters b

i

learned from urban scenes.
Notice that the IC filters learned from urban scenes are visually di↵erent from those

learned from natural scenes. While the IC filters learned from natural scenes are visually
similar to Gabor functions, IC filters learned from urban scenes seem similar to Haar
functions. Unfortunately, Haar functions are di�cult to parametrize. Therefore, quanti-
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Figure 4.3: Segmentation of natural and man-made structures by using kurtosis
of responses of IC filters. (a) Original images. (b) Kurtosis maps. Regions containing
man-made objects exhibits higher kurtosis K

0
x,y

. (c) Kurtosis map after morphological
reconstruction. In this map, kurtosis values are represented by J

⇤
x,y

. (d) Segmented
images. Image regions highlighted with the color green indicate nature-made structures.
Image regions highlighted with the color red indicate man-made structures.

tative analysis for these IC filters is a theme for future work. It should be noticed that
the similarity to Haar function is an interesting fact due to the relation between IC filters
and the receptive fields of cells of the primary visual cortex.

Results for segmentation of natural and man-made structures

In order to demonstrate how kurtosis of IC filters represents natural and man-made
structures, we have selected an image from the York Urban Line Segment Database [85]
and one from the Internet. These images are shown in Figure 4.3(a). Similar to all test
images in this work, image size is 356⇥ 536 pixels. Furthermore, images are processed in
neighborhoods n

x,y

of 16⇥ 16 pixels.
The kurtosis maps generated by our methodology are shown in Figure 4.3(b). As

expected, kurtosis is higher for regions containing man-made objects. Kurtosis maps after
morphological reconstruction are shown on Figure 4.3(c). Segmented images obtained
from kurtosis maps are shown in Figure 4.3(d).

In section 1.3.2, I described several applications of segmentation of natural and man-
made structures. It is important to notice that di↵erent applications may imply di↵erent
conditions of image quality. For example, image quality can be very di↵erent comparing
a speeding airborne device to a still device on the ground. Therefore, it is important to
test image processing methods on images acquired from di↵erent real-world platforms.

Here, we test our system on images datasets acquired by still devices and moving
devices ( the characteristics of these datasets will be discussed later). From the datasets,
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Table 4.1: Performance for segmentation of natural and man-made structures.
These results are computed over 40 images randomly selected from datasets acquired by
still and moving devices. The proposed method is compared to the conditional random
field (CRF) approach [83], and mean-squared-error (MSE) approach [84].

Proposed method CRF [83] MSE [84]

Average of F-values 0.72 0.30 0.54

Standard deviation of F-values 0.12 0.31 0.19

Average processing time 6 s 3 s 6s

we have selected 40 images (20 images are from still devices, and 20 images from moving
devices). For all 40 images, we have manually created ground-truth masks. These masks
are binary images in which pixels with values “0” and “1” indicate ”nature-made” and
”man-made” pixels in the original image, respectively. In this way, ground-truth masks
are used to determine which pixels are correctly or wrongly classified in segmented images.
For all images, the performance of segmentation methods is quantified using F-measure
(see Eq. 3.12). For the calculation of the F-measure, tp is the number of “man-made”
pixels correctly classified as ”man-made”, fp is the number of “nature-made” pixels
wrongly classified as “man-made”, and fn is the number of “man-made” pixels wrongly
classified as “nature-made”.

Here, we compare the performance of our method with the conditional random field
approach [83] and our previously proposed system based on mean squared error [84]. This
specific system is described in Appendix D. The reason why these methods are chosen
for comparison is that they are fast and work on any type of images.

Table 4.1 shows the results for the segmentation of natural and man-made structures.
In this table, columns indicate di↵erent methods. The first row shows the average of
F-values over the images in the dataset. The second row shows the standard deviation
of F-values. The last row shows the average time required to process an image.

From Table 4.1, it is clear that the proposed measure o↵er a higher F-measure than
the other methods. Furthermore, the average processing time per image required by the
proposed method was 6 seconds. For the conditional random field approach, the average
processing time was 3 seconds. Finally, the average processing time for the mean-squared
approach was 6 seconds. In this way, the conditional random field approach is the fastest
method. Specifically, this approach is two times faster than the proposed method. In the
following sections, we are going to further investigate the performance of these methods.

Case study: still devices

In order to test our system on images acquired using still devices, two image datasets are
used. Specifically, the McGill Calibrated Color Image Database [68] and the York Urban
Line Segment Database [86]. Both datasets consist of high quality images acquired using
still cameras. The results for samples of these datasets are shown in Figures 4.4 and 4.5.

Let us start discussing segmentation results by the conditional random field approach
in Figures 4.4(c) and 4.5 (c). From these images, one can clearly see that the conditional
random field approach has lower performance than the other methods for the sampled im-
ages. For instance, all image regions in the two last images in Figure 4.5(c) are segmented
as nature-made. One can also see that this approach has an interesting characteristic.
Specifically, it produces very “smooth” segmented images. The reader should notice that
this characteristic can be advantage in some cases.
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Figure 4.4: Segmentation of natural and man-made structures for samples of
the McGill Calibrated Color Image Database. (a) Original images. (b) Pro-
posed method. (c) Conditional random field approach [83]. (d) Mean squared error
approach [84]. Image regions highlighted with the color green indicate nature-made struc-
tures. Image regions highlighted with the color red indicate man-made structures.
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Figure 4.5: Segmentation of natural and man-made structures for samples
of the York Urban Line Segment Database. (a) Original images. (b) Proposed
method. (c) Conditional random field approach [83]. (d) Mean squared error ap-
proach [84]. Image regions highlighted with the color green indicate nature-made struc-
tures. Image regions highlighted with the color red indicate man-made structures.

48



From Figures 4.4(d) and 4.5(d), it is evident that the mean squared error approach
produces noisy segmented images. This will also be noticed for other test images in this
work. However, the segmentation result of this method seems more accurate than that
of the conditional random field approach.

Finally, let us discuss the result of the proposed method, i.e., Figures 4.4(b) and 4.5(b).
For all test images, the proposed method seems to provide more accurate segmentation
than that provided by the conditional random field approach. Furthermore, the proposed
method clearly provides segmented images less noisier than those provided by the mean
squared error approach.

Case study: moving devices

In order to analyze the performances of segmentation methods for images acquired using
moving devices, two image datasets were used. The first dataset consists of images
acquired by a micro aerial vehicle (MAV) [87]. This specific vehicle is a quadcopter drone
flying at low altitude (up to 10-20 meters from the ground), very close to building facades,
along a path of two kilometers in the streets of Zurich.

The second dataset consists of images acquired from the well-know Google Stree View
service. These images are originated from large 360 degrees panorama scenes acquired
by moving cars. Here, the StreetView images were acquired in the same streets of Zurich
flow by the quadcopter. These two datasets are part of an matching experiment in which
the visual characteristics of buildings are used for autonomous real-time localization of
drone devices [87].

Figures 4.6 and 4.7 show the results of segmentation of nature-made and man-made
structures for samples from the two datasets. By observing Figure 4.6(a), especially the
last scene, one can clear notice the Barrel distortion on images acquired by the quadcopter.
In case of Google Street View images in Figure 4.7(a), it is possible to observe by close
inspection strong “blocking” artifacts. For confirmation, the reader can zoom-in on the
images of the digital version of this thesis. Such artifacts are likely due to the lossy JPEG
encoding used to compress these image files.

From Figures 4.6 and 4.7, we judge that the proposed method exhibits a more accurate
segmentation than that of the conditional random field approach and that of the mean
squared error approach. For instance, the proposed method fairly detects vegetation while
buildings and cars are mainly segmented as man-made. This is true for the micro aerial
vehicle image dataset and the Google Street View image dataset. In regard of the latter,
however, the proposed method often segments sky regions as man-made. The reason for
this failure is the presence of “blocking” artifacts which creates luminance edges in the
sky. However, the proposed method still exhibits a more accurate performance than that
of other methods.

It is important to discuss the above results in regard of the applications of segmenta-
tion of natural and man-made structures cited in the introductory chapter. In this regard,
let us discuss the choice of datasets used in the analysis in this thesis. The datasets in-
cluded images acquired from both still and moving devices. Strategically, moving devices
included both ground and aerial vehicles. Therefore, the performance of methods for
segmentation of natural and man-made structures reported in this thesis is likely to be
reproduced or consistent under di↵erent situations or applications.

Let us consider the use of vegetation detection to support autonomous driving in
complex environments. Firstly, it is important to notice that autonomous driving in the
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Figure 4.6: Segmentation of natural and man-made structures for samples of
the micro aerial vehicle image dataset. (a) Original images. These images (espe-
cially the last image) exhibit Barrel distortion. (b) Proposed method. (c) Conditional
random field approach [83]. (d) Mean squared error approach [84]. Image regions high-
lighted with the color green indicate nature-made structures. Image regions highlighted
with the color red indicate man-made structures.
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Figure 4.7: Segmentation of natural and man-made structures for samples of
the Google Street View image dataset. (a) Original images. These images exhibit
“blocking” artifacts. (b) Proposed method. (c) Conditional random field approach [83].
(d) Mean squared error approach [84]. Image regions highlighted with the color green
indicate nature-made structures. Image regions highlighted with the color red indicate
man-made structures.
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real-world is still initial, lacking proper regulation and standards of performance and
safety. Furthermore, vegetation detection is only one feature of a much more complex
intelligent system. Thus, it is not straightforward to define what performance level of
vegetation detection is appropriate or required to support autonomous driving.

Still, it has been shown that proper vegetation detection improves the “overall abil-
ity to autonomously avoid rigid obstacles without being overly afraid of bushes or tall
grasses” [21]. The reason is because sensors used in autonomous vehicles often mistake
bushes as false obstacles [21]. Thus, it is desirable that the performance of the system
used for vegetation detection be as high as possible. Taking into consideration the issues
related to the use of autonomous driving in the real-world, it is reasonable to assume
that the performance reported here and elsewhere is still far from the necessary for safe
and e�cient execution. For instance, the system proposed in [21] still wrongly classifies
image regions containing ground as vegetation, 21% of the time. This error rate may
be easily considered unacceptable for an application which directly involves the safety of
human lives.

Shortcomings of the proposed method

We provide here an analysis of shortcomings of the proposed method. By understanding
these shortcomings, one can easily predict when the method will work or not. The first
shortcoming is the poor segmentation of object boundaries. Specifically, our method
(wrongly) segments pixels around object boundaries. For example, in the first image of
Figure 4.5(b), boundaries of buildings are not precisely segmented. Notice that this is
the same shortcoming previously presented for the segmentation of depth-of-field images.
Therefore, one must expect such type of failure.

For this application, the proposed method also exhibits another shortcoming related
to boundary processing. Specifically, our method wrongly segments boundaries of nature-
made objects which stand against a background formed by sky regions. In this situation,
the entire image should segmented as natural. However, our method wrongly segments
the pixels around the boundaries of the natural object as man-made. This can be observed
in the last image of Figure 4.5(b). Notice that boundaries of the tree are segmented as
man-made.

The third shortcoming of the proposed method is the processing of roads. Specifically,
if road areas do not exhibit any texture, like sky regions, they will be segmented as nature-
made structures. This can be observed in some of the presented test images.

4.4 Conclusion

This chapter has presented the method for segmenting natural and man-made structures
based on our methodology for visual scene analysis. Here, the required filters a

i

and b
i

consist of IC filters learned from nature scenes and urban scenes, respectively. Since filters
b
i

are learned from urban scenes, the kurtosis of filter responses is high for input images
containing man-made structures, and it is low for input image containing nature-made
structures.

Due to the di↵erent image conditions on real-world applications, our method was
tested on two types of datasets. The first and the second dataset consist of images
acquired by still and moving devices, respectively. In comparison to other analyzed
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systems, our method provides a more precise segmentation, especially in case of the
image datasets acquired by moving devices. This is an important advantage which makes
the proposed method attractive for real-world applications.

In regard of performance, the shortcomings of our method were also presented. The
most serious shortcoming is related to the segmentation of road regions. As it is, the
system may wrongly classify road regions as nature-made. In this regard, discriminating
road regions from sky regions is a di�cult task. This task likely requires the use of color
information or some type of high-order processing architecture. Future works will focus
on this issue.

Taking these considerations into account, we conclude that the proposed method is a
promising and interesting approach for the segmentation of nature-made and man-made
structures due to its performance and low computational complexity.
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Chapter 5

Measuring the perception of
complexity in streetscapes

5.1 Introduction

What makes us perceive or decide that a visual scene“A” is more complex than a scene
“B”? Attneave showed that for scenes containing abstract shapes, certain visual char-
acteristics (which he named symmetry, curvedness, angular variation, etc) was related
to the perception of visual complexity [88]. By combining these characteristics into a
single equation, Attneave created an objective measure which was correlated with human
judgments on visual complexity.

The characteristics of spatial frequency have also been shown to influence the percep-
tion of visual complexity. Specifically, it is reported that the amplitude of high-frequency
components must be preserved for complex objects to be recognized [89–91]. Similarly,
specific relationships among frequency components in the phase spectrum are crucial for
visual recognition of complex scenes [92]. These results have been extended by many
other studies in vision research, involving many types of visual scenes.

Based on the characteristics of spatial-frequency, Näsänen et al. derived a complexity
measure defined as the product between the e↵ective image area and median frequency
of the Fourier spectrum [93]. Chikhman et al. used the components of this measure to
analyze complexity in ancient Egyptian writing and contour images [94]. Notice that
Näsänen’s method can be applied to real-world scenes.

It has also been shown that the presence of image edges is related to visual complex-
ity [95]. This inspired a simple and e�cient measure known as perimeter detection. The
measurement consists of counting the number of pixels which form image edges. This
procedure can be easily applied to real-world scenes by using edge-detection algorithms.

In order to measure visual clutter, a concept closely related to complexity, Rosenholtz
et al. proposed a framework called feature congestion. Within this framework, several
image characteristics such as contrast, color and orientation are combined into a vector
space [96]. Clutter is then determined by the covariance of the space calculated at each
location of the image.

Another line of research was based on the idea of computing visual complexity ac-
cording to the definitions of information theory [97]. In this view, a visual scene is
considered an information source, and its visual complexity is determined by the amount
of information associated to its statistical distribution.

An example of information based measure is the size in bytes of the image digital
file created according to coding standards such as JPEG and GIF. Theoretically, file size
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should increase as the amount of information increases. The JPEG file size has been
used in many perception works due to its high correlation with subjective judgments of
complexity. Forsythe et al. provides an extensive analysis of the performance of JPEG
and also of perimeter detection [98].

Another example of information based measure is the subband entropy [39]. The
subband entropy is defined as the Shannon entropy of wavelet coe�cients used to encode
an image.

Other methods have also been considered to evaluate visual complexity in urban en-
vironments. For instance, Elsheshtawy used a manual approach to segment meaningful
elements of street houses such as windows, doorways and overall volumes of facades [99].
Complexity was then measured based on the number and variety of those elements.
Cooper also used a manual technique to segment street skylines, i.e., edges formed be-
tween the boundaries of buildings and the sky [100]. Then, he used fractal dimension to
assess the complexity of these skylines.

Applications

The introductory chapter describes the e↵ect of streetscape complexity on the behavior
of drivers and pedestrians. For instance, streetscape complexity influences the speed
control [43], reaction time and the perception of hazard of car drivers. In regard of
pedestrians, streetscape complexity influences the visual interest evoked by streets. In
this way, there several possible applications of measuring the perception of complexity in
streetscapes.

For engineering, a measure of streetscape complexity could be used to create or aid
human inspired speed control mechanisms. Furthermore, it could be used to evaluate the
perceptual load and reaction time of drivers for each city streets. For urban planning, a
measure of streetscape complexity could be used to evaluate visual interest of city streets.
Also, it could be used to determine routes which maximize visual interest of pedestrians.
However, although the e↵ects of streetscape complexity on the behavior of drivers and
pedestrians is well-known, the above applications have not yet been evaluated in scientific
literature.

Open problems

The main problem of many works on visual perception of the environment is handling
nighttime stimuli. For example, in our previous work, we have analyzed the complexity in
streetscape images by using the statistics of local contrast [101]. We have found that these
statistics are highly correlated with subjective judgments for daytime images. However,
being similar to conventional measures of complexity, they produce poor results when
nighttime images are considered.

Since city streetscapes are experienced or appreciated throughout the day, proper
evaluation for nighttime scenery is just as important as for those in daytime. In [102],
we introduce a new measure of visual complexity which exhibits a high and robust perfor-
mance over di↵erent time scenarios. This measure is formed by combining the statistics of
local contrast with those of local spatial frequency. This chapter describes such measure.
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5.2 Proposed measure of streetscape complexity

In order to measure the perception of complexity, our new method uses the statistics of
local spatial frequency and local contrast of the streetscape image. The block diagram is
shown in Figure 5.1.

In the proposed method, the RGB color bands of the streetscape image are collapsed
generating a grayscale image I. Around a pixel I

x,y

of this image, let us consider a
neighborhood of 2L+1⇥ 2L+1 pixels. This neighborhood is represented by the column
vector n

x,y

.
The rest of the computer method consists of two workflows. The first workflow (left-

hand side of the block diagram in Figure 5.1) calculates the contrast map C of the input
streetscape image. The contrast map is used to represent the values of local contrast.
Each value C

x,y

of this map is calculated as the standard deviation of vector n
x,y

, i.e.,

C

x,y

=

vuut 1

(2L+ 1)2

(2L+1)2X

i=1

(n
x,y,i

� µ

n

)2, (5.1)

where n

x,y,i

and µ

n

represent the i-th element and the mean value of vector n
x,y

, respec-
tively. The above measure C

x,y

is also called the RMS contrast. Notice that although
RMS contrast is used, there are other definitions or measures of image contrast [103].

The second workflow (right-hand side of the block diagram in Figure 5.1) calculates
the kurtosis map K of the input streetscape. The kurtosis map is used to represent the
values of local spatial frequency. This kurtosis map is computed with the same IC filters
a
i

and b
i

as used for segmenting depth-of-field in Chapter 3. Here, however, the response
�

x,y,i

is as constant c for all x, y (we find that this constraint yields slightly better results).
In Figure 5.1, the proposed measure of complexity is represented by �, and it is

calculated based on the statistics of the maps K and C. The first statistic is the mean
value of C. This mean is represented by µ

C

, and computed as

µ

C

=
1

M

2
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x=1

MX

y=1

C

x,y

, (5.2)

where M ⇥M is the size of C.
The second statistic is the standard deviation value of C. This statistic is represented

by �

C

, and calculated as
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The third statistic is the skewness of K. This statistic is represented by skew

K

, and
defined as
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where M ⇥M and µ

K

are the size and the mean value of K, respectively.
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Contrast map
and  

kurtosis map

Grayscale conversion

Streetscape image

Grayscale conversion

Proposed measure of complexity

Proposed measure of complexity

Neighborhood          around

Figure 5.1: Overview for proposed method for measuring the perception of
complexity in streetscapes. The first workflow (left-hand side of the block diagram
calculates the contrast map C of the input streetscape image. The second workflow
calculates the kurtosis map K. The proposed measure of complexity � is computed
based on the statistics of maps C and K. Notice that the kurtosis map K is calculated as
for DOF segmentation. Therefore, the main di↵erence between this block diagram and
that for DOF segmentation is the presence of the contrast map C.
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The fourth and last statistic is the kurtosis of K. This statistics is represented by
kurt

K

, and calculated as

kurt

K

=

1
M
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x=1
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� µ
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)4
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Finally, the proposed measure of complexity � is given by

� =
µ

C

· �
C

· skew
K

kurt

K

. (5.6)

The following sections describe how the statistics of C and K (i.e., µ

C

, �

C

, skew

K

and kurt

K

) relates to the visual structure of streetscapes. The next section shows that
measure � increases with presence of both high-contrast image regions and low-frequency
image regions. These type of image regions are shown to drive physiological neuron
responses, human attention and emotional event processing [104,105]. This will be further
discussed later.

Finally, notice that in Eq. 5.6, we use multiplication of parameters instead of addition.
The reason is that these parameters produce di↵erent ranges of amplitude. In case
addition was used, a parameter with large amplitude could completely “mask” the value
of small amplitude parameter. For instance, if a, b 2 R, a+ b ⇡ a for a� b.

5.3 Experiment and results

Streetscapes data

The streetscape dataset consists of 74 scenes. One half of the images were acquired in
Al-Kantara and Batna cities in Algeria. The other half was acquired in the cities of Kyoto
and Tokyo in Japan. Within the dataset, 40 images were acquired in daytime and 34
images in nighttime.

Images were shot using the camera model Nikon D300S with lens system Nikkor AF-S
DX 35mm f/1.8G. The camera was fixed in a tripod in order to avoid artifacts due to
camera shaking. Aperture and shutter speed were determined manually according to the
lighting conditions in each of the 74 scenes. Image files were recorded in uncompressed
color NEF format (Nikon’s raw file designation). The size of the raw images was 4288 x
2848 pixels and image quality was 14 bits/pixel.

Figure 5.2 shows some examples of streetscapes from each city. Figure 5.2(a) and
5.2(b) show streetscapes in the Algerian cities of Al-Kantara and Batna, respectively.
Figure 5.2(c) and 5.2(d) exhibit Japanese streetscapes in Kyoto and Tokyo cities.

Subjective ranking

For the subjective experiments, images were presented to participants in a 30” display
(model Dell UltraSharp 3008WFP). This display’s highest resolution is 2560 x 1600 pixels,
which prevents images being exhibited in raw size. Therefore, images were pre-processed
by decimation. This process consists of low-pass filtering and then downsampling the
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Figure 5.2: Streetscapes. (a) Al-Kantara. (b) Batna. (c) Kyoto. (d) Tokyo.

image. Low-pass filtering before downsampling is performed so as to avoid aliasing ar-
tifacts. Here, we used a zero-phase eighth-order low-pass Chebyshev Type I filter with
normalized cuto↵ frequency of 0.8/2. The images were then down sampled by a factor of
2. In this way, the size of the pre-processed images was 2144 x 1424 pixels which can be
exhibited on the used display. Finally, decimated images were converted to 8 bit integer
arrays so that their pixel’s luminance is within the range [0, 255].

Streetscape images were analyzed by 40 participants. Among the participants, 27 were
of Japanese nationality, 13 of Algerian nationality, 25 were males, and 15 were females.

The subjects seated at a distance of approximately 80 cm from the display. Each image
therefore subtended 37 x 25.12 degrees of visual angle. The maximum spatial frequency
in an image was approximately 28.9 cycles/degree horizontally, and 28.3 cycles/degree at
vertical orientation.

In order to make the subjective evaluation faster, the participants were initially asked
to cluster the streetscapes into three groups: simple, ordinary and complex. In this regard,
they were instructed to use their own perception or definition of complexity. Finally, the
subjects were asked to sort images inside each group in increasing order of complexity.

After receiving the 74 ranked images from one participant, it was necessary to rep-
resent the divisions between simple and ordinary groups, and between ordinary and
complex groups. These divisions were represented by including two additional rank posi-
tions. For example, if the group simple contained ten streetscapes, the division between
simple and ordinary groups would occupy the 11th position in the rank. The images
in the ordinary group would then start from position 12th. In similar manner, another
additional position would be considered for the division between ordinary and complex

groups. In this way, the complexity rank returned from one participant has 76 positions,
which includes the 74 images plus the two group divisions. It is important to notice that
images and group divisions are sorted di↵erently by each of the 40 subjects. Thus, the
rank position of a streetscape (or group division) is a random variable. The probability
distribution of this variable is computed by counting the number of times v

i

in which the
image was located by the subjects at each rank position i. This probability distribution
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is represented in Figure 5.3.
For each streetscape, the mean r of the probability distribution of rank position is

computed by using the standard definition of mean, i.e.,

r =
76X

i=1

(i · p
i

) =
76X

i=1

 
i · vi

40

!
. (5.7)

Streetscapes are then finally sorted according to their mean r. Group divisions are also
included in the sorting since they also have probability distributions for rank positions.

The plot in Figure 5.4 shows this rank. The vertical and horizontal axis give the
mean r and the resulting rank position for each streetscape, respectively. The blue shade
in the plot represents the standard deviation of the distributions for the streetscapes.
Group divisions are also included, dividing the plot into three areas, simple, ordinary
and complex.

It is possible to see that streetscapes in the group ordinary have higher standard
deviation of rank position than simple and complex streetscapes. Interestingly, group
divisions exhibit lower standard deviations than streetscapes.

The group simple consists of 12 scenes: all Algerian streetscapes; six dayscapes and
six nightscapes. The category ordinary includes 47 scenes: 24 Algerian streetscapes
and 23 Japanese streetscapes; 24 dayscapes and 23 nightscapes. The group of com-
plex streetscape is formed by 15 images: two Algerian streetscapes and 13 Japanese
streetscapes; 11 dayscapes and four nightscapes.

Algerian scenes dominate the group of simple streetscapes and the lower region of
the group ordinary. Japanese scenes dominate the higher region of the group of ordinary
streetscapes and they correspond to the great majority in the group complex.

In groups simple and ordinary, dayscapes and nightscapes are evenly distributed.
However, dayscapes dominate the group of complex streetscapes.

Contrast and kurtosis maps

This section helps the reader understand how RMS contrast and kurtosis maps can be
used to represent contrast and spatial frequency in a streetscape. In Fig. 5.5(a), the
upper plot shows an array of image edges. Each individual edge is a matrix of 16 x 16
pixels which contains only two luminance intensity values. Specifically, the upper half of
each edge is formed by an intensity value higher than that of its lower half. The number
� below each edge is the di↵erence between upper and lower intensity values. From left
to right in the array, the luminance di↵erence � increases.

Since each image edge is a matrix of pixels, we can calculate its RMS contrast by
using Eq. 5.1. Specifically, we consider each individual edge as a neighborhood n

x,y

, and
then apply Eq. 5.1. The respective RMS contrast values are given in the colored array of
numbers in Figure 5.5(a). Colors are used to highlight low, medium and high values.

Figure 5.5(b) shows how kurtosis map values change. The array of control images is
composed of pure two-dimensional cosine gratings of 16 x 16 pixels. In these gratings,
horizontal and vertical components of the spatial frequency are constrained to have the
same value. This frequency is represented by the number f below each grating. From
left to right, the frequency f increases.

Notice that the frequency f is given in cycles/pixel (cpp) instead of cycles/degree.
The reason is that frequency segmentation based on filter activity does not take into
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Figure 5.3: Probability distribution of rank position for one streetscape. This
probability distribution describes how one specific streetscape was ranked by the partici-
pants. The v

i

is the number of times the image was located at position i by the subjects.
Considering 40 subjects, the probability of the image to be ranked at any specific position
i is p

i

= v

i

40
. The point r represents the mean of the distribution. Notice that there are

76 possible positions due to the two additional positions for group divisions.
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Figure 5.4: Subjective rank analysis. Streetscapes are organized in increasing or-
der of r-values. Circles represent Algerian streetscapes. Triangles represent Japanese
streetscapes. Unfilled circles/triangles denote dayscapes. Filled circles/triangles denote
nightscapes. Stars ⇤ represent group divisions. The blue shade represent the standard
deviation around r.

account viewing distance. In other words, the process is influenced only by the number
of cycles per pixel and not by the number of cycles per degree.

The colored array K(f) contains the respective kurtosis map values calculated when
considering each grating one neighborhood. Notice that low-frequency gratings generates
high kurtosis which indicates a reduced response activity from the IC filters. High-
frequency gratings, however, generate low kurtosis values indicating a dense filter response
activity.

In Figure 5.6, true contrast and kurtosis maps are exhibited for an example of streetscape
image. These maps were calculated using neighborhoods of 16 x 16 pixels. In the
streetscape, objects with luminance which di↵er from their surroundings generate high
values in the contrast map. One can notice, however, that most of the structures present
in the scene do not generate such high values of contrast.

In the kurtosis map, low-frequency areas such as the road generate high kurtosis
values. On the other hand, textured regions such as the vegetation and the sidewalk have
higher energy in high-frequencies generating lower kurtosis values.

Statistics of contrast and kurtosis maps

Figure 5.7 shows the histograms of the contrast and kurtosis maps exhibited previously
in Figures 5.6(b) and (c). By using these histograms, one can analyze more precisely the
distribution of local contrast and spatial frequency within the streetscape in Figure 5.6(a).

For instance, in Figure 5.7(a), the histogram of the contrast map shows more clearly
the number of low-contrast locations in relation to that of high-contrast. However, while
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Figure 5.5: Representation of contrast and spatial frequency content by using
RMS contrast and kurtosis. (a) The plot shows an array of image edges, each of 16
x 16 pixels. The number � below each edge represents the luminance di↵erence between
upper and lower parts. From left to right, this luminance di↵erence increases. Since
each edge is a matrix of pixels, we can calculate its RMS contrast by using Eq. 5.1. The
colored array of numbers C(�) contains the respective RMS contrast values. (b) An array
of two-dimensional cosine gratings of 16 x 16 pixels. The number f represents the spatial
frequency of each grating. The colored array of numbers K(f) shows the respective
kurtosis value generated by the proposed system.

(b)
 

(c)

50 100 150 200

 

20 40 60 80 100

(a)

Figure 5.6: Contrast and kurtosis maps. (a) Original image. (b) Respective maps
C and (c) K. Colormaps associated with RMS contrast and kurtosis values are shown
below each map.
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Figure 5.7: Statistics of contrast and kurtosis maps. (a) Histogram of the contrast
map in Figure 5.6. (b) Histogram of the kurtosis map in Figure 5.6. The statistics of
these p.d.f.s are presented at the top-right corner of the histograms. Colormaps for C

x,y

and K

x,y

values are preserved for easy understanding.

the maps and their histograms are useful for visual inspection and interpretation of the
streetscape structure, they are not simple quantities. In other words, they can not be
used directly as objective measures of the visual attributes of the streetscape.

The statistics of the maps on the other hand are quantities which describe very specific
characteristics of the streetscape. Figure 5.7 shows the statistics of the contrast and
kurtosis maps which are used in the proposed measure of complexity �.

The first statistic is the mean µ

C

of contrast values C

x,y

, which is by definition a
positive number. The mean value µ

C

increases as the number of high-contrast regions
increases. The second statistics is the standard deviation �

C

of contrast values C
x,y

. �
C

can increase due to two factors. Firstly, it increases in the presence of image regions that
generate contrast values C

x,y

higher than mean µ

C

. On the other hand, it also increases
with regions that yields contrast values lower than µ

C

. In this way, �
C

represents the
contrast “variety” in the streetscape image.

Regarding the kurtosis map, two statistics are used in the measure �: the skewness
skew

K

and the kurtosis kurt
K

of K
x,y

values (one must not confuse K
x,y

values with the
kurtosis kurt

K

of their distribution).
Both skewness and kurtosis depend on the mean µ

K

of the K

x,y

distribution. The
skewness is generally regarded as a measure of asymmetry of a distribution in relation to
its mean. For instance, if there is a tendency for K

x,y

values to be higher than the mean
µ

K

(i.e., the distribution is asymmetric towards its right-hand tail), then the skewness
of the distribution is positive. On the other hand, in case distribution values tend to be
lower than the mean, the skewness is negative. If the probability density distribution is
symmetrical around its mean, the skewness is zero.

In Figure 5.7(b), the positive skewness, skew
K

= 1.14, indicates asymmetry towards
K

x,y

values higher than the mean µ

K

= 63. Notice that higher K
x,y

values represent lower
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frequencies. Therefore, this positive skew
K

indicates asymmetry towards low-frequencies.
In other words, there is a significant number of streetscape regions characterized by spatial
frequencies lower than that represented by the mean µ

K

.
For highly skewed distributions, however, it is important to investigate the presence

of statistical outliers. These are generally defined as values extremely higher or lower
than the mean of the distribution. For instance, in case of the histogram in Figure 5.7(b)
with mean µ

K

= 63, outliers would be located at the extreme of the right-hand tail of
the distribution.

Due to the properties of kurtosis, the magnitude of kurt
K

heavily reflects the presence
of such values. Thus, kurt

K

is used in the denominator of measure � to compensate skew
K

values which are high due to outliers in the K

x,y

distribution.
Figure 5.8 shows how the statistics of the contrast and kurtosis maps correlate with the

subjective complexity rank r. In the scatter plot of Figure 5.8(a), the mean contrast µ
C

is given in function of r-values. The correlation coe�cient between µ

C

and the subjective
rank is R = 0.56.

The plot 5.8(b) shows the statistic �

C

. The correlation coe�cient between �

C

and
r is R = 0.57. Notice that the majority of nightscapes present lower µ

C

and �

C

than
dayscapes.

The positive correlations between µ

C

, �

C

and the subjective rank indicate that com-
plex streetscapes exhibit a higher number of objects or structures which elicit high changes
of luminance and contrast in the scene (notice that RMS contrast is the standard devia-
tion of luminance values).

The scatter plot 5.8(c) shows skew
K

. This statistics has a correlation coe�cient of R
= 0.53 (p < 10�5) with the subjective rank. This shows that the number of regions char-
acterized by spatial frequencies lower than the mean in the streetscape tend to increase
with complexity.

Figure 5.8(d) shows kurt

K

. The correlation coe�cient between kurt

K

and the sub-
jective rank is R = 0.22, with a high p-value. This indicates that these variables are
not significantly correlated. However, kurt

K

is an important statistic since it signalizes
outliers in the K

x,y

distributions of the streetscapes.
The proposed measure � is built as a direct combination of these observations on the

characteristics of contrast and spatial frequency of streetscape scenes.

Objective rank analysis

This section shows how � correlates with the subjective rank r given in Figure 5.4. Here,
the following conventional measures are also analyzed: perimeter length, JPEG file size,
subband entropy, feature congestion and Näsänen’s measure.

Scatter plots in Figure 5.9 present the correlation behavior of the measures over the
entire streetscape dataset. Figures 5.9(a) and 5.9(b) show the behavior of perimeter
length and JPEG file size. (see Appendix E for parameter settings descriptions). These
measures exhibit similar correlation coe�cients with the subjective rank. In the scatter
plots of both measures, nightscapes consistently receive lower values than dayscapes.

Figures 5.9(c) and 5.9(d) exhibit measures subband entropy and feature congestion.
Fig. 5.9(e) and 5.9(f) shows the behavior of Näsänen’s and the proposed �. Notice that
although these measures exhibit quite di↵erent correlation coe�cients, they are also seem
biased by nightscapes in same sense of the other shown measures. Still, the proposed �

exhibits the highest correlation when all streetscapes are considered (R = 0.72).
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Figure 5.8: Statistics of contrast and kurtosis maps (cont.). Statistics are given
in function of the subjective rank r. (a) Mean contrast µC . (b) Standard deviation
�C of contrast values. (c) Skewness of K(x, y) values. (d) Kurtosis of K(x, y) values.
Vertical dotted lines represents the divisions between categories simple, ordinary and
complex. In each scatter plot, the solid line represents the best least-squares-sense first-
order polynomial fit. The numbers R and p at the top-right corner of each plot indicate
the Pearson’s correlation coe�cient between objective and subjective ranks and its p-
value, respectively.
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Figure 5.9: Correlation between objective measures and subjective rank. Objec-
tive measures are given in function of subjective rank r. (a) Perimeter length. (b) JPEG
file size given in megabytes. (c) Subband entropy. (d) Feature Congestion. (e) Näsänen.
(f) Measure �. Correlation coe�cient between objective and subjective ranks are given
at the top right corner of each plot. Vertical dotted lines represents the divisions between
categories simple, ordinary and complex. In each scatter plot, the solid line represents
the best least-squares-sense first-order polynomial fit.
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Table 5.1: Correlation coe�cients between objective and subjective ranks for
individual streetscape types. Correlation coe�cients are calculated considering only
the images in each type of streetscape. The types of streetscapes are shown in the most
left column. Values in bold font represents significant correlation coe�cients (p < 0.001).

Perimeter JPEG [97] SB Entropy [39] FC [39] Näsänen [93] Proposed � [102]
Dayscapes 0.79 0.83 0.53 0.65 0.80 0.77
Nightscapes 0.59 0.55 0.27 0.46 0.57 0.70

Japan 0.66 0.63 0.56 0.56 0.71 0.60
Algeria 0.41 0.44 0.30 0.27 0.42 0.51
Simple 0.48 0.52 0.30 0.45 0.65 0.25

Ordinary 0.18 0.21 0.12 0.1 0.19 0.41
Complex 0.45 0.39 0.31 0.36 0.50 0.36

Table 5.1 exhibits the correlation coe�cients when streetscape types are considered
separately. From Table 5.1, it is clear that all objective measures have higher performance
for daytime images. For instance, the correlation coe�cient of JPEG file size is R = 0.83
for dayscapes and only R = 0.55 for nightscapes. On the other hand, the proposed �

exhibits the highest correlation for nightscapes, i.e., R = 0.70. Notice that � also has the
least variability between the correlation coe�cients for dayscapes and nightscapes.

There are also variations in correlation for the other types of streetscapes. For in-
stance, objective measures exhibit higher correlation coe�cients for Japanese scenes than
for those from Algeria. In this case, the proposed � also exhibits less variation than other
measures. For simple and complex scenes, Näsänen’s measure is the most correlated with
the subjective rank, i.e., R = 0.65 and R = 0.50, respectively. For ordinary category, �
has the highest correlation R = 0.41. Notice that for these three categories, p-values are
higher than 0.001.

Discussion about contrast, spatial frequency and visual percep-
tion

Much has been understood about how the early visual system responds to contrast and
spatial frequency. And while there is no established model of how these early responses
influence the perception of complexity, it is interesting to consider physiological results
that are related to � (notice that for primitive shapes, response activity of visual cells
increases with complexity [106]).

Local contrast can vary significantly within a visual scene [107]. A contrast map is
a easy way to visualize this variation in terms of lower and higher contrast image areas.
Now from a physiological point of view, it is important to understand how the response
of early visual cells is influenced by these low and high contrast areas. Many studies
have reported that in general firing rate of visual cells is not linearly related to the input
contrast [108–110]. Specifically, firing rate increases linearly with contrast but reaches
saturation at high contrast values. Furthermore, there are thresholds or contrast below
which cells do not respond.

The measure � is linearly related to the mean contrast of the streetscapes. Therefore,
it increases with contrast but does not saturate as in the case of cell firing rate. Also, it
does not account for any threshold e↵ects. In order to mimic the physiological behavior,
a proper non-linear transform would have to be applied on the contrast map in order to
threshold and saturate contrast values.
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The contrast sensitivity function (CSF) is another important physiological result that
is related to the perception of spatial frequency [89]. The CSF defines how much contrast
is necessary to perceive a spatial-frequency component. While the CSF can be di↵erent for
each person, it generally shows that low-frequency components requires lower contrast to
be perceived than high-frequency components. In other words, CSF shows that human
subjects have higher sensitivity for low frequencies. Notice however that adaptation
and masking e↵ects during natural vision reduce this sensitivity after some period of
exposure [111].

The contrast and kurtosis maps provide estimations of contrast and spatial frequency
for each region within a scene. According to the CSF, spatial frequency components
cannot be perceived in case image regions do not have the required minimum contrast.
Since the current methodology does not account for the CSF, the frequency estimations
for each image region may di↵er from what is actually perceived.

The discrepancy between what is measured and what is perceived could be significant
specially for nighttime images due to lower luminance and contrast. In fact, it is known
that visual acuity (i.e., the maximum perceived spatial frequency) is reduced in low
luminance scenes [112]. Furthermore, changes in eye optics due to low luminance can
introduce aberrations. These aberrations have the e↵ect of decreasing the transmitted
contrast for medium and high-spatial frequencies [113].

Changes in the distribution of light from daytime to nighttime also heavily influence
the perception and interpretation of the “architectural” space [114]. Specifically, it is
found dim light often results in shrinking the perceived size of objects, ornaments and
the overall built environment. Unaccounted factors related to perception in low luminance
and contrast might be the reason for the degraded performance of complexity measures
in nightscapes.

The above are just few examples of issues related to the physiological processing and
perception of contrast and spatial frequency. Notice that some of the complexity measures
do not directly exploit these image properties. However, the characteristics of contrast
and spatial frequency do influence the measurements in those methods. Furthermore,
these methods are also strongly supported by knowledge about the early visual system.

The perimeter detection method, for example, is based on the number of edges de-
tected in the scene. The process of edge detection is closely related to the filtering
performed by the simple cells of the primary visual cortex (V1) [115, 116]. Specifically,
these cells have very dedicated or specialized receptive fields. Due to this characteristic,
simple cells have been primarily viewed as biological edge detectors [117,118]. According
to this, one could associate the perimeter detection measure to the activation of simple
cells.

Further research, however, showed that the characteristics of V1 receptive fields could
be artificially generated by e�ciently encoding natural scenes [119]. In this coding pro-
cess, filters are generated according to optimization functions whose goal is to maximize
the amount of information extracted from the input signal. These results support a
broader view of V1 cells where they are adapted to e�ciently encode visual stimuli found
in the environment [120].

Due to the nature of the signal filtering performed in the subband entropy method
and in coding schemes such as JPEG, Rosenholtz suggests that these systems are likely
to capture some of same information that is extracted by V1 cells [39]. Notice that the
methodology used to compute our kurtosis map is also a V1-like filtering technique. How-
ever, in contrast to the subband entropy and JPEG filtering, the independent component
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filters strongly focus on high-frequency bands.
In regard of JPEG filtering, it is also worthy noticing that there are additional con-

straints which are inspired by the human visual system. Specifically, the loss of informa-
tion during coding is controlled so that low-frequency image components su↵er less losses
than high-frequency components. This rationale is derived from the human contrast
sensitivity function.

After an image has been encoded by JPEG, the size of the digital file may be thought
as the amount of information left in the image after losses. Similar thinking can be used
to interpret the subband entropy measure. In this case, entropy represents the total
amount of information in the frequency bands since there are no losses involved.

Interestingly, it has been shown that the size of the JPEG file is highly correlated
with the number of edges in an image (i.e., the perimeter length measure) [98]. This
result corroborates the connection between edge detection and coding of visual scenes.
The correspondence between JPEG file size and the perimeter length measure can also
be observed for streetscapes. As shown in Figure 5.9, these measures have quite close
correlation coe�cients with the subjective rank. Even analyzing at a streetscape type
level (see Table 5.1), the maximum di↵erence between their coe�cients is not higher than
0.05. It is easy to see that this does not hold for any other pair of measures.

In this way, the measures of visual complexity analyzed here share similarities in terms
of physiological foundations, image processing methodology, and correlation behavior
with the subjective rank. In summary, these methods employ filtering techniques to
extract low-level image characteristics which have well-understood influence in the human
visual system. The objective measures are then derived in function of a single or a
combination of these image characteristics.

Our results suggests that low-level image characteristics are indeed related to the
complexity perceived in streetscapes. On daytime images for example, the use of these
characteristics allow objective measures to be highly correlated with the opinion of the
participants. Nonetheless, the e↵ectiveness of these methods can considerably fluctuate
across streetscape types. The same behavior is noticed for categories of images di↵erent
from streetscapes [94,98]. These studies suggest that di↵erent image characteristics may
best suit di↵erent image categories.

In case of streetscapes, the statistics of local contrast and spatial frequency provide a
competitive performance in comparison to the state-of-art methods. In fact, considering
the entire dataset, the proposed measure � exhibits the highest correlation with the
subjective rank.

The measure � has also less variability in correlation with subjective perception from
daytime to nighttime images. For streetscapes, this is an important advantage. For
instance, a more stable measure could be used to analyze visual interest and preference
of pedestrians without requiring changes in the methodology. Furthermore, it could be
used to analyze the human perception during nighttime driving, which has been pointed
out as a di�cult problem since the visual system behaves di↵erently from daytime to
nighttime [121].

5.4 Conclusion

This chapter has presented the method for measuring the perception of complexity in
streetscapes. Our method is based on the use of the statistics of local contrast and spatial
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frequency. The proposed method provides insight about the morphological features of the
built space which are related to the perception of complexity. Specifically, in streetscapes
high complexity is found correlated with the presence of high contrast structures and areas
defined by spatial frequencies lower than the average in the scene. High contrast image
features and the energy in low frequencies are in fact shown to drive human attention or
emotional event processing [104,105].

Now, the definition of streetscapes given in the introductory section clearly indicates
that this category can hold very heterogeneous scenes. Diversity can come from many
factors such as di↵erent types of architecture, geography, time scenario, and even season
which directly influence the city vegetation.

Therefore, objective measures based on reduced sets of low-level image characteristics
are unlikely to be satisfactory for all possible streetscapes. The statistical framework
proposed in this work can be easily applied to identify new image characteristics related
to the perception of complexity.

The diversity in this category also suggests that di↵erent perceptual mechanisms may
engage during subjective evaluation of di↵erent streetscapes. As discussed before, the
methods are still quite limited in accounting for such mechanisms. A proper implemen-
tation of perceptual related processes could improve objective measures with higher and
more stable performance across di↵erent types of streetscapes.

The complexity perceived in streetscapes is known to influence important elements
in urban life such as the visual interest of pedestrians and driving behavior. Here, one
methodology is proposed for objectively measuring streetscape complexity based on the
statistics of local contrast and spatial frequency. The proposed method exhibits higher
correlations with subjective perception in comparison to conventional measures of com-
plexity. Furthermore, it is found that this method is more e↵ective and robust for night-
time scenes.

The proposed method also revealed structural features in streetscapes related to the
perception of complexity. Specifically, it is found that higher complexity is associated with
the presence of high contrast objects and image areas characterized by spatial frequencies
lower that the average in the environment.
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Chapter 6

Conclusion

6.1 Summary

Visual scene analysis is an old issue in engineering and information science. Generally,
visual scene analysis is achieved by the implementation of two perceptual processes, i.e.,
segmentation and recognition. Segmentation and recognition are the base of many appli-
cations such as surveillance, medical image processing and assisted diagnostic, biometrics,
object detection and tracking, visual inspection, text and document handling, etc. These
applications are implemented in di↵erent platforms such as automotive, airborne and
space, hospital and medical equipment, and general low-power consumer electronics such
as smartphones and tablets. These platforms involve di↵erent trade-o↵s between energy
consumption, time consumption, etc. In this regard, there is a need for methods which
can fast perform segmentation and recognition with low computation.

This thesis has introduced a new methodology for visual scene analysis which can
be used to implement both segmentation and recognition. Our methodology consists
of analyzing the kurtosis of responses of independent component (IC) filters. In this
way, the proposed methodology is mainly based on two concepts, which are independent
component filters and kurtosis. Independent component filters are learned so as to have
mutually statistically independent responses. Kurtosis is defined as the standardized
fourth-order moment of a random variable.

In the proposed methodology, we calculate the responses of two di↵erent sets of IC
filters to the same input image. Ideally, the first set of filters is designed to respond
strongly to only one type or category of image defined a priori. Similarly, the second set
of filters is designed to respond strongly to a type of image di↵erent than that of the first
set of filters. By analyzing the kurtosis of the responses all filters, our methodology is
able to segment or recognize di↵erent type of regions in the input image.

Our methodology is applied to three subjects or problems of visual scenes analysis.
The first subject is segmentation of depth-of-field image (Chapter 3). The segmentation
of depth-of-field is interesting for general amateur and professional image editing. Fur-
thermore, the determination of depth-of-field is important for applications related to the
enhancement of microscopy images. In this regard, then main challenges for methods of
DOF segmentation is time consumption and computational complexity. The performance
of the proposed method is analyzed for two di↵erent databases of depth-of-field images.
And we use the classic F-measure as an objective criterion of performance. In this regard,
our method exhibits the highest performance among the fast methods of segmentation of
depth of field in terms of the F-measure. The performance of our method is only lower in
comparison to that of time-consuming methods. Shortcomings of the proposed method
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are the processing of object boundaries and in-focus low-frequency image areas.
The second subject of visual scene analysis is segmentation of natural and man-made

structures (Chapter 4). The segmentation of natural and man-made structures is interest-
ing for a number of applications including supporting autonomous driving and navigation,
urban planning, target detection and tracking, etc. In this regard, examples of open prob-
lems for segmentation of natural and man-made structures are generalization and depth.
We evaluate the performance of the proposed method for two di↵erent types of datasets.
The first dataset consists of images acquired by still-devices. The second dataset con-
sists of images acquired by moving devices. Each dataset consists of two di↵erent image
databases. Here, we also use the F-measure as objective performance measure. Over the
selected datasets, our proposed system exhibits the highest performance in terms of the
F-measure in comparison to other methods.

The last subject is measuring the perception of complexity in streetscapes (Chapter
5). The perception of complexity in streetscapes influences the behavior of drivers and
pedestrians. Therefore, measuring the perception of complexity has potential applications
in the areas of assisted and autonomous driving, and urban planning. For evaluation of
performance of our method, we have built a dataset of streetscape images. This dataset
consists of images acquired in four cities. Two cities in Algeria and two cities in Japan. For
evaluation of performance, we use the correlation coe�cient between complexity ratings
from human participants and the objective measures of complexity. In comparison to
classic and new methods, the proposed measure of complexity exhibits higher correlation
with the subjective rating of human participants. Also, the proposed method exhibits an
important advantage. Specifically, our method can be used to measure the perception of
complexity in nighttime images. In this way, our measure of complexity may became an
interesting tool for studies of driving behavior during nighttime.

For all three subjects of visual scene analysis, it is important to highlight that the
computational cost of our methodology is very low. Therefore, e�cient implementations
are very likely able to handle real-time applications. In this way, we conclude that this
work is a relevant addition to science and engineering.

6.2 Applicability and limitations of the proposed method-

ology

Here, we discuss applicability or suitability, and the limitations of the proposed method-
ology. In our proposition, characteristics “A” and “B” are ideally mutually exclusive, i.e.,
an input image patch that exhibits characteristic “A” cannot exhibit “B”. For real-world
data, however, this ideal case may not occur often, i.e., both characteristics “A” and “B”
appear in the input image at the same time. For example, let us assume that the goal
of application is to determine if image patches contain natural or man-made structures.
In this case, filters a

i

are learned from natural scenes, filters b
i

are learned from urban
scenes. Consequently, low output kurtosis indicates that the input image patch contains
a natural structure. High output kurtosis indicates that the input image patch contains
a man-made structure. For a given scene, it is likely that many image patches contain
both natural and man-made structure. When one of these image patches is the input
of the proposed methodology, both sets of filters a

i

and b
i

may exhibit high-amplitude
responses. In this case, the output kurtosis is low, because there is no response of am-
plitude extremely higher than the average amplitude value (i.e., all filter responses have
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the similar amplitude). Therefore, since the output kurtosis is low, the methodology is
going to (wrongly) report that the input image patch contains only an natural structure.

In our proposition, we also assume that the input image patch contains at least one
of the characteristics “A” or “B”. For real-world data, however, this ideal case may also
not occur. If neither characteristic “A” nor vB” is present in the input image patch, or
if the input contains a third, unexpected characteristic “C”, filters a

i

and b
i

may not
respond (i.e, respond with zero amplitude). In this case, the output kurtosis also low,
because once again there are no responses of amplitude extremely higher than the average
amplitude value. Therefore, the proposed methodology is going to fail.

Considering the above situations, the proposed methodology may exhibit poor per-
formance or not be suitable at all. The applicability and limitations also depends on
other properties of the methodology. For instance, the proposed methodology has only
one layer of filters. This is an advantage in terms of processing speed and computational
complexity. However, this can also be a disadvantage in case of complex or higher-order
recognition problems. For example, if characteristic “A” or “B” require many layers of
filtering to be recognized, the proposed methodology is likely to fail (because it is based
on only one layer of filters). One example of complex recognition problem is rotational
invariant face recognition. For this application, a method based on deep neural networks
has been recently proposed [11]. That method exhibits a high performance, but it requires
a high number of filtering layers.

Another issue of the proposed methodology is the relation between the number of
filters a

i

and that of b
i

. As described in section 2.2, the number of filters a
i

is p, the
number of filters b

i

is q, and p� q. The condition p� q imposes a constraint of dimen-

sionality on characteristics “A” and “B”. Specifically, if p � q, then characteristic “B”
should require far less filters to be detected in the input image patch than characteristic
“A”.

For the case of segmentation of natural and man-made structures, we have used 255
filters a

i

learned from nature scenes, and 4 filters b
i

learned from urban scenes. Thus, we
have assumed that man-made structures require less filters to be detected than natural
structures. Our assumption is based on studies of dimensionality of the space of natural
scenes. Specifically, it has been shown that the average logarithmic euclidean distance
between di↵erent image regions in nature scenes is far smaller than that in Gaussian
images [122]. This suggests that nature scenes have lower dimensionality than that of
Gaussian images. In this regard, it can be shown that the average logarithmic euclidean
distance between image regions in urban scenes is far lower than that in nature scenes.
This suggests that urban scenes should have far lower dimensionality than that of nature
scenes. Therefore, man-made structures should require far less filters to be detected than
natural structures.

In fact, for several subjects in the field of pattern recognition, research suggests that
di↵erent categories of signals indeed have di↵erent dimensionality [123]. For instance,
it is known that fractal dimension and entropy of heart rate time series is consistently
di↵erent among humans with di↵erent cardiac conditions. Furthermore, many works
in pattern recognition perform a pre-processing step generally called as dimensionality

reduction. In dimensionality reduction, data components or dimensions are permanently
excluded from the bulk of data according to some criterion. In this thesis, dimensionality
reduction is also performed in order to make the number of filters a

i

far higher than the
number of filters b

i

, i.e., p � q. However, the downside of dimensionality reduction is
that it can exclude information which may prove to be important at some point. For
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instance, in the proposed method for segmentation of natural and man-made structures,
252 filters learned from urban scenes are excluded. These excluded filters may contain
information necessary to detect specific man-made structures. Therefore, dimensionality
reduction can limit the performance of the proposed methodology.

Another issue that must be addressed in this methodology is the choice of methods
used for learning filters a

i

and b
i

, i.e., independent component analysis. We have chosen
independent component analysis because it is a powerful technique for (blind) source
separation. Our rationale is that the problem of image segmentation may be understood
from a source-separation point of view. For example, di↵erent image partitions may be
thought as di↵erent sources. Thus, di↵erent subsets of IC filters may help “separate”
or segment di↵erent image partitions. However, it is important to notice that other
techniques may also be used. For instance, one may choose to use principal component
filters, or even image templates similar to template matching systems. The proposed
methodology is general in this regard. Furthermore, it is likely that the best choice of
filters depends on the type of application.

The last issue is the choice of kurtosis. As we have discussed before, kurtosis is
used to discriminate or distinguish di↵erent responses patterns. We have chosen to use
kurtosis because kurtosis is generally used to characterize the response activity of cortical
cells. Specifically, the responses patterns of cortical cells can exhibit a property know as
sparseness [124, 125]. Under a sparse response regime, “a small subset within a neural
population will respond strongly to a stimulus, while most will respond poorly” [124]. The
methodology for visual scene analysis proposed in this thesis is based on such knowledge
from biological systems.

Depending on the application, other statistics such as variance and skewness may
also be suitable. By using the variance of response patterns instead of the kurtosis,
the methodology would indicate the presence of responses either lower or higher than
the average response value. This does not seem useful for discrimination or recognition
applications. By using the skewness, however, the methodology would indicate that the
probability distribution of the response pattern is asymmetrical. In this case, negative
and positive skewed response patterns could be discriminated. This seems useful for
recognition problems.

In this regard, there are actually other measures which are similar to kurtosis. For
instance, we can cite negentropy. Both kurtosis and negentropy are associated with
the idea of measuring sparseness and non-Gaussianity. However, we have chosen to use
kurtosis because the computational cost of calculating negentropy seems higher than that
of calculating kurtosis.

6.3 Future work

Future work can focus on analyzing new techniques for creating or learning filters. In
fact, there are techniques closely related to independent component analysis such as sparse
coding [119] and topographic independent component analysis [51]. One may even analyze
the use eigen-images or image templates as filters. Also, it is interesting to explore the
use of statistical measures di↵erent from kurtosis for discriminating response patterns,
given that the tradeo↵ between performance and computational cost is in view.

In a related note, the current architecture of the methodology which consists of a
single layer of filters could be modified into a hierarchical architecture. In this new
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architecture, the output kurtosis value from a previous layer would activate the next
layer in the hierarchy, allowing further filtering and recognition of more complex visual
characteristics.

In another line of research, future work can focus on developing e�cient implementa-
tions of the methodology for real-time applications. For instance, a hardware implementa-
tion for identification of man-made structures in aerial images could be easily developed
if based on our methodology. Also, one can implement and apply our measure of vi-
sual complexity on studies of walking and driving behavior. Finally, one may apply the
proposed methodology for other subjects or problems of visual scene analysis.
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Appendix A

Derivation of FastICA algorithm

The derivation of FastICA algorithm is fully described at [51,69]. This appendix includes
the derivation of the main adaptation rule of FastICA. In Chapter 2, we have defined
equation

y

i

= hT
i

z, (A.1)

where elements z
i

of vector z are mutually uncorrelated. In the FastICA algorithm, vector
h
i

is adapted so as to maximize the negentropy of y
i

. The negentropy of y
i

is represented
here as J(y

i

), and it is approximated by

J(y
i

) ⇡ [E{G(y
i

)}� E{G(v)}]2, (A.2)

where v represents a Gaussian random variable of zero mean and unit variance, G(·) =
log cosh(·), and E{·} is the expectation operator.

For the FastICA algorithm, the maxima of negentropy is found at a certain optima
of E{G(hT

i

z)} under the constraint that kh
i

k2 = 1. According to Kuhn-Tucker condi-
tions [126], such optima is obtained at points where

E{zg(hT
i

z)}� �h
i

= 0, (A.3)

where g(·) = tanh(·) is the derivative of G(·) = log cosh(·) and � is a constant. Eq. (A.3)
can be solved by using the Newton method. Let us denote the left-hand side of Eq. (A.3)
as F and take its Jacobian matrix as

@F

@h
i

= E{zzTg0(h
i

z)}+ �I. (A.4)

Notice that z consists of uncorrelated elements. Thus, E{zzTg0(h
i

z)} is approximated as
E{zzTg0(h

i

z)} ⇡ E{zzT}E{g0(h
i

z)} = E{g0(h
i

z)}I. Based on this new Jacobian matrix,
the following approximative Newton iteration is considered

h
i

 h
i

� [E{zg(hT
i

z)}+ �h
i

]/[E{g0(hT
i

z)}+ �]. (A.5)

By multiplying the right side of (A.5) by � + E{g0(hT
i

z)}, we have that

h
i

 E{zg(hT
i

z)}� E{g0(hT
i

z)}h
i

. (A.6)

This is the main adaptation rule of FastICA algorithm.
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Appendix B

Kurtosis for known distributions

B.1 Gaussian distribution

The Gaussian probability distribution can be defined as

p(u) =
1p
2⇡

e

�u

2

2
, (B.1)

where u 2 R represents a realization of a random variable U . Here, assume that U has
zero mean and unit standard-deviation.

The fourth central moment of U is represented here as µ4, and it is calculated as

µ4 =
1p
2⇡

R1
�1 u

4
e

�u

2

2
dx

= 2p
2⇡

R1
0

u

4
e

�u

2

2
dx

(B.2)

Making y = u

2, (B.2) becomes

µ4 =
1p
2⇡

R1
0

y

3
2
e

� y

2
dx

= 1p
2⇡
{�2y 3

2
e

� y

2 |10 + 3
R1
0

y

1
2
e

� y

2
dy}

= 1p
2⇡
{�2y 3

2
e

� y

2 |10 + 3[�2y 1
2
e

� y

2 |10 + 2
R1
0

e

�u

2

2
du]}

= 1p
2⇡
(�2y 3

2
e

� y

2 � 6y
1
2
e

� y

2 )|10 + 3

= 3.

(B.3)

B.2 t-distribution

t-distribution can be defined as

p(u) = c

 
1 +

u

2

n

!�n+1
2

. (B.4)

The constant c is defined as

c =
1p
n

1

B(n
2
,

1
2
)
, (B.5)

where B is the Beta function, and n 2 N is generally named degrees of freedom.
The k-th moment of t-random variable U is defined as

µ

k

=
R1
�1 u

k

p(u)du

=
R 0

�1 u

k

p(u)du+
R1
0

u

k

p(u)du.
(B.6)
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Making y = �u in the first integral of (B.6),

µ

k

= �
R 0

�1(�y)kp(�y)dy +
R1
0

u

k

p(u)du
= (�1)k

R1
0

y

k

p(�y)dy +
R1
0

u

k

p(u)du.
(B.7)

Since p(�u) = p(u), (B.7) can be written as

µ

k

= (1 + (�1)k)
R1
0

u

k

p(u)du. (B.8)

Given (B.4), the integral
R1
0

u

k

p(u)du in (B.8) can be written as

R1
0

u

k

p(u)du

= c

R1
0

u

k

 
1 + u

2

n

!� 1
2 (n+1)

du

(B.9)

Making t = u

2

n

, (B.9) becomes

= c

R1
0
(nt)

k

2 (1 + t)
�
�n

2�
1
2

�p
n

2
1p
t

dt
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1
2
n
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�
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�
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�
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! (B.10)

Given the definition of c in (B.5), (B.10) can be written as

= 1
2
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(B.11)

Finally, given (B.8) and (B.11), the k-th moment of U is

µ

k

=

(
n

k

2

�

⇣
k+1
2

⌘
�

⇣
n�k

2

⌘

�

⇣
n

2

⌘
�

⇣
1
2

⌘
, if k is even

0, if k is odd.

(B.12)

Based on the above equation, kurtosis is µ4

(µ2)2
= 9.
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Appendix C

Analyzing differences between IC
filters and Gabor functions

In section 3.3, we have shown that there are di↵erences between IC filters and Gabor
functions. These di↵erences can be observed by comparing the average 2D Fourier am-
plitude spectrum of IC filters to that of Gabor functions. In this regard, we have shown
that for low spatial frequencies, isolines of the amplitude spectrum of IC filters have a
“diamond” shape. The isolines of the amplitude spectrum of Gabor functions have a more
circular shape. This di↵erence has important implications to neuroscience, specifically to
the area of modeling the receptive fields of primary visual cortex (V1)cells. Furthermore,
there are implications to the field of image coding. Here, we discuss these implications.

C.1 Biological background

The receptive fields of V1 cells are filters used by the brain for processing visual stim-
uli [115]. It is known that V1 receptive fields can be modeled by IC filters or Gabor
functions [51, 119, 127]. Furthermore, the shape of V1 receptive fields adaptively change
in function of the input visual stimuli [128]. The goal of this adaptation is to enhance
transmission of information in the cortex.

The adaptation of receptive fields occur by many mechanisms. One example of adapta-
tion mechanism is amplitude compensation [128]. In this mechanism, the average Fourier
amplitude spectrum of receptive fields change and become similar to the “inverse” of the
amplitude spectrum of the visual stimulus. For example, let’s assume that the Fourier
amplitude spectrum of the visual stimulus has shape in the form 1

f

, where f is frequency.
In this case, amplitude spectrum of the receptive field should become similar to f (the
inverse of 1

f

). This is mechanism is similar to the whitening process.

C.2 Experiments and results

Amplitude compensation when visual stimuli are natural images

In this section, let us analyze the case of amplitude compensation when the visual stimuli
are natural images. For this analysis, the first step is to compute the Fourier amplitude
spectrum of natural images. Thus, we have selected 100.000 image patches of 16 ⇥ 16
pixels from natural scenes of the McGill Calibrated Color Image Database [68].
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(c)(b)(a)

Diamond shape Diamond shape Circular shape

Figure C.1: Average 2D Fourier amplitude spectra.(a) Average amplitude spectrum
of natural images. (b) Average amplitude spectrum of IC filters. (c) Average amplitude
spectrum of Gabor functions. Plots (b) and (c) are originally from Figure 3.5. The plots
at the bottom show the profile curves or “isolines” for di↵erent levels of amplitude. Notice
that towards low frequencies, the amplitude spectrum of natural images and that of IC
filters have isolines with ”diamond” shape.

Then, we have computed the 2D Fourier amplitude spectrum of each of the 100.000
image patches. Over all 100.000 2D amplitude spectra, we then compute the average.
This average Fourier amplitude spectrum is shown in Figure C.1(a). Notice that the
amplitude of natural images decreases with frequency, i.e., their amplitude spectrum has
form of 1

f

. Furthermore, notice that for a fixed spatial frequency, amplitude is higher at
normal orientation (0 degrees and 90 degrees) than that at oblique orientations (45 degrees
and 135 degrees). This di↵erence in amplitude for normal and oblique orientations is the
reason why isolines of the amplitude spectrum have “diamond” shape. The “diamond”
shape of isolines is a long known property of natural images (See reference [79] for a
review).

According to the amplitude compensation mechanism [128], after visual stimulation
with natural images, the average amplitude spectra of V1 receptive fields should become
similar to the inverse of the amplitude spectrum of natural images. In other words, the
amplitude in V1 receptive fields should increase with frequency, i.e., amplitude spectrum
of form f (the inverse of 1

f

).
Furthermore, amplitude compensation introduces another e↵ect. Specifically, for a

fixed spatial frequency, the amplitude of V1 receptive fields should become lower at
normal orientations than that at oblique orientations (this is the inverse of amplitude
pattern of the input). Therefore, the average amplitude spectrum of V1 receptive fields
must also exhibit isolines with ”diamond” shape.
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Now, since IC filters and Gabor functions are models of V1 receptive fields, they
should also execute amplitude compensation. As shown in Figures C.1(a) and (b), the
average amplitude spectra of IC filters and Gabor functions have the form of f , i.e, am-
plitude increases with frequency. However, at low spatial frequencies, only the amplitude
spectrum of IC filters have isolines with ”diamond” shape. Therefore, at low spatial
frequencies, IC filters o↵er better amplitude compensation than that of Gabor functions.

Image coding using IC filters and Gabor functions

Let us define the following experiment of image coding. Assume that IC filters calculated
by the FastICA algorithm are represented by vectors w

i

2 Rk. Assume that each w
i

is a row of matrix W 2 Rk ⇥ Rk. Here, the inverse of W is represented by matrix
Q 2 Rk ⇥ Rk. The columns of Q are represented by vectors q

i

2 Rk. Vectors q
i

are
generally called independent component basis functions.

Furthermore, let us assume that vector n 2 Rk represents an image read in raster-scan
fashion. Now, let’s define vector n

q

2 Rk as the sum of IC basis functions, i.e.,

n
q

= c

0
1q1 + c

0
2q2 + · · ·+ c

0
k

q
k

. (C.1)

where coe�cients c0
i

2 R are calculated as follows. Firstly, a vector c = [c1, c2, . . . , ck]T is
computed as

c = [QQT]�1[Qn]. (C.2)

The coe�cients c

0
i

in Eq. C.1 are a quantized version of c
i

. Let’s define n

i

2 R and
n

iq

2 R as the i-th elements of vectors n and n
q

, respectively. Finally, let’s define the
error

e

q

=
1

k

kX

i=1

(n
i

� n

iq

)2. (C.3)

Similarly, assume that Gabor functions estimated by fitting of IC filters are repre-
sented by vectors g

i

2 Rk. Assume that each g
i

is a row of matrix G 2 Rk ⇥ Rk. Here,
the inverse of G is represented by matrix P 2 Rk⇥Rk. The columns of P are represented
by vectors p

i

2 Rk. Here, let us call vectors p
i

as Gabor basis functions.
Now, let’s define vector n

p

2 Rk as the sum of Gabor basis functions, i.e.,

n
p

= v

0
1p1 + v

0
2p2 + · · ·+ v

0
k

p
k

. (C.4)

where coe�cients v0
i

2 R are calculated as follows. Firstly, a vector v = [v1, v2, . . . , vk]T

is computed as
v = [PPT]�1[Pn]. (C.5)

The coe�cients v

0
i

in Eq. C.4 are a quantized version of v
i

. Let’s define n

ip

2 R as
the i-th element of vector n

p

, respectively. Finally, let’s define the error

e

p

=
1

k

kX

i=1

(n
i

� n

ip

)2. (C.6)

In this way, e
q

and e

p

represent the reconstruction error of image n when using IC and
Gabor basis functions, respectively. Notice that over many images n, one can compute
the average of e

q

and e

p

. Here, we have calculated these averages over 20.000 images
patches. The average of e

q

and e

p

are shown in Figure C.2 in terms of signal-to-distortion
(SDR) ratio. The coe�cients c

i

and v

i

were quantized using 7 bits. Figure C.2 clearly
shows that IC basis functions generates higher SDR than that of Gabor basis functions.
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Figure C.2: Average signal-to-distortion ratio when coding natural images.
(Blue) IC basis functions. (Green) Gabor basis functions. (Red) Absolute di↵erence
between (Red) and (Blue).
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C.3 Conclusion

Here, we have presented an analysis of the di↵erences between IC filters and Gabor
functions. Firstly, it is shown that IC filters o↵er better amplitude compensation for low
spatial frequencies than that of Gabor functions. Secondly, it is shown that IC basis
functions generates higher signal-to-distortion ratio for image coding than that of Gabor
basis functions. Therefore, these di↵erences are relevant to the fields of neuroscience and
image coding.

Future work should focus on modeling the di↵erence between IC filters and Gabor
functions. For instance, one can assume that an IC filter w

i

can be described as

w
i

= g
i

⇤ h
i

+ s
i

, (C.7)

where g
i

is a Gabor function, h
i

is an unknown function that deforms the Gabor compo-
nent g

i

, and s
i

is an additive noise signal of unknown probability distribution. Therefore,
h
i

and s
i

in Eq. C.7 describe the di↵erence between IC filters and Gabor functions.
By modeling the di↵erences between IC filters and Gabor functions and extending

our research, one might be able to provide better models of V1 receptive fields, and also
more e�ciently computer methods for encoding natural images.
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Appendix D

Segmentation of natural and
man-made structures based on
mean-squared error

This appendix describes our methodology for segmentation of natural and man-made
structures using mean square error [84].

Assume that IC filters calculated by the FastICA algorithm are represented by vectors
w

i

2 Rk. Assume that each w
i

is a row of matrix W 2 Rk ⇥ Rk. Here, the inverse of
W is represented by matrix Q 2 Rk ⇥Rk. The columns of Q are represented by vectors
q
i

2 Rk. These vectors are generally called independent component basis functions.
Let us define vector n0 2 Rk as the sum of IC basis functions, i.e.,

n0 = c1q1 + c2q2 + · · ·+ c

k

q
k

. (D.1)

For c
i

2 R, vector c
i

= [c1, c2, . . . , ck]T is computed as

c
i

= [QQT]�1[Qn], (D.2)

where n 2 Rk. Based on n and n0 let us define the error

e =
1

k

kX

i=1

(n
i

� n

0
i

)2, (D.3)

where n

i

and n

0
i

are the i-th element of vectors n and n0, respectively.
Now, let us assume that vector n represents an image patch read in raster scan fashion.

Also,Q
nat

andQ
man

represent basis functions learned from natural and man-made scenes,
respectively. Finally, assume that e

nat

and e

man

represent the error in Eq. (D.3), when
basis functions Q

nat

and Q
man

are used respectively.
In this way, our hypothesis is as follows. If e

nat

< e

man

, the image patch n contains a
natural structure. Else, i.e., e

nat

> e

man

, the image patch contains a man-made structure.
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Appendix E

Setting algorithm parameters for
measuring the perception of
complexity in streetscapes

Parameter settings

The methods used for comparison (i.e., perimeter length, JPEG file size, subband entropy
and feature congestion) are based on image processing flows which require input settings.
In order to determine these settings, an analysis is carried out for each method. Specif-
ically, input settings are varied so as to maximize the correlation of objective measures
with the subjective complexity rank. The methods are only considered for comparison
when using settings which generate the highest correlation. It is also important to notice
that some of these methods are not based on multi-scale processing. Thus, the input size
of the images may influence their performance. In order to verify any e↵ect regarding this
issue, additional decimation steps are included at the beginning of the processing flows.
These decimation steps have the function of modifying the input size of the images before
computation. The performance of the methods are then analyzed over several input sizes.

Firstly, the perimeter length is discussed. In this method, the objective complexity
measure is the number of pixels which belong to image edges. Here, Roberts algorithm
is used to detect edges in the image. This algorithm detects edges by checking whether
the gradient of pixel values is higher than a chosen threshold. The threshold value is an
input setting for perimeter length and should be chosen before the method is used. Thus,
it is important to analyze the behavior of the method over many threshold values. Since
this method is not based on multi-scale processing, it is also interesting to analyze the
e↵ect of image size by using decimation.

In Figure E.1(a), the correlation coe�cient between the objective measure and the
subjective rank is given in function of the threshold value and image size. The correlation
increases as the threshold value increases. It is also easy to see that reducing the size the
of images before edge detection increases the correlation. The settings which generates
the highest correlation (R = 0.66) is image size of 268 x 178 for a threshold value of 62.
This is indicated in the plot by an arrow.

For the JPEGmethod, the objective complexity measure is the size of the digital image
file. In the JPEG coding process, the input data is decomposed in several components
through a transformation called Discrete Cosine Transform. After this decomposition,
each resulting component is processed by quantization. Normally, this step consists of a
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non-linear transformation which decreases the resolution of the amplitude values of the
components.

In standard JPEG, there is parameter called quality factor Q which controls the
overall loss of information during the quantization step. Factor Q can assume values in
range [1, 100], where higher values indicates files with higher visual quality.

For each Q, it is calculated here the correlation coe�cient between the resulting JPEG
file sizes and the subjective rank. Figure E.2(b) shows how the correlation depends on
the parameter Q and image size. The correlation coe�cient is higher for low values of
quality factor. Similar to perimeter length, the correlation also increases as the image size
is reduced. Interestingly, the plot shows that the e↵ect of Q on the correlation diminishes
as the image size is reduced. The JPEG settings which generates the highest correlation
(R = 0.64) are Q = 1 and image size of 536 x 356 pixels. In the subband entropy, the
objective measure is the Shannon entropy of wavelet coe�cients. The method starts by
firstly converting images into CIELab space. Then it calculates wavelets coe�cients from
luminance and chrominance channels in di↵erent scales. Finally, it sums the entropies
of the coe�cients from each scale. Figure E.2(c) shows how the correlation coe�cient
between this sum and the subjective rank depends on the number of scales and image size.
The highest correlation (R = 0.30) is generated for a number of three scales (horizontal
axis in Figure E.2(c)) and image size 268 x 178 pixels.

In feature congestion, the objective measure is computed as the volume of the covari-
ance of a vector space constructed by “features” such as color, contrast and orientation.
Feature congestion uses several setting parameters such as number of scales over which
the covariance is computed, width of several types of filters, etc. In total, the perfor-
mance of feature congestion method is analyzed here over five setting parameters. Since
it is not straightforward to graphically represent a 5-D function, Figure E.2(d) exhibits
only the best result found for each image size after varying the settings. Over all images
sizes, 536 x 356 pixels generates the highest correlation coe�cient (R = 0.46) for feature
congestion.

Näsänen’s objective measure is defined as the product between the median spatial
frequency of the image energy spectrum distribution and the image area which comprises
the 95% of the total image energy. Figure E.1(e) exhibits the correlation of Näsänen’s
measure with subjective rank in function of image size. Notice that the image area is
also varied for several energy thresholds. The highest correlation is found for image size
134 x 89 pixels and area comprising 80% of the total image energy.

Finally, Figure E.1(f) gives the correlation of the proposed � in function of image size.
The highest correlation (R = 0.72) is found for image size of 1072 x 712 pixels.

Subjective ranks for subgroups of participants

Figure E.2 shows the subjective ranks computed considering subgroups of participants
divided by nationality and gender. Table E.1 shows the correlation coe�cients between
the subjective ranks of the distinct subgroups.

Table E.1 shows that the perceptions annotated from di↵erent subgroups of partici-
pants are significantly correlated. This indicates that the Algerian and Japanese subjects
have very similar opinions about the complexity perceived in the streetscape dataset.
This is also true in case of male and female participants. However, it is clear that the
influence of nationality is stronger than that of gender. Specifically, the correlation coef-
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Figure E.1: Correlation with subjective rank in function of settings. Correlation
coe�cient between objective measures and the subjective rank is given in function of
setting parameters. (a) Perimeter length. (b) JPEG. (c) Subband entropy. (d) Feature
congestion. (e) Näsänen. (f) Proposed �. Settings which generates the highest correlation
coe�cients are indicated by an arrow.
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Figure E.2: Subjective ranks generated for subgroups of participants. (a) Alge-
rian participants. (b) Japanese participants. (c) Males. (b) Females.

Table E.1: Correlation coe�cients between subjective ranks computed from
subgroups of participants. Values in bold font represents significant correlation co-
e�cients (p < 0.001).

Correlation
Algerian x Japanese 0.87
Males x females 0.97

ficient between the subjective rank from males and that from females is very high, i.e.,
R=0.97.
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