空電波形に関する2,3の結果

c

I. 緒 言

最近当所では豊川 (137°22′E, 34°50′N), 熊本 (130°46′E, 32°56′N), 秋田 (140°08′E, 39°44′N)の 3 地点から同時に空電の方位を観測し, 又その中の2 地点で同時に空電の波形を測定出来る態勢となった.

これまでも、空電の方位測定は、2地点或は3地点 から観測を行ったことはあったが、観測地点間の距離 が短かかったので遠方の空電源に対しては、位置決定 において誤差が大きくなり、この困難を解決する為に、 測定地点間の距離を延長し現在は約600 km ずつ隔っ た3地点で行っている.

しかし現状では未だ観測結果に対して断定的な結論 を導く程に充分なデータは無いのであるが本文では最 近迄に得られた結果の中から空電波形についてそれを 昼間(Smooth daytime type), 夜間(Regular peaked type) の何れも典型的な 2 型式の波形に限定して記録 を纏めてみよう.

II. 夜間に観察される波形

1952年9月,1953年9月に観測された夜間の波形 の中特に電離層反射理論で説明出来るものだけを取上 げて波形から計算した空電源の距離と方位測定から求 めた空電源の距離とを比較してみた・

観測される夜間の空電の方位は地球磁界による楕円 像が多く直線像で求められるものの数は少い・又同一

佐尾和夫仲井猛敏

空電源の方位と波形とが同時に撮影出来て,而も波形 が計算可能な型式のものを拾うと極めて個数が減って しまって僅か14個の例について述べられるに過ぎない.

波形から空電源の距離を計算するに当って波形の各 peakのどれが ground pulse でどれが sky pulse 1等 に対応するかについては、次の二つの型式によること にした。

(α型) ground pulse の減衰が比較的少く, ground pulse が観察され, 続いて S1, S2 が相継いで現われる が, Gの直ぐ後の反射符号の pulse を S1 を考え以下 同符号の pulse を順次 S2, S3, ...とする.

(β型) ground pulse の減衰は比較的大きく,従っ て ground pulse は観察されず,最初の pulse は S₁ と 考え以下同符号の pulse を順次 S₂, S₃,... とする.

そして電離層の見掛けの高さhと空電源の距離dの 計算に当っては Caton と Pierce 両氏の論文⁽¹⁾ の第 13 図の方法に従って求めた.このようにして波形から 計算した空電源の距離dwと方位測定による空電源の 距離dvとを比較してみると、第1表のようになる.勿 論方位測定の結果も正確を期し難いがdwと比較して 考える時、割合良く一致しているのではないかと考え られる.一方 $\frac{dv - dw}{dv}$ の値の大きいものもあり、 これ等に対しては今後大いに考察してみなければなら ない問題であるが、一案としては筆者等は原 pulse が

空電	観測年月日時	d_D	d_W	$\frac{d_D - d_W}{d_D}$	パルスの反射の数	h
凿 为		$(\times 10^3 \mathrm{km})$	$(\times 10^3 \text{ km})$	(%)	の抹り万	(km)
N- 1	1953年9月5日21時	1.6	1.50	3	α	90
N- 2	" " " 7" 0 "	2.2	2.12	4	α	85
N- 3	1952 // // 15 // 20 //	1.0	0.92	5	β	85
N- 4	" " " 17 " 20 "	3.0	3.15	- 5	β	90
N- 5	1953 // // 6// 0 //	2.9	3.05	- 5	α	90
N- 6		2.4	2.65	-10	β	90
N- 7	" " " 6" " "	約 0.4	0.47	-18	α	80
N- 8	1952 " " 22" 2 "	1.3	1.03 ± 0.13	20	β	90
N- 9	1953 // // 5// 21 //	3.0	2.40	20	β	90
N-10		3.2	2.47	22	β	90
N-11	1952 // // 15 // 20 //	1.1	0.84	22	α	90
N-12	" " " 22 " 2 "	2.0	1.42 ± 0.10	27	β	90
N-13	1953 // // 9// 0 //	0.9	1.22	-36	α	90
N-14	// // // 10 // 21 //	遠距離	$2.40{\pm}0.10$		β	90

第1表

電離層で反射した場合に成分周波数毎の位相遅れから 原 pulse 波形はくずれて反射波の peak が原 pulse の 中心から移動することも考えられるのではないかと 思っている・

極めて簡単な場合を考えてみると原 pulse を単一短 形波と考え,それが一回電離層で反射した場合各成分 周波数が一様に角θ丈位相が遅れたとすると次のよう に取扱える.

即ち原 pulse をフーリェ積分で表現して原点 t=0を矩形波の中心に置くと

$$e_{0} = \frac{2E}{\pi} \int_{0}^{\infty} \frac{1}{\omega} \sin\left(\frac{\pi}{2} \cdot \frac{\omega}{\omega_{0}}\right) \cos \omega t \, d\omega$$

とたる、 任し $\omega_{0} = 2\pi \frac{1}{T_{0}}$

弦で T₀/2 は短形波の幅で, E は短形波の高さである.

この pulse が電離層で反射した時,その大いさを $e_{(0)}$ で表せば

$$e_{(\theta)} = \frac{2E}{\pi} \int_0^\infty \frac{1}{\omega} \sin\left(\frac{\pi}{2} \cdot \frac{\omega}{\omega_0}\right) \cos\left(\omega t - \theta\right) d\omega$$
$$= e_0 \cdot \cos\theta + \frac{E \cdot \sin\theta}{\pi} \log\left|\frac{\pi/(2\omega_0) + t}{\pi/(2\omega_0) - t}\right|$$

となりこの図形は θ の大いさによっても異るが, 原 pulse の中心 t=0 は1回反射後 $t=\pm \pi/2 \omega_0 = \pm T_0/4$ に peak を持つ振動的波形となることが判る.

扨 $d_w \ge d_D$ とを両軸にとって画いてみると第1図 のように分布している、猶以上の計算結果ではhは 90 km の方が多かった。

III. 昼間に観察される波形

屋間に観測される波形の典型的な図形に対して1952 年9月,1953年2月,1953年9月の観測から選び出 し,それらを方位測定の結果と比較してみよう。

観測された波形の第2番目の半波の準周波数を算出

し、これを縦軸にとり、横軸に方位測定による空電源 の距離をとって画くと、第2図に示すように稍、右上 りの傾向となることが認められる.この場合第1番目 の半波の周波数を採用しなかった理由は当所の波形記

録方式では第1半波の途中から回路が起動するよう調 節されているので第1半波は全貌がわからない。その 為第2半波を採用した訳である。以上は空電源の距離 が遠い程,波形の始めの部分の周波数が高く,即ち波 形は縮んだ恰好になる傾向にあることが言えよう。更 に又2地点で同時に記録された同一空電波形を拾い, その8枚の記録中2例について受信波形を画いてみる と第3図のようになるが,これらは別々に観測された 波形に対して,横軸の時間目盛を同一とし,且縦軸の 振幅も大体揃う様に画き直したものである。これを観 察して次のことが言えよう。

(1) 同一空電源から出た波形は,類似の恰好をして いること・即ち遠距離を伝播した後も空電源における 放電形式による特有な波形を保っていること・

(2) 伝播路の距離による波形の相異が認められ, 遠 い方の波形は近い方のそれより, 原点の方向に縮む恰 好となること・

筆者等はこの(2)について今少し詳しく考える為 に,更に波形をよく観察すると,原点に近い方は,そ の縮み方が割合大きく,数サイクルを経た後ではそれ 程顕著ではない.それで波形の始めの部分の任意の対 応間隔をとって,Sとし又一方秋田並びに豊川の両観 測点から空電源迄の距離を方位測定の結果から計算 し,夫、di,d2とすれば,第2表の様に di/d2と S2/S1 とが略、比例するような結果が得られた.即ち,波形 の始めの部分をとって考える時,その寸法の比は,距 離の逆比に大略等しい様な関係の存在することが判 る.

このようなことは Budden の導波管的超低周波伝播 理論⁽²⁾によって説明出来るものと想像するが,今計 算を極く簡単にする為に,上空電離層,並びに大地を

第3図 (i) 秋田 (ii) 豊川での観測波形

第2表

	方位測定の結果			波形解析の結果			
空電番号	秋田からの 距 ^{d1} (×10 ³ km)	豊川からの 距 ^{d2} (×10 ³ km)	距離の比 <i>d</i> 1/ <i>d</i> 2	原点に 点間 (mm)	fuv対応 つ間隔 豊川 S ₂ (mm)	間隔の逆比 S1/S2	
D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8	2.4 2.3 1.5 1.1 1.1 5.4 極めて遠方	2.0 2.2 1.2 0.8 0.8 0.9 4.9 極めて遠方	1.2 1.1 1.3 1.4 1.5 1.3 1.1 略 1.	7.0 8.5 5.0 4.0 4.1 4.1 5.7 7.9	8.5 9.5 6.2 5.5 6.0 7.9 8.0 7.9	$1.2 \\ 1.1 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.9 \\ 1.4 \\ 1.0$	

完全導体と仮定して n 次姿態が空電受信起電力に寄 与する大いさを見ればそれは

$$\cos\frac{\pi nX}{h} + \frac{\pi nX}{h} \cdot \sin\frac{\pi nX}{h}$$
(E1)
$$X = \sqrt{c^2 t^2 - c^2}$$

で表わせる. 茲でhは電離層の高さ, cは光速, ρ は空電源と観測点間の距離, tは時間である.

n 次姿態の受信波形が横軸を過ぎる点,換言すれ ば、受信起電力の振幅が0になる点の横座標を求め、 その根を $t_1, t_2, \ldots, t_m, \ldots$ としよう.又nnX/h = xと置いて $\cos x + x \cdot \sin x = 0$ を解き、その根を x_1 , x_2, \ldots, x_m, \ldots と置けば

$$\frac{\pi n}{h} \sqrt{c^2 t_m^2 - \rho^2} = x_m$$

$$t_m = \frac{1}{c} \sqrt{\rho^2 + \frac{h^2 x_m^2}{n^2 \pi^2}} \doteq \frac{\rho}{c} \left(1 + \frac{1}{2} \frac{h^2 x_m^2}{\rho^2 n^2 \pi^2} \right)$$

従って波形が横軸を過ぎる点の間隔 Atm は

$$\Delta t_m = t_m - t_{m-1} = \frac{h^2}{2 c \rho n^2 \pi^2} (x_m^2 - x_{m+1}^2) \propto \frac{1}{\rho}$$

これから判るように受信起電力の波形が横軸と交る 点の間隔は空電源の距離に逆比例することになる.勿 論これは電離層を完全導電性とした場合の任意の姿態 について計算したものであって,実際の昼間の電波伝 播には適切ではないことをつけ加えればならない.

IV. 謝 辞

金原先生の御指導によって為された本研究は当所で 観測する外,郵政省秋田電波観測所並びに九州電波 監理局菊池分室において到来空電の方位と波形を同時 に観測して得られた結果であり,秋田電波観測所並び に九州電波監理局の方々の示された御厚意に対し先ず 厚く御礼申上げる・又空電観測に当っては当所空電研 究室全員の力によって為されたものであって,観測装 置全般については岩井研究室に感謝の外はない・又得 られた結果の整理等については教室该術員前田都哉 子,杉田宜子両氏の尽力によるものであって併せて厚 く感謝する.

引用文献

- P.G.F. Caton and E. T. Pierce: Phil. Mag., 43, 393, 1952.
- (2) K. G. Budden: Phil. Mag., 42, 1, 1951 a.