中世最寒冷期の北日本 ¹⁴C 年代偏差の解明 Explication of ¹⁴C age offsets at medieval cold period in tree ring from the northern Japan

箱崎真隆 ^{1*}・中村俊夫 ¹ Masataka Hakozaki ^{1*}・Toshio Nakamura

¹名古屋大学年代測定総合研究センター ¹Center for Chronological Research, Nagoya University

*Correspondence author. E-mail: hakozaki@nendai.nagoya-u.ac.jp

Abstract

We measured radiocarbon (¹⁴C) content in tree ring from the northern Japan at medieval cold period (the latter 15th century) for accuracy improvement of Japanese ¹⁴C age calibration. As a result, these average value of ¹⁴C dates were 15 years younger than IntCal13. In previous study, the average value of ¹⁴C dates of the northern Japanese tree during the 14th to the early 15th century were 31 years older than IntCal13, but our data showed a reverse tendency. The latter 15th century was in Spörer minimum period, and the atmospheric ¹⁴C content rose globally. We consider that this rising event may have been effected hard at the northern Japan. In a result of wiggle-matching using IntCal13, our data were calibrated true calendar dates. But our data were different from IntCal13 in the shape of wiggle a little. Therefore agreement rates with IntCal13 were low for certain data. When these were independent data, a calendar year can't calibrate correctly. The atmospheric ¹⁴C offset during the 13th century when it is another medieval cold period should also be considered by ¹⁴C measurement of the dendrodated tree ring from the northern Japan.

Keywords: Hiba arborvitae; Northern Japan; 14C dating; regional 14C offset; 14C calibration

1. はじめに

歴史時代の様々な時代(特に 1-3 世紀, 5-6 世紀, 14-15 世紀)に、日本産樹木の年輪 ¹⁴C 年代は IntCal(欧米産樹木等の ¹⁴C データに基づく国際標準暦年較正曲線. 最新版は IntCal13(Reimer et al. 2013))と数十年の差をもつ(古くなる)ことが知られている(Sakamoto et al. 2003; 尾嵜 2009; Nakamura et al. 2013; 吉光・中村ほか 2012; 箱崎ほか 2013; 坂本ほか 2013; 箱崎・中村 2014 など). 歴史時代の日本産試料の ¹⁴C 年代を IntCal で較正すると、真の暦年代から外れた年代に較正されてしまうことも確認されている(箱崎ほか 2013). 今日, ¹⁴C 年代法は日本の歴史学・考古学・古環境学において、試料年代の決定に重要な役割を果たしており、その測定値が正しく較正されないことは重大な問題である. この問題を解決するには、日本産年代既知試料の ¹⁴C データを蓄積し、日本独自の暦年較正曲線を確立する必要がある.

本研究では、北日本産埋没木を対象に、15世紀後半の樹木年輪の¹⁴C 年代測定を行った。北日本樹木では14-15世紀前半において ¹⁴C 年代が IntCal に比べて平均31 年古くなることが確認されており、その原因の一つにはオホーツク海(湧昇域)からの大気流入(特にヤマセ)が挙げられている(箱崎ほか 2013)。ヤマセは北日本の夏季に低温をもたらすことから、当時の北日本では、気温の低下と大気 ¹⁴C 濃度の低下が連動していた可能性がある。15世紀後半は東アジアの復元気温(Cook

et al. 2013)において最も寒冷な時期の一つと推定されており、北日本ではヤマセの影響が強まっていた可能性がある。また一方で、15世紀後半はシュペーラー極小期の前半にあたり、太陽磁場が弱まって地球に降り注ぐ宇宙線量が増加し、全世界的に「4C 生産量が増大した時期にもあたる。本研究の目的は、ローカルな気候変動の影響(大気 「4C 濃度低下)とグローバルな宇宙天気の影響(大気 「4C 濃度上昇)が同時に存在したと予想される 15世紀後半の北日本の年輪 14C 年代を明らかにすることである。

2. 試料と方法

試料は、青森県下北半島のアスナロ埋没木(AOSR002)である。この埋没木は、年輪年代法(年輪幅・酸素同位体比)、¹⁴C年代法により、暦年代が確定している(箱崎ほか 2014 など)。下北半島は本州最北端に位置し、夏季にはオホーツク海髙気圧の影響下にある。

試料の AD1442-1500 の年輪を 1 層ごとに切り分け、偶数西暦年の試料 30 点(AD1442, 1444, .., 1500)の 14 C 濃度を測定した。測定には、名古屋大学タンデトロン AMS2 号機を使用した。偶数年のみを測定したのは、先に全体傾向を把握するためで、最終的には全年輪試料を測定する予定である。各年輪試料の 14 C 濃度から 14 C 年代を算出した。

各年輪試料の ¹⁴C 年代を IntCal13 および南半球用暦年較正曲線 SHCal13(Hogg et al. 2013)と比較して、その年代差を算出した。また、OxCal v4.2 (Bronk Ramsey 2013)を使用して、各試料の較正暦年代を算出し、実年代との年代差を検討した。さらに、OxCal のウィグルマッチングプログラム(Bronk Ramsey et al. 2001)を使用し、較正暦年代と実年代の年代差も検討した。また、東アジアの復元気温(Cook et al. 2013)とも比較し、気温と大気 ¹⁴C 濃度の関係も検討した。

3. 結果

測定の結果, 試料から 293 ± 23 ~ 471 ± 23 BP(1σ)の 14 C 年代が得られた(表 1). 試料の 14 C 年代は, IntCal13 に比べて平均 11 ± 23 BP(1σ)若く,SHCal13 に比べて平均 55 ± 23 BP(1σ)若く値であった. 最寒冷期にあたる AD1450-1500 に限ると,IntCal13 に対して平均 15 ± 23 BP(1σ)若く(図 1),SHCal13 に対して平均 58 ± 23 BP(1σ)若く値であった. 試料の測定値から 5 年移動平均及び 11 年移動平均を算出し,IntCal13 および SHCal13 と比較した結果,どちらの較正曲線とも異なる,変動の激しいウィグルであることがわかった(図 2).

IntCal13 を使って試料の ¹⁴C 年代を較正した結果, 22 点(73 %)は真の暦年代を含む較正暦年代 (2σ)に較正された(表 1). 一方, SHCal13 で較正した結果, 14 点(47 %)点が暦年代を含む較正暦年代(2σ)に較正された(表 1).

試料の ¹⁴C 年代を時系列データとして IntCall3 および SHCall3 を使用してウィグルマッチングを行った結果, IntCall3 では AD1500 の試料が 1493-1503 cal AD (2 σ)と較正された. 一方, SHCall3 では AD1500 の試料が 1527 - 1539 cal AD (2 σ)と 27 - 39 年若い較正暦年代に較正された(表 1).

IntCal13 に対する試料の 14 C 年代の差を求め、東アジア復元気温と比較した結果、AD1450-1475 にかけての最も寒冷な時期に IntCal より若い年代へ急激にシフトし、一度 IntCal に近い値まで戻った後、AD1485 付近の気温上昇時に再び InCal より 20 年以上若い年代へシフトしたことが確認された(図 3).

表1 青森県産アスナロ材(AONT002)年輪試料30点の14C年代と較正暦年代

Tree ring ID.	Lab. Code (NUTA 2-)	Calen dar year (AD)	¹⁴ C age (BP)	Error (1 σ)	Calibrated age (cal AD)							
					IntCal13 (Reimer et al. 2013)			100	SHCal13 (Hogg et al. 2013)			
							Modelled*		Unmodelled		Modelled*	
					1σ	2σ	2σ	Agree ment (%)	1σ	2σ	2 σ	Agree ment (%)
SR-60-1	22721	1442	464	23	1429 - 1445	1418 - 1452	1435 - 1445	134.5	1442 - 1475	1433 - 1605	1469 - 1481	44.8
SR-58-1	22720	1444	471	23	1427 - 1444	1416 - 1449	1437 - 1447	100.3	1440 - 1460	1429 - 1489	1471 - 1483	24.0
SR-56-1	22719	1446	457	23	1431 - 1447	1418 - 1456	1439 - 1449	120.5	1445 - 1478	1437 - 1609	1473 - 1485	57.4
SR-54-1	22718	1448	456	23	1432 - 1448	1419 - 1456	1441 - 1451	100.2	1445 - 1478	1438 - 1609	1475 - 1487	52.3
SR-52-1	22715	1450	448	23	1434 - 1450	1422 - 1465	1443 - 1453	102.5	1448 - 1481	1442 - 1612	1477 - 1489	67.5
SR-50-1	22714	1452	434	22	1437 - 1455	1428 - 1477	1445 - 1455	126.5	1453 - 1492	1447 - 1615	1479 - 1491	93.8
SR-48-1	22713	1454	437	23	1436 - 1454	1426 - 1477	1447 - 1457	93.0	1451 - 1491	1446 - 1615	1481 - 1493	83.2
SR-46-1	22712	1456	385	23	1450 - 1614	1444 - 1621	1449 - 1459	116.6	1481 - 1622	1461 - 1627	1483 - 1495	106.2
SR-44-1	22711	1458	451	22	1433 - 1449	1421 - 1460	1451 - 1461	16.5	1448 - 1478	1441 - 1610	1485 - 1497	34.7
SR-42-1	22710	1460	412	23	1443 - 1473	1436 - 1615	1453 - 1463	135.7	1459 - 1611	1452 - 1623	1487 - 1499	127.3
SR-40-1	22707	1462	311	23	1522 - 1642	1493 - 1646	1455 - 1465	0.8	1515 - 1652	1508 - 1660	1489 - 1501	0.9
SR-38-1	22706	1464	340	23	1493 - 1631	1473 - 1636	1457 - 1467	16.3	1510 - 1636	1501 - 1647	1491 - 1503	15.4
SR-36-1	22705	1466	333	23	1495 - 1633	1483 - 1641	1459 - 1469	10.8	1511 - 1642	1503 - 1649	1493 - 1505	14.8
SR-34-1	22704	1468	401	23	1446 - 1484	1440 - 1617	1461 - 1471	136.3	1462 - 1616	1455 - 1625	1495 - 1507	115.0
SR-32-1	22703	1470	391	23	1449 - 1609	1442 - 1620	1463 - 1473	145.5	1464 - 1621	1458 - 1626	1497 - 1509	125.
SR-30-1	22702	1472	399	23	1447 - 1606	1440 - 1617	1465 - 1475	122.6	1462 - 1617	1456 - 1625	1499 - 1511	90.9
SR-28-1	22701	1474	373	23	1456 - 1616	1449 - 1630	1467 - 1477	135.8	1498 - 1625	1478 - 1632	1501 - 1513	124.1
SR-26-1	22698	1476	351	23	1483 - 1628	1459 - 1634	1469 - 1479	77.1	1508 - 1629	1498 - 1643	1503 - 1515	103.8
SR-24-1	22697	1478	375	23	1455 - 1616	1448 - 1630	1471 - 1481	140.8	1497 - 1624	1466 - 1631	1505 - 1517	107.4
SR-22-1	22696	1480	340	23	1493 - 1631	1473 - 1636	1473 - 1483	52.9	1510 - 1636	1501 - 1647	1507 - 1519	109.9
SR-20-1	22695	1482	367	22	1464 - 1618	1451 - 1631	1475 - 1485	133.0	1501 - 1626	1485 - 1633	1509 - 1521	101.9
SR-18-1	22694	1484	318	23	1521 - 1639	1490 - 1644	1477 - 1487	15.7	1512 - 1650	1506 - 1655	1511 - 1523	92.0
SR-16-1	22693	1486	319	23	1521 - 1637	1490 - 1644	1479 - 1489	19.5	1512 - 1649	1506 - 1654	1513 - 1525	101.
SR-14-1	22690	1488	323	23	1518 - 1636	1488 - 1643	1481 - 1491	30.5	1512 - 1648	1505 - 1653	1515 - 1527	114.
SR-12-1	22689	1490	310	23	1522 - 1642	1493 - 1646	1483 - 1493	16.4	1515 - 1653	1508 - 1661	1517 - 1529	81.
SR-10-1	22688	1492	295	23	1523 - 1647	1499 - 1653	1485 - 1495	7.2	1529 - 1664	1510 - 1793	1519 - 1531	35.
SR-08-1	22687	1494	338	23	1493 - 1632	1477 - 1636	1487 - 1497	92.9	1510 - 1638	1502 - 1647	1521 - 1533	127.
SR-06-1	22686	1496	360	22	1468 - 1620	1454 - 1632	1489 - 1499	126.3	1505 - 1627	1494 - 1637	1523 - 1535	98.
SR-04-1	22685	1498	326	23	1515 - 1635	1487 - 1642	1491 - 1501	72.7	1512 - 1646	1505 - 1651	1525 - 1537	124.4
SR-02-1	22684	1500	293	23	1524 - 1648	1514 - 1655	1493 - 1503	12.7	1629 - 1664	1510 - 1794	1527 - 1539	30.5

* A 2-year definite gap sequence modelling was performed using the OxCal on-line plogram (Bronk Ramsey et al. 2001; Bronk Ramsey 2013).

4. 考察

測定結果より、北日本産アスナロ材の15世紀後半(中世最寒冷期)の年輪 ¹⁴C 年代値は、IntCal13よりも平均15年若い年代を示すことがわかった。これまで北日本産アスナロ材では、14世紀〜15世紀前半にかけてIntCal13より平均31年古くなることが報告されている(箱崎ほか2013)。また、箱崎ほか(2013)のデータは、AD1350-1450に東アジア復元気温と同調する傾向がある(図3)。このことから、同時代では気温の低下と大気 ¹⁴C 濃度の低下が同調すると予想された。しかし本研究によって、その直後にあたるAD1450-1500では、大きな気温低下が起きたにも関わらず、大気 ¹⁴C 濃度が大きく上昇するという、それまでの100年間と全く逆向きの変化が生じたことが明らかとなった。

AD1450-1500 は、太陽活動が極端に低下した時期の一つであるシュペーラー極小期(ca. AD1450-1550)の前半にあたる。シュペーラー極小期前後の日本産樹木の ¹⁴C 濃度測定には、ヤクスギを使用した先行報告がある(宮原ほか 2007; 北澤ほか 2008)。北澤ほか(2008)はシュペーラー極小期以前のヤクスギ年輪 ¹⁴C 濃度が IntCal よりも系統的に低い(年代としては古い)値を取ることを示し、宮原ほか(2007)は極小期において同 ¹⁴C 濃度が IntCal とほぼ等しい値を取ることを示した。ヤクスギは 1-3 世紀、5-6 世紀において IntCal よりかなり低い ¹⁴C 濃度を示すことが指摘されており(吉光・中村 2012; 箱崎・中村 2014)、東アジアモンスーンによる南半球大気の供給によって、系統的に大気 ¹⁴C 濃度低下が起きていたと予想されている(Nakamura et al. 2013)。シュペーラー極小期にヤクスギ年輪 ¹⁴C 濃度が IntCal とほぼ等しい値となったことは、一時的に、そのような地域効果を打ち消すほど多量の ¹⁴C が当時の日本周辺大気に入力されたことを示唆する。

本研究で認められたシュペーラー極小期の北日本樹木の高い ¹⁴C 濃度は,この汎地球的な ¹⁴C 濃度急増に起因するものと考えられる. 試料の産地は北緯 41 度に位置し,NH Zone1 と Zone 2(Hua et al. 2013)のほぼ境界に位置する. 大気¹⁴C 濃度は北半球の高緯度ほど高い傾向があり(Hua et al. 2013),特に ¹⁴C 生成量が急増

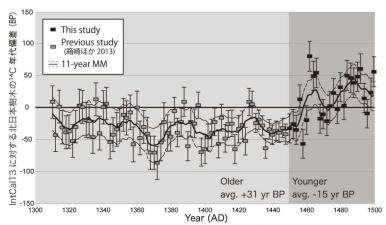


図1 IntCal13に対するAD1310-1500の北日本樹木の14C年代偏差

したような時期(例えば AD774-775 の 14 C-spike)の濃度差は、北半球高緯度地域とそれ以外の地域で顕著に異なる(Miyake 2014; Jull et al. 2014). 北日本は、屋久島に比べて約 10 度高緯度に位置し、シュペーラー極小期における 14 C 生産量の急増の影響が、相対的に強かった可能性がある.

しかしながら、極小期における ¹⁴C 濃度変動が IntCal およびヤクスギではほぼ一定(宮原ほか2007)であるのに対し、北日本樹木は不規則で大きな変動を示した(図 2). 寒冷期中の一時的な温暖期に、同じタイミングで ¹⁴C 年代が若くなるという変化も認められた(図 3). この挙動は、北日本周辺の大気 ¹⁴C 濃度が単純に太陽活動に制御されていたのではなく、地域的な気候変動の影響も同時に受けていたことを示唆し、AD1350-1450 における気温と同調する傾向を引き継いでいたことを示唆する.

以上から、14-15世紀における北日本の大気 ¹⁴C 濃度は、太陽活動の影響とともにローカルな気候変動の影響を受けたと推定される。しかしまだ一個体の測定結果に過ぎず、再現確認が十分ではないため、別個体の追試を行い、その結果とあわせて気候変動・宇宙天気との関係を詳細に議論するべきである。今後の展望として、シュペーラー極小期後半にあたる 16 世紀前半の北日本

樹木の年輪 ¹⁴C 濃度測定を行い、その 挙動と気温変動との関係性も明らか にしていく必要がある。また、もう一 つの中世寒冷期にあたる 13-14 世紀 の北日本大気 ¹⁴C 濃度変動も明らか にして、これまでの傾向と比較してい く必要がある。

今回の測定・暦年較正の結果から, AD1450-1500 にかけての北日本産試料の ¹⁴C 年代は、概ね IntCal13 で真の暦年代に較正されることがわかった. IntCal13 に基づくウィグルマッチングでも、真の暦年代を高精度に推定できた(表 1). しかしながら、各試料の一致率をみると、一部にかなり低いものが認められた. 特に、AD1458、1462、1464、1466、1484、1486、1490、1492、

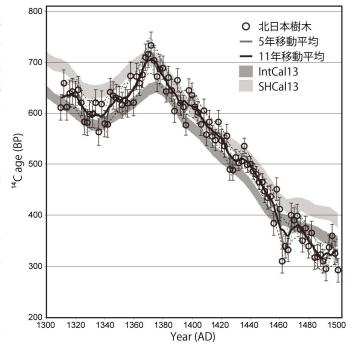


図2 AD1310-1500の北日本樹木の¹⁴C年代値とIntCal13・SHCal13

1500 の9 試料は、一致率 20%以下であり、それらは単独試料として暦年較正した場合、真の暦年代に較正されないことがわかった。平均値では IntCal13 との ¹⁴C 年代差は大きくないが、このような事例があることから、15 世紀後半の北日本産資料の暦年較正には注意が必要であり、樹木試料の場合はウィグルマッチングを行うことが推奨される。

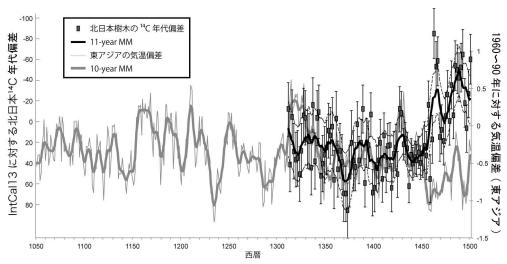


図 3 中世の北日本樹木の ¹⁴C 年代偏差 (本研究) と東アジア気温偏差 (Cook et al. 2013)

箝鵂

本研究の試料は東北大学植物園大山幹成博士に提供して頂いた.本研究は名古屋大学年代測定総合研究センター新研究創成経費および JSPS 科研費 26284120 の助成を受けた.

引用文献

Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1): 337-360.

Bronk Ramsey C, van der Plicht J, Weninger B. 2001. 'Wiggle matching' radiocarbon dates. Radiocarbon, 43(2A): 381-389.

Cook ER, Krusic PJ, Anchukaitis KJ, Buckley BM, Nakatsuka T, Sano M, PAGES Asia2K Members. 2013. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim. Dym. 41: 2957-2972.

箱崎真隆・中村俊夫・大山幹成・鈴木三男. 2013. 北日本産アスナロ埋没木の樹木年輪をもちいた高精度放射性炭素年代測定. 第28回日本植生史学会大会要旨集:60-61.

箱崎真隆. 2013. 高精度暦年較正に向けた北日本産樹木の放射性炭素年代測定. 名古屋大学加速器質量分析 計業績報告書, XXIV, 41-51

箱崎真隆・中村俊夫. 2014. 紀元5世紀の屋久杉年輪試料をもちいた高精度放射性炭素年代測定. 名古屋大学加速器質量分析計業績報告書, XXV: 144-151.

箱崎真隆・中村俊夫・木村勝彦・中塚武. 2014. 北日本産樹木を用いた酸素同位体比標準年輪曲線の構築. 名古屋大学加速器質量分析計業績報告書, XXV:54-61.

Hogg AG, Hua Q, Blackwell PG, Niu m, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon, 55(4): 1889-1903.

Hua Q, Barbetti M, Rakowski AZ. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon, 55(4):

2059-2072.

Jull AJT, Panyushkina IP, Lange TE, Kukarskih VV, Myglan VS, Clark KJ, Salzer MW, Burr GS, Leavitt SW. 2014.
Excursions in the ¹⁴C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters. 41: 3004–3010.

北澤恭平・永冶健太郎・増田公明・中村俊夫・宮原ひろ子・村木綏.2008. プレ・シュペーラー期における樹木年輪中 ¹⁴C 濃度測定. 名古屋大学加速器質量分析計業績報告書.XIX: 103-109.

宮原ひろ子・中村俊夫・永冶健太郎・北澤恭平・増田公明・村木綏.2007. 年輪中 ¹⁴C 濃度変動による過去 1200 年間における太陽活動周期の変化. 名古屋大学加速器質量分析計業績報告書,XVIII: 98-104.

Miyake F. 2014. Reconstruction of cosmic-ray intensity in the past from measurements of radiocarbon in tree rings. Doctoral thesis, Nagoya University.

Nakamura T, Masuda K, Miyake F, Nagaya K, Yoshimitsu T. 2013. Radiocarbon ages of annual rings from Japanese wood: evident age offset based on IntCal09. Radiocarbon, 55(2-3): 763-770.

尾嵜大真. 2009. 日本版較正曲線の作成と新たなる課題. 西本豊弘編「弥生農耕の始まりとその年代. 新弥生時代の始まりシリーズ」, 第4巻:4-8, 雄山閣.

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4): 1869-1887.

Sakamoto M, Imamura M, van der Plicht J, Mitsutani T, Sahara M. 2003. Radiocarbon calibration for Japanese wood samples. Radiocarbon, 45(1): 81-89.

坂本稔・高田貫太・李昌煕・藤尾慎一郎・禹炳喆・朴升圭. 2013. 林堂洞古墳群出土人骨にみる東アジア地域の大気中炭素 14 濃度の異常. 第15回 AMS シンポジウム報告集: 75-78.

吉光貴裕・中村俊夫. 2012. 日本産樹木年輪の炭素 14 濃度測定および IntCalO9 との比較検討. 名古屋大学加速器質量分析計業績報告書、XXIII: 57-62.

日本語要旨

日本の ¹⁴C 年代暦年較正の高精度化に向け、北日本樹木の中世最寒冷期(15 世紀後半)の年輪 ¹⁴C 年代を測定した。その結果、IntCal より平均 15 年若い ¹⁴C 年代値が得られた。この結果は、その直前の時代にあたる 14-15 世紀前半が平均 31 年古くなることと逆の傾向であった。この原因の一つには、15 世紀後半がシュペーラー極小期前半にあたり、汎地球的に大気 ¹⁴C 濃度が上昇したことが挙げられる。しかし、寒冷期中の一時的な温暖期に、試料の ¹⁴C 年代がさらに若くなる傾向も認められたため、太陽活動のみに制御された蓋然性は低く、気候変動も日本周辺大気の ¹⁴C 濃度変動に影響した可能性がある。IntCal13 を使用してウィグルマッチングを行った結果、最外年輪試料の真の暦年代(AD1500)を含む較正暦年代(1493-1503 cal AD (25))が算出された。しかしウィグルの形状が IntCal13 と異なるため、一部の試料の年代値は当てはまりが悪く、仮に単独試料であった場合、正確に暦年較正できないことも示された。今後は、もう一つの中世寒冷期にあたる 13-14 世紀における北日本の大気 ¹⁴C オフセットを年代既知年輪試料の測定によって検討していく必要がある。