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“The object of life is not to be on the side of the majority, but to escape finding
oneself in the ranks of the insane.” — Marcus Aurelius, Meditations.



Abstract

Quantum phenomena are treated as resources for various real-world applications
in quantum technologies. Comparing resources aims to discover the capability of
quantum systems in information processing tasks.

In this thesis, we first studied quantum measurement and quantum incom-
patibility as resources. We showed that through a resource-theoretic approach, it
is possible to compare a family of quantum measurements in terms of the pro-
grammable measurement device (PMD), of which users can have temporal free-
dom in issuing programs to control the device. The temporal setting leads to the
necessity of having quantum memory in the PMDs, which bridges the connection
of quantum incompatibility and quantum memory. A complete set of convert-
ibility conditions for programmable devices is derived based on quantum state
discrimination with post-measurement information game. This game scenario can
be utilized as a tool to certify a genuine PMD or a device with genuine quantum
memory. As a byproduct, we derived sufficient and necessary conditions for the
convertibility between single POVMs (a special case of PMD) through the task of
minimum-error state discrimination game.

We then studied general quantum resources through pure mathematical lan-
guages by representing quantum resources as complex density matrices and for-
mulate a general resource theory with F-morphisms as the restricted transforma-
tion. The convertibility between resources is characterized by whether there ex-
ists F-morphisms between complex density matrics or not. The core idea from
a resource-theoretic viewpoint is that it is possible to quantify resources without
referring to the maximal ones. Moreover, it is enough to compare some of the
entropic quantities of resources to ensure the existence of F-morphisms between
them. With our resource-theoretic frame, it is possible to derive a sufficient and
necessary condition of the transformation between an arbitrary resource and the
maximal resource or a reference resource.

The resource-theoretic approach is essentially the core idea of the statistical
comparison theory which was developed in mathematical statistics mainly by Black-
well in the 1950s. The main picture of this thesis is inspired and developed from
the viewpoint of statistical comparison theory, then extended into quantum statis-
tics based on a game-theoretic approach.
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Chapter 1

Introduction to quantum information
science

1.1 Research background

Quantum information science is an interdisciplinary field that involves informa-
tion theory and quantum mechanics. Information theory was built in the 1950s
by Claude Shannon, the father of the information age. In his well-known paper
[1], he discovered that all messages with whatever length and meaning were all
essentially reducible to the same element: bits, and he also showed how one could
compress and encode those bits to transmit information with flawless accuracy.
Quantum mechanics is the framework to describe the fundamentals of physical
nature at the level of the microscopic-scale world, i.e., the quantum world, includ-
ing the level of atoms, electrons, and photons. The combination of understanding
quantum mechanics and the fundamentals of information theory has inspired the
emergence of quantum technologies, which have been developed exponentially
and rapidly in recent years. We have seen a trend in the industry that major tech-
nology companies, such as Google, IBM, Microsoft, NEC, Toshiba, Alibaba, and
Huawei, are building their own quantum devices based on quantum technologies
which are potentially powerful in solving typical optimization problems. Thus the
trend of research in quantum information science has become evident.

To dive into the quantum information science, it is necessary to first define
what is quantum information. To understand the concept, one must begin from the
classical information in Shannon’s framework, in which “information” is a mathe-
matical term defined quantitatively (entropy) to quantify how uncertain a random
variable (i.e, information source) is[2]. The unit of the information is the classical
bit, which can be engineered physically. A bit can be represented by the state of a
transistor–either ON or OFF of transistors or an electrical charge in a microscopic
capacitor, among others. The carriers for classical information follow the classical
information theory. Analogically, quantum information is carried in quantum par-
ticles, such as photons, and electrons. In this context, Von Neumann provides a
technical definition of entropy similar to that of Shannon[3], called the Von Neu-
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mann entropy. Von Neumann’s definition differs from classical information in that
the carrier–quantum system–that is used to build the bit follows the framework of
quantum mechanics. Hence, device engineers must ensure that the carrier for the
classical information process does not get into quantum effects that follow quan-
tum mechanics. As for the quantum information process, the quantum effect must
be considered. A suitable example that terminologically represents quantum infor-
mation is the entanglement between different physical systems, which is a physical
phenomenon named by Erwin Schrödinger in a reply letter to Einstein, Podolsky,
and Rosen’s EPR paper [4] in the 1930s. While Einstein was not convinced by
the idea of entanglement, it was originally proved theoretically after his death by
John Bell [5] in 1964 and first demonstrated in Aspect’s experiment [6] in 1981.
Since then entanglement has been exploited as one of the most useful quantum re-
sources for building quantum technologies. Loosely speaking, quantum informa-
tion is generally represented as information that can be encoded in the quantum
system, which can be any physical phenomena that follows quantum mechanics
but cannot be simulated by classical mechanics alone.

From the industrial viewpoint, the study of quantum information science aims
to build and manipulate quantum systems to process quantum information of
some practical tasks that solve real-world problems, such as building a quantum
computer to solve complex optimization problems, and creating quantum proto-
cols for cryptography, among many others. An example that demonstrated the
importance of the development of quantum technology was the introduction of
Shor’s algorithm [7], which could factor exceptionally large numbers rapidly, and
efficiently through manipulation of quantum systems that are built in the quan-
tum computer. The success of the demonstration has been a thread for current
cryptography technology that is mainly built based on the difficulty of factoring
large numbers. Thus, building quantum cryptography has become increasingly
necessary so that cryptography system can be adapted to the quantum technology
era.

However, from a theoretical viewpoint, the study of quantum information sci-
ence aims to understand and explore the fundamentals of the information process
within quantum systems to discover new possibilities in the information process-
ing tasks that so far have been impossible for traditional methods. Therefore, such
an investigation could lead to the discovery and even the transposition of the limits
of nature, which in turn could be beneficial for the industry in the process of build-
ing quantum devices. This thesis investigates the fundamentals of some quantum
properties in quantum information science.

1.2 Introduction to quantum resource theory

Driven by their needs on Earth, several societies have discovered resources pro-
vided by nature that are needed to build technologies to improve our modern life.
We naturally divide our nature into micro and macro-worlds by different viewing
angles, since using a single standard to understand both dimensions could lead
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to conflicts. Especially in the micro-world, some phenomena are very counter-
intuitive and difficult to understand if the laws of the macro-world are applied to
them. Over the past centuries, researchers have been striving to understand the
micro-world, where quantum mechanics plays a key role. Based on research and
observation of the micro-world, many innovative technologies that benefit mod-
ern societies could be built. In this context, the micro-world is here called quantum
world, which is backed by quantum theories.

In the quantum world, a recently developed general framework called quan-
tum resource theory has provided a mathematical tool to address issues in quan-
tum information processing. Not only does this tool generalize properties of quan-
tum systems in the information processing[8, 9], but it also indicates limitations
and possibilities in some certain information processing tasks [10, 11]. In the frame-
work of quantum resource theory, these non-classical phenomena are called re-
source, such as superposition, entanglement, coherence, and measurement incom-
patibility, while those that are not resources are called the free resource. In general,
free resources are those that can be simulated without using quantum resources.
Another important ingredient of quantum resource theory is the “restricted trans-
formation” among resources. Restricted transformation cannot create resources
alone. As in the theory of quantum entanglement, local operation and classi-
cal communication, as a restricted transformation, does not create the resource–
entanglement–by itself.

Restricted transformations among resources lead to ordering between them.
Given two resources, how one could know which one has higher ordering is the
core issue in any quantum resource theory. The ordering turns out to be a pre-
ordering, which is always the case in quantum resource theories in which not
all resources are comparable,i.e., there does not exist a restricted transformation
between some resources. One way to examine this problem is through statisti-
cal comparison between resources[12], which enables characterization of the pre-
ordering between statistical models. Statistical comparisons investigate the statis-
tical properties of statistical models through payoffs in a game-theoretic approach.
Statistical models can be built from quantum resources[12]. Any resources can be
compared under a statistical model (a game) to make decisions on which one has
the highest ordering. The lowest ordering of resources in the ordering ranking are
proved to be free resources.

Observing the statistical property of the quantum system as a resource allows
one to study how powerful it is and how we can make the most use of it, as well
as the limitation of the resources. For example, quantum entanglement is a pow-
erful resource that classical physics cannot simulate and is the core for building
quantum computers and quantum communication technologies. Observing the
statistical property of quantum entanglement provides a tool for understanding
its limitations. The more resources it can hold and the more it can be controlled,
the more powerful the resource will be in some information processing tasks.

In this thesis, we reformulate the framework of quantum resource theory in a
specific setting and in general setting and we apply this framework to some phys-
ical settings, and rederive some of the previous results. We first study quantum
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resource theory from the viewpoint of Blackwell and Shannon, and develop a spe-
cific resource theory in addressing quantum measurement. Then we generalize
the theory in a framework of quantum resource theory with various applications
in other fields of physics.



Chapter 2

Preliminaries

2.1 Preliminaries of quantum information theory

Different from classical information processing, quantum information processing
relies on the quantum system, which is a physical system typically at the atomic
scale where quantum mechanical effects appear. Examples of them are physical
systems of atoms, electrons, photons, and so on. The characteristics of a physi-
cal system are determined by physical quantities, such as position, momentum,
energy, (spin) angular momentum of a particle, the polarization of a photon, etc.
We describe quantum systems as quantum states and we describe physical quan-
tities of quantum systems as observables. Measuring quantities of observables
from a quantum state are called quantum measurement. In what follows, we will
describe mathematically, what are quantum state, quantum observable, and quan-
tum measurement.

Before we move into the description of them, we need some notations and
mathematical concepts. Most of the following contents about the description of
the quantum system are taken from the book [13].

2.2 Mathematical notation

2.2.1 Dirac notation

In this sector, we introduce the Dirac Notation. Dirac notation is a very useful and
reasonabel tool for describing the theory of quantum mechanics. Through out the
thesis, we restrict ourself to the finite complex Euclidean space Cd with an arbitrary
dimmension d. A Dirac notation called ket vector |·〉 is used to describe a column

vector of Cd. For example, we represent an element in C3 as |Ψ〉 :=
(
1, 2, 3 + 2i

)T
∈

C3. A complex conjugate of the column vector |Ψ〉, called bra vector, is denoted by
〈Ψ| :=

(
1, 2, 3 − 2i

)
. We normally use † to denote the complex conjugate symbol,

so we see that, 〈Ψ| = |Ψ〉†. The inner product between two vectors, say |Φ〉 :=(
a1, a2, ..., ad

)T
and |Ψ〉 :=

(
b1, b2, ..., bd

)T
, is denoted by 〈Φ|Ψ〉 := ∑

i aibi. With

5
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inner product denoted, we use notation ‖Ψ‖ :=
√
〈Ψ|Ψ〉 to represent the norm of a

column vector |Ψ〉. In addition, we consider another matrix product by swapping
the order of a ket and bra. A product of ket vector, d × 1 matrix, and a bra vector,
1 × d matrix in this order is a d × d matrix. For example for |Φ〉 = (a1, a2)T and
|Ψ〉 = (b1, b2)T ∈ C2, we have,

|Φ〉〈Ψ| =
(
a1b1 a1b2
a2b1 a2b2

)

In addtion, there is a very basic but useful calculation rule that can be applied to
Dirac notation introduced above. This rule will make calculation easy for later
usage. We list it as follows:

|Φ〉〈Ψ||ξ〉 = 〈Ψ|ξ〉|Φ〉

where we could truncate the symbols and move around the number 〈Ψ|ξ〉 around
anywhere inside the term that is made of combination of Dirac notations without
changing the whole intepretation of this term.

2.2.2 Hilbert space

In this sector, we introduce the mathematical definition of Hilbert space. For this
thesis, we only focus on a finite-dimensional Hilbert space. A finite dimensional
complex inner product space is called a Hilbert space. A linear space V is called a
complex inner product space if V has an operation V 3 |Ψ〉, |Φ〉 7→ 〈Ψ|Φ〉 ∈ C with
the following three properties:

1. positivity: 〈Φ|Φ〉 > 0 with equality holds if and only if |Φ〉 = 0;

2. Hermitian symmetry: 〈Ψ|Φ〉 = 〈Φ|Ψ〉;

3. linearity: 〈Ψ|aΦ + bΥ〉 = a〈Ψ|Φ〉+ b〈Ψ|Υ〉. 1

From the definition of inner product space, we see that the dimension is the
key property that defines a Hilbert space. It is easy to prove the following state-
ment.

Proposition 1. All Hilbert spaces with the same dimension are isomorphic.

By isomorphic, we mean that there exists a bijection between any two Hilbert
spaces with the same dimension such that the linear structure and their inner prod-
uct are preserved. So mathematically, all Hilbert spaces with the same dimension
are equivalent to each other, we only care about the dimension of a Hilbert space.
Assume an arbitrary Hilbert spaceH with dimension d, we write,

H ∼= Cd. (2.1)
1 Here we write a|Φ〉+ b|Υ〉 = |aΦ + bΥ〉.
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2.2.3 Linear operators

We talk about linear operator on a Hilbert space. Given two Hilbert spaces H and
K, a map A : H → K is called a linear operator if it satisfies the linearity condition:

A(a|Ψ〉+ b|Φ〉) = aA|Ψ〉+ bA|Φ〉 ∀|ψ〉, |Φ〉 ∈ H, a, b ∈ C. (2.2)

Let {|Ψi〉}d1
i=1 and {|Φj〉}d2

j=1 be orthonormal basis of H,K and a matrix with ele-
ments ai,j = 〈Φi|A|Ψj〉 is called the representation matrix of A. Hence, by fixing
bases, one obtains an equivalent matrix representation as linear operators. In what
follows, we use L(H,K) to represent linear operators from H to K and L(H,H) is
abbreviated as L(H). Suppose A ∈ L(H,K), we denote the adjoint operator of A
as A† 2 such that 〈Φ|A|Ψ〉 = 〈A†Φ||Ψ〉. Notice that the matrix representation of A†

is a conjugate transpose of the matrix representation of A.
Two very important classes of operators are semi-definite positive operator

and Hermitian operator. A semi-definite positive operator A ∈ L(H) is denoted as
A > 0, such that 〈Ψ|A|Ψ〉 > 0,∀|Ψ〉 ∈ H. A hermitian operator A ∈ L(H) satisfies
A = A†. It is easy to prove that eigenvalues of hermitian operator are real numbers.
For any Hermitian operators, the following proposition is useful in later use.

Proposition 2 (Spectral decomposition). Any hermitian operator A can be written in
the form

A =
∑
a

aPa

where Pa is the eigen-projection of the eigenvalue a of A satisfying PaPb = δabPa.

Binary relations is considerably used throughout the thesis, of which preorder
and partial order are of interest.

Definition 2.2.1 (Preorder and partial order ). Consider some set S and a binary re-
lation � on S. Then � is a preorder, if it is reflexive and transitive; i.e., for all a, b and
c ∈ S, we have that:

1. a � a;

2. if a � b and b � c, then a � c.

If a preorder is also antisymmetric, that is, a � b and b � a implies a = b , then it is a
partial order.

2.3 Quantum terminology and postulates

2.3.1 Quantum state

Quantum mechanics is a mathematical framework for the development of quan-
tum physical theories. The postulates of quantum mechanics provides the ground

2The symbol † is called dagger, it usually describes adjoint operator in physics.
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to describe in mathematical terms all quantum phenomena. It is noted that with
postulates quantum mechanics becomes easy to formulate without touching the
deep theories that back the postulates. In quantum physics, a quantum state is a
mathematical entity that provides a probability distribution for the outcomes of
each possible measurement on a quantum system.

Postulate 1: For any quantum system, there is an associated Hilbert space H in a
way that a physical state is represented by a unit vector ofH, the state space.

For each quantum system, such as an electron, a photon, we assume that there
is an associated Hilbert space with which all the physics on the system are de-
scribed. We denote a pure quantum states as a unit vectors |ψ〉 ∈ H, such that
〈ψ|ψ〉 = 1. By linearity, we notice that there exists state as a unit vector such that
|ψ〉 = a|ψ1〉+ b|ψ2〉 ∈ H for some unit vectors |ψ1〉, |ψ2〉 ∈ H and a, b ∈ C. We claim
these states contain superposition, which is one of the fundamental phenomena in
quantum physics. Note that superposition is a counter-intuitive concept. An inter-
pretation of superposition state is that it is a state that coexists with another state.
The Schroedinger’s Cat is a famous paradox example that describes superposition.

Besides the pure state, there exists mixed state, which is an ensemble of pure
states with probability distribution associated with them. The mixed states can
describe those states that are not completely known. We denote {p(i), |Ψi〉} as an
ensemble of pure states, where p(i) is a probability distribution. In reality, mixed
states happened when dealing with a physical system that consists of many par-
ticles, so it is impossible to describe it with a pure state. A typical example of a
mixed state physics is a thermal equilibrium state. Under the limitation of pure
states, we redefine the quantum state through density operators. For an ensemble
{p(i), |Ψi〉}, we define a density operator,

ρ :=
∑
i

p(i)|Ψi〉〈Ψi|

It is easy to see that Tr{ρ} = 1 and ρ > 0. Now we can modify the previous
postulate as follows,

Postulate 1’: For any quantum system, there is an associated Hilbert space H in a
way that a state is completely described by its density operator, which is a semi-definite
positive operator ρ > 0 with trace one, acting on Hilbert spaceH of the system.

While it is necessary to represent the quantum state through density opera-
tors, the unit vector representation could be useful in most of the cases where the
probability does not play an important role.

Another good function of the density operator is to represent the classical
state. Suppose we have a random variable X , and with a probability distribution
p(x) attached to its outcome x. We write a diagonal density operator as,

ρ =
∑
x

p(x)|x〉〈x|
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where {|x〉} forms a orthonormal basis for a Hilbert space with dimension |X| and
x is the label.

Remark. We notice that quantum state can represent both classical random variable and
quantum random variable. In information theory, a random variable is the information
source, so we could understand the quantum state as a quantum resource such that it is
not simulatable by a classical random variable in terms of information.

2.3.2 Quantum measurement

In quantum physics, measurement is the testing or manipulation of a physical
system to yield a numerical result with prediction. The prediction that quantum
physics makes are in general probabilistic, which means that after measuring on a
quantum system, we will get numerical results with uncertainty.

Postulate 2: An observable of a physical quantity is represented by a Hermitian
operator on H where the measurement outcome is one of its eigenvalues. If we measure a
physical quantity A ∈ L(H) under a state |Ψ〉, then the probability to observe an outcome
a is given by the Born rule, Pr(A = a||Ψ〉) := 〈Ψ|Pa|Ψ〉, where Pa is the eigen-projection
of the eigenvalue a of A.

There is another way to represent the measurement that is more general than
observable, for details, we encourage readers to refer to standard textbooks[14]. In
general, we use positive operator-valued measure (POVM) to represent quantum
measurements. Mathematically, a POVM P is a set {Pa} of operators on H with a
label setA that is indexed by integers, such that all Pa ∈ L(H), i.e.,∀a,L(H) 3 Pa >
0 and

∑
a Pa = 1. In POVM’s, we only care about the statistics of measurement

instead of concerning the exact value, which is a real number, that comes out from
the measurement device. We normally represent the result of its labels. In what
follows, we use POVM and measurement interchangeably. For a quantum state
that is represented by a density operator ρ, the probability of getting a-th outcome
from the measuring device is calculated as, Pr(a) = Tr{ρPa}, which is derived by
the Born rule.

Another important assumption for quantum mechanics is that we will need to
describe the composite system from Hilbert spaces associated with the subsystems.
The following postulate describes it in detail.

Postulate 3: The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Let S1 and S2 be two physical systems, and
their corresponding state spacesH andK, the state space of composite system S := S1 +S2
is tensor product H ⊗ K. An observable of H represented by a Hermitian operator A on
H is identical with the observable of S represented by A ⊗ 12 on H ⊗ K, where 12 is the
identity operator on K, the same goes for 11 ⊗B onH⊗K.
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2.3.3 Quantum channel

In micro-world, the evolution of particles is described by Schrodinger’s equation,
the following postulate gives an equivalent explanation of it. For a closed system,
such as the whole universe, we are interested in the mechanics of its elements.

Postulate 4: The time evolution of a closed quantum system is described by a unitary
transformation. That is, the state ρ of the system at time t1 is evolved to the state ρ′ of the
system at time t2 by a unitary operator U which depends only on the times t1 and t2,

ρ′ = UρU †. (2.3)

A quantum channel takes a quantum state as input and outputs another quan-
tum state. Through the postulate, we can describe a quantum channel as follows,

Definition 2.3.1 (Stinespring representation). Let ρ ∈ L(H), let E be the environment
system, U be the unitary operator on H ⊗ E, e0 be an initial pure state of environment
system, e0 ∈ L(E), the quantum channel N is defined by

N (ρ) = TrE{U(ρ⊗ e0)U †} (2.4)

Hence, any quantum evolution either in an open quantum system or closed
quantum system can be translated into a specific map, quantum channel, that op-
erates on the system.

In general, we denote the quantum channel as a linear map that satisfies typi-
cal conditions, defined as follows:

Definition 2.3.2 (CPTP map as channel). Given input and output Hilbert spacesH and
K, a linear map N : A 7→ B, where A ∈ L(H), B ∈ L(K), is a quantum channel if and
only if it is a complete positive trace preserving (CPTP) map. Let R be an extra quantum
system with arbitrary dimensionality, let ωAR ∈ L(H ⊗ R), then quantum channel N
satisfies the following conditions:

1. A > 0 =⇒ B > 0 and Tr{A} = Tr{B};

2. ωAR > 0 =⇒ ωAB := (N ⊗ idR)(ωAR) > 0 and Tr{ωAR} = Tr{ωAB};

where idR denotes the identity map on system R.

Equivalent to CPTP map, we can have another representation of the quantum
channel, which is the Kraus representation.

Definition 2.3.3 (Kraus representation). A map N : L(HA) −→ L(HB) is a CPTP
map if and only if it has a decomposition as follows:

N (ρ) =
d−1∑
l=0

VlρV
†
l , (2.5)
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where ρ ∈ L(HA), Vl ∈ L(HA,HB) for all l ∈ {0, ..., d− 1},

d−1∑
l=0

V †l Vl = IA, (2.6)

and d need not be any larger than dim(HA ⊗HB).

Among all these descriptions of quantum channels, we can prove that they are
all equivalent to each other. The following theorem gives us a different method to
represent a quantum channel in our interests.

Theorem 1. The following conditions are equivalent for a linear map N : L(HA) −→
L(HB), whereHA andHB represent the Hilbert space for system A and B.

1. N is a CPTP map.

2. N admits a Kraus representation.

3. N admits a Stinespring representation.

2.3.4 Quantum instrument

In quantum measurement described above, we only care about the classical output
statistics of the measuring device by ignoring the quantum output. When both the
classical outputs and quantum outputs are of interest. We need another mathe-
matical framework, a quantum instrument, to describe the process.

Definition 2.3.4 (Quantum instrument). Let discrete set x ∈ X be the outcome set of
a measurement, let {Ex}x∈X denote trace non-increasing complete positive maps such that∑
x Ex as a whole is CPTP maps. The probability of measuring a specific outcome x on a

input quantum state ρ is given by,

p(x|ρ) := Tr{Ex(ρ)} (2.7)

while the quantum output of the measuring device is given by,

ρx := Ex(ρ)
p(x|ρ) . (2.8)

Through the quantum instrument, we can reformulate the measurement pro-
cess when an after-measurement quantum state needs to be described.

Postulate 4’: A general measurement process of a quantum system is described by a
quantum instrument.



Chapter 3

Statistical model comparison

3.1 Introduction to quantum statistical model compar-
isons

This chapter introduces a well-known theory on comparisons of statistical models
in terms of statistical decision problems in the quantum domain. Before we move
into the quantum domain, we will give an intuitive understanding of what is a
statistical decision problem by introducing a classical example. Suppose that an
experimentalist wants to identify what an unknown object is with classifiable fea-
tures, an example could be, what is the classification of bacteria? The experimen-
talist could take some samples of the bacteria and develop them in Petri dishes,
then try to identify them through the statistics of shapes of their growth in the
dishes. In this context, the experimentalist made a decision based on the observa-
tion of statistics from bacteria. Let us formulate the statistical decision problems in
mathematical language.

3.2 Classical Statistics

Definition 3.2.1 (Noisy channel). We define a discrete channel to be a system consisting
of an input alphabet X and output alphabet Y and a conditional probability distribution
N = {p(y|x)}x∈X ,y∈Y , satisfying p(y|x) > 0 and

∑
y∈Y p(y|x) = 1,∀x ∈ X . We then

denote the noisy channel as,
N : X → Y . (3.1)

Definition 3.2.2 (Statistical model). A (finite) statistical model m is a triple (Θ,X ,Ω),
where Θ is a (finite) discrete parameter set {θ}θ∈Θ, X is a (finite) discrete sample set
{x}x∈X , and Ω is a noisy channel Ω : Θ→ X .

Remark. Intuitively, when we try to extract information from the parameter set, we as-
sume no perfection, i.e., there will be always noise behind the information extraction. Nor-
mally, we see Θ as the set of states of nature.

12
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Definition 3.2.3 (Statistical decision problem). A statistical decision problem is a triple
(Θ,U , `), where U is a finite decision set {u}u∈U , and ` : Θ× U → R is a payoff function.

Definition 3.2.4. The expected payoff E of a statistical model m = (Θ,X ,Ω) with respect
to a statistical decision problem (Θ,U , `) is given by the following,

E(m) := max
d

∑
u,x,θ

`(θ, u)d(u|x)ω(x|θ)|Θ|−1 (3.2)

where d : X → U is a decision strategy and the strategy set is {d : d(u|x) > 0, ∑
u d(u|x) =

1 ∀x ∈ X}.

Remark. Note that if we set the payoff function to be a delta function, we end up with a
guessing game in which we guess at the best strategy of the unknown parameter set Θ.

Definition 3.2.5 (Statistical model comparison). Given two statistical models m =
(Θ,X ,Ω) and m′ = (Θ,Y ,Ω′), we say that,

m � m′, (3.3)

whenever for all decision problems (Θ,U , `),

E(m) > E(m′). (3.4)

Definition 3.2.6 (Noisy channel degrading). Given two noisy channels Ω : Θ → X
and Ω′ : Θ → Y with same initial inputs, we say Ω can be degraded into Ω′ whenever
there exists another noisy channel φ : X → Y such that Ω′ = Ω ◦ φ. This degradedness is
denoted by

Ω � Ω′. (3.5)

Remark. We notice that Ω is more “informative” than Ω′, meaning that Ω is less noisy
than Ω′ in terms of information extraction because we add an additional noisy channel
right after Ω.

A well-known theorem that connects the “informativeness” and statistical com-
parison is the Blackwell-Sherman-Stein (BSS, [15][16][17]) theorem.

Theorem 2 (BSS theorem). Given two statistical models m = (Θ,X ,Ω) and m′ =
(Θ,Y ,Ω′), we have the following equivalence:

Ω � Ω′ ⇐⇒ m � m′. (3.6)

Remark. We have characterized the noisy channel degradedness in terms of statistical
decision game payoff’s comparisons.
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3.3 Shannon Channel ordering with encoding and de-
coding

The BSS theorem gives us a different viewpoint of understanding the comparison
between noisy channels, in which situations we only compare noisy channels with
the same dimension of inputs. The possible reason is that the information param-
eter Θ as input in general is unknown, and we are extracting information from
unknown natural statistics. So comparing noisy channels with the limitation of
being unable to touching of the input fits well in the BSS scenario.

However, when it comes to noisy channels for which we have control over
both input and output, we are interested in how to transform one noisy channel
into another one with the control of processing both input and output of noisy
channels.

Definition 3.3.1 (Channel inclusion [18]). Given two noisy channels K1 : X → Y
and K2 : W → Z such that the inputs, X ,W and the outputs, Y ,Z are different. We
say K1 can be transformed into K2 whenever there exists n pairs of noisy pre-channels
Rα : W → X and post-channels Tα : Y → Z and a probability distribution gα with
1 6 α 6 n, such that K2 = ∑

α gαRα ◦K1 ◦ Tα. This transformation is denoted by

K1 ⊇ K2 (3.7)

if we represent the channel K1, K2, Rα and Tα as conditional probability distributions
p(y|x), q(z|w), tα(z|y) and rα(x|w), respectively. We equivalently write the channel in-
clusion as,

q(z|w) =
∑
α,x,y

gαtα(z|y)p(y|x)rα(x|w) (3.8)

Remark. We denote channel transformation in terms of channel inclusion notation that
is originally addressed by Shannon[18].

Definition 3.3.2 (Pure channel). A pure channel is defined as the one whose transition
probabilities are either 0 and 1.

Suppose a channel N : X → Y is denoted by conditional probability distri-
bution p(y|x). We now consider transmitting a block of codewords with length
n.

Given an input sequence, denoted by

xn = (x1x2, ..., xn) ∈ X n (3.9)

after transmitting the codewords through noisy channel, we obtain,

yn = (y1y2, ..., yn) ∈ Yn (3.10)

we denote this transmission as,

N n : X n → Yn (3.11)
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and we represent this channel in the form of conditional probability as,

p(yn|xn) :=
n∏
i=1

p(yi|xi) (3.12)

Remark. This definition of channels is built by the assumption that the channel is discrete,
independent and identical distributed (i.i.d), or, equivalently, memoryless discrete channel.

Definition 3.3.3 (Encoder). We call an encoding channel an encoder such that it trans-
forms messageM = {1, 2, ...,M} into codewords with a length of n, denoted by

E :M→ X n (3.13)

Definition 3.3.4 (Decoder). We call a decoding channel a decoder such that it trans-
forms the output coming from the channel into original messageM = {1, 2, ...,M} that
was sent into the channel, denoted by

D : Yn →M (3.14)

Definition 3.3.5 (Code). A code (M, n) for the noisy channel N : X → Y consists of
the following:

1. A message setM = {1, 2, ...,M};

2. An encoder E :M→ X n;

3. A decoder D : Yn →M;

Definition 3.3.6 (Average probability error). For a code (M, n) with encoder E and
decoder D for the noisy channel N : X → Y , represented by conditional probility distri-
butions p(y|x), if messageM is chosen randomly with probability distribution p(m), we
obtain the average probability error as a function defined as,

εn

(
N ,M, E ,D, p(m)

)
:=

∑
m∈M

p(m)
∑

yn:D(yn) 6=m
p
(
yn|E(m)

)
(3.15)

Remark. The intuition is that n copies of noisy channelN is able to transmitM messages
within the average probability error εn.

In the paper [18], Shannon proved the characterization of channel inclusion in
terms of coding theorem.

Theorem 3 (Shannon channel ordering). For the following statements,

1. K1 ⊇ K2;

2. There exists a code (M, n) with εn
(
K2,M, E ,D, p(m)

)
=⇒ There exists a code

(M, n) with ε′n
(
K1,M, E ′,D′, p(m)

)
, such that ε′n 6 εn;
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we have the implication:
1 =⇒ 2 (3.16)

Remark. The intuition for statement 2 is that for the same code (M, n), noisy channel
K1 can always perform no worse than noisy channel K2 in terms of decoding the encoded
messageM sent through the noisy channel under average probability error .

Remark. Note that statement 2 is only a necessary condition for the characterization of
Shannon channel ordering, the sufficiency was left open.

It is noteworthy that, in the Shannon ordering, the input and output alphabets
do not need to be the same, whereas in the characterization of noisy channel de-
grading in Theorem 2, one must assume that the noisy channels share the same in-
put alphabet but can have different output alphabets. In this sense, one can regard
degradedness order as a special case of Shannon ordering. Since Shannon’s coding
theory allows for the encoding and decoding of a noisy channel, it is thus natural
to allow noisy channels to be injected into both input and output for the transfor-
mation. For example, after some effort, an engineer discovers a better encoder and
decoder pair than previous ones, then a transformation with both encoding and
decoding is necessary. However, the characterization of the ordering for Shannon
is weaker than that of BSS’s ordering since the sufficiency was not true.

Understanding how much noise is contained in a noisy channel and how to
transform a noisy channel into another one plays a key role in classical information
communication. Similarly, in quantum information science we are interested in the
comparison between the quantum noisy channels, the completely positive, trace-
preserving (CPTP), as well as the transformation between them. The mathemati-
cal structure of the CPTP map covers not only the physical evolution of a quantum
system but also quantum state preparation, discarding of a (sub)system, and quan-
tum measurement. The following sections discuss quantum measurement in the
form of a noisy channel. As mentioned above, similarly to quantum measurement,
a classical noisy channel is essentially a platform for information extraction. The
only difference lies on whether the input state is a classical or quantum state. Stim-
ulated by classical statistics, we now move to quantum statistics.

3.4 Quantum Statistics

In the classical formulation of statistical decision problems, one seeks for the opti-
mal decision procedure. In the quantum domain, there exists parameter space Θ
and the space of decisions U , however, each θ ∈ Θ corresponds to the quantum
state ρθ on Hilbert space H of the quantum system S. A decision is to be made
according to a quantum measurement on S, and the problem is thus to find the
optimum quantum measurement. Let us formulate it in mathematical languages.

Definition 3.4.1 (Quantum Statistical model). A quantum statistical model n is a triple
(Θ,H, {ρθ}), where H is the Hilbert space of quantum system S, for each θ ∈ Θ, ρθ
corresponds to a quantum state of quantum system S.
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Definition 3.4.2 (Decision from POVMs). For any (finite) decision set U = {u}, a
POVM {Pu} on system S is correspondent.

Definition 3.4.3 (Quantum Statistical decision problem). The expected payoff E of a
quantum statistical model n = (Θ,H, {ρθ}) with respect to a statistical decision problem
(Θ,U , `) is given by the following,

E(n) := max
Pu

∑
θ,u

`(θ, u) Tr{Puρθ} p(θ). (3.17)

where we normally set p(θ) = |Θ|−1 to be an a priori probability over the unknown param-
eter θ.

Remark. We see that the state discrimination problem with minimum error is a special
case of quantum statistical decision problems. Hence, we usually consider a statistical
game as a special case of quantum statistical decision problems. In what follows, we will
make use of this form several times.

Definition 3.4.4 (Quantum Statistical model comparison). Given two statistical mod-
els n = (Θ,H, {ρθ}) and n′ = (Θ,H′, {σθ}) , we say that,

n � n′, (3.18)

whenever for all decision problems (Θ,U , `),

E(n) > E(n′). (3.19)

In the following chapters, we will make use of this idea through special case
of decision games, in most cases we make use of game-theoretic approaches.



Chapter 4

Game-theoretic approach

4.1 Game-theoretic approach to quantum measurement

This chapter discusses the noisy processing of quantum measurement, and guess-
ing games based on measurement that serve as a characterization of quantum
statistic comparisons.

Quantum measurement aims to retrieve information on the state of a quantum
system, which can be considered a noisy channel process in the quantum domain
where the inputs will be quantum states and the outputs will be classical statistics.
Natural questions to ask include how noisy a typical quantum measurement is and
how to compare the noisiness of two quantum measurements? As discussed above
in classical statistics,nosiness is addressed through the processing of noisy chan-
nels. As for quantum measurement, which is represented by POVM, one makes
use of the operational processing of the measurement process. Here, measurement
is regarded as a device with input and output that can be processed them indepen-
dently or simultaneously.

4.2 POVM and its processings

There are two types of POVM processings: pre-processing and post-processing.
POVM pre-processing is a quantum channel applied to the input state of the POVM,
which is what we understand the evolution of measurement in the Heisenberg pic-
ture. Post-processing is a purely classical noisy channel applied to classical mea-
surement outcomes.

Figure 4.1: Processing of quantum measurements.

18
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The above figure 4.2 illustrate how to process a POVM, we give the mathe-
matical definitions as follows:

Definition 4.2.1 (Pre-processing of POVMs). POVMs P = {P a} and Q = {Qa} are
defined as functions that take quantum state as input and output result from same set
A. We say P can be transformed to Q whenever there exists a CPTP map E such that
Q = P ◦ E . This transformation is denoted by

P �pre Q. (4.1)

Remark. Pre-processing of POVM is an unital complete positive map and it might change
the dimension of the POVM but will not change the number of outcomes.

Definition 4.2.2 (Post-processing of POVMs). Given two POVMs P = {P a} and
Q = {Qb} as functions with same input quantum system and different output A and B.
We say P can be transformed to Q whenever there exists a noisy channel φ : A → B such
that Q = φ ◦ P. This transformation is denoted by

P �post Q. (4.2)

Remark. Post-processing of POVM might change the number of the measurement out-
comes but it will not change the dimension of POVM.

Since it is possible to do pre- or post-processing on measurement, then there
is no reason to not consider doing pre- and post-processing together, probably
with some shared randomness. We will define the most general processing for the
process of measurement as follows.

Definition 4.2.3 (General processing of POVMs). Given two POVMs P = {P a
A} on

systemHA with outcome set A and Q = {Qb
B} on systemHB with outcome set B, we say

P can be transformed to Q whenever there exists a CPTP map Er, a noisy channel φr and
randomness set {µ(r)} such that Q = ∑

r µ(r)φr ◦ P ◦ Er, denoted by

P � Q. (4.3)

Figure 4.2: How to process POVMs: with shared randomness.

Remark. A general process of POVM combines both pre-processing and post-processing
of POVMs with shared randomness, mathematically Qb

B = ∑
r µ(r)∑aw(b|a, r)E†r (P a

A),
and w(b|a, r) is a conditional probability distribution.
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Definition 4.2.4 (Trivial POVMs). A POVM P = {P a} is trivial if its effects are pro-
portional to identity, such that, P a = p(a)1, pa > 0 ∀a, and

∑
a p(a) = 1.

Remark. We see trivial POVM as a classical simulation of quantum POVM, in other
words, it is a classical resource that will behave like quantum measurements.

Lemma 4.2.1. Trivial POVMs cannot be transformed into non-trivial POVMs under
general processing, or we say that general processing preserve the triviality of POVMs.

Proof. It is straightforward due to the fact that E†(1) = 1.

Lemma 4.2.2. General processing induces a pre-order among POVMs.

Proof. Suppose P, Q,and R are POVMs on L(H), then P � P; and P � Q,Q �
R =⇒ P � R.

The pre-order induces a special class of POVMs, the clean POVMs. We know
that in most of the cases, the transformation of POVMs is not reversible since the
transformation is a noisy process. We are interested in finding a class of POVMs
that are reversible.

Definition 4.2.5 (Clean POVMs[19]). Given a quantum system H, we denote the set of
clean POVMs on L(H) in terms of pre-order as,

G(H) := {Q ∈ L(H) : ∀P ∈ L(H),P � Q =⇒ Q � P} . (4.4)

Remark. Clean POVMs can be seen as those most non-noisy measurements since we can
reverse the noisy process through some transformations.

Lemma 4.2.3. Rank one POVM is clean POVM.

Proof. Suppose Q = {Qb}, and suppose Qb = |ωb〉〈ωb|, let us normalize |ω̃b〉 =
1√
αb
|ωb〉, then we have the following equalities:

αb = Tr
{
Qb
}

= Tr
{
Qb|ω̃b〉〈ω̃b|

}
∑
b

αb = Tr{1} = d

Suppose a POVM P satisfies P � Q, then we will prove it is also rank one.
Recall that P � Q implies the following,

Qb =
∑
r

µ(r)
∑
a

w(b|a, r)N †r (P a) ∀b

then we have,

αb =
∑
r

µ(r)
∑
a

w(b|a, r) Tr
{
|ω̃b〉〈ω̃b|N †r (P a)

}
=
∑
r

µ(r)
∑
a

w(b|a, r) Tr{Nr(|ω̃b〉〈ω̃b|)P a}

≤
∑
r

µ(r)
∑
a

w(b|a, r)λM(P a)
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where λM(P a) is the maximal eigenvalue of P a, and the equality holds because we
know that for any state ρ, Tr{ρP a} ∈ [λm(P a), λM(P a)]. Then we do the summation
on both side on the above inequality since both sides are positive numbers,∑

b

αb = d ≤
∑
b

∑
r

µ(r)
∑
a

w(b|a, r)λM(P a)

=
∑
r

µ(r)
∑
a

∑
b

w(b|a, r)λM(P a)

=
∑
a

λM(P a)

≤
∑
a

Tr{P a} = Tr{1} = d

where the last inequality holds because the trace of P a is the sum of all eigenvalues
of P a.
Then it is true that, ∑

a

λM(P a) =
∑
a

Tr{P a}

since 0 ≤ λM(P a) ≤ Tr{P a} holds for all a, then

λM(P a) = Tr{P a} ∀a

So P is also a rank one POVM.
Next, we show that Q � P holds also. Recall that,

Qb =
∑
a,r

µ(r)w(b|a, r)N †r (P a) ∀b

Since Qb is rank one, then the POVM N †r (P a) must also be rank one, such that,

µ(r)w(b|a, r)N †r (P a) = βa,rQ
b

where βa,r are some positive numbers satisfying
∑
a,r βa,r = 1. By applying theorem

11.2 in “clean POVM” paper, we can obtain that, there exists an unitary Ur such
that,

N †r (P a) = UrP
aU †r ∀a

By plugging the above equation into the previous one, we can obtain the following,

µ(r)w(b|a, r)UrP aU †r = βa,rQ
b

so,
µ(r)w(b|a, r)P a = βa,rU

†
rQ

bUr

so, ∑
b,r

µ(r)w(b|a, r)P a = P a =
∑
b,r

βa,rU
†
rQ

bUr ∀a

Since βa,r are some positive numbers satisfying
∑
a,r βa,r = 1, we can always de-

compose it as conditional probability distributions, such that βa,r = µ
′(r)ω′(a|r),

so, there exists µ′ and ω
′ such that,

P a =
∑
b,r

µ
′(r)ω′(a|r)U †rQbUr ∀a

thus we have Q � P which concludes the proof.
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4.3 Measurement incompatibility

Until now, this thesis has discussed a single POVM processing and its correspond-
ing guessing game. When considering a set of POVMs, such as in the situation
of Bell experiment [20], a family of measurements is required. Discussing family
of measurement starts from the investigation of a pair of measurements, where
a quantum phenomenon, called measurement incompatibility, exists as a non-
classical physics phenomenon. In what follows, this thesis discusses equivalent
definitions of measurement incompatibility and their processing related to guess-
ing games.

In fact, there are several equivalent definitions of measurement incompatibil-
ity, and some are more intuitive than others.

4.3.1 Equivalent definition of measurement incompatibility

Measurement incompatibility is usually considered in the case of a pair of mea-
surements. Suppose we have two measurements M := {M(i)} and N := {N(j)}
with a finite discrete outcome set, where, for simplicity, i and j label the i-th and
j-th outcomes of the measurements, and M and N are said to be compatible when-
ever there exists a third (joint) measurement S = {S(i, j)} with two indexes out-
come set such that, M(i) = ∑

j S(i, j) and N(j) = ∑
i S(i, j) for all i and j. And

they are called incompatible if they are not compatible. In such a case, one calls M
and N jointly measurable under the joint measurement S.

The above definition tells that if two measurements are marginals of a third
measurement, then they are compatible.

Lemma 4.3.1. Two POVMs M1 and M2 are joint measurable if and only if there exists
another POVM G such that both M1 and M2 are marginals of G.

Lemma 4.3.2. Suppose {M1(ai),M2(bj), · · · } is a set of measurements with ai ∈ Ω1, bj ∈
Ω2 and the rest, then they are joint measurable if and only if there exists a “mother” mea-
surement {S(xk)}with xk ∈ Ω and a set of conditional probabilities {µ1

xk
(ai), µ2

xk
(bj), · · · },

such that,

M1(ai) =
∑
k

µ1
xk

(ai)S(xk), M2(bj) =
∑
k

µ2
xk

(bj)S(xk), · · · , (4.5)

where i, j and k denote ith, jth and kth respectively.

In addition to the above definition, we can have an equivalent definition as
follows:

Definition 4.3.1 (General definition of compatibility). Let A be a finite and discrete
label set for a family of measurements {Mx}x∈X , denoting x-th measurement as {M(a|x)}.
If there exists another measurement {G(λ)} and a conditional probability distribution
p(a|x, λ), such that, for all a and x,

M(a|x) =
∑
λ

p(a|x, λ)G(λ) (4.6)
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then we call {Mx}x∈X compatible.

The above definition provides a way to represent a set of measurements as an
operational device with quantum and classical input and classical output. Without
loss of generality, we assume the classical input as independent of the quantum
input and as serving as a programmable side to control what is inside the device.
As for the compatible measurements, we can represent the device as per Figure 4.3
below.

Figure 4.3: The inner structure of a compatible measurement as a device.

In the compatible measurement described in the picture above, we can see
that inside the box there is one “mother” measurement and post-processing of the
measurement outcome. However, when we are given a black box, how could we
know whether it is compatible? Studying the compatibility of measurement then
becomes a way to analyze the structure of a device. We denote this device as a
programmable measurement devices(PMD). Any PMD that is equivalent to com-
patible measurements are denoted by simple PMDs. Being programmable means
that this device can behave as an incompatible measurement. Figure 4.4 shows the
structure of a PMD as a black box without knowing anything inside. This model
enables the investigation of the programmability of the PMD.

Figure 4.4: A Programmable measurement device as a black box.

Definition 4.3.2 (PMD). We define PMD as cq → c channel with two inputs (quantum
and classical) that are always assumed to be separate systems; thus, we allow a time lag
between the two inputs. An arbitrary PMD is denoted as M := MQ(a|x), where Q
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denotes the input quantum system, x ∈ X represents the program set and a ∈ A represents
the output set.

Notice that, as the program set and quantum system input are independent of
each other, we could inject some time lag for the program set. The injection of time
lag induces a fact that the quantum input system must be stored in a quantum
memory until the program sets to come. If no additional quantum memory is
allowed, then without any quantum memory inside the PMD black box, we are
assured that this PMD is just a simple PMD. Accordingly, the following proposition
characterizes the PMD in terms of quantum memory.

Proposition 3. A PMD box is incompatible if and only if it has quantum memory inside.

Remark. We note that quantum memory plays a key role in the programmability of
PMDs. We regard quantum memory as a resource that is not free in the sense that we
assume it cannot be simulated by classical physics.

4.3.2 Transformation of PMDs

We treat a PMD that is equivalent to the compatible measurement as a useless
resource and the others as not useful resources. When given two PMDs and we
do not know whether they are compatible or incompatible, we are interested in
processing between PMDs.

Definition 4.3.3. Given two PMDs M := MQ(a|x) and N := NQ′(b|y), with a ∈
A, b ∈ B, x ∈ X and y ∈ Y , we say MQ(a|x) can be processed into NQ′(b|y) whenever
there exists quantum noisy channel to process the quantum input from systemQ′ to system
Q, and noisy channel to process classical output up to some shared randomness, denoted
by

M� N , (4.7)

mathematically, we equivalently define it as,

NQ′(b|y) =
∑
r

µ(r)
∑
a

q(b|a, x, i, y, r)p(x|i, y, r)(EQ
′→Q

i|r )†[MQ(a|x)] (4.8)

where µ(r) is a probability distribution, {EQ
′→Q

i|r } is a family of quantum instruments
labeled by r, with classical outcome i, and q(b|a, x, i, y, r), p(x|i, y, r) are conditional prob-
ability distributions that represent classical noisy channels.

Lemma 1. All simple devices are equivalent to each other, that is, given any two simple
devices MQ(a|x) and NQ′(b|y), possibly defined on different Hilbert spaces HQ and HQ′ ,
both relations hold:

MQ(a|x) � NQ′(b|y) and NQ′(b|y) �MQ(a|x) .

Proof. For any two simple PMDs. Let us denote by IQ(a|x) the trivial PMD, i.e. the
PMD with alphabets A = X = {0} and Hilbert space HQ = C. Clearly the trivial
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PMD can be attained from any other using the free operations. Showing that the
converse is true will complete the proof of the lemma. Using the trivial PMD as the
input PMD in Eq. (4.8), we verify that the instruments {EQ

′→Q
i|r } are, in fact, POVMs

EQ′(i|r): this is so because dimHQ = 1. Since these POVMs can be freely chosen,
all devices of the form

NQ′(b|y) =
∑
r

µ(r)
∑
i,j

q(b|j, r)p(j|i, y, r) EQ′(i|r)

=
∑
r

∑
i

p′(b|i, y, r) EQ′(i, r) ,

can be obtained from the trivial PMD, whereEQ′(i, r) := µ(r)EQ′(i|r) is considered
now as a POVM with two outcome indices. Since the above coincides with the
definition of simple PMDs, the desired conclusion is reached.

Figure 4.5: PMD transformation under noisy channels

As depicted in Figure 4.5, transforming a PMD into another is under an al-
lowed process, in which we are only allowed to conduct the processing of the
measurement device up to some shared randomness. In fact, the time evolution
scenario could be transferred into a space-like scenario with equivalence. In the
space-like scenario, we could treat an event after some time as a faraway spatial
event, from which we are not allowed to communicate to get rid of time travel in its
equivalent time evolution scenario. Figure 4.6 shows the process in the space-like
scenario.

Figure 4.6: PMD transformation in space-like scenario

In this scenario, two parties are separate from each other and no communica-
tion is allowed between them. In this framework, the transformation process is a
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one-way LOCC. In addition, by the structure of this space-like scenario, we obtain
the equivalence between transformation and one-way LOCC.

Proposition 4. Given two PMDsM := MQ(a|x) and N := NQ′(b|y), with a ∈ A, b ∈
B, x ∈ X and y ∈ Y ,M � N if and only ifM can be transformed into N by one-way
LOCC.

Proof. It is obvious from Fig 4.5 above that MQ(a|x) � NQ′(b|y) implies an im-
plementation by one-way LOCC. Conversely, every one-way LOCC protocol from
Alice to Bob consists here of (i) a one-way LOCC pre-processing, (ii) local side
channels that are quantum for Alice and classical for Bob, and (iii) one-way LOCC
post-processing. Since Alice receives no output from the PMD, any local post-
processing and forward communication she performs can be included in her pre-
processing. What remains is exactly as depicted in Fig 4.6.

Remark. We find the equivalence between the time evolution and space-like scenario.

4.4 Game-theoretic approaches

The major task in quantum computation and quantum information is to show that
quantum resources can conduct information processing tasks that would be im-
possible or much more difficult using only classical resources. Among the most
fundamental quantum resources, quantum entanglement stands out. With quan-
tum theory backing behind, entanglement can shape our intuition in understand-
ing nature. In an intuitive world, the idea of “local realism”, is natural, which
means that faraway events can’t influence each other faster than the speed of light
(what is known as locality), and the properties of objects have a definite value even
if we do not measure them (what is known as realism). However, in 1964, John S.
Bell in [20] showed in his now-famous bell theorem that with quantum entangle-
ment, the local realism can be violated through what the so-called “bell game” or
“bell experiment” and that this violation can be tested through the game. This
game scenario approach has currently served as a useful tool to certify the exis-
tence of quantum entanglement.

In fact, game-theoretical approaches are also essential in certifying quantum
resources. The following section introduces guessing games for certifying specific
types of POVMs.

At the beginning of this thesis, we introduced general quantum statistical de-
cision problems. At the interest of POVMs, this thesis focuses on minimum error
state distinguishing games (guessing games), which is a special case of general
quantum statistical decision problem. Given a POVM P = {P a}, we want to know
how good it is for a guessing game. Suppose we are given an index set x ∈ X and
we encode them into quantum states, we then input the quantum states into the
measurement, being allowed to process the measurement device to obtain a better
result. We are interested in finding the best strategy that gives us the maximum
guessing probability for the index x. Figure 4.7 shows the structure of this guessing
game.
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Figure 4.7: Guessing the index set through a measurement device: minimum-error
state discrimination game

As shown in Figure 4.7, we see that the orange boxes are seen as processing of
the measuring device up to some shared randomness, and the maximum guessing
strategy is to find the suitable processings. Mathematically, we phrase the game
payoff (the guessing probability) as follows,

Pguess({ρx},P) := max
µ,w,{Nr}

∑
r

µ(r)
∑
b,x

w(x|b, r) Tr
{
Qb
B Nr(ρx)

}
. (4.9)

where {ρx} is the encoded ensemble of quantum states, µ(r) is the shared ran-
domness, w(x|b, r) is conditional probability distribution, and {Nr} is an instru-
ment.

When dealing with a set of POVMs, we introduce the so-called “post informa-
tion guessing games”, which consist of the following components: (i) the referee
picks one pair (w, z) ∈ W×Z at random according to the distribution p(w, z), (ii) at
time t0, the normalized quantum state p(w, z)−1ρRw,z is sent to the player followed,
after some finite time at time t1, by the index w, and (iii) the player attempts to
maximize the probability of correctly guessing the value z using the given PMD
M := MQ(a|x) and any processings of the PMD. In this game, the label w is inter-
preted as the “post information” since it is imported into the program register of
the PMD after the quantum state, and it cannot be used in any pre-processing of
the PMD.

When playing guessing games with post information, certain processing strate-
gies will lead to greater success probabilities in guessing z. In particular, if the ref-
eree’s questions ρRw,z are encoded on a quantum system that is different from the
quantum input of the PMD MQ(a|x), then the player must conduct some kind of
quantum pre-processing of R into Q, represented without loss of generality by a
quantum instrument {ER→Qi }. The optimum success probability over all strategies
is thus given by

Pguess(MQ(a|x); ρRw,z) := max
µ,q,p,E

∑
w,z,r,i,x,a

µ(r)q(z|a, w, i, r)p(x|w, i, r)

× Tr
{
ER→Qi|r (ρRw,z) MQ(a|x)

}
,

(4.10)

where the probability distribution µ(r) is included to describe mixed strate-
gies, i.e. those in which a different strategy, labeled by r, is chosen at random.
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Figure 4.8: Post-information guessing game.

In the picture above, we note the time evolution plays an important role in
this game.

4.4.1 Game-theoretical approach to POVMs

The set of all correlated pre and post-processing constitutes a closed and convex
set. This is easy to see due to the inclusion of shared randomness. Given a POVM
on HA with output alphabet A = {a}, let us denote by M any transformation that
takes it into a POVM onHB with output alphabet B = {b}.

Theorem 4. Given two POVMs P = {P a
A} on systemHA and Q = {Qb

B} on systemHB,
the relation

P � Q (4.11)

holds if and only if, for any ensemble {ρxR}, such that
∑
x Tr{ρxR} = 1,

Pguess({ρxR},P) > Pguess({ρxR},Q) , (4.12)

Remark. In what follows, we will always highlight the original theorems that are derived
in our published papers with gray background.

Proof. The direction (4.11) =⇒ (4.12) is trivial: if the POVM P can be used to
simulate the POVM Q, then the former cannot be worse than the latter in any
discrimination task. We hence need to prove only the converse.

Fix a basis of self-adjoint operators {Xj
B}. Then, relation (4.11) is equivalent to

the following:

Tr
{
Qb
B X

j
B

}
= Tr

{{∑
r

µ(r)
∑
a

w(b|a, r)N †r (P a
A)
}
Xj
B

}
, ∀b, ∀j .
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Denote by ~s(Q) the vector whose entries are the |B| × |J | real numbers above, and
by ~r(P,M) the same vector on the right-hand side. Consider also the set of all such
vectors that can be obtained from POVM P by varying the pre/post-processing M;
denote such set by

S(P) := {~r(P,M) : M} .
Such a set is closed and convex because closed and convex is the set of all transfor-
mations M. Hence, we can say that relation (4.11) is equivalent to

~s(Q) ∈ S(P) ,

namely (as an application of the separation theorem)

~s(Q) · ~c 6 max
~r∈S(P)

~r · ~c , ∀~c .

Denoting by Y b
B the self-adjoint operators obtained as Y b

B := ∑
j c(b, j)Xj

B, we
have that relation (4.11) is equivalent to∑

b

Tr
{
Qb
B Y

b
B

}
6 max

M

∑
b

Tr
{
M(P)bB Y b

B

}
, ∀{Y b

B} .

We now shift and rescale the operators Y b
B to ρbB := Y bB+C∑

b
Tr{Y bB+C} > 0, so that

the ρbB form an ensemble. This can always be done by choosing the constant oper-
ator C large enough. Then, by noticing that

∑
b Tr

{
Qb
B C

}
does not depend on the

POVM Q, we can massage the above equation arriving at the following conclusion:
relation (4.11) is equivalent to∑

b

Tr
{
Qb
B ρ

b
B

}
6 max

M

∑
b

Tr
{
M(P)bB ρbB

}
, ∀{ρbB} .

But now, a sufficient condition for relation (4.11) is that

max
M

∑
b

Tr
{
M(Q)bB ρbB

}
6 max

M

∑
b

Tr
{
M(P)bB ρbB

}
, ∀{ρbB} .

A straightforward corollary from Theorem 4 can used as a theoretical too to
determine if a POVM is not a trivial one.

Corollary 1. A POVM P is not a trivial one if and only if there exists a guessing game
such that,

Pguess({ρxR},P) > 0. (4.13)

4.4.2 Game-theoretic approach to quantum incompatibility

The shared randomness of processing PMD shows that the set of PMDs forms a
convex set. Accordingly, we can derive the following theorem that characterizes
the PMD transformations in terms of quantum games.
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Theorem 5. Given two PMDs M := MQ(a|x) and N := NQ′(b|y), with a ∈ A, b ∈
B, x ∈ X and y ∈ Y , then for all guessing games wih post-information {ρRw,z : ω ∈ W , z ∈
Z}, the following equivalence holds,

M� N ⇐⇒ Pguess(MQ(a|x); ρRw,z) > Pguess(NQ′(b|y); ρRw,z). (4.14)

For simplicity, It is equivalent to consider only guessing games with HR = HQ′ ,W = Y ,
and Z = B.

Proof. For the sake of notation, we will denote the processing of a PMD MQ(a|x)
as prescribed in Eq. (4.8) simply by

[T (M)](b|y) .

In particular, the set of all allowed mappings of PMDs with input Hilbert space
HQ, input alphabet X , and output alphabetA, into PMDs with input Hilbert space
HQ′ , input alphabet Y , and output alphabet B, will be denoted by T :

T := {T : PMD(HQ,X ,A)→ PMD(HQ′ ,Y ,B)} .

A crucial observation is that the set T is convex due to the presence of shared
randomness (represented by the probability distribution µ(r) in Eq (4.8) .

The implication (a) =⇒ (b) is trivial: since processings of the form (4.8) are al-
ways allowed when playing guessing games with post-information, as prescribed
in Eq. (4.10)), if PMD MQ(a|x) can simulate NQ′(b|y), then any strategy that can be
reached from the latter can be reached also from the former. Hence, we only need
to prove explicitly the implication (b) =⇒ (a).

We begin by noticing that condition (a) is equivalent to the existence of a map-
ping T of the form (4.8) such that

[T (M)]Q′(b|y) = NQ′(b|y), ∀b,∀y . (4.15)

Let us fix a basis of self-adjoint operators {XQ′

j : j ∈ J }. Then, relation (4.15)
is equivalent to the following:

Tr
{
NQ′(b|y) XQ′

j

}
= Tr

{
[T (M)]Q′(b|y) XQ′

j

}
, ∀b,∀y,∀j .

Denote by ~s(N) the vector whose entries are the |B|×|Y|×|J | real numbers above,
and by ~r(M, T ) the same vector on the right-hand side.

Let us consider now the set of all such vectors that can be obtained from PMD
MQ(a|x) by varying the processing T in T ; denote such set by

S (M) := {~r(M, T ) : T ∈ T } .
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Such a set is closed and convex because closed and convex is the set of all transfor-
mations T . Hence, we can say that relation (4.15) is equivalent to

~s(N) ∈ S (M) ,

that is, by applying the separation theorem for convex sets,

~s(N) · ~c 6 max
~r∈S (M)

~r · ~c , ∀~c ∈ R|B|×|Y|×|J | .

Denoting by Y Q′

b,y the self-adjoint operators obtained as Y Q′

b,y := ∑
j c(b, y, j)XQ′

j ,
we have that relation (4.15) is equivalent to∑

b,y

Tr
{
NQ′(b|y) Y Q′

b,y

}
6 max
T ∈T

∑
b,y

Tr
{

[T (M)]Q′(b|y) Y Q′

b,y

}
,∀{Y Q′

b,y : self-adjoint} .

We now shift and rescale the self-adjoint operators Y Q′

b,y to ρQ
′

b,y := Y Q
′

b,y
+C∑

b,y
Tr
{
Y Q
′

b,y
+C
} >

0, so that the ρQ
′

b,y form an ensemble. This can always be done by choosing the
constant operator C large enough. Then, by noticing that

∑
b,y Tr

{
NQ′(b|y) C

}
=

|Y|Tr{C} does not depend on the particular PMD NQ′(b|y), we can rewrite the
above equation arriving at the following conclusion: condition (4.15) is equivalent
to∑
b,y

Tr
{
NQ′(b|y) ρQ

′

b,y

}
6 max
T ∈T

∑
b,y

Tr
{

[T (M)]Q′(b|y) ρQ
′

b,y

}
,∀ ensembles {ρQ

′

b,y : b ∈ B, y ∈ Y} .

Comparing the above relation with the expression (4.10) of the optimal guessing
probability in guessing games with post-information, we recognize that the above
equation means that, for any guessing game with post-information {ρQ

′

b,y : b ∈
B, y ∈ Y}, it holds that∑

b,y

Tr
{
NQ′(b|y) ρQ

′

b,y

}
6 Pguess(MQ(a|x); ρQ

′

b,y) . (4.16)

But then, a sufficient condition for relation (4.15) is that

Pguess(NQ′(b|y); ρQ
′

b,y) 6 Pguess(MQ(a|x); ρQ
′

b,y) ,

for all guessing game with post-information {ρQ
′

b,y : b ∈ B, y ∈ Y}.

Simply by noticing that it is impossible to turn a simple PMD into an in-
compatible one using free operations, we obtain as a corollary that quantum in-
compatibility can always be witnessed using a suitable guessing game with post-
information.
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Corollary 2. A PMD MQ(a|x) is incompatible, if and only if there exists an ensemble
{ρQx,a : x ∈ X , a ∈ A} such that

∑
a,x

Tr
{
MQ(a|x) ρQx,a

}
> P simple

guess (ρQx,a) ,

where P simple
guess (ρQx,a) is defined as the optimum guessing probability achievable with simple

PMDs.

Proof. First, we notice that, for any guessing game with post-information, the op-
timum guessing probability is the same for all simple PMDs. This is a direct conse-
quence of Theorem 5 and Lemma 1.

Then, the statement is proved by contradiction. Suppose that, for all guessing
game with post-information {ρQx,a : x ∈ X , a ∈ A}, the opposite relation holds, that
is ∑

a,x

Tr
{
MQ(a|x) ρQx,a

}
6 P simple

guess (ρQx,a) .

But then, by means of Eq. (4.16) in the proof above, one would conclude that it is
possible to obtain MQ(a|x) by acting with a free operation on a simple PMD, in
contradiction with the fact that MQ(a|x) is incompatible.



Chapter 5

Convex optimization

5.1 Convex optimization

In optimization theory, the duality principle provides a different perspective to
optimization problems. Usually, the term ”dual problem” refers to the Lagrangian
dual problem. The solution of the dual problem provides a lower bound to the
solution of the primal (minimization) problem. However, if strong duality holds,
the solutions of primal and dual problems are equal. The following contents refer
to the paper [9, 21].

5.1.1 The underlying intuition

This section introduces a mathematical tool that is useful in solving problems
not only in this thesis but also in many other research setting. In most cases in
which quantum information theory plays a key role in some information process-
ing tasks, convex optimization is of particular interest. This is because quantum
objects 1 are formulated as mathematical elements such that their set is convex. In
the case of quantum states, it is known that a set of bipartite quantum states forms
a convex set with a subset of separable states. Similarly, one notices that both a set
of measurements and a set of quantum channels are in the form of convex set with
a subset of useless elements. Hence, it is indeed crucial to investigate the convexity
of quantum objects is indeed necessary.

Figure 5.1 shows that, given a state ρ in the convex set of states, whether it
belongs to the subset of separable states is of our interest. It is known that quan-
tum entangled state serves as a powerful resource in many quantum information
processing tasks. Then, a natural question to ask is: how much resource does a
quantum entangled state contain? Or how close the state ρ is to the subset of sep-
arable states that we consider null resource. A common quantifier is defined as
follows: given an object ρ, what is the least amount of mixing p ∈ [0, 1] with an-
other object σ such that (1− p)ρ+ pσ belongs to the subset of separable states. This

1Here quantum objects can represent any quantum phenomena statistics, rather that only being
limited to the quantum state itself

33
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Figure 5.1: Convex set of quantum states and its subset of separable states.

is core idea behind the robustness of a resource, which can be understood as the
robustness of the resource contained in ρ to noise in the form of mixing an arbitrary
object σ.

5.2 Basics of semi-definite programming

Given the Hermitian operators A, B and a hermiticity-preserving linear map Φ(·),
we consider an optimization problem in the following form.

maximize 〈A,X〉
subject to Φ(X) = B

X > 0
(5.1)

where the notation 〈·, ·〉 is defined as the inner product, such that 〈A,B〉 := Tr{AB}.
This problem is to maximize the real linear function Tr{AX}, over the subset of
positive semi-definite operator X which satisfies the constraint Φ(X) = B. This
problem is called the semi-definite programming (SDP) problem. The set of oper-
ators X that satisfy the constraints in 5.1 are called primal feasible. The maximal
value of 〈A,X〉 over the primal feasible set, denoted by α, is called primal optimal
value.

For every SDP program, we introduce Lagrange multipliers for each constrain
in 5.1. Let us introduce the Hermitian operators Y and Z as the Lagrange multi-
pliers associated to the first and second constraints respectively in 5.1. The La-
grangian is defined as,

L = 〈A,X〉+ 〈Y,B − Φ(X)〉+ 〈Z,X〉
= 〈A− Φ†(Y ) + Z,X〉+ 〈Y,B〉

(5.2)

From the above structure of the Lagrangian, we see that if Z > 0, 〈A,X〉 6 L
for all primal feasible operators because 〈Z,X〉 > 0. Thus, the Lagrangian upper
bounds the primal optimal value α. Moreover, if the condition A− Φ†(Y ) + Z = 0
holds, then the Lagrangian L is independent of X and equal to 〈Y,B〉. Thus we
can achieve the best possible upper bound α by minimizing L over the Lagrange
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multipliers, subject to the condition A − Φ†(Y ) + Z = 0 and Z > 0 . We can write
the dual problem,

minimize 〈Y,B〉
subject to Φ†(Y ) > A

(5.3)

Similarly, we have the dual optimal value, denoted by β, such that we always have
α 6 β, which is called weak duality. However, in most cases, we have α = β, which
is called strong duality. The condition for strong duality to hold is that either the
primal or the dual problem is strictly feasible, that one can find either a positive-
definite X > 0 such that Φ(X) = B, or a Y such that Φ†(Y ) − A > 0. In this way,
we turn a primal problem into a dual problem from a different perspective.

Note that we only considered the simplest case of a single optimization vari-
able, with a single equality constraint. This can easily extend to complicated cases
with multiple optimization variables and multiple inequality and equality con-
straints.

5.3 Robustness of POVM with relation to a guessing
game

The following definition of robustness quantifies how much usefulness a POVM
holds concerning trivial POVMs, i.e., the robustness of POVM.

Definition 5.3.1 (Robustness of POVM). Robustness of POVM is defined to capture
how tolerant a POVM is to mixing before it becomes a trivial POVM. The robustness of a
POVM P = {P a} is defined as

R(P) = min
{
r > 0 : P

a + rQa

1 + r
∝ 1, Qa ∝ 1

}
,

where ∝ 1 means that the effect of POVM is proportional to 1, which indicates a trivial
POVM (classically simulatable).

The following subsection presents the connection of robustness of POVM to
the guessing game through convex optimization analysis.

5.3.1 Convex optimization of robustness of POVM

Following the idea in [22], we rewrite the robustness of POVM P = {P a}. We
denote by R(P) as follows:

R(P) = min r

s.t.
P a + rQa

1 + r
= q(a)1, ∀a

Qa ≥ 0 ∀a∑
a

Qa = 1. (5.4)
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Note that the POVM {Qa} above can be defined as any POVMs. However, by
solving Qa, the above constraints can be equally reformulated as a SDP as follows:

R(P) = min
∑
a

q̃(a)− 1

s.t. q̃(a)1 ≥ P a, ∀a
(5.5)

Where we define q̃(a) := (1 + r)q(a). For later usage we denote the optimal q∗(a)
for the above SDP, then we have (1 + R(P))q∗(a)1 ≥ P a for all a.
Next, we write the dual of the above SDP. Let’s introduce the dual variables posi-
tive semi-definite ρa, then the associated Lagrangian is as follows:

L =
∑
a

q̃(a)− 1−
∑
a

Tr{ρa[(q̃(a)1− P a)]}

=
∑
a

Tr{ρaP a} − 1 +
∑
a

q̃(a)(1− Tr{ρa}) (5.6)

We thus ensure that the defined Lagrangian upper bounds the primal object func-
tion whenever the primal constraints are satisfied. By making the constraints
Tr{ρa} = 1 for all a, this Lagrangian is independent of the primal constraints. We
can thus write the dual SDP as:

R(P) = max
∑
a

Tr{ρaP a} − 1

s.t. ρa ≥ 0, ,Tr{ρa} = 1 ∀a
(5.7)

In the following, we connect the robustness to our guessing games. Recall that
for any POVM P = {P a} on system HA, its guessing probability Pguess(E ,P) for an
ensemble E := {ρx} is defined as:

max
µ,w,{Nr}

∑
r

µ(r)
∑
a,x

w(x|a, r) Tr{P a Nr(ρxR)} . (5.8)

Where
∑
x Tr{ρx} = 1. Let us denote p(x) = Tr{ρx}, p∗(x) = maxx p(x).

Let us first define the free POVMs the POVM whose elements are all proportional
to the identity. Suppose Pa = αa1, we have,

Pguess(E ,P) = max
µ,w,{Nr}

∑
r

µ(r)
∑
a,x

w(x|a, r) Tr
{
N †r (αa1)ρxR

}
(5.9)

= max
µ,w

∑
r

µ(r)
∑
a,x

w(x|a, r)αa Tr{ρxR} (5.10)

= max
µ,w

∑
r

µ(r)
∑
a,x

w(x|a, r)αap(x) (5.11)

≤ max
µ,w

∑
r

µ(r)p∗(x)
∑
a,x

w(x|a, r)αa (5.12)

= p∗(x) =: P free
guess(E) (5.13)
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Where we denote P free
guess(E) as the guessing probability by using trivial POVMs, and

Pguess({ρxR},P) achieve its maximum p∗(x) bound by letting w(x|a, r) = δa,x′ and x′

is the place where p∗(x) := maxx p(x).
It is evident that all free POVMs give a constant guessing probability for any en-
semble E := {ρx}, which is the p∗(x) := maxx p(x).

We can now state the following theorem, in which we make the connection of
quantification of POVM as a resource to the advantage for which we compare to
useless resources, the trivial POVM.

Theorem 6. The robustness of a POVM P,denote by R(P), satisfy the following:

1 + R(P) = max
E

Pguess(E ,P)
P

free
guess(E)

(5.14)

where E := {ρx} and
∑
x Tr{ρx} = 1.

Proof. We first prove the following:

1 + R(P) ≥ Pguess(E ,P)
P free

guess(E) ∀E (5.15)

We first assume that Pguess(E ,P) achieve its maximal optimum through µ∗, w∗,N ∗,
i.e.,

Pguess(E ,P) =
∑
r

µ∗(r)
∑
a,x

w∗(x|a, r) Tr{P a N ∗r (ρxR)} (5.16)

Recall that [1 + R(P)]q∗(a)1 ≥ Pa since we denoted the optimal q∗(a) as the con-
straint for the solution of primal SDP. Then we have,

Pguess(E ,P) ≤
∑
r

µ∗(r)
∑
a,x

w∗(x|a, r)[1 + R(P)]q∗(a) Tr{1N ∗r (ρxR)} (5.17)

≤
∑
r

µ∗(r)
∑
a,x

w∗(x|a, r)[1 + R(P)]q∗(a)p(x) (5.18)

≤
∑
r

µ∗(r)
∑
a,x

w∗(x|a, r)[1 + R(P)]q∗(a)p∗(x) (5.19)

= [1 + R(P)]p∗(x)
∑
r

µ∗(r)
∑
a,x

w∗(x|a, r)q∗(a) (5.20)

= [1 + R(P)]p∗(x) (5.21)

= [1 + R(P)]P free
guess(E) (5.22)

The first inequality holds because we plug in the inequality [1 + R(P)]q∗(a)1 ≥ P a

into the trace. The second inequality holds because N ∗ is trace preserving. the
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third inequality holds by replacing the maximal p∗(x) with p(x) for all x.
Next, we prove the following direction,

1 + R(P) ≤ max
E

Pguess(E ,P)
P free

guess(E) (5.23)

Suppose we have the ensemble E∗ = {ρx}, such that p(x) = Tr{ρx} = 1
|X | , i.e,

uniform probability distribution. Hence p∗(x) := maxx p(x) = 1
|X | .

Suppose we have the optimal {ρa∗} for the dual SDP defined above and we get
1 + R(P) = ∑

a Tr{ρa∗P a}, where we restrict ρa∗ ≥ 0 and Tr{ρa∗} = 1. Instead of
proving the above inequality, we prove the following,

1 + R(P) ≤ Pguess(E∗,P)
P free

guess(E∗)
(5.24)

After the above setting, we can manipulate our objective equation as follows,

Pguess(E ,P) = max
µ,w,{Nr}

∑
r

µ(r)
∑
a,x

w(x|a, r) Tr{P a Nr(ρxR)} (5.25)

= max
µ,w,{Nr}

∑
a

Tr
{
P a
{ 1
|X |

∑
r,x

µ(r)w(x|a, r)Nr(|X |ρxR)
}}

(5.26)

Since we can always find a CPTP map to transfer between any two states (an ex-
treme example is the discard and prepare map, which is indeed a CPTP), we are
able to define the following:

ρa∗ =
∑
r,x

µ∗(r)w∗(x|a, r)N ∗r (|X |ρxR) (5.27)

where µ∗, w∗,N ∗ serve as the sub-optimal constraints for Pguess(E ,P) and we can
verify that it indeed satisfies ρa∗ ≥ 0 and Tr{ρa∗} = 1. Then, we conclude our proof
with the following:

Pguess(E ,P) >
∑
a

Tr
{

1
|X |

ρa∗P a

}
= [1 + R(P)]p∗(x) = P free

guess(E)[1 + R(P)] (5.28)

5.4 Robustness of PMD with relation to post-information
guessing game

Recall the definition of simple PMDs, which is the equivalence of a family of com-
patible measurements.

Definition 5.4.1 (Simple PMDs, alias Compatible POVMs). A PMD MQ(a|x) is
called simple if its constituting POVMs can be written as

MQ(a|x) =
∑
i∈I

p(a|i, x)M̃Q(i), (5.29)
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where the M̃Q(i) are elements of a single POVM (sometime referred to as the “mother”
POVM), and p(a|i, x) is a conditional probability distribution.

As noted previously, any convex mixing of simple PMDs can be directly incorpo-
rated into the “mother” POVM. We now describe this in a bit more detail. Suppose
that MQ(a|x) admits a decomposition of the form

MQ(a|x) =
∑
r

µ(r)
∑
i∈I

p(a|i, x, r)M̃Q(i|r),

where µ(r) is a probability distribution and M̃Q(i|r) is now a family of POVMs
indexed by the shared random index r. Then, simply by noticing that µ(r)M̃Q(i|r)
is itself a normalized two-outcome indexed POVM, it is possible to conclude that
Definition 5.4.1 is fully general and no further random variables are needed.

5.4.1 Convex optimization of robustness of PMDs

This section proves the connection of robustness and the guessing game scenario.
We show that the generalized robustness of PMD is an exact quantifier for the
advantage in some guessing games. Suppose we are given a PMD, {M(a|x) : a ∈
A, x ∈ X} on the Hilbert space HQ, and an ensemble {ρa,x}. According to the
theorem in main text, it is possible to restrict all ρa,x ∈ L(HQ) ∀a, x.

At first, we define the set of simple PMDs as,

FQ,A,X = {{M(a|x)}a,x : ∃ POVM {M̃Q(i)}, p(a|x, i), s.t. MQ(a|x)
=
∑
i∈I

p(a|i, x)M̃Q(i) ∀a, x}, (5.30)

Definition (5.29) identifies FQ,A,X as a collection of POVM familes that is con-
vex and closed. Since it is possible to fix Q,A,X , in what follows we ignore the
subscripts. We define M := {M(a|x)}a,x and in what follows we use the same font
style to represent PMDs. We denote by Z the set of general PMDs, that is to say
F ⊆ Z .

For usefullness, we define a real vector space V as,

V :=

V =


V1
...
Vd

 : Vi = V †i ∀i

 (5.31)

on R+, while we define its inner product as 〈A|B〉 := ∑
i〈Ai, Bi〉 = 〈B|A〉, and

the notation 〈·, ·〉 is defined as the inner product, such that 〈A,B〉 := Tr{AB}, and
d = |X ||A|. Note that each element in Z corresponds to a unique vector in V .

Let us first define the convex cone generated by simple PMDs as,

C := {cW : c ∈ R+,W ∈ F}, (5.32)
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as well as its dual,

C∗ := {E ∈ V : 〈E|F〉 ≥ 0,∀F ∈ C}. (5.33)

We then define the generalized robustness of PMD M with respect to F ,

R(M) := min{r ∈ R+ : M+ rN ∈ C, N ∈ Z} (5.34)

where M + rN ∈ C is equivalent to the fact that the family of {M(a|x) + rN(a|x)}
considered as a vector defined in (5.31) is in set C.

In order to see the connection between robustness and guessing game, let’s
us define N′ := rN, i.e., N ′(a|x) = rN(a|x)∀a, x, and define N′ � 0 the same
fashion as, N ′(a|x) ≥ 0 ∀a, x, then we rewrite the definition (5.34) as a conic form
problem (which we call primal problem) with generalized inequality �, i.e., given
M, we want:

minimize λ
subject to M+N′ ∈ C

N′ � 0,∑
aN

′(a|x) = λ1, ∀x.

(5.35)

Introducing hermitian operators γx as Lagrange multiplies, we can write the La-
grangian with respect to M as

L(λ,N′,A,B, {γx}) = λ− 〈M+N′|A〉 − 〈N′|B〉 −
∑
x

〈
λ1−

∑
a

N ′(a|x), γx
〉

(5.36)

= −〈M|A〉+ λ(1−
∑
x

Tr{γx}) +
∑
a,x

〈
N ′(a|x), γx − βa,x − αa,x

〉
.

(5.37)

where the dual variables satisfy A ∈ C∗, B � 0, and the elements of A and B are
{αa,x} and {βa,x} respectively. Then we write the dual function as,

g(A,B, {γx}) = min
λ,N′
L(λ,N′,A,B, {γx}) (5.38)

= −〈M|A〉+ min
λ,N′

(
λ(1−

∑
x

Tr{γx}) +
∑
a,x

〈
N ′(a|x), γx − βa,x − αa,x

〉)
(5.39)

since g is linear function and a linear function is bounded below only when it is
identical zero. Thus, g = −∞ (trivial bound), except only when the following two
conditions hold, 

∑
x Tr{γx} = 1

γx − βa,x − αa,x = 0 ∀a, x,
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in which cases, g(A,B, {γx}) = −〈M|A〉. So we can write the dual problem to
define the upper bound of dual fucntion as follows,

maximize −〈M|A〉
subject to A ∈ C∗

B � 0,
γx − βa,x − αa,x = 0 ∀a, x,∑
x Tr{γx} = 1, γx = γ†x.

(5.40)

we can get rid of the dual variable B by combining the second and third constriant
as the condition γx − αa,x ≥ 0 ∀a, x, becasue B is only the constraint of dual
variables, then the above problem reduces to,

maximize −〈M|A〉
subject to A ∈ C∗

γx − αa,x ≥ 0 ∀a, x,∑
x Tr{γx} = 1, γx = γ†x.

(5.41)

Define a new variable W, such that its element ωa,x := γx − αa,x, and we see that,

−〈M|A〉 = 〈M|W〉 − 1 =
∑
a,x

〈
M(a|x), ωa,x

〉
− 1,

then we can rewrite the dual problem as,

maximize 〈M|W〉 − 1
subject to A ∈ C∗

W � 0∑
x Tr{γx} = 1, γx = γ†x.

(5.42)

where W � 0 is equivalent to, γx − αa,x ≥ 0∀a, x. To see that the strong duality
holds, that is to say, the optimal value of the dual is equal to the optimal value of
the primal problem, let’s choose αa,x = 1

2|X |Tr{1}1,∀a, x, i.e., A � 0 (thus A is in the
interior of C∗), and γx := 2αa,x, we then see that γx − αa,x = αa,x > 0 ∀a, x and∑
x Tr{γx} = 1. These choices can be noticed to strictly satisfy the conditions (5.42).

So Slater’s theorem ensures that the strong duality holds.
With the above techniques, we are able to connect the robustness of PMD to

post information guessing games that was introduced previously.

Theorem 7. For any PMD, with its robustness related to guessing games, we have,

1 + R({M(a|x)}a,x) = max
{ρa,x}

Pguess(M(a|x); ρa,x)
P

simple
guess (ρa,x)

, (5.43)
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Proof. We first show the right hand side is smaller than or equal to the left hand
side for all possible ensembles, then we show a special choosing ensemble satisfies
that the right hand side is greater than or equal to the left hand side, which can be
seen as the optimal ensemble.

According to the definition of the general robustness of {M(a|x)}a,x, one can
write M(a|x) = (1 + r)F (a|x) − rN(a|x) for some F ∈ F with elements as F (a|x),
where r = R({M(a|x)}a,x). By using the same notations as shown in Theorem 5,
and according to Lemma 1, we obtain,

P simple
guess (ρa,x) = max

T ∈T

∑
a,x

〈
T (F )(a|x), ρa,x,

〉
(5.44)

and,

Pguess(M(a|x); ρa,x) = max
T ∈T

∑
a,x

〈
T (M)(a|x), ρa,x

〉
(5.45)

=
∑
a,x

〈
T ∗(M)(a|x), ρa,x

〉
(5.46)

= (1 + r)
∑
a,x

〈
T ∗(F )(a|x), ρa,x

〉
− r

∑
a,x

〈
T ∗(N)(a|x), ρa,x

〉
(5.47)

6 (1 + r) max
T ∈T

∑
a,x

〈
T (F )(a|x), ρa,x

〉
(5.48)

= (1 + r)P simple
guess (ρa,x), (5.49)

where the third equality holds because the optimized T ∗ is linear.
Next we choose an ensemble ρa,x = ωa,x (up to normalization constriant of the

ensemble) satisfying the constraint in where we consider the set of optimal {ωa,x}
appear in the dual problem (5.42), under this ensemble, we obtain,

Pguess(M(a|x); ρa,x)
P

simple
guess (ρa,x)

=
maxT ∈T

∑
a,x

〈
T (M)(a|x), ωa,x

〉
maxT ∈T

∑
a,x

〈
T (F )(a|x), ωa,x

〉 (5.50)

>

∑
a,x

〈
M(a|x), ωa,x

〉
maxT ∈T

∑
a,x

〈
T (F )(a|x), ωa,x

〉 (5.51)

>

∑
a,x

〈
M(a|x), ωa,x

〉
maxT ∈T

∑
a,x

〈
T (F )(a|x), γx

〉 (5.52)

=

∑
a,x

〈
M(a|x), ωa,x

〉
∑
x

〈
1, γx

〉 (5.53)

= 1 + R({M(a|x)}a,x) (5.54)
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where the first inequality holds because of maximization over all possible T , the
second inequality holds because of the constraint γx − ωa,x = αa,x and A ∈ C∗

in (5.42), which brings the fact that
∑
a,x

〈
T (F )(a|x), γx − ωa,x

〉
> 0, and the last

equality holds because we have that
∑
a T (F )(a|x) = 1 and also

∑
x Tr{γx} = 1,

which concludes the proof.



Chapter 6

Convex quantum resource theory

6.1 Framework

This chapter generalizes the discussions of previous chapters and introduces gen-
eral resource theory. In Chapter 3, we studied noisy channel transformation from
the viewpoint of statistical model comparisons. For classical noisy channel com-
parisons, we introduced the transformation among noisy channels through statis-
tical decision games at BSS Theorem (2). Then in Chapter 4, we apply the same
idea to the quantum domain and extend it to quantum measurement comparison.
The comparison of quantum measurement was then characterized through statisti-
cal guessing games at Theorem (4) for a single measurement case and Theorem (5)
for a family of measurement cases. In all these object comparisons, an important
concept is the transformation map that transfers one object into another. Now let
us list all the transformation maps in the following:

1. Post-processing of noisy channel in BSS ordering;

2. Pre- and post-processing of noisy channel in Shannon ordering;

3. Pre- and post-processing in POVM ordering;

4. Pre- and post-processing in PMD ordering;

We notice that in the above transformation, each has its own physical or in-
formational interpretations when applied to some specific cases. Moreover, by in-
troducing a transformation map between both classical and quantum noisy chan-
nels1, we have established a preorder among the noisy channels. However, we
are not interested in the class of lower bound of the ordering in the classical do-
main, but in the quantum domain, the class of lower bound of ordering and its
beyond become important. The reason lies in the core difference between quan-
tum and classical physics. Quantum physics, comprises resources that classical
physics cannot simulate, which gives some advantage for quantum resources in

1We say that quantum measurement is a special case of a quantum noisy channel.

44
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some certain information processing tasks. The disadvantages from classical re-
sources when compared to quantum resources result in the class of object that lies
in the lower bound of the ordering. Understanding the advantage of the quantum
resource is one of the most important tasks in quantum information science.

Another important feature of the transformation of noisy channels in the quan-
tum domain is that it preserves the class of the lower bound of the ordering it
establishes. This is natural because it will not create the quantum resource from
the classically simulatable operations. For example, in the case of POVM order-
ing, pre-and post-processing transformation will not generate a non-trivial POVM
from trivial POVMs, and in the case of PMD ordering, pre-and post-processing
transformation will not generate a non-simple PMD from simple PMDs.

Chapter 5 introduced the concept of robustness of quantum resource, which
is a quantifier of the resource. Quantifying quantum resources become natural
when ordering of quantum resource is critical. The motivations for the quantum
resource lie in the fact that these classically simulatable resources should be quan-
tified as zero, while those that are non-classically simulatable resources should be
quantified positively. The preorder of quantum resource implies that there is not
only one class of quantification of the resource. In what follows, we will introduce,
besides robustness, other quantifiers of quantum resources.

We are now ready to introduce the following postulates for convex quantum
resource theory.

Postulate 1: Quantum resource forms a closed and convex set with a subset of free
resource.

Postulate 2: There exist restricted transformations between resources that preserve
the null resource.

6.2 Underlying motivation of general quantum resource
theory

Quantum and classical information theories can be viewed as theories of inter-
conversion between various resources[23], which can be quantum or classical, static
or dynamic, noisy or noiseless. An example in the classical domain for dynamical
resource is Shannons channel coding theorem [1], where the task is to transform
noisy classical channels into noiseless channels for arbitrary message transmission,
under the restriction that no side communication is allowed between sender and
receiver. Another example in the quantum domain but for static resources is entan-
glement concentration[24], where the task is to concentrate n pairs of particles in
identical partly entangled pure states into a smaller number of maximally entan-
gled pairs of particles, under the restriction that only local operations are allowed.
With interest in physics, the same idea can be applied to the field of thermody-
namics, where there is interest in the possibility of transforming one thermal state
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into another under the constrained process. The restricted process is the one that
preserves the thermal equilibrium states and the states that break the equilibrium
are called static resources [25]. A generalized theory could be derived as resource
theory, which would make it possible to explain fundamentally the nature from
the viewpoint of resource. In addition, we see these core elements in information
processing tasks as resources. In this chapter, resource theory is investigated with
the largest restricted transformations, i.e., those morphisms that preserve the set
of free resource.

The following section formulates the theory in mathematical languages.

6.3 Preliminaries

6.3.1 Mathematical notations and settings

We denote by D(Cm) the set of all m-by-m complex density matrices ρ, i.e., ρ > 0
and Tr{ρ} = 1, which are used here to represent quantum states of m-dimensional
quantum systems. Within D(Cm), we identify a non-empty closed convex sub-
set F as the set of “free states”. The closure and the convexity of F is crucial in
various steps of our proofs, for example, when invoking the closure under con-
vex mixtures, or when applying a variant of the minimax theorem that requires
convex domain. Here and throughout this work, resource morphisms (or more pre-
cisely F-morphisms2) are defined as completely positive, trace-preserving (CPTP)
linear maps E : D(Cm) → D(Cm) such that E(F) ⊆ F . More generally, one
may consider CPTP maps that change the dimension of the system, for example,
E : D(Cm)→ D(Cn). Also in this case, whenever the output free set F ′ is also spec-
ified, it is possible to define a notion of resource morphisms by the condition that
E(F) ⊆ F ′. However in what follows, for the sake of readability, we will restrict
ourselves to the case of equal input and output dimensions andF = F ′, keeping in
mind however that all the results we derive can be straightforwardly extended to
the general case. We will go back to the more general setting, with different input
and output systems, in Section 6.5 when discussing various applications like the
tasks of resource dilution and distillation.

Definition 6.3.1 (Resourcefulness Preorder). Given two density matrices ρ, σ ∈ D(Cm),
we write ρ �ε σ whenever there exists a resource morphism E such that 1

2 ||σ − E(ρ)||1 6 ε,
where ||X||1 := Tr

{√
X†X

}
denotes the trace-norm. In particular, we write ρ � σ when-

ever ρ �ε=0 σ.

In the above definition, the preorder �ε has been introduced with respect to
the distance induced by the trace-norm, although it is possible to use any other

2Here we prefer the term “resource morphisms” to the more common “free operations” because
it reminds the fact that the foundational concept, in the geometric approach in which we are work-
ing, is the free set F , not the set of allowed transformations, which are just defined as all those that
map F into itself.
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well-behaved distance measure between density matrices (like the fidelity, for ex-
ample) without substantially changing the results [26, 27]. In any case, an impor-
tant thing to notice in Definition 6.3.1 is that, even though errors are allowed in
the state transformation, we always require the constraint E(F) ⊆ F to be strictly
satisfied.

The resourcefulness preorder naturally lead us to define a maximally resource-
ful element as follows:

Definition 6.3.2 (Maximally resourceful element). An element α ∈ D(Cm) is said to
be maximally resourceful if α � σ for any σ ∈ D(Cm).

Given a general resource theory, an important question is to whether the the-
ory possesses maximally resourceful elements or not. In the following we will
consider sufficient conditions for their existence. However, we recall that our main
results do not rely in any way on the existence of maximally resourceful elements.

6.3.2 Information-theoretic divergences

In what follows, for any operator ρ ∈ D(Cm) we denote by Πρ the orthogonal
projector onto its support (i.e., the orthogonal complement of its kernel). Moreover,
for any ε ∈ [0, 1], we denote by Bε(ρ) the set of operators {ρ′ ∈ D(Cm) : ||ρ− ρ′||1 6
2ε} and by Pε(ρ) the set of operators {P : 0 6 P 6 1 and Tr{ρP} > 1 − ε}. All
logarithms are taken in base 2.

Definition 6.3.3 (Relative entropies). Given two density matrices ρ, σ ∈ D(Cm), we
define

1. the Umegaki relative entropy [28]:

D(ρ‖σ) :=

Tr{ρ (log ρ− log σ)} , if Πσ > Πρ ,

+∞ , otherwise ;
(6.1)

2. the hypothesis testing relative entropy [29]: for any ε ∈ [0, 1]

Dε
h(ρ‖σ) := − log min

P∈Pε(ρ)
Tr{σ P} , (6.2)

with the convention − log 0 := +∞; for ε = 0, one recovers the min-divergence,
defined as [30]

Dmin(ρ‖σ) := − log Tr{σ Πρ} ; (6.3)

3. the max-divergence [30]:

Dmax(ρ‖σ) :=

log min{λ ∈ R : λσ − ρ > 0} , if Πσ > Πρ ,

+∞ , otherwise ;
(6.4)

in this case we also define a “smoothed” version as follows: for any ε ∈ [0, 1],

Dε
max(ρ‖σ) := inf

ρ′∈Bε(ρ)
Dmax(ρ′‖σ) . (6.5)
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A crucial property satisfied by all these divergences is the monotonicity under
CPTP linear maps, that is, for example, D(E(ρ)‖E(σ) 6 D(ρ‖σ) and analogously
for the others. In a resource theory characterized by the set of free states F , we also
introduce the following:

Definition 6.3.4 (Max-divergence of resourcefulness). Given two density matrices
ρ, σ ∈ D(Cm) and a non-empty closed convex subset F ⊆ D(Cm), the max-divergence
relative to F is defined as

Dmax,F(ρ‖σ) := log inf
{
λ ∈ R : λσ − ρ

λ− 1 ∈ F
}
, (6.6)

with the convention that inf ∅ = +∞. Its “smoothed” version is defined in analogy
with (6.5), that is

Dε
max,F(ρ‖σ) := inf

ρ′∈Bε(ρ)
Dmax,F(ρ′‖σ) . (6.7)

We notice that if F = D(Cm), then Dmax,F(ρ‖σ) = Dmax(ρ‖σ), but in general
Dmax,F(ρ‖σ) > Dmax(ρ‖σ). Moreover, while Dmax,F may fail to be monotonic un-
der general CPTP maps, it is monotonic under the action of resource morphisms,
that is, CPTP maps that map F into itself. This can be easily seen by noticing
that, if for some λ, (λ − 1)−1(λσ − ρ) is in F , then, for any resource morphism E ,
also (λ − 1)−1E(λσ − ρ) = (λ − 1)−1(λE(σ) − E(ρ)) is automatically in F , so that
Dmax,F(E(ρ)‖E(σ)) cannot be larger than Dmax,F(ρ‖σ).

6.3.3 Resource monotones

We say that a function f : D(Cm) → [0,+∞] constitutes a resource monotone if it
achieves its global minimum on all elements of F , and it does not increase under
the action of resource morphisms, i.e., f(ρ) > f(E(ρ)) for any resource morphism E .
More properties can be demanded (and are indeed desirable) in order to fruitfully
work with concrete examples of resource monotones. The information-theoretic
divergences introduced above can be used to introduce resource monotones that
inherit many useful properties from the parent divergence. In our construction,
the following quantities play a central role [31].

Definition 6.3.5 (Entropic Resource Monotones). Given a non-empty closed convex
set F ⊆ D(Cm), for any density matrix ρ ∈ D(Cm) and any ε ∈ [0, 1], we define the
following quantities:

1. D(ρ) := infω∈F D(ρ‖ω);

2. Dε
h(ρ) := − log maxω∈F minP∈Pε(ρ) Tr{P ω}, with the convention − log 0 := +∞;

3. Dε
max(ρ) := infω∈F Dε

max(ρ‖ω);

4. Dε
max,F(ρ) := infω∈F Dε

max,F(ρ‖ω).
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In the case ε = 0, we simply remove the superscript; the only exception is Dε=0
h (ρ), for

which we will use the special notation Dmin(ρ).

The above quantities are all well-behaved resource monotones. This fact is a
direct consequence of the monotonicity of the parent divergences under the action
of resource morphisms.

Definition 6.3.6 (Free fraction and generalized free fraction). Given a non-empty
closed convex free set F ⊆ D(Cm), the free fraction of a density matrix ρ ∈ D(Cm) is
defined by the formula

F(ρ) := max{p ∈ [0, 1] : ∃ ω ∈ F s.t. pρ+ (1− p)ω ∈ F} . (6.8)

When mixing with general ω ∈ D(Cm) instead of ω ∈ F is allowed, one obtains the
generalized free fraction, defined as

Fg(ρ) := max{p ∈ [0, 1] : ∃ ω ∈ D(Cm) s.t. pρ+ (1− p)ω ∈ F} . (6.9)

The free fraction and the generalized free fraction are related to the robustness
R(ρ) [32] and the generalized robustness Rg(ρ) [33], respectively, through the rela-
tions F(ρ)−1 = 1 +R(ρ) and Fg(ρ)−1 = 1 +Rg(ρ), and they are both directly related
with the entropic resource monotones in Definition 6.3.5 as follows:

− logF(ρ) = log(1 + R(ρ)) = Dmax,F(ρ) , (6.10)
− logFg(ρ) = log(1 + Rg(ρ)) = Dmax(ρ) , (6.11)

with the convention − log 0 := +∞. In particular, we have that Dmax(ρ) coincides
with the generalized logarithmic robustness of [30, 34], while Dmax,F(ρ) coincides with
the logarithmic robustness of [35]. For this reason, in what follows, when speaking
of Dmax(ρ) (respectively, Dmax,F(ρ)) we will follow the mainstream convention and
call it “generalized log-robustness” (respectively, “log-robustness”) even though,
depending on the context, it would be more appropriate to use the term we intro-
duced above, that is, “generalized log-free fraction” (respectively, “log-free frac-
tion”).

Remark. All resource monotones introduced above would still be well-defined monotones
even if the class of resource morphisms were enlarged to comprise also positive, but not
completely-positive, linear maps. This seems no coincidence, since at the single-shot level,
where no rule for composing system is given yet, there really is no compelling mathematical
reason to limit the discussion to CPTP linear maps only. This is a common feature of
various problems in quantum statistics, in particular quantum decision theory, where the
theory becomes simpler if one works with quantum statistical morphism (which may violate
complete positivity) and introduce CPTP maps as special cases, rather than starting from
the beginning with fully blown CPTP maps [12]. Here we do not investigate further into
this point, and simply justify the assumption of CPTP-ness on practical grounds.
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Figure 6.1: Convex set of quantum states and its subset of separable states.

Figure 6.2: Geometric intuition for the generalized free fraction introduced in Defi-
nition 6.3.6. Here σ0 denotes the optimized density matrix, which is able to achieve,
by means of convex mixing, the generalized free fraction of σ.

6.3.4 Optimal convex decompositions

Our main results rely on the following construction, whose intuitive picture is
given in Fig. 6.2 below.

Given σ ∈ D(Cm), assuming σ /∈ F , let us fix a convex decomposition achiev-
ing its generalized free fraction and write it as

σ+ = Fg(σ)σ + [1− Fg(σ)]σ0 . (6.12)

In the above equation, due to the optimality of Fg, σ+ ∈ F lies on the border
of F , while σ0 lies on the border of D(Cm), as depicted in Fig. 6.2. The above
decomposition includes the situation in which Fg(σ) = 0, that is, σ+ = σ0. For any
decomposition as in (6.12), another free state σ− can be uniquely defined using the
max-divergence of resourcefulness (Definition 6.3.4) as follows:

σ− : = 2Dmax,F (σ‖σ+)σ+ − σ
2Dmax,F (σ‖σ+) − 1 (6.13)

=
[
Fg(σ) 2Dmax,F (σ‖σ+) − 1

2Dmax,F (σ‖σ+) − 1

]
σ +

[
1− Fg(σ) 2Dmax,F (σ‖σ+) − 1

2Dmax,F (σ‖σ+) − 1

]
σ0 , (6.14)

whenever Dmax,F(σ‖σ+) < +∞, or σ− := σ+ otherwise. In order to derive (6.14)
we just plugged (6.12) into (6.13) and rearranged terms. Notice that since σ /∈ F ,
we have σ 6= σ+ and Dmax,F(σ‖σ+) > 0. It is easy to check that, by construction,
σ−, as σ+, lies on the intersection between the border of F and the segment joining
σ with σ0. Our main results will originate from a careful evaluation of the relative
distances between these four points in state space.

6.4 Resource-theoretic approach to state transitions

In this section, we state and prove the main results of this paper. Firstly we de-
rive, for any finite-dimensional resource theory in which the set of free states is
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non-empty closed and convex, sufficient conditions for the existence of a resource
morphism between any two states, given in terms of resource monotones. Such
conditions are formulated so to allow, in general, non-zero errors in the state tran-
sition, while the operation implementing the transition is an exact resource mor-
phism.

Theorem 8. Let us arbitrarily fix two states, ρ, σ ∈ D(Cm), and two values ε1, ε2 ∈ [0, 1].
Let us moreover choose σ̃ ∈ Bε2(σ) and σ̃+ ∈ F so that Dmax(σ̃‖σ̃+) = Dε2

max(σ).

1. If Dε1
h (ρ) = +∞, then ρ �ε1 σ.

2. If Dε2
max(σ) = 0, then ρ �ε2 σ.

3. If Dε1
h (ρ) < +∞ and Dε2

max(σ) > 0, then

(a) either Dmax,F(σ̃‖σ̃+) < +∞; in such a case, ρ �ε1+ε2 σ if the following two
conditions simultaneously hold:

Dε1
h (ρ) > Dε2

max(σ) (6.15)

and

2−maxω∈F D
ε1
h

(ρ‖ω) >
2Dmax,F (σ̃‖σ̃+)−Dε1

h
(ρ) − 1

2Dmax,F (σ̃‖σ̃+) − 1 ; (6.16)

(b) or Dmax,F(σ̃‖σ̃+) = +∞; in such a case, ρ �ε1+ε2 σ if condition (6.15) above
holds together with

max
ω∈F

Dε1
h (ρ‖ω) = min

ω∈F
Dε1
h (ρ‖ω) . (6.17)

Remark. As discussed in Section 6.3.4, the assumption Dε2
max(σ) > 0 in case (iii.a) guar-

antees that also Dmax,F(σ̃‖σ̃+) > 0, so that the denominator appearing in the right-hand
side of (6.16) is strictly greater than zero. Also, since Dε1

h (ρ) > − log(1 − ε1) indepen-
dently of ρ, the parameter ε1 can be modulated so to compensate, to some extent, eventual
lack of resource in the initial state.

Condition (6.17) is stronger than condition (6.16), in the sense that if the former
is satisfied, the latter is also satisfied. This is because, by multiplying both sides by
2Dmax,F (σ̃‖σ̃+) − 1 > 0 (see preceding remark), condition (6.16) becomes

2Dmax,F (σ̃‖σ̃+)−maxω∈F D
ε1
h

(ρ‖ω) − 2−maxω∈F D
ε1
h

(ρ‖ω) > 2Dmax,F (σ̃‖σ̃+)−minω∈F D
ε1
h

(ρ‖ω) − 1 ,

and this, if maxω∈F Dε1
h (ρ‖ω) = minω∈F Dε1

h (ρ‖ω), becomes equivalent to

2−maxω∈F D
ε1
h

(ρ‖ω) 6 1 ,
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which is always trivially satisfied, due to the non-negativity of the hypothesis test-
ing relative entropy. In other words, we have shown the following:

Corollary 3. Given a state ρ ∈ D(Cm), suppose that maxω∈F Dε1
h (ρ‖ω) = minω∈F Dε1

h (ρ‖ω).
Then, for any σ,

Dε1
h (ρ) > Dε2

max(σ) =⇒ ρ �(ε1+ε2) σ .

Corollary 3, for rank-one ρ and ε1 = 0, recovers Theorem 2 in Ref. [31].

Proof of Theorem 8. Case (i) is easily proved as follows. The condition Dε1
h (ρ) = +∞

guarantees the existence of an operator P ∈ Pε1(ρ) such that Tr{P ω} = 0 for all
ω ∈ F . Hence, by constructing a CPTP map as follows:

E(·) := Tr{P ·}σ + Tr{(1− P ) ·}ϕ ,

where ϕ is an arbitrarily fixed element of F , we see that E maps all free states to ϕ,
so that E(F) ⊆ F , while ||E(ρ)− σ||1 6 2(1− Tr{Pρ}) 6 2ε1.

Case (ii) follows trivially from the fact that condition Dε2
max(σ) = 0 guarantees

the existence of at least one free state which is ε2-close to σ. Hence, the sought
resource morphism is trivially given by the CPTP map that prepares any one such
states.

Now we move on to case (iii). We begin by looking at condition (6.15), which
is the same in both (iii.a) and (iii.b), and rewrite it as follows

− log Tr{P ∗ ω∗} > Dmax(σ̃‖σ̃+) , (6.18)

where

• the operators P ∗ ∈ Pε1(ρ) and ω∗ ∈ F are chosen to satisfy:

Tr{P ∗ ω∗} = 2−D
ε1
h

(ρ) (6.19)
:= max

ω∈F
min

P∈Pε1 (ρ)
Tr{P ω} (6.20)

= min
P∈Pε1 (ρ)

max
ω∈F

Tr{P ω} ; (6.21)

the equality in the third line follows from the minimax theorem, for example,
in Kakutani’s formulation [36, 37], whose hypotheses are satisfied since both
optimizations range over convex sets and the functional to be optimized is
linear, and hence both convex and concave, in its arguments;

• the operators σ̃ ∈ D(Cm) and σ̃+ ∈ F are chosen so to satisfy:

Dmax(σ̃‖σ̃+) = Dε2
max(σ) (6.22)

:= min
ω∈F

min
σ′∈Bε(σ)

Dmax(σ′‖ω) (6.23)

= min
σ′∈Bε(σ)

min
ω∈F

Dmax(σ′‖ω) (6.24)

= Dmax(σ̃) , (6.25)

that is, σ̃+ achieves the generalized free fraction for σ̃ as in Eq. (6.12), namely:

σ̃+ = Fg(σ̃)σ̃ + (1− Fg(σ̃))σ̃0 . (6.26)
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In Ref. [38], condition (6.15) alone is shown to be sufficient for the existence
of a test-and-prepare CPTP linear map E such that ||E(ρ)− σ||1 6 2(ε1 + ε2) and
E(ω∗) = σ̃+. Such a map is explicitly given as follows:

E(·) = Tr{P ∗ ·} σ̃ + Tr{(1− P ∗) ·}Mσ̃+ − σ̃
M − 1 , (6.27)

where, for convenience of notation, we have put M := 1/Tr{P ∗ ω∗} = 2D
ε1
h

(ρ).
Without loss of generality, we can assume that 1 < M < +∞ for the following rea-
sons. First of all, notice that the assumption Dε1

h (ρ) < +∞ impliesM < +∞. More-
over, we can also assume that Tr{P ∗ ω∗} < 1, that is M > 1, otherwise Dε1

h (ρ) = 0
and, by (6.15), Dε2

max(σ) = 0, thus making the situation trivial.
As shown in [38], the above map is CPTP; in order to show that it is a resource

morphism, we only need to show that E(F) ⊆ F . To this end, let us assume that
the input to E is an arbitrary ϕ ∈ F . We need to show that E(ϕ) ∈ F . By arranging
terms, we obtain,

E(ϕ) =
(

1− 1− Tr{P ∗ ϕ}
1− Tr{P ∗ ω∗}

)
σ̃ +

(
1− Tr{P ∗ ϕ}
1− Tr{P ∗ ω∗}

)
σ̃+ . (6.28)

Again for convenience of notation, let us put t := 1−Tr{P ∗ ϕ}
1−Tr{P ∗ ω∗} and R := Fg(σ̃). We

now recall the optimal decomposition (6.26): by inserting it into (6.28) and rear-
ranging terms once more, we arrive at

E(ϕ) = (1− t+ tR)σ̃ + (t− tR)σ̃0 . (6.29)

The above relation tells us that E(ϕ) lies somewhere on the affine line passing
through both σ̃ and σ̃0. Therefore, in order to have E(ϕ) ∈ F , the coefficient
(1 − t + tR) weighing σ̃ must be carefully bounded both from above and from
below, so that E(ϕ) is neither too close to σ̃ nor too close to σ̃0, in which case it
could end up lying outside F (see Fig. 6.2 for a schematic picture).

The upper bound is computed as follows. Since the free fraction is exactly
defined as the maximum weight of σ̃ so that a convex mixture with σ̃0 lies in F , we
want to show that the weight of σ̃ in (6.29) does not exceed R, that is,

1− t+ tR 6 R ,

or, equivalently,
1− t 6 (1− t)R . (6.30)

Since, starting from Eq. (6.21),

Tr{P ∗ ω∗} = min
P∈Pε1 (ρ)

max
ω∈F

Tr{P ω}

= max
ω∈F

Tr{P ∗ ω}

> Tr{P ∗ ϕ} > 0 ,
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we see that t > 1, that is, 1 − t 6 0, and inequality (6.30) automatically holds for
any R ∈ [0, 1], without the need to invoke any extra condition.

Hence, condition (6.16) or condition (6.17) are only required to obtain the cor-
rect lower bound, that is, to prevent that E(ϕ) crosses the border of F when ap-
proaching σ̃0. In order to derive the lower bound, we resort to the construction
introduced in Eq. (6.13) and depicted in Fig. 6.2. Once a decomposition achieving
the generalized free fraction of σ̃ is found, σ̃− is the state on the boundary of F ,
which is “antipodal” with respect to σ̃+. If we get past it, we end up outside F : we
need to make sure this does not happen.

We begin by assuming that Dmax,F(σ̃‖σ̃+) < +∞, that is, σ̃+ 6= σ̃−. (We recall
that Dmax,F(σ̃‖σ̃+) > 0 is a consequence of the assumption Dε2

max(σ) > 0.) In this
case, we need to impose that

1− t+ tR >
R 2Dmax,F (σ̃‖σ̃+) − 1
2Dmax,F (σ̃‖σ̃+) − 1 . (6.31)

Before proceeding, we notice that the above inequality, if satisfied, implies in par-
ticular 1− t+ tR > 0, because R 2Dmax,F (σ̃‖σ̃+) = 2Dmax,F (σ̃‖σ̃+)−Dmax(σ̃‖σ̃+) > 1.

Condition (6.31), after writing t explicitly again, reads as follows:

1− 1− Tr{P ∗ ϕ}
1− Tr{P ∗ ω∗} +R

(
1− Tr{P ∗ ϕ}
1− Tr{P ∗ ω∗}

)
>
R 2Dmax,F (σ̃‖σ̃+) − 1
2Dmax,F (σ̃‖σ̃+) − 1 .

Since we are assuming that Tr{P ∗ ω∗} < 1, multiplying both sides by 1−Tr{P ∗ ω∗}
does not change the inequality, so we obtain the equivalent condition:

(1−R) Tr{P ∗ ϕ} > R 2Dmax,F (σ̃‖σ̃+) − 1
2Dmax,F (σ̃‖σ̃+) − 1 (1− Tr{P ∗ ω∗}) + Tr{P ∗ ω∗} −R .

After rearranging the right-hand side, we arrive at

(1−R) Tr{P ∗ ϕ} > (1−R)Tr{P ∗ ω∗} 2Dmax,F (σ̃‖σ̃+) − 1
2Dmax,F (σ̃‖σ̃+) − 1 .

Since R < 1 (because we assumed that σ̃ /∈ F , that is, Dmax(σ̃) > 0), we can divide
both sides by (1−R) and obtain

Tr{P ∗ ϕ} >
1
M

2Dmax,F (σ̃‖σ̃+) − 1
2Dmax,F (σ̃‖σ̃+) − 1 . (6.32)

The above condition must be satisfied for any ϕ ∈ F . Hence, what we really
want is a lower bound on minϕ∈F Tr{P ∗ ϕ}. Noticing that

min
ϕ∈F

Tr{P ∗ ϕ} > min
P∈Pε1 (ρ)

min
ϕ∈F

Tr{P ϕ} (6.33)

= min
ω∈F

min
P∈Pε1 (ρ)

Tr{P ω} (6.34)

= 2−maxω∈F D
ε1
h

(ρ‖ω) , (6.35)
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condition (6.32) holds whenever the following, stricter condition holds, that is,

2−maxω∈F D
ε1
h

(ρ‖ω) >
1
M

2Dmax,F (σ̃‖σ̃+) − 1
2Dmax,F (σ̃‖σ̃+) − 1

= 2Dmax,F (σ̃‖σ̃+)−minω∈F D
ε1
h

(ρ‖ω) − 1
2Dmax,F (σ̃‖σ̃+) − 1 .

Hence, condition (6.16) guarantees that E(ϕ) ∈ F for any ϕ ∈ F , that is, that the
operation E defined in (6.27) is a valid resource morphism.

Let us finally consider the case in whichDmax,F(σ̃‖σ̃+) = +∞, that is, σ̃+ = σ̃−.
In this case, lower and upper bounds have to coincide, so that the map defined
in (6.27) is a resource morphism if and only if 1− t+ tR = R. This can only happen
if R = 1 (but this is excluded because σ̃ /∈ F) or if 1 − t = 0, that is, if t = 1
independently of the input ϕ ∈ F . This is guaranteed if the operator P ∗ in (6.27)
has the same trace on all free states, which is exactly the content of (6.17).

A less general, but simpler, statement stemming from Theorem 8 is the follow-
ing:

Corollary 4. With the same notations of Theorem 8, then the following statement holds,

Dε1
h (ρ) > Dmax,F(σ̃‖σ̃+) =⇒ ρ �ε1+ε2 σ . (6.36)

Proof. Assuming (6.36), if Dmax,F(σ̃‖σ̃+) = +∞, then also Dε1
h (ρ) = +∞. In such a

case, we know from Theorem 8, case (i), that ρ �ε1 σ, which of course implies also
ρ �(ε1+ε2) σ.

On the other hand, if Dmax,F(σ̃‖σ̃+) = 0, we know that σ̃ ∈ F , so that, in fact,
Dε2

max(σ) = 0. In other words, we are in case (ii) of Theorem 8, and again ρ �(ε1+ε2) σ
holds.

We are hence left to consider the case

+∞ > Dε1
h (ρ) > Dmax,F(σ̃‖σ̃+) > 0. (6.37)

We show that condition (6.37) alone implies both conditions (6.15) and (6.16) of
case (iii.a) in Theorem 8.

Since by definition Dmax,F(σ̃‖σ̃+) > Dmax(σ̃‖σ̃+) = Dε2
max(σ), we immediately

see that condition (6.37) implies condition (6.15). Hence, we only need to show that
also condition (6.16) is implied. In fact, we can show that (6.37) implies a condition
that is even stronger than (6.16). Such a condition is the following:

0 >
2Dmax,F (σ̃‖σ̃+)−Dε1

h
(ρ) − 1

2Dmax,F (σ̃‖σ̃+) − 1 .

If the above is satisfied, also (6.16) is satisfied, and we can conclude that ρ �(ε1+ε2)
σ. The above inequality is satisfied because, as a consequence of Dmax,F(σ̃‖σ̃+) >



56

0, the denominator in the right-hand side is strictly positive, so that the above
inequality is equivalent to

1 > 2Dmax,F (σ̃‖σ̃+)−Dε1
h

(ρ) ,

which is satisfied if and only if condition (6.37) is satisfied.

A merit of Corollary 4 is to provide a simple compact sufficient condition,
free of supplementary caveat like condition (6.16), which is difficult to interpret
operationally. However, the right-hand side of (6.36) is not yet a valid resource
monotone. The following result fills the gap.

Theorem 9. Given ρ, σ ∈ D(Cm) and ε1, ε2 ∈ [0, 1], the following relation holds,

if Dε1
h (ρ) > Dε2

max,F(σ) holds, then ρ �(ε1+ε2) σ . (6.38)

Theorem 9, when ε2 = 0 and σ is rank-one, recovers Theorem 5 in Ref. [31]
(see also Corollary 17 of [39]). Theorem 8 and Theorem 9 are independent of each
other. This is because, on the one hand, it is possible that Dε1

h (ρ) > Dε2
max(σ) even

though Dε1
h (ρ) > Dε2

max,F(σ), so that Theorem 9 would be inconclusive. On the other
hand, it is possible that Dε1

h (ρ) > Dε2
max,F(σ) even though neither condition (6.16)

nor (6.17) hold, so that Theorem 8 would be inconclusive. In other words, Theo-
rem 8 and Theorem 9 in general apply to two different regimes and are logically
independent of each other. Nonetheless, since σ̃ ∈ Bε2(σ) and σ̃+ ∈ F , we see
that Dmax,F(σ̃‖σ̃+) > Dε2

max,F(σ). This implies that Corollary 4 above can be as well
derived as a consequence of Theorem 9.

Proof. We begin by noticing that, if Dε1
h (ρ) = +∞, we are back to case (i) of The-

orem 8. Also, if Dε2
max,F(σ) = 0, then also Dε2

max(σ) = 0, and we are back to
case (ii) of Theorem 8. In what follows we will hence assume that +∞ > Dε1

h (ρ) >
Dε2

max,F(σ) > 0.
Let us define P ∗, ω∗, σ̃, σ̃+ as the optimizers achieving the quantities that ap-

pear in condition (6.38), that is,

Dε1
h (ρ) := min

ω∈F
Dε1
h (ρ‖ω) = Dε1

h (ρ‖ω∗) = − log Tr{P ∗ ω∗} (6.39)

Dε2
max,F(σ) := min

ω∈F
Dε2

max,F(σ‖ω) = Dmax,F(σ̃‖σ̃+) . (6.40)

Notice that while σ̃, σ̃+ were used in Theorem 8 to denote the optimizers achiev-
ing Dε2

max(σ), for the sake of this proof the same symbols are used to denote the
optimizers achieving Dε2

max,F(σ).
Writing M := 1/Tr{P ∗ ω∗}, that is,

1
M

= Tr{P ∗ ω∗} = max
ω∈F

min
P∈Pε1 (ρ)

Tr{P ω} ,
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we define the map

E(·) = Tr{P ∗ ·} σ̃ + (1− Tr{P ∗ ·})Mσ̃+ − σ̃
M − 1 . (6.41)

Notice that, with respect to the map constructed in (6.27), the above map uses the
same operator P ∗, but prepares different states depending on the outcome. As
before, moreover, it is possible to assume without loss of generality that 1 < M <
+∞.

Since Dmax,F(σ̃‖σ̃+) > Dmax(σ̃‖σ̃+), condition (6.38) implies that,

Dε1
h (ρ‖ω∗) > Dmax(σ̃‖σ̃+) , (6.42)

A direct consequence of [38] is that condition (6.42), together with the fact that
σ̃ ∈ Bε2(σ), imply that the map E defined in (6.41) is a valid CPTP map such that
1
2 ||E(ρ)− σ||1 6 ε1 + ε2. In what follows we show that E is, in particular, a resource
morphism.

Because σ̃ and σ̃+ have been chosen as the states that optimize Dε2
max,F(σ), we

have Dmax,F(σ̃‖σ̃+) = Dmax,F(σ̃) = − logF(σ̃). Therefore, we obtain the following
decomposition of σ+,

σ̃+ = F(σ̃)σ̃ + (1− F(σ̃))σ̃0 , (6.43)

with σ̃0 ∈ F . By plugging (6.43) in (6.41), and considering as input to the map an
arbitrary free state ϕ ∈ F , we reach the following

E(ϕ) = (1− t+ tR)σ̃ + (t− tR)σ̃0 , (6.44)

where, for the sake of notation, we put t := 1−Tr{P ∗ ϕ}
1−Tr{P ∗ ω∗} and R := F(σ). Notice

that while the proof of Theorem 8 is obtained by working with the generalized free
fraction, in this proof we are mostly working with the free fraction.

We need to show that E(ϕ) ∈ F , for all ϕ ∈ F . To that end, we only need to
show that the weight in front of σ̃ in (6.44) is non-negative and upper bounded by
R.

In order to show that it does not exceed R, we proceed as follows. In the
proof of Theorem 8, we have shown that t > 1, so that 1 − t + tR 6 R, that is,
R(t− 1) 6 t− 1, holds automatically for any R ∈ [0, 1].

In order to show the weight of σ̃ is non-negative, it suffices to show that

R > 1− 1
t
.

Since t 6 1
1−Tr{P ∗ ω∗} = M

M−1 , we have that 1 − t−1 6 1 − M−1
M

, so that the above is
satisfied whenever

R >
1
M

= Tr{P ∗ ω∗} ,

that is to say
F(σ̃) = 2−D

ε2
max,F (σ) > Tr{P ∗ ω∗} = 2−D

ε1
h

(ρ) .
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6.5 Applications and examples

In this section we apply Theorems 8 and 9 to some situations of physical interest,
and show how we can not only rederive, but sometimes also strengthen, previous
results.

6.5.1 Singleton Resource Theories

We begin this section by considering the special case of singleton resource theories,
in which the set of free statesF comprises only one element. This scenario includes
the resource theory of athermality, namely, the case in which free operations are
those that preserve the thermal state of the system [25, 40, 41, 42], which in turns
provide the backbone of the resource theory of quantum thermodynamics [43].
More generally, when the output singleton is allowed to differ from the input one,
this is referred to as the resource theory of asymmetric distinguishability, whose
optimal rates have been studied in [38, 44, 45].

In the singleton case, the log-robustness typically is infinite, and the applica-
bility of Theorem 9 is quite limited. On the contrary, Theorem 8 can still be useful,
even in the case of a singleton F . Indeed, Theorem 8 reduces in the singleton case
to Lemma 3.3 of [38], which is good enough to serve as the starting point to study
optimal asymptotic interconversion rates.

Proposition 5. Consider an input system, with initial state ρ ∈ D(Cm) and free singleton
F = {γ}, and an output system, with target state σ ∈ D(Cn) and free singleton F ′ =
{γ′}. we have,

Dε1
h (ρ‖γ) > Dε2

max(σ‖γ′) =⇒ ρ �(ε1+ε2) σ . (6.45)

Proof. We can restrict ourselves to consider only case (iii.b) of Theorem 8, because
for a singleton F ′ = {γ′}, whenever σ 6= γ′, one has Dmax,F ′(σ‖γ′) = +∞. But since
also the input free set F is a singleton, we have

min
ω∈F

Dε1
h (ρ‖ω) = max

ω∈F
Dε1
h (ρ‖ω) ,

and condition (6.17) is automatically satisfied.

6.5.2 Resource Theory of Bipartite Entanglement

Next, we specialize our results to the resource theory of entanglement. We begin
by considering bipartite entanglement, namely, the case in which F is the set of
all separable states of a given bipartite system. Resource morphisms are given by
separability-preserving (or non-entangling) CPTP maps, usually denoted as SEPP.
One-shot entanglement distillation and dilution under SEPP have been studied
in [35]. In what follows we show how our Corollary 4 is able to guarantee the exis-
tence of a SEPP transition directly mapping ρ to σ, even in situations in which the
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results of Ref. [35] cannot guarantee the existence of a “distill-and-dilute” transi-
tion.

In order to illustrate the point, it is enough to consider the exact case, that is,
ε1 = ε2 = 0. The same conclusions hold also in the approximate case, however,
some care must be taken in that while here we use the trace-distance to measure
approximations, Ref. [35] uses the fidelity. Trace-distance and fidelity are well-
known to be equivalent [26, 27] , but approximation parameters must be changed:
we leave it to the interested reader to work out the exact factors.

By rewriting the main results of [35] using our notation, the zero-error one-
shot SEPP-distillable entanglement E(1)

D,SEPP(ρ) and the zero-error one-shot SEPP-
entanglement cost E(1)

C,SEPP(σ) satisfy

E
(1)
D,SEPP(ρ) > bDmin(ρ)c (6.46)

and

E
(1)
C,SEPP(σ) 6 Dmax,F(σ) + 1 , (6.47)

respectively. These two relations together guarantee that it is possible to exactly go
from ρ to σ via SEPP (passing through the maximally entangled state) if

bDmin(ρ)c > Dmax,F(σ) + 1 ,

which is more restrictive than what Theorem 9 says, that is,

Dmin(ρ) > Dmax,F(σ) .

This is possible because we do not require the transformation to pass through the
maximally entangled state, but we allow it to go directly from ρ to σ.

Remark. When working within the resource theory of entanglement, especially in the
one-shot regime, it is customary to allow the output system to differ from the input one.
Consequently, also the set of free states changes from F to F ′. As already noticed, our
bounds can be straightforwardly extended to cover this situation as well: in such a case,
all quantities related to the input state ρ will be computed with respect to the input free set
F , while all quantities related to the output state σ will be computed with respect to the
output free set F ′.

6.5.3 Existence of a Maximally Resourceful State and Weak-Converse
Bounds for Distillation and Dilution

In this section we show how Corollary 3 and Theorem 9 can be used to formulate
sufficient conditions that guarantee that an element α is maximally resourceful,
in the sense of Definition 6.3.2. We also address the related problem of deciding
when Corollary 3 and Theorem 9 are optimal, i.e., when the sufficient conditions
they formulate become also necessary. For the sake of the presentation, we focus
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here on the case of exact transitions, that is, ε1 = ε2 = 0, keeping in mind, however,
that the main results allow us to go beyond the exact case and to speak of, e.g.,
almost-maximally resourceful elements.

We begin with the following fact (see also Corollary 4 in [31]):

Proposition 6. The following statements hold.

1. Let α ∈ D(Cd) be such that Dmin(α) = maxρ∈D(Cd) Dmax(ρ), and Tr{ω Πα} =
constant, for any ω ∈ F . Then α is maximally resourceful in D(Cd).

2. Let α ∈ D(Cd) be such that Dmin(α) = maxρ∈D(Cd) Dmax,F(ρ). Then α is maximally
resourceful in D(Cd).

Proof. Case (1): being Tr{ω Πα} constant for any ω ∈ F , the assumptions in Corol-
lary 3 are satisfied with ε1 = ε2 = 0. The proof then follows trivially, from the
assumption that Dmin(α) = maxρ∈D(Cd) Dmax(ρ) > Dmax(σ) for any σ ∈ D(Cd).

Case (2): in this case we apply Theorem 9, and again the proof follows trivially,
from the assumption that Dmin(α) = maxρ∈D(Cd) Dmax,F(ρ) > Dmax,F(σ).

Remark. Since, for any ρ, σ, Dmin(ρ‖σ) 6 Dmax(ρ‖σ) 6 Dmax,F(ρ‖σ), condition (1) of
Case (1) in Proposition 6 above implies that Dmin(α) = Dmax(α) = maxρ∈D(Cd) Dmin(ρ) =
maxρ∈D(Cd) Dmax(ρ); analogously, condition (2) of Case (2) implies Dmin(α) = Dmax,F(α) =
maxρ∈D(Cd) Dmin(ρ) = maxρ∈D(Cd) Dmax,F(ρ).

The two sufficient conditions considered in Proposition 6 are independent.
For example, both in the resource theory of bipartite entanglement and in the re-
source theory of coherence a golden state exists, namely, the maximally entangled
state and the maximally coherent state, respectively. It is also known that these
are both in fact maximally resourceful in their respective theories. However, while
the maximally coherent state satisfies condition (1) but not condition (2), the max-
imally entangled state satisfies condition (2) but not (1): see [39] for the explicit
calculation.

Another example is provided by the resource theory of genuine multipartite
entanglement, in which the free set is taken to be the set of all biseparable states
and resource morphisms correspondingly are defined as biseparability-preserving
maps. In this case, it is possible to show by explicit calculation [39, 46] that the
generalized GHZ state, that is,

|Ψ(N,d)
GHZ 〉 := 1√

d

d∑
i=1
|i〉⊗N ,

satisfies condition (2) of Proposition 6. We conclude, therefore, that |Ψ(N,d)
GHZ 〉 is max-

imally resourceful.
The following propositions provide sufficient conditions so that the bounds in

Corollary 3 and Theorem 9 are optimal. In the following proposition, we make it
explicit that the input system (with state space D(Cm) and free set F) in general
may differ from the output system (with state space D(Cn) and free set F ′). A
related result is Theorem 2 of Ref. [31].
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Proposition 7 (Weak-converse bounds for dilution). When dealing with transitions
from an input system (Cm,F) to an output system (Cn,F ′), the following statements
hold.

1. Suppose that α ∈ D(Cm) satisfies Dmin(α) = Dmax(α); then, for any σ ∈ D(Cn)

α � σ =⇒ Dmin(α) > Dmax(σ) . (6.48)

2. Suppose that α ∈ D(Cm) satisfies Dmin(α) = Dmax,F(α); then, for any σ ∈ D(Cn)

α � σ =⇒ Dmin(α) > Dmax,F ′(σ) . (6.49)

Proof. Case (1): suppose that α � σ, so that there exists a resource morphism E :
D(Cm)→ D(Cn) such that E(α) = σ; then,

Dmin(α) = Dmax(α)
> Dmax(E(α))
= Dmax(σ) ,

where the inequality in the second line comes from the fact that Dmax is a resource
monotone.

Case (2): suppose that α � σ, then

Dmin(α) = Dmax,F(α)
> Dmax,F ′(E(α))
= Dmax,F ′(σ) ,

where the inequality in the second line comes from the fact that Dmax,F is a resource
monotone.

An analogous weak converse for distillation is the following (see also Theo-
rem 5 of [31] for a related result).

Proposition 8 (Weak-converse bound for distillation). Consider an input system (Cm,F)
and an output system (Cn,F ′), and let α ∈ D(Cn) be a target state such that Dmax,F ′(α) =
Dmin(α). Then, for any ρ ∈ D(Cm),

ρ � α =⇒ Dmin(ρ) > Dmax,F ′(α) . (6.50)

Proof. If ρ � α then Dmin(ρ) > Dmin(E(ρ)) = Dmin(α) = Dmax,F ′(α).

Remark. By looking at the proofs of Theorem 8 and Theorem 9, we see that the resource
morphisms used there have been constructed as test-and-prepare quantum channels. As a
consequence, Propositions 7 and 8 above can be interpreted as giving sufficient conditions
for which test-and-prepare channels are provably optimal in resource manipulation, despite
constituting a very special class among all CPTP maps.
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A natural question to ask, at this point, is whether density matrices always ex-
ist, for which Propositions 7 and 8 hold, namely, for which test-and-prepare chan-
nels provide the optimal resource morphisms. As it turns out, perhaps surpris-
ingly, in any resource theory with non-empty closed and convex F , even if a max-
imally resourceful element may not exist, a golden state, namely, a rank-one den-
sity matrix Ψ+ ∈ D(Cd) such that maxρ∈D(Cd) Dmin(ρ) = Dmin(Ψ+) = Dmax(Ψ+) =
maxρ∈D(Cd) Dmax(ρ), can always be found [31, 39]. However, before concluding that
test-and-prepare morphisms are optimal for golden states, one still needs to ver-
ify that, either Ψ+ satisfies Tr{ω Ψ+} = constant for all free ω, or Dmax(Ψ+) =
Dmax,F(Ψ+) also holds, and both such extra conditions depend on the actual re-
source theory at hand. The resource theories of coherence and bipartite entangle-
ment again provide two paradigmatic examples in this sense.

6.6 Summary

In this chapter, we formulated a general resource theory with F-morphisms as the
restricted transformation and complex matrices as the resource element. The re-
source element is taken from a closed and convex set with a subset as the null
resource set. The core idea from a resource-theoretic viewpoint is that it is pos-
sible to quantify resources without referring to the maximal one. Moreover, it is
enough to compare the entropic quantity of resources to ensure the existence of
F-morphisms between them. With our resource-theoretic frame, it is also possible
to derive a sufficient and necessary condition of the transformation between an
arbitrary resource and the maximal resource or a typical reference resource, called
the golden states in terms of quantum states.



Chapter 7

RWDC in the quantum world

Real-world data circulation (RWDC) is the core idea behind the graduate program
for Real World Data Circulation Leaders, one of the leading graduate school pro-
grams1 designed for some of the top Japanese universities. In this chapter, I will
demonstrate the concept of RWDC in the quantum world.

7.1 Introduction to RWDC

There are three ingredients of RWDC: Data acquisition, data analysis, and real-
world implementation. The concept can be illustrated as in Figure 7.1.

Figure 7.1: RWDC concept

The most important feature of these ingredients is the circulation among them.
One of the reasons that behind this circulation is the ability from recent technolo-
gies to acquire and store large amount of data. We are living in a world where
the amounts of data is growing exponentially rapidly. Many types of technolog-
ical products, such as smartphones, IoT devices, personal computers, etc., make
it easier than before to generate a large amount of data. All these data are poten-
tial information to help to speed up the development of those artificial intelligence

1 Refer to Japan Society for the Promotion of Science: https://www.jsps.go.jp/j-hakasekatei/
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technologies, which in return generates more data. Moreover, the growing tech-
nology for analyzing various data set also help us find additional value from the
newly generated data. This process can become an iteration process if the data
analysis remains yielding positive feedbacks. This virtuous circle is crucial to ar-
tificial intelligence, product development and other industries. In addition to the
applications of the RWDC concept in the field of artificial intelligence, an example
of a novel application explains well this concept is in [47], in which the authors
apply data analysis techniques to manufacturing metal cutting process. This new
method will in turn help to better develop the cutting process.

This concept of RWDC seems to have no relations with the micro-world, i.e.,
quantum world, being only suitable to address real-world data in some sense.
However, all data that we can collect are fundamentally from the quantum world.
The following section explains data circulation in the view of the quantum world.

7.2 Quantum measurement as a data acquisition pro-
cess

In our daily life in which we can feel and see our surroundings, we use measure-
ment extensively. For example, we measure the length of a table through a ruler,
the weight of a human body through a weighing-machine, the life span of human
beings through time. These measured quantities are what we call the data. In the
field of artificial intelligence, the “big data” comes from any device that can pro-
duce data in the measuring process. It includes images, audio signals, videos, GPS
data, and Lidar data, among others.

Figure 7.2: Measuring process

Figure 7.2 gives an example to illustrate the process of obtaining data from a
measuring process. Image data comes from a camera that requires a sensor to sense
the light, while audio signal data comes from a sensor device that can sense the
sound. The same process applies to all possible types of data. The only difference
is how we process the source that can generate data and what process to use to
obtain the data.

In general, we understand that these measurable quantities are fixed values
even before the measurement, and we need a device to conduct the measurement
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to obtain that quantity. In the quantum world, which is sometimes counterintu-
itive compared to the macro-world when it comes to measurement, we measure
the quantities of atomic-scale particles. For example, we measure the polariza-
tion of photons, we measure the momentum of electrons, etc. Research has shown
that instead of the deterministic outcomes from measurement in the macro-world,
the outcome of measurement in the quantum world is stochastic. Although the
interpretation of the whole process of measurement is still under debate, for the
moment researchers have come to the common understanding that quantum mea-
surement is indeterministic. Being indeterministic means that the measurement
does not output a fixed value; instead, it outputs a probabilistic distribution of
outcomes. Counter-intuitively, the measurement outcome might not exist even be-
fore the measurement; it only exists when there is a measure device to probe the
quantum system. The quantum process is illustrated in Figure 7.3.

Figure 7.3: Measuring process

In above Figure 7.3, the quantum state represents the quantum system being
measured. The data is the outcomes of quantum measurement. Normally, we read
out the outcomes of quantum measurements as classical bits that can in return
represent any real world data. Since any data that is used for artificial intelligence
is just classical bits fundamentally, in this sense, we see the quantum measure-
ment process the same as the process of obtaining data. A good example of using
quantum measurement is in the construction of quantum computer’s hardware, in
which the measurement is the process to read out the bits for programming.

Hence, in the most general viewpoint that combines both classical mechanics
and quantum mechanics, we can generalize the measurement process as the pro-
cess to acquire the data. Hence, we have made it clear that quantum measurement
is a particular process to acquire data.

7.3 Statistical analysis as data analysis

Due to the large number of various kinds of data available and the super comput-
ing power nowadays to deal with them, we have benefited largely from revealing
the hidden value in those big amounts of data through data analysis techniques,
such as machine learning. In the previous section, we have discussed how to col-
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lect data from the “data acquisition” process from the viewpoint of quantum mea-
surement. In this section, we discuss the process of data analysis and its impor-
tance in the quantum world.

Data analysis is closely related to data collection and further collection and
analysis will be motivated to form iterations if feedbacks from previous data anal-
ysis can always show some greatness. An early example that explains the greatness
of data analysis can date back to World War II, during which statistician Abraham
Wald introduced the idea of survivorship bias from the statistical analysis of the
data that the damaged areas in those survived aircraft that were not shot down
during the war. His analysis showed the exact opposite opinion from the aircraft
engineers who claimed that those places in the aircraft where the fuselage and
wings got more shots needed to be heavily armored for protection. Wald oppo-
sitely concluded that the areas with fewer recorded shots needed the most armor
due to the idea of survivorship bias. His conclusion helped the army to build
stronger aircraft. The most important data is those that answered the question
“where do planes that don’t come back get shot?”. The planes that returned safely
had more shots on the areas that can handle more shots. His well-known quote
“The most important data is the data you don’t have.” has been popular.

As the above example showed the statistical analysis of data plays a very im-
portant role in unrevealing value from available data. In what follows we show
that the statistical analysis of the outcome of quantum measurement also makes a
difference in determining if a quantum resource is truly useful or not. Let us recall
the resource theory of quantum measurement. The core idea in quantum resource
theory of measurement is to answer the following question: if we treat quantum
measurement as resources (as discussed in Chapter 4) that are necessarily useful
for building quantum technologies, how do we know whether a given resource
is genuinely useful or not? This is the main barrier in what is a so-called device-
independent test of quantum resources. We do not want to get a resource that we
are not sure if it is truly useful or not. The game-theoretic approach has played an
important role in determining it. From the viewpoint of RWDC, the application
of our resource theory (Theorem 4) of measurement plays the role in data analy-
sis, since the game-theoretic approach is a statistical analysis of the results from
quantum measurement. We will re-demonstrate the game-theoretic approach in
Chapter 4 to recall its connection to data analysis.

Suppose we are given an index set m ∈M, the quantum data, and we encode
them into quantum states. We then input these quantum states into the measure-
ment, and we are allowed to choose whatever encoder and decoder to get a better
result. We are interested in finding the best strategy that gives us the maximum
guessing probability for the index m, i.e. the statistical analysis of quantum data.
The process will repeat itself enough amount of times until we collect sufficient
statistical data. We illustrate the guessing game in the following Figure 7.4.

In the Figure 7.4, we see that the boxes before and after the measuring devices
are seen as encoders and decoders of the measuring device up to some shared ran-
domness. This game setting allows us to analyze the statistical outcomes from the
measuring device and based on the statistical results from which we will make a
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Figure 7.4: Guess the index set through quantum measurement device

decision on the performance of the measuring device. In this game-theoretic ap-
proach to quantum measurement, we were able to testify a genuine quantum mea-
surement device by benchmarking the statistical outcome from the above guessing
game as stated in the Corollary 1 in Chapter 4: the idea is that if a device is perfect
genuine, it has to satisfy the statistical benchmark. We rewrite the details of main
idea in a loose way.

Corollary 5. If a quantum measurement M is genuine, it is equivalent to say we can
always find a statistical guessing game such that the payoff of that game has to reach
beyond a known threshold—the benchmark.

To sum up, statistical analysis of the data from the quantum device has demon-
strated its power in determining a genuine quantum device.

7.4 Implementation of genuine quantum device

In the above circulation in Figure 7.1,the most important part after the data acqui-
sition and data analysis is the real-world implementation as the engineering part.
This idea could also be applied to detecting the genuine quantum measurement
device. One application from the genuineness detection is to use the statistical
benchmark to build a better quantum device through trials and errors from the
statistical analysis of data obtained from those engineered devices. These trials
and errors come from the circulation of RWDC in the quantum world. Since a
genuine quantum device can lead closer to the statistical benchmark that serves
as the significance level of the test, we can always engineer a new device if until
the device can go beyond the significance level. In a real-world case for engineer-
ing a quantum device, the test would take many times for certifying a genuine
one. In those circulations, we will deny those devices that do not go beyond the
benchmark. With this circulation, we will be able to create a real-world device that
is useful and genuine for building any quantum technologies that are based on
quantum measurement devices.

The demonstration of the idea of RWDC in quantum world seems to be only
theoretical, but it gives a novel potential tool to benchmark the quantum devices
that need to be tested, which is almost the same as the development of big data
analysis. The theory for machine learning was early developed many years be-
fore the real world has the power to implement (or test) the theory and it has been
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tested from the large amount of data since recent years. We can safely say that
we are only benefiting from the tested results of data analysis for machine learn-
ing, i.e., we have been doing data analysis “experiment” in the macro-world. This
coincides exactly what has been happening in the quantum world. In the early
stage of quantum technology development, to build a reliable theory will be al-
ways as important as implementing the technologies in the near future when the
engineering part is ready.

At last, we conclude this chapter by providing the following circulation Fig-
ure 7.5 in terms of the concept of RWDC that has been demonstrated in details
through this chapter.

Figure 7.5: The concept of RWDC in quantum world

7.5 Social value: for the next generation technologies

Quantum measurement devices are the core of most quantum technology devices.
Developing quantum technologies has been mainstream in the technology indus-
try. In what follows, I introduce two main areas that can benefit directly from
advanced quantum technologies. At first, in the key distribution industry, ma-
ture quantum key distribution technologies have been widely used to prepare for
the disadvantage of the current classical key distribution technologies when quan-
tum computers are strong enough to break the RSA cryptosystem. Secondly, the
quantum computer has an absolute advantage in solving complex optimization
problems when compared to current classical computing power. For example, if
solving complex optimization problems can be much easier than before, many new
medicines that depend on simulating complex molecules can be made easily.



Chapter 8

Summary and prospect

In this Ph.D thesis, we developed a generalized resource theory from the view-
point of statistical decisions theory, and we applied it to both the resource theory
of quantum state and the resource theory of quantum measurement. We found
the sufficient and necessary conditions for the transformation between POVMs
and PMDs through a game-theoretic approach. We also derived sufficient (some-
times necessary as well) for the existence of restricted transformations between
resources. The game-theoretic approach is the core of most resource theories, in
which we are comparing resources with pre-or partial- ordering by game payoffs.
This is the same idea in statistical comparing theories as well, in which the statisti-
cal comparison aims to express the possibility of transforming an initial statistical
model into another one, in terms of the utility that the two statistical models pro-
vide an operationally motivating scenario. The utility could be formed in terms
of game scenarios or as simply as entropic quantities. A possible future direction
of the presented researches is to look for potential application in the real world in
quantum technologies. Our resource theory of PMD provides a possible method
to certify genuine quantum memory and the certification of it could be applied to
the certification true quantum key distribution as well.
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