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Preface

With the advent of the AI era, informatics research on recreational games
has attract wide attention. Indeed, it is reported that AI programs for several
recreational games such as chess, Shogi and Go succeeded in beating even top
professional human players. It is a remarkable success of informatics in the
sense that the victories are based on several fundamental information/computer
technologies such as machine learning, simulations and hardware developments.
In other words, the treatment of “games” in such research might however be
rather a benchmark problem for the achievement of AI technology or performance
evaluation than the research object; games themselves are not studied as the
central objects of research but used as the measures of performance evaluation.
Apart from such a treatment, “games” themselves have long attracted the interest
of many researchers. A typical research field about “games” is game theory,
which was launched as a tool for modeling economic activities. However, due to
the original purpose of the development of game theory, recreational games are
unfortunately not the main subject of research in game theory. As above, the study
of entertainment games is often treated as a secondary research topic.

Combinatorial game theory is a branch of mathematics that studies winner and
loser in games themselves. However, most of the studies in combinatorial game
have been conducted on games with abstract game which we are not very familiar
with, and on difficult games even if all program in the world cannot compute the
winner. Is there a game that is neither too computationally hard nor too abstract?
I consider that possible candidates are so-called card-discarding games.

This thesis is devoted to analyses of the time complexity of winner decisions
in card-discarding games, which are widely played in the world, using the each
player’s hand as input. First, I consider TANHINMIN, which is a simplified version
of the widely played gameDAIHINMIN in Japan. I present a linear-time algorithm
that determines which player has a winning strategy after all cards are distributed
to the players in TANHINMIN game and its variant. Furthermore, this thesis is
also concerned with how I obtain a winner for the imperfect information variant of
TANHINMINgame. I newly introduce an oraclemodel inwhich the oracle provides
partial information about the opponent’s hand. Interestingly, when players can get
partial information of the opponents’ hands via oracle, the winning player can find
a winning strategy as if it is the (perfect information) TANHINMIN. Furthermore,
I show various results about other relationships between the power of oracles and
the existence of a computable winning strategy. I also consideredmultiplayer card-
discarding games. I newly introduce open-hand BABANUKI based on the ordinary
BABANUKI. I consider the winning strategy of open-hand variant BABANUKI.
Although the 2-players case is almost obvious, the 3-players case is not, and I give
a necessary and sufficient of the existence of the winning strategy. Furthermore,
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for 4-players case, there is a configuration where an endless-loop phenomenon, so-
called “repetition draw”, occurs. Finally, I consider winning strategy 2-players
SHICHINARABE game. Through the graphical generalization, I show that an
winner decision algorithm of the general game can be computed in linear time,
and show that the time complexity of the game under some local rules.

Hironori Kiya
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Chapter 1

Introduction

1.1 Background

With the advent of the AI era, “games,” especially recreational games, have gained
significance in several aspects. For example, a typical application of AI in games
is to design game-playing algorithms based on machine learning. Indeed, some
AI-based game-playing algorithms are superior to the top human players in many
abstract games [52,53], demonstrating the significant development of AI technolo-
gies. Although these approaches seem to be new, game research has a long history.
One traditional game research is game theory, which mathematically models and
analyzes the behavior of human decision-making in social life as a “game.” Game
theory is a fundamental area of economics research, and was used by the winners
of Nobel Prizes in Economics in 1994 and 2012 [2]. However, these are not
studies of recreational games themselves. The former study only treats games as
a benchmark for machine learning, taking advantage of the good match between
machine learning reward systems and games. In other words, most of the interest
is in the performance of the machine learning method, not the game itself. The
main purpose of the latter research is to facilitate the analysis of social phenomena
through games. In contrast, recreational games themselves are not completely
outside of game theory; however, they are almost entirely outside the scope of
interest of game theorists.

In contrast to these research fields, combinatorial game theory is a discipline
that evaluates the mathematical properties of games themselves. Combinatorial
game theory is an academic system that originated fromBouton’s work onNim and
developed greatly with the Sprague-Grundy theorem in the 1930s. Combinatorial
game theory mainly characterizes mathematically the “winning way” for abstract
games. In this thesis, similar to combinatorial game theory, we analyze the game
itself. Our goal is to analyze the combinatorial games and similar games using an

9



10 CHAPTER 1. INTRODUCTION

algorithmic approach called winner decision.

1.1.1 Combinatorial game
Combinatorial games are defined as two-player games with sequential game, per-
fect information, and no chance [51].

Two-player games: The games played by precisely two players. Almost all
the two-player board games or two-player card games we play are zero-sum games
in which each participant’s gain or loss of utility is exactly balanced by the losses
or gains of the utility of the other participants. In zero sum games, if one player is
the winner, the other is the loser.

Sequential game: In these games, one player chooses their action before the
others choose theirs. The latter players must have some information about the first
player’s choice, otherwise the difference in time would have no strategic effect.

Perfect information game: These are games played without hidden informa-
tion. Each player, whenmaking any decision, is perfectly informed of all the events
that have previously occurred to the other player(s), including the “initialization
event” of the game.

No chance game: These games do not include chance elements such dice rolls
or coin flips.

Many recreational games we play as abstract games can be classified as com-
binatorial games. For example, Shogi and Go are combinatorial games.

1.1.2 Winner decision
Winner decision is an algorithmic approach to combinatorial games. The winner
decision is described algorithmically as follows:

GAME 1 Winner decision of combinatorial game
Input: Game Situation
Output: The player who has the winning strategy (if there is no winner, none)

In other words, winner decision refers to an algorithm that outputs a player who
has a winning strategy for a game in Nash equilibrium (which is given as the input).
In combinatorial games, if the game is finite, it always has a winning strategy of
either the first or the second player [50]. Thus, the answer to the question “is there
an algorithm that can gain a winner decision” is always “yes, there is,” if we do
not have to worry about execution time or execution area. Although there exists
an algorithm to determine the winner, it does not necessarily mean that it is simple
and tractable.
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Therefore, the main concern in the winner decision is the efficiency of the
algorithm, that is, whether the algorithm can be executed in a shorter calculation
time or less calculation space as in the theoretical computer science. For example,
in case of algorithms that output correct answers for the same input, an algorithm
with a shorter calculation time and less calculation space can be said to be a
more “excellent” algorithm. The measure of this calculation time is called time
complexity, and similarly, the measure of this calculation space is called space
complexity. Time complexity is typically evaluated by counting the number of
elementary operations performed by the winner decision algorithm, supposing
that each elementary operation takes a fixed amount of time to perform. As the
running time of a winner decision algorithm may vary among different inputs of
the same size, we commonly considers the worst-case time complexity, which is
the maximum amount of time required for inputs of a given size. We commonly
consider this complexity using “order notation,” for example, O(n), O(2n), and
so on. where n is the input size in units of bits needed to represent the input.
The time complexities of a winner decision algorithm are classified according
to the function appearing in the order notation. For example, an algorithm with
multi-computation steps that is less than or equal to a constant multiple of the size
of the input expressed by O(n) in order notation is called a linear-time algorithm.

Let us return to our original goal; what is the time complexity of the winner
decision for a combinatorial game? The answer is, of course, or unfortunately, it
depends on the game.

For example, well-known Nim and its variants have simple ways to compute
in polynomial time their nimbers, which enable the determination of the winning
player [12]. In fact, a kind of nim-type games are one of the largest class of two-
player games that have polynomial-time winner decision algorithms; the winner
decision of other games, including “Moore game” and “Chomp” for which linear
time algorithms are known [9,22,37]. However, this does not mean that the winner
decisions of almost all combinatorial games are easy for a winner decision.

Another example, “Go,” is also a famous combinatorial game. The time
complexity of winner decisions for “Go” is EXPTIME-hard in which there is
no polynomial-time algorithm for the winner decision [44]. In fact, although
there exist winner decision algorithms for generalized versions of many popular
board games such as chess and Shogi, such algorithms hardly run in polynomial
time, because they are also known to be EXPTIME-complete to determine the
winner [44]. There is a large gap between the existence of winner decision
algorithms and the existence of polynomial-time winner decision algorithms.

From such a perspective, many researchers study the computational complexity
of the winner decision problems for generalized versions of popular recreational
games, but unfortunately, most of the results, including the above examples, are
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shown to be intractable.
These examples show that even within the same combinatorial game, there is

a large gap in the calculation time for the winner decision. What causes this large
gap? To examine this large gap, we now present the two games rule: “Nim” and
“go”

For Nim andNim-type games are playedwith a pile of stones, where the players
take turns removing stones from the pile, and the player who removes the last stone
wins. In the “Go” game, one player uses white stones and the other, black. The rule
is as follows: The players take turns placing the stones on the vacant intersections
of a board. stones of opponent player’s can be removed from the board if the group
of stones are surrounded. The winner is determined by counting each player’s
territory at the game end. Now we carefully consider the large gap about time
complexity; Nim, where the input is a set of the number of stones per pile, is
relatively easy to compute, while Go, where the input is the board situation, is
relatively hard to compute. Actually, many other studies on combinatorial games
have highlighted this trend. For example, Kayles, which is Nim-type game, can
be done in polynomial time using the Sprague-Grundy theorem [24], while “Node
Kayles,” which is also a nim-type game with board, is PSPACE-hard to decide the
winner [11, 16, 48].

Now we are ready to consider one of our goal, what happens to the compu-
tational complexity for other inputs? It is not known. Most of the interest in
computational complexity is limited to games for which the input is a set of ele-
ment or board information in combinatorial games, and there are very few studies
on other games, including those we usually play. This is our main motivation for
this research. We examine the time complexity of a widely played card-discarding
game.

1.2 Card-discarding game
Card-discarding games, which are also called shedding-type card game, are games
in which a player’s objective is to empty their hand of all cards before any other
player does.

In this thesis, we mainly consider combinatorial card-discarding games. Some
card-discarding games are categorized as combinatorial games, that is, two-player
perfect information games; however most of them are not. For example, UNO
is a multi-player game and imperfect information game. In this thesis, we define
combinatorial game variants for popular card-discarding games and consider its
time complexity for winner decisions.

The three card-discarding games that we address in this thesis are the TAN-
HINMINgame, theBABANUKI gamewith open-hand, and the SHICHINARABE
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game. In the next subsection, we will briefly introduce each of these games.

1.2.1 TANHINMIN
TANHINMIN, which means Single Pauper, is a card-based combinatorial game,
which was proposed by Nishino in order to investigate the mathematical properties
of DAIHINMIN [40]; DAIHINMIN (which means Grand Pauper), or DAIFUGO
(which means Grand Millionaire), is a popular playing-card game in Japan. The
basic rule of DAIHINMIN is quite simple, and many similar games are played all
over the world. For example, it is similar to the Chinese game Dou Dizhu, Big Two
andZhengShangyou, to theVietnamese gameTienLen, and toWestern card games
like President, also known asCapitalism andAsshole, andTheGreatDalmuti [1,3].
Not only that, it has attracted attention in the table of AI for Games. In fact,
the DAIHINMIN programming competition is held at the University of Electro-
Communications in JAPAN every year. Although DAIHINMIN AI programs are
getting stronger every year [41, 42], the mathematical nature of the game itself is
still mostly unknown. DAIHINMIN games contain various special rule that make
it exciting but also difficult to analyze. For this reason, the TANHINMIN, which
is one of the simplest variant of DAIHINMIN, was introduced for DAIHINMIN
research.

DAIHINMIN is a card discarding game. The basic rule of DAIHINMIN is as
follows: at the beginning of the game, all cards are distributed to the players. A
player starts the game by discarding any set of cards with a same number (e.g., one
4, two 4’s or three 4’s, if the player has three 4’s), and each player discards one or
more cards in turn according to the strength system of cards, or skips the turn. A
player can discard only a set of cards when it is stronger than the set of cards that
are discarded by the previous player. If no player discards, then the turn ends and
the player who last discarded a set of cards can start a new turn by discarding a set
of cards as above. After several turns, the first player that has discarded all his/her
cards is the winner. The basic rule of TANHINMIN is the same as DAIHINMIN,
but it is simplified in the following two senses. (1) A player can discard not more
than one cards but a single card, and (2) the strength system of the cards is just a
total order based on the face values.

1.2.2 BABANUKI
BABANUKI is a popular card-based game in Japan. The basic rule of BABANUKI
is quite simple, and many similar games are played all over the world [1]. For
example, “Old maid”, a card game played in Britain, is similar to BABANUKI.

BABANUKI and Old Maid are card discarding games. The basic rule of
BABANUKI is as follows: We have a set of 2-card pairs (25-26 pairs if we play
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with regular cards) and one Oldmaid card (JOKER in this game). At the beginning
of the game, all the cards are distributed to the players where they are faced down.
Until the end of the game, the cards of each player are hidden to the other players.
After all the cards are distributed, each player can discard pairs of cards anytime
if he/she has them in his/her own hands. If the first player has a same card with
the drawn card, then he/she discards the drawn card together with the same card.
Otherwise, the player adds the drawn card into his/her hand. In any case, this
finishes the first player’s turn and the next (second) player’s turn starts; the second
player drawn a card from the first player’s hands, and so on. Eventually, the last
player draws a card from the previous player’s hands and ends his turn. Then the
first player again draws a card from the last player’s hands. After several turns, the
player that has first discarded all his/her cards is the winner.

1.2.3 SHICHINARABE

SHICHINARABE is a popular multiplayer imperfect information game played
with playing cards in Japan, and similar games such as Fan-Tan and Sevens are
widely played in other countries. The general rule of SHICHINARABE is as
follows.

We use a deck of cards, that is, the 52 cards with JOKER in total. We can give
some special role to JOKER, though we omit the explanation here. The players
have a common goal, which is to put the cards of each suit in sequential number
order like (♠A,♠2, . . . ,♠10,♠J,♠Q,♠K), which is called a layout. All the
cards are (almost) evenly dealt to the players. Each player removes all sevens from
his/her hand and put them to the centers of the layouts as setting up. A layout is
made by the players’ putting cards down one by one next to the seven in sequential
order; a player can put a card next to a card already put in a layout in his/her turn.
A player who cannot or does not want to place a card selects a “pass.” When a
player has run out of passes (normally on their fourth pass), they place all their
remaining cards in their places on the playing space. The player that is first to lose
their whole hand wins.

1.3 Related work

In this section, we introduce related studies that we could not fully explain in the
previous sections.
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1.3.1 Combinatorial game

In the previous sections, combinatorial games were divided by what input is;
combinatorial games are generally divided into impartial game and partisan game
by what player can do. Impartial games are the games such as Nim, Sprouts,
Kayles, Quarto, Cram or Chomp, which distinguish only between first player and
second player; partisan(or partizan) games are the games such as Go, chess or
Shogi, which distinguish not only between first player and second player but also
players state. [9, 51],

Impartial games can be analyzed using the Sprague–Grundy theorem, stating
that every impartial game under the normal play convention is equivalent to a
nimber [23,54]. The representation of this nimber can change from game to game,
but every possible state of any variation of an impartial game board should be
able to have some nimber value. If the nimber of a game is known, it is easy to
determine the victory of the game. Therefore, research to determine the nimber of
a game has been actively conducted as a substantial victory determination [4,24].
However, to compute nimber of a game is not always easy. For example, Node
Kayles is PSPACE-complete to compute nimber [11, 26].

In combinatorial game theory, a game is partisan (sometimes partizan) if it is
not impartial game but combinatorial game. That is, some moves are available
to one player and not to the other. Most combinatorial games that we play as a
recreational game are partisan game for example Go, Shogi, Chess is partisan.
Generally speaking, partisan games are more difficult to analyze than impartial
games, as the Sprague–Grundy theorem does not apply. In fact, many games have
been known to be difficult. For example, Shogi, Chess, Go, and Cheaker are
known to be EXPTIME-complete, and Othello, Amazon, Konane, Cross Purposes
and many partisan games are known to be PSPACE-complete [20, 21, 25, 27, 30,
31, 45, 46]. On the other hand, there are some games which can be solved only
in small size or in limited situations. For example, Shogi and chess and xiangqi
are EXPTIME-complete as described above, but it is known that it is possible to
make a winning decision in a constant time in a probabilistically limited situation
by using an oracle [29]. There is also an attempt to strongly solve the game using
search for the actual game size. These studies have been conducted since the
1990s, when computers became more accurate. For example, checker, nine men’s
morris, Go-Moku, Qubic, and quixo have been strongly solved [6–8, 43, 49, 57].
However, this is only in very limited circumstances, and analysis is hopeless for
general partisan games. To calculate the winner partisan game like an impartial
game, we often use a value called “game value.” The game value is a very useful
indicator in a “last player to move wins (loses)” type of partisan game [51]. Like
a nimber, if the game value of a game is known, it is easy to determine the victory
of the game [15, 18, 39].
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In that sense, a card-discarding game is a partisan game, since each player’s
hand is not always common (it may contain common elements, but it doesn’t share
them). We do not write about the details of the combination game here any more.
If you want to study combinatorial game theory, see [5], [9] or [51].

If you are looking formore detailed research, youmaywant to look at Fraenkel’s
collection of combinatorial game bibliographies [19].

1.3.2 Non-combinatorial games
In this section, we focus on non-combinatorial game. First of all, we see single-
player games as simpler games than combinatorial games.

Recall that it always has a winning strategy of either the first or the second
player in combinatorial games without draw game if the game is finite.

If the game is not a combinatorial game, the situation changes; for example,
if there are three or more players, there is a case that no one has a winning
strategy. This is due in large part to the fact that your opponent’s strategy will
change depending on whether the other players are behaving cooperatively or
not. Therefore, researchers study multiplayer impartial game by adding some
assumption to determine the unique game results: defined rank system, alliance
matrix or preferences among the players [32–36,55].

The same situation is occurred in imperfect information game. In other words,
the cases that no one has a winning strategy also exist in imperfect information
game. This is because players do not know what their opponent has done in the
past or what they might do in the future, so players do not know what their best
strategy is. Therefore, for such imperfect information games, there are analyses
that assigns probabilities to each game that is treated as a perfect information
game [10, 13].

No sequential game, named simultaneous game, is a similar situation to im-
perfect information game; Since players do not know what their opponent has
done simultaneously, so players do not know what their best strategy is. There-
fore, assigning probabilities to each opponent player’s strategy has been used like
in imperfect information games. Simultaneous games are of central interest in
(economical) game theory, because many economic activities does not occur al-
ternately. See A and B for a detailed explanation of simultaneous turn games.
See [38] and [47] for a detailed explanation of simultaneous games.

Chance game such as SUGOROKU and Backgammon is known to be analyzed
by expectation. For example, poker is a chance game, but this poker is said that
by using a strategy based on expected value, the player has acquired the ability to
surpass the top level human players [14, 56].
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1.4 Contribution

We show a winner decision algorithm for a Card-discarding game, on which there
is few study before. First, we present results on TANHINMIN, the basic hand-
consuming entertainment game, in Chapter 2, and its variants in Chapter 3. Then,
we analyze Oracle TANHINMIN as a new approach for incomplete information
entertainment games in Chapter 4. Then, we tackle BABANUKI as an approach
to multiplayer entertainment games in Chapter 5. Finally, in Chapter 6, we show
results on SHICHINARABE, a game is not only card-discarding games nut also
using board. Further details are given below.

At first, we present an efficient algorithm that determines which player has a
winning strategy of the 2-player TANHINMIN and its variant in Chapter 2 and
Chapter 3. It computes a kind of game status defined by the maximum matching
sizes of configuration graphs in linear time from sorted hands. As seen in the
previous section, most of the existing results about the winner decision for natural
non-impartial (partisan) games are hardness ones, and most of positive results
(polynomial-solvability) are restricted to impartial games, as far as the authors
know. In this sense, polynomial-solvability of the winner decision of 2-player
TANHINMIN, a natural non-impartial game, could be a rare and interesting ex-
ample of the computational complexity of game analyses. Furthermore the result
could be practically useful for designing a strong DAIHINMIN AI program, for
example. Although TANHINMIN is a restricted variant of DAIHINMIN, it still
follows the basic framework of the rules and the restriction does not spoil all the
mathematical natures of the game. Actually, when a configuration of DAIHINMIN
satisfies (1) every player has no duplicated cards in his/her hand, (2) every player
has no special card in his/her hand, the game can be considered a configuration of
TANHINMIN. This implies that the algorithm could be implemented to DAIHIN-
MIN AI programs and the result is also a first-step to design a linear-time winner
decision algorithm for a 2-player generalized DAIHINMIN.

Since these variant of TANHINMIN is a 2-player perfect information game
without draw, either the first or the second player always has a winning strategy,
whichmeans that thewinner decision is possible. On the other hand, DAIHINMIN,
which is the original game of TANHINMIN, is an imperfect information game;
there does not necessarily exist a player having a winning strategy. This is a
motivation to investigate an imperfect variant of TANHINMIN in Chapter4.4.
As mentioned in the previous section, probability-based analysis is a common
analysis method for incomplete information game analysis. However, this analysis
method has two problems; one is that that it cannot be used when the mother set
is unknown, that is, when there is no information about the input of the other
player. The other is that it is rare to output a definitive solution. In Chapter4.4, we
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model TANHINMINwith structural oracles to identify the essential information to
construct a winning strategy. As will be described later, in TANHINMIN without
any information, no player has a winning strategy like many imperfect information
games. We think that the setting “no information” is quite rare in real game
playing situations; players can get some information of their opponents’ hands,
e.g., how many cards she has, whether she has a specific card, and so on. The
oracle model that we propose in this thesis can qualify and quantify the information
that each player can receive during plays. Under the proposed oracle models, we
obtain several results. Interestingly, when players can get partial information of
the opponents’ hands via oracle, the winning player can find a winning strategy
as if it is the (perfect information) TANHINMIN. The idea of the proof is based
on a detailed analysis of the winner decision algorithm of the perfect information
TANHINMIN in Chapter 2. Furthermore, we show various results about other
relationships between the power of oracles and the existence of a computable
winning strategy, which is shown in Fig. 4.1.

Next, we try to analyze multi-player game with perfect information. As men-
tioned in the previous section, for analysis of multiplayer games, it is common to
use an analysis that assumes a preference relationship among other players. How-
ever, the preference relations among other players do not necessarily exist, much
less observe them correctly from other player. In this study, we investigated the
behavior of a partizan game that focuses only on "maximizing one’s own rank,"
as is commonly used in game theory. We will observe a multiplayer game on the
subject of BABANUKI which is easy to compute winner decision in two players
case. It is played in the manner that players play BABANUKI with cards faced
up. This makes the game a perfect information game, and it becomes worth con-
sidering optimal strategies; we consider the winning strategy of open-hand variant
BABANUKI. Although the 2-players case is almost obvious, the 3-players case
is not, and we give a necessary and sufficient condition of the existence of the
winning strategy. Furthermore, for 4-players case, there is a configuration where
an endless-loop phenomenon, so-called “repetition draw”, occurs.

Finally, we introduce 2-players SHICHINARABE game with perfect informa-
tion. As stated above, SHICHINARABE is a multiplayer imperfect information
game in which players try to achieve one of the two victory conditions: play all
cards, or all other players run outs. For the former only, research on UNO [17] and
for the latter only, analysis based on game value can be cited as precedents, but
there are no examples of research on games with both of these victory conditions.
In addition, this game is a card-discarding game in which the player who discards
their hand wins, but it is also a game in which the players refer to the information
on the board. While research has been conducted on card-discarding games and
board games, there are little research has been conducted on combined games.

In this study, We define SHICHINARABE value in Chapter 6, which is an



1.4. CONTRIBUTION 19

extension of game value. This value covers not only games in which the player
who loses a move loses, but also games in which the player who loses all his
cards wins. Using this SHICHINARABE value, we have shown that ordinary
SHICHINARABE can be solved in linear time. Furthermore we model a graph-
ical generalization of SHICHINARABE and investigate the time complexity of
the winner decision. Through the graphical generalization, we present a linear-
time algorithm that can decide the winner of a given ordinary SHICHINARABE
instance; the ordinary SHICHINARABE is shown to be an easy game. On the
other hand, SHICHINARABE has many variations on how to use JOKER cards
and with/without tunnel rules.

We formally define such rules in the graphical models, and we see the effect of
the strength of rule sets. Concretely, we pick up trees and planar graphs as typical
layouts of a board, and investigate the time complexity for natural combinations
of graph classes and rule sets. As a result, the winner decision of graphical
SHICHINARABE on trees is proved to be solvable in polynomial time, whereas
that on planar graphs is shown to be hard to solve; the winner decision is NP-hard
in general, and it is even PSPACE-hard if we adopt a generalized tunnel rule.
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Chapter 2

TANHINMIN and its variant

2.1 Introduction
DAIHINMIN, which means Grand Pauper, is a popular playing-card game in
Japan. TANHINMIN is a simplified variant of DAIHINMIN, which was proposed
by Nishino in 2007 in order to investigate the mathematical properties of DAIHIN-
MIN. In this chapter, we consider a 2-player generalized TANHINMIN, where the
deck size is arbitrary n. We present a O(n) time algorithm that determines which
player has a winning strategy after all cards are distributed to the players.

2.2 TANHINMIN Rules and Notations

2.2.1 The rule of TANHINMIN
We first model a game of TANHINMIN. Let [n] = {1, 2, . . . , n} be the set of card
faces, where the number represents its strength. Card 1 is the weakest, and 2 is
stronger than 1 but weaker than 3, and so on. TANHINMIN use cards with the
strength relationship. As we see later, a player can discard a stronger card than
the card at the table. In the game of TANHINMIN, the faces of some cards can
be same, but in the following, to simplify the explanation, we assume that no two
cards have a same face; a set of cards is not a multiset but just a set. Note that this
assumption does not change the nature of TANHINMIN. We just distinguish two
cards of “3", as “31" and “32", for example. This assumption does not change the
nature of TANHINMIN. In fact, even if we have two or more cards of a number
(“3”, for example) , all the proofs in this paper work by ordering these cards as 31,
32, . . . . The rule of basic TANHINMIN game that we consider in this paper is
as follows: All the cards are distributed to players. At the beginning of the game,
there is no card on the table (empty). Active player in his/hers turn may discard a
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card in hand onto the table. The player to discard a card is called active, and the
other is called non-active. Once the active player discards a card, the turn ends.
Then the active player becomes non-active, and the non-active player becomes
active, and the next turn starts. A card to discard must be stronger than the lastly
discarded card on the table, which we call a table card. If the table is empty, then
any card can be discarded. If the player of the turn does not have a card to discard
or does not want to discard any card, he/she selects “pass”. Then let the table be
empty and go to the next turn. The player that first discards all the cards in his/her
hand is the winner.

Note that our rule allows an active player to select pass even when the table is
empty. After the player does so, the table remains empty and the turn moves to the
opponent player, which may cause infinite consecutive passes, though it seems to
be useless. In fact, when we consider winning strategies, we can assume that two
or more consecutive passes do not occur; since the players’ hands do not change
after two consecutive passes, if a player has a winning strategy with the existence
of consecutive passes, he/she has a winning strategy without consecutive passes.
That is, we assume that the players avoid consecutive passes in the following.

In Figure 2.1, we show a play example of 2-player TANHINMIN. Here we
explain the detail as follows: At first, cards 1, 3, 4, 5, 8 are distributed to player A
(blue player), 2, 6, 7 are distributed to player B (orange player) (Fig. 1 (a)). We
suppose that player A is the first player, and the table is empty; any card can be
discarded. Thus player A has five options: discarding card 1, 3, 4, 5 or 8. In this
example, player A discards card 1 (Fig. 1 (b)), and the turn moves to player B.
Next, player B can discard stronger cards than 1 at the table; player B has four
options: discarding card 2, 6, 7 or passing the turn. In this example, player B
discards card 6 (Fig. 1 (c)), and the turn moves to player A. Then player A has two
options: discarding card 8, or passing the turn. In this example, player A discards
card 8 (Fig. 1 (d)). Then player B has only one option: passing the turn (Fig. 1
(e)). Since player B here selects pass, the cards on the table are cleared (Fig. 1
(f)), and player A plays next. In this setting, player A chooses to discard card 3
(Fig. 1 (g)), and so on. The game continues to Fig. 1 (k), where player B discards
the last card 2; since player B first finishes discarding all his/hers card, player B is
the winner (Fig. 1 (l)).

2.2.2 Graph Model of TANHINMIN
We assume basic knowledge of graph theory. Let G = (V,E) be a graph, where
V is the set of vertices and E is the set of edges. All the graphs that we consider
in this paper are bipartite, that is, there is a bipartition (V0, V1) of V such that E ⊆
{(p, q) | p ∈ V0, q ∈ V1}. To specify the bipartition, we write G = (V0, V1, E)
instead of G = (V,E). For graph G and a vertex v of G, NG(v) denotes the set
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(a) initial setting (b) A discards 1. (c) B discards 6.

(d) A discards 8. (e) B passes the turn. (f) The table is cleared.

(g) A discards 3. (h) B discards 7. (i) A passes the turn.

(j) The table is cleared. (k) B discards 2. (l) B wins the game.

Figure 2.1: A play example of 2-player TANHINMIN

of neighboring vertices to v in G, that is, NG(v) = {u ∈ V | {u, v} ∈ E}. We
sometimes use notation N(v) instead of NG(v) if the graph that we consider is
clear. For S ⊆ V , NG(S) similarly denotes the set of vertices neighboring to any
vertex in S of G, that is, NG(S) =

⋃
v∈S NG(v). We similarly use N(S) instead

of NG(S). For graph G = (V,E) and v ∈ V , let G \ v denote a graph obtained
by deleting v and its incident edges. For a graph G = (V,E), a subset M of E
is called matching if no two edges in M share an end. For a graph G, let µ(G)
denote the size of a maximum matching.

We first fix a turn to consider. In the turn, we suppose that P0 is the active
player and P1 is the non-active player. At the turn,X0 andX1 respectively denote
the cards belonging to P0 and P1, and by r the top card on the table. These provide
sufficient information to describe the situation of the turn; triplet (X0, X1, r) define
the configuration of the turn.

Note that in a play of TANHINMIN cards on table are sometimes cleared, and
then r is empty. In such a case, we virtually consider that 0 is at the top of the
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cards on table. For example, in Figure 1, X0 = {1, 3, 4, 5, 8}, X1 = {2, 6, 7} and
r = 0 at (a), and X0 = {2, 6, 7}, X1 = {3, 4, 5, 8} and r = 1 right after (b).

We then give a graph model of TANHINMIN; for a configuration, we construct
several bipartite graphs. The vertices correspond to cards in X0 ∪X1 ∪ {r}, and
use the same symbols to represent them. Here, we introduce a general way to
define a bipartite graph whose vertices are cards: For two disjoint pair of card sets
V0 and V1, we can define a bipartite graph according to the strength of the cards
by G = (V0, V1, E(V0, V1)) where E(V0, V1) = {(v0, v1) | v0 ∈ V0, v1 ∈ V1, v0 >
v1}. Throughout the paper, all the bipartite graphs are constructed in this way.
Since an ordered bipartition (V0, V1) of vertices can determine the structure ofG =
(V0, V1, E(V0, V1)), we just write G = (V0, V1) instead of G = (V0, V1, E(V0, V1))
below. For configuration (X0, X1, r), we then construct bipartite graphs G0 =
(X0, X1) and G0(r) = (X0, X1 ∪ {r}). Similarly, we define G1 = (X1, X0) and
G1(r) = (X1, X0∪{r}). Here, graphG0(r) represents which cardsP0 can discard
for cards inX1∪{r}. GraphG1 represents which cards P1 can discard for cards in
X0. If X0 = ∅ or X1 = ∅, P0 or P1 is obviously the winning player, respectively.
Thus we assume both X0 and X1 are nonempty in the following analyses.

As we see later in Lemma 2.2, the winner of TANHINMIN is determined by
the maximum matching sizes of two graphs obtained from G0(r) and G1, that is,
µ(G0(r) \ minX1) and µ(G1 \ minX0), where minX0 (resp., minX1) denotes
the weakest card of X0 (resp., X1). Since these graphs play important roles in
the winner decision, we name these the configuration graphs. More specifically,
if P0 (resp., P1) is the active player and P1 (resp., P0) is the non-active player, we
call G0(r) \minX1 (resp., G1(r) \minX0) the configuration graph of the active
player, and call G1 \minX0 (resp., G0 \minX1) the configuration graph of the
non-active player.

2.3 Winner decision of TANHINMIN
Now we are ready to show how we can decide who has a winning strategy for a
given configuration. More concretely, we prove the following.

Theorem 2.1. Given a configuration of 2-Player TANHINMIN with n cards, we
can decide which player has a winning strategy in O(n) time.

This theorem holds by Lemmas 2.2 and 2.5.

Lemma 2.2. Given a configuration (X0, X1, r) of 2-player TANHINMIN, where
P0 is the active player and P1 is the non-active player, P0 has a winning strategy
when µ(G0(r) \minX1) > µ(G1 \minX0) holds, and P1 has a winning strategy
otherwise.
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Inside of the proof of Lemma 2.2, we use the following two lemmas. The
proofs are shown later.

Lemma 2.3. Consider the situation where P0 is the active player and µ(G0(r) \
minX1) > µ(G1 \minX0) holds. Then, P0 has a strategy (i.e., a sequence of P0’s
actions of discarding a card or selecting pass) such that the configuration graphs of
the resulting configuration (X ′0, X

′
1, r
′) eventually satisfy µ(G1(r

′) \ minX ′0) ≤
µ(G0 \minX ′1) with |X ′0| < |X0|, where P0 is non-active and P1 is active.

Lemma 2.4. Consider the situation where P0 is the active player and µ(G0(r) \
minX1) ≤ µ(G1\minX0) holds. Then, for any action ofP0,P1 has a strategy (i.e.,
a sequence of P1’s actions of doing nothing, discarding a card or selecting pass)
such that P1 wins (i.e., discards the last card) or the configuration graphs of the
resulting configuration (X ′0, X

′
1, r) satisfy µ(G1(r

′) \minX ′0) > µ(G0 \minX ′1)
with |X ′0| < |X0|, where P0 is non-active and P1 is active.

By using these lemmas, we prove Lemma 2.2 as follows. The proof is based
on the induction on |X0|.

Proof of Lemma 2.2. (Base step) We see the case |X0| = 1 and let x0 be the
unique card (vertex) inX0. We first consider the case where µ(G0(r)\minX1) >
µ(G1 \minX0) holds and P0 is the active player. We will show that P0 wins in this
case. Since P0 has only x0 in hand, if x0 is stronger than r, P0 wins by discarding
x0. Thus we consider the other case: x0 < r (i.e., r is isolated in G0(r)) and P0

cannot discard x0; P0 passes the turn.
We see the situation right before P0’s pass. Since |X0| = 1 implies µ(G0(r) \

minX1) is at most 1, 1 = µ(G0(r)\minX1) > µ(G1 \minX0) = 0 holds. Since
µ(G0(r) \minX1) = 1 with isolated r, x0 can be matched with x′1, which is the
weakest in X1 \minX1. This implies that P1 has cards x′0(≡ minX1) and x′1 in
hand. In order to win, P1 needs to discard at least two cards x′0 and x′1 before P0

discards x0. However, once P1 discards either x′0 or x′1, P0 can then discard x0 in
the next turn; P0 wins.

We next consider the case where µ(G0(r) \ minX1) ≤ µ(G1 \ minX0) and
P1 is the non-active player. We will show that in this case P1 wins. By |X0| = 1,
G1\minX0(= G1\X0) is a graphwith no edge, andwehave 0 = µ(G1\minX0) ≥
µ(G0(r)\minX1) = 0, which implies thatG0(r) has no edge between x0 and any
vertex in X1 ∪ {r} except minX1. This means that P0 must pass this turn, and
P1 becomes the active player whose cards except minX1 are not weaker than x0,
with empty table. Then if P1 has one or more cards other than minX1, he/she can
discard all of them in the following turn. In fact, if P1 plays such a card, which is
placed on the table, the unique card x0 of P0 is not stronger than it; P0 must select
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pass and P1 keeps to be active, and we can apply the same argument repeatedly.
Then, eventually the active player P1 only has the last card minX1 with empty
table. By just discarding it, P1 wins.

By these, the statement of Lemma 2.2 holds for the base step |X0| = 1.

(Induction step)
Assume that for |X0| ≤ k the statement of Lemma 2.2 is true, i.e., the active

playerP0 has a winning strategywhenµ(G0(r)\minX1) > µ(G1\minX0) holds,
and the non-active player P1 has a winning strategy when µ(G0(r) \ minX1) ≤
µ(G1 \minX0) holds.

Let |X0| = k+1. Ifµ(G0(r)\minX1) > µ(G1\minX0), Lemma2.3 indicates
that the active player P0 can play such that the resulting configuration (X ′0, X

′
1, r
′)

satisfies µ(G1(r
′) \minX ′0) ≤ µ(G0 \minX ′1) holds, where P0 is non-active and

|X ′0| ≤ k. Then by Lemma 2.4, whatever active player P1 plays, non-active player
P0 can play so that P0 wins or the resulting configuration (X ′′0 , X

′′
1 , r
′′) satisfies

µ(G0(r
′′) \ minX ′′1 ) > µ(G1 \ minX ′′0 ), where |X ′′0 | ≤ |X ′0| ≤ k, which is the

winning condition of the non-active player P0 by the assumption of the induction.
Similarly, if µ(G0(r) \ minX1) ≤ µ(G1 \ minX0), by applying Lemmas 2.4
and 2.3 in this order, P1 wins or the situation is reduced to the configuration
(X ′′0 , X

′′
1 , r
′′) satisfying µ(G0(r

′′) \ minX ′′1 ) ≤ µ(G1 \ minX ′′0 ), where P0 is
active and |X ′′0 | ≤ k, which is the winning condition of the non-active player P1

by the assumption of the induction.
By these, for |X0| = k + 1 the statement of Lemma 2.2 is also true, which

completes the proof.

Proof of Lemma 2.3. Suppose thatP0 is the active player andµ(G0(r)\minX1) >
µ(G1 \minX0) holds. Roughly there are two cases: P0 has a stronger card than
the table card r (i.e., (a) NG0(r)(r) 6= ∅), or not (i.e., (b) NG0(r)(r) = ∅).

For case (a), we focus on a maximum matching of G0(r) \ minX1 where r
is matched with a vertex in X0. Such a maximum matching always exists by the
property of maximum matchings. We then further divide the case into two cases:
(a-1) there is a maximum matching ofG0(r) \minX1 such that r is matched with
a card x 6= minX0, (a-2) in every maximum matching of G0(r) \ minX1, r is
matched with minX0.

Case (a-1): In this case, let P0 discard x, and r be replaced with x. Then P0 and
P1 become the non-active and active players, respectively. The configurationmoves
to (X ′0, X

′
1, r
′) = (X0\{x}, X1, x). For the non-active playerP0, the configuration

graph is G0 \ minX ′1 = (X ′0, X
′
1 \ minX ′1) = (X0 \ {x}, X1 \ minX1), which

is the graph obtained from G0(r) \ minX1 by removing matching edge (x, r) in
a maximum matching of G0(r) \minX1. That is, µ(G0 \minX ′1) = µ(G0(r) \
minX1) − 1. For the active player P1, the configuration graph forms G1(r

′) \
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minX ′0 = (X1, X
′
0 \ {x,minX ′0} ∪ {r′}). Since r′ = x and minX ′0 = minX0,

the configuration graph is equivalent to G1 \minX0 for the original (X0, X1, r).
Namely, µ(G1(r

′) \minX ′0) = µ(G1 \minX0). These and the initial inequality
yield the following inequality: µ(G0 \ minX ′1) = µ(G0(r) \ minX1) − 1 ≥
µ(G1 \minX0) = µ(G1(r

′) \minX ′0), with |X ′0| = |X0| − 1, which is the one in
the statement of Lemma 2.3.

Case (a-2): In this case, in every maximum matching of G0(r) \ minX1,
r is matched with minX0. Then all the vertices in X0 are covered in such
a maximum matching, otherwise there exists an unmatched card x(6= minX0)
in a maximum matching, and we can have a maximum matching that does not
contain (minX0, r) by replacing (minX0, r) with (x, r), which is a contradiction.
Thus, |X0| = µ(G0(r) \ minX1) holds. In this case, let P0 discard minX0,
and the configuration moves to (X ′0, X

′
1, r
′) = (X0 \ minX0, X1,minX0). The

configuration graph of non-active player P0 for (X ′0, X
′
1, r
′) is G0 \ minX ′1 =

(X ′0, X
′
1 \minX ′1) = (X0 \minX0, X1 \minX1), which is the graph obtained by

removing amatching edge (minX0, r) fromG0(r)\minX1. Thus µ(G0\minX ′1)
is at least µ(G0(r) \ minX1) − 1 = |X0| − 1. The configuration graph of
active player P1 is G1(r) \ minX ′0 = (X ′1, X

′
0 ∪ {r′} \ minX ′0) = (X1, X0 \

{r′} ∪ {r′} \ minX ′0) = (X1, X0 \ min(X0 \ minX0)). Thus the maximum
matching size is at most |X0 \ min(X0 \ minX0)| = |X0| − 1. These implies
µ(G0 \minX ′1) ≥ |X0| − 1 ≥ µ(G1(r) \minX ′0).

We now consider the case (b) where P0 has no car stronger than the table card
r, i.e., NG0(r)(r) = ∅. Then what P0 can do is to pass the turn, and P1 becomes
the active player. Then P1 has two options: passing the turn, or discarding a card
x. If P1 passes the turn, the configuration changes from the original (X0, X1, r)
to (X ′0, X

′
1, r
′) = (X0, X1, 0) with active player P0; the configuration graph of

P1 is the same as G1 \ minX0, though that of P0 changes from G0(r) \ minX1

to G0(0) \ minX1, which is obtained from G0(r) \ minX1 by adding edges
(x, 0) for every x ∈ X0. Thus, µ(G0(r

′) \ minX ′1) ≥ µ(G0(r) \ minX1) >
µ(G1 \ minX0) = µ(G1 \ minX ′0) holds, which is reduced to case (a) above.
Thus, in the following, we consider the case P1 discards a card x, which is always
possible; r is replaced with x, and the configuration becomes (X ′0, X

′
1, r
′) =

(X0, X1\{x}, x)with activeP0. We further divide the case into (b-1) x = minX1,
(b-2) x 6= minX1.

Case (b-1): In this case, P0 must have a stronger card in X ′0 = X0 than
x = minX1. This is because otherwise any card in X0 is not stronger card than
any card in X1, which implies µ(G0(r) \minX1) = 0 in the original configura-
tion; it contradicts the precondition µ(G0(r) \ minX1) > µ(G1 \ minX0) ≥ 0.
The configuration is (X ′0, X

′
1, r
′) = (X0, X1 \ minX1,minX1), and minX ′1 =

min(X1 \minX1), which is denoted by min2X1. The configuration graph of ac-
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tive playerP0 changes from the originalG0(r)\minX1 = (X0, X1\minX1∪{r})
toG0(r

′) \minX ′1 = (X0, X1 \min2X1). Note thatG0(r
′) \minX ′1 has minX1,

whereas G0(r) \ minX1 has min2X1 and isolated r. By minX1 < min2X1, if
G0(r) \minX1 has an edge between some x′ ∈ X ′0 and min2X1,G0(r

′) \minX ′1
has an edge between some x′ ∈ X0 and minX1. Thus, µ(G0(r

′) \ minX ′1)
is at least µ(G0(r) \ minX1). On the other hand, the configuration graph
of non-active player P1 changes from G1 \ minX0 = (X1, X0 \ minX0) to
G1 \ minX ′0 = (X ′1, X

′
0 \ minX ′0) = (X1 \ minX1, X0 \ minX0), which is

a subgraph of G1 \ minX0. Thus µ(G1 \ minX0) ≥ µ(G1 \ minX ′0) holds.
By these, µ(G0(r

′) \ minX ′1) ≥ µ(G1 \ minX ′0) holds with NG0(r′) 6= ∅ and
|X ′0| = |X0| = k + 1, which is reduced to case (a).

Case (b-2): x 6= minX1 holds. The configuration is (X ′0, X
′
1, r
′) = (X0, X1 \

{x}, x), and minX ′1 = min(X1 \ {x}) = minX1 holds, because x = minX1.
The configuration graph of active P0 becomes G0(r

′) \minX ′1 = G0 \minX1 =
G0(r) \ minX1, by the assumption of case (b). That is, µ(G0(r

′) \ minX ′1) =
µ(G0(r)\minX1). On the other hand, µ(G1 \minX ′0) is at most µ(G1 \minX0),
because G1 \minX ′0 is a subgraph of G1 \minX0. Thus, µ(G0(r

′) \minX ′1) >
µ(G1 \ minX ′0) and NG0(r′)(r

′) = ∅ hold with active player P0; the situation is
reduced to case (b) itself but a smaller |X ′1|. This means that (b-2) cannot occur
infinitely, and case (b-1) is essential.

Overall, all the cases eventually satisfy the condition of the statement.

Proof of Lemma 2.4. Suppose that (X ′0, X
′
1, r
′) is the configuration right after P0

plays in the turn. We divide the case into (a) |X ′0| < |X0| (i.e., P0 discards some
card x), and (b) |X ′0| = |X0| (i.e., P0 passes the turn).

We first consider (a). Here, we will show that µ(G1(r
′) \minX ′1) > µ(G0 \

minX ′0) holds. After P0 discarding x, the turn moves to P1 and the table card
changes from r tox. In this case,P1 becomes the active player and the configuration
graph of P1 for (X ′0, X

′
1, r
′) = (X0 \ {x}, X1, x) is G1(r

′) \minX ′0 = (X1, X0 \
{x} ∪ {x} \ min(X0 \ {x})) = (X1, X0 \ min(X0 \ {x})). If x 6= minX0,
G1(r

′)\minX ′0 is exactly same asG1 \minX0 = (X1, X0 \minX0)); µ(G1(r
′)\

minX ′0) = µ(G1 \minX0) holds. If x = minX0, G1(r
′) \minX ′0 = (X1, X0 \

min2X0), which is the graph obtained by replacing minX2 of G1 \minX0 with
minX1; if there is an edge (x′,minX2) in G1 \ minX0, there is also an edge
(x′,minX1) in G1(r

′) \minX ′0. This implies that µ(G1(r
′) \minX ′0) ≥ µ(G1 \

minX0). Thus in any case, µ(G1(r
′) \minX ′0) ≥ µ(G1 \minX0) holds. On the

other hand, the configuration graph of non-active playerP0 becomesG0\minX ′1 =
(X ′0, X

′
1 \ minX ′1) = (X0 \ {x}, X1 \ minX1), which is the graph obtained by

deleting x and r with an edge fromG0(r) \minX1 = (X0, X1 \X1 ∪{r}). Since
by deleting a pair of two vertices with an edge from a graph its maximummatching



2.3. WINNER DECISION OF TANHINMIN 29

size decreases at least by one, µ(G0(r)\minX1) > µ(G0\minX ′1) holds. Hence,
µ(G1(r

′) \minX ′0) ≥ µ(G1 \minX0) ≥ µ(G0(r) \minX1) > µ(G0 \minX ′1)
holds for |X ′0| < |X0|.

We next consider case (b). Since P0 passes the turn, the table becomes empty;
0 is put at the table. Then P1 becomes the active player and the configuration
becomes (X ′0, X

′
1, r
′) = (X0, X1, 0). At this moment, |X ′0| = |X0| holds, which

does not satisfy the required condition of the lemma yet. Thus we show below
that P1 can win or the precondition of lemma holds with fewer cards of P1 by P1

appropriately playing, which is reduced to the situation right before (a) and (b)
with fewer cards. This implies that case (b) occurs at most |X1| times, and the
situation is eventually reduced to case (a); the lemma holds.

Now the configuration graphs of active P1 and non-active P0 are G1(r
′) \

minX ′0 = (X1, X0 ∪ {0} \ minX0) and G0 \ minX ′1 = (X0, X1 \ minX1),
respectively. We divide the case into (b-1) there is a maximum matching M
of G1 \ minX0 such that it does not touch a vertex x other than minX1 in
X1, or (b-2) not. In (b-1), let P1 discard the card x. Then, the configuration
becomes (X ′′0 , X

′′
1 , r
′′) = (X0, X1 \ {x}, x); the configuration graph of active P0

changes from G0(r) \minX1 = (X0, X1 ∪ {r} \minX1) to G0(r
′′) \minX ′′1 =

(X0, X1 \minX1), whose maximum matching size is at most µ(G0(r) \minX1).
On the other hand, the configuration graph of non-active player P1 changes from
G1 \minX0 = (X1, X0 \minX0) to G1 \minX ′′0 = (X1 \ {x}, X0 \minX0),
whose maximummatching size is equal to µ(G1 \minX0), because the maximum
matchingM of G1 \minX0 is also a maximum matching of G1 \minX ′′0 . Thus,
µ(G1 \minX ′′0 ) = µ(G1 \minX0) ≥ µ(G0(r) \minX1) ≥ µ(G0(r

′′) \minX ′′)
holds with |X ′′1 | < |X1|.

In (b-2), let P1 discard minX1, which is always possible by r′ = 0. If |X1| = 1
(i.e., minX1 is the last card of P1), P1 is the winner. Thus we consider the case
|X1| ≥ 2. The configuration becomes (X ′′0 , X

′′
1 , r
′′) = (X0, X1\minX1,minX1);

the configuration graph of activeP0 changes fromG0(r)\minX1 = (X0, X1∪{r}\
minX1) toG0(r

′′)\minX ′′1 = (X0, X1\min2X1), and the configuration graph of
non-active P1 changes fromG1 \minX0 = (X1, X0 \minX0) toG1 \minX ′′0 =
(X1 \ minX1, X0 \ minX0). Here note that all the vertices in X1 \ minX1

are covered by any maximum matching of G1 \ minX0. We further consider
subcases (b-21) minX1 is also covered by a maximum matching of G1 \minX0,
(i.e., all the vertices in X1 is covered by a maximum matching ) and (b-22)
not. In (b-21), µ(G1 \minX0) = |X1| and µ(G1 \minX ′′0 ) = |X1| − 1 hold and
µ(G0(r

′′)\minX ′′1 ) ≤ |X1\min2X1| ≤ |X1|−1, which impliesµ(G1\minX ′′0 ) ≥
µ(G0(r

′′) \minX ′′1 ). In (b-22), µ(G1 \minX0) = |X1| − 1 but µ(G1 \minX ′′0 )
is laso |X1| − 1 because minX1 is not touched by a maximum matching edge.
Also µ(G0(r

′′) \ minX ′′1 ) ≤ |X1 \ min2X1| ≤ |X1| − 1, which again implies
µ(G1 \minX ′′0 ) ≥ µ(G0(r

′′) \minX ′′1 ). Both the cases satisfy the precondition
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of the lemma with fewer cards of P1. This completes the proof.

Lemma 2.2 implies that the winner decision in TANHINMIN is done by
computing µ’s, the sizes of maximum matchings. Since the maximum match-
ing size of a graph with n vertices can be computed in polynomial time (e.g.,
O(n5/2)-time [28]), we can determine the winner of an instance of TANHINMIN
in polynomial time.

In the rest of this section, we will show that it is easier to compute a maximum
matching of a configuration graph due to its transitive property; it does not require a
general maximummatching algorithm, and it can be done just by a greedy manner.
We show the following lemma.

Lemma 2.5. Suppose that (X0, X1, r) are given, where X0 and X1 are sorted.
Then µ(G0(r) \minX1) and µ(G1 \minX0) can be computed inO(|X0|+ |X1|)
time.

The proof of Lemma 2.5 utilizes the property that an arbitrary bipartite graph
G = (X0, X1) defined by the strength order has a special edge that can be contained
in a maximum matching. We have the following lemma.

Lemma 2.6. If a bipartite graph G = (X0, X1, E(X0, X1)) is connected, there
exists a maximum matching that contains edge (minX0,minX1).

Proof. Since G is connected, (minX0,minX1) is an edge of G. Suppose that
M is a maximum matching that does not contain (minX0,minX1). If neither
minX0 nor minX1 is matched in M , it contradicts the maximality of M , so
either minX0 or minX1 is matched. If minX0 is matched and minX1 is not, the
matching obtained by replacingmatching edge (minX0, x)with (minX0,minX1)
in M is also maximum. The case where minX1 is matched and minX0 is not
can be similarly handled. If both minX0 and minX1 are matched but not by
(minX0,minX1), M contains (minX0, x) and (x′,minX1). Since this implies
x′ > minX0 > x, G has edge (x′, x). Then the matching obtained by replacing
(minX0, x) and (x′,minX1) with (x′, x) and (minX0,minX1) has the same
cardinality withM , which is also maximum. This complete the proof.

By Lemma 2.6, we can easily find an edge contained in a maximum matching
by focusing on the connected component. Algorithm 1 implements the idea, and
it can efficiently find a maximum matching.



2.3. WINNER DECISION OF TANHINMIN 31

GAME 2 greedy algorithm
1: G0 = (X0, X1) is given, whereX0 = {x1, x2, . . . , xn0}, x1 < x2 < · · · < xn0 ,

andX1 = {y1, y2, . . . , yn1}, y1 < y2 < · · · < yn1 . SetM := ∅, i := 1, j := 1.

2: If i > n0 or j > n1, then output M and halt. Otherwise, check whether
xi > yj . If yes, then go to Step 3. Otherwise i := i+ 1 and go to Step 2.

3: SetM := M ∪ {(xi, yj)}, and i := i+ 1 and j := j + 1. Go to Step 2.

Proof of Lemma 2.5. We first show the correctness of Algorithm 2. It slides
pointers i and j to find the “least” edge to include inM by using Lemma 2.6. Step
1 is the initialization. Step 2 slides pointer i to eliminate isolated vertices inX0. If
xi has an edge (xi, yj), it is included inM in Step 3, and then i and j are updated
and go back to Step 2.

The running time of the algorithm is obviously linear, because i and j in-
crementally increases, and the check of the inequality about xi and yj (stored in
arrays) can be done in a constant time.

Lemma 2.5 assumes that X0 and X1 are given in a sorted form. We think
that it is a natural assumption because TANHINMIN is a card game, and cards in
X0 and X1 can be sorted in O(n) time by a non-comparative sorting algorithm;
we have Theorem 2.1. In case when |X0| + |X1| is much smaller than n, a
non-comparative sorting could be slow and a standard comparison-based sort
algorithm’s O((|X0|+ |X1|) log(|X0|+ |X1|)) would be better.
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Chapter 3

TANHINMIN with cut cards

3.1 Introduction
In this chapter, we extend the results in Section 3 to TANHINMIN with extra rule
which called “cut rule”. In a popular rule of DAIHINMIN, the rule is also called
8-cut rule, which is named after a special role of 8. In TANHINMIN, the cards
with strength are in total preorder, though in TANHINMIN with 8-cut rule they
are in a preorder that is almost total except “8-cut card”. In DAIHINMIN with
8-cut rule, once an active player discards “8”, the other players must pass for the
“8” even if they have “9” or greater cards than “8”. In the sense, “8” is considered
a kind of maximal. The cut rule in this paper is a generalization of the 8-cut rule.

3.2 Definition
To introduce the cut rule, we install cards equipped with the role of “8”. To this
end, we introduce “8-cut” cards, or simply cut cards. Let the set of cut cards denote
{1̃, 2̃, . . . , ñ}. In the strength system, ĩ is stronger than 1, 2, . . . , i − 1, but ĩ and
i are not comparable. As same as “8” in DAIHINMIN, no card is stronger than ĩ
for any i. For example, if ordinary 5 is at the top of the table, one can discard an
ordinary card which is equal to or greater than 6, or a cut card ĩ where i is equal
to or greater than 6. On the other hand, if a player discards an arbitrary cut card ĩ,
the other players must pass the turn, and then the table is cleared.

To model TANHINMINwith cut cards, we introduce additional symbols to the
original TANHINMIN.We again useX0 andX1 to represent the sets of (ordinary)
cards that belong to P0 and P1, respectively. Additionally, let Y0 and Y1 denote
the sets of cut cards that belong to P0 and P1, respectively. The configuration
of TANHINMIN with cut cards forms (X0, Y0, X1, Y1, r). Similarly to the basic

33
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TANHINMIN, we construct bipartite graphs G̃0(r) = (X0 ∪ Y0, X1 ∪ {r}) and
G̃1 = (X1 ∪ Y1, X0).

Like Lemma 2.2, the winner of TANHINMIN with cut cards is determined by
the maximum matching sizes of two graphs obtained from G̃0(r) and G̃1, that is,
µ(G̃0(r) \ minX1) and µ(G̃1 \ minX0), where minX0 (resp., minX1) denotes
the weakest card of X0 (resp., X1).

3.3 Winner decision
We can decide the winning player of 2-player TANHINMIN with cut cards in
O(n) time.

Theorem3.1. Given a configuration (X0∪Y0, X1∪Y1, r) of 2-player TANHINMIN
with cut card with n cards, we can decide the winning player in O(n) time.

We can prove Theorem 3.1 by proving several lemmas as Theorem 2.1. Lemma
2.2 corresponds to Lemma 3.4. To handle exceptional cases, we use Lemma 3.3.
Here, we just concentrate on explaining major differences to avoid repetitions.

Similarly to the ordinary TANHINMIN, the values of µ(G̃0(r) \minX1) and
µ(G̃1 \ minX0) represent the essential information on whether or not to have a
winning strategy, but it is not all. There is a situation where we cannot decide only
by µ(G̃0(r) \minX1) and µ(G̃1 \minX0), which occurs when a cut card in hand
is not strong enough. We roughly name a “surplus” state such as the state that a
player has cut cards that can be discarded only on empty table or the weakest card
that the opponent player has.

For example, suppose that P0 has an ordinary card 2 and a cut card 1̃, P1 has
only ordinary cards of 1 and 3 (no cut card), and a card on the table is 1 (Fig.
3.1 (a)). In this case, P0 has only two options: to select pass or to discard 2. If
P0 discards 2 and the turn moves P1, P1 can discard 3 (Fig. 2 (c)). In the other
case, P0 selects pass and the turn moves P1. Then P1 can also discard 3 (Fig. 2
(d)). Both cases P1 can discard 3 and the turn moves to P0 (Fig. 2 (e)). He/she
has only one option: to select pass and the turn moves to P0. In P1’s turn, P1 can
discard 1 and P1 wins (Fig. 2 (f)). In this example, µ(G̃0(r) \minX1) = 1 and
µ(G̃1 \minX0) = 0 hold. If we apply the decision rule like Lemma 2.2, P0 seems
to have a winning strategy, but it is not correct, as seen above. To handle such an
exceptional situation, we introduce the name surplus, and we say that P0 is in the
surplus state. In fact, P0 can discard 1̃ once the turn comes in empty table. We
define such a status as follows:

Definition 3.2. Suppose P0 and P1 are active and non-active, respectively. We say
that active P0 is in a surplus status if all of the following conditions are satisfied:
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(a) initial setting (b) P0 discards 2.

(c) P1 discards 3. (d) P1 discards 3.
(after P0 discards 2.) ( after P0 selects pass.)

(k) The table is cleared. (l) P1 wins the game.

Figure 3.1: A play example of 2-player TANHINMIN with cut card

Y0 6= ∅, µ(G̃1) = |X0|, r /∈ N(Y0) and |N(Y0)| ≤ 1. Similarly, we say that
non-active P1 is in a surplus status if all of the following conditions are satisfied:
Y1 6= ∅, µ(G̃0) = |X1 ∪ {r}|, max(X0 ∪ Y0) /∈ N(Y1) and |N(Y1)| ≤ 1.

Although we omit the detailed proof, only one player can be in a surplus status
simultaneously. If the opponent player is in a surplus status, the player is the
winner.

Lemma 3.3. Given a configuration of 2-player TANHINMIN with cut cards, if
non-active P1 (resp., active P0) is in the surplus status, active P0 (resp., P1) has a
winning strategy.

We can prove this lemma by a mathematical induction with respect to |X0|
and |X1|, which are similar to the one of Lemma 2.2. We omit the detail to avoid
tedious repetitions.
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In the other cases, we can also determine which player has a winning strategy
using maximum matching size as explained in the following lemma. By applying
this and the arguments like Lemma 2.5, we obtain Theorem 3.1.

Lemma 3.4. Given a configuration (X0∪Y0, X1∪Y1, r) of 2-player TANHINMIN
with cut cards, where P0 and P1 respectively are active and non-active, and neither
of them is in a surplus status, P0 has a winning strategy when µ(G̃0(r)\minX1) >
µ(G̃1 \minX0) holds, and P1 has a winning strategy otherwise.

Proof of lemma 3.4. We prove these lemmas by a mathematical induction with
respect to |X0| and |X1|.
(Base step)

We consider the case where |X0| = 0 holds: if |Y1| > 0 and µ(G̃0(r)) =
µ(G̃0(r) \ {x1(i)|0 ≤ i ≤ |X1| − µ(G̃0(r))} and min(X1 \minX1) > x0(|X| −
µ(G̃1) and max(X0 ∪ Y0) /∈ N(Y1) and |N(Y1)| ≤ 1 hold, P0 wins. Note
that |X0 ∪ Y0| = |Y0| holds because|X0| = 0 holds and {r} ∈ N(Y0) holds
because µ(G̃0(r)) = µ(G̃0(r) \ {x1(i)|0 ≤ i ≤ |X1| − µ(G̃0(r))} holds. Since
{r} ∈ N(Y0) holds, P0 can discard a card y ∈ Y0. If |Y0| = 1 holds, P0 just
discards the unique card and wins. When |Y0| > 1, P0 discards a card y ∈ Y0,
then y becomes the table card instead of r, and G1(r) changes to G1(r) \ r = G1;
P1 cannot discard any card because a card on the table is cut-cards. Therefore P1

must select “pass”. Then the turn moves and P0 becomes the active player with an
empty table, which means r is replaced by 0; That is, |X0 ∪ Y0| decreases by 1.
Thus the situation is recursively reduced to |X0 ∪ Y0| = 1 and P0 eventually wins.

Next, we consider the case where X1 = 0 holds: if when |Y0| > 0 and
min(X1 \minX1) > x0(|X| −µ(G̃1) andmin(X1 \minX1) > x0(|X| −µ(G̃1)
and r /∈ N(Y0) and |N(Y0)| ≤ 1 hold hold, P1 wins. Since r /∈ N(Y0) holds, P0

discard ordinary card x ∈ X0 or pass. If P0 discard ordinary card x ∈ X0, then the
turn moves and P1 becomes the active player with an empty table, which means r
is replaced by x; In the other case: when P0 selects pass, then the turn moves and
P1 becomes the active player with an empty table, which means r is replaced by 0

In both of these cases, |X1| = 0 and |Y0| > 0 and µ(G̃1) = µ(G̃1 \ {x0(i)|0 ≤
i ≤ |X1| − µ(G̃1))} and max{X1 ∪ Y1} /∈ N(Y1) and |N(Y0)| ≤ 1 hold, so P0

has a winning strategy.

(Induction step) Assume that for |X0| ≤ k, P0 has a winning strategy if |Y1| > 0
and µ(G̃0(r)) = µ(G̃0(r) \ {x1(i)|0 ≤ i ≤ |X1| − µ(G̃0(r))} and min(X0 \
minX0) > x1(|X| − µ(G̃0(r)) and |N(Y1)| ≤ 1 hold. And assume that for
|X1∪Y1| ≤ k, P1 has a winning strategy |Y0| > 0 and µ(G̃1) = µ(G̃1 \{x0(i)|0 ≤
i ≤ |X1| − µ(G̃1))}| and min(X1 \minX1) > x0(|X| − µ(G̃1) and r /∈ N(Y0)
and |N(Y0)| ≤ 1 hold. We will show that for X0 = k + 1, P0 has a winning
strategy if |Y1| > 0 and µ(G̃0(r)) = µ(G̃0(r) \ {x1(i)|0 ≤ i ≤ |X1| − µ(G̃0(r))}
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and min(X1 \ minX1) > x0(|X| − µ(G̃1) and |N(Y1)| ≤ 0 hold, P0 has a
winning strategy(i); And show that for P1 has a winning strategy if |Y0| > 0 and
µ(G̃1) = |X0 \ {x0(i)|0 ≤ i ≤ |X0| − µ(G̃1)}| and r /∈ N(Y0) and |N(Y0)| ≤ 1
hold(ii).

Wefirst show (i) Sinceµ(G̃0(r)) = µ(G̃0(r)\{x1(i)|0 ≤ i ≤ |X1|−µ(G̃0(r))}
holds, P0 has a card to discard on the table card. Therefore P0 can discard a
card x ∈ X0 or card y ∈ Y0. Consider two cases: where min(x, y) > r|x ∈
X0 \minX0, y ∈ Y0 is certain x ∈ x0(case α) or not(case β).

First we consider case α. In this case P0 discard min x > r|x ∈ X0 \minX0.
After P0 discard a card x ∈ X0, P1 becomes active player and r is replaced by x.
Now, |X0| ≤ k and |Y1| > 0 and µ(G̃0) = µ(G̃0 \{x1(i)|0 ≤ i ≤ |X0|−µ(G̃0))}|
and min(X0 \minX0) > x1(|X| − µ(G̃0) and r /∈ N(Y1) and |N(Y1)| ≤ 1 hold.
Consequently, case α reduced.

Next, we consider case β. In this case, P0 discard min y > r|y ∈ X0 \minX0

and P1 becomes the active player with table card y. P1 cannot discard any card,
so P0 becomes the active player with empty table. In this case, P0 discard min
x > 0|x ∈ X0 \ minX0 and P1 becomes active player with table card x. Now,
|X0| ≤ k and |Y1| > 0 andµ(G̃0(r)) = µ(G̃0(r)\{x1(i)|0 ≤ i ≤ |X1|−µ(G̃0(r))}
andmin(X0\minX0) > x1(|X|−µ(G̃0(r)) and |N(Y1)| ≤ 1 hold. Consequently,
case β also reduced.

Next, we show (ii). Since r /∈ N(Y0) holds, P0 has no cut card to play on
the table. Therefore P0 has only two option: discarding any card x ∈ X0(ii)
or selecting “pass”(ii). Either P0 play a card on the table or selecting “pass”,
after that, µ(G̃1(r)) = µ(G̃1(r) \ {x0(i)|0 ≤ i ≤ |X0| − µ(G̃1(r))} holds since
min(X1\minX1) > x0(|X|−µ(G̃1) holded previousP0’s turn. Now, |Y1| > 0 and
µ(G̃0(r)) = µ(G̃0(r)\{x1(i)|0 ≤ i ≤ |X1|−µ(G̃0(r))} andmin(X1\minX1) >
x0(|X|−µ(G̃1) and |N(Y1)| ≤ 0 hold. This is case (i). Consequently (ii) reduced
(i).

Now that we prepare to prove lemma 3.3, we show the proof.

Proof. We prove these lemmas by a mathematical induction with respect to |X0|
and |X1|.
(Base step)

We consider the case where |X0| = 0 holds: if |Y1| > 0 and µ(G̃0(r)) =
|X1 ∪ {r}| and max(X0 ∪ Y0) /∈ N(Y1) and |N(Y1)| ≤ 1 hold, P0 wins. Note that
|X0 ∪ Y0| = |Y0| holds because|X0| = 0 holds and {r} ∈ N(Y0) holds because
µ(G̃0(r)) = |X1 ∪ {r}| holds.

Since {r} ∈ N(Y0) holds, P0 can discard a card y ∈ Y0. If |Y0| = 1 holds, P0

just discards the unique card and wins. When |Y0| > 1, P0 discards a card y ∈ Y0,
then y becomes the table card instead of r, and G1(r) changes to G1(r) \ r = G1;
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P1 cannot discard any card because a card on the table is cut-cards. Therefore P1

must select “pass”. Then the turn moves and P0 becomes the active player with an
empty table, which means r is replaced by 0; That is, |Y0| decreases by 1. Thus
the situation is recursively reduced to |Y0| = 1 and P0 eventually wins.

Next, we consider the case where X1 = 0 holds: if when |Y0| > 0 and
µ(G̃1) = |X0| and r /∈ N(Y0) and |N(Y0)| ≤ 1 hold hold, P1 wins. Since
r /∈ N(Y0) holds, P0 discard ordinary card x ∈ X0 or pass. If P0 discard ordinary
card x ∈ X0, then the turn moves and P1 becomes the active player with an empty
table, which means r is replaced by x; In the other case: when P0 selects pass,
then the turn moves and P1 becomes the active player with an empty table, which
means r is replaced by 0

In both of these cases, |X1| = 0 and |Y0| > 0 and µ(G̃1) = |X1| andmax{X1∪
Y1} /∈ N(Y1) and |N(Y0)| ≤ 1 hold, so P0 has a winning strategy.

(Induction step)
Assume that for |X0| ≤ k,P0 has awinning strategy if |Y1| > 0 andµ(G̃0(r)) =

|X1 ∪ {r}| and |N(Y1)| ≤ 1 hold. And assume that for |X1 ∪ Y1| ≤ k, P1 has
a winning strategy |Y0| > 0 and µ(G̃1) = |X0| and r /∈ N(Y0) and |N(Y0)| ≤ 1
hold.

We will show that for X0 = k + 1, P0 has a winning strategy if |Y1| > 0
and µ(G̃0(r)) = |X1 ∪ {r}| and |N(Y1)| ≤ 0 hold, P0 has a winning strategy(i);
And show that for P1 has a winning strategy if |Y0| > 0 and µ(G̃1) = |X0| and
r /∈ N(Y0) and |N(Y0)| ≤ 1 hold(ii).

We first show (i) Since µ(G̃0(r)) = |X1 ∪ {r}| holds, P0 has a card to discard
on the table card. ThereforeP0 can discard a card x ∈ X0 or card y ∈ Y0. Consider
two cases: where min(x, y) > r|x ∈ X0 \minX0, y ∈ Y0 is certain x ∈ x0(case
α) or not(case β).

First we consider case α. In this case P0 discard min x > r|x ∈ X0 \minX0

After P0 discard a card x ∈ X0, P1 becomes active player and r is replaced by x.
Now, |X0| ≤ k and |Y1| > 0 and µ(G̃1) = |X0| and r /∈ N(Y1) and |N(Y1)| ≤ 1
hold. Consequently, case α reduced.

Next, we consider case β. In this case, P0 discard min y > r|y ∈ X0 \minX0

and P1 becomes the active player with table card y. P1 cannot discard any card,
so P0 becomes the active player with empty table. In this case, P0 discard min
x > 0|x ∈ X0 \ minX0 and P1 becomes active player with table card x. Now,
|X0| ≤ k and |Y1| > 0 and µ(G̃1) = |X0| and |N(Y1)| ≤ 1 hold. Consequently,
case β also reduced.

Next, we show (ii). Since r /∈ N(Y0) holds, P0 has no cut card to play on
the table. Therefore P0 has only two option: discarding any card x ∈ X0(ii)
or selecting “pass”(ii). If P0 play a card on the table, after that |X1| = k + 1
and |Y0| > 0 and µ(G̃1) = |X0| and r /∈ N(Y0) and |N(Y0)| ≤ 1 hold. If P0
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selecting “pass”, after that, |Y1| > 0 and µ(G̃0(r)) = µ(G̃0(r) \ {x1(i)|0 ≤ i ≤
|X1| − µ(G̃0(r))} and min(X1 \ minX1) > x0(|X| − µ(G̃1) and |N(Y1)| ≤ 0
hold. This is case (i). Since lemma 3.4, P1 has a winning strategy. Consequently
(ii) reduced (i).
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Chapter 4

TANHINMIN with imperfect
information

4.1 Introduction
TANHINMIN is a simplified and perfect information variant of DAIHINMIN
game, which is major playing card game in Japan. It is proved that it can be decided
in linear time which player has a winning strategy in 2-player TANHINMIN game
in Chapter 2. In this chapter, we concern with how we obtain a winning strategy
for the imperfect information variant of TANHINMIN game. If any information
about the opponent player’s hand is not given at all, it is obviously difficult to find
a winning strategy, though such a hard situation does not likely happen in real
game plays; players usually receive some little information about the opponent
player’s hand through a game, e.g., the number of cards. To handle the situation
that a player can receive some information about the opponent player’s hand, we
introduce an oracle model in which the oracle provides partial information about
the opponent’s hand. Interestingly, when players can get partial information of
the opponents’ hands via oracle, the winning player can find a winning strategy
as if it is the (perfect information) TANHINMIN. Furthermore, we show various
results about other relationships between the power of oracles and the existence of
a computable winning strategy.

4.2 Graph Model of TANHINMIN
We assume basic knowledge of graph theory. Let G = (V,E) be a graph, where
V is the set of vertices and E is the set of edges.

All the graphs that we consider in this paper are bipartite, that is, there is a
bipartition (V0, V1) of V such that E ⊆ {(p, q) | p ∈ V0, q ∈ V1}. To specify the
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bipartition, we denote G = (V0, V1, E) instead of G = (V,E). For graph G and
a vertex v of G, NG(v) denotes the set of neighboring vertices to v in G, that is,
NG(v) = {u ∈ V | {u, v} ∈ E}. We sometimes use notation N(v) instead of
NG(v) if the graph that we consider is clear. For S ⊆ V , N(S) similarly denotes
the set of vertices neighboring to any vertex in S, that is,N(S) =

⋃
v∈S N(v). For

graph G = (V,E) and v ∈ V , let G \ v denote a graph obtained by deleting v and
its incident edges. For a graph G = (V,E), a subsetM of E is called matching if
no two edges inM share an end. For a graphG, we denote the size of a maximum
matching by µ(G).

Suppose that the two players of our TANHINMIN are P0 and P1, where P0 is
the active player and P1 is the non-active player. We first fix a turn to consider.
At the turn, we respectively denote by X0 and X1 the cards belonging to P0 and
P1, and by {r} the top card on the table. These provide sufficient information to
describe the situation of the turn; triplet (X0, X1, r) define the configuration of the
turn.

Note that in a play of TANHINMIN cards on table are sometimes cleared, and
then {r} is empty. In such a case, we virtually consider that 0 is at the top of the
cards on table. For example, in Figure 1, X0 = {1, 3, 4, 5, 8}, X1 = {2, 6, 7} and
r = 0 at (a), and X0 = {2, 6, 7}, X1 = {3, 4, 5, 8} and r = 1 right after (b).

We then give a graph model of TANHINMIN; for a configuration, we construct
several graphs.

The vertices correspond to cards inX0 ∪X1 ∪ {r}, and use the same symbols
to represent them. For configuration (X0, X1, r), we then construct graphsG0 and
G0(r) as follows:

G0 = (X0, X1, E0),

where E0 = {(i, j) | i ∈ X0, j ∈ X1, i > j},
G0(r) = (X0, X1 ∪ {r}, E0),

where E0 = {(i, j) | i ∈ X0, j ∈ X1 ∪ {r}, i > j}.

Similarly, we define

G1 = (X1, X0, E1),

where E1 = {(i, j) | i ∈ X0, j ∈ X1, j > i}.

Here, graph G0(r) represents which cards P0 can discard for cards in X1 ∪ {r}.
Graph G1 represents which cards P1 can discard for cards in X0. If X0 = ∅ or
X1 = ∅, P0 or P1 is obviously the winning player, respectively. Thus we assume
that both X0 and X1 are nonempty in the following.
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As we see below in Proposition 4.1, the winner of TANHINMIN is determined
by the maximum matching sizes of two graphs obtained from G0(r) and G1, that
is, µ0

def
= µ(G0(r) \ minX1) and µ1

def
= µ(G1 \ minX0), where minX0 (resp.,

minX1) denotes the weakest card of X0 (resp., X1). Since these graphs play
important roles in the winner decision, we nameG0(r) \minX1 andG1 \minX0

the configuration graph of active player P0 and the configuration graph of active
player of non-active player P1, respectively.

Proposition 4.1. (Lemma 2.2) Given a configuration (X0, X1, r) of 2-player TAN-
HINMIN with n cards, P0 has a winning strategy when µ(G0(r) \ minX1) >
µ(G1 \minX0), and P1 has a winning strategy otherwise.

Based on this proposition, the winner of a given perfect information TANHIN-
MIN can be computed in linear time, and it also gives an insight that the winning
strategy is strongly related to the maximum matching structures of the configura-
tion graphs. In the following, we call P0 (resp., P1) a player satisfying the winning
inequality if µ0 > µ1 (resp., µ0 ≤ µ1). By these, our oracle-based analyses of im-
perfect information variants of TANHINMIN also utilize the configuration graphs
and their maximum matching.

4.3 Imperfect InformationTANHINMINwith struc-
tural oracles

Aswe see in the previous section, thewinner of 2-player perfect information variant
can be computed efficiently, but of course, the perfect information setting is not
always realistic, as DAIHINMIN is an imperfect information game in fact. Thus
we consider to extend the analyses for the perfect variant to imperfect variants.
If “imperfect” means no information, what we can do seems to be nothing, On
the other hand, the setting “no information” is quite rare in real game playing
situations; players can get some information of their opponents’ hands, e.g., how
many cards she has, whether she has a specific card, and so on. For example,
suppose that we use standard playing cards for DAIHINMIN, which is played in
the hidden manner. In spite that it is played in the hidden manner, if a player has
four Q cards in the hand, she knows that the other players have no Q. Alternatively,
if a player has three Q cards, she knows that there is a player having one Q card.
In other words, the DAIHINMIN is rather a partial information game than a game
with no information.

Here, it is important to precisely model or control the partial information that
the players can receive. In this paper, we introduce a structural oracle (or simply
call oracle) that gives such information.
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Here, we formally define a structural oracle. Player 0 (resp., 1) knows her
own hand X0 (resp., 1) and can access an oracle f , which is a function from
(X0, X1, r) to a certain range. In this paper, we consider two types of oracles. One
is called a cardinality oracle, which returns the size of |Xi| (i = 0, 1), the other is a
matching size oracle, which returns µ0 and/or µ1. Since these values are regarded
as functions, they also refer to oracles. For example, |X0| refers to the oracle
that returns |X0|. Note that the number of cards which the opponent player has is
a typical information that can be easily obtained during a play of DAIHINMIN,
and the cardinality oracles model this. Remind that µ0 is µ(G0(r) \ minX1)
and µ1 is µ(G1 \ minX0). Also recall that in the 2-players perfect information
TANHINMIN, the winner can be determined by computing µ0 and µ1 ( in Chapter
2, we showed).

We can show the following theorems. All the theorems are about the 2-players
TANHINMIN played in the hidden manner, but each player can access some
oracles.

(Induction step)

Theorem 4.2. Assume that P0 and P1 can access |X1| and |X0| oracles. When
|X1| ≤ 2 and µ0 > µ1 (resp., |X0| ≤ 2 and µ0 ≤ µ1), P0 (resp., P1) has the
winning strategy.

Theorem 4.2 implies that there are situations that only the cardinality oracle
is strong enough to get information for the winning player. At the same time, the
power of the cardinality oracle is very limited to the situation; the size itself is
crucial as seen in the next theorem.

Theorem 4.3. Assume that P0 and P1 can access |X1| and |X0| oracles. Even
when µ0 > µ1 (resp., µ0 ≤ µ1), there is a game with |X1| ≥ 3 (resp., |X0| ≥ 3)
where P0 (resp., P1) cannot take her winning strategy.

It is interesting that Theorems 4.2 and 4.3 may give a guideline to play in real
game playing situations, that is, each player can know the number of cards of the
other, if the number of cards of the opponent player is 1 or 2, then the player can
play as if she knows the opponent’s hand; otherwise, some uncertainty remains.

Theorem 4.4. Assume thatP0 andP1 can access either µ0 or µ1 oracles at a certain
timing. Player P0 (resp., P1) has the winning strategy when µ0 > µ1 (µ0 ≤ µ1) at
the timing.

Theorems 4.3 and 4.4 contrast well. Theorem 4.5 implies that once a player
satisfying the winning inequality can access either µ0 or µ1 at some moment, she
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can perform the best move as if she plays perfect information game. Note that in the
setting, a player satisfying the winning inequality cannot identify that she herself
is a player satisfying the winning inequality. Thus under the matching oracle, what
each player can do is to play as she is a player satisfying the winning inequality.
The following theorem shows that the winning scenario is also essential.

Theorem 4.5. Assume that P0 and P1 can access all the oracles of µ0, µ1, |X0| and
|X1| at some timing t. Even when µ0 > µ1 (resp., µ0 ≤ µ1) of timing t changes
µ0 ≤ µ1 (resp., µ0 > µ1) at some later timing of the game, there is a case with
where P1 (resp., P0) cannot take her winning strategy.

Corollary 4.6. Assume that player P0 (resp., P1) can access oracle either µ0 or µ1

every turn. If there is a timing that P0 (resp., P1) becomes a player satisfying the
winning inequality, P0 (resp., P1) wins.

Theorem 4.5 and Corollary 4.6 may contrast. Theorem 4.5 implies that even
if a player becomes a player satisfying the winning inequality, the player may not
be able to win if the timing is later than the oracle access. Corollary 4.6 implies
that if a player can access the matching size oracle every time, she can adjust her
strategy to the winning one.

Figure 4.1 summarizes the results.

1

∅ (No oracle)

{𝜇0(1)}
{𝜇1(1)} { 𝑋1 }

{𝜇1(𝑛) }

{𝑋1}(Perfect information game)

{𝜇0(𝑛)}
{𝜇0(1), 𝜇1(1), |𝑋1|}

No winning strategy

Solvable as perfect information  

Winning player can find 
winning player.

Figure 4.1: Relationship between accessible oracles and solvability of the winner
decision

In Figure 4.1, braces show the set of oracles that P0 can access. For example,
{µ0(1), µ1(1), |X1|} represents that P0 can access µ0, µ1 and |X1| at the beginning
of the game, where µ0(1)’s (1) represents once, as explained below. The top one
{X1} represents that the case when P0 can access X1 itself, which is equivalent
to the perfect information variant. For matching size oracles, how often P0 can
access µ0 or µ1 is important. Here, µ∗(1) represents the case in which P0 can access
µ∗ once, and µ∗(n) represents the game in which P0 can access µ∗ anytime.
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4.4 Proofs
In this section, we give proofs of the theorems shown in Section 4.3.

Proof of Theorem 4.2. We show P0 can win to play Algorithm 3 when |X1| ≤ 2
and µ0 > µ1 holds.by considering the case |X1| = 1 (i) and |X1| = 2(ii).

Algorithm 3Winning Strategy
1: When P0 can discard weakest card during P0’s turn (empty table, etc.), discard

the second weakest card into play, otherwise the weakest card that can be
discarded.

(i)|X1| = 1

We see the case |X1| = 1 and let x0 be a card (vertex) in X0. We consider
the case where µ(G0(r) \minX1) > µ(G1 \minX0) holds and P0 is the active
player. We will show that P0 wins by using Algorithm 3 in this case.

When |X1| = 1 holds, µ(G0(r) \minX1) = 1 and µ(G1 \minX0) = 0 holds
because the value ofµ(G0(r)\minX1) is 1 at most and the value ofµ(G1\minX0)
is 0 at least. If there is no card {x0|x0 > r}, µ(G1 \minX0) = 0 does not hold
because µ(G1 \ minX0) = µ(G1 \ minX0) = µ(∅) = 0. Therefore, there is a
card {x0|x0 > r} in P0’s hand. P0 discard a card except for a card minX0; P1

must pass since there is no card in P1’s hand and P0 become the active player with
empty table. After that P0 can repeat discarding non-weakest card and P1 must
pass. Finally P0 discard the last card in her hand and P0 can win.
(ii)|X1| = 2

Next, we show P0 can win to play Algorithm 3 when |X1| = 2 and µ0 > µ1

holds. Since the value of µ0 is 2 at most when |X1| ≤ 2, µ0 = 1 and µ1 = 0 or
µ0 = 2 µ1 = 0 or 1 holds.

At first, we consider the case µ0 = 1 and µ1 = 0 holds. Since µ1 = 0 holds,
there is no card in P1’s hand can discard onto table card which is discarded by P0

unless minX0.
If there is a card x0 > r in P1’s hand then discard a card except for a card

minX0. P1 must pass since there is no card in P1’s hand and P0 become the active
player with empty table. After that P0 can repeat discarding non weakest card and
P1 must pass. Finally P0 discard the last card in her hand and P0 can win.

If there is no card x0 > r in P1’s hand then P0 must select pass and P1 become
the active player. P1 discard any card, P0 can discard a non-weakest card. P1

must pass since there is no card in P1’s hand and P0 become the active player with
empty table. After that P0 can repeat discarding non weakest card and P1 must
pass. Finally P0 discard the last card in her hand and P0 can win.



4.4. PROOFS 47

Next, we consider the case µ0 = 2 and µ1 ≤ 1 holds. Since µ0 = 2 holds, there
is a card in P0’s hand can discard onto table card r. P0 can discard a non-weakest
card as weak as she can play and P1 become the active player. P1 may discard a
card onto table card or select pass.

If P1 select pass, P0 become the active player with empty table after that P0 can
discard a non-weakest card as weak as she can play. This repeats until P1 discard
a card or P0 win.

If P1 select pass, P0 can discard onto a table card which P1 discards because
P0 can save stronger card than P1 discards one. After that P0 can repeat discarding
non weakest card and P1 must pass. Finally P0 discard the last card in her hand
and P0 can win.

Next, we give a proof of Theorem 4.3.

Proof of Theorem 4.3. We prove by describing the concrete game which player
cannot obtain winning strategy. Let the table be empty and P0 be turn player. Let
the initial hand-set of P0 be {2, 3}. In this case, we can mentioned {1, 2, 5} or
{2, 3, 3} as the one of losing hand of P1 if this game is perfect information; the
following shows that even if the hand of P1 is limited to either of these two, the
winning strategy of P0 differs depending on which one is.

At first, we consider the case where X1 = {1, 2, 5} holds. In this case if P0

discard a card 2, P0 can win regardless P1’s after playing: discard a card 5 or pass.
On the other case: if P1 discard a card 3, then 3 becomes the table card instead

of 0, and P1 becomes active player. P1 can discard a card 5; In this case P1 discard
5. Then 5 becomes the table card instead of 3, and P0 becomes active player. P1

cannot discard any card because there is no stronger card in her hand; In this case
P0 must be pass. After that, P1 becomes the active player with an empty table,
which means 5 is replaced by 0; P1 can discard 2. then a card 2 becomes the table
card instead of a card 2, and P0 becomes active player. P1 cannot discard any card
because there is no stronger card in her hand; In this case P0 must be pass. After
that, P1 becomes the active player with an empty table, which means 2 is replaced
by 0; P1 can discard 0. Finally, P1 can discard a card 1 and P1 win. Therefore, P0

must have winning strategy to discard a card 2 at first, and may lose to discard a
card 3 at first.

Next, we consider the case where X1 = {2, 3, 3} holds. In this case if P0

discard a card 3, P0 can win regardless P1’s after playing: discard a card 5 or pass.

On the other case: if P1 discard a card 2, then 2 becomes the table card instead
of 0, and P1 becomes active player. P1 can discard a card 3; In this case P1 discard
3. Then 3 becomes the table card instead of 2, and P0 becomes active player. P1
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cannot discard any card because there is no stronger card in her hand; In this case
P0 must be pass. After that, P1 becomes the active player with an empty table,
which means 3 is replaced by 0; P1 can discard 3. then a card 3 becomes the table
card instead of a c, an empty table P0 becomes active player. P1 cannot discard
any card because there is no stronger card in her hand; In this case P0 must be
pass. After that, P1 becomes the active player with an empty table, which means
3 is replaced by 0; P1 can discard 2. Finally, P1 can discard a card 1 and P1 win.
Therefore, P0 must have winning strategy to discard a card 3 at first, and may lose
to discard a card 2 at first in the case where X1 = {2, 3, 3} holds.

If each player does not receive any information about the opponent player, P0

does not have a winning strategy in this game because the above two games are
indistinguishable. On the other hand, P1 also does not have a winning strategy
because it may loses depending on the choice of P0. From the above, this theorem
is shown.

Finally, we prove Theorem 4.5.

Proof of Theorem 4.5. We prove by describing the concrete game in which player
cannot obtain winning strategy. Let the initial handset of P0 be {2, 3}, initial table
card is empty and P1 is active player. initial player given a oracle that µ0 = 2,
µ1 = 1, and |X| = 5. In this case, we can mentioned {1, 1, 2, 4, 5} or {1, 2, 3, 3, 4}
as the one of losing hand of P1 if this game is perfect information; The following
shows that even if the hand of P1 is limited to either of these two, the winning
strategy of P0 differs depending on which one is.

Given the following progress in this game:
1. P1 discards a card 4.
2. Since there is no card to discard for P0, P0 selects the pass.
3. P1 discards a card 1.
Then the card of 1 becomes the table card instead of 0, and P0 becomes active

player. In this case, P0’s hand-set is {2, 3}, and P1’s hand-set is {1, 2, 5} or
{2, 2, 3} and table card is 1. This situation is equal to the theorem 4.3.

From the above, this theorem is shown.



Chapter 5

Open-Hand BABANUKI

5.1 Introduction
BABANUKI is a popular game with playing cards in Japan. The basic rule of
BABANUKI is quite simple, and many similar games are played all over the world.
For example, it is similar to “Old maid" game.

In this chapter, we analyze BABANUKI game as a multi-player discarding
game with perfect information by non preference analysis. We newly introduce
open-hand BABANUKI based on the ordinary BABANUKI. It is played in the
manner that players play BABANUKI with cards faced up. This makes the game
a perfect information game, and it becomes worth considering optimal strategies;
we consider the winning strategy of open-hand variant BABANUKI. Although the
2-players case is almost obvious, the 3-players case is not, and we give a necessary
and sufficient condition of the existence of the winning strategy. Furthermore,
for 4-players case, there is a configuration where an endless-loop phenomenon,
so-called “repetition draw", occurs.

5.2 Preliminary and basic results

5.2.1 Model
We first model the game of open-hand BABANUKI. At first, let players be
{P0, P1, . . . , Pp−1} (p is an integer of 2 or more). We define the initial active
player P0 and the cyclic order of players as {P0, P1, . . . , Pp−1, P0, . . . }. Let
[n] = {1, 2, . . . , n} and [n̄] = {1̄, 2̄, . . . , n̄} be the set of card faces. Card i and ī
forms a pair, and ī is the complement of i, and i is the complement of ī. If a player
has a pair of cards with a same number, he/she can discard them. For a set X of
the cards, |X| denotes the number of the cards in X .

49
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In addition, there is a card called “Old maid", which has a special role. In
this paper, we simply call it JOKER card because JOKER is often given the role
in BABANUKI. This card has no complement and cannot be discarded from the
hand. In the following, we model a pair of n number card and an one JOKER. The
rule of open-hand BABANUKI game that we consider in this paper is as follows:

(Setting phase)

• All the cards are distributed to players, and if there is any pair of cards in
each player hand, discard them. Let i = 0.

(Drawing phase)

• Pi selects an arbitrary card from Pi−1’s hand and adds that card to the hand,
where the subscript of Pi is the modulo of p.

• If Pi has a same card with the drawn card, then discard the drawn card
together with the same card. Otherwise, Pi adds the drawn card into his/her
hand. In any case, this finishes the Pi’s turn and i := i+ 1.

• If all the cards are discarded, then the player leaves the game. If p := 2,
the game ends. Otherwise, let p := p − 1, and edit the subscripts to fit the
number of the remaining players, and go back to the beginning of Drawing
phase.

(Ranking phase)

• The player who has discarded all his hands first ranks higher, and the player
with the remaining hand until the end becomes the lowest.

5.2.2 2-player play
We give two basic results on 2-Player open-hand BABANUKI.

Theorem 5.1. In 2-player Open-hand BABANUKI game, the player who does not
have the JOKER card has a winning strategy.

Theorem 5.2. In 2-player Open-hand BABANUKI game, the player’s best strategy
for win is “draw any of the non-JOKER card in their turn".

Zermelo proved that in 2-player perfect information combinatorial game, either
of the players has a winning strategy or no player cannot win, which means a
tie [50]. It is an existence theorem and does not provide a concrete winning
strategy; it could be extremely hard to determine which player is the winner.
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In these senses, non-trivial points of Theorems 1 and 2 are (1) if players are
rational, no tie happens, and (2) determining the winner is very easy. Note that
Zermelo’s theorem is about 2-player case, and the cases of 3 or more players are
very different; there are many examples that there exists no optimal strategy under
natural preference assumptions [55]. In spite of that, we can show the existence
of winning strategy of multiplayer open-hand BABANUKI , as we will see in
Sections III and IV.

5.3 3-player play
In this section, we show that the winning strategy is determined by player’s hands
and order in 3-player open-hand Old Maid.

At first, we define some variables. In the following, it is assumed that the
subscript i of Pi represents the modulo by 3, that is, i mod 3. Xi is the set of hands
held by both players Pi and Pi+1. Similary, Yi is the set of hands held by player Pi

and player Pi+2, andZi is the set of hands held by both player Pi+1 and player Pi+2.
That is, X0(= Y1 = Z2) is a set of hands that both P0 and P1 have, and similarly,
X1(= Y2 = Z0) is P1 and P2, X2(= Y0 = Z1) is a set of hands that both P2 and
P0 have (the definitions of Yi and Zi are redundant). Also, ji = 1 when the player
Pi(i = 0, 1, 2) has JOKER, and ji = 0 when the player does not have JOKER.
Except for JOKER cards, there is no hand held by one player and one hand held by
three players. Therefore, if the hand set of each player isHi(i = 0, 1, 2), Hi = Xi

∪ Yi ∪ {j} when Pi has JOKER card. When Pi does not have a JOKER card,
Hi = Xi ∪ Yi.

The existence or non-existence of a player who has a winning strategy depends
on the positional relationship between the active player and the player holding
JOKER. The positional relationship between the active player and the JOKER
player is the following three types:

(I) When the active player and the JOKER player are different, and the active
player is next to the JOKER player.

(II) The active player and the JOKER player are different, and the active player
is in the order of drawing the cards from the JOKER player.

(III) When the active player and the JOKER player are the same.

The winning condition in each case can be shown by the following theorem.
First, the winning strategy holder in the situation (I) is characterized by the fol-
lowing theorem.
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Theorem 5.3. The active player is P0, P1 has JOKER card. At this time P0 has a
winning strategy if and only if:

• |X0| = 1, |Y0| is odd, |Z0| > 0.

• |X0| = 0, |Y0| is even (and not 0), |Z0| = 0.

• |X0| = 0, |Z0| > 0.

P1 has a winning strategy if and only if:

• |X0| is odd, |Y0| > 1, |Z0| = 0.

P2 has a winning strategy if and only if:

• |X0| > 0, |Y0| = 0.

• |Y0| = 1, |Z0| = 0.

• |X0| is even, |Y0| is odd number, |Z0| is even number, |X0| ≥ |Z0|.

• |X0| is odd number, |Y0| is even number, |Z0| is odd number, |X0| ≥ |Z0|.

Note that if the condition of (I) does not meet the conditions of the theorem, no
player has a winning strategy. This does not mean that no player holds the winning
strategy throughout the game, but that the player holding the (future) winning
strategy can change depending on each turn decision.

For example, if a playerP0 draws a certain card, P1 will have a winning strategy
in the next phase, but if another player draws, P2 will have a winning strategy.
Alternatively, no matter which card P0 draws, the winning strategy holder may
still not be determined at that point. From the above, it is necessary to show the
theorems that characterize winning strategy holders not only in (I) but also in (II)
and (III), separately from (I). The characterizations corresponding to (II) and (III)
are as follows.

Theorem 5.4. The active player is P0, P0 has JOKER card. At this time P0 has a
winning strategy if and only if:

• |X0| = 0, |Y0| is odd number, |Z0| > 0.

P1 has a winning strategy if and only if:

• |Y0| > 1, |Z0| = 0.

• |X0| = 1, |Z0| = 1.
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• |X0|, |Y0| and |Z0| are odd number, |X0| ≤ |Y0|.

• |X0|, |Y0| and |Z0| are and even number, |X0| ≤ |Y0|.

P2 has a winning strategy if and only if:

• |X0| > 0, |Y0| = 0.

• |X0| > 0, |Y0| = 1, |Z0| is even number.

• |X0| = 0, |Y0| = 0, |Z0| is odd number.

Theorem 5.5. The active player is P0, P2 has JOKER card. At this time P0 has a
winning strategy if and only if:

• |X0| = 0, |Z0| > 0.

• |X0| = 1, |Y0| = 1, |Z0| > 0.

• |X0| is odd number, |Y0| is odd number, |Z0| is even number, |Y0| ≤ |Z0|.

• |X0| is even number, |Y0| is even number, |Z0| is odd number, |Y0| ≤ |Z0|.

P1 has a winning strategy if and only if:

• |Y0| > 1, |Z0| = 0.

• |X0| is even number, |Y0| > 0, |Z0| = 0.

• |X0| is odd number, |Y0| > 1, |Z0| = 1.

P2 has a winning strategy if and only if:

• |X0| > 0, |Y0| = 0, |Z0| is even number.

Note that a player that has no card in his/her hand at the beginning of the draw
phase is obviously the winner and we omitted the case from the theorem.
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5.4 4-player play
In this section, we show that there is a situation that all the each player’s best strategy
in BABANUKI game with hand-opening played by four players is a repetition-play

Theorem 5.6. There is a situation where the situation is the repetition is the best
strategy when aiming for all the players not to be the lowest in the open-hand
BABANUKI played by four players.

We show an example that repetition draw occurs.

Lemma 5.7. Let the order of the players be P1, P2, P3, P4, and the next is P0’s
turn. At this time, if each player takes the best action to improve his/her ranking,
it occurs repetition draw in the case of the following hand arrangement.

• Players P1 and P3 have the same hand, and their number of hand is 2,

• The number of P2’s hand is 2 and the number of P2’s hand is 3.

１2
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43J

43
𝑷𝟎
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Figure 5.1: one of the same situation of Lemma 7



Chapter 6

SHICHINARABE

6.1 Introduction
SHICHINARABE is one of the most popular card games played in Japan. In
this chapter, we consider SHICHINARABE, where the input consists of both a
board and cards. We model a graphical generalization of SHICHINARABE and
investigate the time complexity of the winner decision. Through the graphical
generalization, we present a linear-time algorithm that can decide the winner of
a given ordinary SHICHINARABE instance; the ordinary SHICHINARABE is
shown to be an easy game. On the other hand, SHICHINARABE has many
variations on how to use JOKER cards and with/without tunnel rules.

We formally define such rules in the graphical models, and we see the effect of
the strength of rule sets. Concretely, we pick up trees and planar graphs as typical
layouts of a board, and investigate the time complexity for natural combinations
of graph classes and rule sets. As a result, the winner decision of graphical
SHICHINARABE on trees is proved to be solvable in polynomial time, whereas
that on planar graphs is shown to be hard to solve; the winner decision is NP-hard
in general, and it is even PSPACE-hard if we adopt a generalized tunnel rule.

6.2 Preminaries
To introduce a graphical SHICHINARABE, we here define several notations on
graphs used in this chapter. We assume basic knowledge about graph theory. Let
G = (V,E) be an directed or undirected graph G = (V,E) where n = |V | and
m = |E|. We divide a set of vertex V into VB, VR, VW . We call each of them a
set of blue vertex, red vertex and white vertex.

For an undirected graph G = (V,E), a vertex u is called a neighbor of v if
there exists an edge {u, v} ∈ E. We denote by NG(v) the set of neighbors of v in

55



56 CHAPTER 6. SHICHINARABE

G, that is, NG(v) = {u ∈ V | {u, v} ∈ E}.
The two players in the game will be referred to as red player and blue player.

Under this setup, the game proceeds as follows.
The rules of 2-player graph SHICHINARABE

• We first determine which player is the first player, and they take turns in the
order of first player, second player, first player, and so on.

• In a turn of each player, they select one of their vertices (the red vertices
for the red player, the blue vertices for the blue player) neighboring a white
vertex. The selected vertex changes to a white vertex. After the change, the
turn action ends and moves to the next turn.

• If a player in a turn selects the last (unique) vertex of their color, the player
wins. The game ends.

• If a player in a turn cannot select a vertex of their color in spite that a vertex
of their color is left, that is, all the vertices of their color are not neighboring
to a white vertex, the player loses. The game ends.

This is a generalization of the two-player SHICHINARABE game. Each vertex
corresponds to a card, the red vertex to the red player’s hand, the blue vertex to the
blue player’s hand, and the white vertex to the “7” card and the cards that players
have already played.

For example, the ordinary 52 cards game playing corresponds to a graphical
SHICHINARABE game playing on a spider graph where the length of every leg
is 6, the number of legs is 8 and the central vertex is the unique white one at the
beginning of the game.

If a player in a turn cannot select a vertex of their color in spite that a vertex
of their color is left, the player loses in this game, which means the number of
passes per player is limited to 0 while the number of passes per player is usually
allowed to be around 3 in ordinary SHICHINARABE plays. This is also a natural
extension of the following theorem.

Theorem 6.1. For any p, the following two conditions are equivalent for a two-
player SHICHINARABE game on a graph.

• In the SHICHINARABE game on graph G with 0 pass constraints, the red
player has a winning strategy.

• In the SHICHINARABE game on graph G with p pass constraints, the red
player has a winning strategy.
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We use the following theorem of Zermelo to prove this theorem.

Proposition 6.2. In a combinatorial game of finite length with no draws, one of
the players has a winning strategy [50].

It should be noted that the graphical SHICHINARABE in this study satisfies
all of the conditions for the application of Zermelo’s theorem: it is a game without
draws, it is a two-player game, it is a perfect information game, it is a sequential
move game, it is finite game, and there is no chance factor affecting the actions of
each player. To use this theorem, we show the proof of Theorem 6.1.

Proof. First, we show that sufficient condition holds.
[Proof of sufficient condition] In a game with 0 pass constraints, consider

the phase G in which the left player can win. When playing this phase G in a
constrained game with p passes, the left player can use the winning strategy in the
constrained game with 0 pass constraints except for right player select a pass. If
the right player select a pass, the left player can select a pass immediately after
right player select a pass. In other words, whenever the right player selects a pass,
the left player also selects a pass. In this way, the right player can win by the same
procedure as in the constrained game with 0 passes.

Next, we show that necessary conditions.
[Proof of necessary conditions] To show necessary conditions, we show that

“If G is a must-win game for the left player with p pass constrained game, then
G is a must-win for the left player in a path 0 pass constrained game". This
is a proposition P. Let this contrapositive be a proposition P’. Proposition P’ is
“If G is not a left-player must-win in with 0-pass constrain, then G is also not
a left-player must-win with p-pass constrain”. On the other hand, by Zermelo’s
theorem, all graphical SHICHINARABE games that are not left-player must-win
are right-player must-win. Therefore, the proposition P’ is equivalent to "If G′ is
right-player must-win in a path 0-constrained game, then it is right-player must-
win in a path p-constrained game. This proposition P’ can be shown to be true by
an argument almost identical to that of sufficiency. Therefore, the proposition P is
also true.

From the above discussion, this theorem is shown.

These are the basic rules, and all variants in original SHICHINARABE are
based on them. In addition to the above, SHICHINARABE is also known for its
many localized rules. The typical local rules are (1) all mighty card, and (2) tunnel
rule. We explain them in order.

(1)At first, we examine graph SHICHINARABE with all-mighty cards. All-
mighty cards are one of the roles of JOKER cards in SHICHINARABE playedwith
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playing cards, and are played with several different rules depending on regions and
communities. In this study, we define the All-mighty Right as "the right to change
any vertex of the opponent’s color (blue if the opponent’s color is red, or red if
the opponent’s color is blue) to a white vertex before the turn action (followed
by the turn action). In other words, we define "All-mighty Right" as "the right
to play a card in place of a card you do not own at any time" in the ordinary
SHICHINARABE game, and discuss its graphical generalized game. Note that
this right can be exercised only the number of times permitted in advance, and not
more than the number of times specified for each game. In some games, there is
a rule that the JOKER card is given to the other player after the JOKER card is
used, but we do not adopt this rule.

(2)We define edges with special vertex labels to correspond to the “tunnel
rule.” The tunnel rule stipulates that when the card of A(K) is placed on the
board, the neighbor relation between A and K cards appears, while the ascending
(descending) order neighbor relation of the suits disappears.

In this study, we define the following two edges with vertex labels to correspond
to this tunnel rule:

Definition 6.3 (Edge Addition). G = (V,E), which consist of the vertices set
V = VB, VR, VW is the graph that represents the game board. We define the edge
eA ∈ E as deletional edge of the vertex {vA} ∈ V as follows: If players change v
to a white vertex, then the new graph G′ obtained by adding eA from G, consists
of the new vertices set VB \ VA, VR \ VA, VW ∪ vA and new edge set E ∪ eA.

Definition 6.4 (Edge deletion). G = (V,E) is the graph that represents the game
board. We define the edge eD ∈ E as deletional edge of the vertex {vD} ∈ V as
follows: If players change v to a white vertex, then the new graph G′ obtained by
deleting eD fromG, consists of the new vertices set VB \VA, VR \VA, VW ∪ vA and
new edge set E \ eD.

6.3 Time complexity
First, the following theorem holds for the amount of computation when the number
of times the all-mighty right can be used is limited.

Theorem 6.5. The decision of the winner of a graphical SHICHINARABE game
on a tree can compute in O(n) even if the all-mighty right can be used at most
once.

Considering that the widely-played ordinary SHICHINARABE corresponds
to the graphical SHICHINARABE on the spider graph, and that JOKER cards
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correspond to the all-mighty right, the ordinary SHICHINARABE, which contains
at most one JOKER card, can be computed in linear time of the total number of
cards. However, in the SHICHINARABE game, there are some local rules in
which multiple JOKER cards are used or JOKER cards are moved for each use.
The following theorem holds for the computational complexity when there are
more than one JOKER cards in such an ordinary SHICHINARABE.

Theorem 6.6. The determination of the winner of a graphical SHICHINARABE
game on a tree, where only one of the players has the right to use the all-mighty
right k times, can compute in O(nk) time.

Theorem 6.7. The determination of the winner of a graphical SHICHINARABE
game on a tree, where only one of the players has the right to use the all-mighty
right multiple times, can compute in O(n4) time.

These results show that it can be computed in O(nk) time if there are three
or fewer all-mighty rights, and in O(n4) time if there are four or more all-mighty
rights.

So far, we have only considered games on tree-graphs or their subclass called
spider graph, but given that the game is played on a board, it is natural to consider
a generalization of this graph game to planar graphs. For graphical SHICHI-
NARABE games on planar graphs, the following theorems hold.

Theorem 6.8. It is NP-hard to determine which of the two players is the winner
in a graphical SHICHINARABE on a planar graph where only one of the players
has the right to use the all-mighty right multiple times.

Theorem 6.9. It is PSPACE-hard to determine which of the two players is the
winner in a graphical SHICHINARABE on a planar graph where the Edge deletion
rule and Edge addition rule are adapted.
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Chapter 7

Conclusion

In this thesis, we investigate the time complexity of winner decisions in card-
discarding games, which are widely played in the world.

In Chapter 2 and Chapter 3, we showed that it can be decided in O(n) time
which player has a winning strategy in 2-player TANHINMIN and TANHINMIN
with cut cards. It should be noted that the decision can be done at any moment
of the match. In Chapter 4, we modeled TANHINMIN with structural oracles to
identify the essential information to construct a winning strategy. The oraclemodel
that we propose in this thesis can qualify and quantify the information that each
player can receive during plays. The obtained results show that in order to play the
winning strategy the full information of the game is not necessarily needed. Figure
4.1 summarizes the power of oracles and solvability of the imperfect variant of
TANHINMIN.

In Chapter 5, we investigated the existence of a winning strategy on open-hand
BABANUKI. Although the 2-player case is almost trivial, 3 or more players’ cases
are not. In fact, for 3-player case, there are initial hands where no player has a
winning strategy, though we give an explicit necessary and sufficient condition
that a player has a winning strategy. The 4-player case is more complicated, and
there is an example that the best strategy of every player is to draw JOKER, which
yields an infinite repetition play.

In Chapter 6, we study SHICHINARABE which is generalized to a graphical
setting, called Graph SHICHINARABE. For the graphical SHICHINARABE on
trees includes an ordinary SHICHINARABE, we can compute the winner in linear
time, whereas it is harder to compute the winner in the SHICHINARABE with
all-mighty card or tunnel rule. In fact, it is NP-hard to compute the winner in the
graphical SHICHINARABE on planer graphs with all-mighty cards. Furthermore,
it is PSPACE-hard to compute the winner in the graphical SHICHINARABE on
planer graphs with tunnel rule.
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Before concluding this thesis, we give indications about further research direc-
tions of each topic. As explained in Chapter 1, TANHINMIN is a very simplified
variant of DAIHINMIN. The major differences from DAIHINMIN are that it is an
imperfect information game, and that several interesting and important rules are
not adopted. Since a purpose of this research is to investigate the mathematical
nature of DAIHINMIN via TANHINMIN, it is natural to extend the research to
focus on not the former but the latter; investigating TANHINMIN with extra rules.
Amongmany rules, the following aremost popular ones: discardingmultiple cards
with the same strength (we call multi-cards rule), revolution. Discarding multiple
cards means that if the table is empty, then the active player can discard multiple
cards with the same strength, such as three “4”. Then the next player must discards
three stronger cards with the same strength, such as three “5”. This is maybe
the most important rule of DAIHINMIN that TANHINMIN is not equipped with.
Revolution is a rule to change the order of strength by the active player discarding
some special card(s) at the table. Typically, if the active player discards some four
cards with the same strength (e.g., four “5”) and no other player can discard any
cards, then the table is set empty and from the next turn the ordering of strength
is reversed; 1 becomes the strongest and n becomes the weakest. There are many
variations of revolution rule. All of these rules are interesting and important, but it
might be difficult to extend the analysis to TANHINMIN with multi-cards rule or
TANHINMIN with revolution rule. To analyze these rules is natural future work.
It should be noticed that this oracle-based analysis framework proposed in this
thesis has several benefits. Applying the framework to some other games would
be interesting.

There are also several open questions in BABANUKI game. One is to investi-
gate whether the k-player case for every k ≥ 5 also has an example of an infinite
repetition play like the 4-player case. It might be difficult to prove because we
need to show that the best play of each player is a repetition draw, but which is
best is not easily verified.

In the graphical SHICHINARABE in trees including general SHICHINARABE,
we can compute the winner in linear time, but it might be difficult to design a
linear-time algorithm for the winner decision in the SHICHINARABE on trees
with all-mighty card or tunnel rules. As we see, it is NP-hard to compute winner
in the graphical SHICHINARABE in planar graphs with all-mighty cards, but our
hardness proof utilizes the power of all-mighty cards. The complexity of decid-
ing the winner of the graphical SHICHINARABE in planar graphs without an
all-mighty card remains open.

As mentioned in Chapter 1, the card discarding game, which deals with board
information, is widely played, although few studies have been conducted on its
computational time complexity. In this study, we found that the computational
difficulty of the game is comparable to that of other board games such as planar
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graphs. In other words, card discarding games with board information have the
same computational complexity as other gameswith board information. Of course,
this study on the computational time complexity winner of card discarding games
with board information is only one example, but we hope that this research will be
useful for future studies as a starting point for characterizing “difficult” games.
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