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ABSTRACT

Effects of kinetic ions and electromagnetic fluctuations on slab electron-temperature-gradient (ETG) driven turbulence are investigated by
means of gyrokinetic simulations covering scales from electron gyroradius to ion gyroradius and electron skin depth. Linear growth rates of
electrostatic ETG modes are enhanced by the ion polarization at ion gyroradius scale. Nonlinear simulations show that this low-poloidal-
wavenumber instability induces ion-scale eddies which cause heat transport higher than that in the adiabatic ion model. In finite-b plasma,
electromagnetic fluctuations stabilize the low-wavenumber modes, and suppress the turbulent heat transport. Additionally, electromagnetic
effects also weaken zonal flow generation, which slightly enhances turbulent transport than that in the electrostatic adiabatic ion model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0044435

I. INTRODUCTION

Suppression of turbulent heat transport in magnetically confined
plasma is one of the key issues in fusion research. It is considered that
one of the important instabilities to explain anomalous heat transport
is ion temperature gradient (ITG) modes which drive turbulent eddies
at the ion gyroradius scale. On the other hand, at the electron gyrora-
dius scale, finer-scale instabilities like electron temperature gradient
(ETG) modes should be taken into account.1 Understanding of ETG
turbulence and transport would also be important to burning plasma
research, where collisions with fusion-born fast alpha particles mainly
heat electrons.

ITG/ETG modes are classified into slab modes2 and toroidal
modes3,4 depending on the destabilization mechanisms. Because of
strong transport driven by the toroidal ETG turbulence, extensive sim-
ulation studies have been carried out based on gyrokinetics. In studies
of the ETG turbulence, ion response was often assumed to be the
Boltzmann response (i.e., ion density perturbations ~n i proportional to
perturbed electrostatic (ES) potential ~/), called the adiabatic ion
model, because of the large difference between ion and electron gyro-
radii. Toroidal ETG turbulence with the adiabatic ion model often
involves radially elongated structures, called streamers, and causes
strong heat transport,5,6 where zonal flows are considered to play a
subsidiary role in contrast to the ITG turbulence. A recent study, how-
ever, pointed out the generation of zonal flows and a reduced level of

transport in a long-time simulation of the toroidal ETG turbulence
with the adiabatic ion response.7 In addition, kinetic ion effects on the
ETG turbulence have attracted the researcher’s attention. Multi-scale
simulations including both of ITG and ETG modes show that strong
suppression of ETG turbulence due to shearing by ITG turbulent
eddies.8–12 Even without ITG mode fluctuations, the adiabatic and
kinetic ion models have shown a discrepancy in the saturation levels
of toroidal ETG turbulence,8 which has not been entirely resolved yet.

Although the ETG modes at electron gyroradius scale are essen-
tially electrostatic modes, there was an attempt to discuss the effects of
the electromagnetic fluctuations,13 where the appearance of large
eddies of the order of electron skin depth was expected as a result of
an inverse cascade of ETG turbulence. Similarly, electromagnetic fluc-
tuations in ETG turbulence were also discussed in regard to the
Ohkawa’s electron heat transport scaling.14,15 However, since the elec-
tron skin depth is much longer than the electron gyroradius in low-b
plasma, many of the gyrokinetic simulation studies have focused on
the ETG turbulence at electron gyroradius scale in electrostatic
approximation.7,8,16–18

In this study, we investigate the effects of kinetic ions and electro-
magnetic fluctuations on shearless slab ETG driven turbulence. This
model is associated with a local model in the vicinity of the minimum
q surface in the reversed shear profile of tokamak discharges.1,19 There
is also increasing interest in the impact of ETG modes in the tokamak
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H-mode pedestal, where the slab ETG modes are believed to play an
important role.20 It is known that the saturated state of slab ETG tur-
bulence, e.g., quasi-steady zonal flows19 or coherent vortex street struc-
tures,21 is different from streamer-dominated toroidal ETG
turbulence. The simple shearless slab model helps us to focus on the
effect of nonadiabatic ions on ETG turbulence. We also exclude ITG
mode fluctuations by setting a zero ion temperature gradient in the
analysis. Since the nonadiabatic effect appears at ion gyroradius or
electron skin depth scale, which is much larger than that of the most
unstable ETG modes, we carry out nonlinear gyrokinetic simulations
with enough large box size and fine resolutions.

The remainder of this paper is organized as follows. Section II
explains governing equations of our model. Section III shows linear
and nonlinear simulation results, where we compare four types of sim-
ulations: electrostatic/electromagnetic and adiabatic/kinetic ions.
Finally, concluding remarks are given in Sec. IV.

II. MODEL EQUATIONS
A. Gyrokinetic electron/ion model

We consider nonlinear electromagnetic gyrokinetic equations22,23

with equilibriumMaxwellian background FsM. The perturbed distribu-
tion functions and electromagnetic potentials are written in terms of
the Fourier expansions

~f sðx; y; vk; l; tÞ ¼
X
kx

X
ky

~f skðvk; tÞFsM?ðlÞeiðkxxþkyyÞ; (1)

~/ðx; y; tÞ ¼
X
kx

X
ky

~/kðtÞeiðkxxþkyyÞ; (2)

~Akðx; y; tÞ ¼
X
kx

X
ky

~AkkðtÞeiðkxxþkyyÞ; (3)

where we assume translational symmetry in the z-direction and
Maxwell distribution of the perpendicular velocity dependence
FsM? ¼ e�lB=Tsms=ð2pTsÞ with mass ms, equilibrium temperature Ts,
and magnetic moment l. The background magnetic field is uniform
B ¼ Bðẑ þ hŷÞ where h� 1 is a tilt angle of the field line,24 so that
there is neither mirror force nor magnetic drift. The scale lengths of
density and temperature gradients in x-direction are Ln ¼ �ðd ln n=
dxÞ�1 and LTs ¼ �ðd lnTs=dxÞ�1, respectively. Integrating over the
perpendicular velocity space, one obtains the gyrokinetic Vlasov equa-
tion in the perpendicular wavenumber space k? ¼ kxx̂ þ ky ŷ and the
parallel velocity space vk

@~f sk
@t
þ ikkvk~f sk þ Nsk � Csk

¼
esFsMk
Ts

e�bsk=2 ix�Ts
~/k � vk~Akk
� �

� vk ikk~/k þ
@~Akk
@t

� �� �
;

(4)

where the parallel wavenumber is given by kk ¼ hky . The Maxwellian
distribution in the parallel direction is denoted by FsMk

¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=ð2pTsÞ

p
e�msv2k=ð2TsÞ with equilibrium density ne ¼ ni ¼ n.

The finite gyroradius effect after perpendicular velocity integration is
denoted by e�bsk=2 with bsk ¼ k2?q2

ts; qts ¼ vts=Xs; vts ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ts=ms

p
;

Xs ¼ esB=ms and electric charge �ee ¼ ei ¼ e. The diamagnetic
drift frequency is x�Ts ¼ x�s½1þ ðgs=2Þðmsv2k=Ts � 1� bskÞ� with

x�s ¼ �Tsky=ðesBLnÞ and gs ¼ Ln=LTs . Nsk and Csk represent the
nonlinear advection and collision terms

Nsk ¼ �
X
k0x

X
k0y

X
k00x

X
k00y

dk0þk00;k
k0xk
00
y � k0yk

00
x

B
e�bsk0 =2

� ~/k0 � vk~Akk0
� �

~g sk00 ; (5)

Csk ¼ �s
@

@vk
v2ts

@

@vk
þ vk

 !
� k2?q2

ts

" #
~g sk; (6)

with ~g sk ¼ ~f sk þ esFsMke�bsk=2~/k=Ts and the Kronecker’s delta di;j.
Small but finite collision frequency is modeled by a constant �s.
Perturbed electromagnetic potentials are determined by the quasi-
neutrality

~nek ¼ ~n ik; (7)

~nsk ¼ e�bsk=2
ð

~f skdvk �
esn
Ts
ð1� C0skÞ~/k; (8)

and the Ampère equation

k2?~Akk ¼ l0

X
s¼e;i

~jksk; (9)

~jksk ¼ ese
�bsk=2

ð
vk~f skdvk; (10)

where C0sk ¼ I0ðbskÞe�bsk with the zeroth-order modified Bessel func-
tion I0. The present model of shearless slab ETG with kinetic ion
model is an electromagnetic extension of Ref. 25.

B. Gyrokinetic electron and adiabatic ion model

Since typical scale of ETG is at electron gyroradius k? � q�1te ,
one takes a limit of k?qti � 1 which simplifies the ion response to
ETG fluctuations, called the adiabatic ion model. Ion parallel current
at ETG scale perturbations are negligible due to ion gyroaveraging
~jkik / e�bik ! 0, and ion density becomes the Boltzmann response
under C0ik ! 0

~n ik ¼ �
en
Ti

~/k: (11)

Hence, kinetic ion response is decoupled from electron-scale equa-
tions. Electron gyrokinetic Eqs. (4)–(10) with ~jkik ¼ 0 and Eq. (11)
close the set of equations. The shearless slab ETG model with the adia-
batic ion response is an electromagnetic extension of Ref. 21.

III. EFFECTS OF KINETIC IONS AND
ELECTROMAGNETIC PERTURBATIONS ON ETG

Since linear ETG instability is essentially electrostatic, simple
analyses of ETG turbulence have been done under the adiabatic ion
model and electrostatic approximation. To investigate the effects of
kinetic ions and electromagnetic fluctuations, we compare simulation
results of four different models, namely, combinations of adiabatic/
kinetic ions and electrostatic/electromagnetic models (EM). The non-
adiabatic ion response is expected to be important at scales similar to
or larger than the ion gyroradius qti. Similarly, the electromagnetic
fluctuations are important at scales larger than electron skin depth
de ¼ c=xpe ¼ qte=

ffiffiffi
b
p

with the electron b ¼ l0nTe=B2.
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In the following, the plasma parameters are set to be Ti=Te

¼ 1; ge ¼ 10; gi ¼ 0; H ¼ hLn=qte ¼ 0:5; �s ¼ 0:01; mi=me ¼ 750,
and b ¼ 0:002. For these parameters, the ratio of ion and electron
gyroradii is qti=qte ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miTi=ðmeTeÞ

p
� 27:4, and the ratio of elec-

tron skin depth and electron gyroradius is de=qte ¼ b�1=2 ¼ 22:4.

A. Dispersion relation of linear ETG modes

Neglecting Nsk and Csk from Eqs. (4)–(10), one derives the linear
dispersion relation of the collisionless ETG modes for kinetic ion
model with electromagnetic fluctuations. Figure 1 plots the linear
growth rate of ETG modes obtained from the models in Sec. II.
The maximum growth rate of ETG is cl;max ¼ 0:38vte=Ln at
k? ¼ 0:73q�1te ¼ 20q�1ti ¼ 16d�1e , which is not affected by the choice
of the models, since k? � q�1ti ; d

�1
e is well satisfied. From the compar-

ison with adiabatic/kinetic ion models in electrostatic approximation,
the growth rate at lower wavenumber k? < 0:05q�1te ¼ 1:37q�1ti is
enhanced due to the nonadiabatic ion response. However, these are
suppressed when electromagnetic fluctuations are taken into account.
The electromagnetic stabilization occurs around k? � 0:1q�1te
¼ 2:7q�1ti ¼ 2:2d�1e .

Because of reduction of l dependence in Sec. II, the dispersion
relation is slightly different from that given by the gyrokinetic equa-
tions with full l dependence. Although the details are discussed in
Appendixes A and B, the results of this section are unchanged. For the
sake of generality, we explain the stability properties found in Fig. 1 by
means of the linear dispersion relation of the gyrokinetic equations
with full l dependence (see the Appendix A)

X
s¼e;i

2a2s
k2?d

2
s

1� G
^

0s

� �" #
1þ

X
s¼e;i

2a2s
k2?d

2
s
G
^

2s

" #

þ
X
s¼e;i

2a2s
k2?d

2
s
G
^

1s

" #2
¼ 0; (12)

G
^

1s ¼ G
^

2s ¼ G
^

0s � C0sk 1� x�s
x

1� gsb
^

sk

2

 !" #
; (13)

G
^

0s ¼ C0sk

	
� asZðasÞ þ a�sZðasÞ

þa�Ts as 1þ asZðasÞð Þ � 1
2

1þ b
^

sk

� �
ZðasÞ

� �

; (14)

where b
^

sk ¼ 2bskð1� I1sk=I0skÞ with Ijsk ¼ IjðbskÞ and the jth-order
modified Bessel function Ij. The normalized frequencies are given by
as ¼ x=ð

ffiffiffi
2
p

kkvtsÞ; a�s ¼ x�s=ð
ffiffiffi
2
p

kkvtsÞ and a�Ts ¼ gsa�s for each
particle species s, and the plasma dispersion function is denoted by Z.

For electrostatic approximation, one takes b! 0 (equivalently
d�1s ! 0) limit of Eq. (12) and obtains the dispersion relation for elec-
trostatic kinetic ion model

1� G
^

0e ¼ �
Te

Ti
1� G

^

0i

� �
; (15)

preserving the form of the quasi-neutrality condition in Eq. (7). The
nonadiabatic response appears from the term of G

^

ji. In the adiabatic
ion model for k?qti � 1, ion finite gyroradius terms are neglected
C0ik ¼ G

^

ji ¼ 0, and the ion term is given only by the Boltzmann
response�Te=Ti.

The effects of kinetic ions and electromagnetic fluctuations on
linear ETG modes are understood by a reduced dispersion relation in
the following discussion. First, since the perpendicular wavenumber is
in the range q�1ti � k? � q�1te , one considers the drift kinetic limit for
electrons C0ek ¼ e�bek ¼ 1 and k2?q2

te ¼ 0. However, we retain ion
finite Larmor radius (FLR) effect C0sk at full order of k?qti. Second,
taking a fluid limit of electrons vte � x=kk, expand the electron
plasma dispersion function as

ZðaeÞ ¼ �
1
ae
� 1
2a3e
� 3
4a5e
þ oða�7e Þ: (16)

We note that this nonresonant limit is not applicable to the case when
ETG mode is stabilized vte � x=kk. The same expansion is applied to
the ion plasma dispersion function, keeping only the lowest order
term because of a�1i � a�1e . Then, one finds

G
^

0i ¼ C0ik 1� x�i
x

1� gib
^

ik

2

 !" #
þ oða�2i Þ; (17)

G
^

1i ¼ G
^

2i ¼ oða�2i Þ; (18)

which means that ion parallel motion is negligible in the electron gyro-
radius scale. In other words, the ion contribution is given by the polar-
ization 1� C0ik with modification by the diamagnetic drift term of
gyrocenter density

~n ik ¼ �
en
Ti

~/k 1� C0ik 1� x�i
x

1� gib
^

ik

2

 !" #( )
; (19)

~jkik ¼ 0: (20)

We here refer to the above as the FLR ion model. Third, for simplicity,
we assume a flat density profile 1=Ln � 0 and Ti ¼ Te. As a result, the

FIG. 1. Linear growth rate cl as functions of the poloidal wavenumber ky obtained
from the models in Sec. II. Violet, green cyan, and orange lines correspond to the
results given by electrostatic adiabatic ion model [Eq. (11) and ~Akk ¼ 0], electro-
static kinetic ion model (~Akk ¼ 0), electromagnetic adiabatic ion model [Eq. (11)],
electromagnetic kinetic ion model, respectively.
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dispersion relation is reduced to that given by the fluid electrons and
the ion polarization

1þ 1
k2?d

2
e

1� a�Te

ae

� �� �
1� G

^

0i

� �
� 1
2a2e

1� a�Te

ae

� �
¼ 0; (21)

which is consistent with Eq. (7) in Ref. 26 with 1=Ln � 0; Ti ¼ Te,
and neglecting grad-B and magnetic curvature. In contrast to Ref. 26,
where ion was adiabatic G

^

0i ! 0 and electron polarization
1� C0ek ! k2?q2

te was retained for k?� q�1te , we here consider
q�1ti � k? � q�1te with the ion FLR terms but not for electrons. Each
term in Eq. (21) can be related to that in the equation of electron fluid
motion: the first term in the square brackets is the electron inertia, the
second term is the induced electric field, and the third term propor-
tional to a�Te=ðk2?d2eaeÞ is the electromagnetic diamagnetic effect. The
factor of 1� G

^

0i means the ion FLR correction by the polarization
and diamagnetic drift. The second term from the last stems from the
parallel electrostatic field, and the last term is the parallel gradient of
electron pressure. Details on the relation to fluid equation are dis-
cussed in Appendix C.

The validity of the FLR ion model and the fluid electron approxi-
mation is examined in Fig. 2. The FLR ion model shows almost exact
agreement with the full gyrokinetic result. The fluid electron model
also captures the essential features, that is, destabilization by the ion
FLR effect at low ky and stabilization by the electromagnetic effect. It is
noted that in the fluid model of Eq. (21), the diamagnetic drift terms
are neglected so that the ion FLR effect is merely given by the ion
polarization G

^

0i ¼ C0sk . Results shown in Fig. 2 are consistent with
those in Fig. 1 with the reduced model equation for the l dependence,
where the ion polarization leads to enhancement of the ETG growth.

If we also apply a steep electron temperature gradient approxima-
tion 1� a�Te=ae, Eq. (21) results in

a3e �
a�Te

k2?d
2
e
a2e þ

a�Te

2ð1� G
^

0iÞ
¼ 0; (22)

which consists of the electron inertia, the electromagnetic diamagnetic
term (steming from ~B 	 rP=B), and the parallel gradient of perturbed
electron pressure (i.e.,rk~pe) divided by the ion FLR factor ð1� G

^

0iÞ.
In the case that G

^

0i is approximated by C0ik , Eq. (22) is written as a
cubic equation for x ¼ ae

ffiffiffi
2
p

kkvte. In the electrostatic limit (b¼ 0
or d�1e ! 0), an instability is driven by the electron temperature
gradient through the electron inertia and the parallel compression
a3e ¼ �a�Te=½2ð1� G

^

0iÞ� for the wave propagating with a�Te > 0,
which is a well-known mechanism of destabilization of the electro-
static slab ETG mode [e.g., Eq. (5) in Ref. 27 for slab ETG, which is
isomorphic to Eq. (3.91) of slab ITG in Ref. 28]. Considering ETG
modes (x�i=x < 0) at low k? (1� gib

^

ik=2 > 0), the ion FLR factor
1� G

^

0i < 1 modifies the electric field, which increases the magnitude
of complex frequency, namely, enhances both of linear growth rate
and real frequency. In the electromagnetic case, the diamagnetic term
can stabilize the slab ETG modes.26–28 A condition providing three
stable real roots ofx in Eq. (22) determines the criteria for electromag-
netic stabilization of ETG, that is,

b >
3k2?q2

te

2a2=3�Te
ð1� G

^

0iÞ1=3
: (23)

The electromagnetic stabilization of ETG is found even in the adiabatic

ion case (G
^

0i ¼ 0). The critical wavenumber of stabilization is given

by k2? < k2?;c ¼ 2a2=3�Te=ð3d2e Þ. Substituting the present parameters,

a�Te ¼ ge=
ffiffiffi
2
p

H
� �

¼ 10
ffiffiffi
2
p

and de ¼ 22:4qte, one estimates
k?;c ¼ 1:97d�1e ¼ 0:088q�1te , which shows a good agreement with the
critical wavenumber of the slab ETG instability with electromagnetic
fluctuations in Fig. 1.

Through the present linear analysis, we have found that one of
the important nonadiabatic ion effects is the ion FLR polarization
(with modification by diamagnetic drift of gyrocenter density), which
reduces the effective dielectricity than that in the adiabatic ion model.
As a result, both of linear growth rate and real frequency of ETG
modes at k? � q�1ti increase. On the other hand, the electromagnetic
effect stabilizes the ETG modes mainly through the diamagnetic term
(~B 	 rP=B), which partially cancels parallel gradient of perturbed elec-
tron pressure (rk~pe). Since the critical wavenumber of stabilization is
proportional to the inverse of electron skin depth k?;c � d�1e , low-k?
ETGmodes are stabilized as the plasma b increases.

B. Nonlinear simulations of ETG turbulence

In numerical simulations of ETG turbulence, time integration is
carried out by means of the fourth-order Runge–Kutta–Gill method
and the fourth-order central finite difference methods are used for
evaluating the velocity-space derivatives in the collision operator. The
nonlinear advection term is calculated by means of the spectral
method with the 3/2-rule for de-aliasing in the wavenumber space.
The simulation domain is set to be square with Lx ¼ Ly
¼ 160pqteð¼ 18:3qti ¼ 22:4deÞ, and �5vte 
 vk 
 5vte. The phase-
space resolution is set to be ðNx;Ny;Nvk Þ ¼ ð1024; 1024; 512Þ.
Hereafter, physical quantities are normalized as x ¼ x0=qte; y
¼ y0=qte; vk ¼ v0k=vte; t¼ t0vte=Ln; �s¼ �0sLn=vte; FsMk ¼F0sMkvts=n;

~f sk
¼~f

0
skvtsLn=ðnqteÞ; ~/k¼ ~/

0
keLn=ðTeqteÞ, and ~Akk¼ ~A

0
kkevteLn=

ðTeqteÞ, where the prime means dimensional quantities. The plasma
parameters are the same as those used for the linear analysis.

FIG. 2. Linear growth rate cl as functions of the poloidal wavenumber ky. Solid
orange, red dashed, and violet dashed lines correspond to the results given by
electromagnetic gyrokinetic electron/ion model [Eq. (12)], gyrokinetic electron and
FLR ion model [Eq. (12) with Eqs. (17) and (18)], fluid electron and FLR ion model
[Eqs. (21) and (17)], respectively. Solid green, cyan dashed, and black dashed lines
are the models same above, but in the electrostatic approximation b¼ 0.
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Figure 3 plots the electron heat diffusivity

ve ¼
LTe

nTe

X
kx

X
ky

Re �
ikye�bsk=2~/k

2B

ð v2k
v2te
� 1� bek

 !
~f
�
ekdvk

" #
;

(24)

for the adiabatic/kinetic ion and electrostatic/electromagnetic models.
Initial growths found in all models are similar for t < 50Ln=vte, since
the most unstable mode at k? � 0:73q�1te is not influenced by the ion
or electromagnetic responses. After the initial saturation of 50
< tvte=Ln < 150; vte in the electrostatic adiabatic ion model slowly
decreases till t � 800Ln=vte, which is associated with slow develop-
ment of zonal flows as discussed in Refs. 7 and 21. Although the initial
saturation level for the kinetic ion case is similar to that of the adiabatic
ion one, the secondary growth of vte is observed after t � 200Ln=vte,
where the linear growth rates of low-ky modes are enhanced by the ion
polarization. Finally, the heat flux in electrostatic kinetic ion model
exceeds ve � 100vteq2

te=Ln in the electron gyro-Bohm unit. Moderate
levels of heat flux are observed in the cases with the adiabatic/kinetic
ion response and electromagnetic fluctuations, but no secondary
growth of low-ky modes due to electromagnetic stabilization. In addi-
tion, no slow decrease in the heat flux is observed in contrast to the
electrostatic adiabatic ion model, which suggests a difference in the
zonal flow generation between the electrostatic and electromagnetic
models. In the electromagnetic cases, the kinetic ion model gives
slightly higher heat flux (about 15%) than that of the adiabatic ion
one.

Snapshots of the electrostatic potential at t ¼ 800Ln=vte in each
model are shown in Fig. 4. Small isotropic vortices and zonal flow
structures of wavelength�30qte dominate in the electrostatic adiabatic
ion model [Fig. 4(a)]. Since the adiabatic ion model does not contain
the ion gyroradius scale qti and the electrostatic approximation
excludes the electron skin depth scale de, the characteristic scales of
vortices and zonal flows are governed only by electron dynamics, such
as the Rhines scale of ETG turbulence.29,30 On the other hand, large
scale fluctuations of the order of the simulation box size,
k? ¼ 0:0125q�1te ¼ 0:34q�1ti , appear in case with kinetic ions [Fig.

4(b)]. The long wavelength modes are destabilized by the ion polariza-
tion and drive the extremely strong heat transport. These low-ky
modes are stabilized in the electromagnetic case [Fig. 4(d)]. As a
results, typical scales of adiabatic/kinetic ion and electromagnetic
models (c) and (d) are similar to (a),�30qte � qti � de.

More detailed differences are found in spectra of electrostatic
field energy

Wk ¼
X
s¼e;i

e2sn
Ts

1� C0skð Þ j
~/kj2

2
; (25)

in wavenumber space. In Fig. 5(a), one clearly see distinct peaks of
ky¼ 0 zonal flows in the electrostatic adiabatic ion model. From con-
ventional understandings,31 shearing by zonal flows stabilizes turbu-
lent fluctuations. As zonal flows slowly develop, we have observed a
continuous decrease in turbulent transport in Fig. 3. On the other
hand, zonal flows are weakened in the electromagnetic cases [see Figs.
5(c) and 5(d)], where the energy spectra are more isotropic with faint
peaks of zonal flows. It suggests that a finite-b effect weakens the zonal
flow generation, probably, due to partial cancelation of the Reynolds
stress drive by the Maxwell stress.32 Poloidal wavenumbr (ky) spectra
of the field energy in Fig. 6 show the difference more clearly. There is a
significant peak of ky¼ 0 zonal flows in the electrostatic adiabatic ion
model. On the other hand, in the electromagnetic case, zonal flow
component is reduced, and ky 6¼ 0 turbulent components are
enhanced from those in the electrostatic case.

Poloidal wavenumber spectra of the electron heat flux are shown
in Fig. 7 for the adiabatic/kinetic ion and electromagnetic models.
Although the linear growth rates are almost identical (see Fig. 1), low-
ky (ky � 0:1q�1te � 2:7q�1ti ) components of the heat flux in the

FIG. 4. Color contours of electrostatic potential ~/ðx; yÞ (normalized by
ðqte=LnÞTe=e) at t ¼ 800Ln=vte are plotted for (a) electrostatic adiabatic ion, (b)
electrostatic kinetic ion, (c) electromagnetic adiabatic ion, and (d) electromagnetic
kinetic ion models, respectively.

FIG. 3. Time evolution of electron heat diffusivity ve. Violet, green, cyan, and
orange lines correspond to the results from electrostatic adiabatic ion, electrostatic
kinetic ion, electromagnetic adiabatic ion, and electromagnetic kinetic ion models,
respectively.
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turbulent state of the kinetic ion model are higher than those of the
adiabatic ion model. As discussed in the linear theory, Sec. IIIA, an
important nonadiabatic ion effect is the ion polarization which enhan-
ces the electrostatic potential fluctuation such that ~/k � �~neTi=ðenÞ
to ~/k � �~neTi=½enð1� G

^

0iÞ�. Since the effect is valid even in the
nonlinear turbulence, we conclude that the ion polarization enhances
low-ky components of ETG turbulence.

It is noteworthy that the linear growth rates in Fig. 1 are on the
order of (AiEM) � (KiEM) < (AiES) < (KiES), where Ai, Ki, ES, and

EM are the abbreviations of adiabatic ion, kinetic ion, electrostatic,
and electromagnetic models, respectively. Nevertheless, magnitudes of
the turbulent transport in Fig. 3 are on the order of (AiES)� (AiEM)
� (KiEM)� (KiES). Generation of the zonal flows is responsible for
the reduced transport in AiES model, while it is weakened in EM cases.
It is also confirmed that the low-k? ETG modes destabilized in KiES
model have the significant impact on the heat flux.

C. Discussions on turbulent spectra

Let us try to understand the formation of turbulent energy spec-
tra as a competition among five inherent scale lengths k�1l ; k�1R ;
k�1q ; k�1d , and k�1i , defined below. The first scale k�1l � qte is the elec-
tron gyroradius, which characterizes the scale of linear ETG instability.
The subsequent two scales are derived in analogy with the
Hasegawa–Mima equation.33 Considering finite amplitude of turbulent
fluctuations U � jr~/=Bj, one finds the second scale k�1R that the non-
linear turbulent mixing rate balances with the linear wave dispersion,
which is called the Rhines scale34 kRqte �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qtevte=ðLnUÞ

p
. The third

scale k�1q is related to the adiabatic ion response in Poisson equation
ðTe=Ti þ k2?q2

teÞ~/ ¼
Ð

~f ekdvk, where the long-wavelength approxima-
tion k?qte � 1 is employed. Although it resembles the relation between
potential and vorticity in the 2D Navier–Stokes equation k2?

~/ ¼ x,
the adiabatic ion response makes a difference in the long-wavelength
behavior of the Hasegawa–Mima equation. At the long-wavelength scale
of k2?q2

te � Te=Ti, the potential in Hasegawa–Mima equation
(~/ / Ti=Te) becomes much smaller than that in 2D Navier–Stokes
equation [~/ / 1=ðk2?q2

teÞ]. As a result, in the Hasegawa–Mima system
inverse cascade slows down at k2?q2

te � Te=Ti, where the characteristic
scale is called the scale of quasi-crystallization,35 kqqte �

ffiffiffiffiffiffiffiffiffiffiffi
Te=Ti

p
.

(When one considers the nonadiabatic ion polarization, it is modified to
kqqte �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� C0ikÞTe=Ti

p
.) Though the above three scales appear

even in the electrostatic adiabatic ion model, the fourth scale of the elec-
tron skin depth k�1d � de and the fifth scale of ion gyroradius k�1i � qti
provide typical scales of electromagnetic and kinetic ion effects,
respectively.

Correspondence of the Rhines and quasi-crystallization scales
k�1R and k�1q to the formation of turbulent energy spectra in slab ETG
turbulence was investigated in Ref. 30, where the inverse energy

FIG. 6. Electrostatic field energy as functions of poloidal wavenumber ky, summed
over radial wavenumbers Wky ¼

P
kx Wk at t ¼ 800Ln=vte. Results of adiabatic

ion and electrostatic/electromagnetic models are plotted in violet and green lines,
respectively.

FIG. 7. Electron heat diffusivity as functions of poloidal wavenumber ky at
t ¼ 800Ln=vte. Results of adiabatic/kinetic ion and electromagnetic models are
plotted in violet and green lines, respectively.

FIG. 5. Color contours of electrostatic field energy spectra Wk (normalized by
ðqte=LnÞ2nTe) in wavenumber space at t ¼ 800Ln=vte for (a) electrostatic adiabatic
ion, (b) electrostatic kinetic ion, (c) electromagnetic adiabatic ion, and (d) electro-
magnetic kinetic ion models, respectively.
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cascade is prevented around either kR or kq, determined by the compe-
tition of kR=kq. Because of the anisotropic dispersion of the drift
waves, the dominance of the Rhines scale kR � kq predicts formation
of zonal flows through turbulent inverse cascade. On the other hand,
isotropic turbulence spectra are observed when the scale of quasi-
crystallization dominates kq � kR.

With regard to the zonal flow generation, there are a number of
studies based on modulational instability analyses, which are typically
categorized into two classes: (i) parametric modulational instability
analysis assuming the existence of a coherent primary wave (e.g.,
Ref. 6), or (ii) broad-band modulational instability analysis treated by
the wave-kinetic equation with the scale separation assumption (e.g.,
Ref. 36). At the electron skin depth scale kd, zonal flow generation
could be weakened due to partial cancelation of the Reynolds stress by
the Maxwell stress, as discussed in a work of parametric modulational
instability analysis on the drift-Alfv�en waves.32 At the ion gyroradius
scale ki, the kinetic ion response could enhance the zonal flow genera-
tion rate as discussed in a work of parametric modulational instability
analysis,37 where the effects of electrostatic adiabatic/kinetic ion mod-
els on electron/ion-scale primary wave were examined.

Here, we evaluate the characteristic scales for the simulation
results in Sec. III B. The scale of linear ETG mode is kl � 0:8q�1te
from Fig. 1. With U � 20qtevte=Ln for ~/ � 100qteTe=ðeLnÞ and
k? � 0:2q�1te in Figs. 4 and 5, the Rhines scale is kR � 0:22q�1te . The
other three are determined only by plasma parameters: the scale of
quasi-crystallization kqqte �

ffiffiffiffiffiffiffiffiffiffiffi
Te=Ti

p
¼ 1, the electron skin depth

scale kd � d�1e ¼ 0:045q�1te , and the ion gyroradius scale ki � q�1ti
¼ 0:036q�1te . All scales are covered in the simulation box size
(Lx ¼ 160pqte so that k?;min ¼ 0:0125q�1te ). Comparing kl; kR, and
kq with the ETG turbulence spectra in the electrostatic adiabatic ion
model [Fig. 5(a)], the void structure in the spectrum at low k? seems
to close to the Rhines scale k?qte � 0:2. Then, the formation of zonal
flows is also observed, which is consistent with Ref. 30. In the electro-
magnetic cases, weakening of zonal flow generation is observed in
Fig. 5(c), although the wavenumber of zonal flows k?qte � 0:2 is rela-
tively larger than the wavenumber of the electron skin depth
kdqte � 0:045. In the electromagnetic kinetic ion simulation in Fig.
5(d), we do not observe the ion-scale zonal flows expected in Ref. 37.
A possible explanation is that the turbulent inverse cascade was sus-
pended at the Rhines scale, and thus, the primary wave at ion-scale
was not excited in the simulation.

To quantify the effective mechanisms determining the ETG tur-
bulence spectrum, parameter scans for kl; kR; kq; kd, and ki are
desired by changing, e.g., L�1n ; Te=Ti, b, and mi=me, remain for future
works.

IV. CONCLUSIONS

We have investigated the effects of kinetic ions and electromag-
netic fluctuations on the slab ETG-driven turbulence based on
the gyrokinetic theory and simulation. Although typical scales of the
ETG instability are of the order of the electron gyroradius qte, the
nonadiabatic ion effect appears at the ion gyroradius scale
qti ¼ qte

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miTi=ðmeTeÞ

p
, and the electromagnetic effect plays a role at

the electron skin depth scale de ¼ qte=
ffiffiffi
b
p

.
One of the important nonadiabatic ion effects is the ion polariza-

tion, which enhances the amplitude of electrostatic potential by reduc-
ing the dielectricity than that in the adiabatic ion model. It leads to

destabilization of linear ETG modes at low k? (�q�1ti ), and results in
the extremely strong electron turbulent transport in the electrostatic
limit. Enhancement of electrostatic potential by the ion polarization
makes a finite difference in the heat transport between the electromag-
netic adiabatic/kinetic ion models. The latter gives a slightly higher
electron heat flux than the former.

The electromagnetic effect stabilizes the slab ETG instability at low
k? (�d�1e ), due to partial cancelation of parallel gradient of perturbed
electron pressure by the electromagnetic diamagnetic term. The low-k?
ETG instability with the ion polarization is stabilized when qti � de. In
nonlinear turbulence, the electromagnetic effect weakens the zonal flow
generation. Consequently, the resultant turbulent transport levels are
found on the order of (electrostatic adiabatic ion model with strong
zonal flows) � (electromagnetic adiabatic ion model) � (electromag-
netic kinetic ion model with the ion polarization and the electromag-
netic stabilization) � (electrostatic kinetic ion model with
destabilization of the low-ky ETGmodes by the ion polarization).

Since the enhancement of electrostatic potential by the ion polari-
zation is a general consequence, and applicable not only to the shearless
slab but also to the toroidal plasmas, a similar mechanism should work
in toroidal ETG turbulence, while it has not been paid much attention in
previous literature. Enhancement of linear growth rate of toroidal ETG
mode by ion polarization is confirmed in our latest analysis.38 Nonlinear
turbulent flux, however, is reduced in kinetic ion cases than that in adia-
batic ion cases,8,38 in contrast to slab ETG turbulence. Furthermore, roles
of electromagnetic fluctuations are also different; electromagnetic line-
bending effect ~Ak tends to destabilize the toroidal ETG modes as b
increases.26 Magnetic compression ~Bk can also have stabilizing or desta-
bilizing effects on toroidal ETG modes via the coupling with magnetic
drift,39 which is not expected in slab ETG modes. In addition, coupling
with trapped electron dynamics makes the problem more complicated.
Although the issues on the toroidal ETG turbulence has been an active
research subject related to spherical tokamaks,40–42 further studies are
needed to better understand the full impact of kinetic ions and electro-
magnetic fluctuations on toroidal ETG turbulence.
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APPENDIX A: TWO-DIMENSIONAL SHEARLESS
SLAB MODEL

A two-dimensional shearless slab model is employed in this
paper, which was used in previous publications.21,24,25 To reduce
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the dimension, we restrict our analysis into the system having the
translational symmetry @z ¼ 0. The magnetic field is almost aligned
in the symmetric coordinate but slightly tilted B ¼ Bðẑ þ hŷÞ.
Then, the field-aligned wavenumber is given by kk ¼ B=B 	 k ¼ hky .
Because the ratio kk=ky ¼ h is fixed, this model is also called a non-
resonant single helicity perturbation model.29 Since the considered
perpendicular wavelength is of the order of gyroradius k? � q�1, a
typical parallel connection length Lk is characterized by h ¼ q=Lk,
as drawn in Fig. 8. To satisfy the gyrokinetic ordering kk=k?
� q=Ln � 1, the tilt angle should be small as h ¼ q=Lk � q=Ln
� 1. There are three geometrical parameters representing back-
ground scales, the scale lengths of density and temperature gra-
dients Ln, LTs , and Lk. In numerical simulation, we used Ln as the
normalization length and treated H ¼ Ln=Lk and gs ¼ Ln=LTs as
parameters.

In this two-dimensional shearless slab system, the conven-
tional delta-f gyrokinetic equations22,23 (l-dependence is still
retained here, f

^

skðvk;l; tÞ) are given by

@ f
^

sk

@t
þ ikkvk f

^

sk

¼ esFsM
Ts

J0sk ix
^

�Ts ~/k � vk~Akk
� �

� vk ikk~/k þ
@~Akk
@t

� �� �
;

(A1)

0 ¼
X
s¼e;i

es

ð
J0sk f

^

skdv
3 � esn

Ts
ð1� C0skÞ~/k

� �
; (A2)

k2?~Akk ¼ l0

X
s¼e;i

es

ð
J0skvk f

^

skdv
3; (A3)

where the nonlinear advection and collision terms are omitted
for simplicity. The l ¼ msv2?=ð2BÞ dependence appears in the
background Maxwellian distribution FsM ¼ FsMkðvkÞFsM?ðv?Þ,
the diamagnetic drift frequency x

^

�Ts ¼ x�s½1þ ðgs=2Þðmsðv2k
þv2?Þ=Ts � 3Þ�, and the gyroaverage operator J0sk ¼ J0ðk?qsÞ with
the zeroth-order Bessel function J0 and qs ¼ msv?=ðesBÞ.

From Eq. (A1), the linear response of gyrocenter distribution
is obtained as

f
^

sk ¼ �J0sk
esFsM
Ts

~/k �
x� x

^

�Ts

x� kkvk
~/k � vk~Akk
� �" #

: (A4)

Substituting the above into Eqs. (A2) and (A3), one derives the lin-
ear dispersion relation

X
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^
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¼ 0; (A5)

G
^

js ¼
ð
J20sk

x� x
^

�Ts

x� kkvk

FsM
n

kkvk
x

� �j

dv3: (A6)

Explicitly writing down G
^

js

G
^

1s ¼ G
^

2s ¼ G
^

0s � C0sk 1� x�s
x

1� gsb
^

sk

2

 !" #
; (A7)

G
^

0s ¼ C0sk

	
� asZðasÞ þ a�sZðasÞ

þa�Ts as 1þ asZðasÞð Þ � 1
2

1þ b
^

sk

� �
ZðasÞ

� �

; (A8)

where b
^

sk ¼ 2bskð1� I1sk=I0skÞ with Ijsk ¼ IjðbskÞ and the jth-order
modified Bessel function Ij. The normalized frequencies are given

by as ¼ x=
ffiffiffi
2
p

kkvts
� �

; a�s ¼ x�s=
ffiffiffi
2
p

kkvts
� �

and a�Ts ¼ gsa�s, and

the plasma dispersion function is denoted by Z.

APPENDIX B: PERPENDICULAR VELOCITY SPACE
CLOSURE

To reduce the dimension further, we have assumed the per-
pendicular velocity dependence to be a Maxwell distribution

f
^

skðvk; l; tÞ ! ~fskðvk; tÞFsM?ðlÞ. Taking the perpendicular velocity
space integral�¼

Ð
dl2pB=ms of Eq. (A1) and using the mathemat-

ical formulas J0skFsM? ¼ e�bsk=2, one derives Eqs. (4)–(10) in Sec.
II. This approach reduces computational cost of numerical simula-
tion, while the modified gyroaveraging factor e�bsk=2 causes a slight
difference in linear dispersion relation. This is a known problem
when developing a gyrofluid model. One approach to resolve this
problem is a particle position moment approach, and another is a
gyrocenter moment expansion with J0skFsM? �

ffiffiffiffiffiffiffiffi
C0sk
p

approxima-
tion.43 See Refs. 43 and 44 for more details. In this Appendix, we
explain how linear dispersion relations in full gyrokinetic equa-
tions, Eq. (A5), and in the perpendicular Maxwellian model, Eq.
(B2), are different.

Neglecting Nsk and Csk from Eqs. (4), one derives the linear
response of gyrocenter distribution as

~fsk ¼ �e�bsk=2
esFsMk
Ts

~/k �
x� x�Ts

x� kkvk
~/k � vk~Akk
� �� �

: (B1)

We note that perpendicular velocity space has already been inte-
grated out. Substituting the above into Eqs. (7) and (9), one derives
the linear dispersion relation for the model in Sec. II

FIG. 8. Two-dimensional shearless slab model geometry. Translational symmetry
@z ¼ 0 is also imposed.
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X
s¼e;i
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1þ

X
s¼e;i

2a2s
k2?d

2
s
G2s

" #

þ
X
s¼e;i

2a2s
k2?d

2
s

G1s

" #2
¼ 0; (B2)

Gjs ¼ e�bsk
ð

x� x�Ts

x� kkvk

FsMk
n

kkvk
x

� �j

dvk; (B3)

where

G1s ¼ G2s ¼ G0s � e�bsk 1� x�s
x

1� gsbsk
2

� �� �
; (B4)

G0s ¼ e�bsk
	
� asZðasÞ þ a�sZðasÞ

þa�Ts as 1þ asZðasÞð Þ � 1
2
ð1þ bskÞZðasÞ

� �

: (B5)

Comparing Eqs. (A5) and (B2), differences are e�bsk ! C0sk and
bsk ! b

^

sk ¼ 2bskð1� I1sk=I0skÞ. Because these difference could be
non-negligible at small wavelengths, we should check whether these
differences change the ion finite Larmor radius effects on ETG
modes.

The linear dispersion relations obtained from the gyrokinetic
equations with full l dependence, Eq. (A5), and from the perpen-
dicular Maxwellian model, Eq. (B2), are compared in Fig. 9. The
growth rate around kyqte < 0:05 are enhanced by ion finite Larmor
radius effects in both of electrostatic full gyrokinetic and perpendic-
ular Maxwellian models. Stabilization by electromagnetic fluctua-
tions also shows quantitative agreement. The destabilization by ion
FLR and stabilization by electromagnetic fluctuations are observed
in all cases in Fig. 9 independent to the choice of tilt angle H.

APPENDIX C: LINEAR DISPERSION RELATION
OF SLAB ETG FROM FLUID DESCRIPTION

As discussed in Sec. III A, the linear dispersion relation of slab
ETG instability is understood in the electron fluid approximation
kkvk � x, which drops contributions from higher-order vk
moments. Relations between kinetic and fluid equations for electro-
static drift waves are described in Ref. 45. For the ETG modes
including electromagnetic fluctuations, a kinetic dispersion in Ref.
26 can be reduced to fluid equations in Ref. 13. In this Appendix,
we summarize a set of fluid equations for the slab ETG instability in
the electron gyroradius scale, including the ion FLR effects and elec-
tromagnetic fluctuations.

FIG. 9. Linear growth rate cl as functions of the poloidal wavenumber ky. Violet, green, cyan, and orange lines correspond to the results given by electrostatic full gyrokinetic
model [Eq. (A5) with b¼ 0], electrostatic perpendicular Maxwellian (e�bsk=2 closure) model [Eq. (B2) with b¼ 0], electromagnetic full gyrokinetic model [Eq. (A5)], electromag-
netic perpendicular Maxwellian (e�bsk=2 closure) model [Eq. (B2)], respectively. Panels (a)–(d) change the tilt angle as H ¼ 0:1; 0:3; 1:5, and 2.0.
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Considering a flat density profile (rn ¼ 0) but with a finite
temperature gradient (rPe ¼ �x̂nTe=LTe ) in a homogeneous equi-
librium magnetic field, one describes a set of electron fluid equa-
tions. The continuity equation involves the parallel compression

�ix~nek ¼ �inkk~vkek: (C1)

Forces in the equation of motion are the parallel gradient of per-
turbed pressure, gradient of the equilibrium pressure along per-
turbed magnetic field (electromagnetic diamagnetic term), and the
electrostatic and induced parallel electric fields

�ixmen~vkek ¼ �ikk~pek þ ienx�Te
~Akk þ en ikk~/k � ix~Akk

� �
:

(C2)

Neglecting the parallel heat flux, the pressure equation is given by
E�B advection of the equilibrium pressure

�ix~pek ¼ �ienx�Te
~/k: (C3)

Electromagnetic potentials are determined by the quasi-neutrality
and the Ampère equations

~nek ¼ ~n ik; (C4)

k2?~Akk ¼ �l0en~vkek; (C5)

where the ion parallel current is neglected. The ion particle-position
density consists of the ion polarization and the ion gyrocenter den-
sity ~nðgcÞik

~n ik ¼ �ð1� C0ikÞ
en
Ti

~/k þ ~nðgcÞik : (C6)

In the continuity equation of gyrocenter density, the ion parallel
motion is negligible at electron gyroradius scale. Even in a flat den-
sity profile, the ion diamagnetic term survives due to the ion FLR
effects

@~nðgcÞik

@t
¼ �ix�Tib

^

ik

2
C0sk

en
Ti

~/k; (C7)

when there is the ion temperature gradient. Substituting all others
into the equation of motion, one finds

�s ¼
k2kv

2
te

x2

x�Te

x
� x�Te

x
l0e

2n
k2?me

s�
k2kv

2
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x2
� l0e

2n
k2?me

s; (C8)

where the terms in the same order of Eq. (C2) are retained. The ion
nonadiabatic FLR effects are represented in s ¼ f1� C0ik½1
þx�Tib

^

ik=ð2xÞ�gTe=Ti. After normalization, it reads

�s ¼ 1
2a2e

a�Te

ae
� a�Te

ae

1
k2?d

2
e
s� 1

2a2e
þ 1
k2?d

2
e
s; (C9)

where one finds correspondence of each term in the equation
of motion (C2) and the fluid limit of the linear dispersion relation,
Eq. (21).
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