
NUMERICAL STUDY OF TWEEKS BASED ON 

WAVEGUIDE MODE THEORY 

By J. OUTSU 

Bbstract 
Assuming that the ionospheric reflecting layer is a sharp bounded and imperfect 

conductor attenuation factor and group velocities are calculated from the waveguide 
mode theory developed by Wait. 

Results are obtained mainly for the first order mode for four frequencies between 
].8 kc and 2.2 kc with various values of the ionospheric parameteriJr. And in the cases 
of zero and second order modes calculations are performed only for lJr of 5x 10 sec-t 
and for wave frequencies less that 2.0 kc and between 3.6 kc and 5.0 kc, r espectively. 
The usually observed characteristics of propagation time vs. frequency of tweeks well 
explained by the attenuation and group velocity characteristics of first and second 
order modes And it is shown that for the determination of travelling distance and 
height of reflecting layer from the propagation characteristics of tweeks it is 
advantageous to make use of the part of a tweek corresponding to the first order 
mcde, because of the easiness of seperating it from waves belonging to the other 
order modes and of its less attenuations. Differences which arc caused by regarding 
an imperfect ly conducting layer as a perfectly conducting one, in the determination 
of distance and height are discussed. 

I. Introduction 

Since the study by E. T Barton and E. M Boardman ( 1933) 1, the tweeks , which 
are now usually ca lled long osillatory type atmospherics by workers of the waveforms, 
have heen interpreted to be produced from the propagation of a pulse radiated from 
a lightning discharge, by multiple reflections between the ground and ionospher ic 
layers. And this propagation mechanism has been shown to afford imformations 
about the height of a reflection layer and the travelling distance of the pulse. 

In the yea r 19582 we found that short whistlers observed at Toyokawa were 
frequently preceded by the tweek type atmospherics, and afterwards similar cases were 
observed also at Wakkanai. Further we could find such cases in the photographs of 
sonagrams of short whistlers which were observed in America*. So, very naturally we 
were given hints to make use of these tweeks measuring the distances from the whistler 
sources , for it is very important to know the locations of whistler source in order 
to investigate the problem of whistler propagation and the ionization distribution in 
the outer atmosphere. In this trial the ionospheric reflection layer has been assumed 
to be a sharp bounded and perfectly conducting plane , but in reality it must be 
regarded as an imperfect conductor even for lower frequency waves in VLF range. 
The assumpt ion of a perfect conductor for the reflection layer will more or less 
cause to give incorrect results. It needs to know the order of magnitude of the errors. 

But the treatment of an imperfect conductor of a laye r based on the multiple 
reflection theory, will lead to much trouble in obtaining the characteristics of 
propagation time vs. frequency, owing to a large number of reflection and to the 
reflection coefficient of the layer which is a function both of travelling distance and 
of the order of reflection of a pulse received, besides being a function of ionospheric 
layer properties. 

Hence , in the present s t udy we calculated from waveguide mode theory the 
attenuation factors and group velocities for some frequency ranges of tweeks wh ich 
are thought to be necessary in the determination of height and distance. In addition, 
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the same quantities are calculated for frequencies less than 2.0 kc in the zero order 
mode. 

In §II natures of tweeks are briefly described, in §III the theory used in the 
calculations is explained, in §IV the results obtained from the calculations are shown 
and confirmed to explain the tweek characteristics, in §V a procedure to determine 
height , distance and ionospheric parameter '·'r is shown and an example of possible 
difference in height and distance obtained by assuming an imperfect layer as a 
perfect one are discussed. 

*Fig. 14, p. 59, Fig . 28, p. 111 and Fig. 29, p. 113 in Low Frequency 
Propagation Studies Patr I : Whistlers and Related Phenomena. 

R. A. Helliwell 
Stanford Electronics Laboratories Stanford University May , 1958. 

II. Tweeks 

Examples of tweeks observed at Toyokawa appear in Figs. l(a) and l(b), 
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Fig. ]. Examples of tweek analysed by a sound spectrograph 
A : fundamental tweek B: second harmonic tweek 
C: part of a pulse corresponding to zero order mode 

(a) 1840 5 Sep. 1956 J. S. T. Toyokawa The second harmonic tweek seems to exist 
above a frequency near 4 kcj s. 

(b) 211024 Oct. 1956 j.S.T. Toyokawa The s:~cond harmonic twcek can be seen to 
a frequency near the lnwer limit. 

( note: Since in these analyses the output level and marking level of the analysing 
apparatus were manually changed , degrees of darkness do not correspond to 
the field intensity. ) 

which were obtained by an analysis using a sound spectrograph known as 
"Sona-graph". The frequency scale is marked at the left of the figures and the 
time elapses from left to right and the scale is shown at the bottom of the 
figures. As seen from part A's in these examples, the waves of tweeks travel 
slowly in degrees, as the frequency falls, and they go down exponentially to 
certain limiting frequencies which are usually observed at near 1. 8 kc, although 
they vary as the travelling path conditions and the time of day change. 
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Part B in Fig. l (b) can clearly be seen to be the second harmonics of part 
A, though the full part of the harmonics is not shown. When R. K. Potter (1951)a 
analyzed tweeks recorded by Burton and Boardman with sound spectrograph, he 
found the seoncd and third harmonics. At that time he thought that they were 
possibly caused by the receiving and recording epuipment nonlinearities. We can 
not decide whether it was so or not in his case, but we are now certain of the 
possible existence of higher harmonic components, judging from the nature of 
tweeks, because they can be reasonably explained by the wave-guide mode theory. 
In the following, the parts A and B of the tweeks will be called the fundamental 
and the second harmonic tweek (component), respectively. 

From this propagation vs. frequency characterisitics we can easily distinguish 
tweeks from other types of atmospherics, when signals from a vertical antenna 
are heard through a speaker after amplification with a audio frequency amplifier. 
On the basis of the hearing method, it has been found at Toyokawa and Wakkanai 
that the tweeks very frequently occur in the night between near sunset and sunrise 
all the year round. This result is quite the same as has been reported by Burton 
and Boardman. 

By analysis we have found the second harmonic tweeks to be a lesser event 
compared with the foundamental ones, and as for the third harmonic tweeks they 
have been hardly observed. 

lll. Theory 

Idealizing the space between the ground and ionosphere as a waveguide with 
concentric spherical walls of finite conductivities and assuming the source is a 
vertical electric dipole, ]. R. Wait (1957) 1 derived a formula for a vertical electric 
field at any reciving point. This formula is available for VLF radio waves and is 
expressed by a sum of terms which depend on mode numbers. 

The main part which deter mines the propagation characteristics of the modes 
is expressed following exponential term, 

exp ( - i27tS,.d ' A.) 

where d is a travelling distance along the great circle of the earth, A. is a wave 
length and S,.= (l - C2,,)112. 

C,. is a cosine of a complex angle between wave normal and vertical, and is a 
solution of the next equation, 

(L- i ) C,,-../Cn L 2 - iL /4;:HC,. e- i2'-11 
( L - i ) Cn+../C'' L~ iL 

which was also given by Budden (1953) . 

(1 ) 

This eq. is valid for perfectly conducting ground. But As seen from examples 
of tweeks in Figs. 1 (a) and 1 (b), frequencies lower than about 5 kc may be 
enough for the study of tweeks including the second harmonic one, and in this 
frequency range the ground may be approximated as a perfect conductor. So the 
eq. (1) will be valid for the present case. 
Where 

L = ciJ iwr, H = h i A., n = mode number=O, 1, 2········· 



(•> = angular velocity of wave=271'/, m,- = (271'/0)~ 1r,) = 3. J82 X 10r• X N / 11 

/ 0 = plasma frequency, N = electron number density 'em:' and 
h= height of ionospheric reflecting layer from the ground, 
v= collisional frequency sec. 

We write c ,,= x,.+ iy, and SII=X .. + iYn then 
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X ,.=v'(l-x,.!! +y,2)+v'(l - x,,2 +y,.2)2+4x,.2y,,z v' 2 ) (
2

) 

Y ,.= -x,.y,,v'2 /v' (1 - x,Lt-y,.2) + -v' Ci- x,,2 + y,,£)z + 4r,2y,.2 . 

And the right side of eq. (1) becomes 

exp ( - 47tHy,,) • exp i271'(2Hx,,-11 ), ( 3 ) 

and 

exp ( - i271'Snd A.)=exp(27tY,,d i\.) •expi( - 271'X"d i\.). ( 4 ) 

The first term of the right side of eq. (4) decides the attenuation of the mode 
n and 271'X,./i\. is the wave number of the mode. 

According to Wait, the attenuation factor a,. is defined as the number of db 
per 1, 000 km of path length; then 

a ,,= l.819 x fY,.x lO 1 db. ( 5) 

The group velocity Vy,, of the mode n is given from the wave theory by 

( 6) 

Here, X,, is seen to be a function of x,, and Yn from eq. (2) and then Xn and y ,. 
are thought to be a function L from eq, (1) which is equal to m r.ur. 
(c= light velocity-;-3 x 10"km 's ) . 
Hence, 

w dX,. =(ax,. . ax" +~x,, . ay,. ). L 
· dw ax, oL oy,, oL 

where, ox,,' oL and oy,, !oL can be determined from the simultaneous equations 
derived by the real and imaginary parts of eq. (1) . 

Solutions of C,. in eq. (1) have been obtained by H. H. Howe and ]. R. Wait 
(1959)~ for each mode and for various values of L and H, and the attenuation 
factor and field intensity have been given by Wait (1957) 0 from the solutions 
of C,.. But they have not yet reported the group velocity for the mode. So we have 
tried to get it by a numerical calculation using eq. (6) mainly for the principal 
frequency range of t weeks, but we had to begin by solving eq. (]) , because 
the values of C, given by them are not directly usable. The first term of (4) 
gives the absolute value of the left side of eq. (1) and the second term determine 
the phase of it. The fact that the first term contains only y , and the second 
only x ,. makes it convenient for us to take a pair of starting values of x, and 
y,. for successive approximation method adopted to solve the eq. (1) for the left 
side of eq. (1) is Fresnel's reflection coefficient and its absolute value must be 
nearly unit and its phase is to l ie in a range between zero and 71' 2 for 
sufficiently small values of L. The pair of starting value of zero mode has 
been refered to the results by How. 
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IV. Numerical F.esults 

1. Group velocity for ionospheric reflecting layer of perfect conductor. 
If the ionospheric reflecting layer can be regarded as a perfect conductor, then 

(IJ ,. becomes infinite, so that L vanishes. 
Accordingly, exp ( - 4n:Hy,.) • exp i27l'(2Hx,.-n )=l i. e. y,,=O 
and Xn=n/ 2T-l=nc 2hf. From eq. (2) X.,=(l - x,,2) 112 and y,,=O 
are obtained. 
Hence, X,. -f- r~J (dX,. /dw)={1 -(nc12hf)~}- 112 and group velocity of the mode n is 
given by 

( 7) 

From this expression it is seen that the group velocity decreases by s low degrees 
as the wave frequency falls and when it reaches the value nc 2h, the velocity 
retards infinitely, so the wave below this limiting frequency is unable to propagate. 
This limiting frequency is called the cut-off frequency of a waveguide. (In the 
following the term "cut-off frequency" used in the case of imperfectly conducting 
layer means the one defined by eq. (7) . ) 

If the height of reflecting layer is 90 km, the cut off frequencies are 1. 67 kc 
and 3. 33 kc for 11=1 and n=2, respectively. 

These cut-off frequencies are seen to be nearly the same as the limiting 
frequencies of tweeks shown in F igs. 1 (a) and 1 (b) . And it is also clear from 
eq. (7) that the velocity of wave of any frequency of the first order mode equals 
that of the twice large frequency of the second order mode. 

These facts lead to a conculusion that the Propagation time vs. frequency 
characteristics of fund3.mental and second harmonic tweeks can possibly b e explained 
by t he first and second order modes, respectively of the waveguide mode theory. 

t .. 

0, - .. ,..., 
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Fig. 2 Propagation times needed for waves 
of the first order mode to trave l 3,000 km 
when h - 90 km for various values of the 
ionospheric parameter "r 
(jr =oo corresponds to the perfectly conduc-
ting ref lection layer . 
Cut- off freq. is obtained by calculation 
based on the waveguide mode theory for 
height of 90 km of the perfectly conducting 
reflection layer . 

The propagation time vs. fre­
quency characteristics of first 
mode obtained by eq. (7) for 
3, 000 km propagation w ith 
h =90 km is shownin Fig. 2 by 
a curve marked with = . 

This curve compared with 
tweeks shown in Figs. 1 (a) 
and 1 (b) , both propagation 
time characteristics may be 
seen to resemble on the whole, 
though the comparison is not 
enough since the frequency 
range shown is lim ited and the 
time scales differ so. 

2. Ionospheric reflecting 
layer of imperfect 

cond uctor 

If the ionospehric reflecting 
layer is really a perfect cond-
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(b ) height of the ionospheric reflection 
layer h=90 km 

Fig. 3. Attenuation factor a,. of the 
firs t order mode 
The lines ab and cd are drawn 
assuming that the limiting attenu 
ation for waves to be observable 
at a receiving point is 80 db and 
the lower parts of these lines show 
possible regions of 3, 000 km prop 
agation and 5,000 km propagation, 
respectively. 

uctor the higher harmonic tweeks 
should be observable as well as the 
fundamenta l ones, for the attenuation 
factors of each mode are vanished 
then. But in practice the harmonic 
tweeks higher than the second have 
been hardly detected. This may surely 
means that the ionospheric layer 
should not be treated as a perfect 
conductor. 

In Figs. 3 (a), 3 (b) and 3 (c) the 
attenuation factors are plotted against 
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the ionospheric parameter (r),. for layer height II = 88, 90 and 92 km, respectively. 
These curves indicate that the attenuation increases greatly as the frequencies 

approach the cut-off frequencies and w, decreases, and they also increase when the 
layer height falls. This attenuation vs. frequency characteristics well explains 
the existnece of a lower limit of frequency of waves. The lines ab and cd in each 
of Figs. 3 (a) , 3 (b) and 3 (c) are drawn assuming that the limiting attenuation 
for waves to be observable is 80db, apart from the question of the radiated field 
intensity at the source. The line ab in each figure corresponds to 3, 000 km 
Propagation and cd corresponds to 5, 000 km propagation. Conditions for a wave of 
1. 8 kc to be detectable after 3, 000 km and 5, 000 km propagations are that values 
of (cJ , must be greater than 5 X 10~ and 1. 6x 10°, respectively for the reflecting 
layer height of 88 km. The vaule of w , depends on the electron density N and 
collision fre::)ueny "• but the distribution of both of these quantites against 
altitude differ with different observers. If we adopt the value of " given by M. 
Nicolet (1953) and that of N given by A. P. Mitra (1 957), (o,=5 X 10" sec ' will 
be produced for h = 88 km and eight hours after sunset. 

Instead of the group velocities the propagation times are plotted in Figs. 4(a) , 
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( a ) h 88 km 
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( b ) h= 90 km 

Fig. 4. propagation time needed for waves of the firs t order 
mode to travel a kilometer 

4 (b) and 4 (c) against wave frequency with the parametric variable of tcr for h= 
88, 90 and 92 km, respectively, which is a time needed for wave to travel a 
distance of one kilometer. 

These curves indicate that the propagation time increases markedly as 
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(c ) lz == 92 km 

wr=5 X10" and h =90 km , the 
difference of the attenuation factor 
between 3. 6 kc of second mode and 
1. 8 kc of first mode amounts to 
about 2ldb and that between 4. 4kc 
of second mode and 2. 2 kc of fi rst 
mode is about 17db. It is clear 
that the waves of second mode 
attenuate more quickly than the 
waves of first mode. In Fig. 6 
curves of propagation time per 1 km 
are plotted against frequency. It 
is seen that the propagation time 
of second mode is s lightly greater 
than that of first mode if we 
compare any frequency wave of 
first mode with the twice larger 
frequency wave of second mode. 
This differs from the case of 
per fectly conducting layer. This 
attenuation vs. frequency and 
propagation time vs. frequency 
characteristics of first and second 
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frequency approaches the cut off freque 
ncy, and ionospheric parameter w ,. decreases 
and the height of reflection layer lowers. 
And the d ifference of propagation time 
between any two frequencies a lso increases 
as the ionospheric reflective layer becomes 
more conductive and its h eight falls. The 
propagation time vs. f requency curves for 
3, 000 km travelling when h= 90 km are 
shown in Fig. 2 for <t.>,. = 5 x 10~ and 1 x 10°, 
r espectively. It is evident that this prop 
agation time vs. frequency characteristics 
makes it possible to account for the 
fundamental tweeks as in Prefectly 
conductive layer model. 

In Fig. 5 the attenuation factors of 
first and second order modes are shown 
against frequencies ranging from 1. 8 kc 
to 2. 2 kc and from 3. 6 kc to 5. 0 kc, 
respectively, for ct.>r =5x 10~ and h= 90 km. 

The attenuation factor of wave of any 
frequency of second mode is seen to be far 
greater compared with that of the wave of 
its half frequency in the first mode. When 

,(: ~~~ ,6<1. /.lllk "'' 

i. ::: '" ..... . 

' ·~-------- ---
10 

" " Z • , 1) J' l!f-lhl 

" J l ,, ,, ,, 
" " r' ~--t • 1 

i "' 
Fig. S. Comparision of t he attenuation 

factors b~tween the firs t and the 
second order modes when 

lz - 90 km and '"r-5 X l0~ sec-1 

order modes reasonably account for the existence of the fundamental and second 
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Jl. 7J f 
,, f ' H 

Fig. 6. Comparision of the propagation 
times between the first and the 
second order modes when 

h= 90 km and •·•r== and 5 X105sec- l 

TABEL 1 

harmonic tweeks and the reason 
why occurrences of the second 
harmonic tweeks are reduced. 
And also harmonic tweeks higher 
than the second are suppOsed to 
be explained by the correspOnding 
number of mode, and their more 
rapid attenuations can be expec­
ted, for Wait has shown that the 
higher the mode the greater the 
attenuation in the ranges of ror 

and f interested here. 
Table 2 shows the attenuation 

factor and propagation time of 
zero mode for frequencies lower 
than 2. 0 kc with (o, =5 X 10" and 
17=90 km. In this case the atten­
uation factors increase with 
frequency , but their magnitudes 
are very small compared with 
the first and second order modes 
and the propagation time decr­
eases with frequency, but they 
are near that of the light. From 
these characteristics of zero 
mode it is clear that in the 
lower part of VLF range waves 

f c j s 10 30 l 300 600 j 1 ,000 1,500 l 2,000 

CJ. db o.32 o.59 1 2.06 ~~ 4.10 5-59 l 7 .] 3 

l fl S 3-.7-0-9 -+--3.546 1 --~-3--366 3~1 3-347 
------~--------L------~------~------~------~----

of zero order mode are the most dominant ignoring the dependence of radiated 
field intensity on frequency at source and they travel fastest, so they reach a 
receiving paint more quickly than any waves of tweeks. Examples of the waves 
of zero mode can be seen in Figs 1 (a) and 1 (b) by the parts marked with C. 

If waves belonging to any single mode is selectively observed, the wavefrom 
received can be thought to suffer no distortion which is pOssibly caused by 
superpOsition of waves of other modes. Then the time intervals of successive wave 
crests will change exactly in accordance with the propagation time vs. frequency 
characteristics of the mode. If we record the waveform of tweeks through a low 
pass filter of cut off frequency about 3. 0 kc, the result shows that the waveform 
observed consists of waves corresponding to the zero and first order modes. But 
the waves of the zero order mode arrives so much earlier than the first order 
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mode, that the latter can be easi ly seperated from the former. In order to 
determine the propagation distance and height of reflection layer from the 
propagation time characteristics of tweeks, it seems best to make use of the waves 
corresponding to both modes, but then the duration time will be too long to 
measure with an e lectronic counting aparatus. Hence, it is advantageous to utili ze 
the wave of frequency between about 1. 8 kc and 2. 2 kc in which the variation 
of propagation time vs. frequency is marked. 

V. A graphical procedure to determine the propagation distance 

When the reflecting layer is treated as a perfect conductor, t he determination 
of the travelling distance and layer height from the propagation time 
characteristics of tweeks is performed by comparing the observed propagation time 
vs. frequency curve with curves previously calculated with eq. (7) for various 
values of distance and height. But this fit method is suppased to become somewhat 
com plicated in the case of imperfect conductor, because another parameter c~Jr is 
introduced. So. we tookd the following procedure. 

When the time needed for a wave of frequency f , kc to t ravel a kilometor is 
expressed by t(fi) , the propagation time T Cfi) for travelling d km is shown as 
T Cft)=d•l (/r). 

And for a pair of waves of frequencies I t and I J if we write 
t(f,)- tCfJ)=~t(f,-J1) and T(/;)-T(/J)=~T(/t-fJ) , then it will be 

~T(fi- fJ )=d• ~l (f!-/J. ) , ( 8 ) 

Taking another pair of waves f, and f,, we can derive the next equation, 

, .. 

Fig. 7. Ratio of "'-1 ( f t-IJ) to ::.t ( !t­

Im) 
::.1 ( It - h) and "'-I (It - fm ) ex pres 
the propagation time difference 
between wave frequencies !I and fJ, 

s ft and / 11., res pectively of the first 
order mode. The lines ab, cd and ef 
show values of "'-1 ( ].9 - 2.0)/61(2 .0 -
2. 2) = 0. 888, "'-1 (1.9 - 2.2)/0.1(1 .8 - 2.0) 
- 0.785 and 61( J.S - J.9)/::.t(1 .8 - 2.2) 
- o. 445, respectively, wh ich are 
obtained by calculation using the 
va lues of ::.1 g iven in Table 2. 
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(9) 

Quantites given by a tweek observed are always the differences of the propagation 
time between any pair of frequency so the left sides of eqs. (8) and (9) are known. 
The right side of eq. (9) contains two unknown quantities h and '''r but it can 
be numerically ca lculated for given values of both the quantities. These unknown 
quantities are determined graphically. The procedure will be explained with an 
illustration. In Fig. 7 t he three curves of each group A, B and C show 
~t ( 1. 9-2. 0) .lt ( 2. 0 - 2. 2) , .lt (1. 9 2. 2) · .lt (1. 8 - 2. 0) and 
~t ( 1. 8 - 1. 9) / .lt ( 1. 8- 2. 2), respectively against r!),. for values of h = 92, 90 and 88 
km. If measured values of .lT are those as shownl in Table 2, then the values of .lt 

TABEL 2 

It - It I 1 ° 8 2 0 2 I 1 0 8 2 ° 0 

.J.c(ft- /; ) ms ~ 7~~- 5.355 

- .J.t(f;- f t)i<S +-~--2-.5-28---11--]-.-78_5_ 

~~ ;-•·- -r----.---.,---r-r-rr.--,--..---, 

" 

~b 

&/ 
.... !-___l-..1..--+..L...J....J...~ ... ~---1 .,._. 

Fig. 8. <Jr- h plane 
Values of ( •·•nh ) at the crossing 
points between A and ab, Band 
cd and C and ef in Fig. 7. are 
plotted in this plane and then 
connected by curves ab, cd and 
ef , which are seen to cross at 
a point '·'r 5X]05 and h ""90. 

Lines ab, cd and ef in Fig. 7 
represent these values. Values 
of h and r!J , at the crossing 
paints between A and ab, B 
and cd and C and ef are read 
and plotted in a w , - /z plane 
and then connected by curves 
of ab, cd and ef as shown in 
Fig. 8. These three curves are 

].8 ].9 

3-378 

].126 

l-9 2.2 \.9 z.o 1 z.o 2.2 

4. 206 ----'-! __ 1_. 9_so_\ 
].402 1 o.66o ! 

-----'------

2-229 

0.743 

( 1. 9- 2. 0) .lt (2. 0- 2. 2) . .l f ( 1. 9- 2. 2) .lt 
(1.8-2. 0) , and .l/ (1.8 - 1.9) .lt (1.8 2.2) 
become 0. 888, 0. 785 and 0. 445, respectively. 

~tll,·.llt) 

,NI/tiM l f j 

... 
'" 

_, , 

,,, 

'" 
... 

"' 

'" 
-... 

1;1 ~ •• r---!;-----L-.l--!,--LLL.l.,
10
.---!:---...J 01 

-..-·• 

Fig. 9 . .J.t( ].9 2.0) and.J.I ( J.9 - 2.2) of the 
first order mode are plotted agains t '•'r 

for h -=88, 90 and 92km. 
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seen to cross at a point (!1,· = 5 .;< 10~ and h=90 km. But in general, these 
three curves do not always intersect at one point, so it is necessary to draw as 
many curves as possible and the most probable point will be determined from the 
group of crossing points. 

Now, since the values of the pair h and c<Jr are obtained, ..).t (f ,-h) becomes 
known. From curves .:!1/ ( 1. 9 2. 0) and :!it ( 1. 9- 2. 2) plotted in Fig 9 against (•Jr 

for h = 88, 90 and 92 km, the values of :!it ( 1. 9 2. 0) and ~t (1. 9 - 2. 2) at the 
point It = 90 km and (1Jr=5 X 10" are read as 9. 660 and 1. 402, respectively. From a 
pair of ~~ and :!iT the propagation distance can be decided by eq. (8) but in 
general , different results may be obtained for different pairs. In the present case 
the results obatined from the two pairs of ~~ ( 1. 9·-2. 0) , :!iT (1. 9- 2. 0) and M 
(1.9- 2.2), .:!iT ( l.9 - 2.2) are found to give the same value of about 3,000 km. 
The fact is that this illustration has been prepared by a calculation assuming 
(a,=5 X IO:;, h =90 km and d=3,000 km. 

Now, if we assume a perfectly conducting layer for values of ~T in Table 2, 
the distance determined wi ll differ. So, we rewrite the eq. (8) distinguishing by 
a dash as 

(10) 

In Practice ~T and :!iT' should be of the same value, for they are measured fom 
the s:1me observational data. P ccordingly, from eqs. (8) and (10) 

(11) 

can be derived. 
This means that the ratio of distances determined under each assumption of 

a perfectly conducting layer and an imperfectly conducting one, equals the ratio 
of the differences of propagation time calculated theoretically for each case and 
it does not depend on the propagation distance, but it will more or less vary as 
the pair of reference frequencies are changed. The dependence of this variation 
on the pair of reference frequencies must be examined, but it has not yet been 
studied systematically. We will determine the ratio d' / d in the following procedure. 
Since .:!1•' equals .6.T, the next successive equations come into existence. 

~~ C/i - .fJ) 
~~ u~-f,,.) 

:!iT C/t-/J) 
:!iT (/t-/m) 

.:!iT'C/t-/J) _ ~/'(/t-ft) 
:!iT'(/l-/n7J - :!it'(f,-J~,) 

Accordingly, ~/'(1.9-2.0) ~!'(2.0-2.2)=0.888 or 
:!it'(2. 0- 2. 2) .:!11' (1. 8 - 2. 0)=0. 416 is derived from the given values :!iT in Table 2. 
Curves ~1' ( 1.9 -2.0) :!l t' (2.0 2. 2) and .:!1 1' (2.0 2.2) .:!11' (1.8-2.0) are plotted in 
Fig. 10 against h. 

Using these curves we read the values of It corresponding to values of the ratio 
0. 888 and 0. 416 as 94.1 and 94.3 km, respectively. The determined values of h 
are seen to be nearly the same. From curves .:!1/' plotted in the same figure :!it' 
(1. 8 - 2. 0)=1. 640 and .:!lt'O. 9 2. 0)=0. 602 are obtained for h=94. 2 km. Hence, 
from eq. (10) 

d' d=:!il 0. 8 - 2. 0) ' :!it' (] . 8- 2. 0)=1. 088 or 

d' d= ~t (1. 9- 2. 0) .:!ll ' ( l. 9 - 2. 0)=1. 096 
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Fig. 10. For the case of perfectly 
conducting reflection layer D.t 1 

(1 .8 -2. 0), 6.1'(1.9 - 2.0) and ::.t 
(1.9-2.0)/ -"1' (2.0 - 2.2), -"1 1 (2.0 
-2.2)/ ut 1 (1 .8 - 2.0) of the first 
order mode are plotted against 
the layer height h 1 • 

(the averaged value 1. 092) can be decided. 
These results signify that if we 

treat an imperfectly conducting layer 
characterized by wr=5Xl05 and h =90 
km as a perfectly condcting layer, the 
travelling distance and reflecting layer 
height are determined to be about 9 96 
and 5 96 larger, respectively. 

If the value of w, is reduced more 
the results determined will become 
larger. 

VI. Conclusions 

It is shown that the existence of the 
lower limiting fre::juencies and the 
propagation time vs. frequency 
characteristics of tweeks can be well 
explained respectively by the attenuation 
factor and the group velocity calculated 
numerically based on waveguide mode 
theory. 

And it is also shown that each order 
of harmonic tweeks corresponds to each 
order number of the mode and that the 
observational fact that the second har­
monic tweeks occur less frequently than 
the fundamental ones is due to the 
difference in the magnitude of the atte-
nuation factors between the two compo 

nent tweeks. In order to determine the propagation distance and reflection layer 
height from the propagation time vs. frequency characteristics of t weeks it is 
advantageous to make use of the p~rt of the fundamental tweek in frequency range 
between about l. 8 kc and 2. 2 kc, because the waves in this frequency range can 
be easily seperated from the waves of other modes, consequently they are free 
from any possible distortions caused by an overlapping of waves of other modes. 
In the determination of distance and height, if the ionospheric reflecting layer is 
treated as a perfect conductor, errors are introduced. It is theoretically known 
that the ratio of distances determined under perfect and imperfect condctor 
assumptions equals the ratio of the differences in propagation time between any 
two frequencies calculated under each assumption. 

For instance, when the ionospheric layer can be characterized by ,,>,·=5X 10~ 
and h=90 km, the ratio is about 1. 09, and h becomes about 94. 2 km. The ratio 
and h will be larger as the value of wr is reduced. But the actual values of w r 

and h are not yet finally known, so the errors can not be correctly estimated 
now. On the contrary, we expect that this analysis of tweeks wi ll give some 
informations about these quantities and further expect that it wi ll contribute to 
the study of the whistler propagation problem and to the fixing of atmospherics 
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by one-station method. 
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