博士学位論文

直流抵抗標準の高度化に関する研究

2015年(平成27年)3月

名古屋大学 大学院工学研究科 結晶材料工学専攻

大江 武彦

目 次

第1章	序 論	1		
1.1	本研究の背景・目的1			
1.2	本論文の構成	2		
第2章	直流抵抗標準の変遷及び現在の直流抵抗標準	5		
2.1	直流抵抗標準の歴史	5		
	2.1.1 水銀抵抗原器	5		
	2.1.2 自己誘導・相互誘導絶対標準器	6		
	2.1.3 クロスキャパシタ	8		
	2.1.4 量子化ホール抵抗(Quantized Hall Resistance: QHR)	9		
2.2	現在の直流抵抗標準体系及び測定系......................	14		
	2.2.1 極低温電流比較器(CCC)ブリッジ	17		
	2.2.2 直流電流比較(DCC)ブリッジ	19		
	2.2.3 1Ω抵抗器校正用 1:1DCC ブリッジ	23		
	2.2.4 電圧注入型ホイートストンブリッジ	24		
2.3	結言	27		
第3章	量子ホール素子作製技術及び集積化技術	30		
3.1	一次標準用量子ホール素子の要件及び作製.............	30		
	3.1.1 一次標準素子に求められる要件	30		
	3.1.2 一次標準用単一量子ホール素子作製手順	37		
	3.1.3 素子評価結果	40		
3.2	量子ホールアレー抵抗標準	42		
	3.2.1 2次元電子系へのコンタクト抵抗の歩留まり向上	45		

	3.2.2	配線間絶縁抵抗の歩留まりの検討	. 52
	3.2.3	QHR アレー素子の設計	. 55
	3.2.4	10-kΩ QHR アレー素子の作製・評価	. 65
3.3	結言		. 71
第4章	安定な	↓標準抵抗器の開発	73
4.1	標準担	5	. 73
	4.1.1	標準抵抗器に求められる性能	. 74
	4.1.2	温度係数の表現..........................	. 76
4.2	逆ペロ	1ブスカイト型マンガン窒化物を用いた標準抵抗器の開発....	. 77
	4.2.1	逆ペロブスカイトマンガン窒化物の抵抗温度特性	. 79
	4.2.2	小さい抵抗温度係数及び抵抗率極大の起源.........	. 85
	4.2.3	経年変化の低減	. 86
	4.2.4	銅に対する熱起電力の測定.................	. 94
4.3	高安定	Eな NiCr 系金属箔標準抵抗器の開発 95
	4.3.1	経年変化の低減及び各種特性評価結果	. 96
	4.3.2	組み合わせによる温度係数の低減..............	. 103
	4.3.3	開発した 100 Ω 抵抗器を用いた韓国・米国との3国間比較	. 107
4.4	結言		. 108
第5章	結論	à la companya di seconda di second	110
参考文南	汱		112
謝辞			130

第1章

序論

1.1 本研究の背景·目的

はかる(測る、量る、計る)ことは我々の生活と密接に関係しており、身の回りの至 る所で重要な役割を果たしている。正しい計測は、公正な取引を保証し、秩序ある社会 の構築・維持に貢献している。また環境中や食品中の化学物質の正確な測定により、生 活の安心・安全が守られている。質の高い計測はものづくりの上でも重要であり、高性 能の製品を再現性良く製造し、適切に評価し世界の消費者からの信頼を得る上で不可欠 である。

このように重要な計測標準に対し、科学技術は多くの発展をもたらしてきた。科学は より進んだ計測技術や、普遍的な基準をもたらし、それはまた新しい学術領域を開拓し てきた。1980年の量子ホール効果の発見により、 h/ie^2 (hはプランク定数、eは電荷素 量、iは正の整数)で表される普遍的な量子化抵抗値が与えられ、直流抵抗の国際的な 整合性は数 $\mu\Omega/\Omega$ から 0.01 $\mu\Omega/\Omega$ 以下へと 2 桁以上向上した。標準の高度化は、より信 頼性の高く安定な計測器を生み出し、それはまた科学技術や産業の発展を促してきた。 中でも多くの物理量は電気量に変換して測定されるため、電気標準の重要性は高く、よ り高度な標準が必要とされる。

しかし実際の抵抗標準の実現およびその維持には、量子ホール効果による一次標準の 量子化抵抗のみでは不可能であり、室温で安定な二次標準も重要である。そのような二 次標準器として、CuMn 合金や NiCr 合金の巻線や箔などを用いた「標準抵抗器」が使 用されており、温度・湿度・気圧等あらゆる環境変化に対しより安定な特性を示すもの が基準器として使用される。量子化ホール抵抗を得るための装置は大がかりであり、高 価な液体へリウムを必要とするため、通常一企業には維持管理は難しく、これら標準抵 抗器を基準として計測器や製品の製造を行っている。それ故に安定な標準抵抗器の開発 は重要であり、抵抗値の経年・経時変化が小さい標準抵抗器は、産業の活性化において 重要な役割を担っていると言える。

グローバル化する社会での商取引、部品調達、研究・開発連携では、国家間の標準の 整合性が必要となる。これを支えるのがメートル条約とそれに基づく国際相互承認協定 (Global Mutual Recognition Arrangement)である。これを実行する実務として、それ ぞれの量における、一次標準を直接・間接的に比較する「国際比較」の枠組みがある。 その際に重要となるのが安定な仲介器であり、例えば100 Ω や 10 kΩ 等の標準抵抗器を 仲介器として、一次標準(最上位の基準)である量子ホール素子(約 12.9 kΩ)を用いた 測定能力を比較する。仲介器は航空貨物の厳しい環境にさらされつつ標準研究所間を巡 回するため、様々な環境変化に対して安定な標準抵抗器が必要とされる。しかし安定な 標準抵抗器を仲介器として差し出すことは容易ではないため、安定な仲介器の提供は国 際的に高い貢献であると言える。

本論文の目的は、一次標準として利用可能な量子ホール素子の作製・集積化技術の確 立、および二次標準としての安定な標準抵抗器の開発である。標準用途に使用可能な量 子ホール素子を作製できる標準研究所は数少なく、その作製技術の確立は重要な意味を 帯びている。また、量子ホール素子を直並列に組み合わせ集積化した量子ホールアレー 素子は、経年変化のない究極の標準抵抗器であり、国際比較の仲介器としても期待され ている。

さらに二次標準用抵抗器として、逆ペロブスカイト型マンガン窒化物を用いた抵抗素 子を開発した。本材料は従来材料に比べ数倍高い電気抵抗率を有しており、抵抗器の小 型化ができる可能性がある他、小さな抵抗温度係数などの特徴を有し、抵抗器の新材料 として期待されている。また NiCr 箔を用いた標準抵抗器の開発も行い、広い温度範囲 できわめて安定な抵抗温度特性を得た。安定な標準抵抗器は電気計測分野のみならず温 湿度の精密計測分野等からの要請も強く、これらの開発を通してわが国のプレゼンスの 向上及び産業の活性化への貢献が期待できる。

1.2 本論文の構成

本論文は全5章から構成されている。各章の構成は以下の通りである。

第1章 序論(本章)

本章では、計測標準及び電気標準の重要性についてその概要を述べた。秩序ある安心 安全な社会を実現する上で計量標準は重要な役割を果たしている。また、高度な計測技 術は、わが国の産業力・科学技術力の向上に不可欠である。量子ホール素子を一次標準 素子として、また安定な標準抵抗器及び量子ホールアレー素子を仲介器として提供する ことにより、日本のプレゼンスの向上及び産業及び科学技術の発展を促す。

第2章 直流抵抗の精密測定技術

第2章では、直流抵抗標準の変遷について述べ、現在の量子ホール効果を用いた一次 標準について述べる。20世紀初頭の水銀抵抗原器からどのように直流抵抗の基準が決定 されてきたかについて概観する。また、現在の量子ホール効果を基準とした直流抵抗標 準体系について述べる。現在1mΩから1TΩの範囲で校正が可能であり、その直流抵 抗標準のシステム全体の概要について述べると共に、個々の抵抗測定システムについて 述べる。

第3章 量子ホール素子作製技術及び集積化技術

第3章では、一次標準として利用可能な量子ホール素子を作製した結果を報告する。 GaAs/AlGaAsのヘテロ接合界面に形成される2次元電子系に、極低温下で垂直に磁場 をかけた際に現れる量子化抵抗値が一次標準(基準)として用いられている。良質な量 子化抵抗値を得るには、極低温で2次元電子系へのコンタクト抵抗が数Ω以下と小さ く、プラトー(ホール抵抗の対磁場特性の平らな部分)が平坦であり、縦抵抗が無視で きるほど小さいことが求められ、作製した量子ホール素子がこれらの条件を満たすこと をその測定結果より示す。

また、量子ホール素子を直並列に集積化した量子ホールアレー素子について設計・作 製・評価した結果について述べる。これにより、12906.4035 Ω の量子化抵抗値を組み合 わせて、10 k Ω に近い量子化抵抗値を実現することができ、室温の測定系でも高い精度 の測定が実現可能になる。実際に作製した 10 k Ω の量子ホールアレー素子の量子化抵抗 値を精密測定した結果、公称値に 8 桁の 1(0.01 µ Ω/Ω)以下で整合した。

第4章 安定な標準抵抗器の開発

極低温・強磁場下で動作する量子ホール素子の性能が向上したとしても、産業界が直 接的に恩恵を得ることはできない。そのためには室温で高安定な標準抵抗器の開発が不 可欠であり、第4章ではこのことについて述べる。

まずは、逆ペロブスカイト型マンガン窒化物を用いた標準抵抗器の開発について述べる。本材料は、室温付近で抵抗温度曲線に極大を示し、小さな温度係数を示すほか、抵抗率が従来材料に比べ数倍高く、抵抗器の小型化が可能である等の特徴を有している。 Mn₃Ag_{1-x}Cu_xN に、少量の Fe や In、また Mn を添加することにより、温度係数を低減 し、標準抵抗用材料として広く使用されるマンガニン以上の温度特性を得られることを 明らかにした。

また、経年変化を抑える上で、良質なコンタクトの形成が重要であることを明らかに した。焼結体を従来のバー形状ではなく4端子形状に加工することにより、経年変化の 歩留まりを向上し、最高で約1 ($\mu\Omega/\Omega$)/year の経年変化を得た。

次に、NiCr 箔を用いた高安定標準抵抗器の開発について述べる。抵抗器内部の箔抵抗 体は一般にはセラミックの基材に貼り付けられ保持されているが、セラミック基材との 温度係数の違いにより、温度係数が大きくなったり、温度変化に際し抵抗体にストレス がかかり抵抗値が不連続的に変化するという問題があった。そこで本研究では、基材に 貼り付けられていないストレスフリー抵抗器の評価及び性能向上を行った。化学処理と 空気中のアニールによって、製造直後から経年変化の少ない抵抗器の開発に成功したこ とを述べ、それらを組み合わせることにより、きわめて温度係数の小さい抵抗器を作製 した。作製した抵抗器は振動にも強く、韓国や米国との三国間比較を通して、国際比較 の仲介器として本抵抗器が使用可能であることを実証した。

第5章結 論

第5章では、本論文の成果をまとめる。

第2章

直流抵抗標準の変遷及び現在の直流抵抗 標準

近代の直流抵抗の標準は、20世紀初頭の水銀抵抗原器に始まり、その後 20世紀半ば には相互誘導絶対標準器等を用いた抵抗の絶対測定の研究が進められた。その後 1956 年のクロスキャパシタの提案および 1980 年の量子ホール効果の発見があり、現在では クロスキャパシタ及び量子ホール効果を用いて直流抵抗が実現されている。本章では、 これら直流抵抗標準の変遷について概観すると共に、量子化ホール抵抗を基準とする現 在の直流抵抗標準について述べる。

2.1 直流抵抗標準の歴史

現在は量子ホール効果やクロスキャパシタを用いて直流抵抗標準が実現されている。 本節では、19世紀末頃に国際的に定義された国際オームから現在のオームまでの歴史を 概観する。

2.1.1 水銀抵抗原器

1875 年にメートル条約が締結され、1889 年の第1回国際度量衡総会 (CGPM) では メートル原器や現在も一次標準として使用されるキログラム原器の使用が決議されるな ど、主に力学量に係る単位制度の統一が進められた。電気単位については、1908 年ベル リンにおいて開催された万国電気単本位会議にて電気抵抗と電流を基本単位とすること が決議された^[1,2]。国際オームには、E. W. von Siemens が 19 世紀半ばに提案した水銀 抵抗原器の概念が採用され、1Ω(1国際オーム)は「温度0℃において、質量 14.4521 g の水銀で満たされた、断面積が均一で長さ 1063.00 mm の水銀柱の抵抗」と定義された ^[1,3–5]。14.4521 g という質量は、断面積が 1 mm² で、長さが 1063 mm の 0 ℃ における 水銀柱に相当する。水銀が使用された理由としては、

- 純度を上げるのが容易
- 適度に大きい抵抗率、94 μΩ·cm^{注1}
- 低い抵抗温度係数、約880 (μΩ/Ω)/K(金、銀、銅は約4000 (μΩ/Ω)/K)

が挙げられる。ガラス管内の内径の不均一さ、温度の不均一さ及び四端子定義点の不完 全性などの要因により国際オームの再現性は約 20 μΩ/Ω であった^[4]。

2.1.2 自己誘導·相互誘導絶対標準器

その後の技術の進歩により、抵抗の絶対測定により導かれた絶対オームが、水銀抵抗 原器による国際オームと一致しないことが見出された。絶対測定には、Lorentz 機械に よるものと自己誘導絶対標準器や相互誘導絶対標準器を用いる方法が提案された。

Lorentz 機械の略図を図 2.1 に示す^[6,7]。これは回転する金属円盤(図中 D)の面に垂 直に既知の磁場を印加し、金属円盤を回転させた際に金属円盤の中心と円周側との間に 生じる起電力を、被測定抵抗器(図中 R)に電流を流した際に発生する起電力と吊り合 わせることで抵抗値の絶対測定を行うものである。磁場印加用コイル(図中 C)と等し い電流を被測定抵抗器に流すことにより、電流 I の項は打ち消され、電流の絶対測定無

図 2.1: Lorentz 機械を用いた直流抵抗の絶対測定システムの概略図 ^[6]

^{注1} 例えば、標準抵抗器の材料に使用される Manganin (CuMn 合金)の抵抗率は約 48 μΩ·cm、Evanohm (NiCr 合金)の場合は約 130 μΩ·cm である。

図 2.2: 米田らにより作製された相互誘導絶対標準器^[8]

測定年	標準研究所	測定方式	絶対オーム/国際オーム
1936	米国 NBS(現 NIST)	自己誘導	1.000 454
1937	英国 NPL	Lorentz 機械	$1.000\ 499$
1937	日本 ETL(現 AIST)	相互誘導	$1.000\ 465$
1937	英国 NPL	相互誘導	$1.000\ 505$
1938	仏国 LCE (現 LNE)	相互誘導	$1.000\ 520$
1938	米国 NBS(現 NIST)	自己誘導	$1.000\ 482$
1939	独国 PTR(現 PTB)	自己誘導	1.000 50
1939	米国 NBS(現 NIST)	相互誘導	1.000 488
		平均	1.000 489

表 2.1: 各国の絶対オームの測定結果^[3]

しに抵抗の絶対測定が可能である。これにより、磁場印加用のコイル及び金属円盤の半 径、金属円盤の回転数、磁場印加用コイルの巻数、透磁率から抵抗の絶対測定が可能と なる。

誘導絶対標準器は、非磁性の大理石や溶融石英に裸銅線を巻いて、その寸法と透磁率 から自己インダクタンス L や相互インダクタンス M を決定し、ブリッジ等を用いて、 キャパシタンス C を介するなどして抵抗 R を絶対測定するものである。図 2.2 は、電 気試験所(ETL)の米田らによる相互誘導絶対標準器の写真である^[8]。上下に見えるの は1次巻線であり、それら1次巻線の間に位置する大きい径のボビンに2次巻線が巻か れている。この構造は、A. Campbellにより提案された^[9,10]ものであり、相互インダク タンスの値が2次巻線の径や位置に対して影響を受けにくい特徴を有する。

表 2.1 は、幾つかの国の標準研究所にて行われた絶対測定の結果をまとめた表である

^[3]。重み付けをせずにそのまま平均を取ると

1国際オーム = 1.000489 絶対オーム

となり、絶対オームは水銀抵抗原器により定義される国際オームより 500 μΩ/Ω 弱、小 さいことが明らかにされた。

これらの結果を受け、1948年の第9回国際度量衡総会 (CGPM) において、「国際電気 単位」を廃止する決議がなされ、水銀抵抗原器はその役割を終えた。この際に 1946年 に国際度量衡総会 (CIPM) により提案されていた以下のような定義^[2,11] が新たに承認 された。

オーム、Ω — 起電力源を含まない1個の導体の2点間に加えられた1Vの一定電位 差がこの導体中に1Aの電流を生じさせるとき、その2点間に存在する電気抵抗

アンペア、A — 真空中に1 m の間隔で平行に配置された、無限に小さい円形断面積 を有する無限に長い2本の直線状導体のそれぞれを流れ、これらの導体の長さ1 m につ き2×10⁻⁷ N の力を及ぼしあう一定の電流

これにより抵抗の単位オームは水銀抵抗原器のような器物によらない量となった。電 圧の単位ボルトは1V=1W/A、電力の単位ワットは1W=1J/s、エネルギーの単位 ジュールは1J=1N·mとして電気量単位はMKS単位系と関係付けられた。電流の単 位アンペアの定義は、真空の透磁率 μ_0 を $4\pi \times 10^{-7}$ H/mと定義することと等価であり、 そのことによりMKSA単位系のつじつまを合わせることを目的としており、この定義 通りに電流原器を実現することは不可能である。

2.1.3 クロスキャパシタ

1956 年、A. M. Thompson と D. G. Lampard は、図 2.3(a) に示すような微少ギャッ プにより 4 つに分割された筒状電極の対向する電極同士の静電容量(クロスキャパシタ

図 2.3: クロスキャパシタの電極配置図 ^[12]

ンス)が、

$$e^{\frac{\pi C'_{AC}}{\varepsilon_0}} + e^{\frac{\pi C'_{BD}}{\varepsilon_0}} = 1$$
(2.1)

と表され、 $C'_{AC} = C'_{BD}$ となるよう対称な電極形状とすることにより、単位長さ当りの 静電容量が

$$C'_{AC} = C'_{BD} = \varepsilon \frac{\ln 2}{\pi} \simeq 1.95 \text{ pF/m}$$
(2.2)

となる数学的原理を示した ^[13,14]。 C'_{AC} 及び C'_{BD} は単位長さ当りの静電容量 F/m を表 している。実際の装置では、図 2.3(b) に示すように、端効果を無視できるよう中央に ガード電極(電極 F、G)を挿入する方法が取られる ^[12]。これにより、ガード電極の変 位量を精密測定することにより上式に従いクロスキャパシタンスの差分が求められる。 このクロスキャパシタにより標準キャパシタをキャパシタンスブリッジを用いて校正 し、直角相ブリッジにより交流抵抗を校正する。抵抗値の周波数特性を筐体と抵抗体ワ イヤの位置関係から計算できる交直差計算可能抵抗器の交流抵抗値を校正することで、 その直流における抵抗値を計算し校正することができる。現在クロスキャパシタ先進国 では 0.1 $\mu\Omega/\Omega$ 程度以下でクロスキャパシタを基準とした直流抵抗の校正が可能であり、 フォン・クリッツィング定数 $R_{\rm K} \simeq h/e^2$ の絶対測定を 0.01 $\mu\Omega/\Omega$ 以下の不確かさで行 うことを目的とし、現在も各国でクロスキャパシタやその周辺技術の高度化が進められ ている ^[15-22]。

2.1.4 量子化ホール抵抗(Quantized Hall Resistance: QHR)

通常のホール効果の場合、フレミングの左手の法則に従い、半導体中のキャリアはその運動方向と磁場の向きのそれぞれに垂直な方向にローレンツ力を受けその軌跡は曲げられる。その結果電流方向と垂直な方向にホール電圧が発生し、その電圧は磁場の大きさに対して連続的に増大する。2次元電子系(2-dimensional electron gas: 2DEG)と呼ばれる電子の薄い層においては、これとは異なる現象が得られる。そのことは安藤恒也らにより理論的に示唆され^[23,24]、理論が示すとおりランダウ準位が満たされるときに伝導率の対角成分 σ_{xx} が極小値を取ることなどが川路紳治らにより確認された^[25]。K. von Klitzing らは、2次元電子系に垂直に磁場を印加した際に、ホール抵抗 $R_{\rm H}$ が図 2.4 に示すように量子化し、かつその量子化抵抗値 $R_{\rm H}$ が

$$R_{\rm H} = \frac{h}{ie^2}$$
 $(i = 1, 2, 3, \cdots)$ (2.3)

図 2.4: 2 次元電子系を有する GaAs/AlGaAs 量子ホール素子の対磁場特性

と書き下せることを見出した^[26]。*h* はプランク定数、*e* は電荷素量である。図に示すように、一般にホール抵抗は電流の向きに垂直に配置する電極間で得られ、量子ホール状態(ホール抵抗が量子化された状態)では、縦抵抗 *R_{xx}* と呼ばれる長手方向の抵抗はゼロとなる。

古典的なホール効果の場合は、デバイスの材料によりホール係数が変化し、試料形状・ 寸法や電極位置、温度にもホール電圧の値は依存する。しかし量子ホール効果は2次元 電子系に本質的な量子効果であり、デバイスの形状・寸法^[27]や物質によらず^[28–33]、経 年変化が無く常に h/ie² の量子化抵抗値が得られる。 対向するホール電圧測定用の電極 の位置も正確に定義される必要は無く、温度もある一定温度以下であれば常に同じ量子 化抵抗値を得ることが可能である。この類まれな普遍性および再現性により量子ホール 効果は 1990 年 1 月 1 日より直流抵抗の一次標準の実現原理として世界中の標準研究所 で採用された。

抵抗標準の目的で使用されることは無いが、よりキャリア易動度の高いサンプルでは h/e^2 の整数分の1以外のプラトー(例えば1/3の、 $3h/e^2$)が得られることが D. C. Tsui らにより見出された^[34]。これは分数量子ホール効果と呼ばれ、これと区別するために 通常の量子ホール効果は整数量子ホール効果とも呼ばれる。整数量子ホール効果の発見 により K. von Klitzing は 1985 年に、分数量子ホール効果の発見により D. C. Tui らは

図 2.5: 2 次元電子系を与えるデバイスの例。(a) Si-MOSFET の断面図。ゲート電極 に電圧を印加した際に Si に形成される反転チャネル層が 2 次元電子系となる。(b) GaAs/AlGaAs ヘテロ接合デバイスの断面図及びバンド図。GaAs と AlGaAs の界面に 2 次元電子系が形成される。

図 2.6: 産総研にて作製した量子ホール素子

1998年にノーベル賞を受賞した。キャリア易動度が高いサンプルではこの分数量子ホー ル効果により整数のプラトーの幅が狭くなる傾向があるため、標準用途では分数効果が 見えない程度の易動度のサンプルが使用される。

量子ホール効果の舞台となる2次元電子系の例を図2.5に示す。図(a)は当初用いられ ていたSiを用いたMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の 断面図である。中央上部のゲート電極に電圧を印加することでSiに反転チャネルが形成 され、2次元電子系が得られる。図(b)上はGaAs/AlGaAs ヘテロ接合ウェハを用いた量 子ホール素子の断面図である。室温におけるAlAsのバンドギャップは2.14 eV であり、

図 2.7: 磁場の印加によるランダウ準位の形成

GaAs の 1.42 eV より大きく、GaAs に Al を添加することによりバンドキャップは大き くなる。実際のウェハ成長時には x = 0.3 (Al_xGa_{1-x}As) 程度の組成が採用される。こ れらバンドギャップの異なる物質によりヘテロ接合を作製すると、図 (b) 下のバンド図 に示すように、バンドギャップの広い AlGaAs 側から GaAs 側にキャリアが移動し、バ ンドの曲がりが生じる。キャリアを失った AlGaAs の電界効果によりキャリアは接合界 面にとどまり、2次元電子系が形成される。AlAs 及び GaAs の格子定数は共に 5.65 Å と 5.66 Å であり、格子定数が近いゆえに高いキャリア易動度が得られ、14.4 × 10⁶ cm²/Vs もの易動度が報告された例もある^[35]。図 2.6 に GaAs/AlGaAs ヘテロ接合ウェハを用 いた量子ホール素子の写真を示す。ヘテロ接合ウェハではウェハの層構造や成長条件に よってキャリア濃度が決まり、Si-MOSFET の場合のようにゲート電極を必要とせずよ り簡便に質の良い量子ホール効果を実現できるため、現在では GaAs/AlGaAs ヘテロ接 合ウェハを用いた量子ホール素子が一次標準として世界の標準研究所において用いられ ている。

次にホール抵抗が量子化される仕組みについて簡単に述べる。自由電子の状態密度 D(E)は3次元の場合、スピン自由度を無視すると

$$D(E) = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{E}$$
(2.4)

と、エネルギー E の増加に伴い状態密度 D(E) は \sqrt{E} に比例して増加する。2 次元系の

場合、状態密度 D(E) はエネルギー E に対して一定となり、

$$D(E) = \frac{mS}{2\pi\hbar^2} \tag{2.5}$$

となる。*S、V*は試料サイズ、*m*は電子の有効質量である^[36]。また、固定端の弦の振動が飛び飛びの振動数の合成となるのと同様、磁場中の電子はサイクロトロン半径 *r* = *mv*/*qB*の円運動をし、そのような閉じた軌道上の電子は飛び飛びのエネルギーを取 ることになる。このように、2次元電子系に垂直に磁場を印加すると、図 2.7(b)のよう に電子のエネルギーはランダウ準位と呼ばれる飛び飛びのエネルギー準位に分かれるこ とになる。2次元電子系の場合、全ての電子はその運動方向に垂直に磁場を受けて軌道 が決定されるが、3次元の場合はあらゆる方向の運動が可能になり量子化されないこと になる。

1本のランダウ準位中の電子の数は、単位面積当たり *eB/h* となり、磁場が強くなる につれて一準位中の電子数は連続的に増えることになる。例えば *B* = 1 T の場合は

$$\frac{eB}{h} = \frac{1.602 \times 10^{-19} \,\mathrm{C} \times 1 \,\mathrm{T}}{6.626 \times 10^{-34} \,\mathrm{m^2 kg/s}} = 2.418 \times 10^{14} \,\mathrm{m^2}$$
(2.6)

と計算される。2 次元電子系中のキャリア濃度 n_s はヘテロ接合素子の場合変化しないため、図 2.7(b), (c), (d) に示すように磁場が増加するにつれてフェルミ準位以下のランダ ウ準位の数は減少する。

量子ホール状態(磁場中)では電流の向きの 電圧降下(縦電圧 V_{xx})はゼロとなり、垂直に ホール電場 V_H が生じる。これによりホール電 場と磁場にさらされた電子は、図 2.8 に示すよ うにホール電場と磁場の双方に垂直な方向、つ まり等ポテンシャル線に沿ってトロコイド運動

図 2.8: トロコイド運動

をしながら進むことになる。キャリアである電子は全てが2次元電子系全体に広がった 非局在状態にあるわけではなく、不純物により捕捉され局在しているものもあり、不純 物ポテンシャルの山や谷の等高線に沿って運動し続けることになり、これによりランダ ウ準位はその上下に局在電子によるすそを持つことになる。よって、全体の伝導に寄与 しない局在電子のところにフェルミエネルギー *E*_F がある場合(図 2.7(b), (d)の状態) に量子化されたホール抵抗が得られることになる。

ここで、*i* 番目までのランダウ準位が満たされている場合、電子密度は式 (2.6) より $n = \frac{ieB_z}{h}$ で一様である。トロコイド運動する電子の*x*方向の速度 v_x は $\frac{E_y}{B_z}$ で与えられ るため、

$$j_x = env_x$$

$$= e \times \frac{ieB_z}{h} \times \frac{E_y}{B_z}$$

$$= \frac{ie^2}{h}E_y$$
(2.7)

となり、ここから

$$R_{\rm H} = \frac{E_y}{j_x} = \frac{h}{ie^2} \tag{2.8}$$

が導かれる。フェルミ準位が局在電子のところにある図 2.7(b), (d) の状態の場合でも、 磁場の増加に伴い伝導に寄与する非局在状態の電子数は増加する。しかし式 (2.7) が示 しているように、ドリフト速度 $v_x = E_y/B_z$ が磁場の増加に伴い減少する効果と相殺す る ^[37]。

量子ホール効果の発見以来、高い普遍性および再現性が各国で確認されたため、1988 年第77回国際度量衡委員会(CIPM)は、1987年の第18回国際度量衡総会(CGPM) の指示に従い、量子ホール効果抵抗標準の実現を勧告し、1990年1月1日から、以下の フォン・クリッツィング定数の協定値

$$R_{\rm K-90} \equiv 25812.807 \ \Omega$$

を用いて校正を行い、この値と整合するように標準抵抗器の値を調整するよう勧告した ^[2,38-40]。これにより、1990年1月1日から量子ホール効果抵抗標準を実現可能な標準研 究所において量子ホール効果が直流抵抗の一次標準として利用されてきた。

2.2 現在の直流抵抗標準体系及び測定系

前節では、直流抵抗の標準がどのように定義・実現されてきたのか述べた。現在では クロスキャパシタと量子ホール効果が直流抵抗の一次標準として利用されており、日本 では量子ホール効果を採用している。本節では、量子化ホール抵抗を基準として、どの ように直流抵抗の校正システムが構築されているかについて述べる。 現在の直流抵抗標 準の校正の流れを図 2.9 に、また表 2.2 に校正の不確かさを示す。図 2.9 右上に示す四 角内の数字は、上が抵抗値、下が校正の拡張不確かさ(*k* = 2 もしくは 2*σ*)を表してい る。拡張不確かさは、あらゆる不確かさ要因を合成した合成標準不確かさに包含係数 *k* を乗じたものであり、その範囲内に約 95%の確率で真値が存在することを意味してい

図 2.9: 直流抵抗の校正の流れ

る。例えば 10 Ω 校正の拡張不確かさは図 2.9 の右下より 0.10 μΩ/Ω であり、10 Ω 抵抗 器の抵抗値を ±0.000 001 Ω の範囲で約 95% の信頼の水準において校正可能であること を示している。

QHR→**Hamon 100** Ω 量子化ホール抵抗(QHR: Quantized Hall Resistance)はi = 2のプラトー(量子化抵抗値)を使用するため、その抵抗値は $R_{K-90}/2 = 12906.4035 \Omega$ とな る。QHRを基準とし 100 Ωの Hamon 抵抗器を CCC (Cryogenic Current Comparator、 極低温電流比較器)ブリッジを用いて校正する。Hamon 抵抗器は 10 個の抵抗器を直列 または並列に接続した際の相対的な抵抗値が 0.01 $\mu\Omega/\Omega$ の桁で等しくなる組み替え抵抗 器である。10 Ω エレメントの抵抗器を用いており、10 Ω 抵抗器を 10 個直列に接続した 状態(100 Ω) で QHR により校正し、Hamon 抵抗器を並列(1 Ω) に組み替えて 1 Ω 抵 抗器群校正の際の基準として用いている。

Hamon 1 $\Omega \rightarrow 1$ Ω 抵抗器群 1 Ω 抵抗器群は 6 個の 1 Ω 抵抗器からなっており、そ の平均値を利用することで、1 個の抵抗器が不連続な抵抗値の飛びを示した場合もそ の影響を 1/6 に低減可能である。Hamon 抵抗器を並列(1 Ω)に組み替えて、1:1DCC (Direct Current Comparator、直流電流比較器)ブリッジを用いて 1 Ω 抵抗器群を校正 する。このような QHR による 1 Ω 抵抗器群の校正を年 2 回以上行い、1 Ω 抵抗器群を 普段の基準として用いている。

		Calibration and Measurement Capabilities			
Quantity	Instrument or Artifact	Measurand Level or Range	Measurement Conditions / Independent Variable (Optional)	Expanded Uncertainty (<i>k</i> =2)	
		1Ω	Based on QHR	0.068 μΩ/Ω	
			Based on 1 Ω reference group	0.10 μΩ/Ω	
		10 Ω	Based on 1 Ω reference group	0.10 μΩ/Ω	
		25 Ω	Based on QHR	0.084 μΩ/Ω	
	Standard	100 Ω	Based on QHR	0.056 μΩ/Ω	
	Resistor		Based on 1 Ω reference group	0.11 μΩ/Ω	
		1 kΩ	Based on 1 Ω reference group	0.1 <mark>3 μ</mark> Ω/Ω	
DC		10 kΩ	Based on QHR	0.058 μΩ/Ω	
Resistance			Based on 1 Ω reference group	0.16 <mark>μ</mark> Ω/Ω	
	Standard	1 mΩ	Maximum Power 1mW	1.5 μΩ/Ω	
		10 mΩ	Maximum Power 1mW	0.76 μΩ/Ω	
	110010101	100 mΩ	Maximum Power 1mW	0.18 μΩ/Ω	
	Standard Resistor	1 MΩ		0.64 μΩ/Ω	
		10 MΩ		1.1 μΩ/Ω	
		100 MΩ		1.9 μΩ/Ω	
		1 GΩ		3.2 μΩ/Ω	
		10 GΩ		6.2 μΩ/Ω	
		100 GΩ		12 μΩ/Ω	
		1 TΩ		23 μΩ/Ω	

表 2.2: 直流抵抗の校正の拡張不確かさ

1 Ω 抵抗器群 →100 mΩ ~ 10 kΩ 抵抗器 1 Ω 抵抗器群を基準として、1:1DCC ブ リッジを用いて 1 Ω 抵抗器を校正する。その後、10:1DCC ブリッジを用いた測定を繰 り返すことで 1 Ω 抵抗器を基準として 10 Ω→ 100 Ω→ 1 kΩ→ 10 kΩ と値を拡張する。 100 mΩ も同様に 1 Ω 抵抗器を基準として DCC ブリッジにより校正する。

1 Ω 抵抗器 \rightarrow 10 mΩ、1 mΩ 10 mΩ以下の低抵抗は、DCC ブリッジにレンジェクス テンダを組み合わせて 1 Ω 抵抗器を基準として校正する。レンジェクステンダは、DCC ブリッジの許容電流値を拡張する装置である。

高抵抗(1 M Ω ~ 1 T Ω)の校正 100 k Ω エレメントの Hamon 抵抗器を並列接続 (10 k Ω)として、DCC ブリッジを用いて校正を行う。その後、Hamon 抵抗器を直列 (1 M Ω)に組み替えて、電圧注入型のホイートストンブリッジにより 10:1 の測定を繰り 返し、1 T Ω まで値を拡張する。

このようにして、1 m Ω から1 T Ω までの 10¹⁵ レンジの校正が可能である。本節では

図 2.10: CCC ブリッジ回路図

上に概略を述べた各測定システムについて詳細を述べる。

2.2.1 極低温電流比較器(CCC)ブリッジ

極低温電流比較器 (Cryogenic Current Comparator : CCC) ブリッジは 0.01 μΩ/Ω 程 度未満の不確かさで直流抵抗の比測定が可能なブリッジであり、その回路図を図 2.10 に 示す ^[41]。本測定系を用いて量子化ホール抵抗 (QHR)を基準として 100 Ω 抵抗器を校正 する。図中 R_1 は QHR 素子、 R_2 は 100 Ω 抵抗器を表しており、それぞれの抵抗器に I_1 、 I_2 の電流を電流源により供給する。その際発生する起電力をナノボルトメータに入力し、 その差電圧がゼロになり電圧が平衡するように、第 3 の巻線 N_3 に電流を供給する電流源 の出力が制御される。またそれと同時に極低温電流比較器 (CCC) により電流が平衡状 態となる。CCC の中の SQUID の出力は、基準抵抗器用電流値の制御に使用する。CCC は図中の巻き線 N_1 から N_3 及び高感度な磁束センサである SQUID (Superconducting QUantum Interference Devices、超電導量子干渉素子) から構成されている。巻き線の 巻数は抵抗比にできるだけ近くなるような巻き数とし、例えば QHR と 100 Ω の比較の 場合、 $N_1 = 2065$ $タ-\nu$ 、 $N_2 = 16$ $タ-\nu$ を使用する (2065 : 16 \simeq 12906 : 100)。

ブリッジが平衡し、QHR 素子と 100 Ω 抵抗器の両端電圧が等しく、かつ各巻線によ

る起磁力が等しい場合、以下の関係が成り立つ。

$$R_1 I_1 = R_2 I_2 \tag{2.9}$$

$$N_1 I_1 = N_2 I_2 + N_3 I_3 \tag{2.10}$$

これらの簡便な関係式より、

$$R_2 = R_1 \frac{N_2}{N_1} \left(1 - \frac{I_3 N_3}{I_1 N_1} \right)^{-1}$$
(2.11)

$$= R_1 \frac{N_2}{N_1} \left(1 + \frac{N_3}{N_1} \frac{R_1}{V_2} \frac{V_3}{R_3} \right)^{-1}$$
(2.12)

となる。 R_1 は量子化ホール抵抗であり、巻数 N_1 から N_3 は既知である。 V_3 は図中左上の R_3 の両端電圧であり、ブリッジの平衡状態において電圧計により測定される。 R_3 及び $V_2 = R_2 I_2$ は本測定とは別に測定を行う必要があるが、これらにはそれほど精密さは要求されない。このことは式 (2.12)の各要素による偏微分により明らかであり、例えば R_3 の場合、

$$\frac{\partial R_2}{\partial R_3} \simeq \frac{N_2}{N_1} R_1 \frac{V_3}{V_2} \frac{R_1}{R_3^2} \frac{N_3}{N_1} \simeq 1.2 \times 10^{-7}$$
(2.13)

となり、 R_3 が1 Ω 変化しても 100 Ω 抵抗器 R_2 への影響は 1.2×10^{-7} Ω であり、これは 100 Ω の 0.0012 µΩ/Ω であるのでほぼ問題ないことがわかる。 R_3 には 10 kΩ 抵抗器を 使用しており、1 Ω (0.01%)未満で安定なものの入手は容易であり、かつデジタルマル チメータにより抵抗値を測定可能である。このようにして CCC ブリッジを用いて精密 に抵抗比を測定可能である。

次に電流平衡の検出に用いた、極低温電流比較器(CCC)に関して概略を述べる。 図 2.11 に CCC の原理図を示す。超伝導材料で作られた筒に電線を通し、電流を流すと、 超伝導材料の完全反磁性により表面に遮へい電流が流れ、筒の外側には遮へい電流によ る磁束が発生する。図 (a) に示すように、全く同じ、逆極性の電流が流れている 2 本の 電線を筒に通した場合、それぞれの磁束が打ち消しあうため、遮へい電流は流れず、外 側の磁束はゼロとなる。よって筒の外側の磁束を超電導量子干渉素子(Superconducting QUantum Interference Devices : SQUID)を用いて検出することにより、筒内の電流が バランスしたか否かを知ることができる。図 (b) はこの考えを多巻線に拡張した、サリ バン型と呼ばれる CCC である^[42,43]。巻き線を超伝導体で完全に覆ってしまうと、遮へ い電流を外側に取り出せなくなるため、外側に遮へい電流を取り出せるよう、蛇が自身 の尾を飲み込んだような構造をしており、蛇の口と尾との間は電気的に絶縁が保たれて いる。 このような CCC を用いた抵抗比の精密測定システムが各国の標準研究所で確立され ており、現在でも更なる測定精度の向上に向け研究が進められている^[44-47]。100 A もの 大電流を測定可能な CCC や^[48]、100 MΩ などの高抵抗の測定に応用した例^[49-51] もあ り、広い抵抗レンジに応用可能であるといえる。また、正確な電流逓倍器としての応用 も可能であり、単電子トランジスタ等により発生させた量子化電流を正確に増幅する際 にも用いられている^[52-55]。

2.2.2 直流電流比較(DCC)ブリッジ

校正の順序としては次は1Ωの校正であるが、1:1DCC システムのベースにもなって いる 10:1DCC ブリッジについて先に述べる。

室温での直流抵抗比の精密測定には、直流電流比較 (DCC: Direct Current Comparator) ブリッジが使用される。これは、CCC ブリッジの場合と同様、被測定抵抗器と、基準 抵抗器の抵抗比を精密に測定するもので、カナダの計量研究所である National Research Council の N. L. Kusters らにより考案された ^[57–59]。DCC ブリッジの概略図を図 2.12 に示す ^[56]。 R_s が基準となる抵抗器、 R_x が被測定抵抗器、2つの DC は電流源を表して いる。 R_s 、 R_x にはそれぞれ電流 I_s 、 I_x が流れ、両端電圧 e_s 、 e_x が生じ、差電圧がガル バノメータ G により測定される。またそれぞれの電流 I_s 、 I_x は、巻線 N_s 、 N_x を流れ、

図 2.11: CCC の原理

その結果コア内部に生じる起磁力の差を図中 D により検出している。G=0の場合、

$$e_s = e_x \tag{2.14}$$

$$R_s I_s = R_x I_x \tag{2.15}$$

が成り立ち、D = 0より、

$$N_s I_s = N_x I_x \tag{2.16}$$

が成り立つ。これらの式より、被測定抵抗器の抵抗値 R_x は、

$$R_x = \frac{N_x}{N_s} R_s \tag{2.17}$$

として求められる。上述の CCC ブリッジと異なり、巻数 N_x が可変であり、抵抗比=巻 き数比となるため、CCC ブリッジの際に必要であった第3の巻き線は必要ない。しか し実際に 10⁸ ターンもの巻き線を有するコアがあるわけではなく、巻数は数千から数万 ターンで、それより下の桁は抵抗分流器により実現している。現在では、図 2.13 に示す ように、電流源の出力電流値や巻数を自動調整し、ブリッジを自動で平衡させて抵抗比 を自動測定する装置がカナダの Guildline 社や Measurement Internaional 社から市販さ れている ^[60]。現行のモデルでは、10 mΩ から 100 kΩ の範囲を 0.02 µΩ/Ω もの小さい不 確かさで測定できるとされている。

DCC ブリッジでは、室温のコアを用いて電流平衡を検出している。しかし、測定電流は直流電流であり、磁気コアに検出コイルを巻いたとしてもコア内の磁束が変化しな

図 2.12: DCC ブリッジの原理^[56]

図 2.14: DCC ブリッジのコアの巻線の巻き方^[56]

い限りは検出コイルに電圧は発生しないため $(v = d\phi/dt)$ 、そのまま直流電流 I_s 、 I_x を 流しただけでは電流平衡の検出は不可能である。DCC ブリッジにおいては、例えば以 下のような磁気変調技術を用いることで直流電流の比較を可能にしている。図 2.14 は DCC ブリッジ内部のコアの巻線の概略図である。図 2.14 左に示すように、コアには、 Isと Ix が流れるプライマリ巻線 (PRI.) とセカンダリ巻線 (SEC.) が巻かれており、そ れぞれの巻線は、起磁力が打ち消しあう方向に巻かれている。その他には検出用コイル (DET.)と変調用コイル (MOD.) が巻かれている。図 2.14 右に示すように、2 つのコア が使用され、上述したようにプライマリ巻線 (PRI.) とセカンダリ巻線 (SEC.) は逆向き に巻かれており、変調用コイル (MOD.) のみが 2 つのコアで極性が反対になるように巻 かれている。

図 2.15 は、磁気変調による磁気検出の原理を示している^[61]。(a) には、簡単のためヒ ステリシスのない BH 特性が描かれている。今、(b) に示す直流成分を含まない磁界 He のみがコアに加わった場合、コア内部の磁束密度の時間変化は (c) の実線に示すとおり

図 2.15: 磁気変調の原理^[61]

となる。コア内部の磁束が変化したときにのみ、変化率に応じた電圧が検出コイルには 発生し、その波形は (d) の実線となる。

今、直流の磁界 H_m が H_e に重畳した場合を考える。この場合、励磁の変化は (b) の点 線のようになり、コア内部の磁束密度も (c) の点線に示すように上にオフセットした波 形となる。この時、検出コイルに現れる電圧は (d) の点線の波形のようになり、2次の高 調波成分を含むこととなる。そのため、検出コイルの信号の 2 次の高調波成分を検出す ることにより、コア内部に直流残留磁束があるか否か (I_sN_s と I_xN_x がバランスしたか 否か)が分かることになる。この磁気変調による磁気検出は、1 つのコアでも可能であ るが、2 個のコアを使用して両コアの差を取ることにより、奇数次の高調波成分は打ち 消して偶数次高調波を選択的に取り出すことができ感度が向上する。これにより 1 nT の磁束感度が得られており、ホールセンサの 3 桁以上の感度で検出が可能である ^[61]。

その他にも、コアの飽和限界まで交流磁束を流し、直流電流による磁束が交流磁束に 重畳されることでコアが飽和することを利用する方法も採用されているようである。コ アが飽和すると巻線のインダクタンスは著しく低下しインピーダンスが低下するため、 交流+直流磁束によりコアが飽和するたびにパルス電流が発生し、それを検出すること により直流電流比の精密測定が可能である。

図 2.16: 1 Ω 測定用 9930 システムの回路図 [62]

2.2.3 1 Ω 抵抗器校正用 1:1DCC ブリッジ

1Ω抵抗器の校正に使用する 1:1DCC システムの回路図を図 2.16 に示す^[62,63]。前述 の CCC ブリッジと同様、それぞれの抵抗器に電流を流し、両端電圧と電流の双方をバ ランスさせた際に、第3の巻線に流れる電流値を R_f で測定することにより抵抗比を測 定する。また、図中右上に示すようにプライマリ巻線の巻数 N_p を 1 ターン変化させて 同様にバランスさせて測定することにより、本測定とは別に電流値を測定する必要が無 くなる。

電圧と電流の双方が平衡すると、

$$R_s I_s = R_p I_p \tag{2.18}$$

$$N_s I_s + N_f I_f = N_p I_p \tag{2.19}$$

が成り立つ。 N_p を1ターンずらした際は式 (2.19) は

$$N_s I_s + N_f I'_f = (N_p - 1) I_p \tag{2.20}$$

となる。これらを解くと

$$\frac{R_p}{R_s} = \frac{N_p}{N_s} - \frac{1}{N_s} \cdot \frac{V_f}{V_f - V_f'}$$
(2.21)

が得られる。N_s、N_pは共に 1000 ターンであるので、

$$\frac{R_p}{R_s} = 1 - \frac{1}{1000} \cdot \frac{V_f}{V_f - V_{f'}}$$
(2.22)

となり、相対値にすると、

$$\left(\frac{R_p}{R_s} - 1\right) \times 10^6 = -\frac{V_f}{V_f - V_{f'}} \times 10^3 \text{ [ppm]}$$
 (2.23)

となり、 R_f の両端電圧を N_p ターン、 $N_p - 1$ ターンのそれぞれの場合に測定すること により、 R_p 抵抗器の R_s 抵抗器(72C206)に対する抵抗比が得られる。順番に他の R_p 抵抗器についても測定を行うことで、それぞれの抵抗値の R_s に対する比が得られるた め、そこから R_p 抵抗器同士の抵抗比も導かれる。 N_p を1ターン動かす測定は、1器の R_p 抵抗器のみに行っても同じ結果が得られるため、実際の測定では他の R_p 抵抗器につ いては N_p ターンのみの測定を行う。

被測定抵抗器を1 Ω 抵抗器群と直列に接続し、すべて R_p 抵抗器として R_s との比を測定することで、被測定抵抗器と1 Ω 抵抗器群との比が求められるため、1 Ω 抵抗器群を基準とした1 Ω 抵抗の校正が可能となる。

図 2.17: 高抵抗ブリッジの回路図

2.2.4 電圧注入型ホイートストンブリッジ

1 MΩ から1 TΩ の高抵抗の校正に際しては、図 2.17 に示す高抵抗ブリッジを用いて 2 端子抵抗測定を行う。 R_x が被測定抵抗器、 R_s は基準抵抗器、青で塗られた部分は 100 kΩ エレメントの抵抗分圧器を表しており、10:1 測定の場合は R_β : $R_\alpha = 1$ MΩ : 100 kΩ、 1:1 測定の場合は R_{β} : $R_{\alpha} = 500 \text{ k}\Omega$: 500 k Ω を用いる。検出器 D には、 R_x と R_s の中 点及び R_{β} と R_{α} の中点の電位の差に応じた誤差電流が流入する。ここで、検出器 D が ゼロを示すように U_2 を調整することにより、以下の等式が成り立つ。

$$\frac{R_{\rm s}}{R_{\rm s} + R_{\rm x}} U_1 + U_2 = \frac{R_{\alpha}}{R_{\alpha} + R_{\beta}} U_1 \tag{2.24}$$

この式より

$$\frac{R_{\rm x}}{R_{\rm s}} = \frac{U_1 R_{\beta} + U_2 (R_{\alpha} + R_{\beta})}{U_1 R_{\alpha} - U_2 (R_{\alpha} + R_{\beta})}$$

$$= \frac{U_1 \frac{R_{\beta}}{R_{\alpha}} + U_2 \left(1 + \frac{R_{\beta}}{R_{\alpha}}\right)}{U_1 - U_2 \left(1 + \frac{R_{\beta}}{R_{\alpha}}\right)}$$
(2.25)
(2.26)

と求められる。これより、電源電圧 U_1 、注入電圧 U_2 、及び分圧比 R_β/R_α を測定することで、 R_x/R_s を求められる $^{[64,65]}$ 。

1:1 測定の場合は R_x と R_s の置換測定により、次式のように抵抗分圧器の分圧比 R_{β}/R_{α} の比誤差を打ち消すことができる。

$$\frac{R_{\rm s}}{R_{\rm s} + R_{\rm x}} U_1 + U_2 = \frac{R_{\rm x}}{R_{\rm s} + R_{\rm x}} U_1 + U_2'$$
$$\frac{R_{\rm x}}{R_{\rm s}} = \frac{U_1 + U_2 - U_2'}{U_1 - U_2 + U_2'}$$
(2.27)

そのため、電源電圧 U₁、注入電圧 U₂、U₂ を測定することにより抵抗比 R_x/R_s が求まる。 高抵抗ブリッジの詳細を図 2.18 に示す。緑色の背景の初段回路は、誤差電流を電圧に 変換する I-V 変換回路および増幅回路であり、微少な誤差電流を電圧に変換する。10 GΩ 以上の抵抗器の校正では、この回路の替わりに市販のエレクトロメータを用い、電圧出 力を後段回路に入力した。紫色の背景の後段回路は積分回路及び分圧器である。点 A と 点 C の電圧が等しいとき、図中点 B の誤差電圧はゼロとなり、後段の積分器出力は安定 する。積分器の出力電圧は 10 kΩ と 100 Ω 抵抗器で分圧された後に点 C に注入されるた め、積分器出力をデジタルマルチメータで測定した後、次式により注入電圧を算出した。

$$U_2 = \frac{R_{100}}{R_{10k} + R_{100}} V_{\text{meas}} \simeq \frac{1}{101} V_{\text{meas}}.$$
 (2.28)

図 2.19 に抵抗分圧器の校正方法を示す。まず E_1 と E_2 を印加し、検出器 D がゼロを示すよう E_1 を調整後、検出器 D は短絡する。その際の電圧計 V の読み ΔV_1 は以下の

図 2.18: 高抵抗ブリッジの回路図 詳細図

図 2.19: 分圧器の校正方式

ように表される。

$$\Delta V_1 = \left(\frac{R_n}{R_n + R_{n+1}} - \frac{R_A}{R_A + R_B}\right) E_2 \tag{2.29}$$

 $R_A \ge R_B$ を入れ替えることにより、

$$\Delta V_2 = \left(\frac{R_n}{R_n + R_{n+1}} - \frac{R_B}{R_A + R_B}\right) E_2 \tag{2.30}$$

を得る。これらの値はそれぞれ E_1 と E_2 の極性を反転しつつ測定する。上式より、抵抗 比 R_{n+1}/R_n は次のように求められる。

$$\frac{R_{n+1}}{R_n} = \frac{-\Delta V_1 - \Delta V_2 + E_2}{\Delta V_1 + \Delta V_2 + E_2}$$
(2.31)

この測定を図 2.19 の R_1/R_0 から R_{10}/R_9 まで繰り返すことにより、抵抗分圧器の 10:1 の場合における分圧比 R_β/R_α は以下のように求められる。

$$\frac{R_{\beta}}{R_{\alpha}} = \frac{\sum_{n=1}^{10} R_n}{R_0} \tag{2.32}$$

$$= \frac{R_1}{R_0} \left(1 + \frac{R_2}{R_1} \left(1 + \frac{R_3}{R_2} \left(\cdots \left(1 + \frac{R_{10}}{R_9} \right) \cdots \right) \right) \right)$$
(2.33)

2.3 結言

本章では直流抵抗標準の変遷について述べた。20世紀初頭には水銀抵抗原器が基準と して用いられ、数十 µΩ/Ω 程度で国際的に一致する直流抵抗標準が維持された。やがて 誘導絶対標準器などを用いた抵抗の絶対測定技術の向上に伴い、水銀抵抗原器はその役 割を終え、1948 年には電気単位の定義は器物によらない形で定義された。1980 年には 量子ホール効果が発見され、これにより 0.001 µΩ/Ω 以下で普遍性・再現性の高い量子 化抵抗値を得ることが可能になった。測定システムの高度化も相まり、0.01 µΩ/Ω の桁 で標準研究所間の測定能力の比較が可能となった。

また、本章後半では量子化ホール抵抗を基準とした直流抵抗標準体系について述べた。 本研究の目的は、これら直流抵抗標準全体の高度化であり、本論文ではとりわけ一次標 準である量子ホール素子とその集積化素子の開発、および二次標準器であるマンガン窒 化物抵抗器や NiCr 箔抵抗器の開発について述べる。

量子ホール効果は多くの量子化抵抗値プラトーを示すが、奇数次プラトーはゼーマン 分裂によるサブレベルにより得られるものであり、準位間エネルギー幅も狭く(GaAs

の場合、10 T においてランダウ準位間エネルギー幅は約 200 K であるのに対して、ゼー マン分裂による準位間エネルギー幅は数 K と計算される)、縦抵抗もゼロに落ち切らな いため抵抗標準に使用できない。また、ランダウ準位間エネルギー幅は磁場に比例する ため、低磁場で現れる高次の偶数次プラトーも同様の理由で抵抗の基準としては使用で きない。結局、単一の量子ホール素子により得られ、抵抗標準に利用できるプラトーは、 *i* = 2 と 4 の 2 つであり、それぞれ 12906.4035 Ω と 6453.20175 Ω である。この量子ホー ル素子を集積化することにより、例えば 10 kΩ などの 10 のべき乗の公称値を持つ、使い やすい量子抵抗標準が実現できる。これにより例えば 10 kΩ の量子ホールアレー素子と 10 kΩ標準抵抗器の 1:1 測定が可能となり、置換測定により測定系の比誤差をキャンセ ルできるため、より簡易な測定系で不確かさの小さい測定が可能になる。この量子ホー ルアレー素子は、標準研究所間の測定能力の比較の際に重要な役割を担う、安定な仲介 器としての使用が期待されている。量子ホールアレー素子を仲介器とすることで、従来 の標準抵抗器を仲介器として用いた場合と異なり不連続な抵抗値変化による問題が生じ る可能性は無く、測定能力の比較が 0.001 μΩ/Ω の桁で可能である。また、高抵抗の集 積化素子を作製することにより、従来の測定パスとは異なる測定を行えるため、測定の 信頼性を確認できる。

量子ホールアレー素子を構成するすべてのホール素子は、それぞれが直流抵抗標準と して使用可能な特性を示す必要がある。量子ホール効果は素子の材質や形状・寸法、温 度・磁場・時間に依存しない普遍的な効果であるものの、素子の出来によっては量子化 抵抗値が不安定になり量子化抵抗値に偏差が生じる。そのため、一次標準に使用する素 子が具備すべき要件を定めたガイドラインが発行されており^[66]、例えばすべての二次 元電子系へのコンタクトが極低温において数Ω程度以下のオーミックコンタクトである ことが求められている。

そこで本研究では、2次元電子系へのコンタクトの歩留まりを検討し、どれほどの歩 留まりで良いコンタクトが形成されているかを評価した。SiO₂ 保護層の使用により、2 次元電子系へのコンタクト抵抗の歩留まりをほぼ 100% に向上できたことを実験結果よ り示す。また単一の量子ホール素子との精密比較結果より、作製した 10 kΩ 量子ホール アレー素子の量子化抵抗値が公称値に 0.01 μΩ/Ω 以下で一致することを確認した。素子 歩留まりの評価に関する報告は今までに無く、今回作製したアレー素子の信頼性を裏付 けるものである。

当然ながら単一の量子ホール素子についても一次標準素子として利用可能な高品位な

素子が作製可能になった。2006年には国際度量衡局(BIPM)より一次標準用量子ホー ル素子の提供を受ける必要があったが、現在では一次標準用量子ホール素子の作製が可 能であり、オーストラリア、タイ、フィンランドの標準研究所に素子を提供した。

量子ホール効果は高い再現性を備えているものの、現状わが国では通常の基準として 1Ω抵抗器群を用いており、かつ計測事業者においては室温の抵抗器が二次標準器とし て用いられており、それらの室温の抵抗器は依然として高い安定性が求められている。 国際比較の際も高安定な標準抵抗器は重要であり、第4章では安定な標準抵抗器の開発 について述べる。

第3章

量子ホール素子作製技術及び集積化技術

本章では、量子ホール素子の作製、集積化の取り組みについて述べる。一次標準素子 が具備すべき要件について述べたのちに、作製した単一の量子ホール素子の特性の測定 結果を示す。結果、一次標準用素子として望ましい特性が得られた。

次に量子ホール素子を集積化した、量子ホールアレー素子の作製について述べる。ア レー素子において集積化されるすべての素子は一次標準素子として望ましい特性を示す 必要がある。そこで極低温における2次元電子系へのコンタクト抵抗の歩留まりを評価 し、SiO₂保護層を使用することによりその歩留まりをほぼ100%に改善可能であること を見出した。また、多層配線間の絶縁抵抗の歩留まりも良好であり、アレー素子を作製 する上での要素技術が得られた。

次に 12.9 kΩ の量子ホール素子を組み合わせて 10 kΩ のアレー素子を作製する際の組 み合わせの設計について述べる。作製したアレー素子の示す量子化抵抗値を単一のホー ル素子と精密比較することにより評価し、0.01 μΩ/Ω 以下で整合する結果を得た。

3.1 一次標準用量子ホール素子の要件及び作製

本節では、一次標準として利用可能な量子ホール素子の具備すべき要件についてまず 述べた後に、単一の量子ホール素子を作製・評価した結果について述べる。

3.1.1 一次標準素子に求められる要件

量子ホール効果は普遍的な量子化抵抗値を与えるが、2次元電子系へのコンタクト抵抗が数 kΩ と高いと量子化抵抗値に偏差が生じることが報告されている。世界的に同様の水準で抵抗標準を維持するため、一次標準素子に求められる要件についてガイドラ

インが発行されている。1988 年に初版が発行され、2000 年の第 22 回電磁気諮問会議 (CCEM:the Comité Consultatif d'Électricité et Magnétisme)の要請を受けて 2003 年に 現行のガイドライン^[66] が発行された。

■ウェハ材料 良質な2次元電子系を与える材料であればいかなる材料でも一次標準 素子になり得る。1980年当初はSi-MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が用いられていたが、以下の理由によりGaAs/AlGaAs ヘテロ接合ウェハが 広く用いられるようになった。

- 電子の有効質量が Si-MOSFET に比べて小さく、1.5 K 程度の温度下でホール抵 抗プラトーを直流抵抗の基準として使用可能(Si-MOSFET の場合 0.5 K まで冷 却が必要)
- ゲート電極が不要

0.5 K の低温を得るには高価で入手困難な³He を用いた冷凍機が必要となるが、1.5 K 程度であれば液体⁴He を真空引きすることによっても得られるため、システムの簡略化 が可能である。また、GaAs/AlGaAs ヘテロ接合ウェハの場合はその層構造によって 2 次元電子系のキャリア濃度が決定されるため、MOSFET のようにゲート電圧は必要な く、取り扱いが簡便である。Si-MOSFET の反転チャネルと GaAs/AlGaAs ヘテロ接合 のそれぞれの場合で得られる量子化抵抗値が 3.5 × 10⁻¹⁰ レベルで一致することが確認 されており^[28,30,31,63]、これらの理由から、現在では GaAs/AlGaAs を用いた量子ホール 素子が直流抵抗の一次標準として世界中の標準研究所で使用されている。

他にも InSb/AlInSb ヘテロ接合デバイス^[32] や、グラファイトの単一原子層であるグ ラフェン^{[67,68]注1}を用いて一次標準素子を作製する試みがなされている。グラフェンは 電子の易動度が高く、より高温(例えば液体窒素温度など)で一次標準となる可能性も あるため、多くの標準研究所がこの新しい材料を用いた量子ホール素子を作製・評価し ている^[33,69-76]。

■易動度 直流抵抗の標準として、量子化の度合いの良い*i* = 2,4のプラトーが使用 される。全体のシステムチェックのため、双方の量子化抵抗値(12.9 kΩ と 6.45 kΩ)で 測定を行うことが推奨されており、両方のプラトーが十分量子化されている必要がある。 易動度が高くなるにつれて分数量子ホール効果が出てくる影響でプラトーの幅は狭くな

^{注1} K. Novoselov, A. Geim, 2010 年 ノーベル物理学賞

るものの、 $\mu = 300,000 \text{ cm}^2/\text{Vs}$ 以下の易動度でi = 4の縦抵抗 R_{xx} が急激に増加する ことが報告されており^[77]、400,000 cm²/Vs から 800,000 cm²/Vs のキャリア易動度が直 流抵抗の精密測定用途に適しているとされている。

量子ホール状態においてホール抵抗は h/ie^2 で量子化され、縦抵抗 R_{xx} はゼロとなり、 縦抵抗 R_{xx} が測定限界レベルでゼロであることが標準素子として望ましい。電流 I や温 度 T の増加に伴い、縦抵抗 R_{xx} がゼロに落ちている磁場範囲は狭まり、もともと i = 2 プ ラトーよりも幅が狭い i = 4 プラトーは相対的にその影響が大きい。さらに電流 I や温 度 T が増加するとやがて量子ホール状態は保たれなくなり、量子崩壊電流 I_c にて縦抵抗 R_{xx} が急激に増加し、量子化抵抗値に偏差が生じることが知られている。この量子崩壊 電流はデバイスの幅にほぼ比例し、易動度 μ が 300,000 cm²/Vs から 1,300,000 cm²/Vs の間 (i = 4の場合)ではキャリア易動度とは無関係である ^[77]。

■キャリア濃度 プラトーが現れる磁場は、キャリア濃度に依存しており、キャリア濃 度が高くなるに従いプラトー中心は高磁場側に推移する。高磁場側で得られるプラトー のほうがプラトーの幅は広く、測定や取り扱いが容易であるため、超伝導マグネットの 性能に応じてより高磁場でプラトーが得られるようにキャリア濃度が選ばれる。図 3.1 は、量子ホール素子のホール抵抗および縦抵抗の対磁場特性であり、下図は縦抵抗の拡 大図である。上述のようにi = 2, 4双方の量子化抵抗値が測定に使用できることが望ま しいが、拡大図において、i = 2における縦抵抗 R_{xx} は1 T以上の幅を持つものの、i = 4のプラトーの幅は 0.2 T 程度であり、できるだけ高いキャリア濃度が望ましいことがわ かる。しかしキャリア濃度は高ければ良いというわけではなく、n が 6×10^{11} cm⁻² 以 上になると、二次サブバンドにキャリアが入ることになり、望ましい量子ホール特性は 得られなくなる ^[66]。目安としてキャリア濃度 $n \times 2 \times 10^{-11}$ T・cm² の磁場がi = 2 プラ トー中心であり、 $n = 3 \times 10^{11}$ cm⁻² から 5.5 × 10¹¹ cm⁻² (i = 2 プラトーの中心磁場は およそ6 T から 11 T) あたりが選ばれる。

■デバイス形状 デバイスのチャネル幅 w(図 3.3 左参照)が広いほど量子崩壊電流 I_c は大きくなり(図 3.2 参照)、両者は w = 1.5 mm までほぼ比例するため^[77]、チャネ ル幅 w の大きなホールバーが望ましい。電流電極(図 3.3 左図中の電極 1, 7)の幅も、 量子崩壊電流 I_c を大きくするためにチャネル幅 w 以上に広げた設計が望ましいとされ ている。上下の電圧パッドに伸びるチャネルの幅が狭い場合、キャリア濃度の不均一さ の影響が大きくなり、直感的には 2 次元電子系内で磁場に対するプラトー位置が異なる

図 3.1: 一次標準用量子ホール素子の対磁場特性

ような状況が生じ量子化抵抗値のずれが生じるため、100 µm 以上の幅にして、電圧パッ ド間距離は適切な距離で配置することが推奨されている^[66]。

■コンタクト抵抗 精密測定を実現する上で、2次元電子系に良質なコンタクトを備え たデバイスを使用することは重要である。コンタクト抵抗が大きいと、測定電流 *I_{SD}、* 測定電圧にノイズが重畳され、測定結果が大きくばらつくことになる他、ノイズが整流 されることによると思われるオフセット電圧により、精密測定値は偏差を生じることに なる^[31,79-81]。

コンタクト抵抗の小さい、オーミック接触であることが必要であり、多くの場合、悪 いコンタクト抵抗の原因は、合金化部分の構造欠陥である。これはコンタクト用メタル が2次元電子系まで浸透していないことや酸化物やレジスト等有機物の残渣による影響 などにより引き起こされ、この場合はコンタクト抵抗の改善は困難であり、新たにデバ イスを作製する必要がある。

電圧コンタクトの場合は、電圧アームの部分でキャリアが部分的に空乏化されたこと によりコンタクト抵抗が上昇することがある。このようなキャリア濃度の部分的な減少 は、デバイスを急激に冷やしたり、電圧アームのチャネルに崩壊電流以上の電流を流し たり、数日間デバイスを極低温下に置いておくことで引き起こされる。これらのケース

図 3.2: ホールバーの幅と量子崩壊電流の関係^[77]

のほとんどの場合、元々のコンタクト特性は、デバイスを室温に戻したり、極低温下で 赤外光パルスを照射することによって回復する^[78]。

図 3.3 は、B. Jeanneret らによる結果であり、極低温下で赤外光パルスを照射するこ とにより、コンタクト抵抗が回復する様子を示している^[78]。左図は、素子のコンタク トパッドの番号を示しており、右の表は、i = 4,2のプラトーそれぞれにおける、赤外 光パルス照射総時間 t [ms]、プラトー中心磁場 B [T]、プラトー幅 ΔB [T]、精密測定結 果の量子化抵抗値からのずれ $\Delta R_{\rm H}/R_{\rm H}$ [n Ω/Ω]、およびコンタクト抵抗 R_C [Ω] を表して いる。表中括弧内の数字は、左図のコンタクトパッドの番号を表している。測定には、 キャリア易動度 $\mu = 420,000 \text{ cm}^2/(\text{Vs})$ 、キャリア濃度 $n = 4.8 \times 10^{11} \text{ cm}^{-2}$ のデバイス EPF277-2 が使用された。極低温・無磁場中で -20 V の過電圧パルスをそれぞれの電圧 パッドー電流パッド間に印加することでコンタクト抵抗を悪化させ、QHR 素子の直近 に配置した波長 900 nm の赤外光ダイオード (LD-274) に 1 mA の電流パルスを流すこと により、QHR 素子に赤外光パルスを照射している。

QHR デバイスに赤外光パルスを数百 msec 照射することにより、プラトー中心値 *B* [T] が上昇しており、キャリア濃度が上昇していることがわかる。また、電圧パッドのコン タクト抵抗が数 kΩ から数 Ω に減少しており、それに伴い 9 桁の精度での測定が可能 になっていることがわかる。図 3.4 は、文献^[78] に出てくる電圧パッドの 0.3 K におけ るコンタクト抵抗とプラトーの h/ie^2 からのずれの数値をプロットしたものである。精 密測定には 2 つの電圧パッドを使用するが、コンタクト抵抗の大きい電圧パッドの抵 抗値を使用した。EPF240-3 はキャリア易動度 $\mu = 133,000 \text{ cm}^2/(\text{Vs})、キャリア濃度$

図 3.3: 赤外光パルスの照射による電圧パッドのコンタクト抵抗の変化、及びコンタクト 抵抗が精密測定に及ぼす影響^[78]

 $n = 3.7 \times 10^{11} \text{ cm}^{-2}$ のデバイスであり、EPF277-2 は図 3.3 の表に出てきたデバイスで、 上述のとおりキャリア易動度 $\mu = 420,000 \text{ cm}^2/(\text{Vs})$ 、キャリア濃度 $n = 4.8 \times 10^{11} \text{ cm}^{-2}$ である。文献中では、 $i = 2 \ge i = 4$ のプラトーの結果が分けて書かれており、とりわけ 易動度が低いほうの EPF240-3 では、コンタクト抵抗の影響がi = 4のプラトーのほう が大きいことが報告されているが、この図ではすべて同じようにプロットした。ガイド ライン ^[66]では、 $i = 2 \ge i = 4$ のプラトーを用いて測定システムのチェックをすること が望ましいとあり、両方のプラトーが使用できることが望ましいからである。コンタク ト抵抗 R_C の値が数 k Ω の場合、精密測定の際のばらつきが大きくなったり、量子化抵 抗値からのずれ $\Delta R_{\text{H}}/R_{\text{H}}$ が大きくなっており、最大で 8 桁の 3.3 (32.9 n Ω/Ω) に達し ている ^{注2}。この図より、8 桁の 1 (10 n Ω/Ω) 未満の精度で測定するには、電圧パッド

 $^{^{}注 2}$ 実際は $R_C = 5.14 \text{ k}\Omega$ 、 $\Delta R_{\text{H}}/R_{\text{H}} = -124.8 \text{ n}\Omega/\Omega$ のデータ点があるが、グラフを見易くするため省いた。

図 3.4: 電圧パッドの 0.3 K におけるコンタクト抵抗と測定結果の h/ie^2 (i = 2, 4) からの偏差の関係(文献 ^[78]の結果のプロット)

表 3.1: 素子作製に使用した GaAs/AlGaAs ウェハの層構造の例 (BAAV9002B).

Layer		Thickness [nm]
Si-doped GaAs		5.1
$N_{\rm D} = 4.0 \times 10^{17} {\rm cm}^{-3}$		
Si-doped $Al_x Ga_{1-x} As$	$x\geq28\%$	38.7
$N_{\rm D} = 2.5 \times 10^{18} {\rm cm}^{-3}$		
Undoped $Al_x Ga_{1-x} As$	$x\geq28\%$	8.15
Undoped GaAs		350
Undoped $Al_x Ga_{1-x} As$	$x\geq10\%$	50
Undoped GaAs		30
GaAs substrate		

のコンタクト抵抗は10Ω程度以下であることが望ましいといえる。

本項では、一次標準用の量子ホール素子が満たすべき性能について述べた。次項以降 に本研究による成果を述べる。まず一次標準用量子ホール素子について、その素子作製 方法を述べる。その結果、作製した素子が、低コンタクト抵抗・平坦なプラトー・ほぼ ゼロの縦抵抗など、一次標準用素子に求められる性能を満たすことを測定結果より示す。

3.1.2 一次標準用単一量子ホール素子作製手順

素子は以下の手順で作製した。2次元電子系を有する GaAs/AlGaAs 基板には、典型的 には表 3.1 に示す層構造のウェハを使用した。この表に示したのは日鉱金属株式会社よ り購入した MBE (Molecular Beam Epitaxy) ウェハであり、他に住友化学株式会社によ り成長された MOCVD (Metal Organic Chemical Vapor Deposition) ウェハも使用した。

1. リン酸エッチャントを用いたメサ形成

20 mm 角に劈開した GaAs/AlGaAs ウェハをアセトン中 で超音波洗浄したのち、GaAs/AlGaAs 基板上に GXR602 フォトレジストをスピンコートし、i 線露光装置を用い てホールバー形状にパターニングした。リン酸エッチャ ント(H₃PO₄: H₂O₂: H₂O= 30: 10: 500) に 3 分間ほ

ど浸漬し、ホールバー形状に2次元電子系を切り出した。エッチングレートはおよそ 90 nm/min であり、3分間でおよそ270 nm エッチングできる。2次元電子系の深さは基 板表面からおよそ60 nm 程度なので、2次元電子系は十分にエッチングされているとい える。エッチング処理後、触針段差計を用いてテストパターンのメサ高さを確認測定し た。右上の図はホールバー形状に加工された2次元電子系の形状を示している。実際に はウェハの表面から270 nm 程度エッチングしたのみであるが、見やすくするため GaAs 基板を省略している。

2. SiO₂ 保護層 (厚み 100 nm) の成膜およびパターニング

ホールバーを切り出した GaAs/AlGaAs 基板上に、イ オンビームスパッタ(IBS)を用いて SiO₂ 保護層(厚み 100 nm)を成膜した。成膜前に希塩酸等で洗浄し、酸 化膜を除去することで保護膜の密着性を向上させた。2 次元電子系にコンタクトを取りたい箇所のみ SiO₂ 保護 層にコンタクトホールを形成するため、フォトレジス

図 3.5: メサプロセス

図 3.6: SiO₂ プロセス

トをパターニングした。反応性イオンエッチング(Reactive Ion Etching: RIE)で SiO₂ をエッチングし(CHF₃:O₂ = 40:10 sccm, 4.5 Pa, 100 W, 7 min)、コンタクトホール を形成した。数分オーバーエッチングをしても、2次元電子系が破壊されてコンタクト が取れなくなるようなことは無く、極低温でのコンタクト抵抗が数十 mΩ 程度増加した のみであった。RIE を用いずに、レジストリフトオフでの SiO₂ のパターニングも試し たが、極低温での 2次元電子系へのコンタクト抵抗はほぼ同じだったため、RIE による 2次元電子系へのダメージは少ないと結論した。

3.2次元電子系へのコンタクト形成

コンタクト用金属のパターニングには2層レジスト (LOR 3A + GXR602)を使用した。レジストのパター ニング後、O₂ アッシャー (200 sccm, 50 W, 3 min) にて レジストの残渣を除去し、4% HCl 溶液に浸漬してコンタ クトホール部のウェハ酸化膜を除去した。酸化膜除去後 直ちに EB 蒸着装置に素子を導入し、Ni/AuGe/(wafer)

図 3.7: コンタクト形成

= 23 nm/140 nm を蒸着し、アセトンでリフトオフした。AuGe 蒸着源には 12wt% Ge の AuGe 合金を使用した。2 層レジスト下層の LOR 3A は 70 ℃の Remover PG を用い て除去した。Ar 雰囲気中(1 l/min)のアニール炉にて、415 ℃で 30 秒間アニールし、2 次元電子系にコンタクトを取った。室温プローバで I-V 測定を行い、およそ 6 kΩ の直線 的な特性が得られることを確認した。ここで、Ni で終端して上に Au 等の酸化防止層を かぶせなかったのは、そのほうが低温で低いコンタクトが得られたためである。AuGe, Ni の上に Au 等を蒸着してからアニールした場合の低温でのコンタクト抵抗は数十か ら数百 mΩ であり、数 mΩ のコンタクト抵抗を得るのは困難であった。AuGe 合金を用 いるコンタクト形成方法では、一般に GaAs の Ga が蒸着した Au に拡散し、Ga 空孔に Ge が入ることで過電子状態となり、コンタクト抵抗が下がると考えられている。過剰 な Au の蒸着は過剰な Ga 空孔を形成し、コンタクト抵抗を増加させると考えられる。

4. ボンディング用パッド金属の蒸着

ボンディング用の電極形成のため、2 層レジス ト (LOR 7A + GXR602)をパターニングした。 LOR 7A は LOR 3A に比べて厚く厚膜プロセ スに使用できる。2 層レジストをパターニング 後に Au/Pt/Ti/(wafer) = 385/114/167 nm を 蒸着した後の断面 SEM 像を図 3.9 に示す。ア

セトンでリフトオフし、Remover PG で LOR

図 3.8: ボンディング用電極形成

7A レジストを剥離、洗浄した。TO-8 チップキャリア等にワニス等でマウントし、25 μm 径の Au 線をボンディングし配線を行った。

図 3.10 に、プロセス終了後の電極部の断面 SEM 像を示す。GaAs/AlGaAs 基板に SiO₂ 保護層があり、コンタクトホールに Ni/AuGe が蒸着されており、図中赤点線で

図 3.9: GXR602/LOR 7A を用いた電極形成の断面 SEM 像

図 3.10: プロセス終了後の電極部の断面 SEM 像

示す2次元電子系に向かって染み込んでいる様子がわかる。また、ボンディング用の Au/Pt/Ti 電極が Ni/AuGe の上に適切に形成されている様子がわかる。

次項では実際に作製した素子の評価結果について述べる。

図 3.11: 作製した量子ホール素子(W30)の対磁場特性

図 3.12: 作製した量子ホール素子(W30)の縦電圧の対磁場特性の拡大図

3.1.3 素子評価結果

作製した素子の、極低温下での対磁場特性、コンタクト抵抗 R_C、縦抵抗 R_{xx} の測定 を行った。図 2.6 に作製した量子ホール素子の写真を示す。直流抵抗標準業界で広く採 用されている TO-8 チップキャリアにマウントした。左右の電流パッドには4 端子抵抗 測定のために 2 本以上のボンディングを施した。

図 3.11 に対磁場特性を、また図 3.12 に縦抵抗の拡大図を示す。正磁場・逆磁場の双 方の場合において良質なプラトーが得られている様子がわかる。量子化抵抗値の量子化 の度合いは、縦抵抗 R_{xx} が測定できないほどに小さいか否かで知ることができ、縦抵抗 R_{xx} が有限の値を持つ場合、それに応じて量子化抵抗値が偏差を持つことが知られてい る。図より、およそ $\Delta B = 0.6$ T の範囲で縦抵抗 R_{xx} がゼロに落ちており、良質な量子 化抵抗値が得られていることがわかる。

図 3.13: 量子ホール状態でのコンタクト抵抗の測定方法

次にホールバー電極のコンタクト抵抗 R_C の測定方法を図 3.13 に示す ^[82]。コンタクト抵抗 R_C はプラトーの中心、量子ホール状態において測定した。この時、ホール抵抗 $R_{\rm H}$ は h/ie^2 で量子化され、例えば i = 2のプラトーでは $h/2e^2$ となり、図の P3-P4 間、P1-P6 間などの上下の電圧電極間では量子化されたホール抵抗が測定される。図のホールバー中の白点線が示すのは等電位線であり、量子ホール状態では縦抵抗 R_{xx} はゼロとなり、図のように磁場の向きが紙面の裏から表方向の場合、図中の点線で示すように電極 D, P1, P3, P5 が等電位となり、電極 S, P2, P4, P6 が等電位となる。よって図に示すように、D-P3 間の電圧を測定することにより、D 電極のコンタクト抵抗×電流 I の電圧が測定される。このようにして、2 次元電子系へのコンタクト抵抗を精密に測定することが可能となる。

測定電流に関してはその電流値が大きいほうが測定電圧が大きくなるため、コンタクト抵抗の測定の質は向上する。しかし、縦抵抗 R_{xx} は、量子ホール状態ではほぼゼロとなるのに対し、電流が大きくなり量子崩壊電流 I_c を超えると縦電圧が急激に増加しコンタクト抵抗の測定に影響することとなる。そのため、量子崩壊電流が $I_c \simeq \pm 300 \mu$ Aの場合は、 $I < I_c$ となるよう例えば $I = \pm 100 \mu$ Aの電流値にてコンタクト抵抗の測定を行った。4端子測定法においては、コンタクト抵抗のより正確な評価が可能であるが、被測定パッド1つにつき2本のボンディングおよび室温部への配線が必要となる。極低温プローブの配線数の制限のため、電流パッドのみ4端子測定(および3端子測定)を行い、電圧パッドについては3端子測定のみ行った。3端子抵抗測定の場合、得られる抵抗値は、コンタクト抵抗と配線抵抗(30程度)の和となる。4端子抵抗測定用に電流パッドには2本の配線が施してあるため、これを利用して配線抵抗を測定し、3端子抵抗測定結果から減じた。

約 0.5 K におけるコンタクト測定結果を図 3.14 に示す。電流パッドについて 5 mΩ 程

図 3.14:約0.5 K におけるコンタクト抵抗の測定結果(V4-2L)

度の十分小さいコンタクト抵抗が得られていることがわかる。また、電圧パッドについ ても、100 m Ω 未満のコンタクト抵抗である。縦抵抗 R_{xx} も 0.1 m Ω 以下と十分小さい 結果が得られた。量子崩壊電流 I_c は約 250 μ A であり、100 Ω 標準抵抗の校正の際に量 子ホール素子に流す約 20 μ A と比較し十分高い量子崩壊電流値が得られた。

本項では単一量子ホール素子の作製プロセスおよび評価結果について述べた。極低温 においてコンタクト抵抗が小さく、縦抵抗が無視できるほど小さい素子の作製に成功し、 磁場の向きによらずに平坦なプラトー及び良質な量子化抵抗値を得ることができた。評 価結果より、作製した素子は直流抵抗の一次標準として使用可能である。

3.2 量子ホールアレー抵抗標準

量子ホール効果は、正確に h/ie² の量子化抵抗値を与えるため、世界中で直流抵抗の 標準として使用されてきた。しかし抵抗標準に利用できるプラトーは、i = 2と4の2つ であり、それぞれ 12906.4035 Ω と 6453.20175 Ω である。この値は、通常我々が使用す る 10 のべき乗の抵抗値とは馴染みが無く、取り扱いに工夫が必要である。また、奇数 次プラトーはゼーマン分裂によって生じるため量子化の度合いが悪く、高次の偶数次プ ラトーも同様にランダウ準位間のエネルギー差が小さく、縦電圧が完全にゼロにはなら ないため、抵抗の一次標準として使用することはできない。

そこで QHR 素子を直並列に組み合わせることにより、あらゆる量子化抵抗値を実現 する試みがなされてきた。国際度量衡局 BIPM の F. Delahaye により、QHR 素子の直 並列の組み合わせが現実的であり、QHR 素子間の配線数を増やすことでコンタクト抵抗の影響が無視できることが示され^[83,84]、フランス LNE やドイツ PTB を中心として、 海外 NMI により量子ホールアレー素子が作製・評価されてきた^[85–99]。この量子ホール アレー素子は、以下のような利点をもたらすと期待されている。

- 1. 電流依存性の無い、さまざまな量子化抵抗値を実現できる
- 2. 抵抗値の変化しない国際比較用仲介器として使用できる
- 3. 高抵抗や低抵抗の測定の不確かさを小さくすることができる
- 4. 量子メトロロジートライアングル(QMT)(後述)の検証に役立つ

一般的に直流抵抗の精密測定は DCC(Direct Current Comparator、直流電流比較器) ブリッジを用いて行われ、これは基準抵抗器 *R*_s と被測定抵抗器 *R*_x の抵抗比 *R*_x/*R*_s の 精密測定であり、測定電流値を変化させた場合に抵抗比が変化したとしても、*R*_s と *R*_x のいずれが変化したのかの切り分けはできないため、電流依存性の評価は難しい。しか し量子ホール素子においては、量子崩壊電流値以下では量子化抵抗の値は変化しないた め、電流依存性の無い普遍的な抵抗値が、集積化によりあらゆる抵抗値において実現で きることになる。量子ホールアレー素子により、金属巻線や金属箔で作製された標準抵 抗器の電流依存性を精密に評価できることになり、シャント抵抗の性能向上・電流測定 精度向上に寄与できると期待できる。

また、世界のそれぞれの標準研究所が、同じ標準を供給しているか確認するための国際比較の際に巡回する仲介器としても使用できる。仲介器である抵抗器は航空貨物として温度変化や衝撃などのストレスにさらされるため、不連続な抵抗値変化が生じることがある。仲介抵抗器の抵抗値が線形に変化した場合、その影響は計算で除去できるため、標準研究所間の測定能力の比較は問題なく行える。しかし、抵抗器が不連続な抵抗値変化を示した場合は、標準研究所間の測定結果の差が測定によるものか、抵抗器によるものかの区別が困難になるため、国際間の測定能力の比較は難しくなり、比較そのものが無効になることもある。量子ホールアレー素子は経年変化を示さない普遍的な任意の量子化抵抗値を得られるため、仲介器として利用することにより標準研究所間の測定能力のより高い精度での比較が可能になる。

現在の校正体系では、量子ホール素子を用いて校正された1Ω抵抗器群を基準とし て10Ω、100Ω、1kΩ、・・・と測定範囲を拡大しているため、高抵抗の測定不確かさは 大きくなってしまう。高抵抗の量子ホールアレー素子を用いることにより、高抵抗の測 定不確かさの低減が期待できる他、異なる校正方法で測定できるため、既存の測定シス テムの信頼性評価を行うことも可能になる。100 個の量子ホール素子を直列に接続した 1.29 MΩのアレー素子の量子化抵抗値が約 50 nΩ/Ω 程度以内で公称値と整合すること が欧州のグループによって報告されており^[90]、数 MΩ 程度は実現可能であることがわ かる。この論文では 100 Ω のアレー素子も報告されており、低抵抗の測定不確かさ低減 にも役立つと期待できる。

また、量子ホール効果による量子化抵抗、ジョセフソン効果を用いた量子化電圧、単 電子トンネリング効果などを用いた量子化電流を用いて、量子力学的オームの法則を成 り立たせようとする、量子メトロロジートライアングル(Quantum Metrology Triangle: QMT)検証実験が幾つかのグループにより進められている^[100-102]。これは、それぞれの 量子効果の整合性を確認することにより、それぞれの量子効果の解釈の正しさを検証す るものであるが、量子ホール効果、ジョセフソン効果の解釈に問題が無く、プランク定 数 h を定義値とすれば、素電荷 e の絶対測定をしていると捉えることもできる。幾つか の研究チームが、より不確かさの小さく電流値の大きい量子化電流の発生を試みており、 現状で数百 pA の量子化電流が約 1 µA/A の不確かさで得られている。この量子化電流 を量子ホール素子に流し、その結果得られた電圧をジョセフソン素子による量子化電圧 と比較することにより QMT 検証は行われる。このときに、量子ホール素子が直列に接 続された、大きな量子化抵抗値を示すアレー素子を用いることにより、より大きな電圧 を得ることができるため、QMT 検証をより高感度に行うことができると期待できる。

このように多岐にわたる応用が期待されるため、フランスの標準研究所 LNE やドイ ツの標準研究所 PTB などを中心として、量子ホールアレー素子の開発が行われてきた ^[85-99]。作製された量子ホールアレー素子は、その量子化抵抗値が設計値に 0.01 $\mu\Omega/\Omega$ 以 下で整合する報告はあるものの、集積化されている量子ホール素子全てが良いコンタク ト抵抗を備えているかに関する検討はこれまでされていなかった。そこで本節では、ア レー素子内部で集積化されている一部の量子ホール素子と同じ形状・寸法のホールバー について、オーミック電極の歩留まりの検証を行った。SiO₂ 保護層を使用することによ り、コンタクトの歩留まりはほぼ 100% に改善できたことを、測定結果より述べる。ま た集積化素子内の多層配線間の絶縁抵抗が十分確保されていることも重要である。そこ で、絶縁抵抗を低下させる要因について、また絶縁抵抗の歩留まりを検証した結果につ いて述べる。これらの結果は作製した 10-kΩ 量子ホールアレー素子の完全性を裏付ける ものであり、その量子化抵抗値が設計値に 0.01 $\mu\Omega/\Omega$ 以下で整合したことを述べる。

図 3.15: コンタクト抵抗の歩留まりの測定に使用したホールバーの形状

3.2.1 2次元電子系へのコンタクト抵抗の歩留まり向上

本項では、量子ホール素子の集積化に向け、2次元電子系のコンタクト抵抗の歩留ま りを評価した結果について述べる。量子ホールアレー素子内において集積化されている すべての個々のホールバーのすべての電極は、極低温下において低いコンタクト抵抗を 示すオーミック電極である必要がある。高いコンタクト抵抗は、ノイズ源となるだけで なく、量子化抵抗値からのずれを生じさせ得るためである。集積化した後は個々の電極 について極低温下でコンタクト抵抗を測定することは難しいため、コンタクト抵抗の歩 留まりを測定することにより、集積化素子の歩留まりについて検討した。

また、電極のコンタクト抵抗の歩留まりを下げていた GaAs の侵食がフォトレジスト の境界部において見られたので、そこを SiO₂ であらかじめ保護する手法をとった。空気 中の水分を含め、水は GaAs を酸化させ腐食させることが知られており^[103-106]、保護層 で素子を覆うことにより素子の寿命を長くすることができることが報告されている^[107]。

コンタクト抵抗の歩留まりの測定に使用したホールバーの形状を図 3.15 に示す。ホー ルバーのチャネル幅は 400 µm で、チャネル長は 2200 µm であり、2 次元電子系とコン タクト用金属(Ni/AuGe)が重なっている面積は、電流パッドが 400 µm×250 µm であ り、電圧パッドが 150 µm 四方である。数 mΩ の精度でコンタクト抵抗を測定するには 4 端子抵抗測定をする必要があるが、極低温プローブの配線数の制限のため、歩留まり の測定は電流パッドのみで行い、合計で 72 個のホールバーの、それぞれ 2 個の電流パッ ド、計 144 個の電流パッドについてコンタクト抵抗の測定を行った。

図 3.16 に、SiO₂ 保護層を使用しない場合のコンタクト抵抗のヒストグラムを示す。 良好な量子化抵抗を得るためには、電流電極のコンタクト抵抗は1Ω程度以下が望まし

図 3.16: SiO₂ 保護層を使用しない場合のコンタクト抵抗のヒストグラム

図 3.17: GaAs/AlGaAs とフォトレジストの断面 SEM 像

いとされており^[66]、この図より多くの電極は1Ω以下のコンタクト抵抗を有している ことがわかる。しかしながら、1Ωを超えるコンタクト抵抗を有する電流電極も7個あ り、歩留まりは (48 – 7)/48 = 85.4% であった。後述する 16 個のホールバーを集積化し た素子の場合、1素子あたり6 個の電極を使用するため、16 × 6 = 96 個の電極があり、 集積化素子の歩留まりは、0.854⁹⁶ = 2.63 × 10⁻⁷ となり、完全な集積化素子の作製はこ のままでは困難であることがわかる。そこで、コンタクト抵抗の歩留まりの向上を目指 し、コンタクト部分に着目した。

図 3.17 は GaAs/AlGaAs 基板上のフォトレジストの断面 SEM 像である。ウェハ成長

図 3.18: 2 次元電子系へのコンタクト用金属の AuGe, Ni を蒸着する前の断面図

時のデータをもとに、2次元電子系のおおまかな位置を赤線で示している。この像は金 属蒸着用の2層フォトレジストを露光・現像後のものであり、この後にフォトレジスト をマスクとして黄色斜線部にコンタクト用の金属である AuGe, Ni が蒸着される。中央 部のフォトレジストの足元において GaAs 基板に凹み・腐食が生じている様子がわかる。 これは、フォトレジストと GaAs 基板間のイオン化傾向の違いから、水などを電解質と して電池効果のような現象が起きたと考えられる。この腐食が2次元電子系の電子状態 に悪影響を与えることでコンタクト抵抗の歩留まりを劣化させていると考えた。

そこで、あらかじめ GaAs/AlGaAs 基板を SiO₂ 保護層で覆うことでフォトレジスト端 部と GaAs/AlGaAs 基板との境界で生じる腐食を防ぐことを検討した。図 3.18 に SiO₂ 保護層がない場合及びある場合の断面図を示す。保護層のない図 (a) の場合、蒸着金属 のマスクのための 2 層フォトレジストの足元部において、GaAs/AlGaAs 基板に侵食が 生じたため、図 (b) に示すように、フォトレジストのパターニングの前に SiO₂ 保護層を 成膜、パターニングすることとした。これにより、フォトレジストは GaAs/AlGaAs 基 板に接する箇所がなくなるため、GaAs/AlGaAs 基板に侵食による 2 次元電子系への悪 影響・コンタクト抵抗の歩留まりの悪化を防ぐことができると考えた。SiO₂ 保護層の厚 みは 100 nm であり、イオンビームスパッタ (IBS) を用いて成膜した。その後フォトレ ジストをパターニングし、反応性イオンエッチング(Reactive Ion Etching: RIE)装置 を用いて SiO₂ 保護層にコンタクトホールを形成した。

図 3.19 に極低温(~0.5 K)で四端子法により測定した電流電極のコンタクト抵抗のヒ ストグラムを示す。電圧パッドに関しては測定システムの配線数の関係で4端子抵抗測 定は行っていない。図 (a) は、既出の図 3.16 と同じであり、参考のため示した。SiO₂ 保 護層がある図 (b) の場合、48 個のホールバーのそれぞれ 2 個、計 96 個の電流電極のコン

(a) SiO₂ 保護層がない場合

(b) SiO₂ 保護層がある場合

図 3.19: ホールバーの電流パッドの極低温(約0.5K)におけるコンタクト抵抗のヒスト グラム

タクト抵抗を極低温下で測定した。ほとんどの電極は 100 mΩ 以下のコンタクト抵抗を 有していることがわかる。2 個の電極は 1 Ω 以上のコンタクト抵抗を示し、コンタクト 抵抗の歩留まりは、(96 – 2)/6 = 97.9% であった。前述した場合と同様に、16 素子の集 積化素子(計 96 電極)の歩留まりを計算すると、0.979⁹⁶ = 13% となり、8 枚に 1 枚程 度の割合で完全な集積化素子ができるという計算結果が得られた。このように、SiO₂ 保 護層により、2 次元電子系へのコンタクト抵抗の歩留まりを向上させることに成功した。 しかし、図 3.19(b)の歩留まりは 100% ではなく、また 10 Ω 以上のコンタクト抵抗を

示す電流パッドが2個あった。この原因について透過型電子顕微鏡(TEM)により調 べた。

■透過型電子顕微鏡(TEM)を用いたコンタクト部の解析 図 3.19(b) において 10 Ω 以上のコンタクト抵抗を示していた 2 個のサンプル(V5-2U、SC4-3-1-4)は、コンタク ト抵抗の再測定の結果、どちらも電流パッドのコンタクト抵抗は実際は低く、電流パッド のコンタクト抵抗を測定する際に基準としていた電圧パッドのコンタクト抵抗が数十 kΩ と非常に高いゆえに測定が不安定になり、電流パッドのコンタクト抵抗が高く見えてい たことが判明した。特にサンプル SC4-3-1-4 に関しては図 3.20 の左に示すように上半分 の電圧パッドのコンタクト抵抗は低いが、下半分のコンタクト抵抗は高いという特徴的

図 3.20: TEM を用いたコンタクト部の観察場所の説明(SC4-3-1-4)。右側の HAADF 像 は図 3.21 に拡大してより詳細に示す。

な結果を示した。本素子について、図 3.20 に示すように、上下電圧パッド(V_{H±})のコ ンタクト-2次元電子系の境界部分を透過型電子顕微鏡(TEM)により観察を行った。

図 3.21 にそれぞれの電圧パッドの HAADF (High-Angle Annular Dark Field) 像を示 す。これはドーナツ形状の検出器で散乱透過電子を検出するもので、原子番号の大きい 原子ほど散乱角が大きいため明るく見えるため、Z コントラスト像とも呼ばれる。コン タクト用金属の Ni/AuGe が GaAs/AlGaAs ウェハに染み込み、2 次元電子系まで達して いる様子がわかる。Ni/AuGe の上には Au/Pt/Ti が蒸着されているが、この図では Pt までしか見えていない。W は TEM 観察のためのサンプル保護用である。この観察結果 より、コンタクトが悪い V_H- パッドのほうで、SiO₂ 保護膜が GaAs ウェハを覆い切れ ていないことが判明した。

次に、図 3.21(b) において赤四角で囲んだ部分について TEM 像(明視野、暗視野)で 観察した結果を図 3.22 に示す。図 3.22(a) は明視野像であり、この場合は透過電子を検 出しているので、さきほどの HAADF 像とは逆で軽元素の SiO₂ 保護膜は明るく見えて いる。図 (b) は回折光を利用した暗視野像であり、回折光による像であるので、結晶化 している箇所は明るく見え、非晶質化している箇所は暗く見える。図 (a) の明視野像の 場合と比較し、SiO₂ 保護膜とコンタクト用金属の間の GaAs/AlGaAs ウェハが露出し ていた箇所 (図 (b) 中の赤矢印で示した箇所) において GaAs/AlGaAs ウェハに明確な コントラスト差が得られており、この部分でウェハが非晶質化していることが明らかに

(a) コンタクト抵抗が良いV_{H+} パッドのHAADF (b) コンタクト抵抗が悪い V_{H-} パッドの
 像 HAADF 像

and the second s	R.
SiO ₂	SiO ₂
AlGaAs	AlGaAs
2DEG	2DEG
GaAs	GaAs
<u>200 nm</u>	<u>200 nm</u>

(a) TEM 明視野像

(b) {200} 回折光を利用した暗視野像

図 3.22: コンタクト抵抗が悪い V_H- パッドの TEM 明視野像と暗視野像

なった。この部分には、2次元電子系にキャリアを供給する n-AlGaAs 層があることか ら、この部分が非晶質化することにより、2次元電子系のキャリア濃度が薄くなり、コ ンタクト抵抗が高くなっていたことが考えられる。

図 3.23 は図 3.22 と同じ箇所の元素マップ像である。問題の箇所では Al, Ga, As と ウェハの材料元素しか検出されなかったため、コンタクト用金属が染み込んで非晶質化 したのではないことがわかる。上述のように GaAs は水分により酸化・腐食されるため ^[103-106]、GaAs/AlGaAs ウェハが露出していたがゆえにプロセスの途中で水に腐食され

図 3.23: コンタクト抵抗が悪い V_H_ パッドの電極境界部の元素分布

るなどして非晶質化した可能性が挙げられる。

以上の TEM 観察により、コンタクトの歩留まりを悪化させていた要因は、SiO₂ 保護 膜により完全に GaAs/AlGaAs ウェハを覆えていなかったことであると判明した。この 極低温で 10 kΩ 以上のコンタクト抵抗を示した電圧パッドは、室温 I-V 測定の結果では、 極低温で良好な(1 Ω 未満)結果を示すサンプルと見分けのつかない結果が得られた。 室温のデバイスでは問題にならないような差であるが、極低温においては大きな違いで あり、この SiO₂ 保護膜が、特に極低温においてコンタクト抵抗の歩留まりを向上する 上で不可欠であることがわかった。

SiO₂ 保護層が GaAs/AlGaAs ウェハを完全に覆い切れていなかった要因について述べ る。本項で評価結果を示したコンタクト抵抗歩留まり評価用素子においては、SiO₂ 保護 膜のコンタクトホール形成と Ni/AuGe コンタクト用金属の蒸着の際に、同じフォトマス クを用いて露光していた。Ni/AuGe コンタクト用金属の蒸着の前に 130 ℃ 程度でベー クすることでフォトレジストに反りを与え、SiO₂ 保護膜のコンタクトホールよりもやや 広い範囲(1 µm 以下)に Ni/AuGe を蒸着する手法を用いたが、今回の結果により必ず しもこの方法は毎回良い結果をもたらすものではないことも明らかになった。そこで、 後述する 16 素子からなる 10-kΩ 量子ホールアレー素子の作製に際しては、それぞれのプ ロセスに対して専用のフォトマスクを作製し、確実に SiO₂ 保護膜により GaAs/AlGaAs ウェハが覆われるようにフォトマスクの設計を行った。

3.2.2 配線間絶縁抵抗の歩留まりの検討

量子ホールアレー素子では、複数のホールバーを接続するために多層配線技術を用い ており、配線間の絶縁抵抗もプラトーの量子化抵抗値に影響を及ぼす。本節では、配線 間の欠陥の要因について述べた後に、欠陥密度の計算値からアレー素子の歩留まりを検 討する。

■配線間の絶縁抵抗の欠陥要因 配線間の絶縁抵抗を悪化させる要因としては、配線 間の絶縁材料(SiO₂、ポリイミド等)の絶縁不良、配線用フォトレジストパターンの露 光・現像時にパーティクル等が原因で短絡経路が形成されることなどが考えられる。し かし、平面の配線間に関しては十分な絶縁抵抗が得られており、後者についてはレジス トパターニング及び配線用メタルのリフトオフの際などに目視で確認できるため、ここ ではそれらについては考慮しないこととし、多重配線間の絶縁抵抗を劣化させた要因に ついて述べる。

図 3.24 は、電子ビーム(EB)蒸着装置を用いて Ti (1 nm、0.05 nm /sec)及び Au (200 nm、0.1 nm /sec)を蒸着後の表面の顕微鏡像である。青矢印で示しているように、 幾つかゴミのような点が観察される。この点の断面 SEM 像を図 3.25 に示す。これは、 GaAs 基板上に、Ti/Au/Ti = 10/200/10 nm を EB 蒸着機で蒸着後に、イオンビームス パッタ (IBS)装置を使用して SiO₂ を 200 nm 成膜したサンプルの断面 SEM 像である。 左図に示すように、蒸着時に形成された金の粒によって SiO₂ 層が絶縁膜として機能し ていない様子がわかる。この粒は直径 1 µm 未満であるが、大きいもので高さ数 µm の 粒も観察された。右図は金の粒が抜け落ちて SiO₂ 層に穴が生じた箇所の断面像であり、 下地のメタル層が露出してしまっている。蒸着時にこのような金属粒が蒸着されてしま う理由、及びその後に成膜した SiO₂ が金属粒の上に堆積していない理由は定かではない が、この金属粒が配線間の絶縁層の機能を失わせる理由であることが明らかとなった。 この問題を回避するには、化学機械研磨(CMP: Chemical Mechanical Polishing)で層 間絶縁膜の形成前に表面を均一にする等の方法が考えられるが、後述するように厚膜の 感光性ポリイミドを用いた絶縁膜が有効であることが明らかになったため、その方法を 用いた。

■配線間絶縁抵抗の歩留まりの検討
 図 3.26 に、層間絶縁膜の絶縁性能評価パターンを示す。2 インチ Si ウェハ上に、Au/Ni/AuGe/(wafer) = 200/15/40 nm を蒸着後、
 絶縁膜(SiO₂ もしくは感光性ポリイミド)を成膜し、その上に 1 mm 角の Au/Ti =

図 3.24: Ti (1 nm)、Au (200 nm) 蒸着後の表面の顕微鏡像

図 3.25: Ti (1 nm)、Au (200 nm) 蒸着後の表面の顕微鏡像

200/15 nm 電極をパターニングした。その後、室温プローバを用いて、絶縁膜を挟んだ 上下電極間の絶縁抵抗の測定を行った。絶縁抵抗の閾値は、量子ホール素子の量子化抵 抗値 12 906.403 5 Ω (i = 2)のずれが 5 n Ω/Ω 以下となる 3 T Ω とし、それ以上の絶縁 抵抗を示した 1 mm \Box 電極の数を計数し、以下の式により欠陥密度を計算した。

チップ上に x 個の欠陥がある確率 P(X) は、ポアソン分布を用いて

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
(3.1)

と表される。ここで、 λ はチップ上の平均欠陥数であり、チップ面積 A [mm²] と欠陥密 度 D [個/mm²] の積で表される。これより、チップの歩留まり(欠陥が 0 個の確率)は、

$$P(X=0) = e^{-AD} (3.2)$$

と表される^[108]。この式より、欠陥密度 D [個/mm²] を以下の式を用いて導出した。

$$D = -\frac{\ln\{P(X=0)\}}{A} = -\frac{\ln\{1 - P(X>0)\}}{A}$$
(3.3)

ここで、欠陥がゼロ個である確率 P(X = 0) と、欠陥が1個以上ある確率 P(X > 0)の 和が1であることを利用した。

今回の検討には、SiO₂ (膜厚 500 nm)、感光性ポリイミド1 (キュア後膜厚 700 nm)、 感光性ポリイミド2 (キュア後膜厚 2,000 nm)の3種類の絶縁膜を用いた。結果を表 3.2 に示す。絶縁膜として膜厚 500 nm の SiO₂ を用いた場合は、3 TΩ 未満の絶縁抵抗値を示 した1 mm□ 電極の数は 368 電極中 6 電極であり、そこから欠陥確率 P(X > 0) = 6/368とした。これより、欠陥密度 D は、

$$D = -\frac{\ln(1 - 6/368)}{1 \,\mathrm{mm}^2} \simeq 0.0164 \,\,[\mathrm{ff}/\mathrm{mm}^2] \tag{3.4}$$

と計算した。

後述する 16 素子の 10-kΩ QHR アレー素子の場合、多層配線のクリティカルエリアの 面積は 0.54 mm² であり、上記欠陥密度の積は 0.54 × 0.0164 = 0.0089 個となり、アレー 素子を 112 チップ作製すると、多層配線の部分に欠陥を含むものが 1 チップ存在する、 という歩留まりであるといえる。そこで、本研究で作製した 16 素子の 10-kΩ QHR ア レー素子では、すべての 1 mm□ 電極が 3 TΩ 以上の絶縁抵抗値を示した、感光性ポリ イミド 2 (キュア後膜厚 2,000 nm)を使用した。そのため、配線間絶縁抵抗に欠陥を含 む確率はほぼゼロであると期待できる。

図 3.26: 層間絶縁膜の絶縁性能の歩留まり検討パターンの写真

絶縁膜	絶縁層膜厚 [nm]	欠陥電極数/総電極数	欠陥密度 [個/mm ²]
SiO ₂	500	6/368	0.0164
感光性ポリイミド 1	700	23/407	0.0582
感光性ポリイミド 2	$2,\!000$	0/399	

表 3.2: 層間絶縁膜の絶縁性能の歩留まり測定結果及び欠陥密度

3.2.3 QHR アレー素子の設計

本項では、12.9 kΩ(もしくは 6.45 kΩ)という量子化抵抗値を用いて任意の量子化抵抗値を示す集積化素子を設計する手法について述べる。QHR アレー素子の設計は、おおまかには

1. 最適な比の決定

2. 組み合わせの決定

という2段階に分けられる。

■最適な比の決定 まずは、連分数展開法を用いた最適な比の決定 ^[109] について述べる。ここでは、i = 2のプラトーを用いることとし、 $R_{\rm H} = 12\,906.4035\,\Omega$ としている。 今、アレー素子の設計値を 10 kΩ とし、 $R_{\rm H}$ との比を取ると、

$$\frac{R_{\rm H}}{10000} = 1.290\,640\,35$$
$$= 1 + \frac{1}{10000}$$
(3.5)

$$\simeq 1 + \frac{1}{3} = \frac{4}{3} = 1.333\,333 \cdots$$
(3.6)

となる。式 (3.6) の初めの式に 1/R_H を乗ずると

$$\frac{1}{R_{\rm H}} + \frac{1}{3R_{\rm H}} = \frac{4}{3R_{\rm H}} \simeq \frac{1}{9675\,\Omega}$$

となり、まずは左辺に着目すると、ホールバー1個と、3個直列にしたものを並列に接続する(この場合はホールバー計4個)ことによって10kΩに近い値(9.675kΩ)を実現できることがわかる。次の4/3 $R_{\rm H}$ は、ホールバーを3個直列にしたものを4個並列にする(この場合はホールバー計12個)ことに相当し、この場合も同様に9.675kΩが得られる。さらに式(3.5)の展開を進めると、

$$1 + \frac{1}{3 + \frac{1}{2.269\,228\cdots}} \simeq 1 + \frac{1}{3 + \frac{1}{2}} = \frac{9}{7} = 1.285\,714\cdots$$
(3.7)

となり、同様に 1/R_H を右辺に乗ずると

$$\frac{1}{R_{\rm H}} + \frac{1}{3R_{\rm H} + \frac{R_{\rm H}}{2}} = \frac{1}{R_{\rm H}} + \frac{2}{7R_{\rm H}} = \frac{9}{7R_{\rm H}} \simeq \frac{1}{10038\,\Omega}$$

が得られ、それぞれ6個、15個、63個の組み合わせで、10038 Ωが実現できることがわ かる。先ほどと比べ、素子数を4個から6個に増やすことで、10 kΩからの偏差を32.5% から0.38% に低減できたことがわかる。さらに展開を進めていくと、

$$\frac{R_{\rm H}}{10000} = 1 + \frac{1}{3.441\cdots} \simeq 1 + \frac{1}{3} \to \frac{1}{R_{\rm H}} + \frac{1}{3R_{\rm H}} \qquad (4\,\,{\rm \AA})$$
(3.8)

$$=1+\frac{1}{3+\frac{1}{2+\frac{1}{3.714\cdots}}}\simeq 1+\frac{1}{3+\frac{1}{2+\frac{1}{4}}}\to \frac{1}{R_{\rm H}}+\frac{1}{3R_{\rm H}}+\frac{1}{3R_{\rm H}}+\frac{1}{\frac{2}{R_{\rm H}}+\frac{1}{4R_{\rm H}}}$$
(10 秦子) (3.10)

$$=1+\frac{1}{3+\frac{1}{2+\frac{1}{3+\frac{1}{1+\frac{1}{2.500454\cdots}}}}}\simeq 1+\frac{1}{3+\frac{1}{2+\frac{1}{3+\frac{1}{1+\frac{1}{2+\frac{1}{2}}}}}}$$

$$\rightarrow \frac{1}{R_{\rm H}} + \frac{1}{3R_{\rm H} + \frac{1}{\frac{2}{R_{\rm H}} + \frac{1}{3R_{\rm H} + \frac{1}{\frac{1}{R_{\rm H}} + \frac{1}{2R_{\rm H} + \frac{R_{\rm H}}{2}}}}$$
(14 素子) (3.11)

となる。式 (3.10) では、3.714・・・ は 3 とすると 9 素子になるが、四捨五入し 4 として 10 素子としている。また同じように式 (3.11) では、出てきた値が 2.500454・・・ と 2.5 に非 常に近いために、2 とも 3 ともせず 2+1/2 とした。ここを 2 とすると 12 素子、3 とする と 13 素子となるが 14 素子 (2+1/2) の場合よりは 10 kΩ からの偏差は大きくなる。こ れらすべての場合を表 3.3 にまとめた。連分数をまとめた場合の比、その比の場合のア レー素子の公称値及び 10 kΩ からの偏差、素子数等を示している。この表より、部分分 数展開を進めていくことで、アレー素子の公称値は 10 kΩ に近づいていくが、素子数は 増加していくことがわかる。12 素子、13 素子の場合でも偏差は数十 μ Ω/Ω と充分 10 kΩ に近いが、あと 1、2 素子追加することで -0.0342 μ Ω/Ω まで偏差を小さくすることが

式番号	近似比	アレー素子 公称値 [Ω]	10 kΩ からの 偏差 [μΩ/Ω]	素子数
(3.8)	$\frac{4}{3}$	9679.80	-32020	4
(3.9)	$\frac{9}{7}$	10038.31	3831	6
	$\frac{31}{24}$	9992.05	-795	9
(3.10)	$\frac{40}{31}$	10002.46	246	10
	$\frac{111}{86}$	9999.56	-44	12
	$\frac{151}{117}$	10000.33	33	13
(3.11)	$\frac{262}{203}$	ほぼ 10 k	-0.0342	14
(3.12)	$\frac{144251}{111767}$	ほぼ 10 k	-0.000011	564

表 3.3: 近似比、10 kΩ からの偏差と素子数の比較。

できるため、本研究では式 (3.11) によって得られた比である 262/203 を使用した。

$$\frac{203}{262}R_{\rm H} = 9999.999658\dots \simeq 10000(1 - 0.0342 \times 10^{-6}) \quad \Omega \tag{3.13}$$

図 3.27: 組み合わせの決定。 $n \times n$ 個のホールバーを1 個のホールバーにまとめること で総素子数を $i^{i_{h}+h_{Z}}$

図 3.28: Tiling Method による組み合わせの決定。9/7 の比は最低 6 個のホールバーで実 現可能である。

■組み合わせの決定 次に得られた比を用いて、量子ホール素子の組み合わせを検討 した。Ortolano らによる手法(ここでは Tiling Method と呼ぶことにする)を用いた組 み合わせの設計について述べる^[97]。この設計法は、素子数が少なく、且つより電流不均 一の小さい組み合わせを得る上で有用である。

まず例として 9/7 の比を選択した場合の組み合わせの設計について述べる。この比 は、すでに表 3.3 において、10038.31 Ω を与え、6 素子で実現可能であることを述べた。 図 3.27 の左は、7×9 = 63 個のホールバーが接続された回路を示しており、これは、9/7 の比を実現する最も単純な(ある意味で複雑な)組み合わせであるといえる。これを、 図の右に示すように、 $n \times n$ 個のホールバーを1 個のホールバーにまとめたとしても、 同じ9/7の比を得ることができる。橙色は4×4、黄色は3×3、緑色は2×2のホール バーをそれぞれ1個にまとめており、これによりホールバーの総数は63個→37個とな り、26個の低減ができている。この操作はつまり、図 3.28の左に示すように、7×9の 長方形を、幾つの正方形で埋めることができるか、という問題に帰着する。この例では、 7×7の正方形1個、2×2の正方形3個、1×1の正方形2個の、最小計6個の正方形 で、7×9の長方形を埋めることができる。これはそのままホールバーに置き換えるこ とが可能であり、図右に示すような回路図が得られる。これはすでに式 (3.9)で連分数 展開によって得られた以下の組み合わせと等しい。

$$\frac{9}{7R_{\rm H}} = \frac{1}{R_{\rm H}} + \frac{1}{3R_{\rm H} + \frac{R_{\rm H}}{2}}$$
(3.14)

連分数展開の方法は、Tiling method に当てはめると特にバランスを考えずに適宜そ の時点で充填可能な最大の正方形で充填することと等しく、この場合はたまたま結論 が一致するが、262/203 のように長方形のサイズが大きくなると、全く異なる解が得ら れる。正方形の個数が最も少ない場合を図 3.29 に示す^[97]。この場合、12 個のホール バーで 262/203 を実現できることがわかる。この方法の優れた点は、個々の正方形の辺 の長さが、そのホールバーに流れる電流の大きさを正確に表している点である。最も 大きい正方形の辺の長さは 119 で、最も小さいもののそれは 10 であり、最大電流比は 119/10 ~ 12 であることがわかる。

図 3.29: Tiling Method による 262/203 の組み合わせの解

図 3.30: 連分数展開によって得られた 262/203 の 14 素子による組み合わせ

図 3.31: 連分数展開で得られた 262/203 の 14 素子による組み合わせの回路図と電流分布

一方、図 3.30 は、同じ 262/203 を、式 (3.11) で連分数展開によって得られた 14 素子 で組み合わせた場合をタイルで表現したものであり、図 3.31 はその組み合わせを回路 図で表現したものである。回路図において四角は量子ホール素子を表しており、簡単の ため 2 端子抵抗とした。その時その時で充填しうる最大の正方形で埋められていること がわかる。またこの場合、素子間の最大電流比は、203:1 であり、先ほどの例と比較し て、電流不均一は約 17 倍になっていることがわかる。図 3.31 の回路図からも、上の橙 色の素子に集中して電流が流れ、右下の灰色の素子にはほとんど電流が流れないことが

29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29

図 3.32: 262/203 の 266 素子による組み合わせ。できるかぎり異なるサイズの正方形の 種類を減らすことを念頭に置いた設計で、辺の長さ 29 と 1 の 2 種類からなる。右端に 辺の長さ 1 の正方形が縦に 203 個並んでいる。

図 3.33: 262/203 の 266 素子による組み合わせの回路図及び電流分布

わかる。回路図中の青い文字は電流値を表しており、右下の灰色の素子に流れる電流を *I*として電流値を計算すると、上の橙色の素子に流れる電流は 203*I* となり、正方形の大 きさと一致することがわかる。

■266 エレメント 10-kΩ 量子ホールアレー素子の設計 262/203 の比を、正方形のサ イズを少なくして(この場合 2 種類)設計した結果を図 3.32、回路図を図 3.33 に示す。 図 3.32 は、一見タイルの数は 7×9 = 63 個に見えるが、一番右に 1×1 の正方形が縦に 203 個並んでおり、正方形の(つまりホールバーの)総数は 266 個である。数式で示す

図 3.34: 262/203 の 16 素子による組み合わせ

図 3.35: 10-kΩ 16 素子アレー素子の組み合わせの回路図とその電流分布

と以下のようになる。

$$\frac{262}{203R_{\rm H}} = \frac{9}{7R_{\rm H}} + \frac{1}{203R_{\rm H}} \tag{3.15}$$

回路図中7や203はそれぞれ、7個、203個のホールバーが直列に接続されていること を示しており、7個直列の回路が9個並列に接続され、それに203個直列の回路が並列 に接続されている。この場合橙色の7に最も電流が流れ、灰色の203には最小の電流が 流れることになる。電流比は 29:1 である。266 個もの素子数の場合、電流分布に応じて ホールバーの大きさを変化させるチップ面積の余裕は無いため、ホールバーのサイズは すべて同じとし、TO-8 チップキャリアにマウントできるチップサイズに収まるような ホールバーのサイズを採用した。

■16 エレメント 10-kΩ 量子ホールアレー素子の設計 図 3.34 は 262/203 の比を、 図 3.30 の場合に比べて電流の不均一を軽減しつつ、素子数を減らした設計であり、回路 図を図 3.35 に示す。この組み合わせは次式に示す分数展開により導出した。素子数は 16 であり、最大電流比は 175/7 = 25 である。数式を以下に示す。

$$\frac{262}{203R_{\rm H}} = \frac{3}{7R_{\rm H}} + \frac{25}{29R_{\rm H}} = \frac{1}{2R_{\rm H} + \frac{R_{\rm H}}{3}} + \frac{1}{R_{\rm H} + \frac{4R_{\rm H}}{25}} = \frac{1}{2R_{\rm H} + \frac{1}{\frac{1}{R_{\rm H}} \times 3}} + \frac{1}{R_{\rm H} + \frac{1}{\frac{1}{R_{\rm H}} \times 6 + \frac{1}{4R_{\rm H}}}}.$$
(3.16)

実際の素子の設計では、素子を流れる電流の大きさに合わせてホールバーの幅を調整した。しかし、あまり小さくなると、今度は2次元電子系への良質なコンタクトを形成するのが難しくなるため、図 3.35 の 7I の電流が流れる灰色のホールバー、及び 28I と 29I の電流が流れる白色のホールバーには同じサイズのホールバーを使用した。図より、橙色、青色、白色のホールバーに流れる電流比は

憕色:青色:白色 =
$$175I$$
: $87I$: $29I$ ≃ 6 : 3 : 1

であるので、ホールバーの幅は

橙色:青色:白色 = 800 µm:400 µm:240 µm ~ 6:3:1.8

とした。400 µm 幅のホールバーを作製した場合、量子崩壊電流は典型値で約 300 µA で あり、ここから、この設計の量子ホールアレー素子の量子崩壊電流は 0.9 mA と期待で きる。次節では、図 3.33 及び図 3.35 で示した場合の素子を作製・評価した結果につい て述べる。

また、他の公称値の組み合わせをこの方法を用いて設計した結果を表 3.4 に示す [97]。

抵抗值	ホールバー の数	回路図	比	公称値からのずれ
100 Ω	137		<u>6066</u> 47R _H	+1.590 μΩ/Ω
1 kΩ	24		<u>2620</u> 203 <i>R</i> _H	-0.034 μΩ/Ω
10 kΩ	12		<u>_262</u> 203 <i>R</i> H	-0.034 μΩ/Ω
100 kΩ	18		<u>131</u> 1015 <i>R</i> _H	-0.034 μΩ/Ω
1 MΩ	88		<u>131</u> 10150 <i>R</i> _H	-0.034 μΩ/Ω

表 3.4: 100 Ω から 1 MΩ までの、QHR アレー素子の設計例^[97]

3.2.4 10-kΩ QHR アレー素子の作製・評価

本節では、上述した要素技術や設計を用いて、10 kΩ の量子ホールアレー素子を作製 し評価した結果について述べる。

まずはじめにアレー素子の作製プロセスについて述べる。手順1から3は、3.1.2項で 述べた単一 QHR 素子のプロセスと同様であるため割愛した。以下の手順により素子を 作製した。

1. リン酸エッチャントを用いたメサ形成

2. SiO₂ 保護層 (厚み 100 nm) の成膜およびパターニング

3.2次元電子系へのコンタクト形成

4. 第一配線層の形成

コンタクト用の Ni/AuGe 蒸着の場合と同じ 2 層レジスト (LOR 3A + GXR602) を用いた。 EB 蒸着装置により Ti/Au/Ti = 5/250/5 nm を蒸着し、アセトンでリフトオフし、Remover PG で LOR 3A レジストを剥離、洗浄した。 トップの Ti 層は、次の絶縁層との密着性向上 を目的としている。3.2.2 項で述べたように、

Au 蒸着の際は、最大数 µm の Au の粒が蒸着され、絶縁性能を劣化させる恐れがあり、Au 蒸着レートが高いほどその傾向が顕著であった。そのため、Ti, Au どちらも 0.1 nm/sec でゆっくりと蒸着した。

5. 層間絶縁層の形成

配線層間絶縁膜には Q-PILON スピンコー ト用感光性ポリイミドを使用した。これは、i 線露光装置でフォトレジストのようにパター ニングでき、かつ焼成することで絶縁層とし て使用できるものである。SiO₂ 保護層とポリ イミド膜の密着性の向上のため、ヘキサメチ ルジシラザン(HMDS)処理を行った。感光

図 3.37: 層間絶縁層プロセス

性ポリイミドをスピンコートし、i 線露光装置で露光、現像した。その後、N₂ 雰囲気 (2 1/min)で段階的に昇温し、250 ℃、350 ℃ でそれぞれ 20 min 焼成した。感光性ポリ イミドを使用した理由は、簡単に厚膜の絶縁層をパターニングできるためである。しか

図 3.36: 第一配線層プロセス

し、SiO₂等に比べて低温時の収縮は大きいことが予想されるため、2次元電子系への影響を避けるため、右図のように、ウェハ全体ではなく、実際に配線同士が交差する部分 にのみ絶縁層を形成した。本感光性ポリイミドは焼成後にウェハ表面に対して約 30°の なだらかな接地角となるため、配線の段切れ等の心配も少ない。

6. 第二配線層の形成

最後に、第二配線層を2層レジスト(LOR 7A + GXR602)を用いてパターニングした。 EB 蒸着装置で Au/Ti = 300/5 nm を蒸着・ アセトンリフトオフした。通常、これまでは LOR レジストは Remover PG を使用してい たが、これは焼成した感光性ポリイミドも溶 解してしまうため、フォトレジスト現像液の NMD-3 を使用した。

図 3.38: 第二配線層プロセス

■266 エレメント 10-kΩ アレー素子の評価結果

上述の設計および手順を用いて作製した素子の写真を示す^{注3}。図 3.39 は、図 3.33 及 び以下の式 (3.15) で示す組み合わせを用いたアレー素子である。

$$\frac{262}{203R_{\rm H}} = \frac{9}{7R_{\rm H}} + \frac{1}{203R_{\rm H}}$$

左側で、7 個直列接続の素子が9 個並列に接続されており、右側に 203 個直列接続の 素子が並んでいる。集積化されているホールバーの総数は 7 × 9 + 203 = 266 個である。 素子サイズは 7 mm × 9 mm であり、ボンディングパッドは左側に固めて並べ、専用の TO-8 チップキャリアを用いた。

図 3.40 は、本アレー素子の対磁場特性であり、温度 T = 0.5 K、電流 I = 5 µA の条件 下で測定した。専用の TO-8 チップキャリアにマウントした写真をグラフ中に示す。平 坦な 10 kΩ (i = 2) と 5 kΩ (i = 4) のプラトーが得られており、量子ホール状態にお いて縦抵抗がゼロに落ちている。

この 10 kΩ の量子化抵抗値を、単一の一次標準用量子ホール素子により、極低温電 流比較器 CCC と 100 Ω 標準抵抗器を用いて精密測定を行った結果を図 3.41 に示す。2 回の校正結果より、0.01 μΩ/Ω 以下で公称値に整合した。しかしながら、図 3.42 に示す

^{注3} 実際にはこの素子の場合は絶縁層に SiO₂ と感光性ポリイミドの複合絶縁膜を使用していたり、ア ニール時間などの条件が若干異なるが、基本的には同じである。詳細は文献^[110,111]。

図 3.39: 266 素子 10-kΩ QHR アレー素子の写真

図 3.40: 266 素子 10-kΩ QHR アレー素子の対磁場特性

図 3.41: 266 素子 10-kΩ QHR アレー素子の校正結果

図 3.42: 266 素子 10-kΩ QHR アレー素子を校正する個々のホールバーのコンタクト抵抗 の歩留まり
ように、この 266 個のアレー素子を構成するホールバーと同じ形状・寸法のホールバー のコンタクト抵抗の歩留まりはこの場合 35% にとどまっており、良好な集積化素子を 作製するには不十分であることがわかる。この場合のホールバーの幅は 100 µm である。 これは、400 µm 幅のホールバーにおいて歩留まり改善に有用であった SiO₂ 保護層を使 用した結果であり、詳細の検討が必要である。このアレー素子に関しては SiO₂ 保護層 のコンタクトホール形成と、Ni/AuGe パターニング用のフォトマスクを共通にしている ため、それに起因する歩留まりの低下は考えられるが、ほぼ同じ条件の図 3.19(b) の約 98% に比べ、35% という歩留まりは予想以上に悪い。

2次元電子系には Ni/AuGe がスパイク状に染み込んでコンタクトを取っており、コン タクト面積が小さくなると、スパイクの本数が減るためにコンタクト抵抗が高くなって いる可能性が考えられる。図 3.19の場合、コンタクトパッドの面積は 400 µm× 250 µm、 この場合は 100 µm× 50 µm であり、1/20 である。前者の評価の場合、評価用素子のみ をウェハの中央に配置して測定したが、この測定の場合はアレー素子の周辺の、ウェハ の端に位置するテストパターンを用いた測定も含まれることが原因している可能性があ る。ウェハの端ではフォトレジストの残渣などが残りやすいため、プロセスに起因する 問題によりテストパターンのコンタクト抵抗が増大したのではないかと考えられる。

次に示す 16 素子のアレー素子では、素子数を少なくし、できるだけ大きいサイズの コンタクトを使用した。歩留まりテストの結果より、アレー素子内のすべてのホール素 子が望ましいコンタクトを有していると期待できる。極低温における 2 次元電子系への コンタクト抵抗の歩留まりに関する報告はこれまでに無く、信頼性の高いアレー素子で あると期待できる。

■16 エレメント 10-kΩ アレー素子の評価結果

次に、図 3.43 に、図 3.35 及び以下の式 (3.16) で示した 16 素子の組み合わせによる 10-kΩ アレー素子の写真を示す。

$$\frac{262}{203R_{\rm H}} = \frac{1}{2R_{\rm H} + \frac{1}{\frac{1}{R_{\rm H}} \times 3}} + \frac{1}{R_{\rm H} + \frac{1}{\frac{1}{R_{\rm H}} \times 6 + \frac{1}{4R_{\rm H}}}$$

チップサイズは、通常の TO-8 チップキャリアにマウントできるように 8 mm 角とし、 ボンディングパッドも四方に配置した。図中の記号(*I*±, *V*_H±, *V*_{xx}±)は図 3.44 に示す 対磁場特性の測定の際に用いたパッドを示している。

図 3.44 は本 16 素子 10-kΩ QHR アレー素子の対磁場特性であり、電流 I = 25 µA の

図 3.43: 16 素子 10-kΩ QHR アレー素子の写真

図 3.44: 16 素子 10-kΩ QHR アレー素子の対磁場特性

図 3.45: 図 3.44 の *i* = 2 プラトーの拡大図

条件下で測定した。測定は ³He 冷凍機で行い、その安定な到達温度 $T \sim 0.5$ K で測定した。ホール抵抗 $R_{\rm H}$ の波形より、10 k Ω (i = 2) と 5 k Ω (i = 4) のきれいなプラトーが得られており、量子ホール状態において縦抵抗がゼロに落ちている様子がわかる。i = 2 プラトー中心での縦電圧はおよそ 250 $\mu\Omega \pm 140 \mu\Omega$ (包含係数 k = 2、タイプ A 不確かさ(ばらつき)のみ^{注4})であった ($I = 25 \mu$ A)。図 3.45 は図 3.44 のi = 2 プラトーの拡大図であり、平坦な量子化抵抗特性が得られている。

次にこの 10 k Ω の i = 2 量子化抵抗値を、 単一の QHR 標準素子により、極低温電流 比較器 CCC と 100 Ω 標準抵抗器を用いて精密測定を行った。結果、測定値は公称値 (約 9 999.999 658 Ω) と 0.004 ± 0.058 µ Ω/Ω (k = 2) で一致し、良い量子化抵抗値が得られ ていることが明らかとなった ^[112]。

3.3 結言

本章では、直流抵抗の一次標準として利用される量子ホール素子が具備すべき要件に ついて俯瞰し、一次標準用の素子を作製・評価した結果について述べた。集積化素子を 作製する上で重要な、2次元電子系へのコンタクト抵抗の歩留まりを評価し、SiO₂ 保護 層がコンタクト抵抗の歩留まりを改善する上で有用であることを述べた。SiO₂ 保護層に より完全に GaAs/AlGaAs ウェハを覆うことにより、コンタクト抵抗の歩留まりをほぼ 100% にできることを TEM 観察結果より示した。その結果、素子の歩留まりは飛躍的に 向上し、現在ではオーストラリア、タイ、フィンランドの標準研究所に素子を供給して

<sup>
注4</sup>(生データの標準偏差 stdev)/ \sqrt{N} 、N はデータ数

おり、日本のプレゼンス向上につながっている。また、ホールバーを集積化した QHR アレー素子の設計及び測定結果について述べ、10 kΩ の量子化抵抗値を 0.01 μΩ/Ω 以下 の偏差で実現可能であることを実験結果により示した。16 個のホールバーの集積化素 子について、同等のサイズのホールバーについてコンタクト抵抗の歩留まりを評価し、 ほぼ 100 % であることを示し集積化素子の性能を裏付けた。この量子ホールアレー素 子の技術は、標準研究所間の測定能力の比較、および量子メトロロジートライアングル (Quantum Metrology Triangle: QMT)の検証にも使える技術であり、世界的な量子標 準の向上に寄与し得る。

第4章

安定な標準抵抗器の開発

1980年に K. von Klitzing により量子ホール効果が h/ie² に関連付けられ^[26]、1990年 より世界中の標準研究所にて直流抵抗の一次標準として量子化抵抗値が用いられるよう になった。直流抵抗標準の国家標準を維持する産業技術総合研究所においても量子ホー ル素子を一次標準として利用しているものの、2章で述べたように普段の標準には1Ω 抵抗器群を使用しており、さらにそこから直流電流比較器(DCC)ブリッジを用いて値 を拡張するため、室温で高安定な標準抵抗器は重要である。校正事業者においても抵抗 標準は標準抵抗器を基準として維持管理されているため、標準抵抗器の安定性は、計測 器などの製品の性能を左右することになる。本章では、標準抵抗器が備えるべき性能、 また標準抵抗用材料としてどのようなものが検討されてきたかについて述べた後、逆ペ ロブスカイト構造を有するマンガン窒化物を用いた低抵抗標準抵抗器の開発について述 べる。続いて、アルファ・エレクトロニクス株式会社及び日本電気計器検定所(JEMIC) と開発した NiCr 箔材料を用いた高安定標準抵抗器について述べる。

4.1 標準抵抗材料

本節では、初めに標準抵抗器に求められる性能について述べる。2 章の表 2.2 におい て示したように、1 Ω から 10 k Ω の範囲では測定の不確かさは小さく 0.1 $\mu\Omega/\Omega$ 程度以 下であり、そこから離れるに従い不確かさは増え、1 m Ω や 10 M Ω で数 $\mu\Omega/\Omega$ 程度であ る。標準抵抗器の安定度も概ねこれに準じた性能が求められており、そのことについて 述べる。

また、現在の標準抵抗用材料は室温付近で抵抗-温度曲線が極大もしくは極小を示し、 室温付近ではその抵抗-温度曲線は2次曲線で良く近似される。このような場合に標準 抵抗用材料の性能を示す指標として使用されるβ、α₂₃、T_nについて述べる。

4.1.1 標準抵抗器に求められる性能

本項では標準抵抗器に求められる性能について述べる。標準抵抗器は、センサの場合 とは逆にあらゆる環境変化に対して鈍感で、抵抗値が常に安定である必要があり、以下 に示す性能が求められる。

- 1. 温度依存性が小さい
- 2. 経年変化が小さい
- 3. 湿度・気圧依存性が小さい
- 4. 銅に対する熱起電力が小さい
- 5. 電圧・電流依存性が小さい
- 6. 空輸程度の振動を加えても抵抗値が変化しない
- 7. 急激な温度変化などの環境変化による抵抗値の変化が無い

温度依存性 良導体である銅の抵抗-温度曲線を図 4.1 に示す ^[113]。金や銀などの金 属も銅と同様にこのような右肩上がりの抵抗値変化を示し、その傾きはおよそ 0.4%/ $^{\circ}$ C (4000 ($\mu\Omega/\Omega$)/ $^{\circ}$ C) である。標準抵抗器を油恒温槽に浸すなどして抵抗器の温度の揺ら ぎを数 mK 以下にしたとしても、抵抗値の揺らぎは 10 $\mu\Omega/\Omega$ 程度になる。現在、直流 抵抗の精密測定の精度は $n\Omega/\Omega$ オーダーに達しているため、温度特性を 4 桁以上良くし なければ標準抵抗器としては使用できないといえる。

図 4.1: 銅の抵抗の温度依存性^[113]

標準抵抗器には、マンガニン(CuMn 系合金)やエバノーム(NiCr 系合金)などの材料が使用されており、これらは室温付近で抵抗-温度曲線に極大を示す。極大/極小では抵抗-温度曲線の傾きはゼロになるため、ピーク温度 T_p が使用温度付近にあるものが望ましいといえる。

経年変化 表 4.1 は、ある標準抵抗器メーカーの製品の経年変化の典型値である。公称値により経年変化の値は異なり、1 k Ω 、10 k Ω が最も良い ±1 ($\mu\Omega/\Omega$)/year であり、 そこから離れるに従い経年変化の典型値も上昇する。

公称值	$1 \text{ m}\Omega$	$\begin{array}{c} 100 \ \mathrm{m}\Omega \\ 10 \ \mathrm{m}\Omega \end{array}$	$\begin{array}{c} 100 \ \Omega \\ 10 \ \Omega \\ 1 \ \Omega \end{array}$	10 kΩ 1 kΩ	10 MΩ 1 MΩ 100 kΩ	$100 \ \mathrm{M}\Omega$	$1~{ m G}\Omega$
経年変化 $\pm(\mu\Omega/\Omega)/year$	50	4	2	1	2	20	100

表 4.1:標準抵抗の公称値と経年変化(典型値)^[114]

湿度・気圧依存性標準抵抗材料は多くの場合密閉容器に不活性ガスと共に封入されるため湿度・気圧変化は小さい。しかし標準抵抗器の中には気圧変化を示すものも少なからずあり、国際比較の際には海外の標準研究所と 200 hPa 程度の気圧差に注意する必要がある。Colorado 州 Boulder にある、アメリカ国立標準技術研究所(National Institute of Standards and Technology, NIST)の高度は高く、気圧差は大きめに見て 200 hPa 程度ある。測定能力の比較を 0.01 $\mu\Omega/\Omega$ 程度以下で行うには、気圧係数は ±0.05 $(n\Omega/\Omega)$ /hPa 以下であることが望ましい。

銅に対する熱起電力かつてコンスタンタン(CuNi 合金)は、マンガニン(CuMn 系 合金)よりもなだらかな抵抗–温度曲線を示すゆえに標準抵抗材料として有望視された が、銅に対する熱起電力が約 40 μ V/K とマンガニンの場合の 2 μ V/K に対して大きく、 標準抵抗材料として使用されることはなかった^[115]。抵抗比の精密測定は、図 4.2 に示す ように、基準抵抗器 R_s と被測定抵抗器 R_x を流れる電流(起磁力)と、それにより発生 する電圧とを平衡させることで行われる。例えば、図 4.2 に示す 1 Ω /100 m Ω の測定の 場合、それぞれに 10 mA と 100 mA の電流を流すと、それぞれの抵抗器には 10 mV の 両端電圧が発生する。抵抗器の端子間温度が 1 mK でゆらぐとすると、約 40 μ V/K の材 料の場合、40 nV のノイズが発生することになる。40 nV は両端電圧 10 mV の 4 μ Ω/ Ω に相当し、精密測定の妨げになることがわかる。標準抵抗材料であるマンガニンの銅に 対する熱起電力は約 2 μ V/K であり、同程度以下が望ましい。

図 4.2: DCC ブリッジの構成図^[56]

図 4.3: 式 (4.1) の温度依存性の計算例

4.1.2 温度係数の表現

標準抵抗器には、マンガニン(Manganin)に代表される銅-マンガン合金材料や、エ バノーム(Evanohm)に代表されるニッケルークロム合金材料などが使用されている。 これらの標準抵抗器は、室温付近で抵抗-温度曲線が極値を持つように設計されており、 その曲線が2次曲線に良く近似されることが経験的に知られている。そのため、抵抗- 温度曲線の2次近似曲線を、

$$R(T) = aT^2 + bT + c \tag{4.1}$$

で表し、この係数を用いて計算された以下の係数を、標準抵抗器やその材料の性能を 表現する際に用いている。本論文において、温度の単位は、PPMS(Physical Property Measurement System)などの広い温度範囲での測定結果には K を、ブリッジ等の室温 付近のみの測定結果では℃を使用した。

$$\begin{cases} \beta = a \\ \alpha_{23} = 2 \times a \times 23 + b \\ T_p = -\frac{b}{2a} \end{cases}$$
(4.2)

 β は、近似曲線の 2 次の係数そのものであり、この値が小さいと広い範囲で温度変化が 少ない。マンガニンの場合 $-0.5 (\mu\Omega/\Omega)/K^2$ 程度であり、ニクロム系の抵抗体の場合は さらに小さく、 $0.01 (\mu\Omega/\Omega)/K^2$ 以下の抵抗器も製作されている。 T_p はピーク温度であ り、ピークでは抵抗–温度曲線の傾きはゼロとなる。 α_{23} は、 $23 \ C$ における抵抗–温度 曲線の接線の傾きであり、使用する温度に応じて、 α_{20} 、 α_{25} などが使用される。

図 4.3 に、抵抗温度特性の例(計算値)を示している。青が $\beta = -0.1 (\mu\Omega/\Omega)/K^2$ の場合であり、赤が $\beta = -0.3 (\mu\Omega/\Omega)/K^2$ の場合である。この場合、2 つの曲線のピーク 温度は 23 °C で同じであり、23 °C での傾きである α_{23} は共にゼロである。当然ながら β の絶対値が小さいと曲率が小さくなり、広い温度範囲で抵抗値変化が少ないことがわか る。したがって抵抗器を使用したい温度 T 付近にピーク温度 T_p があり、且つ $|\beta|$ の小 さい材料が望ましい。

4.2 逆ペロブスカイト型マンガン窒化物を用いた標準抵抗器の開発

逆ペロブスカイト型マンガン化合物 Mn₃AX (A は金属元素や半導体元素、X は侵入軽 元素)は、巨大負熱膨張^[116-119]、磁歪^[120-122]、磁気熱量効果^[123,124]、磁気抵抗^[125-127]、 圧力熱量効果^[128]、室温付近の小さい温度係数^[129-135]などの多彩な物性を示す物質群で ある。逆ペロブスカイト構造を有し、例えばマンガン窒化物 Mn₃AN の場合は中心に軽 元素の N、六配位で Mn、そして単位胞の角にさまざまな金属元素や半導体元素が配置 し、この元素 A の種類により上記のような様々な物性が得られる。

本節では、本物質が室温付近で示す小さい温度係数に着目し、標準抵抗材料への応用 を検討した結果について述べる。本材料の抵抗率は、約 250 µΩ·cm と、従来の標準抵抗 材料の Manganin(約 48 μΩ·cm)や Evanohm(約 130 μΩ·cm)と比べて高いため、例え ば断面積が同じであれば Evanohm の約半分の長さで同じ抵抗値を実現でき、抵抗器の 小型化が可能になる。

マンガン窒化物の常磁性領域における小さな抵抗 – 温度係数は、まず 2001 年に E. O. Chi らにより示され^[129]、Mn₃CuN が常磁性領域で約 46 (μΩ/Ω)/K もの小さな温 度係数を示すことが報告された。その後竹中らにより、Mn₃CuN および Mn₃AgN が常 磁性領域において抵抗 – 温度曲線にピークを示すことが見出され^[132]、Chi らが報告し た小さい温度係数は、より高温で Mn₃CuN が抵抗率 – 温度曲線に極大を示すことの前 駆現象であったことを示した。2009 年末頃より、本材料の標準抵抗材料への応用の検討 に関する共同研究が名古屋大学と産業技術総合研究所の間で開始された。その一環とし て本研究では直流電流比較器 (DCC) ブリッジを用いた、サンプルの抵抗値経年変化及 び温度特性の精密測定を行った。

温度係数に関しては、当初見いだされた Mn₃AgN の二次の温度係数 β は約 –5 ($\mu\Omega/\Omega$)/K² であった。小澤による Mn₃Ag_{1-x}Cu_xN の組成比 x の検討の結果、x = 0.3 の時に室温に おいて平均的に β = -0.7 ($\mu\Omega/\Omega$)/K² が得られることが明らかになった ^[136]。その後、 羽田野により β を低減しうる置換元素の検討が行われ、In や Fe などが有効な置換元素 として見出された ^[137]。しかし、温度係数 β とピーク温度 T_p を同時に制御することが できないことが問題であった。本研究では In や Fe と同時に Cu によっても元素置換す ることで、 β を低減しつつピーク温度 T_p を制御できることを詳細測定を行い明らかにし た。その結果、室温付近で β = -0.5 ($\mu\Omega/\Omega$)/K² 程度の温度特性を実現した ^[138]。その 後、CuIn 同時置換系において Mn を過剰に添加することにより、室温付近でさらに β を 低減できることを海津と共に明らかにした。精密測定の結果、Mn_{3.03}Ag_{0.62}Cu_{0.19}In_{0.15}N のサンプルが β = -0.20 ($\mu\Omega/\Omega$)/K²、 T_p = 34 °C を示した。市販の 100 mΩ 標準抵抗器 の二次温度係数は、およそ β = -0.12 ($\mu\Omega/\Omega$)/K² であり、市販品の性能に近づいてき たことがわかる。

経年変化に関しては、共同研究開発当初においておよそ 10,000 ($\mu\Omega/\Omega$)/year (1%/year) であった。小澤による焼結時のホットプレス圧の増加、材料粉の粒径制御などの焼結度 の向上により、経年変化はおよそ 2 桁改善し約 100 ($\mu\Omega/\Omega$)/year となり、さらに羽田野 によるコンタクトの改善により 10 ($\mu\Omega/\Omega$)/year 程度もの経年変化を示すサンプルが作 製された。しかし実用レベルとして数 ($\mu\Omega/\Omega$)/year が必要であり、本研究では経年変化 の更なる低減、および歩留まり良く経年変化が小さいサンプルを作製する方法について

図 4.4: Mn₃AN の抵抗率-温度曲線 ^[132]。(a) A サイトを様々な元素で置換した際の抵抗 率-温度曲線。▲、▼記号は磁気転移温度を表している。(b) Mn₃AgN および Mn₃CuN の 800 K までの抵抗率-温度曲線。

検討を行った。その結果、従来のバー形状ではなく、焼結体を4端子形状に加工することにより、経年変化の歩留まりを向上できることを明らかにし、最高で1 ($\mu\Omega/\Omega$)/yearを達成した。表 4.1 で示したように、市販の 100 m Ω 標準抵抗器の抵抗値経年変化のカタログ値は、4 ($\mu\Omega/\Omega$)/year であり、経年変化に関しても市販品とほぼ同等の値を実現した。これより、これらの成果について詳細を述べ、最後に銅に対する熱起電力を測定した結果について述べる。

4.2.1 逆ペロブスカイトマンガン窒化物の抵抗温度特性

先行研究の成果: Mn_3CuN 、 Mn_3AgN における抵抗値極大 図 4.4(a) は、 Mn_3AN の A元素を Pd、Ni、Zn、Co、Cu、Ag とした際の抵抗率 – 温度曲線である^[132]。図中 \blacktriangle 、 ▼記号は磁気転移温度を表しており、 Mn_3CuN 、 Mn_3AgN が磁気転移温度より高い常磁 性相の温度範囲において、抵抗 – 温度曲線にピークを有することが見出された。ほとん どの場合、磁気転移温度以上の常磁性相で小さな抵抗温度変化を示しているが、特に Mn_3AgN は 340 K で抵抗率極大を示しており、標準抵抗材料に必要な小さい温度係数を 実現できることが明らかにされた。 また図 4.4(b) は、 Mn_3AgN 、 Mn_3CuN の 800 K まで

図 4.5: Mn₃Ag_{1-x}Cu_xNの抵抗率-温度曲線^[132,136]

の抵抗率-温度曲線であり、図中に拡大図を示している。Mn₃AgN は約 340 K、Mn₃CuN は約 420 K でそれぞれ抵抗率の極大を示した。そして 800 K までの範囲ではさらに温度 が上昇しても抵抗率の上昇は見られず、負の抵抗温度係数を示した。Cu、Ag 以外の A 元素 (Ni, Pd, Zn, Co) の場合は 800 K まででこのような抵抗-温度曲線の極大は観測 されず、この 2 元素の場合のみ特異な振る舞いを示した。この要因は未だ明らかではな いが、内部での強い散乱と特異な電子構造が関係していると考えられる。

図 4.5 に、 $Mn_3Ag_{1-x}Cu_xN$ の抵抗率 $- 温度曲線を示す [^{132,136}]$ 。左側は全体図であり、 インセットに置換量 x に対するピーク温度 T_p や磁気転移温度 T^* の変化を示している。 磁気転移温度 T^* 付近では、抵抗率が温度に対して不連続で大きな変化を示すことから、 抵抗器を使用するピーク温度 T_p からはできる限り離れていたほうがより小さい二次の 温度係数 β が得られると考えられる。右側の図は室温付近での 400 K の抵抗値で規格化 した抵抗温度特性であり、 Mn_3AgN の Ag を Cu で置換することにより抵抗率 - 温度曲線のピークを室温付近に制御できることが小澤により明らかにされた $[^{132,136}]$ 。

Fe, In 及び Cu の同時置換による二次の温度係数 β の低減

羽田野により二次の温度係数 β を低減しうる置換元素の探索が行われ、Mn₃AgN の Mn の置換材料として Fe が、そして Ag の置換材料として In が望ましい結果を与える ことが明らかにされた^[137]。本研究では、それらの元素置換と同時に Cu により Ag サ イト置換を行うことにより、 β を低減しつつピーク温度を室温付近に制御できること を詳細な測定を通して明らかにした。図 4.6 に、Mn₃AgN の Ag を In で置換した際の 抵抗率-温度曲線を示す^[138]。図中のグラフはピーク温度 T_p 及びピーク温度における

図 4.6: Mn₃AgN の Ag を In で置換した際の抵抗率 – 温度曲線

$Mn_3Ag_{1-x}In_xN$	$\beta ~[\rm ppm/K^2]$	T_p [K]	T^* [K]
x = 0	-0.86	330	278
x = 0.10	-0.87	303	256
x = 0.20	-0.30	330	256
x = 0.30			252

表 4.2: Mn₃Ag_{1-x}In_xN の温度特性値

抵抗率 $\rho(T_p)$ にて規格化した拡大図である。表 4.2 に、置換量 x に対する二次温度係数 β 、ピーク温度 T_p 、磁気転移温度 T^* を示す。In の置換量が x = 0.10 の場合 β はほぼ 同じで、ピーク温度 T_p 及び T^* が減少している。置換量を x = 0.20 にすると、 β は半 分以下に低減し、 $\beta = -0.3 (\mu\Omega/\Omega)/K^2$ まで低減された。 これはマンガニンの典型値 $\beta = -0.5 (\mu\Omega/\Omega)/K^2$ を超える特性である。図 4.6 の図中のグラフより、抵抗温度係数 の曲率が小さくなっている様子がわかる。x = 0.3ではピーク温度 T_p はさらに上昇し、 測定した 400 K までの温度範囲では抵抗ー温度曲線の極大は観察されなかった。

次に図 4.7 に、 Mn_3AgN の Mn を Fe で置換した際の抵抗率 – 温度曲線を示す。図 4.6 の場合と同様に、図中にはピーク温度 T_p 及びピーク温度における抵抗率 $\rho(T_p)$ にて規格

図 4.7: Mn₃AgN の Mn を Fe で置換した際の抵抗率 – 温度曲線

$Mn_{3-x}Fe_xAgN$	$\beta ~[{\rm ppm/K^2}]$	$T_p \; [\mathrm{K}]$	T^* [K]
x = 0	-0.86	330	278
x = 0.05	-0.75	336	283
x = 0.10	-0.53	343	280
x = 0.20	-0.30	355	279

表 4.3: Mn_{3-x}Fe_xAgN の温度特性値

化した拡大図を示す。また表 4.3 に置換量 x に対する温度特性値を示す。Fe による Mn の置換量 x を増やすに従い、二次の温度係数 β は減少し、Ag を In で置換した場合と同 様に x = 0.2 の時に $\beta = -0.3 (\mu\Omega/\Omega)/K^2$ まで低減された。また図 4.7 中の拡大図から も、置換量 x の増加に伴い、抵抗率-温度曲線の曲率が減少する様子が見て取れる。置 換量 x の増加に伴い磁気転移温度 T^* はほとんど変化しないものの、ピーク温度 T_p は 徐々に上昇する結果が得られた。

前述の図 4.5 に示したように、 Mn_3AgN の Agを Cu で置換した際には、置換量 $x \leq 0.5$ の範囲でピーク温度 T_p の低下が見られた。 Mn_3AgN の Agを In で置換した際 や、 Mn_3AgN の Mn を Fe で置換した際には、置換量の増加に伴い二次の温度係数が

図 4.8: 二元素同時置換した際の抵抗率-温度曲線

表 4.4: 二元素同時置換化合物の温度特性値

Composition	$\beta \; [\mathrm{ppm/K^2}]$	$T_p \; [\mathrm{K}]$	T^* [K]
$\mathrm{Mn_{3}Ag_{0.85}Cu_{0.15}N}$	-0.97	301	252
$Mn_{3}Ag_{0.75}Cu_{0.15}In_{0.10}N$	-0.53	302	246
$Mn_{2.85}Fe_{0.15}Ag_{0.80}Cu_{0.20}N$	-0.57	302	257

 $\beta = -0.3 (\mu\Omega/\Omega)/K^2$ まで低減され、それに従いピーク温度 T_p は増加した。

そこで次に In や Mn による置換と同時に、Cu による二元素同時置換を行うことによ り、温度係数 β およびピーク温度 T_p を個別に制御することを試みた。その結果を図 4.8 及び表 4.4 に示す。図 4.8 中の拡大図は、縦軸はこれまでと同様ピーク温度における抵 抗率 $\rho(T_p)$ にて規格化した抵抗率であるが、ピーク温度は室温付近で揃っているため横 軸は規格化されておらず測定温度 [K] のままである。結果が示すとおり、Mn₃AgN の Ag を In と Cu で同時置換することにより、また Mn₃AgN の Mn を Fe で、Ag を Cu で同時 置換することにより、二次の温度係数 β を低減しつつピーク温度 T_p を室温付近に制御 できたことがわかる。

図 4.9: 三元素同時置換化合物の抵抗-温度曲線

表 4.5:	三元素同時置換化合物の温度特性値

Composition	$\beta \; [\mathrm{ppm/K^2}]$	T_p [K]	T^* [K]
$Mn_{3.03}Ag_{0.68}Cu_{0.19}In_{0.10}N \ (\#\ 057)$	-0.39	301	240
$Mn_{3.03}Ag_{0.62}Cu_{0.19}In_{0.15}N \ (\#\ 059)$	-0.20	307	223

In、Cu、Mn 同時置換による二次の温度係数 β の低減 In や Fe と Cu による二元素同 時置換により、 β の低減及びピーク温度 T_p の制御に成功したが、In や Fe のみの置換量 x = 0.2 の時のほうが二次の温度係数は $\beta = -0.3 (\mu\Omega/\Omega)/K^2$ と小さい。ここでは In、 Cu の同時置換に加え、Mn を過剰に添加することによってより良好な結果を得たことに ついて述べる。Mn₃AgN の Ag を In と Cu、および Mn で同時置換した際の抵抗温度特 性の測定結果を図 4.9 及び表 4.5 に示す。In と Cu だけでなく、Mn により置換すること により、ピーク温度を室温付近に保ったまま、二次の温度係数を $\beta = -0.20 (\mu\Omega/\Omega)/K^2$ に低減できることを実証した。このサンプルの抵抗値は約 47 mΩ であり、市販 100 m Ω 抵抗器のカタログ値の約 $\beta = -0.13 (\mu\Omega/\Omega)/K^2$ とほぼ同等の特性を実現した。

4.2.2 小さい抵抗温度係数及び抵抗率極大の起源

本項では、常磁性相においてマンガン窒化物 Mn₃AgN や Mn₃CuN が示す抵抗-温度 曲線の緩やかなピークの起源について考察する。これらの物質は、常磁性領域において 抵抗率の温度変化が平坦になる特徴がある。これは、物質内部における強いキャリア散 乱により、遍歴電子の平均自由行程が1ユニットセル程度まで減少することで生じる、 いわゆる「抵抗率飽和」の現象と考えられる^[139]。多くの磁性体の常磁性相で、程度の 差はあるものの、抵抗率の温度依存性が鈍くなることが観測されており、強い磁気散乱 が原因と思われる。

平均自由行程が短くなっていることは、本物質群について測定された磁気抵抗の結果 とも符合する。図 4.10 は、Mn₃AgN の室温における磁気抵抗の結果である^[137]。磁気抵 抗は一般的な金属と同様に磁場の自乗に比例しており、その絶対値は Au の磁気抵抗に 比べ一桁小さく、またマンガニンの場合の 1/4 程度である。平均自由行程が短くなって いるがゆえに、キャリアが外部磁場によるローレンツ力を受ける時間が短くなり、磁気 抵抗が小さくなったと考えられる^[140]。

本物質群の「緩やかな抵抗極大」は、この起源については未だ確定はしていないもの の、フェルミ準位付近の電子構造の特徴に由来する温度効果が原因になり得る。温度上 昇に伴い、実効的にキャリア濃度がわずかに増えるような特異な電子構造をフェルミ準 位付近に有しているのではと考えられる。通常はこのような効果の寄与は無視できる程

図 4.10: Mn₃AgN の常磁性相における磁気抵抗^[137]

組成 x (s/n)	ホットプレス 圧力	粒径制御	密度	経年変化 (μΩ/Ω)	平均值 /year
0.23 (s/n 77)	16 MPa		97.0%	11,023	
$0.20 \ (s/n \ 80)$	16 MPa			22,192	$15,\!481$
$0.17 \ (s/n \ 83)$	16 MPa			13,228	
0.32 (# 001)	47 MPa		98.5%	475	
0.32~(#~002)	47 MPa			280	
$0.30 \ (\# \ 003)$	$47 \mathrm{MPa}$	—		341	404
$0.30 \ (\# \ 004)$	47 MPa			522	
0.28 (# 006)	47 MPa	20 µm	99.2%	101	
0.32~(#~007)	$47 \mathrm{MPa}$	$20~\mu{\rm m}$		150	126

表 4.6: 焼結度の向上による経年変化の低減 (Mn₃Ag_{1-x}Cu_xN)

度であるが、抵抗率が飽和した状態では、抵抗-温度曲線の緩やかなピークの原因にな り得る^[141]。

4.2.3 経年変化の低減

標準抵抗材料の重要な性能として、低い経年変化が挙げられる。2009 年末頃におい て、経年変化はおよそ 10,000 ($\mu\Omega/\Omega$)/year (1%/year) であった。その後 2 年間で小澤 による焼結度の向上の取組により、数百 ($\mu\Omega/\Omega$)/year まで経年変化が低減された^[136]。 表 4.6 に焼結度の向上による経年変化の低減の結果を示す。ホットプレス時の圧力を 16 MPa から 47 MPa と上げることにより、焼結体密度は向上し、経年変化は 2 桁近く 改善された。その後にふるいを用いて焼結用材料分の粒径を 20 μ m 以下に揃えることに より、さらに焼結体の密度及び経年変化の改善が見られた。

またその後、端子部に金蒸着を施したサンプル等の経年変化の差より、コンタクト抵抗が全体の経年変化に大きく影響していることが明らかになった。羽田野によるコンタクト形成方法の吟味により、10 (μΩ/Ω)/year を下回る経年変化を示すサンプルが得られた^[137]。しかし同じ条件で作製したサンプルであっても、経年変化のばらつきは大きく、数百 (μΩ/Ω)/year もの経年変化を示すサンプルもあった。

そこで本研究では、経年変化の歩留まりの改善に取り組んだ。これまでのバー形状に

図 4.11: 抵抗値経年変化の測定システム図

代わり4端子の形状を採用することにより、経年変化の歩留まりを 50% \rightarrow 87.5% に改善した(閾値:約 30 ($\mu\Omega/\Omega$)/year)。最も良い経年変化を示したサンプルの経年変化は、評価開始から 20 日後で約 0.8 ($\mu\Omega/\Omega$)/year であり、実用化に向け好ましい数値を得た。

■経年変化測定系 経年変化の測定には直流電流比較器(DCC)ブリッジを用いた。 作製した焼結体サンプルの抵抗値は、焼結体ペレットのサイズ、加工可能な寸法及び抵 抗率からおよそ 10 mΩ から 100 mΩ 程度である。例えば 100 mΩ の場合、開発当初にお ける 1%/year の経年変化だとしても、年間 1 mΩ、一週間の抵抗値変化は約 20 μΩ であ り、デジタルマルチメータではハイエンド機種でも経年変化の測定は困難であった。

抵抗値経年変化の測定システムを図 4.11 に示す。量子化ホール抵抗に基づいて校正 された 1 Ω 標準抵抗器を基準とし、直流電流比較器(DCC)ブリッジを用いて抵抗比 R_x/R_s を測定し、被測定抵抗 R_x の経年変化を測定した。DCC ブリッジの詳細は第 2 章 において述べた。図中青線は4芯のシールドケーブルであり、四端子抵抗測定を行った。 スキャナは抵抗器の切り替えを行う装置であり、内部には熱起電力の小さいリレー素子 が多数配線されている。スキャナの A チャンネル(基準抵抗 R_s 側)にチャンネル 20 の 1 Ω 標準抵抗器を接続し、スキャナの B チャンネル(被測定抵抗 R_x 側)にチャンネル 1 から 19 のサンプルを順に接続し測定することで自動計測を行った。サンプルは空気恒 温槽に格納し、23±0.005 ℃の温度環境下で測定した。

■サンプル形状による経年変化の低減 小澤による焼結度の向上^[136]、羽田野による コンタクト形成方法の検討^[137]を通して、当初 10,000 ($\mu\Omega/\Omega$)/year 以上であった経年 変化は約 10 ($\mu\Omega/\Omega$)/year まで低減された。さらなる経年変化低減のための方策として、

- コンタクト抵抗の変化が抵抗サンプルの経年変化に影響しにくいサンプル形状
- コンタクト抵抗の変化の少ないコンタクト方法の採用

図 4.12: バー形状のサンプルの場合の4端子抵抗の定義点

が考えられる。前者について、従来のバー形状に代わり、4 端子形状に焼結体を加工す ることにより経年変化の歩留まりを向上した結果について述べる。また後者について、 スポット溶接によるコンタクト形成を検討した結果について述べる。

従来のバー形状における問題点を図 4.12 に示す。図の上のグラフはサンプル中の電位 分布を表しており、サンプルが均一であり、電流がサンプルの左から右へ流れる場合、 左側から右側へ電位は直線的に減少する。バー形状のサンプルの場合、経年変化を測定 するための電圧端子が、この電位の傾きに対して幅を有するため、抵抗の定義点があい まいな状態が形成されることとなる。これにより、電圧端子に用いる銀ペースト内部の 抵抗変化により、サンプル本体の抵抗値が変化していなくても四端子抵抗が影響を受け ることとなる。電圧端子部分では電流経路が若干広くなり、電流はサンプルの一部のよ うに電圧端子部を流れることになる。この電圧端子部分のコンタクト抵抗が変化するこ とにより、全体の抵抗が変化しているように見えることになる。

これを解決するには、上述したように、実効的に無限に細い電圧端子の形成、及びコ ンタクト抵抗の変化の少ないコンタクト方法の採用、の2つの方策が考えられる。サン プルの長さを電圧端子の幅に対して十分長くすることも前者の方策に沿う解決策である が、焼結体ペレットの大きさに限りがあるため、本研究では、焼結体サンプルを4端子形 状に加工し電位を平均化させ、平均化した電位に対して端子付けを行うことにより、コ ンタクトの影響の低減を試みた。図 4.13 にサンプルの形状を示す。右図に示す通り、マ ンガン窒化物の焼結体に電圧測定用端子を設けることにより、電位の平均化を試みた。

有限差分法による近似数値計算を表計算ソフトを用いた簡便な方法により行いサンプ ル内部の電位を計算した^[142]。その結果を図 4.14 に示す。これは一様な導体に定常電流 が流れる際、電圧分布が満たす以下のラプラス方程式を数値計算したものである。

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

図 4.14 左側は計算に使用したサンプルの形状で、この計算においてはサンプルと同じ幅 の長さの突起(電圧端子)とした。突起がある部分ではサンプルの幅が広がり、電流分 布もやや広がりを持つものの、主な電流経路から離れるに従い電流は減少し、電位が平 均化されることがわかる。図左側においては電位分布は色によってのみ示していたが、 図右側では色と共に縦軸もサンプル内の電位 φ を表しており、電圧端子の突起の先端に 行くに従い、電位が平均化される様子がわかる。また、サンプルの幅と同じ長さの電圧 端子で電位は十分平均化されることがこの図からわかる。よって、この突起部分にコン タクトを取ることにより、コンタクトの経年変化に影響されない電圧端子を実現できる。

この4端子形状(通称下駄型)の加工には超音波加工法を採用した。これは、磁歪素 子により約20kHzで振動する加工用工具を、砥粒を含むスラリーを介して加工したい サンプルに押し当てることによりサンプルを削りだす手法であり、日本電子工業株式会 社に加工を依頼した。焼結体サンプルに与えるストレスを低減するため、加工時の超音 波出力を抑えた加工を依頼した。

焼付け銀ペースト 7713 により端子付けを施した4端子形状(下駄型及び π 型)サン プルの写真を図 4.15 に示す。また、図 4.16 にバー形状サンプルの経年変化(橙色)と4 端子形状サンプル(下駄型及び π 型)の経年変化(青色)を示す。橙色のプロットは、 バー形状のサンプルの経年変化を表しており、青色のプロットは、4 端子形状サンプル (下駄型及び π 型)の経年変化を示している。すべてのサンプルは焼付けタイプの Ag も しくは Au ペーストを用いて端子付けを行った。4 端子形状のサンプルの場合、8 サン プル中7サンプルが約 20 ($\mu\Omega/\Omega$)/year 以下の経年変化を示した。歩留まりは 87.5% で あった。4 端子形状サンプルとして、下駄型及び π 型の2 種類を作製したが、どちらも ほぼ同様の特性を示したためこのグラフでは区別をつけていない。ちなみに、4 端子形 状で不安定な経年変化を示した1サンプルは、下駄型の、銀ペースト焼付けによるサン プルであった。超音波加工による形状加工の際に、焼結体内部に微小なクラックが入っ た可能性などが考えられる。バー形状(橙色)のサンプルの場合、10 サンプル中5サン

図 4.13: バー形状のサンプル(左)と4端子形状のサンプル(右)

図 4.14: 4 端子形状のサンプルの電位分布。左図は縦軸・横軸共に位置を表しており、上 から下に電流が流れた際の電位分布を色で表している。右図は縦軸は電位 ϕ であり、電 圧測定用の突起の先端部分で電位が平均化されていることがわかる。

図 4.15: 4 端子形状サンプル(上写真:下駄型、下写真:π型)の外観

プルが約 25 (μΩ/Ω)/year 以下の経年変化を示し、その歩留まりは 50% であった。以上 の結果より、四端子形状の採用により、経年変化の歩留まりの向上が可能であることが わかる。

最も経年変化の小さいサンプルは4端子形状の# 119 で経年変化は約1 ($\mu\Omega/\Omega$)/year であり、市販の 100 m Ω 標準抵抗器のカタログ値 (4 ($\mu\Omega/\Omega$)/year) 以下の値を得た。ま た、この図よりバー形状であっても四端子形状の場合と同様に数 ($\mu\Omega/\Omega$)/year の経年変 化を示すサンプルがあり、このレベルではコンタクト抵抗の変化の影響よりも、焼結体

図 4.16: バー形状と4端子形状サンプル(下駄型及びπ型)の経年変化の比較

本体の酸化や応力緩和等による経年変化が見えるようになったと考えられる。

■スポット溶接を用いたコンタクト形成 サンプルの4端子抵抗測定値の経年変化を抑 制する方策として、コンタクト抵抗の変化の少ないコンタクト形成方法の採用は重要で ある。ここでは焼き付け銀ペースト以外の方法として、スポット溶接を用いたコンタク トについて検討する。100 mΩを目標として加工した細いサンプルの場合、スポット溶 接を用いた端子付け方法は不適であり焼き付け銀ペーストを用いたサンプルのほうが良 い特性を示したが、より低抵抗の作製の場合には有効である可能性があるため、本段落 ではスポット溶接を用いた結果について概略を述べる。

コンタクト抵抗の変化の少ないコンタクト形成方法を探るため、幾つかの方法で端子 付けを行い、その2端子抵抗(配線抵抗+コンタクト抵抗+サンプル抵抗)を測定し、 コンタクト抵抗の変化を比較した。結果を図 4.17 に示す。黒線は室温硬化型 Ag ペース ト(4922N)、青線は焼付け型 Ag ペースト(7713)、赤線はスポット溶接による。他に も、焼き付け Ag ペーストを焼き付けた後に室温硬化型 Ag ペーストで端子付けを行っ たものや、焼き付け Ag ペーストを焼き付けた後に半田付けにより端子付けを行ったサ ンプルを作製したが、焼付け型 Ag ペーストで直接端子付けを行った際よりも大きい経 年変化を示した。スポット溶接のサンプルが最も直線的で傾きの小さい2端子抵抗の変

図 4.17:2 端子コンタクト抵抗の変化の比較

Current input

化を示し、スポット溶接によるストレスを許容できるような熱容量の大きいサンプルの 場合はスポット溶接による端子付けが有効である可能性を得た。

図 4.18 は、溶接痕の悪い場合(左)と良い場合(右)のスポット溶接部の写真である。 溶接電極をサンプルとワイヤに押し付ける力が、設定した閾値をこえた瞬間にパルス電 流が流れ溶接が行われるが、悪い場合(左)は、この押下力の閾値が弱すぎたために、 電流が主にワイヤを通って流れ、ワイヤが断線しサンプルに焼けが生じている。図 4.19 にこれらそれぞれの場合の経年変化を示す。この検討の際は図 4.18 に示すようにバー 形状のサンプルを用いた。溶接痕によって、数十倍もの経年変化の差が生じている様子 がわかる。見た目に良い溶接痕の場合も経年変化のばらつきは大きく、34 (μΩ/Ω)/year から 99 (μΩ/Ω)/year であった。

Current input

図 4.18: スポット溶接の溶接痕、悪い場合(左)と良い場合(右)

図 4.19: スポット溶接痕の悪い場合(赤)と良い場合(青)の4端子抵抗の経年変化

図 4.20: スポット溶接により端子付けした場合のバー形状と四端子形状サンプルの経年 変化の比較

図 4.20 に、スポット溶接により端子付けした場合のバー形状と四端子形状サンプル (下駄型、π型)の経年変化を示す。この場合、バー形状のサンプルのほうが良い経年変 化を示した。これは、四端子形状サンプルが 100 mΩ を目標値として作製された細いも のであったゆえにスポット溶接によりダメージを受けたためと考えている。バー形状の 場合は抵抗値が数分の1程度でありサンプル幅が比較的広く、熱容量が大きいために比 較的ダメージを受けず、四端子形状サンプルに勝る経年変化を示したと考えられる。 本項では、経年変化を低減する方法について述べた。4 端子形状(下駄型、π型)の 採用により、経年変化の歩留まりをバー形状の場合の 50% から 87.5% に改善した。ス ポット溶接は、サンプルが細くなり熱容量が小さくなると溶接後の変色の度合いが大き く、焼付け銀ペーストの結果に及ばなかったが、2 端子抵抗の比較結果では好ましい経 年変化を示したため、より幅広の熱容量の大きいサンプルの場合には有効な端子付けの 方法である可能性がある。

図 4.21: 銅熱起電力の測定の様子

4.2.4 銅に対する熱起電力の測定

標準抵抗用材料に求められる性能のひとつとして、銅に対する熱起電力が小さい(数 µV 程度)であることが求められる。CuNi 合金であるコンスタンタンは、CuMn 合金のマ ンガニンよりも温度特性に優れていたが、対銅熱起電力がマンガニンの約 2 µV に対し て約 40 µV と大きかったため、標準抵抗用材料としては採用されなかった。第 2 章で述 べたように、DCC ブリッジの測定においては、基準抵抗器と被測定抵抗器の双方に電 流を流し、それぞれに発生する両端電圧をバランスさせて測定を行っている。抵抗材料 の銅に対する熱起電力が大きい場合、この測定電圧のばらつきが増大し精密測定に影響 を与えることとなる。ここではマンガン窒化物の対銅熱起電力を評価した結果について 述べる。

熱起電力の測定の様子を図 4.21 に示す。上下ステージ間に 3 mm 四方 × 15 mm 程度の長さの Mn₃AgN サンプルをはさみ、上下ステージ間に温度差を与え、その際の温度差

及び電位差を熱電対プローブを用いて測定した。熱電対プローブの電極間は 8 mm であ る。測定は真空中(数百 Pa)で行った。Mn₃AgN および銅(純度 4N)の熱起電力を測 定し、その差を取ることにより、測定装置に起因するオフセットをキャンセルできるよ うにした。銅バーは真空パックされたものを開封直後にセットして測定したため、前処 理は行っていない。測定の結果、Mn₃AgN の対銅熱起電力は、室温付近で約 1.7 μV/K であり、マンガニンと同等の対銅熱起電力であることがわかった。

本節では、マンガン窒化物の標準抵抗材料への応用を検討した結果について述べた。 Mn₃AgN の対銅熱起電力は、室温で約 2 μ V/K とマンガニンと同程度であった。また、 組成を調整することにより室温付近で $\beta = -0.20 (\mu\Omega/\Omega)/K^2$ の温度係数を実現した。 四端子形状に焼結体サンプルを加工することにより経年変化の歩留まりを向上し、最も 良いもので約 1 ($\mu\Omega/\Omega$)/year の特性を得た。これは市販の 100 m Ω 標準抵抗器とほぼ同 等、10 m Ω のスペックと比べると同等以上の数値であり、実用化に向けて好ましい結果 が得られた。

4.3 高安定な NiCr 系金属箔標準抵抗器の開発

標準抵抗器には、従来より巻線型のものが広く使用されてきた。James L. Thomas に より 1930 年代に考案された Thomas 型と呼ばれる、2 重缶の間に巻線を入れて密閉した 構造の抵抗器^[143,144] が主流であった。しかし近年、金属材料を圧延して箔とし、パター ニングした金属箔抵抗器の性能が向上し、巻線抵抗に劣らない性能の抵抗器が製造され るようになった。そこで精密箔抵抗器メーカであるアルファ・エレクトロニクス株式会 社及び日本電気計器検定所(JEMIC)と共同で、高安定な NiCr 系金属箔標準抵抗器の 開発に取り組んだ。本節ではその取り組みについて述べる。

Thomas 型の巻線抵抗器の場合、シルクが巻かれたマンガニン巻線は二重缶に収めら れた後でシェラック(Shellack)で固められていた^[143]が、箔抵抗器の場合は巻線に比 べてより自立が難しいため、セラミック等の絶縁基材に貼り付ける必要があり、それら 基材やポリイミドなどの接着剤と箔抵抗器との熱膨張係数の違いから、温度変化の際に 抵抗体にストレスが残り、温度変化に対して抵抗値が不連続な変化を示すという問題が あった。そこで、セラミック基材に貼り付けず、金属箔をそのままシリコーンオイル中 に封入した、ストレスフリー抵抗器の性能評価を行った。図 4.22 は 100 Ω 抵抗器の試 作器の写真である。50 µm 厚の NiCr 箔を約 100 Ω にパターニングした後に、抵抗体は セラミックパッケージの電極にはんだ付けされ、セラミックパッケージ中に抵抗体を挿 入・はんだ封止後にパッケージ内をシリコーンオイルで満たした。その後抵抗器用の筐 体にセラミックパッケージを固定・配線し、LEMO コネクタに変換した。 セラミック パッケージのサイズは、32 mm× 42 mm× 7 mm であり、セラミックに封入後の抵抗 素子の重量は約 25 g である。多くの市販の標準抵抗は、カタログ性能を出すために、幾 つかの抵抗素子を組み合わせる必要があるため、抵抗器のサイズが大きくなってしまう が、本抵抗素子は単体で他の市販抵抗器よりも良い特性を得られるため、標準抵抗器の 小型化が可能になる。これほどの大きさであれば、デジタルマルチメータ等の計測器の 基準抵抗器として組み込むことによる計測器の性能向上も期待できる。標準抵抗器とし て使用する場合は、図 4.23 に示す重い金属筐体に組み込むことで、ケーブルに引っ張ら れて抵抗器が倒れたりすることなく使用できる。

4.3.1 経年変化の低減及び各種特性評価結果

■経年変化の抑制 従来の方法で作製された抵抗体は、ストレスフリーの構造であって も、図 4.24 の"無処理"のカーブに示すように、製造直後の数ヶ月間で $\mu\Omega/\Omega$ オーダーの 経年変化を示し、その後ある線形な経年変化を示す傾向が見られた^[145–149]。これは、製 造時に抵抗体に残ったストレスが製造直後の数ヶ月で開放され、やがて表面の酸化等で 徐々に抵抗値が上昇しているためと考えられる。当初の大きな経年変化がどれほどの期 間で落ち着くかは個体差がある上、線形な変化に落ち着いた後の変化量は1 ($\mu\Omega/\Omega$)/year 程度である。製品として市場に出ている標準抵抗器の優れたものは、データシートに "当初2年間±1 ($\mu\Omega/\Omega$)/year、その後±0.5 ($\mu\Omega/\Omega$)/year"とあり、従来の製品よりも 小型ながらもほぼ同等の性能を実現できていることがわかる。図中"アニール処理の み"の抵抗素子は、直後からほぼ線形な約1.5 ($\mu\Omega/\Omega$)/yearの経年変化を示しており、

図 4.22: ストレスフリー標準抵抗器エレメントの写真

図 4.23: 標準抵抗器用各種筐体

図 4.24: 経年変化抑制手法 [146-149]

アニール処理を施すことにより当初の非線形な経年変化を抑えることができることがわ かる。また、酸処理により NiCr 箔表面に不導態を形成したサンプル "酸処理のみ"は、 当初の経年変化は示すものの、その後のリニアな経年変化の傾きを小さくすることがで きていることがわかる。そしてこれらを組み合わせた "酸処理+アニール処理"のデー タより、アニール処理により製造直後のストレスを緩和し、酸処理によって表面に不導 態を形成することで、製造直後から小さな経年変化を示す抵抗素子が実現可能であり、 通常数年かかるエージング処理期間をゼロにできることがわかる。

図 4.25 は、この経年変化抑制プロセスを施した 100 Ω 抵抗器 63 器の経年変化のヒス トグラムである^[147]。製造直後より、12 ヶ月もしくは 18 ヶ月間経年変化を測定した結

図 4.25: 100 Ω 抵抗 63 器の経年変化のヒストグラム [147]

図 4.26 は、他の 12 機の 100 Ω 抵抗器の経年変化のグラフである ^[146]。グラフの横軸 は 1 年間であり、縦軸は抵抗値の初期値からの変動を相対値で表している。12 器すべて の抵抗器の 1 年間の抵抗値変化は ±0.1 ($\mu\Omega/\Omega$)/year 以下に収まっていることがわかる。 測定は Measurement International 6015T ブリッジを用いて行い、油浸型 100 Ω 抵抗器 70C113 を基準抵抗器とした。基準抵抗器 70C113 の抵抗値には、測定データの一次近 似直線から計算した値を使用したため、実際の基準抵抗器の抵抗値と、計算された抵抗 値との間に差異があれば、このグラフには誤差成分が含まれることになる。すべての抵 抗器が同様の経年変化の傾向を示している場合は、この基準抵抗器の抵抗値の誤差が含 まれている可能性があるが、実際にすべての抵抗器が同様の経年変化を示している可能 性もあるため、そのままプロットしてある。また、時折抵抗値が 0.05 $\mu\Omega/\Omega$ 程度または それ以上、スパイク状に変化している箇所があるが、これは恐らく測定器に起因するも のであると考えている。しかしこの場合も切り分けは難しいため、すべてのデータをプ ロットしている。図 4.27 はこれらの抵抗器の経年変化をさらに長期間測定した測定結 果である ^[147,149]。さきほどの図 4.26 の中には湿度依存や気圧依存のデータも含まれて

図 4.26: 100 Ω 抵抗器 12 器の経年変化測定結果、湿度依存および気圧依存性測定結果 [146]

図 4.27: 100 Ω 抵抗器 12 器の経年変化測定結果^[147,149]

いるため、長期間の経年変化の図は別に示した。経年変化は最も変化した抵抗器で2年 半で 0.20 μΩ/Ω 程度以内であり、長期間においても安定した抵抗値の推移を示している ことがわかる。

■温度・湿度・気圧依存性 先に示した図 4.26 には、湿度変化及び気圧変化のデータも 含まれている。35%、80%の湿度(温度は 23.0 ℃)においてそれぞれ 2 ヶ月間、その後

47%にて経年変化を測定した。12器すべての抵抗器はそれぞれの湿度下において目立った抵抗値変化を示さず、35%から 80%の湿度変化に対する抵抗値の変化は ±0.01 μΩ/Ω 以下であり、湿度依存は無視できると結論した。

次に、気圧を変化させた際の抵抗値変化を図 4.28 に示す^[149]。1190 hPa → 935 hPa → 700 hPa → 935 hPa → 1190 hPa の順に測定を行い、それぞれの気圧における平均値 を、中心の 935 hPa での抵抗値で規格化してプロットしている。縦軸のエラーバーは、 各気圧点における測定結果の標準偏差の平均であり、横軸は設定気圧の標準偏差の平均 であり、1 つのデータに対して代表して記載した。エラーバーが示すように、測定の平 均値のばらつきは 1 σ で 0.02 µ Ω / Ω 程度あり、図中白抜きのデータが示すように、全て のデータが線形な抵抗値変化を示しているわけではなく、図中の線はアイガイドである。 半数以上の抵抗器の気圧依存性はおおよそ測定のばらつきに埋もれているものの、紫色 (J: F004A) や黒色(L: F010A)のデータは気圧に対して有意に抵抗値変化を示してお り、気圧係数はもっとも大きいもので $-0.1 (n\Omega/\Omega)/hPa$ となった。2 器を除く他の抵抗 器の気圧係数は | $-0.025 (n\Omega/\Omega)/hPa$ |以下であり、標準研究所間で 200 hPa 程度の気 圧差があったとしても気圧係数による影響は 5 n Ω/Ω 以下であり、国際比較の仲介器と してふさわしい性能を備えていることがわかる。

表 4.7 に、12 器の 100 Ω 抵抗器の特性の測定結果を示す^[147]。製造直後からの経年変 化は全て 0.1 (μΩ/Ω)/year 以下に抑えられている。2 種類の金属箔材料を使用しており、

* [ppm=µs2/2] [ppo=ns2/2]							
Desister	経年変化 [ppm/year]	温度係数				35~80 %RH	
No		α ₂₃ [ppm/°C]	β [ppm/°C²]	Тр [°С]	気圧係数 [ppb/hPa]	の速度変化に 対する 抵抗値変化	
A	0.022	0.060	0.007	18.7	-0.011		
В	0.025	0.059	0.006	18.1	-0.018		
С	0.014	0.050	0.006	18.8	-0.009		
D	0.003	0.042	0.006	19.5	-0.025		
E	0.043	0.035	-0.016	24.1	-0.023	< 1.0.04 mmm	
F	0.020	0.027	0.006	20.8	-0.024	< ±0.01 ppm	
G	0.008	0.020	0.006	21.3	-0.002	Negligible	
н	0.028	-0.023	-0.016	22.3	-0.016	Negligible	
I	0.007	-0.053	0.006	27.4	-0.012		
J	0.007	-0.078	0.006	29.5	-0.101		
K	0.004	-0.086	0.006	30.2	-0.005		
L	0.047	-0.140	0.005	37.0	-0.069		

表 4.7: 100 Ω 抵抗器 12 器の特性^[147]

二次の温度係数 β は約+0.006 と $-0.016 (\mu\Omega/\Omega)/K^2$ の 2 種類にきれいに分類できる。 23 °C における抵抗-温度曲線の傾き、 α_{23} は、0.06 から $-0.14 (\mu\Omega/\Omega)/K$ であり、ピー ク温度は 18.1 から 37.0 °C となった。このばらつきは、温度特性を決定付けるアニール 処理(これは前述した、製造直後の非線形な経年変化を抑制するためのアニール処理と は別であり、より温度が高い)の際の炉内の温度分布に起因すると考えられる。気圧係 数は 2 サンプルを除いて、絶対値は 0.025 (n Ω/Ω)/hPa 以下であり、米国との国際比較 の際(気圧差約 200 hPa)も 0.01 $\mu\Omega/\Omega$ 未満で測定能力の比較が可能である。35% から 80% の湿度変化に対する抵抗値変化は 0.01 $\mu\Omega/\Omega$ 未満であり、環境変化に鈍感で、かつ 製造直後より安定な経年変化の抵抗器であることがわかる。

図 4.29: 温度変化時の抵抗値の追従性^[149]

図 4.30: 100 Ω 抵抗器の電力依存性^[147]

■温度追従性 図 4.29 は環境温度を変化させた場合の抵抗(# 060)値の追従性を示し ている^[149]。抵抗器が収納された空気恒温槽の内部温度を 20 $\mathbb{C} \rightarrow$ 26 $\mathbb{C} \rightarrow$ 29 $\mathbb{C} \rightarrow$ 23 \mathbb{C} と変化させた。左側縦軸は抵抗値であり、一目盛り 20 $\mu\Omega$ (0.2 $\mu\Omega/\Omega$) である。赤の縦 点線は、空気恒温槽の設定温度を変更した時間を示しており、恒温槽の内部温度は設定 変更よりおよそ1時間程度で整定している。抵抗値も空気恒温槽の温度変化にほぼ同期 して変化しており、温度追従性に優れている様子が伺える。ハイエンドな気中型の標準 抵抗器は、内部の温度安定度を高めるため熱容量の大きい木材の筐体に格納されている が、今回開発した抵抗器の場合は、温度係数が小さく、またストレスフリー構造により 温度変化に対して抵抗値の不連続な変化が無いため、温度追従性の良い設計とすること ができる。

■電力依存性 図 4.30 は、100 Ω 抵抗器の電力依存性であり、日本電気計器検定所 (JEMIC) において測定された ^[147]。100 Ω の校正では、1 mA(0.1 mW)の電流を 使用しているが、このグラフは 10 mA から 100 mA の電流値での測定結果である。 結果は 0.21 ($\mu\Omega/\Omega$)/W であり、ハイエンドな気中型標準抵抗器のカタログスペック < 1 ($\mu\Omega/\Omega$)/W を満たしており、電力依存性においても良い性能を備えていることがわ かった。また、再度 10 mA(10 mW)で測定した際の初期値からの偏差は約 0.01 $\mu\Omega/\Omega$ であり、100 mA(1 W)の電流を流しても不連続な抵抗値変化は生じていないことが わかる。本測定に使用した抵抗器は単体の抵抗器であり、組抵抗である他の市販の標準 抵抗器に比べて抵抗体内部の電流密度は高いと予想される。James L. Thomas は、当初 16AWG (φ 1.29 mm) や 14AWG (φ 1.63 mm)のマンガニン線で内径 60 mm のコイル を巻き1Ω抵抗器を作製したが^[143]、後に 12AWG (φ 2.05 mm)のより太いマンガニン 線でより大きな内径 80 mm のコイルを巻き1Ω抵抗器を作製している^[144]。これは、よ り太く長いワイヤを用いることで放熱性を良くし、パワー係数を良くするためであった とされており^{[4]注1}、気中型よりも放熱性において有利な油浸型の抵抗器でもそれほどの 大きさが必要であったことがわかる。本抵抗器は、図 4.22 に示した小型なものでありな がらも優れた電力依存性を備えていることがわかる。

4.3.2 組み合わせによる温度係数の低減

これまでで表 4.7 で示したように、 $\beta = 0.006 \ (\mu\Omega/\Omega)/K^2$ もの実用上十分に温度係数 の小さい抵抗器を作製することができた。しかし中にはピーク温度 T_p が 23 °C を外れて 比較的大きな α_{23} を示す個体もあったため、組み合わせることでより温度係数の小さい 抵抗器が作製可能か検討を行った。

図 4.31 は 4 つの 100 Ω 抵抗器を用いた組抵抗器の等価回路であり、図中の R_1 から R_4 が 4 つの 100 Ω 標準抵抗器エレメントを表している。 $R_1 \ge R_2$ 及び $R_3 \ge R_4$ をそれぞ れ並列に接続し、それぞれを直列に接続している。 R_{LP} , R_{LS} は 4 つの抵抗器を接続する ための配線の抵抗成分であり、後述するようにこの配線の一方をトリミング(切断)し て抵抗–温度曲線のピーク温度を調節するため、配線を各箇所で 2 本ずつとしている。 それぞれの 100 Ω 標準抵抗器エレメントを

$$R_i \equiv 100(1+\varepsilon_i) \quad (i = 1, 2, 3, 4)$$
 (4.3)

と定義すると、合成抵抗 R は

$$R \simeq 100 \left(1 + \frac{1}{4} \sum_{i=1}^{4} \varepsilon_i \right) + \frac{R_{LP} + R_{LS}}{2}$$
 (4.4)

となり、組み合わせに用いる抵抗素子の偏差の平均値に、配線抵抗の成分が加算された値 になることがわかる。銅は室温付近では約0.4%/℃で直線的な抵抗値変化を示し、組み 抵抗の温度特性に影響してくるため、配線はできるかぎり太く、短くして抵抗を小さく する必要がある。しかし太すぎるとはんだ付けが困難になり、ハンダ付けの際に標準抵 抗器エレメントにダメージを与える恐れもあるため、今回はφ1.2mmの銅線を用いた。

^{注1} この文献中にも Apparently とあり、電力係数がどれほど改善されたかに関する情報は無いものの、 Thomas Type II では、円筒型筐体にも放熱を意識した改良が加えられていることから、電力係数 を意識してマンガニン線を太く長くしたことは確からしいと考えられる。

図 4.31: 100 Ω 組み抵抗器の等価回路

図 4.32 と表 4.8、及び図 4.33 と表 4.9 は、それぞれ組抵抗器 F035A と F036A の、構成抵抗器と組抵抗器の温度特性のグラフ及び表である。配線の持つ正の温度特性を打ち 消すため、抵抗器エレメントの組み合わせを決定する際にやや負の温度特性になるよう にした。また、図 4.31 に示すように配線を 2 本用い、一方の配線をトリミング(切断) することにより銅配線の 0.4%/℃の影響量を調整し、全体の一次温度係数の調整を行え るようにした。

 R_{LP}, R_{LS} 配線は、 ϕ 1.2mm、長さ約6 mmの銅線であり、1本当たりの抵抗値は、

 $R_{LS} = R_{LP} \simeq 89 \ \mu\Omega$

である。二本あるうちの一方の配線をトリミングした際の全体の特性への寄与が *R_{LS}* は *R_{LP}* の 4 倍大きいため記号を分けている。トリミングの際の抵抗値及び一次温度係数の 変化の期待値を表 4.10 に示す。これより、すべての 5 箇所でトリミングを行うことで、 一次の温度係数を最大 3.6 (nΩ/Ω)/℃ 増加させることができる。

図 4.34 は、組み抵抗 F035 において、トリミング前後の抵抗温度特性のグラフである。 グラフ中白丸は、トリミングしていない状態の特性であり、黒丸は R_{LS} を 1 箇所、 R_{LP} を 2 箇所トリミングした後のデータである。トリミングにより、23°C における抵抗–温 度曲線の傾き α_{23} は約 3(n Ω/Ω)/°C 増加し、ピーク温度は 23 °C に近づいた。抵抗値の 上昇はトータルで 87 µ Ω であり、期待値の 67 µ Ω (45 µ Ω +11 µ Ω ×2。表 4.10 を参照)よ りもやや大き目となった。これは、銅配線間の接続に用いたはんだなどによる計算値の

図 4.32: 組抵抗器 F035A 及びその構成抵抗器の温度依存性

素子名	搭載素子 No	経年変化	α_{23}	β	T_p
		$[(\mu\Omega/\Omega)/\text{year}]$	$[(\mu\Omega/\Omega)/K]$	$[(\mu\Omega/\Omega)/K^2]$	$[^{\circ}C]$
A027	100RB151	-0.0592	-0.2095	0.005 5	42.0
A046	100RB188	$0.042\ 2$	$0.107 \ 0$	0.005 8	13.8
F012A(# 115)	08B198	$0.034\ 1$	$0.056\ 7$	0.006 5	18.6
# 107	08A113	-0.0167	0.012 0	-0.017 8	23.3
	平均	0.000 1	-0.008 5	0.000 0	

表 4.8: 組抵抗器 F035A の構成抵抗器の温度特性

誤差であると考えられる。

トリミングにより銅配線の右肩上がりの成分の寄与が強まるだけであるので、二次の 温度係数βは変化しないが、組み合わせの際の配線による一次の温度係数を最終調整す る手段として有効である。

図 4.33: 組抵抗器 F036A 及びその構成抵抗器の温度依存性

表 4.9:	組抵抗器	F036A	の構成抵抗器の	温度特性	ŧ

素子名	搭載素子 No	経年変化	α_{23}	eta	T_p
		$[(\mu\Omega/\Omega)/year]$	$[(\mu\Omega/\Omega)/K]$	$[(\mu\Omega/\Omega)/K^2]$	$[^{\circ}C]$
A006	100RB062	$-0.018 \ 0$	-0.063 3	0.008 6	26.7
A030	100 RB 155	0.002 3	$-0.178\ 2$	0.004 9	41.2
A049	100RB197	-0.020 4	$0.110\ 5$	$0.003 \ 4$	6.8
# 80	05A059	0.038 2	$0.095\ 6$	-0.016 8	25.8
	平均	0.000 5	-0.008 9	0.000 0	

表 4.10: 銅配線のトリミングによる抵抗値及び一次温度係数の変化(計算値)

トリミング箇所	抵抗値の変化	一次温度係数の変化
R_{LP}	11 μ $Ω$	$0.45 \ (n\Omega/\Omega)/^{\circ}C$
R_{LS}	$45~\mu\Omega$	1.8 $(n\Omega/\Omega)/^{\circ}C$

図 4.34: 組み抵抗器 F035 のトリミング前後の抵抗 – 温度曲線。それぞれの曲線はピー ク温度の抵抗値で規格化されている。

4.3.3 開発した 100 Ω 抵抗器を用いた韓国・米国との 3 国間比較

これまでで、アニール処理や酸処理により製造直後より 0.1 ($\mu\Omega/\Omega$)/year 以下の優れ た経年変化を示す抵抗器を実現可能であり、単体でも $\beta = 0.006 (\mu\Omega/\Omega)/K^2$ もの小さい 温度係数の抵抗器が作製できた。また、それを組み合わせることで 15 °C から 31 °C 以 上の広い温度範囲で抵抗値変化が 0.05 $\mu\Omega/\Omega$ 以下の抵抗器を実現できた。組み合わせる ことにより構成抵抗器の 1 つが値が不連続に動いたとしても、その影響は全体では 1/4 になるため、単体の場合に比べてより安定な推移を得ることができると期待できる。

しかし、この抵抗器はストレスフリー構造という、基材に貼り付けられていない構造 を持っており、それゆえに耐振動性に懸念があった。そこで、韓国 KRISS・米国 NIST と共に3国間比較を行うことにより、空輸の際の振動が抵抗値に影響しないか、適切に 国際比較を行うことができるかについて検討を行った。図 4.35 に示すように、単体の抵 抗器1器と組抵抗器1器をハンドキャリーで運搬し、さらにもう1組、単体の抵抗器1 器と組抵抗器1器を航空便にて運搬した。合計で4器の抵抗器を日本 → 韓国 → 日本 → 米国 → 日本の順番で精密測定を行った。それぞれ一次標準の量子化ホール抵抗を基 準とし、極低温電流比較器(CCC)ブリッジを用いて最高測定能力において100Ω抵抗 器の測定を行った。

図 4.36 に、韓国、米国との国際比較の結果を示す。縦軸は抵抗値 R の初期値 R_{init} か

らの変動を表しており、

$$\frac{R - R_{\text{init}}}{R_{\text{init}}} \times 10^6 \ \mu\Omega/\Omega \tag{4.5}$$

である。横軸は各標準研究所における測定日である。図中点線は全データを用いた近 似直線である。4 器とも線形な経年変化を示し、ハンドキャリー、航空便の区別なく 0.01 μΩ/Ω レベルでの測定能力の比較が可能であることがわかった。この結果より、厚 み 50 μm の抵抗箔を基材に貼りつけないストレスフリー構造であっても、問題なく国際 比較に使用できる程度の耐振動性・耐衝撃性を備えていることが明らかになった。

図 4.35: 韓国、米国との国際比較際の抵抗の運搬方法

4.4 結言

本章では、室温で安定な標準抵抗器の開発について述べた。標準抵抗器に求められる 性能について述べ、それらの要件を満たす材料について考察した。

逆ペロブスカイト型マンガン窒化物 Mn₃Ag_{1-x}Cu_xN は、室温付近の常磁性領域において抵抗-温度曲線にピークを示す。本研究では本材料の標準抵抗材料への応用の可能性

図 4.36: 韓国、米国との国際比較の結果

について検討を行い、対銅熱起電力の測定、温度係数や経年変化の低減を行った。焼結 体ペレットのサイズや、抵抗率などから、10 mΩ から 100 mΩ 程度の抵抗値を目標とし 作製を行った。組成の調整による温度係数の低減に取り組み、 $Mn_{3.03}Ag_{0.62}Cu_{0.19}In_{0.15}N$ が室温付近で $\beta = -0.2 (\mu\Omega/\Omega)/K^2$ の温度係数を示すことを明らかにした。経年変化に 関しても、焼結度の向上、コンタクト形成方法の改善及び焼結体の4端子形状への加工を 通して、共同研究開始当初の 10,000 ($\mu\Omega/\Omega$)/year から3桁以上改善し、10 ($\mu\Omega/\Omega$)/year 程度のサンプルを歩留まり良く作製できるようになった。市販の標準抵抗器とほぼ同等 の性能が得られてきており、また銅に対する熱起電力も約2 μ V/K とマンガニン程度で あることから、標準抵抗用材料として期待できる。

また、100 Ω の NiCr 箔抵抗器に関しても開発・検討を行った。酸処理やアニール処理 を通して経年変化を製造当初から ±0.1 ($\mu\Omega/\Omega$)/year に低減できることが明らかにされ た。その後、抵抗サンプルの組み合わせによりさらに小さい温度係数が実現できること を実証した。結果、抵抗温度係数が $\beta = \pm 0.005 (\mu\Omega/\Omega)/K^2$ 、 $\alpha_{23} = \pm 0.05 (\mu\Omega/\Omega)/K$ 、 経年変化が納品直後から ±0.1 ($\mu\Omega/\Omega$)/year であり、湿度・気圧依存に優れた NiCr 箔抵 抗器の共同開発に成功した。

第5章

結 論

本論文の目的は、直流抵抗標準の高度化であった。標準の高度化には、抵抗器の高度 化と測定系の高度化の双方が考えられるが、本論文では主に前者に注目し、量子ホール 素子の作製やアレー素子の開発、マンガン窒化物や NiCr 箔を用いた安定な標準抵抗器 の開発を行った。

2章では、導入として抵抗標準の変遷について述べ、水銀抵抗原器に始まり、誘導絶 対標準器、クロスキャパシタ、量子ホール効果と抵抗標準の一次標準が進化することに より、標準研究所間の測定能力の比較精度が数十 μΩ/Ω から 0.01 μΩ/Ω と 3 桁以上向 上したことについて述べた。また、現在の直流抵抗校正システムを概観し、個々の測定 システムについてその測定原理を述べた。

3章では、現在の一次標準である量子ホール素子の開発について述べた。一次標準と して利用される量子ホール素子は極低温下で低いオーミック抵抗を備えている必要があ り、量子ホール状態において縦抵抗 R_{xx} が測定できないほど小さいことが必要であるこ となどを述べた。単一の量子ホール素子を作製し、一次標準素子としての要件を満たし ていることを測定により確認した。日本は、2006年には国際度量衡局(BIPM)より2 個の量子ホール素子の供与を受けたが、本研究の成果によりオーストラリアを初めとす る海外の標準研究所に量子ホール素子を供給するまでになっており、標準業界における 日本のプレゼンス向上に貢献した。

また、量子ホール素子を集積化したアレー素子も開発した。アレー素子により、10 kΩ などの、我々に馴染み深く使いやすい量子化抵抗値が得られるため、測定系の簡素化が 可能になる。また、従来と異なる校正パスが得られるため、測定の信頼性確認ができ、 システム全体の信頼性向上が期待できる。量子ホール素子は普遍的な量子化抵抗値を示 すとはいえ、普段の校正に使用している 100 Ω の抵抗値が不連続な変化を示した際に は、本当に標準抵抗器の抵抗値が変化したのか、測定系のエラーか切り分けるために労 力を割く必要がある。置換測定が可能な量子標準は、このような際にも測定の信頼性を 確認するうえでの重要なツールになると期待される。さらに、量子ホールアレー素子は、 標準抵抗器のように経年変化を示さないため、標準研究所間の国際比較を行う上での優 れた仲介器になる。また、ジョセフソン効果、量子電流素子と共に量子力学的にオーム の法則が成り立つかを検証する量子メトロロジートライアングル検証においても、あら ゆる量子化抵抗値での検証を可能にするアレー素子は、今後その重要性を増すと期待で きる。

アレー素子を作製する上で、2次元電子系への良質なコンタクトを歩留まり良く形成 する必要がある。SiO₂ 保護層を使用することにより、極低温における 2 次元電子系へ のコンタクト抵抗の歩留まりをほぼ 100% に向上し得ることを実験結果より明らかにし た。配線間の絶縁抵抗を下げる要因についても考察し、高い絶縁抵抗を歩留まり良く得 る手法を見出した。これらの結果より、作製したアレー素子の示す量子化抵抗値が高い 信頼性を備えていることを示した。また、単一の量子ホール素子との精密比較を通して、 10-kΩ 量子ホールアレー素子の示す量子化抵抗値がその公称値に 0.01 μΩ/Ω 以内で整合 することを実証した。

量子ホール素子は優れた一次標準ではあるが、安定な室温の標準抵抗器の存在は依然 として重要である。4 章では、マンガン窒化物および NiCr 箔を用いた安定な標準抵抗 器の開発について述べた。室温付近で温度に対して抵抗値の極大もしくは極小を示すこ れらの物質は標準抵抗用材料として適している。マンガン窒化物について、温度係数お よび経年変化について低減の取り組みを行った。組成の調整による温度係数の低減に取 り組み、 $Mn_{3.03}Ag_{0.62}Cu_{0.19}In_{0.15}N$ が室温付近で $\beta = -0.2$ ($\mu\Omega/\Omega$)/K²の温度係数を示 すことを明らかにした。また、経年変化に関しては、従来のバー形状から、電圧端子を 追加した4端子の形状に加工することにより、経年変化の歩留まりを向上し、最高で 1 ($\mu\Omega/\Omega$)/year 以下を達成し、実用レベルに達していることを示した。また、NiCr 箔を 用いた 100 Ω 標準抵抗器を共同開発した。製造直後より優れた経年変化を示し、温度特 性に優れた標準抵抗器を開発した。抵抗素子の組み合わせにより温度係数をさらに向上 させ、温度が 10 \mathbb{C} 変化しても抵抗値変化が ±0.01 $\mu\Omega/\Omega$ 以下の抵抗器を作製可能であ ることを実証した。その抵抗器を用いた 3 国間比較を行い、0.01 $\mu\Omega/\Omega$ 程度で標準研究 所間の比較が可能であることを示した。

参考文献

- [1] 高津清: 電気単位の現状, 単行冊子 (1930)
- [2] 計量標準総合センター産業技術総合研究所: 国際単位系 (SI) 安心・安全を支える 世界共通のものさし (日本規格協会, 2007)
- [3] H. L. Curtis, "Review of recent absolute determinations of the ohm and the ampere", J. Res. Natl. Bur. Stand. 33 (4) (1944) 235.
- [4] R. F. Dziuba, "THE NBS OHM PAST PRESENT FUTURE", Proc. Meas. Science Conf. (1987) 15.
- [5] G. R. Jones, B. J. Pritchard and R. E. Elmquist, "Characteristics of precision 1 Ω standard resistors influencing transport behaviour and the uncertainty of key comparisons", *Metrologia* **46** (5) (2009) 503.
- [6] F. E. Smith, "Absolute Measurements of a Resistance by a Method Based on That of Lorenz", *Phil. Trans. Roy. Soc. A* 214 (1914) 27.
- [7] P. Vigoureux, "DETERMINATION OF THE OHM BY THE METHOD OF LORENZ", Natl. Phys. Lab.: Coll. Res. 24 (1938) 277.
- [8] 米田麟吉,石橋勇一,"電気単位に就て",電気化学3(11)(1935)1.
- [9] A. Campbell, "On a Standard of Mutual Inductance", Proceedings of the Royal Society A: Mathematical, Phys. Engineering Sci. 79 (532) (1907) 428.
- [10] E. B. Rosa, "Absolute Measurement of Resistance", Bulletin of the Bureau of Standards 5 (4) (1909) 499.

- [11] CIPM: "Resolution 2" (1946). URL http://www.bipm.org/en/CIPM/db/1946/2/
- [12] W. K. Clothier, "A Calculable Standard of Capacitance", Metrologia 1 (2) (1965)
 36.
- [13] A. M. Thompson and D. G. Lampard, "A New Theorem in Electrostatics and its Application to Calculable Standards of Capacitance", *Nature* 177 (4515) (1956) 888.
- [14] D. Lampard, "A new theorem in electrostatics with applications to calculable standards of capacitance", *Proceedings of the IEE Part C: Monographs* 104 (6) (1957) 271.
- [15] 中村安宏,堂前篤志,"ものづくり産業の国際競争を支援する電気標準 キャパ シタンス標準の実現と計量トレーサビリティ体系の確立 -", Synthesiology 3 (3) (2010) 213.
- [16] C. Consejo, O. Thévenot, L. Lahousse, F. Piquemal and J. M. David, "Improvements of the Measurement Chain for the Determination of the von Klitzing Constant R K", *IEEE Trans. Instrum. Meas.* 58 (4) (2009) 902.
- [17] O. Thevenot, P. Gournay, L. Dupont and L. Lahousse, "REALIZATION OF THE NEW LNE THOMPSON LAMPARD ELECTRODE SET", *CPEM 2010 Digest* (1) (2010) 418.
- [18] Y. Wang, F. G. Cervantes, C. Stambaugh, R. Smid, Z. n. H. Calvo, A. Koffman, J. R. Pratt and J. Lawall, "Alignment and testing of the NIST Calculable Capacitor", *CPEM 2014 Digest* (2014) 476.
- [19] C. Stambaugh, M. Durand and J. Lawall, "Displacement Measurements in Air for the Calculable Capacitor", CPEM 2014 Digest (2014) 112.
- [20] G. Thuillier, O. Thevenot and P. Gournay, "Progress on the LNE calculable capacitor", CPEM 2014 Digest (2014) 480.

- [21] M. Homklintian, T. Funck, J. Melcher and H. Bachmair, "Calculated frequency behaviour of the PTB calculable capacitor in audio frequency range", *CPEM 2014 Digest* (2014) 102.
- [22] L. Zuliang, H. Lu, Y. Yan, Z. Jianting, Q. Jin, L. Wenjun, L. Zhongyou, Z. Zhonghua, L. Xiuying, W. Jianbo, W. Wei, L. Yunfeng and H. Qing, "A Preliminary Report on Building a New Calculable Capacitor at NIM", *CPEM 2014 Digest* (2014) 110.
- [23] T. Ando and Y. Uemura, "Theory of Quantum Transport in a Two-Dimensional Electron System under Magnetic Fields. I. Characteristics of Level Broadening and Transport under Strong Fields", J. Phys. Soc. Jpn. 36 (4) (1974) 959.
- [24] T. Ando, Y. Matsumoto and Y. Uemura, "Theory of Hall Effect in a Two-Dimensional Electron System", J. Phys. Soc. Jpn. 39 (2) (1975) 279.
- [25] J.-i. Wakabayashi and S. Kawaji, "Hall Effect in Silicon MOS Inversion Layers under Strong Magnetic Fields", J. Phys. Soc. Jpn. 44 (6) (1978) 1839.
- [26] K. von Klitzing, G. Dorda and M. Pepper, "New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Qantized Hall Resistance", *Phys. Rev. Lett.* 45 (6) (1980) 494.
- [27] B. Jeanneret, B. Jeckelmann, H.-J. Bühlmann, R. Houdré and M. Ilegems, "Influence of the Device-Width on the Accuracy of Quantization in the Integer Quantum Hall Effect", *IEEE Trans. Instrum. Meas.* 44 (2) (1995) 254.
- [28] A. Hartland, K. Jones, J. M. Williams, B. L. Gallagher and T. Galloway, "Direct Comparison of the Quantized Hall Resistance in Gallium Arsenide and Silicon", *Phys. Rev. Lett.* 66 (8) (1991) 969.
- [29] C. T. V. Degrift, K. Yoshihiro, E. C. Palm, J. Wakabayashi and S. Kawaji, "Reexamination of Quantum Hall Plateaus", *IEEE Trans. Instrum. Meas.* 42 (2) (1993) 562.
- [30] B. Jeckelmann, A. D. Inglis and B. Jeanneret, "Material, Device, and Step Inde-

pendence of the Quantized Hall Resistance", *IEEE Trans. Instrum. Meas.* **44** (2) (1995) 269.

- [31] B. Jeckelmann, B. Jeanneret and D. Inglis, "High-precision measurements of the quantized Hall resistance: Experimental conditions for universality", *Phys. Rev. B* 55 (19) (1997) 124.
- [32] S. P. Giblin, T. J. B. M. Janssen, G. R. Nash, P. D. Buckle, L. Buckle and M. T. Emeny, "INDIUM ANTIMONIDE QUANTUM HALL EFFECT DEVICES", *CPEM 2006 Digest* (2006) 492.
- [33] A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syväjärvi, R. Yakimova, O. Kazakova, T. J. B. M. Janssen, V. Fal'ko and S. Kubatkin, "Towards a quantum resistance standard based on epitaxial graphene.", *Nature Nanotechnology* 5 (3) (2010) 186.
- [34] D. C. Tsui, H. L. Störmer and A. C. Gossard, "Two-Dimensional Magnetotransport in the Extreme Quantum Limit", *Phys. Rev. Lett.* 48 (22) (1982) 1559.
- [35] V. Umansky, R. De-Picciotto and M. Heiblum, "Extremely high-mobility two dimensional electron gas: Evaluation of scattering mechanisms", *Appl. Phys. Lett.* **71** (5) (1997) 683.
- [36] 金子晋久, "量子ホール効果抵抗標準の研究の現状", 産総研計量標準報告, 2 (4)
 (2004) 617.
- [37] B. I. Harpelin(著), 吉岡大二郎(訳), "量子ホール効果", 別冊日経サイエンス (1997) 84.
- [38] 遠藤忠, "新しい電気の量子標準-ジョセフソン効果電圧標準と量子ホール効果抵抗標準-",応用物理 **59** (6) (1990) 712.
- [39] 遠藤忠, "電磁気量標準の成り立ち", 日本物理学会誌 54 (10) (1999) 787.
- [40] 遠藤忠, "電気標準の変遷", 電気学会誌 **120** (1) (2000) 31.
- [41] 大江武彦, "量子電気標準の現状と研究開発動向", 産総研計量標準報告6(2)(2007)

119.

- [42] D. B. Sullivan and R. F. Dziuba, "A Low-Temperature Direct-Current Comparator Bridge", *IEEE Trans. Power Electron.* IM-23 (4) (1974) 256.
- [43] D. B. Sullivan and R. F. Dziuba, "Low temperature direct current comparators", *Rev. Sci. Instrum.* 45 (4) (1974) 517.
- [44] M. Götz, D. Drung, E. Pesel, H.-j. Barthelmess, C. Hinnrichs, C. Aß mann,
 M. Peters, H. Scherer, B. Schumacher and T. Schurig, "Improved Cryogenic Current Comparator Setup With Digital Current Sources", *IEEE Trans. Instrum.* Meas. 58 (4) (2009) 1176.
- [45] L. Soukiassian, G. Spengler, D. Leprat, F. Schopfer and W. Poirier, "NEW NRYOGENIC CURRENT COMPARATOR-BASED RESISTANCE COMPAR-ISON BRIDGE AT LNE", CPEM 2010 Digest (15) (2010) 761.
- [46] J. M. Williams, T. J. B. M. Janssen, G. Rietveld and E. Houtzager, "An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements", *Metrologia* 47 (3) (2010) 167.
- [47] A. Satrapinski, H. Pöntynen, M. Götz, E. Pesel, N. Fletcher, R. Goebel and B. Rolland, "A Low-Frequency Current Comparator For Precision Resistance Measurements", *CPEM 2014 Digest* (2014) 760.
- [48] J. Williams and P. Kleinschmidt, "A cryogenic current comparator bridge for resistance measurements at currents of up to 100 A", *IEEE Trans. Instrum. Meas.* 48 (2) (1999) 375.
- [49] R. E. Elmquist, E. Hourdakis, D. G. Jarrett and N. M. Zimmerman, "Direct Resistance Comparisons From the QHR to 100 MΩ Using a Cryogenic Current Comparator", *IEEE Trans. Instrum. Meas.* 54 (2) (2005) 525.
- [50] R. E. Elmquist, G. R. Jones, B. J. Pritchard, M. Bierzychudek and F. Hernandez, "HIGH RESISTANCE SCALING FROM 10 kΩ AND QHR STANDARDS US-ING A CRYOGENIC CURRENT COMPARATOR", CPEM 2008 Digest (2008)

268.

- [51] M. E. Bierzychudek and R. E. Elmquist, "UNCERTAINTY EVALUATION IN A TWO-TERMINAL CRYOGENIC CURRENT COMPARATOR", CPEM 2008 Digest (2008) 152.
- [52] G. Rietveld, E. Bartolomé, J. Sesé, P. de la Court, J. Flokstra, C. Rillo and A. Camón, "1 : 30 000 Cryogenic Current Comparator With Optimum SQUID Readout", *IEEE Trans. Instrum. Meas.* 52 (2) (2003) 621.
- [53] N. Feltin, L. Devoille, F. Piquemal, S. Lotkhov and A. Zorin, "Progress in measurements of a single-electron pump by means of a ccc", *IEEE Trans. Instrum. Meas.* 52 (2) (2003) 599.
- [54] G. Rietveld, P. de la Court and H. E. van den Brom, "Internally Damped CCC for Accurate Measurements of Small Electrical Currents", *IEEE Trans. Instrum. Meas.* 58 (4) (2009) 1196.
- [55] D. Drung, C. Krause, U. Becker, H. Scherer and F. J. Ahlers, "Ultrastable lownoise current amplifier", *CPEM 2014 Digest* (2014) 656.
- [56] Guildline Instruments Ltd.: "Technical Manual for Model 9975 Direct Current Comparator Resistance Bridge".
- [57] N. L. Kusters and W. J. M. Moore, "The compensated Current Comparator; A New Reference Standard for Currnet-Transformer Calibrations in Industry", *IEEE Trans. Instrum. Meas.* IM13 (2-3) (1964) 107.
- [58] M. P. MacMartin and N. L. Kusters, "A Direct-Current-Comparator Ratio Bridge for Four-Terminal resistance Measurements", *IEEE Trans. Instrum. Meas.* IM-15 (4) (1966) 212.
- [59] N. L. Kusters and M. P. MacMartin, "A Direct Current Comparator Bridge for High Resistance Measurements", *IEEE Trans. Instrum. Meas.* IM-22 (4) (1973) 382.

- [60] D. Brown, A. Wachowicz and S. Huang, "AccuBridge TOWARDS THE DE-VELOPMENT OF A DC CURRENT COMPARATOR RESISTANCE RATIO STANDARD", CPEM 2010 Digest (2010) 639.
- [61] 山崎弘郎: 電気電子計測の基礎: 誤差から不確かさへ (電気学会, 2005).
- [62] K. R. Baker and R. F. Dziuba, "Automated NBS 1-Ω Measurement System", IEEE Trans. Instrum. Meas. IM-32 (1) (1983) 154.
- [63] J. Kinoshita, H. Nishinaka, K. Segawa and C. Van Degrift, "Measurements of the quantized hall resistance at ETL", *IEEE Trans. Instrum. Meas.* 40 (2) (1991) 249.
- [64] J. Kinoshita and M. Nakanishi, "High value resistance standards at ETL", CPEM 2000 Digest (2000) 293.
- [65] T. Oe, J. Kinoshita and N. Kaneko, "Voltage Injection Type High Ohm Resistance Bridge", CPEM 2012 Digest (2012) 360.
- [66] F. Delahaye and B. Jeckelmann, "Revised technical guidelines for reliable dc measurements of the quantized Hall resistance", *Metrologia* 40 (5) (2003) 217.
- [67] K. S. Novoselov, a. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and a. a. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene.", *Nature* 438 (7065) (2005) 197.
- [68] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, "Room-Temperature Quantum Hall Effect in Graphene", *Science* **315** (2007) 2007.
- [69] A. J. M. Giesbers, G. Rietveld, E. Houtzager, U. Zeitler, R. Yang, K. S. Novoselov,
 A. K. Geim and J. C. Maan, "Quantum resistance metrology in graphene", *Appl. Phys. Lett.* 93 (22) (2008) 222109.
- [70] 福山康弘, 金子晋久, "直流抵抗標準の現状と次世代標準としてのグラフェンの可能性", 炭素 243 (2010) 121.

- [71] T. J. B. M. Janssen, N. E. Fletcher, R. Goebel, J. M. Williams, a. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila and V. I. Falko, "Graphene, universality of the quantum Hall effect and redefinition of the SI system", *New J. Phys.* 13 (9) (2011) 093026.
- Y. Fukuyama, R. E. Elmquist, L.-i. Huang, Y. Yang, F.-h. Liu and N. Keneko,
 "Controlling Fermi Level in Single Layer Graphene QHE Device for Resistance Standard", *CPEM 2014 Digest* (2014) 36.
- [73] T. J. B. M. Janssen, S. Rozhko, A. Tzalenchuk, J. A. Alexander-Webber and R. J. Nicholas, "Breakdown of the quantum Hall effect in epitaxial graphene", *CPEM* 2014 Digest (2014) 40.
- T. J. B. M. Janssen, C. Giusca, J. Gallop, L. Hao, O. Kazakova, V. Panchal,
 R. Pearce and A. Tzalenchuk, "Graphene metrology", *CPEM 2014 Digest* (2014) 662.
- [75] K. Thodkar, C. Nef, W. Fu, C. Schönenberger, M. Calame, F. Lüönd, F. Overney and B. Jeanneret, "CVD Graphene for Electrical Quantum Metrology", *CPEM* 2014 Digest (2014) 540.
- [76] F. Lafont, R. Ribeiro-Palau, Z. Han, A. Cresti, A. W. Cummings, S. Roche,
 V. Bouchiat, S. Ducourtieux, F. Schopfer and W. Poirier, "Dissipative quantum Hall effect in polycrystalline CVD graphene", *CPEM 2014 Digest* (2014) 42.
- [77] B. Jeckelmann, A. Rufenacht, B. Jeanneret, F. Overney, K. Pierz, A. von Campenhausen and G. Hein, "Optimization of QHE-Devices for Metrological Applications", *IEEE Trans. Instrum. Meas.* 50 (2) (2001) 218.
- [78] B. Jeanneret, B. Jeckelmann, H.-J. Buhlmann and M. Ilegems, "Influence of Infrared Illumination on the Accuracy of the Quantized Hall Resistance", *IEEE Trans. Instrum. Meas.* 46 (2) (1997) 285.
- [79] M. Buttiker, "Absence of backscattering in the quantum Hall effect in multiprobe conductors", *Phys. Rev. B* 38 (14) (1988) 9375.

- [80] S. Komiyama and H. Hirai, "Theory of contacts in a two-dimensional electron gas at high magnetic fields", *Phys. Rev. B* 40 (11) (1989) 7767.
- [81] B. Jeckelmann and B. Jeanneret, "Influence of the voltage contacts on the fourterminal quantized Hall resistance in the nonlinear regime", *IEEE Trans. Instrum. Meas.* 46 (2) (1997) 276.
- [82] F. Piquemal, G. Geneves, F. Delahaye, J.-P. Andre, J.-N. Patillon and P. Frijlink, "Report on a Joint BIPM-EUROMET Project for the Fabrication of QHE Samples by the LEP", *IEEE Trans. Instrum. Meas.* 42 (2) (1993) 264.
- [83] F. Delahaye, "Series and parallel connection of multiterminal quantum Hall-effect devices", J. Appl. Phys. 73 (11) (1993) 7914.
- [84] A. Jeffery, R. E. Elmquist and M. E. Cage, "Precision Tests of Quantum Hall Effect Device DC Equivalent Circuit Using Double-Series and Triple-Series Connections", J. Res. Natl. Inst. Stand. Technol. 100 (6) (1995) 677.
- [85] W. Poirier, A. Bounouh, K. Hayashi, H. Fhima, F. Piquemal, G. Genevès and J.-P. André, "R_K/100 and R_K/200 quantum Hall array resistance standards", J. Appl. Phys. 92 (5) (2002) 2844.
- [86] A. Bounouh, W. Poirier, F. Piquemal, G. Genevès and J. P. André, "Quantum Resistance Standards With Double 2DEG", *IEEE Trans. Instrum. Meas.* 52 (2) (2003) 555.
- [87] W. Poirier, A. Bounouh, F. Piquemal and J. P. André, "A new generation of QHARS: discussion about the technical criteria for quantization", *Metrologia* 41 (4) (2004) 285.
- [88] F. Schopfer and W. Poirier, "Quantum Hall Effect Wheatstone Bridge", CPEM 2006 Digest (2006) 700.
- [89] F.-j. Ahlers, G. Hein, H. W. Schumacher and K. Pierz, "Quantum Hall Series Arrays Under Magnetic Field Reversal", CPEM 2006 Digest 1 (2006) 508.

- [90] R. Goebel, F. Delahaye, B. Jeckelmann, F. Schopfer and W. Poirier, "Preliminary Investigation of the use of Quantum Hall Resistance Standards as Traveling Standards", *CPEM 2006 Digest* (2006) 514.
- [91] K. Pierz, G. Hein, B. Schumacher, E. Pesel and H. W. Schumacher, "Asymmetric Double 2DEGs as a Basis of Quantum Hall Resistance Standards", *CPEM 2008 Digest* (2008) 18.
- [92] F. Schopfer and W. Poirier, "Reproducibility of the Quantum Hall Effect in GaAs/AlGaAs Two Dimensional Electron Gas", CPEM 2008 Digest (2008) 22.
- [93] A.-L. Coutrot, A. Cavanna, D. Mailly, F. Schopfer and W. Poirier, "FABRICA-TION OF GaAs/AlGaAs BASED QUANTUM RESISTANCE STANDARDS", *CPEM 2010 Digest* (2010) 765.
- [94] J. Könemann, F.-j. Ahlers, E. Pesel, K. Pierz and H. W. Schumacher, "Realization of Magnetic Field Reversible Quantum Hall Arrays", *CPEM 2010 Digest* (2010) 631.
- [95] J. Könemann, F.-j. Ahlers, E. Pesel, K. Pierz and H. W. Schumacher, "Magnetic Field Reversible Serial Quantum Hall Arrays", *IEEE Trans. Instrum. Meas.* 60 (7) (2011) 2512.
- [96] J. Könemann, C. Leicht, F.-J. Ahlers, E. Pesel, K. Pierz and H. W. Schumacher,
 "Investigation of Serial Quantum Hall arrays as a Quantum Resistance Standard",
 J. Phys.: Conference Series 334 (2011) 012017.
- [97] M. Ortolano, M. Abrate and L. Callegaro, "On the synthesis of Quantum Hall Array Resistance Standards", ArXiv (2013) 1311.0756.
- [98] Z. Qing, W. Xueshen, L. Jinjin, Z. Zhiqiang and S. Yong, "New Design of Decimal Nominal Value Resistance based on Quantum Hall Array", *CPEM 2014 Digest* (2014) 542.
- [99] Z. Qing, W. Xueshen, L. Jinjin, L. Zhun and K. Lei, "Development of QHR Arrays in NIM", CPEM 2014 Digest (2014) 690.

- [100] 金子晋久, 大江武彦, "量子メトロロジートライアングル", 応用物理 83 (5) (2014) 356.
- [101] 金子晋久, "量子力学的にオームの法則は成り立つか?", パリティ 24 (3) (2009) 50.
- [102] M. W. Keller, "Current status of the quantum metrology triangle", Metrologia
 45 (1) (2008) 102.
- [103] M. Hagio, "Electrode Reaction of GaAs Metal Semiconductor Field-Effect Transistors in Deionized Water", J. Electrochem. Soc. 140 (8) (1993) 2402.
- [104] T. Hisaka, H. Sasaki, Y. Nogami, K. Hosogi, N. Yoshida, A. Villanueva, J. a. del Alamo, S. Hasegawa and H. Asahi, "Corrosion-induced degradation of GaAs PHEMTs under operation in high humidity conditions", *Microelectronics Reliability* 49 (12) (2009) 1515.
- [105] T. Hisaka, Y. Nogami, H. Sasaki, N. Yoshida, K. Hayashi, A. a. Villanueva and J. a. del Alamo, "Degradation Mechanism of AlGaAs/InGaAs Power Pseudomorphic High-Electron-Mobility Transistors under Large-Signal Operation", JPN. J. Appl. Phys. 47 (2) (2008) 833.
- [106] B. Schwartz, S. E. Haszko and D. R. Wonsidler, "The Influence of Dopant Concentration on the Oxidation of N-Type GaAs in H20", J. Solid State Chem. 118 (7) (1963) 1229.
- [107] K. Lee, "Degradation of GaAs/AlGaAs quantized Hall resistors with alloyed AuGe/Ni contacts", J. Res. Natl. Inst. Stand. Technol. 103 (2) (1998) 177.
- [108] C. H. Stapper, F. M. Armstrong and K. Saji, "Integrated Circuit Yield Statistics", Proceedinggs of the IEEE 71 (4) (1983) 453.
- [109] N. Kaneko, C. Urano, T. Itatani and S. Kiryu, "Development of a 10 kΩ Quanrum Hall Array Resistance Standard", CPEM 2006 Digest (2006) 512.
- [110] T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "De-

velopment of Quantum Hall Array Resistance Standards at NMIJ", *IEEE Trans. Instrum. Meas.* **60** (7) (2011) 2590.

- [111] T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "Fabrication of the 10 kΩ QHR Array device", *Elektronika* 6 (2011) 47.
- T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "New Design of Quantized Hall Resistance Array Device", *IEEE Trans. Instrum. Meas.* 62 (6) (2013) 1755.
- [113] A. A. Somerville, "TEMPERATURE COEFFICIENTS OF ELECTRICAL RE-SISTANCE. II.", Phys. Rev. (Series I) 31 (1910) 261.
- [114] IET LABS: "SRL Series Precision Resistance Standard". URL http://www.ietlabs.com/srl.html
- [115] A. H. M. Arnold, "NICKEL-CHROMTUM-ALUMINIUM-COPPER RESIS-TANCE WIRE", Proc. IEE, B 103 (10) (1956) 439.
- [116] K. Takenaka and H. Takagi, "Giant negative thermal expansion in Ge-doped antiperovskite manganese nitrides", Appl. Phys. Lett. 87 (26) (2005) 261902.
- [117] K. Takenaka, K. Asano, M. Misawa and H. Takagi, "Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect", Appl. Phys. Lett. 92 (1) (2008) 011927.
- [118] Y. Sun, C. Wang, Y. Wen, K. Zhu and J. Zhao, "Lattice contraction and magnetic and electronic transport properties of Mn₃Zn_{1-x}Ge_xN", *Appl. Phys. Lett.* 91 (23)(2007) 231913.
- [119] R. Huang, L. Li, F. Cai, X. Xu and L. Qian, "Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn₃CuN codoped with Ge and Si", Appl. Phys. Lett. **93** (8) (2008) 081902.
- [120] K. Asano, K. Koyama and K. Takenaka, "Magnetostriction in Mn₃CuN", Appl. Phys. Lett. 92 (16) (2008) 161909.

- [121] K. Takenaka, T. Shibayama, K. Asano and K. Koyama, "Magnetostructural Correlations in Nitrogen-Deficient Antiperovskite Mn₃CuN_{1-δ}", J. Phys. Soc. Jpn. **79** (7) (2010) 073706.
- [122] J. C. Lin, B. S. Wang, S. Lin, P. Tong, W. J. Lu, L. Zhang, B. C. Zhao, W. H. Song and Y. P. Sun, "The study of structure, magnetism, electricity, and their correlations at martensitic transition for magnetostriction system Cu_{1-x}Mn_xNMn₃ (0 ≤ x ≤ 0.5)", J. Appl. Phys. **111** (11) (2012) 113914.
- [123] T. Tohei, H. Wada and T. Kanomata, "Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn₃GaC", J. Appl. Phys. 94 (3) (2003) 1800.
- [124] B. S. Wang, P. Tong, Y. P. Sun, X. Luo, X. B. Zhu, G. Li, X. D. Zhu, S. B. Zhang, Z. R. Yang, W. H. Song and J. M. Dai, "Large magnetic entropy change near room temperature in antipervoskite SnCMn₃", *Europhys. Lett.* 85 (4) (2009) 47004.
- [125] K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki and T. Kanomata, "Giant magnetoresistance in the intermetallic compound Mn₃GaC", *Phys. Rev. B* 63 (2) (2000) 024426.
- [126] B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang and W. H. Song, "Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds GaCMn_{3-x}Ni_x(x=0.05,0.10)", Appl. Phys. Lett. **95** (22) (2009) 222509.
- [127] B. S. Wang, C. C. Li, J. C. Lin, S. Lin, P. Tong, X. B. Zhu, B. C. Zhao, W. J. Lu, Z. R. Yang, W. H. Song, J. M. Dai and Y. P. Sun, "Metastability across the antiferromagnetic-ferromagnetic intermediate phase transition and enhanced giant magnetoresistance in Zn-doped antiperovskite compounds Ga_{1-x}Zn_xCMn₃", *Appl. Phys. Lett.* **97** (14) (2010) 142505.
- [128] D. Matsunami, A. Fujita, K. Takenaka and M. Kano, "Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn₃GaN.", *Nature*

materials, 14 (2015) 73.

- [129] E. O. Chi, W. S. Kim and N. H. Hur, "Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn₃", *Solid State Comm.* **120** (2001) 307.
- [130] W. J. Feng, D. Li, Q. Zhang, Y. F. Deng, M. S and Z. Z. D, "Structure, magnetic and electrical transport properties of Mn_{4-x} Ag_xN compounds", *Mater. Sci.* (*Poland*) 27 (1) (2009) 33.
- [131] Y. Sun, C. Wang, L. Chu, Y. Wen, M. Nie and F. Liu, "Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn₃NiN compound", Scr. Mater. 62 (9) (2010) 686.
- [132] K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe and C. Urano, "Extremely low temperature coefficient of resistance in antiperovskite Mn₃Ag_{1-x}Cu_xN", Appl. Phys. Lett. 98 (2) (2011) 022103.
- [133] L. Ding, C. Wang, L. Chu, J. Yan, Y. Na, Q. Huang and X. Chen, "Near zero temperature coefficient of resistivity in antiperovskite Mn₃Ni_{1-x}Cu_xN", Appl. Phys. Lett. 99 (25) (2011) 251905.
- [134] Z. Chen, R. Huang, X. Chu, Z. Wu, Z. Liu, Y. Zhou and L. Li, "Negative thermal expansion and nearly zero temperature coefficient of resistivity in anti-perovskite manganese nitride Mn₃CuN co-doped with Ag and Sn", *Cryogenics* 52 (11) (2012) 629.
- [135] S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, W. J. Lu, B. C. Zhao, P. Tong, W. H. Song and Y. P. Sun, "Tunable room-temperature zero temperature coefficient of resistivity in antiperovskite compounds Ga_{1-x}CFe₃ and Ga_{1-y}Al_yCFe₃", Appl. Phys. Lett. **101** (1) (2012) 011908.
- [136] 小澤篤, "逆ペロフスカイト型マンガン窒化物の電子輸送特性", 修士論文, 名古屋 大学 (2011).
- [137] 羽田野元良, "新規抵抗標準材料の開発", 修士論文, 名古屋大学 (2013).

- [138] T. Oe, C. Urano, N. Kaneko, M. Hadano and K. Takenaka, "Standard-resistor compounds with adjustable operating temperature", *Appl. Phys. Lett.* **103** (2013) 173518.
- [139] O. Gunnarsson, M. Calandra and J. E. Han, "Colloquium: Saturation of electrical resistivity", *Rev. Mod. Phys.* **75** (2003) 1085.
- [140] J. M. D. Coey, "Magnetism and Magnetic Materials", Cambridge University Press (2010).
- [141] M. Hadano, A. Ozawa, K. Takenaka, N. Kaneko, T. Oe and C. Urano, "Interplay between magnetism and charge transport in antiperovskite manganese nitrides: Extremely low temperature coefficient of resistance due to strong magnetic scattering", J. Appl. Phys. 111 (7) (2012) 07E120.
- [142] 水野和生, "やってみよう数値シミュレーション", URL: http://www.ics. kagoshima-u.ac.jp/~mizuno/sim/
- [143] J. L. Thomas, "A NEW DESIGN OF PRECISION RESISTANCE STANDARD", Beureau of Standards J. Res. 5 (2) (1930) 295.
- [144] J. L. Thomas, "Stability of double-walled manganin resistors", J. Res. Natl. Bur. Stand. 36 (1) (1946) 107.
- [145] Y. Sakamoto, N. Kaneko, T. Oe, M. Kumagai and M. Zama, "NOVEL 100 Ω METAL FOIL RESISTOR", CPEM 2010 Digest (2010) 615.
- [146] Y. Sakamoto, N. Kaneko, T. Oe and A. Member, "Novel 100-Ω Metal Foil Resistor", *IEEE Trans. Instrum. Meas.* 60 (7) (2011) 2544.
- [147] M. Kumagai, N. Kaneko, T. Oe, S. Suematsu, T. Abe and M. Zama, "Development of Ultra Stable Standard Resistor", 2012 NCSL International Workshop & Symposium Digest.
- [148] N. Kaneko, T. Oe, A. Domae, T. Abe, M. Kumagai and M. Zama, "Development of High-Stability Metal-Foil Standard Resistors for DC and AC Measurements",

2012 NCSL International Workshop & Symposium Digest.

[149] N. Kaneko, T. Oe, A. Domae, T. Abe, M. Kumagai and M. Zama, "Development of High-Stability Metal-Foil Standard Resistors for DC and AC Measurements", *NCSLI Measure J. Meas. Sci.* 7 (4) (2012) 34.

学位論文に関連する学術論文

- T. Oe, C. Urano, N. Kaneko, H. Eisaki, Y. Yoshida, A. Yamamoto, K. Takenaka, "Antiperovskite manganese nitride standard resistor", *IEEE Trans. Instrum. Meas.*, (2015) 掲載決定.
- [2] T. Oe, C. Urano, M. Hadano, A. Ozawa, K. Takenaka and N. Kaneko, "Optimization of Mn₃Ag_{1-x}Cu_xN Antiperovskite Compound Fabrication for Resistance Standard", *IEEE Trans. Instrum. Meas.* 62 (6) (2013) 1450.
- T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "New Design of Quantized Hall Resistance Array Device", *IEEE Trans. Instrum. Meas.* 62 (6) (2013) 1755.
- [4] T. Oe, C. Urano, N. Kaneko, M. Hadano and K. Takenaka, "Standard-resistor compounds with adjustable operating temperature", *Appl. Phys. Lett.* 103 (17) (2013) 173518.
- [5] M. Hadano, A. Ozawa, K. Takenaka, N. Kaneko, T. Oe and C. Urano, "Interplay between magnetism and charge transport in antiperovskite manganese nitrides: Extremely low temperature coefficient of resistance due to strong magnetic scattering", J. Appl. Phys. 111 (7) (2012) 07E120.
- [6] N. Kaneko, T. Oe, A. Domae, T. Abe, M. Kumagai and M. Zama, "Development of High-Stability Metal-Foil Standard Resistors for DC and AC Measurements", *NCSLI Measure J. Meas. Sci.* 7 (4) (2012) 34.
- [7] T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "Development of Quantum Hall Array Resistance Standards at NMIJ", *IEEE Trans. Instrum. Meas.* 60 (7) (2011) 2590.
- [8] T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "Fabrication of the 10 kΩ QHR Array device", *Elektronika* 6 (2011) 47.
- [9] T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu and N. Kaneko, "Improvement of yield ratio of ohmic contact to GaAs/AlGaAs heterostructure by application of SiO₂ protective layer", *Physica Status Solidi C* 9 (2) (2011) 270.
- [10] K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe and C. Urano, "Extremely low temperature coefficient of resistance in antiperovskite Mn₃Ag_{1-x}Cu_xN", *Appl. Phys. Lett.* 98 (2) (2011) 022103.

[11] Y. Sakamoto, N. Kaneko, T. Oe and A. Member, "Novel 100-Ω Metal Foil Resistor", *IEEE Trans. Instrum. Meas.* 60 (7) (2011) 2544.

解説

[1] 金子晋久, **大江武彦**, "量子メトロロジートライアングル", 応用物理 **83** (5) (2014) 356.

主要な学会講演

- T. Oe, C. Urano, N. Kaneko, H. Eisaki, Y. Yoshida, A. Yamamoto, and K. Takenaka, "Manganese Nitride Compound Standard Resistor," Conference on Precision Electromagnetic Measurements (CPEM) 2014.
- [2] T. Oe, C. Urano, M. Hadano, A. Ozawa, K. Takenaka and N. Kaneko, "Antiperovskite Compound Standard Resistor," Conference on Precision Electromagnetic Measurements (CPEM) 2012.
- [3] T. Oe, S. Gorwadkar, T. Itatani, S. Kiryu and N. Kaneko, "New design of the quantized Hall resistance array device," Conference on Precision Electromagnetic Measurements (CPEM) 2012.
- [4] T. Oe, J. Kinoshita and N. Kaneko, "Voltage Injection Type High Ohm Resistance Bridge," Conference on Precision Electromagnetic Measurements (CPEM) 2012.
- [5] T. Oe, K. Matsuhiro, T. Itatani, S. Gorwadkar, S. Kiryu, N. Kaneko, "Improvement of the yield ratio of the ohmic contact to GaAs/AlGaAs hetero structure by SiO₂ passivation process", 38th International Symposium on Compound Semiconductors (ISCS) 2011.
- [6] T. Oe, N. Kaneko, "Quantum Hall Resistance Standard at NMIJ," Asia-Pacific Metrology Programme (APMP) 2011 Technical Committee on Electricity and Magnetism (TCEM) Workshop.
- [7] T. Oe, K. Matsuhiro, N. Kaneko, T. Itatani, S. Gorwadkar, S. Kiryu, "Fabrication of the 10 kΩ QHR Array Device," Quantum Metrology (QM) 2011.

受賞歴

 N. Kaneko, T. Oe, A. Domae, T. Abe, M. Kumagai, and M. Zama, NCSLI Measure - Annual Editor's Choice Award 2013, 共同受賞.

謝 辞

本研究を終えるにあたり、日頃の研究はもとより、研究態度のあり方などに関し丁寧 に御指導頂きました指導教官の竹中 康司教授に心より御礼申し上げます。研究の進め方 に関し、問題を明快に整理し、一つ一つ丁寧に解決しつつも素早く核心に迫るよう厳し くも細やかな御指導を賜りました。論文等に対するコメントは誰よりも素早く的確であ り、発表方法に関しても非常に丁寧に御指導くださり大変勉強になりました、心より感 謝致します。

多くの発表練習に時間を割いてくださり有益なコメントや有用な言い回し及び論理展 開についてお教え下さいました生田 博志教授に心より感謝いたします。発表内容を論理 的に明確にする多くの御助言を下さり、より明快な内容にするよう励ましてくださいま した、ありがとうございます。

お忙しい中、論文の審査を快く引き受けてくださいました中塚 理准教授に深く御礼申 し上げます。デバイスの事はもちろん、結晶の質に関しても多くの鋭いご指摘を賜り、 視野を広く持つよう促してくださいました。心より感謝いたします。

審査において多くの有益な御指摘を下さいました東京大学の中村 泰信教授に心より御 礼申し上げます。本論と深く関係しつつもあまり指摘を受けないような箇所について、 多くの示唆に富む御指摘を下さり、細かな理解に関し注意深くあるよう促してください ました。心より御礼申し上げます。

年末の御多忙な時期に発表練習にお付き合いくださり建設的で有益な助言を下さった 岡本 佳比古准教授に心より御礼申し上げます。温かな励ましをくださいました横山 泰 範助教や、甲斐 慶太さん、坂巻 晃さんをはじめとする竹中研究室の皆様には、その研 究熱心な姿勢から多くの励ましをいただきました、ここに深く感謝いたします。特に、 小澤 篤様、羽田野 元良様、海津 瞭一様には焼結体サンプルの作製に関しとてもお世話 になりました、ありがとうございます。 研究内容に関し的確なアドバイスを下さりまた学位取得に関し理解を示して下さった 金子 晋久科長に心より御礼申し上げます。量子ホール素子やアレー素子の作製について 辛抱強くアドバイスを下さり、発表に関しても明快な御助言御指導を賜りました、あり がとうございます。また、デバイス作製や量子ホール素子の評価に関し、有益な御助言 をくださいました東京都市大学 桐生 昭吾教授に心より感謝いたします。

電磁気計測科の皆様からも多くの助けをいただきました。精密計測に関し有益な御指 導を下さいました木下 攘止様に心より感謝いたします。電気標準の歴史について、先人 に対する敬意と共に多くの示唆に富む御助言を下さいました坂本 泰彦様に深く御礼申し 上げます。マンガン窒化物の研究を紹介して下さり、測定に関し多くの有益なアドバイ スを下さいました浦野 千春様に心より感謝いたします。精密測定作業に関して多くの助 けをいただきました渡辺 幸次様、本論文には含めることはできませんでしたが CCC ブ リッジの作製に関してご尽力下さいました飯田 保様に心より御礼申し上げます。また量 子ホールデバイスの作製に関して名古屋大学 松廣 健二郎様から多くの助けをいただき ました、松廣さん無しには量子ホール素子の完成は無かったことでしょう。ありがとう ございます。ここには言い尽くせませんが電磁気計測科の関係諸氏に深く感謝いたしま す、ありがとうございます。

量子ホール素子、アレー素子の作製・評価に関し、良質な HEMT ウェハを提供して 下さいました、NTT 物性科学基礎研究所山口 浩司様、山本 秀樹様、小野満 恒二様をは じめとする関係諸氏に心より御礼申し上げます。

MOCVD ウェハの開発に関してご協力くださいました、住友化学株式会社 井上 孝行 様、西川 直宏様、市川 麿様に心より御礼申し上げます。また住友化学株式会社 福原 昇 様、山中 貞則様には量子ホール素子の作製に関して有益な御助言をいただきました、あ りがとうございます。

量子ホール素子の作製に関し、重要な、示唆に富む御助言御援助を下さいました、産 業技術総合研究所 ナノエレクトロニクス研究部門板谷 太郎様、Sucheta Gorwadkar 様、 石井 裕之様、及び株式会社サンエス 藤野 英利様に心より御礼申し上げます。また、ナ ノエレクトロニクス研究部門 前澤 正明様には、絶縁性能の評価・デバイスの作製に関 し有益な御助言御指摘をいただきました、心より感謝いたします。皆様の御援助なしに はデバイスを完成させることはできませんでした、ありがとうございます。

また、本量子ホール素子は、文部科学省「ナノテクノロジープラットフォーム」事業 の支援を受けて、(独)産業技術総合研究所ナノプロセシング施設において作製しまし た。秋永 広幸様、増田 賢一様、松野 賢吉様、山崎 将嗣様を初めとする関係諸氏の細や かな御援助に心より感謝いたします。

マンガン窒化物素子の作製・評価に関して多くの有益な御助言、御援助を下さいました、電子光技術研究部門永崎洋様、吉田良行様に心より感謝いたします。発表に関し 有益なコメントを下さいました超伝導エレクトロニクスグループの皆様にも御礼申し上 げます。また対銅熱起電力の測定、焼結体サンプルの加工に関して、エネルギー技術研 究部門山本 淳様、國井 勝様、西当 弘隆様の御援助に心より御礼申し上げます。

NiCr 箔標準抵抗器の開発に関して、多くの御援助を下さいましたアルファ・エレクト ロニクス株式会社小笠原 明夫様、三宮 宗様に心より御礼申し上げます。また、同社秋 田工場の皆様、工藤 広喜様、座間 松雄様、須磨 秀之様、熊谷 誠弥様の御援助に心より 感謝申し上げます。皆様の標準抵抗器開発に関する深い造詣および熊谷様の卓越した素 子作製能力により素晴らしい抵抗器が完成しました。開発の一端を担わせていただいた ことに心より御礼申し上げます。マンガン窒化物へのスポット溶接によるコンタクト形 成に関しても、暖かい御援助を下さいましたことに深く感謝いたします。

また、NiCr 箔標準抵抗器の精密評価に関し、日本電気計器検定所 末松 茂様、阿部 隆 行様の御援助御尽力に心より感謝いたします。多数の素子の評価、振動試験等、阿部様 の御尽力なしには実現し得ませんでした、ありがとうございます。

最後に、本研究の遂行および論文の執筆にあたり日々支えてくれた家族に心より感謝 致します。