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ABSTRACT

Prostate cancer is emerging as a significant global public health burden. The incidence and prevalence 
of prostate cancer has increased in Japan, as westernized lifestyles become more popular. Recent advances 
in genetic epidemiology, including genome-wide association studies (GWASs), have identified considerable 
numbers of human genetic factors associated with diseases. Several GWASs have reported significant 
loci associated with serum prostate-specific antigen (PSA) levels. One GWAS, which was based on 
classic GWAS microarray measurements, has been reported for Japanese so far. In the present study, 
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we conducted a GWAS of serum PSA using 1000Genomes imputed GWAS data (n =1,216) from the 
Japan Multi-Institutional Collaborative Cohort (J-MICC) Study, to detect candidate novel genetic loci that 
influence serum PSA levels in Japanese. The association of SNPs/genetic variants with serum PSA as a 
continuous variable was tested using the linear Wald test. SNP rs10000006 in SGMS2 (sphingomyelin 
synthase 2) on chromosome 4 had genome-wide significance (P <5×10−8), and eight variants on three 
chromosomes (chromosomes 12, 14, 15) had genome-wide suggestive levels of significance (P <1×10−6). 
With an independent data set from the J-MICC Shizuoka Study (n = 2,447), the association of the SGMS2 
SNP with blood PSA levels was not replicated. Although our GWAS failed to detect novel loci associated 
with serum PSA levels in the Japanese cohort, it confirmed the significant effects of previously reported 
genetic loci on PSA levels in Japanese. Importantly, our results confirmed the significance of KLK3 SNPs 
also in Japanese, implying that consideration of individual genetic information in prostate cancer diagnosis 
may be possible in the future.

Keywords:  PSA, GWAS, genetic polymorphisms, J-MICC Study
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GWAS: genome-wide association study
SNP: single nucleotide polymorphism
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INTRODUCTION

Prostate cancer is an emerging global public health burden. The incidence and prevalence 
of prostate cancer has increased in Japan, as westernized lifestyles become more popular.1 The 
highly sensitive prostate-specific antigen (PSA) test for prostate cancer is one of the standard 
blood exams used in actual clinical settings, including outpatient clinic or health checks in Japan.2

The PSA test is an established routine clinical test not only for the early detection of prostate 
cancer, but also as a marker of the clinical progression of prostate cancer.3,4 In preventive 
medicine and medical checkups, relatively high false positive rates or relatively low specificity 
can be an annoying issue.5 For some cancer detection markers, genetic predispositions to higher 
than normal serum levels of these markers have been reported. Among them, high CA 19–9 levels 
caused by Lewis and secretor gene polymorphisms are considered promising,6 which suggests 
the establishment of personalized diagnostic criteria based on individual genetic information may 
be possible in the future.

Recent advances in genetic epidemiology, including genome-wide association studies (GWASs), 
have identified considerable numbers of human genetic factors associated with diseases, including 
cardiovascular and metabolic diseases, and cancers.7-10 Several GWASs have reported significant 
loci associated with serum PSA levels.11 Until now, only one GWAS, which was based on classic 
GWAS microarray measurements of SNPs (single nucleotide polymorphisms), has been reported 
for Japanese.12 Recent GWASs in Chinese revealed a novel locus at 1q32.1 associated with serum 
PSA levels.13 Among the SNPs in KLK3, one was established as a genetic factor that influenced 
blood PSA levels across races and ethnicities.14,15

The Japan Multi-Institutional Collaborative Cohort (J-MICC) Study is a large population-based 
genome cohort study in which about 100,000 participants from 15 study areas of Japan are being 
followed up for 20 years for cancer incidence.16 The purpose is to find effective ways of cancer 
prevention based on genetic information. In the present study, we conducted a GWAS using 
1000Genomes imputed data to detect novel genetic loci that influence serum PSA levels in a 



185

PSA imputed GWAS in Japanese

Japanese cohort, for the possible establishment of personalized PSA testing in the near future.

METHODS

Study subjects
The J-MICC Study is a large-scale cohort study that is being conducted at 13 independent 

research institutes. The main objective is to detect gene–environment interactions mainly for 
cancer prevention.16 The baseline survey was started in 2005 and was completed in March 
2014 with about 100,000 individuals throughout Japan. In the finding phase of the J-MICC 
Study (J-MICC GWAS data ver. 20190729), the GWAS genotyping results (described below) 
and serum PSA measurement data of 1216 men from six independent study sites (Okazaki, 
Shizuoka-Hamamatsu, Kyoto, Kagoshima, Tokushima, and Shizuoka-Sakuragaoka) were used. All 
the participation assented to taking part in this project. Individuals with a history of prostate 
cancer were excluded.

In the replication phase, one data set of 5006 participants from the J-MICC Shizuoka area was 
used.17 Briefly, 5006 health check examinees who resided in the Shizuoka Prefecture completed 
a self-administered questionnaire and provided blood samples. Of these, samples and data from 
2447 of the male study participants with serum PSA data and no history of prostate cancer, 
and participants who were not included in the data set used in the finding phase, were used for 
the replication analyses.

The characteristics of the study subjects are described in Table 1. Subjects with present illness 
or past history of prostate diseases (coded as C61 [prostate cancer] and N40 [benign prostate 
hyperplasia] according to the International Classification of Disease, version 10) were excluded, 
except for participants from the Okazaki area for whom only past history of cancer data were 
available and considered. Written informed consent was obtained from all participants. The study 

Table 1 Study characteristics

Variable Discovery Replication

Male (n, %) 1,216 (100.0%) 2,447 (100.0%)

Age (mean ± sd) 57.2 ± 7.8 52.5 ± 8.7

PSA (ng/ml) 1.30 ± 1.15 1.35 ± 1.34

Site (n, %)

Okazaki 428 (35.2%) -

Shizuoka (Hamamatsu) 314 (25.8%) 2,447 (100.0%)

Kyoto 122 (10.0%) -

Kagoshima 249 (20.5%) -

Tokushima 29 (2.4%) -

Shizuoka (Sakuragaoka) 74 (6.1%) -

SGMS2 rs10000006 SNP (n, %)

T/T 1,095 (90.1%) 2,058 (84.1%)

T/C 117 (9.6%) 364 (15.9%)

C/C 4 (0.3%) 25 (1.0%)

PSA: prostate specific antigen
SGMS2: sphingomyelin synthase 2



186

Asahi Hishida et al

protocol was approved by the Ethics Committees of the Nagoya University Graduate School of 
Medicine and each participating Institute. All the research procedures were conducted according 
to the Ethical Guidelines for Human Genome and Genetic Sequencing Research and the Ethical 
Guidelines for Medical and Health Research Involving Human Subjects in Japan.

Measurement of PSA in serum samples
PSA levels in the serum samples were measured using a chemiluminescent method. The 

clinical reference ranges were set at <4.0 ng/mL.

Genotyping and quality control
For the participants in the discovery phase (Stage I), DNA samples were extracted automati-

cally from the buffy coat using the BioRobot M48 Workstation (QIAGEN group, Tokyo, Japan). 
Genotyping of the samples in the discovery phase was performed using the Illumina HumanOm-
niExpressExome v1.2 platform (Illumina, San Diego, California) at the RIKEN Center for the 
Integrated Medical Sciences (Yokohama, Japan). Identity-by-descent was detected using PLINK 
1.9 software (https://www.cog-genomics.org/plink2). In the sample quality check, subjects with 
identity-by-descent proportions >0.1875 and outliers detected by principal component analysis18 
of the 1000Genomes reference panel (phase 3)19 whose ancestries were estimated to be outside 
the Japanese population were excluded from the analysis. SNPs with genotype call rates <0.98, 
Hardy-Weinberg equilibrium exact test P values <1×10−6, or minor allele frequencies (MAFs) 
<0.01 were excluded. After quality control filtering, 14,091 individuals and 575,802 SNPs 
remained for further analyses.

The samples in the replication phase were genotyped for SNP rs10000006 in SGMS2 by 
PCR-CTPP (PCR with confronting two-pair primers).20 The primers used were F1: 5′-GGTG-
GAAGGCAAAAGGCAC-3′, F2: 5′-CCAACTGAATTAACTGTATTAGTCTGTTTTC-3′, R1: 
5′-ATTGTTTATGAGGTTTGGCAGTGT-3′, and R2: 5′-CGTCTGCTGCCATGTAAAACA-3′. 
The SNPs are underlined. The thermal cycler conditions were: denaturing at 95°C for 10 min, 
followed by 30 cycles of 95°C for 1 min, 61°C for 1 min, and 72°C for 1 min, then final 
extension at 72°C for 5 min, A representative gel for the genotyping is shown in Figure 1.

Fig. 1 Genotyping of the SGMS2 rs10000006
Lane M = 100-bp marker; lane 1 = C/C genotype (249- and 381-bp bands); lane 2 = T/C genotype (170-, 
249- and 381-bp bands); lane 3 = T/T genotype (170- and 381-bp bands).
SGMS2: sphingomyelin synthase 2
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Genotype imputation
Genotype imputation was conducted using SHAPEIT v2 (https://mathgen.stats.ox.ac.uk/

genetics_software/shapeit/shapeit.html#home) and Minimac3 (http://genome.sph.umich.edu/wiki/
Minimac3) software based on the 1000 Genomes Project cosmopolitan reference panel (phase 3).21 
After the genotype imputation, variants with MAFs <0.05 and R2 <0.3 were excluded, resulting 
in 6,288,024 variants for the 1216 subjects from the six study areas for the final analyses.

Replicability of reported PSA-related GWAS loci
We also examined the replicability of previously reported PSA-related GWAS loci11,14 with the 

loci detected with our J-MICC Study samples. Among the 40 SNPs reported, we selected the 
SNPs detected by the unconditional GWAS,11 from which SNPs that failed to pass the quality 
control filtering were excluded. In total, 23 genetic loci on 15 chromosomes were examined.

Statistical analysis
We examined the associations of the SNPs with serum PSA levels using EPACTS software 

(http://genome.sph.umich.edu/wiki/EPACTS). The association of SNPs with serum PSA as a 
continuous variable was tested using the linear Wald test, where the number of minor alleles was 
defined as the independent variable. To adjust for the covariates, age and the first five principal 
components were considered. Variants with MAFs ≥0.05 were taken into account in the main 
analysis, whereas this criterion was not adopted when examining the replicability of previously 
reported SNPs. Manhattan and Q-Q plots were drawn using the ‘qqman’ function in R (https://
cran.r-project.org/web/packages/qqman/index.html). Genome-wide significance levels were defined 
as P <5×10−8 and genome-wide suggestive levels of significance were defined as P <1×10−6 in 
all the analyses. In the replication phase or in the verification of replicability of the reported 
loci, the significance threshold was set at P <0.05, which is considered nominally significant.

RESULTS

The characteristics of the participants included in the discovery and replication data sets are 
provided in Table 1. Significant SNPs/genetic variants associated with serum PSA are listed 
in Table 2. SNP rs10000006 in SGMS2 (sphingomyelin synthase 2) on chromosome 4 had 
genome-wide significance, and eight variants on three chromosomes (chromosomes 12, 14, 15) 
had genome-wide suggestive levels of significance. Manhattan and Q-Q plots of the results are 
shown in Figures 2 and 3. The genomic inflation factor of lambda was close to 1 (lambda = 
0.99874; range 0.99–1.01), suggesting that the population structure was well adjusted.

We examined the replicability of the GWAS significant SNP rs10000006 in SGMS2, with 
the independent data set for the Shizuoka Study. The association between SNP rs10000006 in 
SGMS2 and blood PSA levels was not replicated in the independent samples by linear regression 
analysis (Table S1 and Figure 4).

We also examined the associations of previously reported PSA-related GWAS loci11 with the 
PSA levels in the present study. Among the 25 genetic variants (on 23 genetic loci) examined, 
six SNPs on six independent genetic loci were nominally significant (P <0.05). The results of 
these analyses are described in Table 3. The direction of effect was inverse in 3 of the 6 variants 
and the same in the other 3 variants, compared with the effects reported previously.11
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Fig. 2 Manhattan plot for the PSA GWAS of the J-MICC Study
PSA: prostate specific antigen
GWAS: genome-wide association study
The red line indicates the genome-wide significant level (P < 5×10-8) and the blue line indicates the suggestive 
level (P < 1×10-6).

Fig. 3 Q-Q plot for the PSA GWAS of the J-MICC Study.
PSA: prostate specific antigen; 
GWAS: genome-wide association study
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DISCUSSION

Although the present study is the first GWAS of serum PSA levels based on 1000Genomes 
imputed data, only one genetic locus in SGMS2 reached the GWAS significance level (P <5×10−8), 
and this was not replicated in our independent data set of the Shizuoka Study. SGMS2 encodes 
a member of the sphingomyelin synthase family, which plays roles in sphingomyelin biosynthesis 
in the Golgi lumen and in the formation of the plasma membrane.22 Even after considering the 
scarce evidence of a link between SGMS2 and carcinogenesis, such as its role in the promotion 
of an aggressive breast cancer phenotype by disruption of the homeostasis of ceramide and 
sphingomyelin,23 the contribution of this SGMS2 SNP to the regulation of serum/plasma PSA 

Table S1 Replicability of the association of the SNP rs10000006 in SGMS2  
with serum PSA levels in the independent data set of the Shizuoka Study

Variable β S.E. P 95%CI

SGMS2 rs10000006 C allele* -0.037 0.052 0.477 (-0.139, 0.065)

Estimation of the replicability was conducted based on linear regression with a genetic additive 
model.
PSA: prostate specific antigen
S.E.: standard error
SGMS2: sphingomyelin synthase 2
*Adjusted for age

Fig. 4 Examination of the replicability of the association of the SGMS2 rs10000006 SNP  
with serum PSA levels in the independent data set of the Shizuoka Study

SGMS2: sphingomyelin synthase 2
*  The box plots indicate the medians and the inter-quartile ranges (IQR). The upper (lower) limits of the whisker 
plots represent the most extreme values within 1.5 IQR from the nearer quartiles (i.e., 75 percentiles or 25 
percentiles).
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levels seems implausible based on the present PSA-related GWAS results. We concluded that no 
novel genetic locus associated with PSA levels was found, presumably because of the relatively 
small sample size in our GWAS data set of male participants with known serum PSA levels.

The present GWAS replicated some of the previously reported genetic loci, including the 
KLK3 locus, which confirmed the importance of these loci in regulating human blood PSA levels 
also in Japanese. Our investigation of the replicability of previously reported PSA loci based 
on multi-ethnic imputed GWAS from a European cohort11 found that only six of the 25 genetic 
loci had nominal significance in our Japanese PSA-related GWAS. Among them, only three of 
the six loci effected the serum PSA levels in the same direction, suggesting different genetic 
factors affected PSA levels across ethnicities. Of the reported SNPs examined, the nonsynonymous 
SNP at position 51361757 on chromosome 19 in the GRCh37hg19 reference sequence, which is 
within the coding region of KLK3,11 was not detected in our data set probably because it had 
a low MAF (0.00082). This finding suggests there may be different allele distributions among 
races and ethnicities. The reported association of SNP rs2735839 in KLK3 with serum PSA14 was 
replicated in our data set with a significant P-value of 6.232×10−5, which supports the important 
role of KLK3 SNPs in modulating PSA levels across races and ethnicities. KLK3 encodes PSA, 
so its role in modulating PSA levels by genetic variations in this locus is considered biologically 
plausible14. With regard to the KLK3 rs2735839 SNP, recent evidence demonstrated that those 
with the A allele of rs2735839 indicated significantly lower blood PSA levels,14,15 whereas they 
were shown to be susceptible to more clinically aggressive prostate cancer.24 Although the detailed 
mechanisms remain unclarified, there might be some possibility that subjects with the G allele 
of rs2735839 might be more likely to be diagnosed as having prostate cancer in earlier stage 
compared to those without.24

Determinants of blood tumor markers, such as genetic factors or health conditions other than 
the tumor itself, have been reported.6,25 For PSA, some genetic factors, such as SNP rs2735839 
in KLK3, have been shown to modulate blood PSA by recent studies including ours.14 Blood 
PSA levels are known to be affected by some other conventional factors.25 Therefore, interpreting 
blood PSA laboratory test results in actual clinical settings should be done with care, taking all 
these factors into consideration.

Although the present GWAS failed to detect novel loci associated with serum PSA levels in 
Japanese, it confirmed that previously reported genetic loci also significantly influenced PSA 
levels in Japanese. In particular, our results confirmed the significant effects of KLK3 SNPs 
also in Japanese, which suggests the consideration of individual genetic information in prostate 
cancer diagnosis may be possible in the future. Further investigations with sufficiently large 
populations are warranted.
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