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Chapter 1 

General Introduction 

 

1.1. Introduction 

Modern chemistry has been developed on the basis of the concept “molecule” 

which consists of an assembly of atoms connected each other by chemical (covalent) 

bonds among them, although a super-“molecule” might be bound not only by chemical 

bonds but also by non-covalent bonds. Thus, chemical phenomena can be explained 

through the molecular properties and by their mutual transformations. Incidentally, it 

is well known that the very small (micro) particles, such as nuclei and electrons, show 

the strange behaviors that are impossible to be described by classical mechanics (CM) 

for the larger (macro) systems; instead, they should be described by quantum 

mechanics (QM). In the context of QM, all elementary particles (and light) exhibit the 

properties of not only particles but also waves (cf., the wave–particle duality of 

matter), which is the characteristic of so-called “quantum” systems. Today, it is 

indispensable and common in modern chemistry to deal with molecules as such 

quantum systems that consist of a pair of CM nuclei and QM electrons, for 

understanding chemical phenomena deeply. 

The mathematical formulations of QM are described typically by the 

time-dependent Schrödinger equation (SE), which is in general a linear partial 

differential equation, generating the time-evolution of the electron's wave function 
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 . 

ˆi H
t


  


 ,   (1.1) 

where i is the imaginary unit,   is the reduced Planck constant, and Ĥ  is the 

molecular Hamiltonian operator and characterizes the total molecular energy of any 

given wave function depending on the situation. For bound states of molecules, the 

time-dependent SE can be separated out, providing the time-independent SE for 

electrons in a molecule, 

Ĥ E   .   (1.2) 

Here the Hamiltonian itself is independent on time. Moreover, the wave functions that 

are obtained by solving the time-independent SE can form a number of standing waves, 

called stationary states (also called "molecular orbitals"). 

In principle, the wave function is the most complete description (the physical 

properties and time evolution of quantum systems) that can be obtained from a 

molecular system. The only systems that can be solved exactly, however, are those 

composed of only one or two particles, where the latter transforms the problem into a 

pseudo-particle with a reduced mass (  1 2 1 2/m m m m   ). Thus, systems composed 

of more than two particles cannot be analytically solved. Nevertheless, it is possible to 

achieve an approximate separation of the degree of freedom based on physical 

properties. For many-particle systems, two separations of the degrees of freedom are 

often introduced into quantum system: the Born-Oppenheimer approximation (for 

motions of nuclei and electrons) and the Hartree-Fock (HF) approximation (for 

interactions between two electrons), where the average electron-electron repulsion is 

incorporated. 
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In spite of introduction of such approximation, it remains difficult to solve SE 

generally, because it is necessary to perform a very large number of mathematical 

operations to obtain the results with chemical accuracy. Accordingly, the applications 

of QM to the understanding of practical targets in the field of chemistry are available 

with explosive advances in electronic computers. In addition to development of 

hardware and programmatic technique, several excellent theoretical methods have 

been also developed to overcome the limitations of HF method and to improve the 

computational efficiency; for example, Many-Body Perturbation Theory (MBPT), 

Configuration Interaction (CI), Coupled Cluster (CC), density functional theory (DFT), 

and so on. Recently, the results by extensive high-level calculations have been 

reported for atoms and small molecules [1, 2], which is correct over 40 digits. 

On the other hand, since most of chemical processes proceed in solution, it is 

also essentially important to take the solvent effects into consideration. As a simple 

extension from the traditional QM calculations, the supermolecule model which 

involves a few explicit solvent molecules has been often utilized to include the solvent 

effects naively. However, these calculations are exquisitely sensitive to the 

configuration of solvent molecules. Also, the supermolecule model is not able to 

sufficiently consider both long-range solvation effects and the thermal contribution. 

Under the circumstances, computer simulation methods are suitable approach 

to understand chemical processes in condensed systems and can provide us with 

microscopic information. Molecular dynamics (MD) method [3], one of computer 

simulation methods, solves numerically a set of Newtonian equations of motion. MD 

simulations are suitable for studying time-dependent phenomena (such as substance 

transport, diffusion and vibrational spectra), and can yield information about both 



7 
 

static and dynamic physical properties by assuming the ergodicity of a given 

molecular system in equilibrium (the time average of the equilibrium MD calculation 

is usually utilized instead of the ensemble average). 

In this thesis, I have selected the simplest amino acid, glycine, as model system, 

in particularly the neutral-forms having several conformers which can be converted by 

rotation of three dihedral angles (see Figure 1.1). I have investigated an explicit 

solvent effect on (i) the free energy (FE) difference between their conformers and (ii) 

vibrational spectra in solution. To extract the explicit solvent effects, I have employed 

the dielectric continuum model (DCM) method and the quantum mechanical / 

molecular mechanical (QM/MM) method for present research. In the former study, the 

relative FEs of conformers in solution were found to become smaller than the relative 

potential energies (PEs) in the isolated state due to the electrostatic compensation of 

PE destabilization. In the latter one, I have proposed a new theoretical methodology of 

vibrational spectra in solution, employing two kinds of analytical Hessians. I have 

applied it to glycine molecule and it is shown that the present approaches would 

provide us with a plausible tool to analyze vibrational properties. 

 

1.2. Theoretical Methods for Quantum System in 

Condensed Phase 

Liquid solutions play in fact a fundamental role in chemistry, and a number of 

theoretical methods have been developed to take successfully the solvent effects into 

consideration. Additionally, from an aspect of the evolution of scientific research, 

chemistry shares with physics, biology, engineering, geology, and all of the other 
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branches of sciences, and these evolutions depend ultimately on the widespread 

availability of efficient computers. 

As the theoretical method to consider the quantum description (for electrons) 

into the quantum system in condensed systems, there is the well-known Car-Parrinello 

MD (CP-MD) method with a number of applications for the solution chemistry [4]. In 

the CP-MD method, the motions of molecule are considered as a semi-classical 

dynamics approach (where the electrons are treated quantum mechanically while the 

motions of nucleus are treated classically) and the evolution of a system is described 

by solving the (extended) Lagrange functions introducing the wave function 

parameters as variables with fictive “masses” in the dynamics. Even with the CP 

technique, however, the direct applications of the CP-MD method are still 

computationally very expensive and are restricted to those systems with a small 

number of atoms. Therefore, CP-MD method can only give a limited sampling of the 

phase space. 

In the circumstances, a multiscale model has been proposed for the molecular 

simulation that can deal with more complex systems and longer simulation time. The 

central concept of a multiscale model can be translated into a simple formal expression 

(Eq. 1.3). The whole system is partitioned into two parts which are defined as the 

solute system (S) and the solvent bath (B). The total Hamiltonian consists of the 

partial Hamiltonians of these two S and B and the interaction one between S and B, as 

follows, 

       SB s b S s B b int s bˆ ˆ ˆ ˆ, ,H H H H  R R R R R R ,  (1.3) 

where sR  and bR  indicate the each set of variables or parameters for the S and B 

parts, respectively. The total computational cost can be drastically reduced by 



9 
 

introducing an approximate description into B part which occupy the largest part in 

whole one. 

If the B is handled by a continuum dielectric, such models are called a 

dielectric continuum model (DCM) and the polarizable continuum model (PCM) [5] is 

often used as one of DCM. Although the PCM is useful in the case of requiring the 

high-accuracy QM calculation for the low calculation cost (e.g. an excited state and a 

heavy metal complex systems), it is well known that the PCM has some problems such 

as the incorrectness of the intermolecular interactions of hydrogen bonds (HBs) 

between solutes and solvent molecules. Also, the basic QM continuum model can treat 

the solvation effects caused by the surrounding environment that is a very dilute and 

isotropic solution at equilibrium (given temperature and pressure). 

On the other hand, the quantum mechanical / molecular mechanical (QM/MM) 

method [6] is often utilized as another treatment that only the reactive parts (S) in the 

whole system are treated quantum-mechanically while the other parts (B) are treated 

molecular-mechanically to reduce the computational cost drastically. Moreover, the 

MD method combined with the QM/MM method (QM/MM-MD method) [7] is 

accordingly very useful as the statistical sampling method for solution chemistry. The 

microscopic solute-solvent interactions in solution can be considered with relatively 

low cost and the QM/MM-MD method can be also applied to the behavior of 

molecules under non-equilibrium condition. 

 

1.2.1. Dielectric Continuum Model (DCM) 

A DCM considers the solvent as a uniform polarizable medium with a 

dielectric constant ε and with solute molecule placed in a suitably shaped hole (cavity) 
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in the medium. Since the number of the degrees of freedom of B are not explicitly 

taken into account, the B part can be parameterized by ε only, while the S part is 

described by the coordinates of electrons and nuclei, i.e., ele

ele1{ , , }N
Nr r r  and 

 nuc

nuc1, ,N
NR R R , the latter denoting a set of all the nucN  Cartesian coordinate 

vectors of the solute molecule. The Hamiltonian in solution (Eq. (1.3)) can be 

expressed as an effective Hamiltonian SB
effĤ  as follows, 

     SB s S s int s
eff

ˆ ˆ ˆ, ,H H H  R R R ,  (1.4) 

       nuc eleint s int
σ σ

ˆ ˆ, , ,N N
i

i

H H Z 


      R R r R r . (1.5) 

Here,  σ r  is the electrostatic field generated by the polarized dielectric,   r , at 

the position r. Furthermore, the solute-solvent interaction (electrostatic) contribution 

to the total energy is obtained by 

       f fS int S intH H E E     ,    (1.6a) 

and 

       
ele

ele elef * fint int
σ

ˆ ;
N

N N
i

i

E H d d d d      r r r r r r ,  (1.6b) 

where, an index (f) indicates that the function is provided by the final (converged) 

solution of the solute system placed in the cavity, and   r  is the sum of the nuclear 

charge distribution  nuc r  and the electron density function  ele r  at the position 

r, 

             
ele

elef * f
nuc ele

N
N

i
i

Z d 


            r r r r R r r r .  (1.7) 

Since intĤ  is a one-electronic operator, the calculation cost is not time-consuming. 

The QM continuum model requires to solve the general Poisson equation 
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within a QM framework. The general Poisson equation can be simplified to 

          
   

2
nuc ele in

2
out

4 4 : 1

0 :

V

V

    

  

      

     

r r r r r r

r r r
  (1.8) 

where   r  is the total electrostatic field (which is the sum of the electrostatic 

potential  S r  for the QM solute molecules and  σ r  generated by the 

polarized dielectric), inV  and outV  are the volumes inside and outside the cavity, 

respectively. Also, it is necessary to satisfy two boundary conditions. 

   

   
in out

in out

0

0

 

 

         
             

r r

r r
n n

   (1.9) 

These conditions express the continuity of the potential across the cavity surface *r . 

Eq. (1.7)-(1.9) are the basic elements to use in the elaboration of solvation methods 

according to standard electrostatics, but there is not an analytical solution. The DCMs 

have different options to describe σ  and the electrostatic interaction energy 

between   and σ . Thus, the electrostatic problem are solved by the numerical 

approaches following an iterative procedure, which are classified into six categories, 

(1) the apparent surface charge (ASC) methods, (2) the multipole expansion methods, 

(3) the generalized Born approximation (GBA), (4) the image charge (IC) methods, (5) 

the finite element (FE) methods, and (6) the finite difference (FD) methods. 

The solute-solvent interactions correlated with the quantum system are limited 

to those of electrostatic origin (Eq. (1.6)). Other contributions (exchange/dispersion) 

are considered by adding the (free) energy components after solving the electrostatic 

problem, and correspond to the cavity energy (entropic contributions and loss of 
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solvent-solvent van der Waals interactions) and stabilization energy (due to van der 

Waals interactions between the solute and solvent). These terms are parameterized by 

the total solvent accessible surface (SAS) area or constant   specific for each atom 

type. 

cavity dispersion SASG G         (1.10a) 

atoms

cavity dispersion i i
i

G G S       (1.10b) 

Here, γ, β and ξ are parameters being determined by fitting to experimental solvation 

data. Finally, the solvation free energy may thus be written as in Eq. (1.11). 

solvation cavity dispersion elecG G G G          (1.11) 

 

1.2.2. QM/MM-MD method 

For the condensed system, ab initio QM/MM-MD method has been often 

adopted to make several configurations of the instantaneous solvent structures 

reflected explicitly in the solute electronic state. In the ab initio QM/MM-MD method, 

the simultaneous equations of motion of the solute-solvent system are written as 

follows, 

B

2

( , )NNA
A A

d
m V

dt
 

R
R R ,   (1.12a) 

B

2

( , )NNM
M M

d
M V

dt
 

R
R R ,   (1.12b) 

where Am  and AR  are the mass of a solute QM atom A and its Cartesian coordinate 

vectors, and MM  and MR  are the (effective) mass of a solvent MM particle M and 

its Cartesian coordinate vectors, respectively, while B( , )NNV R R  is the total system 
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potential energy function, NR  and BNR  denoting a set of all the atomic Cartesian 

coordinate vectors of the N-atomic solute molecule and those of solvent molecules 

consisting of NB atoms as a whole. B( , )NNV R R  is subsequently obtained clearly as 

Eq. (1.12) by treating the following total Hamiltonian Ĥ : 

QM MM QM/MM
ˆ ˆ ˆ ˆH H H H   ,  (1.13) 

where, in the RHS, the first two terms QMĤ  and MMĤ  stand for the standard 

Hamiltonian of the QM and the MM systems, respectively, while the last QM/MM 

term QM/MMĤ  denotes the interaction between the QM and MM system, and is 

expressed as a sum of electrostatic (est) and van der Waals (vdW) terms: 

est vdW
QM/MM QM/MM QM/MM

ˆ ˆ ˆH H H  .    (1.14) 

The est term est
QM/MMĤ  is obtained by  

est
QM/MM QM

1ˆ ˆ ( ) A
M M M

M M s AsM AM

Z
H q V q

R R

 
     
   R , (1.15) 

where  QM MV̂ R  is represented as the sum of coulomb interactions induced by the 

electrons and the cores of QM atoms. In these expressions, Mq  is the point charge on 

the M-th MM atom in solvent molecules, sMR ( s M r R ) is the distance between 

the s-th QM electron of the solute molecule and the M-th MM atom, ZA is the core 

charge of the A-th QM atom, and RAM ( A M R R ) is the distance between the A-th 

QM atom and the M-th MM one. The vdW term vdW
QM/MMH  is expressed using a 

number of 6-12 Lennard-Jones (LJ) functions: 
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12 6

vdW
QM/MM 2AM AM

AM
A M AM AM

r r
H

R R


    
     
     

 , (1.16) 

where AM  and AMr  are a couple of LJ parameters for the A-th QM atom interacting 

with the M-th MM atom. The general AMBER force field (GAFF) [8] was often used 

to describe LJ interactions between the solute QM and solvent MM molecules. Hence, 

the above total system potential energy V is then obtained by 

B B
QM QM/MM MM

ˆ ˆ ˆ( , ) ( ) ( ) ( , ) ( )N NN N N N NV H H H    R R R R R R R  

SB MM+V V    (1.17a) 

where the instantaneous wave functions   and the instantaneous solute energy SBV  

in solution are obtained by solving the following associated Schrödinger equation, 

QM QM /MM SB
ˆ ˆH H V      , (1.17b) 

at an instantaneous solution structure ( ( )N tR , B ( )N tR ) obtained by solving Eq. (1.12). 

 

1.3. Statistical Mechanical Understanding of 

Chemical Processes in Solvation and Solution 

Reactions 
  

1.3.1. Free Energy Methods 

There are some methods to obtain the free energy (FE) changes along the given 

reaction coordinates, such as the umbrella sampling method [9], free energy 

perturbation (FEP) method [10], thermodynamic integration (TI) method [11], energy 

representation (ER) method [12, 13]. All the thermodynamic quantities can be derived, 
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in principle, in closed expressions by using the partition function Q for the system. 

However, for a collection of many interacting particles (e.g., at each thermodynamic 

state in condensed phase), it is not possible to construct it explicitly. Nevertheless, it is 

possible to estimate their differences in Q and those derivatives of Q by a 

representative sample of the system. In general, the configurations to estimate Q are 

generated by either molecular dynamics (MD) or Monte Carlo (MC) procedures. 

 

1.3.1.1. Free Energy Perturbation Method 

The partition function Q is obtained by summing over all energy states Ei for 

the whole system. Classically, because of the closely spaced energy levels, the discrete 

sum over energy states, that is a definition of Q, can be replaced by an integral over all 

coordinates (q) and momenta (p), called the phase space, 

  BB , //i E k TE k T

i

Q e e d d


   q p q p .   (1.18) 

The thermodynamic functions, such as the internal energy U, Helmholtz free 

energy A (=U-TS) and entropy S can be, thus, calculated from Q. 

2
B

ln

V

Q
U k T

T

    
,   (1.19a) 

B lnA U TS k T Q    ,  (1.19b) 

B B

ln
ln

V

U A Q
S k T k Q

T T

      
.   (1.19c) 

In order to calculate the partition function Q, we need to know all possible quantum 

states for the system, but it is computationally difficult to obtain them within a 

reasonable statistical error for these quantities. 

In free energy perturbation (FEP) method, we can consider the energy 

difference between two states A and B described by two different energy functions EA 
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and EB, respectively. The FE difference is obtained by Eq. (1.20) involving a ratio of 

the corresponding partition functions, 

  A
A B B A B B

B

ln ln ln
Q

A A k T Q Q k T
Q

      .  (1.20) 

If the ergodic hypothesis is valid for the present system, a macroscopic 

observable quantity can be calculated as an average over a corresponding microscopic 

one. 

 B A
B BA B

/ /
B B

1

1
ln lni i

M
E E k T E k T

M M
i

A k T e k T e
M

 



 
   

 
 .  (1.21) 

Actually, a number of intermediate states connecting between A and B are introduced 

to obtain the FE difference with sufficiently statistical precision, and can be described 

in terms of a coupling parameter λ ( 0 1  ). If the energy difference B AE E  is 

sufficiently small compared with Bk T , the ensemble average will show much better 

convergence than the approach employing directly the partition function.  

 

1.3.1.2. Thermodynamic Integration Method 

 In the thermodynamic integration (TI) method, the partition function and FE 

are considered as functions of λ, 

   B lnA k T Q   ,   (1.22) 

and the FE difference A  is estimated by using the differentiation of the expression (eq. (1.22)), 

Bk TA Q V

Q  
  

  
  

.   (1.23) 

Then, by integrating over λ, A  is approximately evaluated by the summation of its 

discrete estimations, 
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 i
i

i i

V
A







  
 .   (1.24) 

When selecting a proper coordinate s as the coupling parameter λ, the FE change iA  

for changing from si to si+1 (= si +Δsi) can be represented by 

   FE
1

i
i i i i i ii

i i

V
A A A


      


s

s F s s
s

,  (1.25) 

where 
i

  donote the time average constraining the solute molecule so as to 

correspond to the interpolated structures is  and FE ( )i i
F s  is the average force 

exerted on the solute molecule at is . Finally, A  is obtained as 

 
p

p

1

FE

1

N
N

s

i i iis
i

A A d


      F s s .  (1.26) 

 

1.3.2. Free Energy Gradient (FEG) Methods 

The reaction path on the multidimensional potential energy surfaces (PESs) of 

the solution reaction system can be traced by using the explicit supermolecule models 

or implicit PCM. However, these PESs are too high-dimensional, and then it is 

difficult to search the TS structure with respect to all degrees of freedom for the whole 

system. In such case, the free energy surface (FES) has been often estimated 

approximately along only a certain reaction coordinate since a vast number of solvent 

molecules participate in solution reaction system. However, for purpose to identify 

accurately these structures on the FES, the stable-state (SS) and TS geometries should 

be optimized with respect to all degrees of freedom of the solute in solution. 
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Under the circumstances, being analogous to the (potential) energy gradient 

method on the Born-Oppenheimer PES obtained by the molecular orbital (MO) theory, 

Nagaoka and co-workers have developed the free energy gradient (FEG) method 

[14-19] which utilizes the forces on the FES. In equilibrium system, the ensemble 

average of an observable is to be replaced as the time average calculated over the 

trajectory in the MD method, provided its trajectory is ergodic. Then the forces 

FE S( )F q  on the FES are equal to the time average of the forces acting on each atom of 

the solute molecule with the geometry Sq . 

SS
FE S SB

S S

( )( )
( )

VA 
   

 
qq

F q
q q

,  (1.27) 

where S( )A q  is the Helmholtz FE, and S
SB ( )V q  is the sum of both the solute 

potential energy and the interaction energy between the solute species and solvent 

molecules (cf. Eq. (1.17)). The brackets denote the equilibrium ensemble average, 

B S

B S

( )exp( V( ))

exp( V( ))

q q

q q

d

d













 ,  (1.28) 

where Bq  denotes the solvent coordinates as a whole. By the FEP theory, the FE 

difference at an optimization cycle i, iA , is described as follows. 

 S S
1 B SB 1 SBln exp ( ) ( )i i i i i

i
A A A k T V V 

        q q ,  (1.29) 

where S
iq  and S

1iq  are solute structures at optimization step i and i+1, respectively.   

The subscript i in the average 
i

  in Eq. (1.29) means that the average is taken over 

the sampling at S
iq . The optimization cycle was repeated for the FEP treatment, until 
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the following condition, i.e., the zero gradient condition, is satisfied, 

s
SB

s

( )
0

i

V



q

q
.  (1.30) 

 

1.4. Computational Procedure for Free Energy 

Gradient (FEG) Method 

 

1.4.1. Structure Optimization via Free Energy 

Gradient (FEG) Method 

The free energy gradient (FEG) method [14-19], utilizing the force on the FES, 

has been often adopted to obtain the equilibrium structures in solution with full 

optimization with respect to all degrees of freedom of the solute molecules. By 

time-averaging forces acting on each constituent atom of a solute molecule over the 

equilibrium distribution with respect to all the solvent molecules, the forces on the 

FES,  sF q , are obtained as a function of solute’s Cartesian coordinates sq . 

In the FEG method with the following Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) procedure [20-23], the  1 thi  reactant structure s
1iq  is taken as, 

 s s s s s
1i i i i i i i     q q q q H F q ,  (1.31) 

where i  is the step length, and the matrix iH  is the approximate representation of 

the inverse Hessian matrix, which is defined as, 
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1

T T T
i i i i i i

i iT T T
i i i i i i



   
       

   

s y y s s s
H I H I

y s y s y s
,  (1.32) 

s s
1i i i s q q ,  (1.33) 

and 

   s s
1i i i y F q F q . (1.34) 

Hence, adopting the BFGS method as the numerical scheme of structural optimization 

procedure, the FEG method is executed through the following successive steps, 

(Step 1) Start with the initial structure s
kq , 0k  . 

(Step 2) For s
kq , calculate the free energy change kA  and the forces  s

kF q  on the 

FES. 

(Step 3) Using the forces  s
kF q , update the molecular structure by such a difference 

as 

 s s
k k k k  q H F q ,      (1.35) 

to find the stationary point. If the force  s
kF q  is satisfied with the zero-gradient 

condition (Eq. (1.30)), then, finish the optimization procedure. If not, 

(Step 4) Set s s s
1k k k   q q q , 1k k   and return to step 2. 

Actually, the L-BFGS algorithm [24] have been often adopted, which is a limited 

memory variant of BFGS, using the ALGLIB libraries [25]. 

 

1.4.2. Vibrational Frequency Analysis via Free Energy 

Gradient (FEG) method 
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In the simple approximation, taking thermal motions of the solute and solvent 

molecules in equilibrium state into consideration, the molecular vibrations can be 

described as those of harmonic oscillators. The whole energy, E , is expanded as a 

function of the nuclear coordinates, R , in a Taylor series around the equilibrium 

structure as follows, 

         
2 3

2 3

0 0 0 02 3

1 1

2 6

dE d E d E
E E

d d d
       R R R R R R R R

R R R


 

 
2

2

02

1
.

2

d E

d
 R R

R
  (1.36) 

where 0R  are the nuclear coordinates in the equilibrium geometry. The first term 

may be taken as zero since this is just the total energy of the ground states, and only 

the third term (the second order deviation) remains as the non-zero one in the 

harmonic approximation. 

In quantum mechanics, the vibrational energy levels n  for a one-dimensional 

harmonic oscillator are obtained, 

1
,

2n n h    
 

  (1.37a) 

MW

1
,

2
k


   (1.37b) 

where n  is a vibrational quantum number and   is the vibrational frequency, which 

is expressed by using the mass-weighted force constant MWk . The vibrational partition 

function for an N-atomic molecule vibQ , is expressed in general as 

/23 6

vib /
1

.
1

i B

i B

h k TN

h k T
i

e
Q

e










 
   
   (1.38) 

Given the partition function, the thermodynamic functions such as Helmholtz FE, can 
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be calculated from the vibrational frequency. 

In the FEG method, similarly as the traditional treatment in gas phase, we can 

approximately estimate the contributions of the vibrational motion to the Helmholtz 

FE vibA , which are defined by using the effective vibrational frequencies in solution 

as follows, 

 B

3
/ ZPE HM

vib B vib B
1

1
ln ln 1 .

2
i

N
h k T

i
i

A k T Q h k T e A A 



        
 

  (1.39) 

On the right hand side, while the first term is the contribution of the effective 

zero-point energy (ZPE) correction, the second one is that of the effective harmonic 

motion (HM) correction. 

The effective normal vibrational frequencies are obtained from the Hessian 

matrix on the FES, which is a 3N × 3N matrix containing all the second derivatives of 

the free energy with respect to the solute coordinates. For the analytic method, the 

Hessian can be expressed as follows [7]. 

   2 s 2 s
SBFE

s s s s

A V 
 

   

q q
H

q q q q
 

       s s s s
SB SB SB SB

s s s s
B

1
,

TT
V V V V

k T

      
    
 

q q q q

q q q q
(1.40a) 

where the superscript T  denotes the transposition. To reduce the simulation time, the 

FE Hessian matrix elements were calculated under the following approximation, 

   2 s 2 s
SB

s s s s
,

A V 


   

q q

q q q q
  (1.40b) 

since the contribution of the second term in Eq. (1.40a) was considered small enough 

in comparison with that of the first term [26-28]. Then, by diagonalizing the 
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mass-weighted FE Hessian matrix, we obtained the effective normal vibrational 

frequencies of the solute molecule in solution. 

 

1.4.3. Concept of “Dual” Approach to Vibrational 

Spectra 

The vibrational frequency analysis (VFA) in condensed phase, which is based 

on the FEG methodology, can characterize the averaged behavior of the solute in 

solution, i.e. the peak vibrational frequencies and representative normal-mode motions 

in vibrational spectra. The VFA in FEG methodology then requires the mean Hessian 

matrix in solution, which is obtained by time-averaging along equilibrium 

QM/MM-MD trajectory. It is the effective Hessian matrix on the free energy surface 

(FES), called the Free Energy Hessian matrix (FE-Hessian). Moreover, not only these 

quantities but also the other observable properties (e.g., the band widths and the 

overlap between peaks) can be discussed by the “dual” approach to vibrational spectra 

that was developed in this thesis as an extension of the previous approach. 

In the dual approach, an assumption is introduced to generate the vibrational 

spectra in condensed phase. In fact, this approach postulates that these spectra can be 

reproduced using only a short-time dynamics in condensed phase, meaning that the 

vibrational spectra are simply reconstructed by the ensemble of vibrational 

eigenvalues obtained through the instantaneous curvatures of the PES. In other words, 

the vibrational motions are described in terms of a collection of (harmonic) oscillators; 

i.e., an instantaneously decoupled second-order description of the vibrational motions 

of solute molecule along the time-dependent trajectory. The method using such 
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approximation is called the “instantaneous normal mode (INM)” one [29-34]. 

By applying the INM approximation, “the molecular motions are governed by 

a set of the instantaneous normal modes which can interpret rigorously the dynamics 

at enough short time (in practice, being in the subpicosecond range)” [29]. The 

difference between the INM prediction and that by the exact time-domain method 

using the MD simulation becomes clear by comparing the velocity autocorrelation 

function (VAF) [29, 30], which is connected with the vibrational spectra via Fourier 

transformation. It was reported that the agreement between those two was quite good 

for several molecular systems [31, 32], and it would be considered that the INM 

method can qualitatively reproduce the exact results including anharmonic effects 

occurring in the short time range. One advantage of the INM method is to provide 

physical insights that are not available from the usual VAF approach which is based on 

the averaging over a long-time simulation. Moreover, it can be applied to the 

calculation of spectra in non-equilibrium systems [33, 34]. 

Figure 1.2 shows the schematic flowchart of the dual approach that uses two 

kinds of Hessian matrices. First, we execute the QM/MM-MD sampling to obtain a 

number of configurations. Next, we analytically calculate the Hessian matrix at each 

configuration, diagonalizing it. Thus, we can obtain the approximate vibrational 

spectra by making use of the weighted distribution of instantaneous vibrational 

frequencies. They are called the instantaneous normal mode (INM) Hessian. The dual 

method, employing the FE- and the INM-Hessian, enables to obtain vibrational spectra 

and effective normal modes at once without additional hessian calculation. 

The present approach has three merits; (1) We can estimate the Hessian matrix 

with high efficiency and accuracy by analytically estimating them, (2) obtain the 
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spectra including explicit solvation effects and (3) investigate the microscopic origin 

of the spectra. By using complementarily two kinds of Hessian matrices, i.e., FE- and 

INM Hessian, the dual approach can provide a systematic way for investigating the 

influence of microscopic solvation to the vibrational motions. 

 

1.5. Outline 

In the present thesis, I have investigated the explicit solvent effects on two 

physical properties of neutral-form glycine in water, (i) the free energy (FE) stability 

of the conformational isomers and (ii) the shape of vibrational spectra by using the 

QM/MM-MD method. I have also employed the dielectric continuum model (DCM) 

method for the present system to extract the microscopic solvation effects. 

In chapter 2, I have investigated the FE difference between their conformers. 

As a result, the relative FEs of conformers in water were found to become smaller than 

the potential energies (PEs) in the isolated state due to the electrostatic energy 

compensation of PE destabilization which is introduced with increases in the dipole 

moment, with only a clear exception of conformer II that has the intramolecular 

hydrogen bond. The conformer II is stabilized by the non-electrostatic solute-solvent 

interaction energy (vdW contribution) and their behaviors can be explained by the 

microscopic solvation effects in water. 

In chapter 3, I have proposed a new theoretical methodology for vibrational 

spectra in solution, the “dual” approach, employing two kinds of analytical Hessians. I 

have applied it to NF-glycine aqueous solution and investigated the vibrational shift 

and broadening of spectra induced by the ambient water molecules. From the 

comparison with the results by experiment and two theoretical methods (i.e. PCM and 
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QM/MM-MD method), it is concluded that the inclusion of the explicit solvent effect 

must be essential to understand qualitatively the microscopic origin of the 

experimental vibrational shifts in solution. Moreover, the microscopic origins of the 

broadening of spectra were discussed from the point of view of (instantaneous) 

electron density fluctuation of the functional group. 

Finally, it is concluded that the present approaches would provide us a 

plausible tool to analyze vibrational properties separately to the contributions from the 

original modes. 

In chapter 4, the general conclusion was provided including future 

perspectives. 
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Figure 1.1. Isomerization map of neutral-form glycine. 
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Figure 1.2. Schematic Flow chart of the dual approach. 
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Chapter 2 

On the Smoothing of Free Energy Landscape of 

Solute Molecules in Solution: A Demonstration 

of the Stability of Glycine Conformers via Ab 

Initio QM/MM Free Energy Calculation 

 

2.1. Introduction 

Physical properties, reaction selectivity and dynamical behaviors of biological 

species, such as peptides, proteins and nucleic acids, are closely related to their 

configurations. Most of their higher-order structures are microscopically determined 

on the basis of both intra- and intermolecular interactions among those species and 

solvent water molecules under the thermodynamic environment. To microscopically 

understand the general role of amino-acid residues in biomolecular interactions, the 

simplest α-amino acid, glycine, is still a good target of studies since it shows 

conformational isomerization. The molecular properties and solvation behaviors of 

glycine molecule, therefore, have so far been investigated by various experiential 

[1-10] and theoretical [11-37] methods for its pivotal biochemical importance. 

In the gas phase, its experimental equilibrium conformer was found to take the 

trans structure (Conformer I in Figure 2.1) of the neutral form (NF) [1,2]. In aqueous 

solutions, on the other hand, it is in its chemical equilibrium state where both NF and 
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the zwitterionic (ZW) form coexist. However, since ZW becomes much more stable 

than NF, its equilibrium conformer of NF has never been experimentally identified, 

although many conformers of NF should exist. It has also been shown that free 

energetic stability of NF should be considered in understanding the proton transfer 

process of glycine from ZW to NF [35,36]. Therefore, it should be important to 

theoretically investigate the free energetic stability of NF glycine in solution. 

A number of theoretical methods have so far been developed to take solvent 

effects into consideration. Among them, the dielectric continuum models (DCMs) are 

such methods that approximately replace solvent molecules around the solutes by a 

dielectric continuum [38]. The DCMs are often used when highly accurate QM 

calculation is required for the solutes with relatively low calculation cost, which is 

generally increased by only 10 - 40 % in comparison with the QM calculations in an 

isolated state [17,42]. However, they have such problems as inaccuracy in the direct 

intermolecular interactions of hydrogen bonds (HBs) between solutes and solvent 

molecules [39,40]. On the other hand, the quantum mechanical/molecular mechanical 

(QM/MM) method is often utilized as another method that treats only the reactive 

parts in the whole solution system quantum mechanically and other parts 

molecular-mechanically. The molecular dynamics (MD) method combined with the 

QM/MM method (QM/MM-MD method) [41] can legitimately consider HB 

interactions more explicitly as a sum of the interatomic interactions between solutes 

and solvent molecules for instantaneous structural arrangements of those solvent 

molecules. 

I have investigated in this chapter the free energetic stability of the 

conformational isomers of NF glycine in solution by the ab initio QM/MM-MD 
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method. I have focused on eight stable NF structures (Figure 2.1) obtained in the gas 

phase and in solution with a DCM model, i.e., the polarizable continuum model 

(PCM) [38], or more correctly, the conductor-like polarizable continuum model 

(CPCM) [42]. Then, I have calculated the potential energies (PEs) in the gas phase and 

free energies (FEs) in solution by both the CPCM and QM/MM-MD methods, relative 

to the most stable conformer I. In the gas phase, the PEs of NF glycine conformers 

become less stabilized substantially as the dipole moments increase, while, in aqueous 

solution, the FEs is stabilized in proportion to the PEs in the gas phase. This is because 

the stabilization due to the solute-solvent electrostatic interaction should adequately 

compensate for the PE destabilization, being accompanied by the increase in the 

dipole moments. Furthermore, the FE landscape of NF glycine conformers by the 

QM/MM-MD method is found to become rather flat in comparison with that by the 

CPCM method. The present QM/MM-MD method can account for the microscopic 

solvation effect, such as the HB structuring among the solute glycine and solvent 

water molecules. 

After briefly introduction of the methodology in Section 2.2, the results and 

discussion are presented in Section 2.3. The main results are summarized in Section 

2.4. The QM/MM-MD method and the thermodynamic integration (TI) method are 

explained in Chapter 1 and Figure A1 in Appendix showed the numerical convergence 

of the free energy calculation. 

 

2.2. Theory and Computational Methods 
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2.2.1. Solute-Solvent Interaction Energy 

In order to elucidate the solvation effect, I have estimated the total 

solute-solvent interaction energy intE  between the solute glycine and the ambient 

solvent water molecules. 

According to the CPCM, I can define intE  to be 

     
      

CPCM (f) (f) (f)
int CPCM QM CPCM CPCM

gas gas
CPCM QM CPCM CPCM

ˆ ˆ

ˆ

N N N

N N N

E H V

H

   

  

R R R

R R R
  

    dis CPCM rep CPCM
N NE E R R   (2.1a) 

    (f) QM CPCM
gas CPCM vdW CPCM

N NE E E  R R   (2.1b) 

   CPCM CPCM
el CPCM vdW CPCM

N NE E R R ,   (2.1c) 

where QM
gas CPCM( )NE R  and gas

CPCM( )N R  are defined as the one-point SCF energy and 

the wave function of an isolated solute with the molecular structure CPCM
NR  obtained 

by the CPCM; 

gas QM gas
QM CPCM gas CPCM CPCM

ˆ ( ) ( ) ( )N N NH E  R R R , (2.2) 

and  (f)
CPCM
NV R  is the interaction potential, which is related to the thermal-average 

distribution function of the solvent molecules, being defined by 

(f) ( ) ( )A A s
A s

V Z      R r . (2.3) 

Here ( ) r  is the electrostatic field generated by the polarizable dielectric at the 

position r  in general, sr  is the position of the s-th QM electron of the solute 

molecule and AZ  and AR  are the core charge and the position of the A-th QM atom, 
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respectively. The wave functions (f)  and the eigenvalues (f)E  are obtained by 

solving the following associated Schrödinger equation: 

         (f) (f) (f) (f)
QM CPCM CPCM CPCM CPCM CPCM

ˆ ˆN N N N NH V E     R R R R R . (2.4a) 

 CPCM
el CPCM

NE R  and  CPCM
vdW CPCM

NE R  are the electrostatic and the non-electrostatic 

contributions to CPCM
intE , respectively. I have added an index (f) to indicate that the 

solutions of Eqs. (2.3) and (2.4) are often determined iteratively, and the final 

converged solution is our ultimate interest. The eigenvalue of the polarized solute, 

       0

(f) (f) (f)
CPCM CPCM QM CPCM CPCM

ˆN N N NE H  R R R R , (2.4b) 

instead of  QM
gas CPCM

NE R , is usually adopted in Eq. (2.1) as the reference to estimate 

the interaction energy. However, as I intend to evaluate the interaction energy 

accompanying the solvation process from gas to solution,  QM
gas CPCM

NE R  is used as the 

reference state. The value of  CPCM
el CPCM

NE R  in Eq. (2.1c) is estimated by the energy 

difference between those in the polarizable continuum  (f)
CPCM
NE R  and the isolated 

state (  QM
gas CPCM

NE R ) for the same molecular structure CPCM
NR , and  CPCM

vdW CPCM
NE R  is 

obtained as the sum of the dispersion energy  CPCM
dis CPCM

NE R  and repulsion energy 

 CPCM
rep CPCM

NE R . 

Finally, the FE differences between various conformers,  CPCM
sol CPCM

NA R , 

results in 

       CPCM CPCM QM CPCM
sol CPCM int CPCM gas CPCM cav CPCM

N N N NA E E E   R R R R . (2.5) 

It should be noted the non-electrostatic terms in the CPCM method, which 
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are a sum of the cavitation and van der Waals solute-solvent interaction 

terms, i.e., CPCM
cavE  and CPCM

vdWE , are included using empirical functions (cf. Eq. 

(1.10)). 

The values of  CPCM
sol CPCM

NA R  are compared with  QM/MM
sol CPCM

NA R  relative 

to that of the most stable Conformer I in Table 2.1. For direct comparison with the 

QM/MM results, the cavitation energy  CPCM
cav CPCM

NE R , which is found to be nearly 

equal as shown in Table 2.1, is hereafter omitted from Eq. (2.5).  

On the other hand, the intE  value (the total solute-solvent interaction energy) 

can be expressed in the present QM/MM-MD framework (The methodology of the 

QM/MM-MD method are explained in Chapter 1.2.) by  

CPCM

QM/MM QM
int CPCM SB gas CPCM( ) ( )N

N NE V E 
R

R R   (2.6a) 

CPCM

gas gas
QM QM/MM CPCM QM CPCM CPCM

ˆ ˆ ˆ( ) ( ) ( )
N

N N NH H H      
R

R R R  (2.6b) 

 
CPCM

est gas gas
QM QM/MM CPCM QM CPCM CPCM

ˆ ˆ ˆ( ) ( ) ( )
N

N N NH H H      
R

R R R  

CPCM

vdW
QM/MM

ˆ
N

H  
R

  (2.6c) 

    
CPCM

QM QM vdW
sol CPCM gas CPCM QM/MM

ˆ
N

N NE E H    
R

R R   (2.6d) 

   QM/MM QM/MM
el CPCM vdW CPCM

N NE E R R , (2.6e) 

where 
CPCM

SB NV
R

 is the solute energy SBV  (cf. Eq. (1.17), which can be seen in 

Chapter 1.2.) averaged over the equilibrium solution structures under the constraint of 

the solute structure, CPCM
NR , obtained by the CPCM method, and  QM

sol CPCM
NE R  is 

defined as the time-averaged QM energy in the solvated state with the same molecular 
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structure CPCM
NR ; 

 
CPCM

QM est
sol CPCM QM QM/MM

ˆ ˆ
N

NE H H   
R

R . (2.6f) 

Namely, the electrostatic contribution  QM/MM
el CPCM

NE R  can be estimated from the 

time-average of the energy difference between the energy in the solvated state, 

CPCM

est
CPCM QM/MM CPCM

ˆ( ) ( )
N

N NH 
R

R R  (cf. Eq. (1.15) in Chapter 1.2.) and 

 QM
gas CPCM

NE R , minus the vdW contribution  QM/MM
vdW CPCM

NE R , which is estimated as a 

time average of the LJ interaction energy, 
CPCM

vdW
QM/MM N

H
R

. 

 

2.2.2. Computational Details 

In order to execute the direct ab initio QM/MM-MD simulation, I used the 

AMBER-GAUSSIAN interface (AG-IF) [44], by combining the MD simulation 

program package AMBER 9.0 [45] with the ab initio MO program GAUSSIAN03 

[46]. The QM/MM-MD simulations were performed for a whole system including a 

QM system of one glycine molecule and an MM system of 760 TIP3P water molecules 

[43] in a rectangular simulation cell with linear dimensions 28.56xL   Å, 

27.95yL   Å, and 28.93zL   Å, which had been adjusted initially by executing the 

classical MD simulation with the NPT ensemble at 1 atm. In the classical MD 

simulation for the effective atomic charges of the solute glycine molecule, I employed 

the ESP atomic charges obtained by the Merz-Kollman scheme [47,48] at any 

coordinates. The three-dimensional periodic boundary condition was imposed. The 

temperature was controlled to 300 K by the Berendsen algorithm so that the system 
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might be maintained to be an NVT ensemble. The nonbonded cutoff distance was 

chosen as 10.0 Å.  

I estimated the FE differences QM/MM
solA  among the various conformational 

isomers of NF glycine in solution by using the Thermodynamic integration (TI) 

method combined with the ab initio QM/MM-MD method. The detailed methodology 

of TI method is described in Chapter 1.3. I have interpolated the reactant and product 

structures along the cooperative coordinate s  that consists of internal coordinates 

(bond lengths, bond angles and dihedral ones) of the stable state solute structures. 

Actually, the structures interpolated these NF conformers, optimized by the CPCM 

method at the MP2/6-31+G(d,p) level of theory, were utilized to be to the interpolated 

coordinates, is ’s. The number of partitions, pN , was determined so that each change 

in the potential energy, CPCM
iE , caused by a change from is  to 1is   fall within 0.6 

kcal mol-1 (≒RT at 300K). The average value of pN  ranged from 20 to 80, typically 

30 in this case. After equilibration, the FE changes were estimated by sampling runs 

executed for 10 ps with a time step of 0.5 fs at any coordinates. In order to obtain the 

accurate solute-solvent interaction energy intE  between the solute glycine and the 

solvent water molecules in the solution, the sampling runs were then taken for 50 ps 

with a time step of 1.0 fs. In these calculations, the structures optimized by the CPCM 

method were also used in the QM/MM-MD method. 

 

2.3. Results and Discussion 
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2.3.1. Potential Energies and Dipole Moments of NF 

Glycine Conformers in the Gas Phase: A Propensity 

Rule 

Table 2.1 shows the PE,  QM
gas gas

NE R , of eight NF glycine conformers (I-VIII) 

(Figure 2.1) in the gas phase, relative to the PE of the most stable conformer I. The 

nomenclature proposed by Császár for the glycine conformers I-VIII [21] is also 

shown. The conformers were found classified into two groups according to the 

magnitude of  QM
gas gas

NE R . The first-group conformers, I-V, are more stable than the 

second group, VI-VIII, by approximately 3 kcal mol-1. Such a difference in the 

stability between the two groups can be attributed, in principle, to that in the 

orientation of the OH group of the carboxy group (-COOH), i.e., as to whether it turns 

outward or inward, with the exception of II, as discussed below.    

More precisely, the hydroxy group (-OH) of glycine in the second group 

(VI-VIII) turns to the hydrogen atoms of alkyl (>CH2) or amino (-NH2) group, making 

the glycine molecule unstable as a whole because of the repulsive interaction among 

them. On the contrary, the -OH group in the first conformer group (I-V) is free from 

the repulsion. Similarly to the earlier theoretical studies [1,3,10], the relative stabilities 

among the conformers in the gas phase have in fact been explained on the basis of the 

number of intramolecular hydrogen bonds [1]. For example, Hu et al. [11] discussed 

the relative stability in relation to the number difference of intramolecular hydrogen 

bonds (HBs) of each conformer by assuming that each might have several 

intramolecular HBs (involving the carboxylic acid hydrogen and amino nitrogen, 
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OH···N, involving the amino hydrogen and carboxylic acid or carbonyl group oxygen, 

NH···O). 

I note further that the relative stability difference exists within the first group, 

between one subgroup (I or III) and the other (IV or V), except for Conformer II, and 

that this behavior should be ruled precisely by the relative arrangement of the outward 

-OH group against the -NH2 group, i.e., trans (I and III) or cis (IV and V). The former 

becomes more stable than the latter presumably due to the stronger attractive 

electrostatic interaction between the oxygen atom (O3) and hydrogen atoms (H9 and 

H10) in the amino group. According to the electron density analysis (EDA) based on 

the atoms in molecules (AIM) theory or the natural bond orbital (NBO) theory, 

however, the stability of Conformer I was explained in terms of hyperconjugation, 

which enhances the charge transfer (CT) stabilization energy between the occupied 

orbital n(O4) of the lone pair electrons and the adjacent empty *(C1-O3) orbital (i.e., 

44.99 kcal mol-1 (B3LYP/6-311++G(3d,3p)), while the CT stabilization energy in 

Conformer IV is as small as i.e., 5.04 kcal mol-1 (B3LYP/6-311++G(3d,3p)) [14].   

Similarly, it is concluded that only Conformer II forms a clear intramolecular HB, as 

implied by an additional stabilization term between n(N5) and *(O4-H6), i.e., 10.43 

kcal mol-1 (B3LYP/6-311++G(3d,3p)) [14]. This is the reason why Conformer II is the 

second stable in spite of the inward orientation of the OH group of the carbonyl group.  

The dipole moments of the eight conformers I-VIII are also shown in Table 

2.1 because of our interest in the influence of the water solvent on the characteristics 

of conformers in the solution. I note such significant propensity that the PEs are 

destabilized with the increase in the dipole moment, with only a clear exception of 

Conformer II, which shows a lower relative energy 1.18 kcal mol-1 and a larger dipole 
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moment 6.32 D (MP2/6-31+G(d,p)).    

 

2.3.2. Free Energetic Stability of NF Glycine 

Conformers in Solution: The CPCM method 

I have also shown in Table 2.1 the dipole moments  (f)
CPCM
N R , eigenvalues 

 (f)
CPCM
NE R  (cf. Eq. (2.4)), and the FE  CPCM

sol CPCM
NA R  values (Eq. (2.5)) between 

the stable state structures within the CPCM method relative to the corresponding 

values  (f)
CPCM
NE R  and  CPCM

sol CPCM
NA R  of Conformer I. In comparison with the 

eigenvalues  QM
gas gas

NE R   at the equilibrium structures in the gas phase, the 

corresponding  QM
gas CPCM

NE R  values of all the conformers in the solution, obtained by 

the CPCM method, are in general enhanced. The dipole moments in the CPCM 

method,  (f)
CPCM
N R , also exceed those in the gas phase,  gas

gas
N R . It is found in 

addition that the amount of deviation of the dipole moment from the gas phase to that 

by the CPCM method,  (f)
CPCM
N R −  gas

gas
N R , correlates positively with that of the 

potential energy, i.e.,  QM
gas CPCM

NE R −  QM
gas gas

NE R , leading to the observation that the 

variations  CPCM
sol CPCM

NA R  of the eight conformers are relatively smaller than those 

of  QM
gas gas

NE R , with the exception of Conformer II. 

For clarification of this observation due to the solvation effect, I have evaluated 

the solute-solvent interaction energy  CPCM
int CPCM

NE R  with its two contributions 
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 CPCM
el CPCM

NE R  and  CPCM
vdW CPCM

NE R  as well (Table 2.1). In fact, the magnitude of 

 CPCM
int CPCM

NE R  is larger in accordance with that of the dipole moment  (f)
CPCM
N R . 

It was further found by comparison of  CPCM
el CPCM

NE R  and  CPCM
vdW CPCM

NE R  that 

 CPCM
int CPCM

NE R  consists mainly of the difference in the electrostatic contribution 

 CPCM
el CPCM

NE R . It can thus be understood that the stabilization due to the electrostatic 

interaction elE  with the solvent should sufficiently compensate the potential energy 

destabilization (=  QM
gas CPCM

NE R −  QM
gas gas

NE R ) of the solute molecule, accompanied by 

the increase in the dipole moments,  (f)
CPCM
N R −  gas

gas
N R . Our present statement is 

based on the assumption that the cavitation energy  CPCM
cav CPCM

NE R  is identical for all 

the NF conformers. 

However, there is an exception to the above observation. The  CPCM
sol CPCM

NA R  

value of Conformer II, 2.80 kcal mol-1, is much larger than the  QM
gas CPCM

NE R  (=0.69 

kcal mol-1). According to the molecular structure of Conformer II, this can be ascribed 

to the unstable solute-solvent interaction energy because of the existence of the 

intramolecular HB interaction between N5 and H6. 

 

2.3.3. Free Energetic Stability of NF Glycine 

Conformers in Solution: The QM/MM Method 
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The FE values by the QM/MM-MD method,  QM/MM
sol CPCM

NA R , are smaller 

than those by the CPCM method,  CPCM
sol CPCM

NA R . For instance, the corresponding 

relative solvation FE values of the least stable conformer (VII) are 1.7 and 4.42 kcal 

mol-1, respectively. This could be attributed to the difference in the HB interactions 

between the solute glycine molecule and the ambient solvent water molecules. 

Actually, the solute-solvent interaction energies by the QM/MM-MD method, 

 QM/MM
int CPCM

NE R , are in general larger than those by the CPCM method 

 CPCM
int CPCM

NE R  (Table 2.1). In order to investigate the characteristic difference 

between the QM/MM-MD and CPCM methods, I calculated the eigenvalues 

 QM
gas CPCM

NE R  in the gas phase with the molecular structure of the stable state by the 

CPCM method, CPCM
NR , as plotted in Figure 2.2, and the solute-solvent interaction 

energies  int CPCM
NE R  as a function of  QM

gas CPCM
NE R . In this case, the solute-solvent 

interaction energies by the CPCM method  CPCM
int CPCM

NE R  (open squares) are 

proportional to  QM
gas CPCM

NE R . This is a support for that  CPCM
int CPCM

NE R  depends 

mainly on only the electrostatic contribution  CPCM
el CPCM

NE R  (Table 2.1). 

On the other hand, the  QM/MM
int CPCM

NE R values based on the QM/MM-MD 

method (open circles) are not linearly proportional to the  QM
gas CPCM

NE R  values. In 

particular, the absolute  QM/MM
int CPCM

NE R  values of unstable conformers (VI-VIII) are 

found to be larger than those of  CPCM
int CPCM

NE R . Such differences in the 
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solute-solvent interaction energies can be attributed to the difference in the orientation 

of the OH group in the carbonyl group (-COOH), being similar to the discussion on 

the relative stability of the conformers in the gas phase. It is recognized that the 

difference in the orientation of the OH group affects on the HB orientation of the 

solvent water molecules around the carbonyl group (-COOH) of the solute glycine 

molecule. In addition,  int CPCM
NE R  is regarded as consisting of both contributions of 

 el CPCM
NE R  and  vdW CPCM

NE R  (Eqs. (2.1c) and (2.6e)). In Conformer II, for instance, 

QM/MM
elE  and QM/MM

vdWE  values are 3.21 and −4.85 kcal mol-1, respectively, which are 

qualitatively different in their characteristics from the CPCM
elE  and CPCM

vdWE  values, 

2.19 and 0.05 kcal mol-1, by the CPCM method (Table 2.1). This observation can be 

explained by the microscopic solvation effect in the QM/MM-MD method, which 

explicitly deals with many solvent water molecules around the solute glycine molecule. 

Therefore, a more explicit treatment of the ambient solvent water molecules is 

required for a more precise description of the solute-solvent interactions in solution. 

The FE of NF glycine conformers (I–VIII) in solution obtained by the CPCM 

method and the QM/MM-MD method are summarized in Figure 2.3. The relative FE 

values by the CPCM method,  CPCM
sol CPCM

NA R , are larger than those by the 

QM/MM-MD method,  QM/MM
sol CPCM

NA R . Namely, the  CPCM
sol CPCM

NA R  values 

might be overestimated, similarly to those in the previous investigations by various 

methods in the DCMs [17-20]. For instance, the FE value of the least stable conformer 

VII exceeded 4.0 kcal mol-1 by using SCIPCM method with B3LYP/6-31+G(d) level 

[18]. In contract to these previous investigations [17-20], I suggest that the FE 
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landscape of the NF glycine conformers in solution is close to flat ( |Relative FEs|   

1.7 kcal mol-1). Therefore, it is imperative for more accurate discussion of the FE 

stability to explicitly treat the solvent water molecules around the solute glycine 

molecule. 

 

2.4. Concluding Remarks 

In the present study, I have focused on eight stable conformer structures of NF 

glycine molecule obtained in the gas phase and in the solution by the CPCM method 

and calculated the PEs in the gas phase and FEs in the solution obtained by the CPCM 

and QM/MM-MD methods. The PEs of the NF conformers in the gas phase are 

substantially destabilized as the dipole moments increase, with only a clear exception 

of Conformer II, which has the intramolecular HB interaction between the amino 

group (-NH2) and carboxy (-COOH) groups. In solution, on the other hands, the 

relative changes in FEs become smaller than that in the PEs in the gas phase; as a 

results of the stabilization due to the electrostatic interaction with the ambient solvent 

water molecules, which should adequately compensate the PE destabilization, being 

accompanied by the increase in the dipole moments. Furthermore, inclusion of the 

solvent effect explicitly or atomistically by the ab initio QM/MM-MD method causes 

the NF conformers to be more stabilized free-energetically in comparison with those 

by the CPCM method. This observation can be explained by the microscopic solvation 

effect in the QM/MM-MD method, which explicitly deals with solvent water 

molecules around the solute glycine molecule. As a result, it can be concluded that the 

present FE landscape of NF glycine conformers in the solutions is found to be rather 

flat in comparison with that by the DCMs. This propensity should also be confirmed 
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for several other amino acids. 
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FIGURES 

 

 

 

Figure 2.1. Conformers of the neutral form of glycine in gas phase and in solution. 
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Figure 2.2. Solute-solvent interaction energies  int CPCM
NE R  between the glycine 

molecule and ambient water molecules of neutral form glycine conformers (I-VIII) 

as a function of the potential energies  QM
gas CPCM

NE R  in the gas phase (Open square 

□: CPCM, Open circles ◯: QM/MM-MD). Their geometries were optimized by 

the CPCM at MP2/6-31+G(d,p) level of theory.  
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Figure 2.3. Relative free energy  QM/MM
sol CPCM

NA R  of the neutral glycine 

conformers (I–VIII) in the solutions obtained by the CPCM and QM/MM-MD 

methods at the MP2/6-31+G(d,p) level of theory. 
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TABLE  

Table 2.1.  Relative energies ( E and solA ) and dipole moments (µ) of the 

neutral glycine conformers (I–VIII) in gas phase and in solution obtained by the 

CPCM method and QM/MM-MD method at the MP2/6-31+G(d,p) level of 

theory*. 

a Gas-phase potential energy. b The eigenvalue of the polarized solute. c Relative free energy. d 

Solute-solvent interaction energy. e The electrostatic interaction of
intE . f The non-electrostatic 

interaction of 
intE . g The cavitation energy. h The time averages of eigenvalue by QM/MM 

method. i All the values of energies  are tabulated relative to those of the most stable conformer I, 

in kcal/mol. j These are in Debye. * Note that the structures optimized in the gas phase, 
gas
NR , 

have been used only in the gas phase, while the structures optimized by the CPCM method, 

CPCM
NR  , have been used in both CPCM method and the QM/MM-MD one. 

The present nomenclature I II III IV V VI VII VIII

The nomenclature proposed by Császár [21] Ip IIn IVn IIIn Vn VIp VIIp VIIIn

Gasi
0 1.18 1.40 1.56 2.33 5.89 6.80 7.48

1.29 6.32 2.47 1.98 3.00 3.61 5.00 5.04

0 2.88 1.18 1.20 2.15 2.74 4.33 4.02

Solutioni

d

CPCM

0 0.69 1.92 1.60 2.55 6.27 7.97 8.81

2.00 8.24 3.78 3.11 3.92 5.01 6.35 7.61

0 2.8 1.1 1.2 2.1 2.8 4.4 4.0

0 2.24 -0.76 -0.37 -0.41 -3.47 -3.57 -4.76

0 2.19 -0.74 -0.40 -0.40 -3.53 -3.64 -4.78

0 0.05 -0.02 0.03 -0.01 0.06 0.07 0.02

0 -0.13 -0.05 -0.05 -0.08 0.04 0.03 -0.02

QM/MM

0 3.90 -0.52 0.58 0.59 -7.38 -6.70 -12.38

0 0.69 1.92 1.60 2.55 6.27 7.97 8.81

2.43 8.29 3.83 3.39 3.98 4.94 6.28 7.96

0 0.5 1.0 0.3 0.7 0.7 1.7 1.6

0 -1.64 -2.58 -1.02 -2.16 -12.6 -14.8 -20.5

0 3.21 -2.44 -1.02 -1.96 -13.6 -14.7 -21.2

0 -4.85 -0.14 0.00 -0.20 1.01 -0.06 0.72

 CPCM
int CPCM

dNE R

 CPCM
el CPCM

eNE R

 CPCM
vdW CPCM

fNE R

 QM/MM
int CPCM

dNE R

 QM/MM
el CPCM

eNE R

 QM/MM
vdW CPCM

fNE R

 QM
gas gas

aNE R

 QM
gas CPCM

aNE R

 (f)
CPCM

jN R

 gas
gas

jN R

 CPCM
sol CPCM

cNA R

 QM
sol CPCM

hNE R

 QM/MM
CPCM

jN R

 QM/MM
sol CPCM

cNA R

 CPCM
cav CPCM

gNE R
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 QM
gas CPCM

aNE R
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Chapter 3 

Dual Approach to Vibrational Spectra in 

Solution: Microscopic Influence of Hydrogen 

Bonding to the State of Motion of Glycine in 

Water 

 

3.1. Introduction 
Vibrational spectroscopy is one of the most widely used experimental 

techniques for determining molecular structures, for the identification and 

characterization of molecules, and for monitoring the chemical reaction processes 

[1-3].   In general, because the Infrared (IR) and Raman peaks are often overlapped 

due to the spectral line broadening, it is difficult to assign peaks in spectra to particular 

vibrational modes based on such vibrational spectra. On the other hand, from the 

theoretical viewpoint, all normal modes and their frequencies of a certain molecule 

can be automatically obtained by the vibrational frequency analysis (VFA). In fact, the 

VFA has been generally utilized as the reliable tools for the identification of the 

experimental spectra in gas phase [4, 5]. However, it is still difficult to obtain 

theoretically such information on the vibrational motions of the chemical species in 

condensed phase, because of the solvent-induced vibrational coupling by the 
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solute-solvent interactions and their complicated correlations between the vibrational 

motions. 

Until now, a number of theoretical methods have been developed to take 

solvent effects into consideration. Among them, the dielectric continuum models 

(DCMs), which are such methods that replace the solvent molecules around the solute 

by a dielectric continuum [6], are often used in the cases of requiring highly-accurate 

QM calculation with relatively low calculation cost. However, they have several 

problems due to the neglect of direct intermolecular interactions such as the hydrogen 

bonds (HBs) between solutes and solvent molecules [7-9]. On the contrary, the 

quantum mechanical/molecular mechanical (QM/MM) method [10] is often utilized as 

a useful alternative method that only the reactive parts in the whole solution system 

are treated quantum mechanically while the other part is molecular mechanically. The 

molecular dynamics (MD) method combined with the QM/MM method 

(QM/MM-MD method) [11], therefore, can consider legitimately solute-solvent 

interactions explicitly for instantaneous structural rearrangements of the surrounding 

solvent molecules. 

Under the circumstances, the free energy gradient (FEG) method [12-19] 

combined with the QM/MM-MD method has been proposed as the structure 

optimization method on a multidimensional free energy surface (FES) to obtain stable 

states (SS) and transition states (TS) in condensed phase. In this method, the effective 

equilibrium structures in solution are obtained as such a molecular structure satisfied 

with the zero-force condition on the FES, which is analogous to the traditional method 

on the Born Oppenheimer potential energy surface (PES) using ab initio molecular 

orbital (MO) calculation. As with the FEG force, since the Hessian on the FES is 
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similarly obtained, the VFA with FE-Hessian (VFA-FEH) can be executed to obtain 

both effective normal modes and their vibrational frequencies in solution through the 

diagonalization of the mass-weighted Hessian matrix on the FES (FE-Hessian). 

Namely, I can obtain the vibrational frequencies taking into consideration microscopic 

solute-solvent interaction and thermal fluctuation of the condensed environment by 

such VFA combined with the QM/MM-MD method. In addition, this method has such 

an advantage that vibrational frequencies and their fluctuations can be systematically 

obtained without preparing the empirical vibrational Hamiltonian [20-22] so as to 

reproduce the vibrational frequencies. 

On the other hand, the instantaneous normal mode (INM) analysis [23-26] has 

been proposed to obtain the approximate vibrational spectra through the 

diagonalization of the Hessian matrix at each instantaneous configuration of the solute 

molecule (INM-Hessian). The INM spectra are defined by an ensemble-average of 

instantaneous 3N normal mode eigenvalues over their distribution. By combining it 

with the QM/MM-MD method, the VFA with the INM-Hessian (VFA-INMH) 

provides the complementary information that cannot be obtained by VFA-FEH 

approach. While the latter approach provides a set of effective normal modes and their 

vibrational frequencies in solution, the former does an instantaneously decoupled 

second-order description of the vibrational motions of solute molecule along the 

time-dependent trajectory. Accordingly, the VFA-INMH approach is very useful to 

clarify the “instantaneous” solvent effects, determining a number of instantaneous 

vibrational frequencies and vectors. 

In this chapter, I have proposed a new theoretical methodology employing both 

the VFA-FEH and the VFA-INMH approaches within the QM/MM framework. In our 
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previous study [16, 17], the QM/MM Hessians have been estimated numerically, 

requiring a lot of calculation times. However, to reduce these calculation costs, they 

are estimated in the present study by evaluating new analytically-derived expressions 

of the vdW components in QM/MM Hessian. For a preliminary application using the 

present dual VFA approach, the vibrational spectra of H2O molecule in liquid water 

have been reported [19]. Then, I have explained the dual VFA approach clearly and 

applied it to the neutral form of glycine molecule in aqueous solution, which is still a 

good target of studies for its pivotal biochemical importance [9, 27]. Further, I have 

investigated the microscopic origin of vibrational frequency shifts and vibrational 

spectra of the glycine molecule in aqueous solution. 

In this chapter, I explained the methodology for the VFAs in solution in 

Section 3.2. In the results and discussion in Section 3.3, I first discussed the 

computational efficiency and accuracy of the present VFA employing the analytical 

QM/MM Hessian in Section 3.3.1. Next, in Section 3.3.2, I showed that the calculated 

vibrational frequency shifts by the VFA-FEH approach are in quite good agreement 

with the experimental ones. To estimate the importance of the explicit solvent effect, I 

have also shown comparatively the calculation results by the VFA with the 

CPCM-Hessian (VFA-CPCM) via the conductor-like polarizable continuum model 

(CPCM) method. As a result, it was found that the vibrational shifts are attributed to 

not only the structural relaxation but also the explicit solute-solvent interactions. 

Finally, by using the VFA-INM approach, I have investigated the approximate IR 

spectra in aqueous solution considering together the densities of states (DOS) of the 

vibrational INMs. By comparing the spectroscopic features with the solvation 

structure around glycine molecule, it was clearly recognized that the IR spectra are 
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influenced by the hydrogen bond (HB) formation between the solute molecule and the 

first hydration water molecules. Furthermore, by the natural bond orbital (NBO) 

analysis, the instantaneous vibrational spectral shift of the hydroxyl group and that of 

the carbonyl one can be differently explained on the basis of two different effects, i.e., 

the electron density effect in the bonding MO, and the hyperconjugation effect 

between the MOs of the lone electron pair and the antibonding MO, respectively. 

Finally, the concluding remarks were provided in Section 3.4. 

 

3.2. Theory and Computational Methods 

 

3.2.1. Analytical Hessian in the QM/MM Formalism 

In the QM/MM treatment of reactive solute molecules in solution, only the 

reactive parts in the whole solution system are usually treated quantum mechanically, 

while the other parts are molecular mechanically. The total system potential energy V  

is obtained by 

QM QM/MM MM
ˆ ˆV H H V       (3.1a) 

est vdW
QM QM/MM QM/MM MM

ˆ ˆ ˆH H H V        (3.1b) 

SB MMV V    (3.1c) 

where QMĤ  stands for the standard Hamiltonian of the QM systems and QM/MMĤ  

denotes the interaction between the QM and the MM system. The electrostatic (est) 

interaction of the polarized QM density with an external charge distribution (e.g., a set 
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of MM point charges) is estimated by the electrostatic embedding scheme, which is 

implemented by adding the contribution of the MM point charges to the 1-electron 

Hamiltonian ( est
QM/MMĤ  in Eq. (1.15) in Chapter 1.2.), while the van der Waals (vdW) 

interaction is typically described by a Lennard–Jones potential ( vdW
QM/MMĤ  in Eq. (1.16) 

in Chapter 1.2.). Here, SBV  denotes the sum of both the potential energy of the solute 

and the interaction energy between the solute and solvent molecules. 

The Hessian H  in the QM/MM method, which is a 3N ×3N  matrix 

containing all the second order derivatives of the potential energy V  with respect to 

the mass-weighted (mw) solute’s Cartesian coordinates s
mwq ,  can be expressed as 

follows, 

 2 s 2 est 2 vdW
SB QM QM/MM QM/MM

s s
mw mw

ˆ ˆ ˆ

A B A B

V H H H

q q q q   

                               

q
H

q q
, (3.2a) 

with 

   s
mw 1 1 1 1 1 1, , , , , , , , ,A A A N N N N N Nq m x m y m z m m x m y m z  q    (3.2b) 

where subscripts A and B are the indices of the QM atoms (which have a value from 1 

to N), and   and   denote the x, y and z components, and mA is the mass of the A-th 

QM atom. The Hessian H  consists of the components originating in the est and the 

vdW contribution. The est components are analytically computed by the program 

GAUSSIAN [28], where approximate methods of electronic state calculations are 

available, e.g., the Hartree-Fock (HF), second-order Møller-Plesset perturbation theory 

(MP2), configuration interaction with singles (CIS), complete active space 

self-consistent field (CASSCF) method and all the density functional theory (DFT) 
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methods. On the other hand, since the vdW components are expressed as such 

analytical functions of those coordinate variables on the same atom (A=B) as follows, 

 

  

12 6 2

4

12 6vdW

QM/MM

2

12 6

4

2

24 7 4

ˆ 1
12 ( )

24 7 4

AM AM

AM

M AM AM AM

AM AM

AM AM AM

AM AM
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AM AM AM

A M

A A

A M A M

q qr r

R R R

H r r

q q R R R

q q q qr r
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       
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 (3.2c) 

where M denotes an integral number discriminating the MM atoms, and AM  and 

AMr  are a couple of LJ parameters for the A-th QM atom interacting with the M-th 

MM atom, and RAM is the distance between the A-th QM atom and the M-th MM one. 

In the case of glycine molecule ( 10N  ), only 90 components remain as the non-zero 

elements in the Hessian matrix. 

 

3.2.2. Vibrational Frequency Analysis (VFA) in 

Solution 

3.2.2.1. Effective Normal Modes of Vibration and Vibrational 
Frequencies Using FE-Hessian: VFA-FEH Analysis 

In order to obtain the effective normal modes  iQ  and their vibrational 

frequencies  i  in solution, I have proposed the VFA using the Hessian on the FES 

(“FE-Hessian”), i.e., the VFA-FEH analysis. In this analysis, all the molecular 

vibrations are described under the harmonic approximation on the FES. Then, the 

FE-Hessian FEH  can be analytically expressed as follows [12], 
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     2 s 2 s
SBFE s

s s s s
mw mw mw mw

A V 
 
   

q q
H q

q q q q
 

       s s s s
SB SB SB SB

s s s s
B mw mw mw mw

1
,

TT
V V V V

k T

      
    
 

q q q q

q q q q
 (3.3) 

where the brackets     denote the time average that is equal to the equilibrium 

ensemble average and the superscript T  denotes the transposition. Since the 

contribution of the second term of the force fluctuation in Eq. (3.3) was considered 

small enough in comparison with that of the first term [16-18], the approximation to 

neglect the second term in Eq. (3.3) was adopted in present study, 

   2 s 2 s
SB

s s s s
mw mw mw mw

,
A V 


   

q q

q q q q
  (3.4) 

thereby FE-Hessian matrix FEH  is analytically obtained as an equilibrium ensemble 

average of the instantaneous Hessian matrix H  in solution. 

The effective vibrational frequencies  i  are estimated by diagonalizing of 

the FE-Hessian matrix FEH , 

 1 FE ,ik  U H U KI I   (3.5a) 

and 

1
,

2i ik
c




   (3.5b) 

and 

 
, ,

s
, mw

1

,
x y zN

i i A A
A

Q u q 


 
  
 
 Uq   (3.5c) 

where U  and I  are 3N-dimensional unitary and identity matrices, respectively. In 

Eq. (3.5a), K  is a matrix whose diagonal elements consists of a set of the 
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eigenvalues  ik , and c is the speed of light in Eq. (3.5b). A set of 3N effective 

normal modes of vibration  iQ  can be also obtained from eigenvectors 

corresponding to those effective vibrational frequencies i . 

 

3.2.2.2 Approximate Vibrational Spectra Using INM-Hessian: 
VFA-INMH Analysis 

In order to elucidate the solvation effects on vibrational properties in aqueous 

environment, I propose another VFA analysis called the VFA-INMH analysis, i.e., the 

VFA with the instantaneous Hessian (“INM-Hessian”) combined with the 

QM/MM-MD method, calculating the approximate vibrational spectra via the 

instantaneous normal mode (INM) analysis [23-26]. The INMs are defined by 

diagonalizing the INM-Hessian matrix INMH  at any instantaneous configuration R , 

and the eigenvalues  INM
ik  are obtained as 

 INM 1 INM
ik 

 
 R RR

I U H U ,  (3.6a) 

with 

 2 s
SBINM

s s
mw mw

V





 

R

q
H

q q
,  (3.6b) 

and 

INM INM1
.

2i ik
c




   (3.6c) 

At a finite temperature, most of instantaneous configurations R  do not 

correspond exactly to any local minimum on the PES. Consequently, since the forces 

are usually nonzero and all the eigenvalues of the INM Hessian matrix are not 
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necessarily non-negative, those normal modes with the negative eigenvalues, are 

called unstable modes [23, 24]. They are corresponding to such modes with imaginary 

frequencies, to show the instantaneous motions on an upside-down potential, and are 

associated with a barrier between two stable wells (e.g., the double wells) or shoulder 

of a single well [24-26]. 

To characterize the ensemble-averaged vibrational frequency distribution, the 

vibrational INM DOS [23-26] are defined as follows,   

   
m3

INM

1m

1
,

3

N N

i
iN N

    




 
    (3.7) 

Here, Nm shows the number of normal modes with imaginary frequencies.   In 

addition, to obtain the infrared (IR) spectra, I define the vibrational INM DOS 

weighted by the dipole moment derivatives INM
iQ  R , i.e., with respect to the 

corresponding INM coordinates  INM s
mwiQ  RU q  as follows, 

   
m3

IR IR INM

1m

1
,

3

N N

i i
i

D w
N N

   




 
   (3.8a) 

with 

2

IR A
2 INM

0

1
,

4 3i
i

N
w

c Q

 


 
   

R   (3.8b) 

where 0 , AN  and  R  are vacuum permittivity, Avogadro’s number and the net 

dipole moment at an instantaneous configuration R , respectively. Actually, I utilize 

the instantaneous IR intensities calculated with GAUSSIAN09 [28] as IR
iw , and the 

ensemble-averaged IR intensities aqI   in solution are estimated as follows, 
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, (3.9) 

where   is the width of a bin for integration, being set at 1 cm-1 in this study. aqI  

means the absorption coefficient for IR spectra, which is independent of temperature, 

and has an inherent value with each vibrational mode. Then,  IRD   can be 

represented by 

     IR
aqD I    ,  (3.10) 

and therefore the total spectral line of the approximate IR spectra contributed by two 

components: aqI  and  , while aqI  has a significant influence on the peak height.   

On the other hand, the broadening of spectra only depends on   which has the 

temperature dependence. 

The vibrational INM DOS is obtained as the ensemble-averaged value of 

instantaneous normal modes as a function of vibrational frequency, and can provide 

information on vibrational fluctuations induced by the solvation effects. However, the 

VFA-INMH analysis cannot necessarily identify any general feature of microscopic 

vibrational motions in the vibrational spectroscopy because such a normal mode might 

take an individual different characteristic depending on the instantaneous 

configuration. On the other hand, in the VFA-FEH analysis, the effective normal 

modes and their vibrational frequencies at the equilibrium structure in solution are 

uniquely obtained. Therefore, by using these two kinds of VFAs using FE- and 

INM-Hessians, I can assign the peaks in the vibrational spectra to the microscopic 
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vibrational motions, and take some insights into the microscopic solvation effects on 

the spectroscopic line shape. 

 

3.2.3. Computational Details  

The QM/MM-MD simulations were performed for a whole system, which 

consist of one QM glycine molecule and 759 MM water molecules in a rectangular 

simulation cell with linear dimensions Lx = 28.56 Å, Ly = 27.95Å, Lz = 28.93 Å. The 

simulation cell box was adjusted after executing the classical MM-MD simulation 

with NPT ensemble at 1 atm. For estimation of the effective atomic charges of the 

solute glycine molecule, I employed the ESP atomic charges obtained by 

Merz-Kollman scheme [29, 30]. Then, the three-dimensional periodic boundary 

condition was imposed. The temperature was controlled to 300 K by the Berendsen 

algorithm so that the whole system might be maintained to be an NVT ensemble. The 

nonbonded cutoff distance was chosen as 10.0 Å. The leap-frog algorithm was used to 

integrate a set of simultaneous equations of motion. After equilibration run, I have 

obtained the equilibrium structure of the glycine molecule in aqueous solution to be 

the equilibrium structure optimized by the standard FEG method (the details of the 

optimization procedure are shown in Chapter 1.4.1.). A set of ten sampling runs for an 

FEG optimization cycle were executed concurrently each for 50 ps with a time step 

1.0 fs. At the optimized structure, for estimating Hessian matrices for the VFAs, I used 

50,000 snapshots, which were collected from the total 500 ps MD trajectory with the 

time interval of 10 fs. To improve the statistics, this 500 ps MD calculation was also 

executed concurrently with ten independent starting solvent configurations with the 

optimized glycine structure. 
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For the purpose to execute the classical MM-MD and ab initio QM/MM-MD 

simulation, I used the AMBER-GAUSSIAN interface (AG-IF) [31], combining the MD 

simulation program package AMBER 9.0 [32] with the ab initio MO program 

GAUSSIAN03 [33]. In the present study, a solute glycine molecule was taken as a QM 

part and described at MP2 method with 6-31+G(d,p) basis set. On the other hand, the 

MM solvent water molecules were taken as the remaining MM part where each water 

molecule is represented by the rigid TIP3P model [34]. 

 

3.3. Results and Discussion  

3.3.1. Computational Efficiency and Accuracy of 

Analytical Hessian Expressions 

First, I show the computational efficiency and accuracy of the present 

analytical Hessian expressions, where the QM/MM Hessians were obtained by 

estimating analytically-derived formula (Eq.3.2), i.e., the analytical VFA approach. In 

our previous numerical VFA approach [16, 17], the second derivatives of the energies 

(the numerical Hessians) were obtained by the central difference method using the 

analytical first derivatives. To discuss the difference of the computational performance 

between the analytical and the numerical VFA approaches in solution, I have 

estimated CPU times and numerical errors of the vibrational frequencies, which were 

calculated by the sequential ten configurations after equilibration. For the benchmark 

calculations, I have employed a series of n-hydrocarbon CnH2n+2 (n = 1,3,5,7) and the 

glycine molecule in aqueous solution. Here, I have adopted at MP2/6-31+G(d, p) and 

TIP3P water model in two systems, and the geometries of n-hydrocarbon CnH2n+2 were 
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obtained with the equilibrium structures in gas phase, while that of the glycine 

molecule was optimized by the FEG method. 

Figure 3.1 shows that the CPU times for n-hydrocarbon (CnH2n+2, n=1,3,5,7) 

and glycine molecule by the numerical and analytical VFA approaches. As a result, 

the CPU times by the analytical VFA approach were less than those by the numerical 

VFA one in any cases, being drastically reduced up to their 15 ~ 20 %. On the other 

hand, that of glycine molecule by the analytical VFA approach was reduced to about 

40 % of the numerical VFA one. This is because I used for glycine more basis 

functions per atom (cf. C2H5NO2, Nbasis=120), requiring a high computational cost in 

the analytical approach, as compared with for n-hydrocarbon molecules (cf. C3H8, 

Nbasis=97). In other words, such difference about computational efficiency between 

two systems, i.e. n-hydrocarbons and glycine molecule, should be due to the 

system-size dependence of the analytical and the numerical VFA approach.   

Nevertheless, it can be said in general that the present analytical VFA approach is very 

efficient from the aspect of the computational efficiency in comparison with the 

numerical VFA approach. 

With respect to the numerical accuracy, I have shown in Table 3.1 the 

numerical errors of vibrational frequencies in two ways, i.e., the maximum (MAX) 

absolute value among all the frequency differences 

 num anaMAX max | | {1,2, ,3 6}i i i N     , (3.11a) 

and their root-mean-square (RMS) value, 

 
3 6 2num ana

1

RMS (3 6)
N

i i
i

N 




   ,  (3.11b) 
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using the exact vibrational frequencies obtained by the analytical VFA approach in 

three different system sizes, i.e., methane, heptane and glycine molecules in solution.  

As for methane molecule in solution, the MAX and the RMS value were 18 

and 6 cm-1, respectively. On the other hand, in gas phase, their numerical errors (i.e., 

MAX and RMS) were 0.3 and 0.1 cm-1, respectively. The errors in solution were 

considerably large as compared with those in gas phase (< 1 cm-1). In previous study 

[48,49], it was reported that the average deviations from the experimental values by 

the MP2 method range from +27 to +92 cm-1 in small molecules, i.e. H2N2, H2CO and 

NH3, and the numerical errors in solution were not negligible when compared with 

experimental values. In general, with the increase of the system size, the numerical 

errors became significantly increased. In addition, it is exceptional that the error of 

glycine molecule was larger than that of heptane molecule in spite of its smaller 

molecule size. This can be attributed to the presence of the stronger hydration around a 

glycine molecule, which increases the solute-solvent contribution in Hessian, bringing 

about the large numerical errors. Namely, the numerical errors would be highly 

influenced by difference of the surrounding environment, i.e., the microscopic 

solute-solvent interactions. 

 

3.3.2. Vibrational Frequency by VFA Using 

FE-Hessian: Importance of Inclusion of Explicit 

Solvation Effect 

Table 3.2 shows a triple of typical vibrational frequencies ( gas , CPCM , FE ) 

of glycine molecule in gas phase and in aqueous solution with their vibrational 
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frequency shifts induced by the solute-solvent interactions ( CPCM , FE ), which are 

scaled by the recommended factor of 0.9486 [35]. In addition, they were compared 

with the experimental values exp  obtained by the Fourier transform infrared 

(FT-IR) spectroscopy measurement of glycine-(H2O)n (n=1,2) [4] and glycine- 

(1-methyluracil) H-bond complexes [5]. It should be noted that the vibrational 

frequencies by the FE- and the CPCM-Hessian are calculated at the optimized 

structures by the FEG and the CPCM method, respectively. 

Both CPCM  and FE  for the stretching modes (>1650 cm-1) with the 

exception of those of CH2 group were red-shifted, and FE  agreed well with exp

in comparison with CPCM  (see Table 3.2). On the other hand, for the four bending 

modes (≤1650 cm-1), FE s showed the large blue-shifts in solution. According to the 

previous experimental studies [36-45], such tendency is reasonable and common in the 

intermolecular hydrogen bonding (HB) systems. In particular, FE  of γ(COH) 

showed the largest blue-shift (+391 cm-1) in the four and was clearly consistent with 

exp  (+416 cm-1). In contrast to FE , CPCM  for the bending modes were very 

small in any cases, showing that the inclusion of explicit effect of HBs is inevitable to 

reproduce vibrational frequency shifts for the bending modes. It was understood, 

therefore, that the present VFA-FEH approach can provide the more reasonable 

estimations of vibrational frequency shifts induced by the solvent molecules in 

solution. 
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In order to clarify the microscopic origin of such vibrational frequency shifts 

FE , I have investigated two essential effects, i.e., the structural relaxation of glycine 

molecule itself and the explicit solvation structure around it. According to the 

comparison between the geometries in gas phase and in aqueous solution (see Table 

A1 in Appendix), the OH bond length in the –OH group (r(O-H)) was found to 

increase from 0.973 Å in gas phase to 1.005 Å in aqueous solution (FEG method). 

Similarly, the NH and the CO bond lengths in the –NH2 and >CO groups (r(N-H) and 

r(C=O)) increased, although their changes (+0.006 Å and +0.009 Å) were almost 

negligible in comparison to that of the OH one (+0.032 Å). In relation to the increase 

of such bond lengths, the stretching-modes were found to show red-shifts in aqueous 

solution (see Table 3.2). On the other hand, while the CH bond lengths of the >CH2 

group (r(C–H)) are almost unchanged (-0.001 Å), both its symmetric and asymmetric 

modes showed slight blue-shifts. In addition, all the bond lengths by FEG method 

show tendency to increase from those in gas phase, except the CH bond lengths, while 

these bond lengths by CPCM method also increased (+0.001 Å), their relating 

stretching modes νas(CH2) and νs(CH2) showing red-shift, i.e., CPCM  in Table 3.2. 

The changes of CH bond lengths are due to the nonelectrostatic intermolecular 

interaction with the closest water molecule. It is considered, therefore, that the 

description of nonelectrostatic interactions by the CPCM method is inadequate for 

considering these contributions. The FE  for stretching-modes were closely related 

to the bond length elongation and such tendency also corresponds to the previous 

experimental results in the various HB systems [36-45]. Thus, it is considered that the 

mechanism of frequency shifts of the stretching-modes would be attributed to the 
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softening (or hardening) of vibrational frequency modes due to the bond length 

elongation (or shortening). However, since there is almost no correlation between 

FE  of the bending-modes (see Table 3.2) and the bond angles (see Table A1 in the 

Appendix), the large blue-shifts of FE  of the bending-modes in aqueous solution 

cannot be explained by only the changes in bond angles of the glycine molecule.  

Next, I have shown in Figure 3.2 the spatial distributions of oxygen (red) and 

hydrogen (gray) atoms of solvent water molecules in the first hydration shell around 

the glycine molecule. It can be clearly seen that the maxima of the oxygen atom 

distribution are located on the extended line of the O–H and N–H bond of glycine 

molecule (see Figure 3.2). In addition, the hydrogen atom distributions are also high 

around the area located on the direction extended from the N atom of –NH2 group and 

O atom of >CO group toward their electron lone-pairs of each atom (see Figure A2 in 

Appendix). It was found that the surrounding water molecules clearly form HBs with 

the –OH, –NH2 and >CO groups. In particular, it was suggested that there are several 

strong HBs between the –OH group and solvent water molecules. For quantitative 

estimation of the strength of such HBs, Figure 3.3 shows the relative frequency 

distributions of the four kinds of HB angles ( OH Ow  , CO Hw  , N HOw  and NH Ow  ). 

The OH Ow   shows the clear maximum value at ~170 deg, with the peak width 

sharper than those of other three angles. Actually, the time-averaged HB numbers of 

OH···Ow, CO···Hw, N···HOw and NH···Ow were estimated to be 1.03, 0.41, 0.28 and 

0.58, respectively. The differences among the HB strengths of functional groups can 

be interpreted due to those among the proton affinities of donor-accepters [46], and 

they are in agreement with the general tendencies in previous studies [47]. It is 
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understood that the magnitudes of vibrational frequency shifts of stretching modes 

(ν(CO), νas(NH2), ν(OH)) were found to increase in the same order as the HB numbers 

(see Table 3.2). 

In contrast to the present VFA approach, the CPCM method, a representative 

DCM (dielectric continuum model), cannot include the explicit solute-solvent 

interactions such as HBs. According to the comparison between CPCM  with FE  

for the bending-modes, such large blue shifts of FE  in aqueous solution can be 

understood to be brought about by the microscopic solute-solvent interactions. The 

mechanism must be explicitly explained by the steric hindrance by the HB water 

molecules (see Figure 3.2), which induce the modification of the original PES of the 

solute and consequently bring about the shifts in the vibrational frequencies. Since the 

bending motions generally occur oscillatorily orthogonal to the HB direction, the 

stronger HB formation should make their motions more difficult to occur. As a result, 

it is considered that the bending-modes including –OH and –NH2 groups show the 

large blue-shifts in aqueous solution. Moreover, the experimental vibrational shift of 

Gly-(1-methyluracil) cluster agreed well with our calculated value. This fact supports 

that their blue-shifts are brought about by a few HB water molecules. From the above 

comparison with the results by experiment and the CPCM method, it is concluded that 

the inclusion of explicit solvent effect must be essential to understand even 

qualitatively the microscopic origin of the experimental vibrational shifts in solution. 
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3.3.3. Vibrational Spectra by the VFA-INMH 

Analysis: Strong Correlation between the Explicit 

HBs and Vibrational Spectra 

In order to clarify the influences of the explicit solvent water molecules on the 

vibrational spectra, I have investigated them in aqueous solution, considering the 

vibrational INM DOS (see Eq.(3.7)). Figure 3.4 shows the vibrational INM DOS 

    of the glycine molecule in aqueous environment in the high-frequency range 

(2800–3600 cm-1), where a number of typical stretching modes are observed. Since 

such peak positions agreed with the FE  values, each peak was appropriately 

assigned to the corresponding vibrational mode obtained by the VFA-FEH approach 

(see Table 3.2). It can be reasonably understood, therefore, that the relatively broad 

peak in the range of 3000 – 3160 cm-1 should correspond to the stretching motion of 

the –OH group (3077 cm-1), where its full width at half-maximum (FWHM) is ~80 

cm-1. On the contrary, in the range of 3280 – 3440 cm-1, there were two less broad 

peaks with each FWHM (~30 cm-1) less than a half the value of –OH group. Actually, 

it was found that such two peaks, i.e., 3322 and 3416 cm-1, correspond to the 

symmetric and the asymmetric modes of –NH2 group, respectively. In contrast to the 

above three modes, the two modes of >CH2 group, i.e., 3028 and 2972 cm-1, were 

found to become very sharp since they were hardly influenced electrostatically even in 

aqueous environment. 

Next, I have shown in Figure 3.5 the approximate IR spectra as the vibrational 

INM DOS  IRD   (Eq.(3.8a)) weighed with IR
iw  of each vibrational mode (see in 
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parentheses in Table 3.3). The IR intensities in aqueous solution aqI  were found to 

increase considerably in comparison to those in gas phase gasI  with the exception of 

that of  s 2CH  (see Table 3.3). In particular, since I  of the –OH group was the 

largest among those of all the vibrational modes, the corresponding IR peak showed 

the maximum in the high-frequency range although the height of     was the 

lowest (Figure 3.4). Thus, it was recognized in the present system that the intrinsic IR 

intensity of each vibrational mode has a significant influence on the peak height. In 

addition, it can be said that, in the present VFA methods, the spectroscopic features, 

e.g., peak intensity and broadening of IR spectra, were consistently reproduced with 

the observation by the common IR spectroscopy measurements [36-45]. 

Finally, I have investigated the microscopic origin of the strong broadening of 

spectra for the –OH group. It should be noted that, since the geometry of the solute 

molecule was fixed here at the equilibrium structure in aqueous solution, the peak 

width is influenced clearly by only the fluctuation of electron density that depends on 

the instantaneous solvent configurations. In particular, such fluctuation should be 

induced by the HB formation with the closer water molecules around the glycine 

molecule. Then, I have investigated the correlation between the vibrational spectra and 

instantaneous configuration of those water molecules. For the purpose, I have focused 

on the IR spectra of the C=O and O‒H stretching modes. Figure 3.6 shows the scatter 

plots of the intermolecular HB distances dHB with the nearest-neighboring O (or H) 

atoms in the water molecule (the left ordinate) and  IRD   (the right ordinate), 

where the abscissa is taken as the vibrational frequency. In this case, I have also 
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shown the linearly-fitted curves, i.e., 
wO-H Od   =0.0031  OH −7.9532 and 

wC=O Hd  = 

−0.0249  CO +43.936. As a result,  OH  was positively correlated with the 

O–H···Ow distance 
wO-H Od  , with its correlation coefficient R = 0.901, indicating the 

strong correlation. This positive correlation indicates that  OH  is red-shifted as the 

O–H···Ow distance becomes smaller, which is ascribed to the weakening of O–H bond 

due to the decrease of the electron density of O–H bond induced by the negative 

point-charge on the O atom of a closer water molecule. On the other hand, the slope of 

the fitted curve for  CO  became negative, showing relatively weak correlation (R 

= −0.623). Contrary to an above tendency of the O–H group,  CO  is blue-shifted 

as the intermolecular HB distance (the C=O···Hw distance 
wC=O Hd  ) becomes smaller. 

The electron densities in the C=O σ and π bonding orbitals increase slightly due to the 

polarization but these changes are smaller than the change in the O–H bonding orbital. 

To interpret and explain this vibrational frequency changes occurring upon HB 

formation, I performed the natural bond orbital (NBO) analysis in three systems, i.e., 

isolated system and two polarized systems with each point charge (system I and 

system II). Here, the latter two systems are the simplest HB models polarized with a 

point-charge expressing the nearest-neighboring atom (O or H). Table 3.4 shows the 

hyperconjugative interaction energies  2E  that are estimated by the second order 

perturbation approach.  2E s in system I scarcely change by the polarization of O–H 

group. On the contrary, in system II, the LP(O3) → π*(C1-O4) contribution increases 

due to the polarization of C=O group, giving clear evidence of stabilization originating 
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in the hyperconjugation between lone electron pair of O3 and C=O π* antibonding 

orbitals. This interaction should bring about the blue-shift of  CO . In conclusion, 

by the polarization,  CO  is blue-shifted due to the stabilization by the 

hyperconjugative interaction, while  OH  is red-shifted by the destabilization of 

the corresponding orbitals. 

As a result, the vibrational frequencies were found to clearly correlate with the 

HB distance dHB. Considering that the HB number of –OH group increased in 

comparison to that of >CO group (see Figure 3.2), the broadening of IR spectra can be 

related to the HB strength.  

 

3.4. Conclusion Remarks 

In this study, I have proposed a new theoretical methodology of vibrational 

spectra in solution, employing two VFAs (vibrational frequency analyses) using 

analytical Hessians on the FES (FE-Hessian) and instantaneous ones (INM-Hessian), 

i.e., VFA-FEH and VFA-INMH. First, I compared the computational performance 

between analytical and numerical VFA approaches, and confirmed that the present 

analytical VFA approach is more efficient than the conventional numerical VFA 

approach. Second, by using the VFA-FEH approach, I investigated the vibrational 

frequencies and their fluctuations of glycine molecule in aqueous solution under the 

explicit environment consisting of ambient solvent water molecules. As a result, the 

calculated vibrational frequencies were quantitatively in good agreement with the 

experimental ones. For the stretching-mode, the vibrational frequencies of –OH, –NH2 

and >CO groups were red-shifted in aqueous solution, while those of >CH2 group 
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were slightly blue-shifted. This is mainly due to the softening (or hardening) of 

vibrational motions influenced by the structural relaxation in solution, i.e., the bond 

length elongating (or shortening). On the other hand, the bending-modes including 

–OH and –NH2 groups showed the large blue shifts, being consistent to the 

experimental observations. This is explained by the hindrance of motion by the 

adjacent solvent water molecules. Namely, such vibrational shifts are attributed to not 

only the structural relaxation but also the explicit atomistic solute-solvent interactions. 

Third, by using the VFA-INMH approach, I have investigated the approximate 

IR spectra in solution through the vibrational INM densities of states (DOS). Since 

such peak positions agreed with the effective vibrational frequencies by the VFA-FEH 

approach, each peak was appropriately assigned to the corresponding vibrational mode. 

In particular, since the IR intensity for the –OH group was largest in the 

high-frequency range, the peak height considerably increased. Namely, such peak 

heights in the IR spectra must be strongly influenced by the intrinsic IR intensity.   

Moreover, according to the relationships between the solvent frequency fluctuation 

and the HB (hydrogen bond) distance, the broadening of IR spectra could be related to 

the HB strength. In particular, the instantaneous vibrational changes of the –OH group 

and >CO one can be explained on the basis of two different mechanisms, i.e., the 

change of electron density in OH orbital and hyperconjugation between the lone 

electron pair of oxygen atom of >CO group and the C=O π* antibonding orbital, 

respectively. This is considered an essential clue to understand the general feature of 

experimental vibrational spectra in the various HB systems. 

In the present study, I have discussed about the IR spectra depending on the 

electron density induced by the instantaneous solvent configurations, by combining 
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with VFA-FEH approach. However, more realistically, the present method should be 

executed successively for a set of “instantaneous” structures obtained through an 

equilibrium (or non-equilibrium) QM/MM-MD trajectory without fixing the structures 

of solute molecules themselves. Moreover, by using the VFA-INMH approach, any 

complicated vibrational spectra, which are overlapped by the several vibrational 

modes, can be, in principle, separated to the contributions of individual vibrational 

modes. Finally, it is concluded that the present approaches would provide us a 

plausible tool to analyze vibrational properties separately to the contributions from the 

original modes and are quite useful to interpret the microscopic origin of the 

experimental vibrational spectra. 
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FIGURES 
  

Figure 3.1. CPU times for n-hydrocarbons (CnH2n+2, n=1,3,5,7) and glycine molecule. 

It was obtained by averaging the calculation time for ten configurations. All the 

calculations were carried out with an Intel Xeon E3-1270 (3.4GHz) machine. Note 

that the right and left ordinate axes represent the CPU times for n-hydrogens and 

glycine molecule, respectively. 
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(a) Side View 

 

(b) Top View 

 

Figure 3.2. Stereo view of the spatial distribution of oxygen and hydrogen atoms of a water 

molecule in the first hydration shell around the solute glycine molecule, (a) Side view and (b) 

Top view. The red points indicate the oxygen atom of water molecule, and the grey one 

indicate the hydrogen atom. 
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Figure 3.3. Relative frequency distribution of the hydrogen bond angles. 
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Figure 3.4. The vibrational INM DOS     in high-frequency range. 
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Figure 3.5. The approximate IR spectra: the vibrational INM DOS  IRD   

weighed with IR
iw  in high-frequency range. Those average IR intensities aqI  at 

the vibrational frequencies estimated by the VFA-FEH approach are also indicated 

by the gray bar. 



94 
 
 

a) O–H stretching mode 

 

b) C=O stretching mode 

 

Figure 3.6. IR spectra of O–H and C=O stretching modes. Scatter plots of the lengths of 

nearest-neighboring H or O atom of water molecules versus the O–H and C=O stretching frequencies. 

Linear fits (dashed lines) are (a) 
wO-H Od  =0.0031  OH −7.9532 ; R = 0.901 and (b) 

wC=O Hd  = −0.0249 

 CO +43.936; R = −0.623. 



95 
 

 

TABLES 
 

 

  

Table 3.1. Numerical errors of vibrational frequencies [cm-1] (the 

maximum (MAX) absolute value among all the frequency differences 

and their root mean of square (RMS) value) in three different system 

sizes, i.e., methane, heptane and glycine in solution. The system sizes 

are denoted by the number of atoms and the degree of basis sets. 

component 
Numerical error [cm-1] System size 

MAXa RMSb Natom Nbasis 

Methane 18 8 5 39 

Glycine 122 29 10 120 

Heptane 109 22 23 213 

a
  num anaMAX max 1, 2, ,3 6i i i N      

b

 
3 6 2num ana

1

RMS (3 6)
N

i i
i

N 




    
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Table 3.2. Calculated vibrational frequenciesa   (cm-1) and their shifts 

from in gas phase to in aqueous solution   (cm-1). 

Mode 

Gas In water Frequency shift 

gas   CPCM  FE   CPCM b
FE c exp  

Stretching       

ν
as

(NH
2
) 3476 3351 3416 -125 -60 -13d 

ν
s
(NH

2
) 3381 3262 3322 -119 -59  

ν(OH) 3570 3047 3077 -523 -493 -320d 

ν
as

(CH
2
) 3011 2990 3028 -21 +17  

ν
s
(CH

2
) 2958 2936 2972 -22 +14  

ν(CO) 1708 1657 1691 -51 -17 -39d 

Bending       

δ(COH) 1341 1232 1338 -9 +97  

δ(COH)+ 

γs(NH2) 

886 897 990 +11 +104  

γ(COH) 606 563 997 -43 +391 +416e 

γas(NH2) 225 221 505 -4 +280  
a Normal vibrational frequencies (in cm-1) scaled by 0.9418 (Ref. 35). 

b CPCM CPCM gas      

c FE FE gas      

d FTIR data for Gly-(H2O) and Gly-(H2O)2 cluster in Ar matrix [4]. 
e FTIR data for Gly-(1-methyluracil) cluster in Ar matrix [5]. 
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Table 3.3. Calculated IR Intensities I  (km/mol) and shifts from in gas phase to 

in aqueous solution I  (km/mol). 

Mode i Gas phase In water Intensity shift 

   gas gas,iI     aq FE,iI    I * 

ν
as

(NH
2
) 1 9.9 (3476) 41.7 (3416) +31.8 

ν
s
(NH

2
) 2 2.9 (3381) 21.9 (3322) +19.0 

ν(OH) 3 73.9 (3570) 331.0 (3077) +257.1 

ν
as

(CH
2
) 4 4.6 (3011) 28.1 (3028) +23.5 

ν
s
(CH

2
) 5 13.3 (2958) 12.4 (2972) -0.9 

ν(CO) 6 260.6 (1708) 390.3 (1691) +129.7 

*
aq gasI I I    
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Table 3.4. NBO analysis: The hyperconjugative interaction energies estimated by 

the second order perturbation approach E(2) (kcal/mol), and their differences 

between the isolated system and two polarized systems with each point charge 

(System I and System II). (The names of atoms in the parentheses and point 

charges follow those in Figure 3.3). 

Typea 

Donor/Acceptor 

Isolated System Ib  System IIc  

E(2) E(2) ∆ E(2) ∆ 

LP
1
(O3)/BD

1
*(C1-O4) 11.12 11.12 0.00 11.14 0.02 

LP
2
(O3)/BD

2
*(C1-O4) 65.5 65.49 -0.01 65.72 0.22 

LP
1
(O4)/RY

1
*(C1) 21.82 21.82 0.00 21.82 0.00 

LP
2
(O4)/BD

1
*(C1-C2) 21.93 21.93 0.00 21.93 0.00 

LP
2
(O4)/BD

1
*(C1-O3) 40.46 40.46 0.00 40.39 -0.07 

LP
1
(N5)/BD

1
*(C1-C2) 12.17 12.17 0.00 12.13 -0.04 
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Chapter 4 

General Conclusion  
 

In this thesis, to understand the explicit solvation effects, I have investigated 

the (i) free energy (FE) stability and (ii) vibrational spectra of the neutral-form (NF) 

glycine in aqueous solution by employing two theoretical methods, i.e. the dielectric 

continuum model (DCM) method and the quantum mechanical/molecular mechanical 

(QM/MM) method. 

In chapter 2, the FE stability of NF-glycine conformers and the contribution of 

microscopic solvation effects in those systems were investigated. In the CPCM 

method, the electrostatic contribution of solute-solvent interaction energy was 

underestimated due to the lack of explicit hydrogen bonds among solute and solvent 

molecules. On the other hand, in Conformer II that has one intramolecular hydrogen 

bond (HB), the vdW contribution was overestimated, because the CPCM method 

cannot consider the correct contributions by the relatively weak solvation of 

Conformer II. Consequently, the relative FE differences among conformers in aqueous 

solution were smaller than the PEs in the isolated conformers. 

In chapter 3, I have proposed a new theoretical methodology for vibrational 

spectra in solution, employing two kinds of analytical Hessians. I have applied it to 

glycine molecule and discussed the microscopic solvation effects on the vibrational 

frequency shifts and broadening of the vibrational spectra in solution. From comparing 

with the experimental results those by two kinds of theoretical methods (the CPCM 
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and the QM/MM-MD method), it was shown that the inclusion of explicit solvent 

effect must be essential to understand even qualitatively the microscopic origin of the 

experimental vibrational shifts in solution, especially those of bending modes. 

Moreover, to clarify the microscopic origin of the broadening of each peak 

corresponding to the vibrational modes, I have investigated the correlation between the 

instantaneous vibrational shifts and the configuration of the closer water molecules 

around the glycine molecule. In proportion to the intermolecular HB distance, it was 

found that the stretching mode of hydroxyl group shows the larger red-shift while one 

of carbonyl group does blue-shift. Their behaviors were discussed on the basis of the 

electron density analysis, and suggested that they originated in the different 

mechanism. 

The development of electronic computers has allowed a systematic 

development of computational chemistry and wide applications of those theoretical 

techniques to among chemical problems. The art of developing and applying computer 

programs for solving them has brought about great breakthroughs in the field of 

chemistry and its environs. Moreover, theoretical chemistry has large overlaps with 

(theoretical and experimental) condensed matter physics and molecular physics, and 

this research field must develop more and more in future while interrelating closely 

with each other. So, I would be happy if my research finding (both scientific 

suggestion and the developed method) in the present thesis could make a meaningful 

contribution to the science and its society. 

  



101 
 

 

Chapter 5 

Appendix 

5.1. Convergence of Free Energy Difference 

In order to know the simulation time necessary to obtain the statistical 

accuracy of numerical values of the free energy difference, I did the preliminary 

survey and it was found that the free energy change for 1s , QM/MM
sol, 1iA   converges 

until 7.5 ps (15,000 steps) at the time step 0.5 fs (Figure A1). 

 

 

Figure A1. The convergence of the free energy difference QM/MM
sol, =1iA (cf. Eq. A8) at an 

interpolated structure i=1 between Conformer I (i=0) and IV (i=80). The abscissa 

represents the simulation time for the statistical averaging. 
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5.2. Structural Change in Aqueous Solution 

For the purpose to obtain the equilibrium structures in aqueous solution, I have 

optimized the molecular structure of the glycine molecule by the FEG method. Table 

A1 shows the internal coordinates (bond lengths and bond angles) of the equilibrium 

structures in gas phase and in aqueous solution. The internal coordinates were 

arranged in order of those in gas phase and in aqueous solution (CPCM method and 

FEG method), and were written in the bold letters if there is relatively a large 

difference between in gas phase and in aqueous solution. 

 

5.3. Spatial Distribution of Water Molecules: 

Cross-Sectional View 

To help the understanding the solvation structure around glycine molecule, the 

spatial distribution of oxygen (red) and hydrogen (gray) atoms of water molecules is 

Table A1. Equilibrium bond lengths (Å), bond angles (degree) and the differences 

between those in gas phase and in aqueous solution. 

Parameter Gas phase 
Solution Δ 

CPCM FEG CPCM FEG 

Bond length      

r(C=O) 1.221 1.223 1.230 +0.002 +0.009 

r(C-H) 1.091 1.092 1.090 +0.001 -0.001 

r(O-H) 0.973 0.997 1.005 +0.024 +0.032 

r(N-H) 1.014 1.020 1.020 +0.006 +0.006 

Bond Angle      

θ(COH) 106.7 108.5 110.4 +1.8 +3.7 

θ(CNH) 110.3 110.1 110.3 -0.2 0.0 
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shown in Figure A2, displayed in the cross-sectional view of x-y plane. The 

distribution of the oxygen atoms was found to clearly locate around the hydrogen atom 

of –OH group, while those of the hydrogen atoms can be observed around the nitrogen 

atom of –NH2 group and the oxygen atom of >CO group. 

 

 

5.4. Convergence of the Effective Frequencies 

Figure A2.  Spatial distribution of oxygen (red) and hydrogen (gray) 

atoms of water molecules around glycine molecule in the 

cross-sectional view of x-y plane 
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To confirm the convergence of the effective vibrational frequencies in solution, 

I have shown the time variation of the mean value  FE t  and the standard error of 

the mean (SEM)  M t  in the glycine molecule. The SEM is estimated: 

   
M

traj

s t
t

N
   ,   (5.1)  

where trajN  is a total number of trajectories executed with independent initial solvent 

configurations, and s  is the standard deviation (SD) defined by 

      traj

traj

2
2

1traj

1 N
I

N
I

s t t t
N

 


  .  (5.2)  

Here, it should be noted that  I t  means the effective vibrational frequency 

averaged over a time step t in the Ith MD simulation, and  
trajN

t  is the mean 

value averaged over trajN  number of trajectories: 

   
traj

traj
1traj

1
.

N
I

N
I

t t
N

 


     (5.3)  

In the present study, 10 sampling MD runs for VFA analysis were used ( traj 10N  ). 

Figure A3 and Figure A4 show the temporal changes in  FE t  and  M t  

of the glycine molecule, respectively. Until reaching the convergence,  FE t  of O-H 

stretching mode showed quite large fluctuations, while that of C=O stretching mode 

changes to a small extent. The tendencies of other stretching modes were similar to 

that of C=O stretching mode. In any case, it have been confirmed that  FE t  

converges sufficiently enough by 50 [ps]. Moreover, in Table A2, it was found that 
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the converged values of M  take a value within the range of 0.08 ≤ M  ≤ 0.66 

[cm-1], showing that our calculation results have sufficient statistical precision to 

discuss the vibrational shifts by the solvation effects.  

(a) O-H stretching mode 

 
(b) C=O stretching mode 

 

Figure A3. Temporal changes of effective vibrational frequencies  FE t  averaged 

over 10 MD trajectories, (a) the O-H stretching mode and (b) the C=O stretching 

mode. The broken lines (---) are the averaged evaluation at t=50 [ps].
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Table A2. The SEMs of the stretching mode averaged over 10 MD trajectories. 

Mode 
M  [cm-1] 

 as 2NH   0.20 

 s 2NH  0.24 

 OH  0.66 

 as 2CH  0.10 

 s 2CH  0.08 

 CO  0.21 

 

Figure S4.  Temporal changes of the standard errors of the mean (SEM) averaged 

over 10 MD trajectories in case of the O-H and C=O stretching mode. 
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