
An Improved Particle Swarm Optimization

Algorithm Using Information of

Second Best Particles

Young-Bin Shin

Acknowledgements

I am deeply indebted to my supervisor Prof. Eisuke KITA for all the help and suggestions.

Without his mentorship to accomplish this research, I would not be able to finish my work.

I again express my gratitude to Prof. Eisuke KITA for his efforts. I would like to express

my appreciation to the examiners of this thesis, Prof. Takaya ARITA and Prof. Masahiro

OHKA for their invaluable time and efforts. I would like to thank all the students of

KITA Lab for their support and friendship. I would also like to thank my family for their

moral support, love and encouragements. Finally, I would like to express my appreciation

to Ministry of Education, Culture, Sports, Science and Technology in JAPAN for their

financial support through the scholarship.

Young-Bin Shin

i

ii

Contents

Acknowledgement i

1 Introduction 1

1.1 Background . 1

1.2 Aim of Study . 4

1.3 Composition of Thesis . 5

2 Particle Swarm Optimization 7

2.1 Particle Swarm Optimization(PSO) . 7

2.1.1 Optimization Problem . 7

2.1.2 Concept of Original PSO . 7

2.1.3 Update Rules of Position and Velocity Vectors 8

2.2 PSO Variants . 11

2.2.1 Basic PSO . 11

2.2.2 PSO With Inertia Weight (PSO-w) 11

2.2.3 PSO With Constriction Factor (PSO-cf) 11

2.2.4 Local PSO-w And Local PSO-cf . 12

2.2.5 Union of Global And Local PSOs (UPSO) 12

2.2.6 Comprehensive Learning PSO (CLPSO) 13

3 Proposed PSO algorithm 15

3.1 Introduction . 15

3.2 Proposed PSO Algorithms . 15

3.2.1 PSO with Second Global best Particle (SG-PSO) 15

3.2.2 PSO with Second Personal best Particle (SP-PSO) 17

3.2.3 Trajectory of Particles . 20

3.2.4 Convergence History of All Particles 24

3.3 Effect of Parameters on SG-PSO and SP-PSO 26

3.3.1 Benchmark Functions . 26

3.3.2 Comparison of Experimental Results 29

iii

3.4 Conclusion . 30

4 Search Performance Evaluation of Proposed Algorithms 33

4.1 Introduction . 33

4.2 Test Functions . 33

4.3 Numerical Results . 43

4.4 Conclusion . 43

5 Application to Packing Problem 51

5.1 Introduction . 51

5.2 Packing Problem . 52

5.2.1 Optimization Problem . 52

5.2.2 PSO Implementation . 53

5.2.3 Optimization Process . 54

5.3 Numerical Examples . 56

5.3.1 Case A . 56

5.3.2 Case B . 62

5.4 Conclusion . 62

6 Application to Truss Structure Design 63

6.1 Introduction . 63

6.2 10-Bar Truss Structure Design . 63

6.3 PSO Implementation . 65

6.4 Numerical Results . 66

6.5 Conclusion . 66

7 Conclusion 71

Reference 74

iv

List of Figures

2.1 Update of position and velocity vectors of ith particle. 8

2.2 Flowchart of original PSO algorithm. 10

3.1 Search process to find global best position. 16

3.2 Flowchart of SG-PSO algorithm. 18

3.3 Flowchart of SP-PSO algorithm. 21

3.4 Trajectory of global best particles in original PSO. 22

3.5 Trajectory of first and second global best particles in SG-PSO. 23

3.6 Trajectory of global best particles in SP-PSO. 23

3.7 Convergence history of all particles (Original PSO). 24

3.8 Convergence history of all particles (SG-PSO). 25

3.9 Convergence history of all particles (SP-PSO). 25

3.10 3D graph of two-dimensional Sphere function. 27

3.11 3D graph of two-dimensional Rosenbrock function. 27

3.12 3D graph of two-dimensional Rastrigin function. 28

3.13 3D graph of two-dimensional Griewank function. 28

3.14 3D graph of two-dimensional Schaffer’s f6 function function. 29

4.1 3D map of two-dimensional Sphere function. 34

4.2 3D map of two-dimensional Rosenbrock function. 35

4.3 3D map of two-dimensional Schwefel function. 35

4.4 3D map of two-dimensional Rastrigin function. 36

4.5 3D map of two-dimensional Weierstrass function. 37

4.6 3D map of two-dimensional Shifted Sphere function. 37

4.7 3D map of two-dimensional Shifted Schwefel’s Problem 1.2 function. 38

4.8 3D map of two-dimensional Shifted Rosenbrock function. 39

4.9 3D map of two-dimensional Shifted Rastrigin function. 40

4.10 3D map of two-dimensional Shifted Rotated Rastrigin function 40

4.11 3D map of two-dimensional Shifted Rotated Weierstrass function. 41

4.12 Convergence history in Sphere function. 45

4.13 Convergence history in Rosenbrock function. 45

v

4.14 Convergence history in Schwefel function. 46

4.15 Convergence history in Rastrigin function. 46

4.16 Convergence history in Weierstrass function. 47

4.17 Convergence history in Shifted Sphere function. 47

4.18 Convergence history in Shifted Schwefel’s problem 1.2 function. 48

4.19 Convergence history in Shifted Rosenbrock function. 48

4.20 Convergence history in Shifted Rastrigin function. 49

4.21 Convergence history in Shifted Rotated function. 49

4.22 Convergence history in Shifted Rotated Weierstrass function. 50

5.1 Flowchart of the parking problem by using SG-PSO. 55

5.2 Packing region (Case A). 56

5.3 Maximum item numbers in Case A. 57

5.4 Fitness convergence of SG-PSO in case A. 58

5.5 Placement conditions of using SG-PSO in case A. 58

5.6 Packing region (Case B). 59

5.7 Maximum item numbers in Case B. 60

5.8 Placement conditions of using SG-PSO in case A. 61

6.1 10-bar truss structure. 64

6.2 10 bar truss optimized in the original PSO, SG-PSO and SP-PSO. 67

6.3 Convergence history of the original PSO, SG-PSO and SP-PSO. 69

vi

List of Tables

3.1 Benchmark functions for c3 and c4: Trelea(2003). 26

3.2 Estimation values on SG-SPO. 31

3.3 Estimation values on SP-PSO. 32

4.1 Global minimum and search range. 42

4.2 Results of SG-PSO, SP-PSO and other PSOs for 11 test functions. 44

5.1 Swarm size, maximum iteration and other parameters. 56

5.2 Comparison of original PSO and SG-PSO in case A. 56

5.3 Effect of parameter Ps in case A. 57

5.4 Comparison of original PSO and SG-PSO in case B. 59

5.5 Effect of parameter Ps in case B. 60

6.1 Geometry parameters and material properties. 65

6.2 Cross-sectional area and constraint satisfaction. 68

vii

viii

Chapter 1

Introduction

1.1 Background

Despite the rapid development of computer performance, many optimization problems,

particularly combinatorial optimization problems, have approached calculation time and

computer capacity limits due to increase of the problem size. Combinatorial optimization

problems crop up in data analysis, integrated circuit layouts and pattern recognition in

engineering and financial investment, inventory management and production schedules in

business administration. In addition, they exist in a variety of fields, such as economics

and biology.

Since, in the optimization problem, realizable solutions should be obtained in actual

time, a heuristic approach is often used. Heuristic approaches find a practical solution for

a certain level of satisfaction, rather than seeking to obtain an ideal method, since it is

impossible to consider all variables and conditions. Therefore, the heuristic approach is

available when there is no method to solve the problem or the solution is not yet feasible.

In addition, a heuristic approach is used either when a problem has not been clearly

defined or has only incomplete information.

The heuristic method obtains sufficient knowledge or efficient solutions using repetition

and experience gained via trial and error. This heuristic technique has the advantage of

finding a suitable solution in a limited execution time to a problem that is difficult to

prove mathematically.

Optimization is a methodology for finding a solution within constraints after formal-

izing a decision-making problem as an optimization model to achieve a goal. Meanwhile,

the heuristic method is a theory that improves the repeatability in optimization problems

by specifying the computation method.

A Heuristic algorithm enables an extensive search of a solution space. Due to there

being no guaranteed optimal solution, the search becomes a a stochastic optimization

model in heuristic algorithms. The optimization method study is difficult to develop for

1

solving problems with different characteristics. Accordingly, for high-level methods that

are applicable to various problems and have no constraining information about specific

problems, meta-heuristics are used [55, 19]. Meta-heuristic algorithms are being studied

for solving practical problems, which are acceptable for combination optimization prob-

lems by modeling natural phenomena and behavior [43, 1].

The primary meta-heuristic algorithms have common concepts and theories that are

simple and superior search performance in solution space; however, they have two prob-

lems. Firstly, they are not versatile, despite the basic features of meta-heuristics. Sec-

ondly, search success rate and search time of the algorithm are relatively low. To improve

these problems, the improved algorithms of the meta-heuristic one are discussed in this

thesis.

Combinatorial optimization problems belong to NP-hard problems, for which it is

difficult to find the optimal solution in the polynomial time. To solve NP-hard problems,

in the last few decades, many studies have been published in which several practical

optimization problems have been addressed with various meta-heuristic algorithms such

as Genetic Algorithms (GA) [24], Simulated Annealing (SA) [53] and Particle Swarm

Optimization (PSO) [26]. These meta-heuristic algorithms have different performance

levels in the search rate and the efficiency of the search time by each algorithm property

and problem type.

Genetic algorithms (GA) are applicable to various types of problems; however, the

search time has low efficiency in large search spaces. Simulated Annealing is also a

time-consuming process. Therefore, many improved meta-heuristic algorithms have been

applied to given NP-hard problems to improve the search time and local optimization.

Furthermore, the hybrid method has been proposed to combine two or more algorithms

to improve the performance of meta-heuristic algorithms [20, 22, 35, 48]. Two algorithms

can be combined in a serial process according to their characteristics. Its combination

usually connects a part of the preprocessing process or data processing.

Genetic Algorithms (GA) are one of the most widely used in stochastic global search

methods for efficiently solving NP-hard problems, since Holland [24] first introduced GA

in 1975. Holland presented the basic concepts of GA such as selection, recombination,

crossover and mutation, based on Darwin’s evolution theory, to search in a solution space.

Goldberg [16] presented the GA as a concise approach to solving the search optimization

of various types. After his work, GA became a useful technique for optimization problems.

Moreover, since Dave Davis [33, 34] also discussed the utility of GA in advanced prob-

lems in 1991, GA has been improved gradually as a proper method for solving NP-hard

problems. The feature difference of GA and other algorithms is to set the representation

of actual variables. In GA, each variable is encoded in a string, called a chromosome. A

population, a group of strings, is used to obtain genetic recombination through crossover

2

and mutation.

Simulated Annealing (SA) is a generic probabilistic meta-heuristic for the global op-

timization problem of locating a good approximation to the global optimal solution of a

given function in a large search space [11, 14]. Simulated Annealing was developed by

Kirkpatrick et al. [53] in 1983; the basic idea is to imitate the annealing process, a crystal

is heated and then cooled slowly until it has a regular crystal lattice configuration, in

solid-state physics. They suggested an analogy between minimizing the cost function of a

combinatorial optimization problem and reducing the energy of a solid via slow cooling,

which is the relationship between thermodynamic processes and a heuristic method for

search performance.

An algorithm for the efficient simulation of the evolution of a solid to thermal equilib-

rium has already been proposed Metropolis et al. [44] in 1953. The original Metropolis

scheme required that the state of a substance in a thermodynamic system was chosen at

an energy and temperature. When reducing the temperature in the annealing process,

the resultant change in the energy is computed. The new configuration of the substance

lattice is probabilistically accepted by the resulting energy, it uses a heuristic solution.

Particle Swarm Optimization (PSO), which was presented in 1995 by Kennedy and

Eberhart [26], is based on a metaphor of social interaction such as birds flocking or fish

schooling. PSO is a population-based optimization algorithm, which can be implemented

and applied easily to solve various function optimization problems, or problems that

can be transformed to a function minimization or maximization problem. In the PSO

algorithm, each particle in the swarm has a position vector and a velocity vector in the

search space at any one time. Each particle remembers its previous own best position

vector, called the personal best particle position, and the overall best position among the

swarm of particles is called global best particle position. The velocity vector and position

vector of the each particle are updated according to a scheme.

Although the advantage of PSO is the simplicity of its theory, its ease of implemen-

tation and high-efficiency operation, it has the drawback of premature convergence by

becoming trapped into a local optimum.

Many researchers have achieved improved performance by parameter adjusting to make

up for the defects of PSO [25, 61, 2, 23]. F. Van den Bergh investigated swarm size in

PSO [13]. If the swarm size is large, the initial degree of dispersion grows, and the search

number is increased by every iteration in the search space. Meanwhile, the CPU time is

also increased, and the search becomes a random search. The optimal swarm size depends

on the problem, and it requires a larger swarm size when the search space is more complex.

In the first PSO algorithm, there is the problem that the speed of the particles grad-

ually increases. In particular, when there is a large difference between the personal best

position and the global best position, divergence frequently occurs. Eventually the par-

3

ticles reach a divergence phenomenon when they fly off the outside of the search space.

To avoid this problem, a speed limit method was devised to limit the particles’ maximum

speed [63].

Inertia weight is a parameter that controls the influence of a particle’s previous ve-

locity. If the inertia weight is large, the global search capability is enhanced, since the

particle’s speed will be faster. On the other hand, if the inertia weight is set up as a small

value, the local search capability is enhanced by reducing the velocity of the particle.

P. N. Suganthan [45] and G. Venter [21] introduced linear and non-linear methods that

determine the weight inertia depending on the iteration number.

In PSO, the main parameters are the acceleration coefficients which determine the

participation (weighting) of the social component (global best position) and the cognitive

component (personal best positions) in the velocity scheme of particles. In general, the

acceleration coefficients use a fixed value (constant); some researchers have proposed

variation values to improve the performance of the PSO [7, 8, 38].

Thus, the efficiency of problem solution depends on the control of parameters in PSO.

However, finding the optimal parameter values via validation such as a cross-validation

procedure is difficult, since the optimal parameter is varied for every problem.

In this thesis, the author proposes an improved PSO algorithm that upgrades the

update scheme of the particle, rather than improve the parameters. As mentioned earlier,

the particles search in a solution space by updating the velocity and position vectors.

Each particle updates a new position to share information of global and personal best

positions. In this regard, it should be noted that it shares information about the global

and personal best positions.

In PSO, the change in the position of each particle reduces as time passes, which is

called convergence. At this time, the global best position and personal best position of

all particles are themselves. Therefore, when all particles converge to the local optima,

they no longer share information.

In this research, to activate the particles’ motion, a second best particle position is

used as new information that can be shared. The objective of this study is described in

the next section.

1.2 Aim of Study

In this thesis, the author will propose new update schemes of particle velocity vectors

in PSO to improve their search performance. One of the problems with heuristic algo-

rithms is the premature convergence problem. Premature convergence means the too

early convergence of a population of potential solutions, resulting in not the global opti-

mal solution, but a local (sub-) optimal solution. This study in particular forces a second

4

best particle position to avoid local optimization. The second best particle positions are

employed to avoid the PSO algorithm’s prematurity problem.

The main objective of this thesis is to achieve exceptional performance when using the

proposed PSO algorithm. The effectiveness of the proposed PSO algorithm is estimated

through three benchmark problems. The first benchmark problem uses test functions;

researcher have commonly used test functions to evaluate their algorithms [41, 32, 31].

The proposed PSO algorithms are compared with different PSO variants involving the

original PSO using 11 test functions. Average values are obtained which are objective

function values, and the author observed error values between the average function value

and the global minimum. Furthermore, the author investigated which the proposed PSO

algorithm more rapidly converges to an optimal solution.

The second benchmark problem is a two-dimensional packing problem that maximizes

the number of the packed items in a region without items overlapping. The packing prob-

lem is a typical NP-hard problem; it is extremely difficult to find the optimal solution in

polynomial time. In this study, the author consider a two-dimensional packing problem in

which the packing region is arbitrarily polygon-shaped. This packing region is character-

ized by any researcher that does not apply. Existing packing problems have used irregular,

square and circular items to pack into a rectangular or circular region [58, 30, 12, 36, 49].

This study is meaningful for applying the new algorithm in the new packing problem.

Finally, the third benchmark problem is truss optimization. This study focuses on

size optimization in which design variables are cross-sectional areas with allowable stress

constraints. The proposed PSO is applied to a 10-bar truss structure to compare exper-

imental results. From the results, the author examines the convergence property of the

proposed PSO algorithms.

1.3 Composition of Thesis

This thesis is organized as follows. Chapter 1 is an introduction including background

and previous relevant algorithms.

In chapter 2, the original Particle Swarm Optimization and different PSO variants

are introduced. The particle’s position vector and velocity vector, update schemes and

flowchart are described.

In chapter 3, the proposed PSO algorithms using second best particle positions are

described. For discussing the effect of the parameters on the proposed PSO algorithms,

some numerical experiments are descried in this chapter.

In chapter 4, the proposed PSO algorithms are compared with different PSO variants

on the test functions. Experimental results, function values and convergence histories are

investigated to determine utility of proposed PSO algorithms.

5

In chapter 5, the analysis of a two-dimensional packing problem by using the proposed

PSO is described. Original PSO and proposed PSO are applied for solving the packing

problems which have arbitrarily polygon-shaped regions. The objective is that same items

are packed in the region without their overlap.

In chapter 6, the truss structure optimization is described as a practical application.

An overall weight minimization of a 10-bar truss structure is considered as an example.

Finally, in chapter 7, the conclusion is summarized again.

6

Chapter 2

Particle Swarm Optimization

2.1 Particle Swarm Optimization(PSO)

2.1.1 Optimization Problem

When the constraint conditions are negligible, the optimization problem can be defined

as follows.

The objective function f is minimized so that

f(x)→ min
x

The design variables are given as follows.

x = {x1, x2, · · · , xD}T

where the parameter D denotes the total number of design variables.

2.1.2 Concept of Original PSO

Particle Swarm Optimization (PSO) was presented in 1955 by Kennedy and Eberhart

[26], based on the social behaviour such as bird flocking and fish schooling in nature. In

fish schooling, each fish is defined as a particle in the search space, and its objective is to

find the feed.

In the PSO algorithm, the particles represent potential solutions of the optimization

problem and then, the particles search for the optimal solution of the problem in the

feasible search space. A particle i in the swarm has a position vector xi(t) and a velocity

vector vi(t) in the search space at time t. Each particle has memory and hence, can

remember the best position in search space it ever visited. The satisfaction of the particle

i for the design objective is estimated by the objective function f(xi(t)).

7

Figure 2.1: Update of position and velocity vectors of ith particle.

The position vector at which each particle takes the best fitness function is known as

the personal best particle position vector xp
i (t) and the overall best out of all particles in

the swarm is as global best particle position vector xg(t).

2.1.3 Update Rules of Position and Velocity Vectors

The position vector xi(t) and the velocity vector vi(t) are updated by the global best and

the personal best particle position vectors as shown in Fig. 2.1.

The position and the velocity vectors of the particle i (i = 1, · · · , N) are updated

according to the following schemes

xi(t+ 1) = xi(t) + vi(t+ 1) (2.1)

vi(t+ 1) = wvi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)) (2.2)

where w is the inertia weight, c1 and c2 are acceleration coefficient, and t is the time-step,

called iteration number. The variable r1 and r2 are random numbers in the interval [0, 1].

The parameter N is the swarm size or the total number of particles in the swarm.

The inertia weight w governs how much percentage of the velocity should be retained

from the previous time step to the next time step. Generally the inertia weight is not fixed

but varied as the algorithm progresses. The inertia weight w, in this study, is generally

updated by self-adapting formula as

w = wmax − (wmax − wmin)×
t

tmax

(2.3)

8

where the parameter wmax and wmin denote the maximum and minimum inertia weight,

respectively. The parameter t and tmax are the iteration step and the maximum iteration

steps in the simulation, respectively.

The cognitive parameter c1 and social parameter c2 determine the relative pull of xp
i

and xg. According to the recent work done by Clerc [37], the parameters can be taken as

c1 = c2 = 1.5.

The original PSO algorithm is summarized as follows and flowchart is given in Fig.

2.2.

1. Initialize iteration number: The iteration number t is initialized as t = 0. The

maximum iteration step tmax and swarm size N are specified.

2. Initialize particle position and velocity vectors: The particle position vector

xi(t) and velocity vector vi(t) are initialized with random numbers.

3. Evaluate fitness function: Fitness functions f(xi(t)) is evaluated for all particles.

4. Check convergence criterion: If t = tmax, the process goes to the next stop.

Otherwise, the process is terminated.

5. Update personal best particle position: The set is defined as follows.

Sp(t) = {Sp
j (t)} =

{
{xp

i ,xi(t)} (t=0)

{xp
i (t− 1),xi(t)} (o/w)

}
The personal best particle position vectors are updated as follows.

xp
i (t)← arg min

Sp
j (t)∈Sp(t)

f(Sp
j (t))

6. Update global best particle position: The set is defined as follows.

Sg(t) = {Sg
j (t)} =

{
{xp

1(t), · · · , ,x
p
N(t)} (t=0)

{xg(t− 1),xp
1(t), · · · , ,x

p
N(t)} (o/w)

}
The global best particle position vector is updated as follows.

xg(t)← arg min
Sg
j ∈Sg

f(Sg
j)

7. Set the particle number: Particle number i is initialized as i = 1.

8. Check swarm size: If i ≤ N , process goes to the next step. Otherwise, process

goes to the Step 11.

9. Update particle position and velocity vectors: The position vector xi(t+1)

and the velocity vector vi(t + 1) of the particle i are calculated by Eqs. (2.1) and

(2.2), respectively.

10. Update the particle: The particle number is updated by i = i+ 1, and process

goes to Step 8.

11. Update iteration number: The iteration number is updated so that t = t + 1,

and process goes to Step 3.

9

Figure 2.2: Flowchart of original PSO algorithm.

10

2.2 PSO Variants

Several PSO variants have been proposed by some researchers. Their update rules of

position and velocity vectors can be summarized as follows.

2.2.1 Basic PSO

In the first idea, the position and the velocity vectors of the particle i (i = 1, · · · , N) are

updated according to the following schemes.

xi(t+ 1) = xi(t) + vi(t+ 1) (2.4)

vi(t+ 1) = vi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)) (2.5)

where c1 and c2 are acceleration coefficients, and t is the time-step, called iteration number.

The variable r1 and r2 are random numbers in the interval [0, 1]. The parameter N is the

swarm size or the total number of particles in the swarm.

At the right hand side of Eq. (2.5), the second and the third terms are named as the

cognitive and the social components, respectively. The update rule of the velocity vector

is simple because it is defined as the simple summation of the velocity term at the present

time-step vi(t), the cognitive component and social components. Therefore, I will name

it as the basic PSO.

2.2.2 PSO With Inertia Weight (PSO-w)

Shi and Eberhart [62] proposed inertia weight w(PSO-w) into the original PSO. The

inertia weight is used to balance the global and local search abilites.

The update rule of the position vector of the particle i (i = 1, · · · , N) is identical to

that of the Basic PSO; Eq. (2.4). The velocity vector of the particle i (i = 1, · · · , N) is

updated according to the following rule.

vi(t+ 1) = wvi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t)) (2.6)

where w is the inertia weight, c1 and c2 are acceleration coefficients, and t is the time-step,

called iteration number. The variable r1 and r2 are random numbers in the interval [0, 1].

The parameter N is the swarm size or the total number of particles in the swarm.

2.2.3 PSO With Constriction Factor (PSO-cf)

Clerc and Kennedy [39] introduced PSO with constriction factor (PSO-cf).

The update rule of the position vector of the particle i (i = 1, · · · , N) is identical to

that of the Basic PSO; Eq. (2.4). The velocity vector of the particle i (i = 1, · · · , N) is

11

updated according to the following rule.

vi(t+ 1) = K[vi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t))] (2.7)

where K ∈ [0, 1] is constriction factor for improvement of convergence velocity.

2.2.4 Local PSO-w And Local PSO-cf

Local version of PSO with inertia weight (Local PSO-w) and constriction factor (Local

PSO-cf) were introduced by Kennedy and Mendest [27]. They suggested that a small

neighborhood might be more suitable to complex problems while a larger neighborhood

might perform better on simple problems.

In the Local PSO-w, the update rule of the position vector of the particle i (i =

1, · · · , N) is identical to that of the Basic PSO; Eq. (2.4). The velocity vector of the

particle i (i = 1, · · · , N) is updated according to the following rule.

vi(t+ 1) = wvi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g
i (t)− xi(t)) (2.8)

where xg
i (t) is best particle position vector in the neighborhood.

In the Local PSO-cf, the velocity vector of the particle i (i = 1, · · · , N) is updated

according to the following rule.

vi(t+ 1) = K[vi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g
i (t)− xi(t))] (2.9)

2.2.5 Union of Global And Local PSOs (UPSO)

Parsopoulos and Vrahatis [17] focused on union of global and local PSOs, which is named

as a unified particle swarm optimization(UPSO). In UPSO, the update rule of the position

vector of the particle i (i = 1, · · · , N) is identical to that of the Basic PSO; Eq. (2.4).

The velocity vector of the particle i (i = 1, · · · , N) is updated according to the following

rule.

vi(t+ 1) = uGi(t+ 1) + (1− u)Li(t+ 1)) (2.10)

where Gi(t+1) and Li(t+1) are velocity vector of particle in Global PSO-cf and in Local

PSO-cf, respectively. The parameter u ∈ [0,1] is a parameter called the unification factor,

which affects the global and local components.

According to the algorithms of Global PSO-cf and Local PSO-cf, the particle position

vectors Gi(t+ 1) and Li(t+ 1) are calculated from the following equations, respectively.

Gi(t+ 1) = K[Gi(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g(t)− xi(t))] (2.11)

Li(t+ 1) = K[Li(t) + c1r1(x
p
i (t)− xi(t)) + c2r2(x

g
i (t)− xi(t))] (2.12)

12

2.2.6 Comprehensive Learning PSO (CLPSO)

Liang et al. [29, 52] proposed a comprehensive learning PSO (CLPSO), which uses a

novel learning strategy whereby all other particle’s historical best information is used to

update a particle’s velocity.

In CLPSO, the update rules of the position and the velocity vectors of the particle

i (i = 1, · · · , N) are defined as follows.

xi(t+ 1) = xi(t) + vi(t+ 1) (2.13)

vi(t+ 1) = {vi1(t+ 1), vi2(t+ 1), · · · , viD(t+ 1)} (2.14)

where vid(t+ 1) denotes the d−th component of the vector vi(t+ 1).

The update rule of the velocity vector of the CLPSO is very different from the others

because the velocity vector is updated by each component. The velocity vector component

vid(t+ 1) is updated by the following rule:

vid(t+ 1) = wvid(t) + crid(x
p
Id(t)− xid(t)) (2.15)

where d ∈ {1, 2, 3, ..., D} and xp
Id(t) denotes the personal best particle position for updat-

ing dth dimension of particle i.

The parameter xp
Id(t) is selected from the two personal best particles. One is the

personal best particle of the particle i and the other is that of the other particle than the

particle i, which is referred to as the particle a. The selection of the personal best particle

depends on the learning probability Pc.

1. The learning probability Pc is specified.

2. A random number P is generated.

3. If P > Pc, the personal best particle of the particle i is selected; xp
Id(t) = xp

id(t).

Otherwise, another personal best particle is selected; xp
Id(t) = xp

ad(t).

Another personal best particle is chosen according to the following process.

1. Two particles are chosen randomly out of the population, excluding the particle

whose velocity is updated.

2. The fitness of the personal best particles of these two particles are compared and

then, better one is selected.

13

14

Chapter 3

Proposed PSO algorithm

3.1 Introduction

The original PSO has no handling mechanism for avoiding the local optimization except

for the use of personal best position. When particles are converged on the local optimiza-

tion as shown in Fig. 3.1, however, particles are more difficult to move global optima since

personal best position equal to local optimized global best position. Thus, each particle

requires the different information of objective position to escape from local optima. In this

research, proposed PSO algorithms used PSO with second global best particle position

(SG-PSO) and PSO with second personal best particle position (SP-PSO) as different

information of objective positions.

3.2 Proposed PSO Algorithms

3.2.1 PSO with Second Global best Particle (SG-PSO)

In PSO with Second Global best Particle (SG-PSO), each particle can remember the global

best particle position vector xg(t), the personal best particle position vector xp(t) and the

second global best particle position vector xg2(t). The use of xg2(t) can reduce the chance

of PSO convergence to local optimal solution for diversity movement of particles. When

the second global best particle position vector xg2(t) is employed, the update scheme of

the particle velocity vector is given as follows

vi(t+ 1) = wvi(t) + c1r1(x
p
i (t)− xi(t))

+c2r2(x
g(t)− xi(t)) + c3r3(x

g2(t)− xi(t)) (3.1)

where w is the inertia weight, c1, c2 and c3 are acceleration coefficients, and t is the iteration

time. Besides, r1, r2 and r3 are random numbers distributed in the interval [0, 1]. The

parameter c1 and c2 are taken as the same values in the original PSO; c1 = c2 = 1.5.

15

Figure 3.1: Search process to find global best position.

Effect of the parameter c3 on the search performance is discussed in the Section 3.4.

Unfortunately, the second global best position is worse than the first global best position.

In other words, if only new update scheme Eq. (3.1) is used, search performance of the

PSO algorithm becomes worse. Therefore, in the SG-PSO, the original and the new

update schemes are randomly employed for updating particle position vectors.

The update rule Eq. (3.1) has been already presented in the reference [51]. The

numerical discussions and the applications were, however, not described in the reference

[51]. Therefore, in this study, it is discussed in numerical examples.

The SG-PSO algorithm is summarized as follows and flowchart is given in Fig. 3.2.

1. Initialize iteration number: The iteration number t is initialized as t = 0. The

maximum iteration step tmax and swarm size N are specified.

2. Initialize particle position and velocity vectors: The particle position vector

xi(t) and velocity vector vi(t) are initialized with random numbers.

3. Evaluate fitness function: Fitness functions f(xi(t)) is evaluated for all particles.

4. Check convergence criterion: If t = tmax, the process goes to the next stop.

Otherwise, the process is terminated.

5. Update personal best particle position: The set is defined as follows.

Sp(t) = {Sp
j (t)} =

{
{xp

i ,xi(t)} (t=0)

{xp
i (t− 1),xi(t)} (o/w)

}

16

The personal best particle position vectors are updated as follows.

xp
i (t)← argmin

Sp
j (t)∈Sp(t)

f(Sp
j (t))

6. Update global best particle position: The set is defined as follows.

Sg(t) = {Sg
j (t)} =

{
{xp

1(t), · · · , ,x
p
N(t)} (t=0)

{xg(t− 1),xp
1(t), · · · , ,x

p
N(t)} (o/w)

}
The global best particle position vector is updated as follows.

xg(t)← argmin
Sg
j ∈Sg

f(Sg
j)

7. Update second global best particle position: The set is defined as follows.

Sg2(t) = {Sg2
k (t)} = {Sg

j (t)|S
g
j (t) /∈ xg(t)}

The second global best particle position vector is updated as follows.

xg2(t)← arg min
Sg2
k (t)∈Sg2(t)

f(Sg2
k (t))

8. Set the particle number: : The particle number i is initialized as i = 1.

9. Check swarm size: If i ≤ N , process goes to the next step. Otherwise, process

goes to the Step 13

10. Check random number r: A random number r is generated in the range [0, 1].

If r ≤ 0.5, process goes to the step 11(a), Otherwise, process goes to the Step 11(b)

11. Update particle position and velocity vectors:

(a) The position vector xi(t+ 1) and the velocity vector vi(t+ 1) of the particle i

are calculated by Eqs. (2.1) and (3.1), respectively.

(b) The position vector xi(t+ 1) and the velocity vector vi(t+ 1) of the particle i

are calculated by Eqs. (2.1) and (2.2), respectively.

12. Update the particle: The particle number is updated by i = i+ 1, and process

goes to Step 9.

13. Update iteration number: The iteration number is updated so that t = t + 1,

and process goes to Step 3.

.

3.2.2 PSO with Second Personal best Particle (SP-PSO)

The SG-PSO uses the second global best particle position vector xg2 for avoiding the local

optimization. On the other hand, PSO with second personal best particle (SP-PSO) uses

17

Figure 3.2: Flowchart of SG-PSO algorithm.

18

the second personal best particle position vector xp2
i instead of the second global best

particle position vector xg2.

In PSO with Second Personal best Particle (SP-PSO), the second global best particle

position vector xg2 gives the similar effect on all particles because the second global best

particle is only one in the swarm. In the SP-PSO, the second personal best particle

position vector xp2
i gives the different effect on each particle because the second personal

best particle is generally different for each particle. Therefore, particles in the SP-PSO

tend to search wider region than those in the SP-PSO.

In the SP-PSO, each particle can remember the global best particle position vector xg,

the personal best particle position vector xp
i and the second personal best particle position

vector xp2
i . When the second personal best particle position vector xp2

i (t) is employed,

the update scheme of the particle velocity vector is given as follows and flowchart is given

in Fig. 3.3.

vi(t+ 1) = wvi(t) + c1r1(x
p
i (t)− xi(t))

+c2r2(x
g(t)− xi(t)) + c4r4(x

p2(t)− xi(t)) (3.2)

where w is the inertia weight, c1, c2 and c4 are acceleration coefficients, and t is the

iteration time. Besides, r1, r2 and r4 are random numbers distributed in the interval

[0, 1].

1. Initialize iteration number: The iteration number t is initialized as t = 0. The

maximum iteration step tmax and swarm size N are specified.

2. Initialize particle position and velocity vectors: The particle position vector

xi(t) and velocity vector vi(t) are initialized with random numbers.

3. Evaluate fitness function: Fitness functions f(xi(t)) is evaluated for all particles.

4. Check convergence criterion: If t = tmax, the process goes to the next stop.

Otherwise, the process is terminated.

5. Update personal best particle position: The set is defined as follows.

Sp(t) = {Sp
j (t)} =

{
{xp

i ,xi(t)} (t=0)

{xp
i (t− 1),xi(t)} (o/w)

}

The personal best particle position vectors are updated as follows.

xp
i (t)← argmin

Sp
j (t)∈Sp(t)

f(Sp
j (t))

6. Update global best particle position: The set is defined as follows.

Sg(t) = {Sg
j (t)} =

{
{xp

1(t), · · · , ,x
p
N(t)} (t=0)

{xg(t− 1),xp
1(t), · · · ,x

p
N(t)} (o/w)

}

19

The global best particle position vector is updated as follows.

xg(t)← argmin
Sg
j ∈Sg

f(Sg
j)

7. Update second personal best particle position: The set is defined as follows.

Sp2(t) = {Sp2
k (t)} = {Sg

j (t)|S
g
j (t) /∈ xp

i (t)}

The second global best particle position vector is updated as follows.

xp2
i (t)← arg min

Sp2
k (t)∈Sp2(t)

f(Sp2
k (t))

8. Set the particle number: The particle number i is initialized as i = 1.

9. Check swarm size: If i ≤ N , process goes to the next step. Otherwise, process

goes to the Step 13

10. Check random number r: A random number r is generated in the range [0, 1].

If r ≤ 0.5, process goes to the step 11(a), Otherwise, process goes to the Step 11(b)

11. Update particle position and velocity vectors:

(a) The position vector xi(t+ 1) and the velocity vector vi(t+ 1) of the particle i

are calculated by Eqs. (2.1) and (3.2), respectively.

(b) The position vector xi(t+ 1) and the velocity vector vi(t+ 1) of the particle i

are calculated by Eqs. (2.1) and (2.2), respectively.

12. Update the particle: The particle number is updated by i = i+ 1, and process

goes to Step 9.

13. Update iteration number: The iteration number is updated so that t = t + 1,

and process goes to Step 3.

3.2.3 Trajectory of Particles

In order to compare the search process of the SG-PSO and SP-PSO, the trajectory of

the global best particle positions is illustrated. Rastrigin function with n = 2 is taken as

an example and the swarm size is 10. The trajectory of the global best particles in the

original PSO, SG-PSO and SP-PSO are illustrated in Figs. 3.4, 3.5 and 3.6, respectively.

The red points denote the global best particle position. In Fig. 3.5, the trajectory of the

second global best particle is also shown with blue points. Fig. 3.4 shows that, in the

original PSO, the global best particle is attracted to the local optimum at 4th iteration

and therefore, the global optimum cannot be found. Fig. 3.5 shows that the global best

particle can avoid local optimum at 1st, 2nd, 5th and 6th iterations and therefore, the

global optimum can be found rapidly. Fig. 3.6 shows that the SP-PSO can also avoid to

converge to the local optimum. The global best particle, however, moves to find global

optima extensively. Consequently, it is considered that SP-PSO is suitable to local search

than SG-PSO.

20

Figure 3.3: Flowchart of SP-PSO algorithm.

21

(a) Whole view

(b) Expanded view from 4 - 30 iterations.

Figure 3.4: Trajectory of global best particles in original PSO.

22

Figure 3.5: Trajectory of first and second global best particles in SG-PSO.

Figure 3.6: Trajectory of global best particles in SP-PSO.

23

Figure 3.7: Convergence history of all particles (Original PSO).

3.2.4 Convergence History of All Particles

The two-dimensional Rastrigin function is taken as the test function and then the con-

vergence histories of the average function value of all particles and its standard deviation

are compared. At time t, the average function value of all particles as below

Average function value of all particles =
1

N

N∑
i=1

f(xi(t)) (3.3)

The convergence histories of the SG-PSO, SP-PSO and original PSO, are shown in

Figs. 3.7, 3.8 and 3.9, respectively. The figures are plotted with the iteration as the

horizontal axis, and the function value and the standard deviation of the function value

as the vertical axes, respectively.

Fig. 3.7 shows that, in the original PSO, standard deviation converges to zero. Figs. 3.8

and 3.9 show that, in the SG-PSO and SP-PSO, the standard deviation does not converge

to zero during the simulation process, and the average function value does not converge

unlike the original PSO.

These results show that, in the SG-PSO and SP-PSO, the use of the second global or

the second personal position can avoid the rapid gathering of all particles to local optimum

which has been found ever. Therefore, the SG-PSO and SP-PSO can find better solution

than the original PSO.

24

Figure 3.8: Convergence history of all particles (SG-PSO).

Figure 3.9: Convergence history of all particles (SP-PSO).

25

Table 3.1: Benchmark functions for c3 and c4: Trelea(2003).

Name Function Dimension

Sphere fSp(x) =
n∑

i=1

x2
i 30

Rosenbrock fRo(x) =
n−1∑
i=1

(
100 (xi+1 − x2

i)
2 + (xi − 1)2

)
30

Rastrigin fRa(x) =
n∑

i=1

(x2
i − 10 cos(2πxi) + 10) 30

Griewank fGr(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1 30

Schaffers f6 fSc(x) = 0.5 +

(
sin
√
(x2

1 + x2
2)
)2
− 0.5

(1 + 0.001(x2
1 + x2

2))
2

2

Name Search range[xmin, xmax] Threshold value

Sphere [−100, 100]n 0.01

Rosenbrock [−30, 30]n 100

Rastrigin [−5.12, 5.12]n 100

Griewank [−600, 600]n 0.1

Schaffers f6 [−100, 100]n 0.00001

3.3 Effect of Parameters on SG-PSO and SP-PSO

3.3.1 Benchmark Functions

For discussing the effect of the parameters c3 and c4 on the SG-PSO and SP-PSO, some

numerical experiments are described here. Trelea [9, 50] discussed convergence speed of

the deterministic PSO algorithm using the five benchmark functions. In this section,

Trelea’s functions are used to compare the effects of c3 and c4. Trelea’s functions are

summarized in Table 3.1. Five test functions in two design variables are shown in Figs. 3.10

to 3.14.

The function dimension is n = 2 for Schaffer’s f6 function or n = 30 for the other

functions. The global minimum of all functions is 0. Swarm size and maximum iteration

number are 30 and 10000, respectively. According to the work done by Clerc [37], the

acceleration coefficients c1 and c2 are specified as c1 = c2 = 1.5. The parameters of the

inertia weight are wmax = 0.9 and wmin = 0.4. Simulations are performed 20 times from

different initial populations. The search performance is compared in “Estimation” value,

26

Figure 3.10: 3D graph of two-dimensional Sphere function.

Figure 3.11: 3D graph of two-dimensional Rosenbrock function.

27

Figure 3.12: 3D graph of two-dimensional Rastrigin function.

Figure 3.13: 3D graph of two-dimensional Griewank function.

28

Figure 3.14: 3D graph of two-dimensional Schaffer’s f6 function function.

which is defined as the quotient of the average search time and the success rate as follows.

Estimation =
Average search time

Success rate

The value of ”Success rate” in the above equation denotes the percentage of the simula-

tions at which the global optimal solution could be found. It is concluded that the global

minimum of the function is found when the function value is smaller than the threshold

value. The value of ”Average search time” in the above denotes the average iteration

number in case where the global optimal solution is found. The search performance is

better as the value of ”Estimation value” in the above is smaller.

3.3.2 Comparison of Experimental Results

For different c3 values, results are shown in Table 3.2. The smallest estimation value

of each function is underlined. The smallest estimation values are observed at c3 = 5

for Sphere, Rosenbrock and Schaffer’s f6 functions, c3 = 2.5 for Rastrigin function and

c3 = 5.5 for Griewank function. The second smallest values for Rastrigin and Griewank

functions are observed at c3 = 5. The smallest and the second smallest estimation values,

for Rastrigin function, are 109 at c3 = 2.5 and 112 at c3 = 5.0, respectively. In case

of Griwank fuction, the smallest and the second smallest estimation values are 209 at

c3 = 5.5 and 223 at c3 = 5.0. Since their difference is small, it is concluded that c3 = 5.0

29

is suitable for all functions.

For the different values of c4, the results are shown in Table 3.3. The smallest esti-

mation value for each function is underlined in the table. The smallest estimation values

are observed at c4 = 5.5 for Sphere, Rosenbrock, Rastrigin, and Griewank functions and

at c4 = 5 for Schaffer’s f6 function. The second smallest estimation value for Schaffer’s f6

function is observed at c4 = 5.5. The smallest and the second smallest estimation values,

for Schaffer’s f6 function, are 2.8 at c3 = 5.0 and 3.1 at c3 = 5.5, respectively. Since there

are not much difference in values, it is concluded that c4 = 5.5 is suitable for all functions.

3.4 Conclusion

In this chapter, the SG-PSO and SP-PSO algorithms were proposed for improving the

search performance. In the original PSO, the particle positions are updated from the

personal best and the global best positions which particles have ever found. The proposed

algorithms focus on the use of the second global best and the second personal best particle

positions in order to avoid to converge to the local optimum. In the SG-PSO and SP-PSO,

the second global best and the second personal best positions are randomly used with the

update rules of the original PSO for updating the particle positions.

The effect of the parameters c3 and c4 on the SG-PSO and SP-PSO was discussed

using five test functions such as Sphere, Rosenbrock, Rastrigin, Griewank and Schaffer’s

f6 functions. The numerical simulation results revealed that c3 = 5.0 and c4 = 5.5 are

suitable for all functions. The trajectory of the global best particles was illustrated.

While, in the original PSO, the global best particle was attracted to the local optimum

quickly, SG-PSO and SP-PSO could avoid the local optimum and finally find the global

optimum.

The applicability of SG-PSO and SP-PSO to various numerical examples will be dis-

cussed in the following chapters.

30

Table 3.2: Estimation values on SG-SPO.

(a) Sphere function

c3 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 0.8 0.55 0.85 0.85 0.9 0.8 0.9 0.95 0.95 0.7

Average search time 276 338 457 560 386 239 316 292 277 291

Estimation 345 614 538 659 429 299 351 308 292 416

(b) Rosenbrock function

c3 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 0.5 0.9 0.95 0.8 0.95 0.9 0.9 0.9 1 0.85

Average search time 716 843 516 382 422 258 254 317 240 207

Estimation 1431 936 543 477 444 287 282 352 240 244

(c) Rastrigin function

c3 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 0.9 0.95 0.8 1 0.95 1 0.9 1 0.9 0.85

Average search time 149 215 336 109 226 155 107 202 101 663

Estimation 165 226 419 109 238 155 119 202 112 780

(d) Griewank function

c3 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 0.45 0.8 0.65 0.95 1 0.85 0.8 0.95 0.9 1

Average search time 327 250 365 462 373 302 216 312 201 209

Estimation 728 313 561 486 373 355 270 328 223 209

(e) Schaffer’s f6 function

c3 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 1 1 1 1 1 1 1 1 1 1

Average search time 11.8 8.9 12.1 11.4 8.6 9.0 10.6 11 6.8 12

Estimation 11.8 8.9 12.1 11.4 8.6 9.0 10.6 11 6.8 12

31

Table 3.3: Estimation values on SP-PSO.

(a) Sphere function

c4 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 1 1 1 1 1 1 1 1 1 1

Average search time 1024 1205 1178 922 489 421 685 851 387 291

Estimation 1024 1205 1178 922 489 421 685 851 387 291

(b) Rosenbrock function

c4 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 1 0.95 1 1 0.95 1 1 0.95 0.95 1

Average search time 618 849 1415 1035 613 729 370 557 378 273

Estimation 618 894 1415 1035 645 729 370 586 398 273

(c) Rastrigin function

c4 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 1 0.95 1 1 1 1 1 1 1 1

Average search time 131 141 98 115 81 62 84 86 68 58

Estimation 131 148 98 115 81 62 84 86 68 58

(d) Griewank function

c4 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 0.9 0.9 1 0.95 1 1 1 1 1 1

Average search time 1192 507 1136 561 675 512 315 352 402 309

Estimation 1325 563 1136 590 675 512 315 352 402 309

(e) Schaffer’s f6 function

c4 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Success rate 1 1 1 1 1 1 1 1 1 1

Average search time 14.9 9.5 5.6 10.2 5.4 3.8 6.0 10.3 2.8 3.1

Estimation 14.9 9.5 5.6 10.2 5.4 3.8 6.0 10.3 2.8 3.1

32

Chapter 4

Search Performance Evaluation of

Proposed Algorithms

4.1 Introduction

In order to estimate the premature convergence problem by any algorithm, test func-

tions are frequently used. The premature convergence means too early convergence of a

population of potential solutions, resulting in not the global optimal solution but a local

(sub-) optimal solution. The aim of this chapter is to discuss that SG-PSO and SP-PSO

are compared with different PSO variants using test functions. For this research, sim-

ple unimodal, multimodal function and some functions of CEC2005 are applied: Sphere,

Rosenbrock, Schwefel, Rastrigin, Weierstrass, Shifted Sphere, Shifted Schwefel’s Problem

1.2, Shifted Rosenbrock, Shifted Rastrigin, Shifted Rotated Rastrigin and Shifted Rotated

Weierstrass. The Global PSO-w, Global PSO-cf, Local PSO-w, Local PSO-cf, UPSO and

CLSPSO are compared with SG-PSO and SP-PSO as different PSO variants. Then, the

convergence property of the SG-PSO and SP-PSO are discussed in the convergence of the

average function values.

4.2 Test Functions

The all of functions are on 30 dimensions to evaluate the performance of SG-PSO and

SP-PSO. The 11 test functions and 3D maps of 2 dimensions are summarized as follows.

Sphere function

f1(x) =
n∑

i=1

x2
i (4.1)

33

Figure 4.1: 3D map of two-dimensional Sphere function.

Rosenbrock function

f2(x) =
n−1∑
i=1

(
100 (xi+1 − x2

i)
2 + (xi − 1)2

)
(4.2)

Schwefel function

f3(x) = 418.9829× n

n∑
i=1

(xi sin(|xi|
1
2)) (4.3)

Rastrigin function

f4(x) =
n∑

i=1

(x2
i − 10 cos(2πxi) + 10) (4.4)

34

Figure 4.2: 3D map of two-dimensional Rosenbrock function.

Figure 4.3: 3D map of two-dimensional Schwefel function.

35

Figure 4.4: 3D map of two-dimensional Rastrigin function.

Weierstrass function

f5(x) =
n∑

i=1

(
kmax∑
k=0

[ak cos
(
2πbk(xi + 0.5)

)
]

)
− n

kmax∑
k=0

[ak cos(2πbk · 0.5)] (4.5)

a = 0.5, b = 3, kmax = 20

Shifted Sphere function

f6(x) =
n∑

i=1

z2i − 450,z = x− o (4.6)

o = [o1, o2, ..., on] : the shifted global optimum

36

Figure 4.5: 3D map of two-dimensional Weierstrass function.

Figure 4.6: 3D map of two-dimensional Shifted Sphere function.

37

Figure 4.7: 3D map of two-dimensional Shifted Schwefel’s Problem 1.2 function.

Shifted Schwefel’s Problem 1.2 function

f7(x) =
n∑

i=1

(
i∑

j=1

zi)
2 − 450,z = x− o (4.7)

o = [o1, o2, ..., on] : the shifted global optimum

Shifted Rosenbrock function

f8(x) =
n−1∑
i=1

(
100 (xz+1 − z2i)

2 + (zi − 1)2
)
+ 390,z = x− o (4.8)

o = [o1, o2, ..., on] : the shifted global optimum

38

Figure 4.8: 3D map of two-dimensional Shifted Rosenbrock function.

Shifted Rastrigin function

f9(x) =
n∑

i=1

(z2i − 10 cos(2πzi) + 10)− 330, z = x− o (4.9)

o = [o1, o2, ..., on] : the shifted global optimum

Shifted Rotated Rastrigin function

f10(x) =
n∑

i=1

(z2i − 10 cos(2πzi) + 10)− 330,z = x− o ∗M (4.10)

o = [o1, o2, ..., on] : the shifted global optimum

M : N ×N orthogonal matrix

39

Figure 4.9: 3D map of two-dimensional Shifted Rastrigin function.

Figure 4.10: 3D map of two-dimensional Shifted Rotated Rastrigin function

40

Figure 4.11: 3D map of two-dimensional Shifted Rotated Weierstrass function.

Shifted Rotated Weierstrass function.

f11(x) =
n∑

i=1

(
kmax∑
k=0

[ak cos
(
2πbk(zi + 0.5)

)
]

)

− n
kmax∑
k=0

[ak cos(2πbk · 0.5)] + 90 (4.11)

z = x− o ∗M , a = 0.5, b = 3, kmax = 20

o = [o1, o2, ..., on] : the shifted global optimum

M : N ×N orthogonal matrix

The Sphere function and Rosenbrock function are well-known simple unimodal func-

tions. The Sphere fuction is no trouble to find the global minimum. The Rosenbrock has a

narrow valley shape the perceived local optima to the global optimum. The Schwefel func-

tion is a multimodal function which has a deep local optima far from the global minimum,

and the Rastigin function is a typical multimodal function for mathematical optimiza-

tion. The Weierstrass function is continuous everywhere, but differentiable nowhere. The

functions, shifted the global optimum, are the Shifted Sphere fuction, Shifted Schwefel’s

41

Table 4.1: Global minimum and search range.

fnum f(x∗) x∗ Search Range

f1 0 [0, 0]n [−100, 100]
f2 0 [1, 1]n [−2.048, 2.048]
f3 0 [420.968, 420.968]n [−500, 500]
f4 0 [0, 0]n [−5.12, 5.12]
f5 0 [0, 0]n [−0.5, 0.5]
f6 -450 [o, o]n [−100, 100]
f7 -450 [o, o]n [−100, 100]
f8 390 [o, o]n [−100, 100]
f9 -330 [o, o]n [−5, 5]
f10 -330 [o, o]n [−5, 5]
f11 90 [o, o]n [−0.5, 0.5]

Problem 1.2 function, Shifted Rosenbrock function and the Shifted Rastrigin function.

The functions, shifted the global optimum and rotated by orthogonal matrix, are the

Shifted Rotated Rastrigin function and the Shifted Rotated Werierstrass function [46].

The global minimums and search ranges of each function are given in Table 4.1.

42

4.3 Numerical Results

The search performance of eight PSO algorithms are compared on the 11 benchmark

functions shown in Eqs.(4.1) to (4.12). The dimension of the benchmark function is

specified to be n = 30. 30 simulations are performed at each function and then, the error

value is estimated by the following equation.

Error value = |fi(x)− fi(x
∗)| (i = 1, 2, ..., n)

Since the variable x∗ denotes the optimal solution, the expression fi(x
∗) denotes the

minimum value of the function fi(x). The average values are shown in Table 6.2. The

smallest value for each benchmark function is underlined in the table. Except for f1, f10

and f11, the smallest values are found by SP-PSO. In the function f1, f10 and f11, the

smallest values found by CLPSO and/or SG-PSO. The SP-PSO could find the second

smallest values at the functions. Since the differences between the values by SP-PSO and

the values by CLPSO or SG-PSO are small, it is concluded that SP-PSO can find the

better solutions for all functions.

The convergence histories of the average errors are shown in Figs. 4.12 to 4.22. These

figures are plotted with the iteration as the horizontal axis and the average error as the

vertical axes, respectively. The result shows that, except for Shifted Rotated Weierstrass

function f11, SP-PSO converges earlier and closed to zero than the other PSO algorithms.

Especially, SP-PSO shows much faster convergence property in cases of Schwefel function

f3 and Shifted Rosenbrock function f8. In case of Shifted Rotated Weierstrass function

f11, the first and the second best performances are observed at the SG-PSO and SP-PSO,

respectively.

4.4 Conclusion

In the original Particle Swarm Optimization (PSO), the particle positions are updated

from the positions of the personal best and the global best particles which have ever been

found. This research focuses on the use of SG-PSO and SP-PSO for improving the search

performance of the original PSO.

Then, the SG-PSO and SP-PSO were compared with the other PSO algorithms in

11 benchmark functions. SP-PSO algorithms showed the best search performance in 10

benchmark functions except for Shifted Rotated Weierstrass function. In case of Shifted

Rotated Weierstrass function, SG-PSO and SP-PSO algorithms were the first and the

second best ones, respectively.

In the SG-PSO and SP-PSO, the update rules by the original PSO are selected at equal

probability. Their selection probability, however, may affect the search performance of

43

Table 4.2: Results of SG-PSO, SP-PSO and other PSOs for 11 test functions.

fnum Global PSO-w Global PSO-cf Local PSO-w Local PSO-cf

f1 1.00e+03 1.82e+03 1.79e+02 1.34e+04

f2 1.07e+02 4.60e+02 1.27e+02 1.72e+03

f3 4.46e+03 5.84e+03 6.41e+03 7.36e+03

f4 4.11e+01 1.38e+02 4.67e+01 2.30e+02

f5 1.83e+00 2.70e+01 4.37e+00 2.70e+01

f6 9.87e+03 1.43e+04 9.23e+03 4.92e+04

f7 6.00e+06 5.88e+06 5.89e+06 1.01e+07

f8 2.48e+09 2.43e+09 9.29e+08 1.86e+10

f9 1.38e+02 2.41e+02 2.93e+02 4.01e+02

f10 2.28e+02 3.96e+02 3.83e+02 5.72e+02

f11 2.99e+01 3.53e+01 3.37e+01 3.65e+01

fnum UPSO CLPSO SG-PSO SP-PSO

f1 9.07e+03 0.00e+00 0.00e+00 1.48e-06

f2 1.03e+03 4.81e+01 2.08e+02 2.20e+01

f3 7.98e+03 5.46e+03 4.20e+03 4.03e+03

f4 2.00e+02 5.68e+00 2.86e+01 3.28e+00

f5 2.64e+01 2.42e-01 1.60e+00 0.00e+00

f6 3.19e+04 1.36e+04 1.24e+04 1.63e+01

f7 7.85e+06 5.49e+06 5.70e+06 1.73e+05

f8 1.47e+10 1.11e+10 2.99e+09 1.45e+05

f9 2.48e+02 2.16e+02 1.57e+02 1.29e+02

f10 3.90e+02 1.70e+02 2.31e+02 1.72e+02

f11 3.98e+01 3.27e+01 2.77e+01 2.89e+01

44

Figure 4.12: Convergence history in Sphere function.

Figure 4.13: Convergence history in Rosenbrock function.

45

Figure 4.14: Convergence history in Schwefel function.

Figure 4.15: Convergence history in Rastrigin function.

46

Figure 4.16: Convergence history in Weierstrass function.

Figure 4.17: Convergence history in Shifted Sphere function.

47

Figure 4.18: Convergence history in Shifted Schwefel’s problem 1.2 function.

Figure 4.19: Convergence history in Shifted Rosenbrock function.

48

Figure 4.20: Convergence history in Shifted Rastrigin function.

Figure 4.21: Convergence history in Shifted Rotated function.

49

Figure 4.22: Convergence history in Shifted Rotated Weierstrass function.

the algorithms. This point has to be discussed. In near future, the applicability of the

SG-PSO and SP-PSO will be studied to actual engineering applications.

50

Chapter 5

Application to Packing Problem

5.1 Introduction

Packing problems are a class of optimization problems in mathematics which involve at-

tempting to pack objects together (often inside a container), as densely as possible. There

are many variations of this problem, such as two-dimensional packing, linear packing,

packing by weight and packing by cost. They have many applications, such as filling up

containers, loading trucks with weight capacity, creating file backup in removable media

and technology mapping in Field-programmable gate array semiconductor chip design.

The author focuses on the two-dimensional packing problems. Popular problems in

two-dimensional packing are to pack circles or squares in a larger circle or a square. The

problems are studied analytically and the maximum numbers of items are determined

[56, 3, 15]. In this chapter, the author considers that the packing regions have the arbitrary

polygon-shaped packing region and then, same items are packed in the region without

their overlap. The typical example in the steel industry is to stamp same polygonal figures

from a rectangular board. The aim of this job is to minimize the remainder region on

board. Since the packing problem is one of typical NP-hard problems, it is quite difficult

to find optimal solution in the polynomial time.

For solving NP-hard problems, many researchers have applied evolutionary computa-

tions such as Genetic Algorithm (GA) [24], Simulated Annealing (SA) [53] and Particle

Swarm Optimization (PSO) [26]. In this study, PSO is applied for solving two-dimensional

packing problems.

The application of PSO for solving packing problem has been presented by some

researchers [54, 10, 5, 47]. Liu et al. [54] presented evolutionary PSO for solving bin

packing problem. Zhao et al. [10, 5] applied the discrete PSO for solving rectangular

packing problem. Thapatsuwan et al. [47] compared GA and PSO for solving multiple

container packing problems. They focus on the packing problem of container in the

storage or the ship cabin. Since the storage and the ship cabin are designed so that their

51

sizes are equal to the integral multiple of the container sizes, it is assumed that the items

are placed every certain interval. On the other hand, the author will consider that the

packing region is arbitrarily polygon-shaped. Since, in this case, the packing region sizes

do not depend on the item sizes, the problems to be solved are much more difficult than

the previous studies.

In this study, PSO is applied for solving the packing problems which have arbitrarily

polygon-shaped regions. The design objective is to maximize the total number of the

items packed in the region without the item overlap. The total number of items and

the position vectors of the item centers are taken as the design variables. The problem

is solved by the original PSO and SG-PSO. In the PSO, the candidate solutions of the

optimization problem to be solved are defined as the particle position vectors. Then, the

particle positions are updated by PSO update rules. In the original PSO, the particle

position vector is updated by the global best position and the personal best position in

previous positions of each particle. The SG-PSO utilizes, in addition to them, second

global best position used in probability Ps.

The remaining part of this chapter is organized as follows. The optimization problem

is explained in 5.2. In section 5.3, the packing problem in two-dimensional regions is

solved. Finally, the conclusions are summarized in section 5.4.

5.2 Packing Problem

5.2.1 Optimization Problem

The packing problem can be formulated to maximize the number of items z included into

a two-dimensional polygonal region P .

The objective function is the number of items z included into a two-dimensional polyg-

onal region P .

max z (5.1)

When the vector {pix, piy} denotes the center position vector of the item i, the design

variable vector is defined as follows.

x = {p1x, p1y, · · · , pix, piy, · · · , pzx, pzy}T (5.2)

The side constraint conditions for the design variables are given as follows.

0.5w ≤ pix ≤ W − 0.5w (5.3)

0.5h ≤ piy ≤ H − 0.5h (5.4)

where w and h denote item sizes, and W and H feasible space sizes, respectively.

52

All items should be included in the region P without their overlapping. The constraint

conditions for such situation are defined by two constraint conditions.

g1(i, P) = 0 (5.5)

g2(i, j) = 0 (5.6)

i = 1, 2, . . . , z; j = 1, 2, . . . , z

The function g1(i, P) estimates the inclusion of the item i in the region P , which is defined

as follows:

g1(i, P) =

{
0 The item i is included in the region P .

1 The item i is not included in the region P .
(5.7)

The function g2(i, j) estimates the overlap between the item i and the item j, which is

defined as follows:

g2(i, j) =

{
0 The item i and j are not overlapped.

1 The item i and j are overlapped.
(5.8)

5.2.2 PSO Implementation

The optimization problem was defined in the previous section. It it very difficult to solve

the optimization problem directly because the constraint conditions are fragile. Therefore,

the optimization problem is solved according to the following steps.

1. The number of the items z is initialized as z = 0.

2. The number of the items z is updated as z = z + 1.

3. z items are arranged in the region P so that

G(x) =
z∑

i=1

{
g1(i, P) +

z,i ̸=j∑
j=1

g2(i, j)

}
→ min . (5.9)

4. If G(x) = 0, the process goes to step 2.

5. Otherwise, z = z − 1 because z items could not be arranged in the region P .

PSO is employed for solving the step 3 in the previous algorithm.

When the number of the items is given, PSO is applied for solving the item pack-

ing problem within the packing region without violating the constraint conditions. The

optimization problem is defined as follows.

• Fitness function

f(xi) =
1

1 +
∑z

i=1

{
g1(i, P) +

∑z,i ̸=j
j=1 g2(i, j)

} (5.10)

53

• Design variable vector (Particle position vector)

xi = {p1x, p1y, · · · , pix, piy, · · · , pzx, pzy}T (5.11)

• Side constraint conditions for design variables

0.5w ≤ pix ≤ W − 0.5w (i = 1, 2, · · · , z) (5.12)

0.5h ≤ piy ≤ H − 0.5h (i = 1, 2, · · · , z) (5.13)

5.2.3 Optimization Process

The process of the packing problem optimization by using SG-PSO can be summarized

as follows (Fig. 5.1).

1. The maximum iteration step tmax, swarm size N and Ps are specified.

2. The item number z is initialized as z = 0.

3. The item number is updated by z = z + 1.

4. PSO algorithm is performed for minimizing the function (5.10).

(a) The iteration number is initialized as t = 0.

(b) The particle position vector xi(t) and velocity vector vi(t) are initialized with

random numbers.

(c) The fitness function for each particle f(xi(t)) is evaluated.

(d) If t ≤ tmax, the process goes to the next step. Otherwise, the process goes to

the step (5).

(e) Personal best particle position xg(t) is updated.

(f) Global best particle position xp
i (t) is updated.

(g) Second global best particle position xp2
i (t) is updated.

(h) The particle number i is initialized as i = 1.

(i) If i ≤ N , the process goes to the next step. Otherwise, the process goes to the

step (4m).

(j) A random number r is generated in the range [0, 1].

(k) If r ≤ Ps, the position vector xi(t+ 1) and the velocity vector vi(t+ 1) of the

particle i are updated by Eqs. (2.1) and (3.1), respectively. Otherwise, they

are updated by Eqs. (2.1) and (2.2), respectively.

(l) i = i+ 1, and the process goes to step (4i)

(m) t = t+ 1, and the process goes to step (4d).

5. If G(x) = 0, the process goes to the step 3.

6. Otherwise, the process is terminated by z = z − 1.

54

Figure 5.1: Flowchart of the parking problem by using SG-PSO.

55

Figure 5.2: Packing region (Case A).

Table 5.1: Swarm size, maximum iteration and other parameters.

Swarm size N = 200

Maximum iteration step tmax = 2000

Update rules parameters wmax = 0.9, wmin = 0.4, c1 = 1.5, c2 = 1.5, c3 = 1.9

5.3 Numerical Examples

5.3.1 Case A

The packing problem in two-dimensional polygonal regions is considered as a numerical

example. The packing region of case A is shown in Fig. 5.2. PSO parameters are shown

in Table 5.1. Number of particles and maximum iteration steps are specified as N = 200

and tmax = 2000, respectively. The other parameters are taken as w = 0.9, c1 = 1.5,

c2 = 1.5, c3 = 1.9, and Ps = 0.1.

Five hundred simulations are performed from different initial conditions. Maximum

item numbers for case A are shown in Fig. 5.3. The figures are plotted with the run

Table 5.2: Comparison of original PSO and SG-PSO in case A.

Original PSO SG-PSO

Average item number 11.144 12.984

Average CPU time (seconds) 35.007 59.753

Success rate in zmax ≥ 13 18.4% 73.2%

56

(a) Original PSO

(b) SG-PSO

Figure 5.3: Maximum item numbers in Case A.

Table 5.3: Effect of parameter Ps in case A.

Ps 0.1 0.2 0.3 0.4 0.5 0.6

Average item number z 12.97 12.81 12.69 12.06 12.72 11.46

Average CPU time (seconds) 58.82 67.11 64.99 72.47 86.94 144.53

57

Figure 5.4: Fitness convergence of SG-PSO in case A.

(a) z=10 (b) z=12

(c) z=14 (d) z=15

Figure 5.5: Placement conditions of using SG-PSO in case A.

58

Figure 5.6: Packing region (Case B).

Table 5.4: Comparison of original PSO and SG-PSO in case B.

Original PSO SG-PSO

Average item number z 12.07 13.99

Average CPU time (seconds) 35.198 65.124

Success rate in z ≥ 14 19.8% 75.2%

number as the horizontal axis and the item number z as the vertical axis, respectively.

The results by the original PSO and the SG-PSO are compared in Table 5.2. The

average item number and the average CPU time denote the average values of the maximum

item numbers and CPU time in five hundred runs, respectively. The success rate means

the percentage of the runs in which the maximum item number zmax is greater than 13.

The average item numbers are 11.144 in case of the original PSO and 12.984 in SG-

PSO. The average CPU times are 35.007 and 59.753, respectively. The success rates are

18.4% and 73.2%, respectively. The use of the SG-PSO can increase the item number and

improve the success rate although the CPU time is increased.

Fig. 5.4 shows the fitness function f(xg) at z = 8, 10, 12, 14 and 15. In case of item

numbers z = 8, 10, 12 and 14, fitness functions almost converge to 1 at 400, 700, 800 and

1000 iterations, respectively. In case of item number z = 15, fitness cannot converge to 1.

Therefore, in this case, maximum item number is concluded to be z = 14. Fig. 5.5 shows

the item placement in case of the SG-PSO and the items overlap in case of z = 15.

Next, the effect of the parameter Ps is discussed. Table 5.3 shows the maximum

number of items and the CPU times for the different parameter Ps. The results show that

the item number is maximized at Ps = 0.1 and CPU time is also shortest.

59

(a) Original PSO

(b) SG-PSO

Figure 5.7: Maximum item numbers in Case B.

Table 5.5: Effect of parameter Ps in case B.

Ps 0.1 0.2 0.3 0.4 0.5 0.6

Average item number 14.1 13.83 13.97 13.76 13.37 13.39

Average CPU time (seconds) 66.57 77.00 81.80 85.56 95.18 108.65

60

(a) z=12 (b) z=14

(c) z=16 (d) z=17

Figure 5.8: Placement conditions of using SG-PSO in case A.

61

5.3.2 Case B

The packing region of case B is shown in Fig. 5.6. PSO parameters are identical to the

case A (Table 5.1). Number of particles and maximum iteration steps are specified as

N = 200 and tmax = 2000, respectively. The other parameters are taken as w = 0.9,

c1 = 1.5, c2 = 1.5, c3 = 1.9, and Ps = 0.1.

The results are shown in Fig. 5.7 and Table 5.4. The average item numbers are 12.07

in case of the original PSO and 13.99 in SG-PSO. The average CPU times are 35.198 and

65.124, respectively. The success rates are 19.8% and 75.2%, respectively. The use of the

SG-PSO can increase the item number and improve the success rate although the CPU

time is increased.

Next, the effect of the parameter Ps on the convergence property is discussed. The

maximum number of items and the CPU times for the different parameter Ps are listed

in Table 5.5. The results show that, at Ps = 0.1, the item number is largest and CPU

time is shortest.

5.4 Conclusion

PSO solution of the two-dimensional packing problem was presented in this study. Since

the storage and the ship cabin are designed so that their sizes are equal to the integral mul-

tiple of the container sizes, it is assumed that the items are placed every certain interval.

The author considered in this study that the packing region is arbitrarily polygon-shaped.

The problem was solved by the original PSO and SG-PSO. In the original PSO, the par-

ticle position vectors are updated by the global and the personal best positions. The

SG-PSO utilizes, in addition to them, the second global best position of all particles. The

use of the second global best position is determined in the probabilistic way.

The algorithms were compared using two numerical examples. The design objective

is to maximize the number of items contained in the packing region without the item

overlap. The results showed that the SG-PSO algorithm could find better solutions than

the original PSO. The maximum item number in the SG-PSO is bigger by one or two items

than that in the original PSO. In case of the SG-PSO, the CPU time and the maximum

item number depend on the probability to switch the original PSO and the PSO with

second global best position of particles. Therefore, the adequate parameter design will be

discussed for future work.

62

Chapter 6

Application to Truss Structure

Design

6.1 Introduction

Structural optimization is an important field in engineering applications [57]. Structural

optimization problems are mainly classified into size, shape and topology optimizations

[42, 60]. In the size optimization problem, the size of the structural element is used as

design variables. In the shape and topology optimization problems, the boundary profile

and/or the topology of the structures are changed during the optimization process. In

this chapter, the truss structure design is considered as a size optimization problem. The

aim of this optimization problem is to minimize the weight of truss structure so as not to

violate the stress and strain constraint conditions. This problem can be solved by several

algorithms; the gradient-type algorithm such as Newton method and steepest descent

method, the evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO). Fourie and Groensold have firstly applied PSO to truss structure

design [4]. They have focused on the application of the PSO to the size and shape design

of truss structures. Since then, many PSO algorithm variants have been proposed to

apply for truss design [18, 6, 28, 40, 59]. In this chapter, the PSO with second global and

personal best particles are applied to the design of ten bar truss structure and the results

are compared with the original PSO.

6.2 10-Bar Truss Structure Design

10-bar truss structure is considered as the problem. The geometry structure of 10-bar

truss is shown in Fig. 6.1. The labels (1) to (6) denote the node numbers. The numbers

by the bars denote the bar numbers. The load P1 and P2 are applied at the node (2) and

63

Figure 6.1: 10-bar truss structure.

(4).

The design objective is to minimize the structure weight. The objective function is

given as

minW = ρ
10∑
i=0

LiAi (6.1)

where ρ, Ai and Li denote the material density, the cross-sectional area and the length of

the bar i, respectively.

The stress at each bar should be smaller than the the allowable stress. The constraint

condition is given as
σi

σallow

− 1 ≤ 0 (6.2)

where σi and σallow denote the stress at the bar i and the allowable stress of the material,

respectively.

The cross-sectional areas are taken as the design variables.

{A1, A2, · · · , A10} (6.3)

The side constraint condition for the design variable Ai is given as

Amin ≤ Ai ≤ Amax (6.4)

where Amin and Amax denote the upper and the lower bounds of the design variable,

respectively.

The geometry parameters and material properties are shown in Table 6.1.

64

Table 6.1: Geometry parameters and material properties.

L 360in

P1, P2 100kips

σallow 25ksi

E(Young’s modulus) 104ksi

ρ(Material density) 0.1lb/in3

Swarm size 10

Max iteration number 3000

6.3 PSO Implementation

The fitness function is identical to the objective function.

Fitness = ρ
10∑
i=0

LiAi → min (6.5)

The particle position vector x is defined as the set of the design variables.

x = {A1, A2, · · · , A10} (6.6)

The optimization process is summarized as follows.

1. The maximum iteration step tmax, swarm size N and the design conditions are

specified.

2. The iteration number is initialized as t = 0.

3. The particle position vector xi(t) and velocity vector vi(t) are initialized with ran-

dom numbers.

4. The fitness function for each particle f(xi(t)) is evaluated.

5. If t ≤ tmax, the process goes to the next step. Otherwise, the process is terminaed.

6. Personal best particle position xg(t) is updated.

7. Global best particle position xp
i (t) is updated.

8. Second global best particle position xp2
i (t) is updated.

9. The particle number i is initialized as i = 1.

10. If i ≤ N , the process goes to the next step. Otherwise, the process goes to the step

14.

11. A random number r is generated in the range [0, 1].

12. If r ≤ Ps, in case of SG-PSO, the position vector xi(t + 1) and the velocity vector

vi(t+ 1) of the particle i are updated by Eqs. (2.1) and (3.1), respectively. In case

of SP-PSO, the position vector and the velocity vector of the particle i are updated

by Eqs. (2.1) and (3.2), respectively. If r > Ps, they are updated by the other rules.

65

13. i = i+ 1, and the process goes to step 10.

14. t = t+ 1, and the process goes to step 4.

6.4 Numerical Results

10-bar truss structures for the optimized using original PSO, SG-SPO and SP-PSO are

shown in Fig 6.2. The detail results of the best search performance in 20 trials are shown

in Table 6.2. The results are compared with cross-sectional area of each element and the

weight for the optimized truss using original PSO, SG-SPO and SP-PSO. In addition,

Table 6.2 shows the constraint satisfaction that the stress of each element should be less

than the allowable stress. The final weights obtained by original PSO, SG-PSO and SP-

PSO were 1621.09, 1566.89 and 1567.68, respectively. There were almost equal between

SG-PSO and SP-PSO, however, for using original PSO optimized weight was worse than

SG-PSO and SP-PSO.

Fig 6.3 shows a convergence history of the original PSO, SG-PSO and SP-PSO for 10

bar truss. The SG-PSO and SP-PSO showed a fast convergence to minimize weight in

early iterations while the original PSO converged slowly. The SG-PSO slightly converged,

in addition, more fast than the SP-PSO since 1000 iteration.

6.5 Conclusion

In this chapter 10-bar truss optimization with allowable stress constraint by using SG-PSO

and SP-PSO was addressed. The obtained results for optimal weight of truss structure

were compared with the original PSO. SG-PSO and SP-PSO can reduce more lightly than

the original PSO, since optimal weights of 10 bar truss structure obtained using the SG-

PSO and SP-PSO are better solutions than obtained using the original PSO. In addition,

the SG-SPO and SP-PSO converged to near optimal earlier than original PSO.

In this study, acceleration coefficient parameters of SG-PSO and SP-PSO were not

considered as truss optimization, and thus future work is to implement and investigate

the parameters of SG-PSO and SP-PSO on truss design. In addition, the extension of the

design variable is necessary in order to effectiveness of SG-PSO and SP-PSO in complex

truss design.

66

(a) 10 bar Truss optimized in the original PSO

(b) 10 bar Truss optimized in the SG-PSO

(c) 10 bar Truss optimized in the SP-PSO

Figure 6.2: 10 bar truss optimized in the original PSO, SG-PSO and SP-PSO.

67

Table 6.2: Cross-sectional area and constraint satisfaction.

Anum Original PSO SG-PSO SP-PSO

A1 5.378328 6.413477 6.585532

A2 0.11 0.1 0.1

A3 6.677631 6.386833 6.63111

A4 3.945894 4.012937 3.931209

A5 3.425103 2.205183 1.893459

A6 0.1 0.1 0.1

A7 10.32967 8.291609 7.801332

A8 1.948008 3.21489 3.633728

A9 5.585255 5.580647 5.651379

A10 0.1 0.1 0.1

σnum
σallow

Original PSO SG-PSO SP-PSO
σ1

σallow
1.00 0.98 0.99

σ2
σallow

0.54 0.60 0.99
σ3

σallow
0.81 0.98 0.98

σ4
σallow

1.00 0.98 1.00
σ5

σallow
0.75 0.76 0.76

σ6
σallow

0.54 0.60 0.69
σ7

σallow
0.91 0.98 1.00

σ8
σallow

1.00 1.00 0.97
σ9

σallow
0.33 0.33 0.33

σ10
σallow

0.77 0.84 0.97

Weight 1621.09 1566.89 1567.68

68

Figure 6.3: Convergence history of the original PSO, SG-PSO and SP-PSO.

69

70

Chapter 7

Conclusion

In this thesis, a new PSO algorithm was studied to improve the search performance of the

original PSO. In the original PSO, the most notable scheme is that the particle positions

are updated from the personal and global best particle positions that the particles have

ever found. Unlike this scheme, two PSO algorithms were introduced in this study. The

proposed PSO algorithms employ the second global best and the second personal best

particle positions in order to improve the search performance of the original PSO. In

the first proposed PSO algorithm, the update rules with second global best positions

are randomly used. This algorithm is referred as SG-PSO. In the second proposed PSO

algorithm, the update rule with second personal best positions are randomly used. This

algorithm is referred as SP-PSO. It is considered that the use of the second best position

is effective in avoiding converging to the local optimum.

In this thesis, a general introduction and the PSO algorithm were described in chapter

1 and 2. In chapter 3, the SG-PSO and SP-PSO algorithms were described in detail,

and the effect of the acceleration coefficient parameters on SG-PSO and SP-PSO was

discussed through five test functions. Suitable parameters for all the test functions were

obtained. The optimal parameters were used for the benchmark functions in chapter 4.

The trajectory of the global best particle position was illustrated to observe its motion.

While in the original PSO, the global best particle is attracted to the local optimum,

SG-PSO and SP-PSO avoid the local optimum, and they finally find the global optimum.

In chapter 4, the applicability of SG-PSO and SP-PSO was discussed in various nu-

merical examples. The SG-PSO and SP-PSO were compared with the other PSO variants

using 11 benchmark functions. The other PSO variants were described in chapter 2. The

search performance comparison was discussed in terms of the average error values and

the convergence histories. The SP-PSO algorithm showed the best search performance in

10 benchmark functions except for the Shifted Rotated Weierstrass function. In the case

of the Shifted Rotated Weierstrass function, the SG-PSO and SP-PSO algorithms were

the first and the second best ones, respectively. Regarding the convergence histories, the

71

author observed that SP-PSO more rapidly converged to zero than other PSO variants.

This is related to the trajectory of the global best particle position, mentioned in chapter

3. The SP-PSO algorithm maintains the diversity of position of the particles, while other

PSO algorithms tend to reach the local optimal solution rapidly.

In chapter 5, the two-dimensional packing problem was addressed. The packing region

was a two-dimensional arbitrarily polygon-shaped and then, rectangular items were packed

in it. The algorithms were compared with the original PSO in two different shape regions.

The objective of this problem was to maximize the number of contained items in the

packing region without item overlap. The results showed that the SG-PSO algorithm

found better solutions than the original PSO. The maximum item number in the SG-PSO

was bigger by one or two items than that in the original PSO.

In chapter 6, the weight optimization of the 10-bar truss structure with allowable

stress constraint was addressed. The numerical results were compared with the original

PSO. The structures optimized by SG-PSO and SP-PSO were slightly lighter than that

optimized by the original PSO; thus, SG-PSO and SP-PSO could find better solutions

than the original PSO.

From the above results, the author would like to discuss the features of the present

PSO algorithms. The results in chapter 4 showed that SP-PSO was better than the

other PSO algorithms and the SG-PSO. Since the SP-PSO algorithm gives a different

additional weight to the cognitive component of the update rule for each particle, it can

enhance the local search performance of the original PSO. Therefore, it showed the good

search performance for test functions with multiple local optima. When the search space

is simple, on the other hand, particles need to search around the global optimum. In the

SG-PSO algorithm, the particles search for the optimal solution around the global and

second global best position particles. Therefore, the SG-PSO algorithm is applicable to

the problems with a simple search space. For higher dimensional functions, a performance

comparison is required in the next step. In addition, this study considered the single

objective functions, so use of the multi-objective functions remains a future topic.

PSO is a stochastic optimization method, and the search performance depends on the

parameter values. In the case of SG-PSO, when the difference in distance between the

global best position and the second global best position is small, the second global best

position has a small influence on each particle. Therefore, the study of varying parameters

using the difference in distance between the best and the second best positions is an

important future research.

In this thesis, the author applied SG-PSO and SP-PSO to the packing problem and

truss structure design as application problems. Since the optimal parameters of SG-

PSO and SP-PSO were not considered for truss optimization, the implementation and

investigation of optimal parameters for truss design will be discussed in the next research

72

work. The extension of the design variable is necessary to evaluate the effectiveness of

SG-PSO and SP-PSO for complex problems. In the near future, the author will study

the applicability of SG-PSO and SP-PSO to other interesting engineering applications.

73

74

Reference

[1] Jaszkiewicz A. Multiple objective metaheuristic algorithms for combinatorial opti-

mization. Citeseer, 2001.

[2] Liu B., Wang L., Jin Y. H., Tang F., and Huang D. X. Improved particle swarm

optimization combined with chaos. Chaos Solitons and Fractals, Vol. 25, pp. 1261–

1271, 2005.

[3] Melissen J. B. and Schuur P. C. Packing 16, 17 or 18 circles in an equilateral triangle.

Discrete Mathematics, Vol. 145, pp. 333–342. Elsevier, 1995.

[4] Fourie P. C. and Groenwold A. A. The particle swarm optimization algorithm in size

and shape optimization. Structural and Multidisciplinary Optimization, Vol. 23, pp.

259–267. Springer, 2002.

[5] He C., Zhang Y. B., Wu J. W., and Chang C. Research of three-dimensional

container-packing problems based on discrete particle swarm optimization algorithm.

Test and Measurement, 2009. ICTM’09. International Conference on, Vol. 2, pp.

425–428. IEEE, 2009.

[6] Luh G. C., Lin C. Y., and Lin Y. S. A binary particle swarm optimization for

continuum structural topology optimization. Applied Soft Computing, Vol. 11, pp.

2833–2844. Elsevier, 2011.

[7] Ratnaweera A. C., Halgamuge S. K., and Watson H. C. Particle swarm optimiser with

time varying acceleration coefficients. Proceedings of the International Conference on

Soft Computing and Intelligent Systems, pp. 240–255, 2002.

[8] Ratnaweera A. C., Halgamuge S. K., and Watson H. C. Particle swarm optimization

with self-adaptive acceleration coefficients. Proceedings of the First International

Conference on Fuzzy Systems and Knowledge Discovery, pp. 264–268, 2003.

[9] Trelea I. C. The particle swarm optimization algorithm: convergence analysis and

parameter selection. Information processing letters, Vol. 85, pp. 317–325. Elsevier,

2003.

75

[10] Zhao C., Lin L., Hao C., and Xinbao L. Solving the rectangular packing problem

of the discrete particle swarm algorithm. Business and Information Management,

2008. ISBIM’08. International Seminar on, Vol. 2, pp. 26–29. IEEE, 2008.

[11] Henderson D., Jacobson S. H., and Johnson A. W. The theory and practice of

simulated annealing. Handbook of metaheuristics, pp. 287–319. Springer, 2003.

[12] Zhang D., Kang Y., and Deng A. A new heuristic recursive algorithm for the strip

rectangular packing problem. Computers & Operations Research, Vol. 33, pp. 2209–

2217. Elsevier, 2006.

[13] Van den Bergh F. and Engelbrecht A. P. Effect of swarm size on cooperative particle

swarm optimisers. Proceedings of the IEEE International Joint Conference on Neural

Networks, pp. 892–899, 2001.

[14] Aarts E. and Lenstra J. K. Local search in combinatorial optimization, 1997. Wiley,

Chichester [2] L. Cox, L. Ernst, Controlled Rounding, INFOR, Vol. 20, pp. 423–432.

[15] Friedman E. Packing unit squares in squares: A survey and new results. Citeseer,

2002.

[16] Goldberg D. E. and Linge R. L. Alleles, loci and the traveling salesman problem.

Proceedings of the 1st International Conference on Genetic Algorithms and their

Applications, Vol. 3, pp. 154–1959, 1985.

[17] Parsopoulos K. E. and Vrahatis M. N. Upso: A unified particle swarm optimization

scheme. Lecture series on computer and computational sciences, Vol. 1, pp. 868–873,

2004.

[18] Perez R. E. and Behdinan K. Particle swarm approach for structural design opti-

mization. Computers and Structures, Vol. 85, pp. 1579–1588. Elsevier, 2007.

[19] Glover F. and Kochenberger G. A. Handbook of metaheuristics. Springer, 2003.

[20] Juang C. F. A hybrid of genetic algorithm and particle swarm optimization for

recurrent network design. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, Vol. 34, pp. 997–1006. IEEE, 2004.

[21] Venter G. and Sobieszczanski-Sobieski J. Particle swarm optimization. AIAA, Vol. 41,

pp. 1583–1589, 2003.

[22] Shi X. H., Liang Y. C., Lee H. P., HP, Lu C., and Wang L. M. An improved ga and

a novel pso-ga-based hybrid algorithm. Information Processing Letters, Vol. 93, pp.

255–261. Elsevier, 2005.

76

[23] Zhan Z. H., Zhang J., Li Y., and et al. Adaptive particle swarm optimization. IEEE

Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, Vol. 39, pp.

1362–1381, 2009.

[24] Holand and John H. Adaptation in natural and artificial systems. Ann Arbor: The

University of Michigan Press, 1975.

[25] Angeline P. J. Using selection to improve particle swarm optimization. Proceedings

of IEEE International Conference on Evolutionary Computation, Vol. 89, 1998.

[26] Kennedy J. and Eberhart R. Particle swarm optimization. Proceedings of IEEE the

International Conference on Neural Networks, 1995. 1942–1948.

[27] Kennedy J. and Mendes R. Population structure and particle swarm performance.

Computational Intelligence, Proceedings of the World on Congress on, Vol. 2, pp.

1671–1676. IEEE, 2002.

[28] Li L. J., Huang Z. B., Liu F., and Wu Q. H. A heuristic particle swarm optimizer

for optimization of pin connected structures. Computers and Structures, Vol. 85, pp.

340–349. Elsevier, 2007.

[29] Liang J. J., Qin A. K., Suganthan P. N., and Baskar S. Comprehensive learning par-

ticle swarm optimizer for global optimization of multimodal functions. Evolutionary

Computation, IEEE Transactions on, Vol. 10, pp. 281–295. IEEE, 2006.

[30] Jansen K. and Solis-Oba R. A polynomial time approximation scheme for the square

packing problem. Integer Programming and Combinatorial Optimization, pp. 184–

198. Springer, 2008.

[31] Mishra S. K. Global optimization by differential evolution and particle swarm meth-

ods: Evaluation on some benchmark functions. 2006.

[32] Tang K., Yáo X., Suganthan P. N., MacNish C., Chen Y. P., Chen C. M., and Yang

Z. Benchmark functions for the cec ’2008 special session and competition on large

scale global optimization. Nature Inspired Computation and Applications Laboratory,

USTC, China, 2007.

[33] Davis L. Applying adaptive algorithms to epistatic domains. Proceedings of the

International Joint Conference on Artificial Intelligence, pp. 162–164, 1985.

[34] Davis L., Lawrence, and et al. Handbook of genetic algorithms. Van Nostrand

Reinhold, New York, 1991.

77

[35] Morten L., Thomas K. R., and Thiemo K. Hybrid particle swarm optimiser with

breeding and subpopulations. Proceedings of the Genetic and Evolutionary Compu-

tation Conference, Vol. 1, pp. 469–476. Citeseer, 2001.

[36] Lü Z. and Huang W. Perm for solving circle packing problem. Computers and

Operations Research, Vol. 35, pp. 1742–1755. Elsevier, 2008.

[37] Clerc M. The swarm and the queen: towards a deterministic and adaptive particle

swarm optimization. Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on, Vol. 3. IEEE, 1999.

[38] Clerc M. Think locally, act locally: The way of life of cheap-pso, an adaptive pso.

2001.

[39] Clerc M. and Kennedy J. The particle swarm-explosion, stability, and convergence in

a multidimensional complex space. Evolutionary Computation, IEEE Transactions

on, Vol. 6, pp. 58–73. IEEE, 2002.

[40] Gomes H. M. Truss optimization with dynamic constraints using a particle swarm

algorithm. Expert Systems with Applications, Vol. 38, pp. 957–968. Elsevier, 2011.

[41] Molga M. and Smutnicki C. Test functions for optimization needs. Test functions

for optimization needs, 2005.

[42] Xie Y. M. and Steven G. P. A simple evolutionary procedure for structural optimiza-

tion. Computers and structures, Vol. 49, pp. 885–896. Elsevier, 1993.

[43] Yagiura M. and Ibaraki T. On metaheuristic algorithms for combinatorial optimiza-

tion problems. Systems and Computers in Japan, Vol. 32, pp. 33–55. Citeseer, 2001.

[44] Metropolis N., Arianna W. R., Marshall N. R., Augusta H. T., and Edward T.

Equation of state calculations by fast computing machines. The Journal of chemical

physics, Vol. 21, pp. 1087–1092. AIP Publishing, 1953.

[45] Suganthan P. N. Particle swarm optimiser with neighborhood operator. Proceedings

of the IEEE Congress on Evolutionary Computation, Vol. IEEE Press, pp. 1958–1962,

1999.

[46] Suganthan P. N., Hansen N., Liang J. J., Deb K., Chen Y. P., Auger A., and Tiwari

S. Problem definitions and evaluation criteria for the cec 2005 special session on

real-parameter optimization. KanGAL Report, 2005.

78

[47] Thapatsuwan P., Sepsirisuk J., Chainate W., and Pongcharoen P. Modifying particle

swarm optimisation and genetic algorithm for solving multiple container packing

problems. Computer and Automation Engineering, 2009. ICCAE’09. International

Conference on, pp. 137–141. IEEE, 2009.

[48] Baraglia R., Hidalgo J. I., and Perego R. A hybrid heuristic for the traveling salesman

problem. Evolutionary Computation, IEEE Transactions on, Vol. 5, pp. 613–622.

IEEE, 2001.

[49] Collins C. R. and Stephenson K. A circle packing algorithm. Computational Geom-

etry, Vol. 25, pp. 233–256. Elsevier, 2003.

[50] Eberhart R. and Shi Y. Comparing inertia weights and constriction factors in par-

ticle swarm optimization. Evolutionary Computation, 2000. Proceedings of the 2000

Congress on, Vol. 1, pp. 84–88. IEEE, 2000.

[51] Forbes R. and Nayeem M. T. Particle swarm optimization on multi-funnel functions.

Computer Aided Optimum Design in Engineering XII, Vol. 255.

[52] Baskar S., Alphones A., Suganthan P. N., and Liang J. J. Design of yagi–uda an-

tennas using comprehensive learning particle swarm optimisation. IEE Proceedings-

Microwaves, Antennas and Propagation, Vol. 152, pp. 340–346. IET, 2005.

[53] Kirkpatrick S., Gelatt Jr. C. D., and Vecchi M. P. Optimization by simulated an-

nealing. Science, 220:671–680, 1983.

[54] Liu D. S., Tan K. C., Huang S. Y., Goh C. K., and Ho W. K. On solving multiobjec-

tive bin packing problems using evolutionary particle swarm optimization. European

Journal of Operational Research, Vol. 190, pp. 357–382. Elsevier, 2008.

[55] Yang X. S. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[56] Croft H. T., Falconer K. J., and Guy R. K. Unsolved problems in geometry. Springer,

1991.

[57] Haftka R. T. and Gurdal Z. Elements of structural optimization. Vol. 11. Springer,

1992.

[58] Leung J. Y. T., Tam T. W., Wong C. S., Young G. H., and Chin F. Y. L. Packing

squares into a square. Journal of Parallel and Distributed Computing, Vol. 10, pp.

271–275. Elsevier, 1990.

[59] Camp C. V., Meyer B. J., and Palazolo P. J. Particle swarm optimization for the

design of trusses. Proceeding of 2004 ASCE Structures Congress, 2004.

79

[60] Toropov V. V. Simulation approach to structural optimization. Structural Optimiza-

tion, Vol. 1, pp. 37–46. Springer, 1989.

[61] Jiang Y., Hu T., Huang C., and Wu X. An improved particle swarm optimization

algorithm. Applied Mathematics and Computation, Vol. 193, pp. 231–239. Elsevier,

2007.

[62] Shi Y. and Eberhart R. A modified particle swarm optimizer. Evolutionary Com-

putation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,

The 1998 IEEE International Conference on, pp. 69–73. IEEE, 1998.

[63] Shi Y. and Eberhart R. Parameter selection in particle swarm optimizer. Proceedings

of the Seventh Annual Conference on Evolutionary Programming, pp. 591–600, 1998.

80

81

