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Summary 

In studies of the learning processes underlying human choice behaviors, it is common 

to assume that values are updated based on the outcomes from choices (i.e., reinforcement 

learning). Although reinforcement learning has been shown to account for many aspects of human 

learning processes well, humans sometimes take the behavior that appears irrational to observers. 

In real-life, an easy-to-understand example is the partner selection. Some people continue to 

pursue same targets, even though they have been rejected over and over again. Why do such 

pursuing behaviors occur? In this thesis, we aimed to explain the information processing behind 

the pursuing behavior using a computational modeling assumed external factors (choice outcome) 

and internal factors (choice per se). 

A good understanding of model properties is required for the correct interpretation of 

the results obtained from the computational modeling of behaviors. Thus, in study1 (Sugawara & 

Katahira, 2019; Sugawara & Katahira, under revision), we examined the usefulness of a hybrid 

model that included both external (choice outcome) and internal factors (choice per se). First, by 

conducting simulations, we demonstrated that the hybrid model can identify the true underlying 

process. Second, using the hybrid model, we showed that empirical data collected from a web-

based experiment was governed by preceding choices (i.e., “choice perseverance”) rather than the 

asymmetric value updating based on previous outcomes (i.e., “asymmetric learning”). This result 

was also supported by a model-neutral analysis. Finally, we applied the hybrid model to two open 

datasets in which asymmetric learning was reported. As a result, the asymmetric learning was 

validated in one dataset but not in another. These findings support the usefulness of the hybrid 

model to identify the genuine process underlying choice behaviors. 

In study 2 (Sugawara & Katahira, submitted), to answer why some people pursue the 

hard-to-get target, we investigated whether the pursuit of the hard-to-get target which seldom 

respond in a positive manner was emerged from choice perseverance and/or asymmetric learning 

by using the hybrid model. All subjects in a web-based experiment conducted an avatar choice 

task which mimicked the partner selection. In this task, we defined “difficult” and “easy” avatars 

by manipulating the outcome probability. As a result, we found that some subjects repeatedly 

selected a difficult avatar (Pursuit group). Based on simulation, we clarified that higher choice 

perseverance could account for the pursuit of difficult avatars. Then, the hybrid model indicated 

that the Pursuit group had significantly higher choice perseverance than the No-pursuit group in 

the web-based experimental data. Moreover, although the baseline attractiveness was comparable 

among all avatars used in the choice task, the attractiveness of the difficult avatar significantly 



increased only in the Pursuit group. Taken together, we concluded that people with high choice 

perseverance pursue the hard-to-get target, subsequently making the target more attractive.   
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Chapter 1 General Introduction                           

1.1 Significance of computational modeling research 

The study of decision-making is the science of choice. The central issue of decision-
making focuses on how we think and decide our behaviors. Behaviors are outputs that result from 
the brain processing environmental inputs, and by using the cutting-edge neuroscientific 
technologies, we can record numerous neural activities from behaving animals. However, to 
interpret what these brain activities represent, the theory which explains how the brain causes the 
behavior is necessary. Assuming organisms as an information processing system, various 
investigations has been conducted to model the mechanism of information processing from a 
stimulus-response relationship. Through the interaction with surrounding environments, we 
always learn the value of action and predict the consequences of its action. Computational 
approach is one of research tools to quantify the information processing underlying our decision-
making. Especially, cognitive computation models formulate multiple and complicated cognitive 
processes, and allows us to develop theories via simulations and experiments. By estimating 
model parameters from the time-series of behaviors, cognitive computation models allow us to 
predict future behaviors. Furthermore, the estimated parameters provide some important insights 
for the principle behind behaviors. Thus, studying animal behaviors including humans give 
significant insights to understand why we do so in a daily life (Niv, 2020). Because cognitive 
computation models are worthful for the neuroimaging and neuropharmacological studies 
attempting to unravel an invisible information processing in neural system, these models have 
been used in various fields such as neuroscience, behavioral economics, psychiatry, and 
psychology. 

We always do a lot of choices in everyday life. In the expected utility theory (von 
Neumann & Morgenstern, 1944), rationality refers to behave in a way that maximizes the 
expected utilities. However, people often behave irrationally in daily life. For example, despite 
wanting to lose weight, you eat the cake in front of you. You decided to get up early to study 
before the exam, but you would fall asleep twice. You know the deadline is looming, but you do 
nothing until the last minute. Why do humans continue to behaves looking irrational from 
observers? Especially, I have a special interest in pursuing behaviors toward the unprofitable 
targets. For instance, stalkers pursue a specific person who does not respond in a positive manner, 
and scientists passionately pursue specific topics that have not been successful for a long time. 
Why do humans take pursuing behaviors? Such pursuing behaviors are usually problematic. In a 
clinical psychology, behavior modification is the most important process, outcome, and goal for 
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cognitive behavioral therapy (Eysenck, 1959, 1987). However, to modify the behavior, it should 
understand how the brain cause the behavior by using cognitive computation modeling. 

1.2 Reinforcement learning as cognitive behavioral modeling 

 In early 20th century, Edward L. Thorndike mentioned that animals come to respond 
more for behavior with the subsequently positive outcomes in trial and error learning (Thorndike, 
1911). This behavior principle has been called as “the law of effect”. In the middle of 20th century 
that behaviorism was dominant in psychology, many behavioral theories were proposed. Even 
today, these theories underpin the study of human behaviors (Watoson, 1930; Skinner, 1938; 
Rescorla & Wagner, 1972). Especially, B. F. Skinner sophisticated the law of effect and defined 
“reinforcement” which is that the increase in the frequency of action according to a reward 
obtained as an outcome resulted from the action (Skinner, 1938). The reinforcement learning 
explains the mechanism of learning adequate behavior by reinforcement through trial and error. 
The reinforcement learning theory developed by Skinner is the fundamental behavioral theory 
underling behavioral and cognitive-behavioral therapies. Furthermore, the reinforcement learning 
is a worthful framework for controlling actions, and has been formulated as a reinforcement 
learning model in the fields of artificial intelligence and engineering (Sutton & Barto., 1998). 

 Reinforcement learning model assumes that decision-makers (hereafter agents) have a 
computational model that is formulated to process information entered from the surrounding 
environment and determine their action according to this computational model. To decide next 
action, an agent iteratively corrects own internal model based on the outcomes resulted from 
actions generated from the internal model (Figure 1.1). This updating principle is formulated 
based on the Rescorla-Wagner model (Rescorla & Wagner, 1972). Rescorla-Wagner model 
describes the change in the strength of association between a conditioned stimulus (CS) and an 
unconditioned stimulus (US) in time series data, and is represented by an updating equation: 

!(# + 1) = !(#) + ()*(#) − !(#),. (1.1) 

Here, t is the current number of trials. V is the strength of association. R is the strength of US. In 
this equation, α is the parameter that determines how much to update the strength of association 
from experience. The strength of association (V(t+1)) represents the expectation (prediction) for 
the next US, and R(t) – V(t) represents the error between the actual and predicted US. Q-learning 
model, which is a typical reinforcement learning model, represents the expected reward resulted 
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from an action a in specific state s as Q value, and updates this Q value according to Rescorla-
Wagner model: 

.!,#(# + 1) = .!,#(#) + ( /*!,#(#) − .!,#(#)0 . (1.2) 

As Equation 1.2 shows, the reinforcement learning model is assuming that agents learn action-
outcome associations with outcomes resulted from chosen actions on a trial-and-error basis. The 
bandit task is gold standard to investigate this model in humans. In this thesis, I used two-armed 
bandit task that has only two options.  

Reinforcement learning model must formulate the action selection where an agent 
chooses one action among available actions. In the two-armed bandit task, Q-learning model 
calculated the probability of choosing an option (Poption) by the softmax function 

2$%&'$(	*(#) 	= 	
1

1 + exp 7−8 /.+,-.+/	*(#) − .+,-.+/	0(#)09
(1.3) 

where .+,-.+/	*  is the value of choosing an option, and .+,-.+/	0  is the value of choosing 
another option. The inverse temperature (β) determines the sensitivity of the choice probabilities 
to the difference between the Q values. Thus, as Equation 1.3 represents, reinforcement learning 
model assumes that an agent chooses one action based on the difference of the expected reward 
resulted from available actions. 

 

Figure 1.1 The concept of reinforcement learning 
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1.3 Reinforcement learning model for repetitive choice behaviors 

By “the law of effect”, animals come to respond more for behavior with the 
subsequently positive outcomes in trial and error learning (Thorndike, 1911). The law of effect 
has been elaborated in the reinforcement learning framework, and has been widely used as the 
most versatile framework to explain the behavior of animals in various areas. However, the 
pursuing behaviors toward unprofitable target such as stalkers and scientists are deviated from 
the law of effect. How does cognitive computation modeling explain these pursuing behaviors? 
In this section, I introduce the extended reinforcement learning models explaining repetitive 
choice behaviors. 

1.3.1 Cognitive biases that influence decision-making 

 One potential psychological process is a cognitive bias to explain repetitive choice 
behavior. Real-life decision making is subject to many cognitive biases (Erev et al., 2017). To 
explain cognitive biases influencing human choice behaviors in an everyday life, it is necessary 
to extend the reinforcement learning model. In the field of psychology, the cognitive biases such 
as the positive bias (Peeters, 1971; Sears, 1983) and the confirmation bias (Mynatt et al., 1977) 
that preferentially assign more attention to own desirable outcomes have been studied for a long 
time. The selective attention to desirable outcomes decreases the effect of undesirable outcomes 
on the future decision making, leading to repeat preceding choices.  

 To explain these cognitive biases, Palminteri, Lefebvre, et al. (2017) and Lefebvre et al. 
(2017) proposed an extended reinforcement learning model. As I mentioned in section 1.2, the 
learning rate is a model parameter that determines how much future reward prediction is updated 
from the current reward prediction error (RPE), which is the error between the actual rewards and 
the predicted rewards. Thus, the cognitive biases can be expressed by making the learning rate 
for the desired outcomes higher than the learning rate for the undesired outcomes (i.e., the 
asymmetric value updating). The extended model has two different learning rates for the positive 
RPE from the desired outcomes and the negative RPE from the undesired outcomes. The cognitive 
biases can be expressed by the asymmetry of these learning rates (i.e., the asymmetric value 
updating). Specifically, to express positivity and confirmation biases, the learning rate for positive 
RPE is greater than that for negative RPE. 
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1.3.2 Choice perseverance 
Asymmetric value updating depends on the outcomes resulted from chosen outcomes. 

Can our behaviors be sufficiently explained only by action-outcome associations? Let you 
consider why you went to the school when you were a student in high school. Almost students do 
not expect pleasurable events every day. On the other hand, they always decide to go to school 
not because their parents punish them due to the absent from school. Usually, students are 
unaware of clear reasons why they go to school. In addition to the law of effect, (Thorndike, 1911) 
proposed the “law of exercise” that the preceding action is more likely to be selected later again. 
In the recent framework, the concept called "decision inertia" (Akaishi et al., 2014; Alós-Ferrer 
et al., 2016; Urai et al., 2017) and "choice perseverance" (Katahira, 2018; Sugawara & Katahira, 
accepted) captures the same behavioral phenomena referred as the law of exercise. As well as the 
positivity and confirmation biases, choice perseverance leads to repeat preceding actions. 
However, choice perseverance assumes that the intrinsic information from the current choice per 
se influences the subsequent choices, while positivity and confirmation biases depend on the 
extrinsic information from the desirable outcomes. In line with choice perseverance, students go 
to school because going to school per se today promotes to go to school tomorrow, rather than 
because students expect the desirable outcomes. If you go to school depending on choice 
perseverance, the absence from school makes it difficult to go to school. In the actual cases, the 
beginning of school refusal is often attributed to an absence due to a trivial cause such as a cold. 

The choice perseverance in the reinforcement learning model is represented by the 
choice history independent of the outcome history (i.e., Q value): 

;#(# + 1) = 	 <
;#(#) + =)1 − ;#(#),		if	@	is	chosen									

;#(#) + =)0 − ;#(#),		if	@	is	not	chosen.
(1.4) 

As this equation represents, the choice history (C) is updated by the current choice. The decay 
rate (τ) determines the number of preceding choices influencing the current choice (Katahira, 
2015, 2018). To reflect this choice history in the action selection, the softmax function indicated 
in Equation 1.3 is extended: 

2$%&'$(	*(#) 	= 	
1

1 + exp(−8(.+,-.+/	*(#) − .+,-.+/	0(#)) − I(;+,-.+/	*(#) − ;+,-.+/	0(#))).
(1.5) 

If the parameter of choice perseverance (φ) which determines how much the choice history 
influence subsequent choices is more positive, the agent more frequently repeats the same choices. 
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Therefore, while the positivity and confirmation biases maintain one’s own beliefs by biasing the 
impact of past outcomes, the choice perseverance maintains one’s own beliefs by taking over 
choice per se. 

1.3.3 The main question and the end goal of the thesis 

The purpose of this thesis is to elucidate the information processing underlying pursuing 
behaviors in humans by using cognitive computation modeling. While an outcome obtained from 
action is extrinsic information about the action, the action per se is also intrinsic information about 
the action. These two different information leads to repeat preceding choices. Previous studies 
explain the repetitive choice behaviors the model which formulate only one updating process from 
either extrinsic or intrinsic information. If the fitted model neglects the computational process 
which largely influences the choice behaviors, severe statistical bias could be produced. This 
statistical bias leads an erroneous interpretation about the estimated parameters, churning out 
incorrect scientific conclusions. To answer why people pursue unprofitable targets, it is necessary 
to assume that both extrinsic and intrinsic information influence our behaviors. Therefore, I firstly 
developed the hybrid model dissociate the extrinsic factors (i.e. the positive and confirmation 
bias) and the intrinsic factors (i.e. choice perseverance) in reinforcement learning paradigm. Then, 
by using the hybrid models, I elucidated the information processing underlying pursuing 
behaviors in humans by using cognitive computation modeling which can dissociate the effects 
of extrinsic and intrinsic information in the reinforcement learning paradigm. 

1.4 Structure of this thesis 

In Chapter 2, to reveal the cognitive processes underlying the pursuing behavior, I 
aimed to dissociate the extrinsic factors (i.e. the positive and confirmation bias) and the intrinsic 
factors (i.e. choice perseverance) in reinforcement learning paradigm. Specifically, this study 
adopted the hybrid model incorporating both asymmetric value updating and choice perseverance. 
First, I examined the usefulness of the hybrid model through the simulated data. Second, to reveal 
the genuine process underlying the empirical choice behavior in the reinforcement learning 
paradigm, I applied the hybrid model into the actual data collected by the web-based experiment. 
Finally, to re-evaluate the underlying cognitive processes in open datasets published in previous 
studies, I fitted the hybrid model and showed that the asymmetric value updating which was 
reported in the previous study could be accounted for by the choice perseverance. According to 
these examinations, I demonstrated the validity of the computational approach to distinguish 
between the effects of the choice outcomes and the choice per se. 
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In Chapter 3, to clarify the psychological factors behind the pursuing behavior toward 
the unprofitable target by using a hybrid model, I conducted web-experiment mimicking decision-
making in a real-life. Based on the choice for the hard-to-get target that seldom responded in a 
positive manner, subjects were assigned two different groups: Pursuit and No-pursuit groups. 
Subjects in Pursuit group continuously chose the hard-to-get target, while subjects in No-pursuit 
group less chose that target. To clarify the cognitive process underlying the pursuing behavior 
toward the hard-to-get target, I applied the hybrid model established in Study 1 into the simulated 
and the actual choice data. Additionally, I also focused on psychological factors such as 
"preference" and "attractiveness" that are associated with choice behavior. Although it is 
generally known that choice is based on one's preference (Glimcher, 2009), it has been reported 
that choice per se makes the targets more attractive (Ariely & Norton, 2008; Brehm, 1956; 
Cockburn et al., 2014; Hornsby & Love, 2020; Izuma & Murayama, 2013; Koster et al., 2015; 
Nakao et al., 2016; Schonberg et al., 2014; Sharot et al., 2009). In a real-life, various outcomes 
are usually produced by our actions and influence preference as well as subsequent choices. 
Therefore, I examined how the cognitive process and attractiveness was linked with the pursuing 
behavior in the reinforcement learning paradigm. 

Finally, Chapter 4 will summarize the results of the studies in this dissertation and 
speculate on future directions. 
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Chapter 2 Dissociation between asymmetric value updating and 

perseverance in human reinforcement learning                      

2.1 Introduction 

Repetitive choices are induced by either extrinsic (i.e., outcome) or intrinsic information 
(i.e., choice per se) resulted from own choice. To investigate the computational process 
underlying the pursuing behaviors, it is necessary to develop the computational model which can 
dissociate the impacts of choice per se and outcome. Thus, in this chapter, I extended the 
reinforcement learning (RL) model to formulate the impact of both extrinsic and intrinsic 
information, and demonstrate the usefulness of this extended model for the dissociation between 
the effect of extrinsic and intrinsic information on human choice behaviors. 

As I mentioned in Chapter 1, RL models have been broadly used to model the choice 
behavior of humans and other animals (Daw et al., 2011; Redish & Johnson, 2008). Standard RL 
models suppose that agents learn action-outcome associations from outcomes on a trial-and-error 
basis (Barto, 1997). The learned action values are assumed to be updated according to the reward 
prediction error, which is the difference between the actual and expected rewards (Rescorla & 
Wagner, 1972; Sutton & Barto., 1998). 

Although this mechanism is often assumed to underlie many background processes of 
human behavior, human decision making is subject to many biases (Erev et al., 2017). Several 
modeling studies investigating human choice behavior have reported that the magnitude of the 
value update is biased depending on the sign of the reward prediction error. This bias can be 
represented in RL models as asymmetric learning rates for positive and negative outcomes (Frank 
et al., 2007; Gershman, 2015; Niv et al., 2012).   

 Lefebvre et al. (2017) suggested that this learning asymmetry reflects positivity bias (the 
tendency to emphasize good outcomes) in factual learning in which feedback is given only for 
the option chosen by the subject. Refining this idea, Palminteri, Lefebvre, et al. (2017) reported 
that this learning asymmetry represents confirmation bias (the tendency to selectively process 
information that supports one's beliefs) in counterfactual learning in which feedback is given for 
both the chosen and unchosen options (Boorman et al., 2011; Fischer & Ullsperger, 2013). These 
learning asymmetries lead to choice repetition because the influences of the outcomes that 
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reinforce the choice (positive outcome for the chosen option and negative outcome for unchosen 
option) are enhanced, whereas those that weaken the choice are diminished (Katahira, 2018). 

It has also been shown that our decisions depend on our choice history regardless of the 
choice outcome (Bertelson, 1965; Gold et al., 2008; Nakao et al., 2016; Schönberg et al., 2007). 
A positive dependency leads to the repetition of the same choices (hereafter, "perseverance"). 
Perseverance leads to behavior seemingly similar to that resulting from asymmetric learning rates. 
Katahira (2018) suggested the possibility that the estimation of asymmetric learning rates suffers 
from statistical artifacts caused by model misspecification. If an RL model without the 
perseverance factor is fitted to data that possess intrinsic autocorrelation (e.g., perseverance), the 
model tends to represent perseveration by asymmetric learning rates. Thus, a statistical bias that 
overestimates the difference in learning rates occurs. Due to this statistical bias, it is difficult to 
identify the cognitive process underlying human choice behavior. Nevertheless, the identification 
of computational processes, such as asymmetric value updating and perseverance, is crucial for 
interpreting neural mechanisms and investigating the association with personality traits in the 
fields of neuroscience, psychology, and psychiatry (Akaishi et al., 2014; Alós-Ferrer et al., 2016; 
Frank et al., 2007; Gershman et al., 2009; Huys et al., 2011; Kuzmanovic & Rigoux, 2017; 
Lefebvre et al., 2017; Niv et al., 2012).  

The present study proposes methods to dissociate these computational processes from 
empirical behavioral data. Specifically, I address this issue by using a hybrid model (hereafter 
Hybrid model) incorporating asymmetric learning rates and perseverance. In the present study, I 
first conduct simulations to investigate how the Hybrid model works to identify the true 
underlying processes under various conditions. Then, I demonstrate how the Hybrid model can 
identify the underlying process in an empirical dataset with a relatively large sample size. Finally, 
to clarify the genuine process underlying open datasets collected from previous studies reporting 
asymmetric updating, I apply the Hybrid model to these datasets. According to a series of 
investigations, I conclude that the Hybrid model combining outcome-based and outcome-
independent processes enables the detection of the genuine cognitive process underlying choice 
behavior while avoiding statistical artifacts. 
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2.2 Methods  

2.2.1 Behavioral tasks 

In this study, I used the same behavioral task in both the simulations and web-based 
experiment. The task was a modified version of the probabilistic instrumental learning task 
developed in previous studies (Lefebvre et al., 2017; Palminteri et al., 2015; Palminteri, Lefebvre, 
et al., 2017). The framework used in this task is generally called a two-armed bandit problem in 
which an agent (subject) sequentially explores the best choice among multiple options (Sutton & 
Barto., 1998). This task consisted of a factual block and a counterfactual block (Figure 2.1a). In 
the web-based experiment, half of the subjects started with the factual block, and the other half 
started with the counterfactual block. In each block, the agent experienced two sessions separated 
by a 20-s break. In each session, I selected eight abstract stimuli (Agathodaimon font) and 
generated four different pairs. In the second session, all stimuli were renewed such that the agent 
began learning anew (i.e., the option stimuli differed between the two sessions). The display 
positions of the stimuli were set to appear on the left and right in the same number of trials. These 
four stimulus pairs were distributed among the following three conditions: same (1 pair), different 
(2 pairs), and reversal (1 pair). Under the same condition, both stimuli were associated with a 
50% reward probability (here, the reward was “+10 pt”). Under the different condition, one 
stimulus was associated with a 25% reward probability, and the other stimulus was associated 
with a 75% reward probability. Under the reversal condition, one stimulus was associated with a 
17% reward probability, and the other stimulus was associated with an 83% reward probability 
during the first 12 trials, and then, these contingencies were reversed during the final 12 trials 
(Figure 2.1b). Each pair was presented in 24 trials per session. Thus, each session included 96 
trials. The order of the trials was pseudo-randomized with the constraint that the same condition 
continued for no more than four times in a sequence. The agents were not given any explicit 
information regarding the reward probabilities. The agents were instructed to earn as many points 
as possible across experiments by trial and error. 

The agents completed an 8-trial practice session before each block (factual or 
counterfactual learning) after the overall task description was provided. The stimuli used in the 
practice trials were not used in the main task. At the initiation of each trial, a fixation crosshair 
appeared for 500 ms. Following the fixation crosshair, one of four stimulus pairs was displayed 
for 2000 ms during which the agent had to choose one of the two stimuli by pressing either “F” 
(left option) or “J” (right option) on their keyboard. If the agent chose one option within 1500 ms, 
a red triangle was placed below the chosen option until the outcome presentation. If the agent did 
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not choose any option within 1500 ms, a warning message was displayed for 1500 ms, and the 
trial was considered missed (“-10 pt”). Then, the outcomes were displayed for 1500 ms (“+10 pt” 
or “-10 pt”). In the factual learning context, the agents were only shown the outcome of the chosen 
option. In the counterfactual learning context, the agents were shown the outcomes of both the 
chosen and unchosen options. Since this research involved subjects in a web-based experiment, 
some tasks reported in Palminteri, Lefebvre, et al. (2017) were modified. The main modifications 
were the inclusion of a time limit for the response and the use of a fixed duration for the feedback 
presentation. In previous experiments, the subjects responded and observed feedback at their own 
pace. These modifications aimed to control the entire duration of the experiment. 

 

Figure 2.1 Experimental task. (a) There were two types of learning contexts in the present study. 
In the factual learning context, the subjects were shown only the outcome of the chosen option. 
In the counterfactual learning context, the subjects were shown the outcomes of both the chosen 
and unchosen options. (b) Task conditions: Under the same condition, the option pair had an 
identical reward contingency. Under the different condition, one option had a higher reward 
probability than the other option. Under the reversal condition, the reward probability was 
reversed between the options after the first 12 trials were completed. 
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2.2.2 Models 

In this study, I mainly used three types of reinforcement learning models. All models 
were modifications of a typical Q-learning model. (1) The Asymmetry model has two independent 
learning rates, i.e., (12	and	(13	 ,for positive and negative reward prediction errors (RPEs), 
respectively, to represent asymmetric value updating. (2) The Perseverance model includes the 
computational process of choice history independent of the outcome-based learning process. The 
computational process of choice history has the following two free parameters: decay rate (τ) and 
perseverance parameter (φ). (3) The Hybrid model has the features of both the Asymmetry and 
Perseverance models. In the counterfactual learning context, the models consider the impact of 
the forgone outcomes of the unchosen option and the impact of the obtained outcome of the 
chosen option. The details of the models are described below. 

For the data from the factual learning task, I used the following six RL models: standard 
RL, Asymmetry, Perseverance (impulsive), Perseverance (gradual), Hybrid (impulsive), and 
Hybrid (gradual) models. The standard RL model is the most basic of all models considered in 
the present study. In the standard RL model, the action value of the chosen option in trial #, which 
is denoted by .1(#), is updated according to the following equation: 

.1(# + 1) = .1(#) + ()*1(#) − .1(#),. (2.1) 

Here, the outcome (of the chosen option) in trial #  is denoted by *1(#) . (*1(#)	–	.1(#)) 
represents the prediction error, which is subsequently denoted by N1 . The learning rate (α) 
determines how much the model updates the action value with the prediction error. The initial 
action value of each option is set to zero. For the data from the factual learning task, only the Q 
value of the chosen option is updated because the agents are informed only of the outcome of the 
chosen option. Choice probability 24(#) is determined by the following softmax function: 

24(#) 	= 	
1

1 + exp /−8).1(#) − .5(#),0
(2.2) 

where .1 is the Q value of the chosen option, and .5 is the value of the unchosen option. The 
inverse temperature (β) determines the sensitivity of the choice probabilities to the difference 
between the Q values. 

The Asymmetry model is extended from the standard RL model to allow the learning 
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rates to differ ((12	, (13	) depending on the sign of the prediction error. Thus, the Q values are 
updated as follows:  

.1(# + 1) = 	 O
.1(#) + (12	N1(#)			if			N1(#) 	≥ 0	
.1(#) + (13	N1(#)			if			N1(#) 	< 0.

(2.3) 

Previous studies have shown that this model can be used to express positivity bias or confirmation 
bias (Lefebvre et al., 2017; Palminteri, Lefebvre, et al., 2017). 

The Perseverance model uses the same update rule as the standard RL model (Equation 
2.3). In the models that incorporate the perseverance factor, the choice trace ;(#) is defined to 
introduce the effect of a past choice to the choice probability (Gershman et al., 2009; Huys et al., 
2011): 

24(#) 	= 	
1

1 + exp(−8(.1(#) − .5(#)) − I(;1(#) − ;5(#))).
(2.4) 

The perseverance parameter (φ) is a parameter that controls for the tendency to repeat the choice 
of or avoid a recently chosen option. A high positive value of this parameter indicates that the 
agent frequently repeats the previous choice. The choice trace is computed using the following 
update rule (Akaishi et al., 2014; Katahira, 2018): 

;1(# + 1) = ;1(#) + =)1 − ;1(#),	

;5(# + 1) = ;5(#) + =)0 − ;5(#), (2.5)
 

where ;1 and ;5 denote the choice trace of the chosen and unchosen options, respectively. The 
decay rate determines the number of preceding choices in the choice history influencing the 
current choice(Katahira, 2015, 2018). In the Perseverance (impulsive) model, with the decay rate 
fixed at 1, only the immediately preceding choice influences the current choice. Most previous 
studies examining choice perseverance have incorporated the influence of only the immediate 
prior trial (Gillan et al., 2016; Huys et al., 2011). However, Katahira (2018) showed that the long-
term choice history caused bias in the estimation of the asymmetric learning rates. 

The Hybrid model is a model combining the Asymmetry and Perseverance models. This 
model incorporates not only the asymmetric learning rates but also the choice trace.  
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For the data from the counterfactual learning task, I used the following six RL models 
as described in the factual learning task: the standard RL, Asymmetry, Perseverance (impulsive), 
Perseverance (gradual), Hybrid (impulsive), and Hybrid (gradual) models. Here, all models are 
allowed to update the Q values of both the chosen and unchosen options because the agent was 
informed of both outcomes. The standard RL, Perseverance (gradual), and Perseverance 
(impulsive) models have the same parameters as the models used in the factual learning task 
because an identical learning rate is used to update the values of both the chosen and unchosen 
options regardless of the sign of the prediction error. 

In the Asymmetry models, four different learning rates are defined to represent the 
asymmetric updating of the chosen ((12	, (13	) and unchosen ((52	, (53	) options. The Q values of 
the chosen and unchosen options are computed as follows: 

For the chosen option 

.1(# + 1) = 	 O
.1(#) + (12	N1(#)			if			N1(#) 	≥ 0	
.1(#) + (13	N1(#)			if			N1(#) 	< 0.

(2.3) 

For the unchosen option: 

.5(# + 1) = 	 O
.5(#) + (52	N5(#)			if			N5(#) 	≥ 0
.5(#) + (53	N5(#)			if			N5(#) 	< 0

(2.6) 

where N5 denotes the prediction error of the unchosen option. 

In the counterfactual learning context, I also used the Hybrid (gradual) and Hybrid (impulsive) 
models, which are hybrid models combining the Asymmetry model and the Perseverance model, 
to examine the asymmetry of the learning rate while incorporating choice perseverance. 

2.2.3 Parameter estimation and model comparison 

Using the R function “solnp” in the Rsolnp package (Ghalanos & Theussl, 2015), I fit 
the parameters of each model with the maximum a posteriori (MAP) estimation and calculated 
the log marginal likelihood of each model using Laplace approximation (Kass & Raftery, 1995). 
In contrast to a likelihood, a marginal likelihood penalizes a complex model with extra parameters 
in the marginalization process. Because the marginal likelihood is proportional to the posterior 



 15 

probability of the model, the model resulting in the highest marginal likelihood is the most likely 
one given a particular data set. Notably, this situation is only true if all models have an equal prior 
probability (i.e., all models are equally likely before the data are provided). This method 
incorporates the prior distributions of the parameters and can avoid extreme values in the 
estimates of the parameters (Daw, 2011; Katahira, 2016). The prior distributions and constraints 
were set following Palminteri, Lefebvre, et al. (2017). All learning rates were constrained to the 
range of 0 ≤ (  ≤ 1 with a Beta (1.1, 1.1) prior distribution. The inverse temperature was 
constrained to the range of 8 ≥ 0 with a Gamma (shape = 1.2, scale = 5.0) distribution. In the 
perseverance model, the decay rate was constrained to the range of 0 ≤ = ≤ 1 with a Beta (1, 1) 
distribution (i.e., a uniform distribution), and the perseverance parameter was constrained to the 
range of −10 ≤ I ≤ 10 with a Norm (μ = 0, σ2 = 5) distribution. 

2.2.4 Simulations 

 To understand how the Hybrid model works, I conducted simulations that directly 
evaluated the amount of bias in the parameter estimates of the misspecified models. In the 
simulations, I first generated the choice data under the five simulated conditions (true models; 
Table 2.1) used to perform the probabilistic instrumental learning task (see the ‘Behavioral tasks’ 
section) and then fitted three models (the Asymmetry, Perseverance (gradual), and Hybrid 
(gradual) models) to the data. 

 In the factual learning context, the simulated conditions from the versions of the three 
models were set as follows: (i) a model with asymmetric learning rates assuming positivity bias 
((12 = 0.5, (13 = 0.2,	8 = 0.3, = = 0.4, I = 0); (ii) a model with an asymmetric learning rate 
assuming negativity bias ((12 = 0.2, (13 = 0.5,	8 = 0.3, = = 0.4, I = 0); (iii) a model with a 
symmetric learning rate and perseverance ((12 = (13 = 0.5,	8 = 0.3, = = 0.4, I = 1.5); (iv) a 
model with an asymmetric learning rate and perseveration assuming positivity bias ((12 = 0.5, 
(13 = 0.2,	8 = 0.3, = = 0.4, I = 1.5); and (v) a model with an asymmetric learning rate and 
perseveration assuming negativity bias ((12 = 0.2, (13 = 0.5,	8 = 0.3, = = 0.4, I = 1.5). In 
the counterfactual learning context, the simulated conditions from the versions of the three models 
were set as follows: (i) a model with an asymmetric learning rate assuming confirmation bias 
((12 = 0.5, (13 = 0.2, (52 = 0.2, (53 = 0.5, 8 = 0.3, = = 0.4, I = 0); (ii) a model with an 
asymmetric learning rate assuming opposite confirmation bias ((12 = 0.2, (13 = 0.5, (52 = 0.5, 
(53 = 0.2 , 8 = 0.3 , = = 0.4 , I = 0 ); (iii) a model with a symmetric learning rate and 
perseverance ((12 = (13 = (52 = (53 = 0.5, 8 = 0.3, = = 0.4, I = 1.5); (iv) a model with an 
asymmetric learning rate and perseveration assuming confirmation bias ((12 = 0.5, (13 = 0.2, 
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(52 = 0.2 , (53 = 0.5 , 8 = 0.3 , = = 0.4 , I = 1.5 ); and (v) a model with an asymmetric 
learning rate and perseveration assuming opposite confirmation bias ((12 = 0.2 , (13 = 0.5 , 
(52 = 0.5, (53 = 0.2, 8 = 0.3, = = 0.4, I = 1.5). All parameters were set according to the 
parameters of the empirical dataset obtained from the web-based experiment. The number of trials 
was set as 960 trials per session per block. Under each simulation condition, 100 virtual datasets 
were simulated. 

Table 2.1 List of models and model selection results of the simulation data 

 

2.2.5 Web-based experiment 

Experimental procedures 

One hundred and fifty adults participated in the web-based experiment via CrowdWorks 
(https://crowdworks.jp/). I limited the subjects’ age to over 18 years and paid approximately 700 
yen (approximately $6) if the subjects completed all tasks and surveys without any interruption. 
Informed consent was obtained from all subjects by clicking ‘I Agree’ after reading the 

Table S1. The list of models and model selection results for the simulation data

Simulation condition
(True model)

Learning context Fit model Learning rate (s)
Inverse
temperature

Perseverance
# of free
parameters

P(Fit model |True model)

Asymmetry α c
+ , α c

- β − 3 0.97
Perseverance α β τ, φ 4 0.00

Hybrid α c
+ , α c

- β τ, φ 5 0.03

Asymmetry α c
+ , α c

- , αu
+ , αu

- β − 5 0.90
Perseverance α β τ, φ 4 0.08

Hybrid α c
+ , α c

- , αu
+ , αu

- β τ, φ 7 0.02

Asymmetry α c
+ , α c

- β − 3 0.96
Perseverance α β τ, φ 4 0.00

Hybrid α c
+ , α c

- β τ, φ 5 0.04

Asymmetry α c
+ , α c

- , αu
+ , αu

- β − 5 0.98
Perseverance α β τ, φ 4 0.00

Hybrid α c
+ , α c

- , αu
+ , αu

- β τ, φ 7 0.02

Asymmetry α c
+ , α c

- β − 3 0.00

Perseverance α β τ, φ 4 0.89
Hybrid α c

+ , α c
- β τ, φ 5 0.11

Asymmetry α c
+ , α c

- , αu
+ , αu

- β − 5 0.02

Perseverance α β τ, φ 4 0.97
Hybrid α c

+ , α c
- , αu

+ , αu
- β τ, φ 7 0.01

Asymmetry α c
+ , α c

- β − 3 0.00

Perseverance α β τ, φ 4 0.02

Hybrid α c
+ , α c

- β τ, φ 5 0.98
Asymmetry α c

+ , α c
- , αu

+ , αu
- β − 5 0.40

Perseverance α β τ, φ 4 0.35

Hybrid α c
+ , α c

- , αu
+ , αu

- β τ, φ 7 0.25

Asymmetry α c
+ , α c

- β − 3 0.00

Perseverance α β τ, φ 4 0.02

Hybrid α c
+ , α c

- β τ, φ 5 0.98
Asymmetry α c

+ , α c
- , αu

+ , αu
- β − 5 0.25

Perseverance α β τ, φ 4 0.00

Hybrid α c
+ , α c

- , αu
+ , αu

- β τ, φ 7 0.75

Hybrid with
Opposite confirmation bias
(αc＋ < αc−, αu＋ > αu−)

factual

counterfactual

Perseverance and
Symmetric learning rate
(αc＋= αc− = αu＋= αu−)

factual

counterfactual

Hybrid with
Confirmation bias
(αc＋ > αc−, αu＋ < αu−)

factual

counterfactual

Asymmetry with
Confirmation bias
(αc＋ > αc−, αu＋ < αu−)

factual

counterfactual

Asymmetry with
Opposite confirmation bias
(αc＋ < αc−, αu＋ > αu−)

factual

counterfactual
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information regarding the aim and procedures of this study. After the subjects provided their basic 
demographic information, including gender and age, and downloaded Inquisit player (Millisecond 
Software LLC, Seattle, USA), the subjects started the behavioral task (see the ‘Behavioral tasks’ 
section). The subjects were anonymized, and their privacy was protected. The study was approved 
by the Ethical Research Committee of Nagoya University, and the study was carried out in 
accordance with the relevant guidelines and regulations. 

Seven subjects were excluded due to inappropriate task execution. Six of these subjects 
showed a false start rate greater than 30%. Thus, these subjects pressed any button before the 
choice options were presented in more than 30% of the trials. The other subject chose only the 
option that appeared on the right side across the experiments (even though each option randomly 
appeared on both sides). Thus, data from 143 subjects (58 females and 85 males) aged between 
19 and 72 years (mean ± SD = 38.7 ± 9.6) were included in the subsequent analyses. 

Performance evaluation 

To evaluate whether the subjects successfully performed the behavioral tasks, I 
calculated the preferred response rate under the same condition and the correct rate under the 
different and reversal conditions as described in a previous study (Palminteri, Lefebvre, et al., 
2017). The preferred response rate was calculated as the fraction of “preferred response,” which 
was defined as the most frequently chosen option (i.e., the option chosen by the subject in more 
than 50% of the trials). The correct rate was defined as the fraction of trials in which the subjects 
chose the option associated with a higher reward probability.  

I divided each session (24 trials) into four phases (6 trials per phase) to investigate the 
learning-related performance changes under each condition. Because the subjects completed two 
sessions in each learning context, I pooled the trials in each phase of the two sessions (i.e., 12 
trials per pooled phase). Then, the correct rate under the different and reversal conditions and the 
preferred response rate under the same condition were calculated in each pooled phase. 

Parameter correlation and parameter recovery 

To validate our model-fitting results in the web-based experiment, I checked the 
correlations between the free parameters in each learning context and the capacity of recovering 
the model parameters using simulated data (Palminteri, Wyart, et al., 2017; Wilson & Collins, 
2019). For the parameter recovery, I simulated the choice dataset under each condition of our 
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behavioral paradigm with model parameters corresponding to those estimated from our actual 
subjects (N = 143). The number of trials was set as 960 trials per session per block. These 
simulations were conducted using the model parameters estimated using the Asymmetry, 
Perseverance (gradual), and Hybrid (gradual) models. Thus, 143 virtual datasets were simulated 
per context and model. I fitted the same model used in the simulation to the simulated datasets. 
Then, the correlation coefficients between the true parameters used in the simulation and the 
estimated parameters in each context and model were calculated. Additionally, to determine the 
precision of the parameter recovery, I calculated the root mean squared error between the true 
value used to generate the data and the estimated value. 

Model-neutral analysis of the web-based experiment 

 To assess the asymmetric value updating process underlying the empirical choice data 
collected in the web-based experiment, I conducted a model-neutral analysis as proposed in 
Katahira (2018). Because a detailed explanation was provided in the previous study (Katahira, 
2018), here, I only briefly introduce the concept of this analysis. As reported in previous studies 
(Katahira, 2015, 2018), one behavioral consequence of asymmetric learning rates is that the 
impact of past outcomes depends on subsequent outcomes. Thus, an interaction likely exists 
between the outcome of one trial ago and the outcome of two trials ago that serves as a factor 
influencing the current choice. In this case, since the regression model assumes that the outcomes 
of one and two trials ago affect the current choice independently of each other, this point can be 
used to test the existence of learning rate asymmetry in the data. Thus, the regression coefficient 
of the interaction term is 0 if the true learning rate is symmetric ((2 = (3). Here, I only consider 
up to two trials ago and consider the condition under which the outcome is a binary value (1 = 
reward, 0 = no reward). Under this condition, the interaction term represents the degree of the 
asymmetric learning rates. A negative interaction indicates positive asymmetric updating 
((2 > (3), while a positive interaction indicates negative asymmetric updating ((2 < (3).  

To create the data used in this analysis, I first sorted the trial sequences of each subject, 
each four-stimulus pair, and each session. From each sequence, I extracted all possible three 
successive trials (I refer to these as a ‘triplet’), denoted by (# + 1)-th trial, #-th trial, and (# − 1)-
th trial. Then, from the resulting triplets, I further selected only the triplets in which the same 
option was selected at both the #-th trial and (# − 1)-th trial. Finally, the triplets containing time 
out (no response) trials were excluded, and the remaining triplets were included in the analysis. 
Then, I constructed a logistic regression model to predict the probability that a subject chooses 
the same option in the (# + 1)-th trial as in the #-th trial, denoted by T(U#@V(# + 1)). In the 
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factual learning condition, the regressors are the outcomes of the choice at the #-th trial (*W(#)) 
and (# − 1)-th trial (*W(# − 1)) and their interaction term	*W(#) × *W(# − 1). The regressors are 
coded as *W(#) = 1:	rewarded	and	*W(#) = 0: unrewarded. The logistic regression model is as 
follows: 

	log
T)U#@V(# + 1),

T)U^_#Wℎ(# + 1),
	= 	a6 + a**W(#) + a0*W(# − 1) + a*0*W(#)*W(# − 1) (2.7) 

where T(U^_#Wℎ(# + 1)) is the probability that the subject switches the choice at the (# + 1)-th 
trial. The intercept a6 represents the overall tendency to repeat the same choice, which may 
absorb the effects of the choices and rewards at trials before the ( # − 1) -th trial. In the 
counterfactual learning context, the logistic regression model also includes the regressors of the 
outcomes of the unchosen options at the #-th trial (*c(#)) and the (# − 1)-th trial (*c(# − 1)) 
and their interaction (*c(#) × *c(# − 1)). Thus, the logistic regression model is expressed as 
follows:  

log
T(U#@V(# + 1))
T(U^_#Wℎ(# + 1))

= a6 + a**W(#) + a0*W(# − 1) + a7*c(#) + a8*c(# − 1) 

+	a*0*W(#)*W(# − 1) + a78*c(#)*c(# − 1) (2.8) 

The hypothesis test based on the null hypothesis b12 = 0 and/or b34 = 0 was conducted by using 
mixed-effects models (“glmer” function) implemented with the lme4 package (Bates et al., 2019) 
in the R programming language. Within-subject factors (intercept, main effects, and their 
interaction) were included as random effects, i.e., allowed to vary across subjects. 

2.2.6 Additional open data analysis 

To clarify the genuine process underlying the empirical choice data collected in previous 
studies reporting asymmetric updating, I also applied the Hybrid model to two open datasets. 
Dataset 1 comprised the open data reported by Palminteri, Lefebvre, et al. (2017). Since our 
research was carried out according to this previous study, the experimental procedures were 
mostly the same. Although the authors of the previous study (Palminteri, Lefebvre, et al., 2017) 
analyzed the influence of choice perseverance, they did not examine the influence of the gradual 
perseverance factor (τ < 1). Thus, using these open data, tests were performed by comparing the 
models, including those incorporating the gradual perseverance factor. Furthermore, I used 
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Dataset 2 reported by Niv et al. (2012) to investigate whether the asymmetric learning rates 
observed in another learning task could be explained by choice perseverance. I also applied the 
Hybrid model to these previous data and compared the model fitting and learning rate parameters. 
More detailed information regarding each dataset is as follows. 

Dataset1 (Palminteri et al., 2017; https://figshare.com/authors/ /2803402) 

In Palminteri, Lefebvre, et al. (2017), the asymmetric learning rates were examined in 
both factual and counterfactual learning contexts. As mentioned above, our web-based study was 
carried out using largely the same procedures as those used in this previous study. However, in 
the previous task, the subjects responded and observed feedback at their own pace. Furthermore, 
the previous study employed a between-subjects design in which each subject performed the task 
in either a factual (N = 20) or counterfactual (N = 20) learning context.  

Dataset2 (Niv et al., 2012: http://www.princeton.edu/~nivlab/data/NivEtAl2012JNeuro/) 

In Niv et al. (2012), Asymmetry models were used to explain risk-seeking/aversion 
behaviors in a factual learning context. A negative outcome learning rate higher than a positive 
outcome learning rate leads to risk aversion, whereas the opposite pattern leads to risk seeking. 
Their task included the following six option pairs that differed in risk and expected rewards: 20¢ 
(100%) versus 0 (50%) /40¢ (50%), 40¢ (100%) versus 0 (50%) /40¢ (50%), 20¢ (100%) versus 
40¢ (100%), 0¢ (100%) versus 0 (50%) /40¢ (50%), 0¢ (100%) versus 20¢ (100%), and 0¢ (100%) 
versus 0¢ (100%). The experiment involved two types of trials. In the ‘choice trials,’ the subjects 
were required to choose between two stimuli, whereas in the ‘forced trials,’ the subjects were 
presented only one of five stimuli and had to choose the presented stimulus (N = 16). Similar to 
the analyses of the web-based data, I compared the estimated parameters among the Asymmetry, 
Hybrid (impulsive), and Hybrid (gradual) models. 

2.2.7 Statistical tests 

For the model comparison, one-way repeated-measures analysis of variance 
(rmANOVA) was conducted to compare the log marginal likelihoods of the models in each 
learning context (factual and counterfactual learning). I also investigated the difference in learning 
rates ((12	, (13	) within each model. For the Asymmetry and Hybrid models in the factual learning 
context, the difference in the learning rates was compared by a paired t-test. For the Asymmetry 
and Hybrid models in the counterfactual learning context, two-way rmANOVAs with Valence 
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(positive or negative) and Choice (chosen or unchosen) were performed to test for differences in 
the four learning rates ((12	, (13	, (52	, and (53	). The degree of biases in the learning rates were 
compared across the models by using a one-way rmANOVA in each learning context. 
Additionally, the degree of the perseverance parameter (φ) was compared across the models using 
a one-way rmANOVA in each learning context. To correct for the violation of the sphericity 
assumption, Greenhouse-Geiser’s adjustment of the degrees of freedom was used in all 
rmANOVAs when appropriate. The post hoc pairwise comparisons were performed based on 
Shaffer’s correction for multiple comparisons. For the simulation, the differences between the 
true and estimated parameters were evaluated by using a one-sample t-test with the true 
parameters. To control for the multiple comparison issue, the significance of the one-sample t-
tests was tested with Bonferroni correction. In the parameter correlation analysis, I estimated the 
Pearson’s correlation coefficients between the model parameters of the Perseverance (gradual) 
and Hybrid (gradual) models in the factual and counterfactual learning contexts. Additionally, in 
the parameter recovery, I estimated the Pearson’s correlation coefficients between the model 
parameters estimated from the empirical dataset and the simulated dataset. The significance of 
the correlation coefficients was tested with Bonferroni correction to avoid multiple comparison 
issues. These analyses were executed using R version 3.5.1 statistical software (http://cran.us.r-
project.org). 

2.3 Results 

2.3.1 Model identifiability and the usefulness of the Hybrid model 

By conducting simulations, I investigated the identifiability of the three models (i.e., 
Asymmetry, Perseverance, and Hybrid) in each learning context, whether pseudo-asymmetric 
learning rates and pseudo-perseverance occurred by fitting mismatched models, and whether the 
Hybrid model could distinguish asymmetric value updating from choice perseveration. 

To determine the identifiability of the models, I applied the three models to simulated 
data from the following versions of the three models: Asymmetry model assuming 
positivity/confirmation bias, Asymmetry model assuming negativity/opposite confirmation bias, 
Perseverance model, Hybrid model assuming positivity/confirmation bias, and Hybrid model 
assuming negativity/opposite confirmation bias. Then, I compared these models using log 
marginal likelihood (LML). Except for the simulated data from the Hybrid model assuming 
confirmation bias in the counterfactual context (rmANOVA, F(1.94,192.33) = .39, p = .67), the 
true model was deemed the best model (rmANOVA, Fs >= 143.27, ps < .001; Table 2.1). 
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Katahira (2018) demonstrated that by fitting the Asymmetry model to simulated data 
generated from the Perseverance model, the pseudo-asymmetry of the learning rates was observed. 
However, whether pseudo-perseverance might appear when the Perseverance model is fitted to 
the simulated data generated from the true Asymmetric model remains unclear. To examine this 
question, I fitted the Perseverance model to the simulated data from the Asymmetry model 
assuming positivity/confirmation bias and the Asymmetry model assuming negativity/opposite 
confirmation bias. In both cases, a higher perseverance parameter was observed despite the lack 
of perseverance (φ = 0) in the true model in the factual (Figure 2.2d, one-sample t-test, t(99) = 
12.60, p < .001; Figure 2.2h, one-sample t-test, t(99) = -4.76, p < .001) and counterfactual 
(Figure 2.3d, one-sample t-test, t(99) = 107.97, p < .001; Figure 2.3h, one-sample t-test, t(99) = 
-58.49, p < .001) contexts. Although the Asymmetry model obviously captured true learning rate 
biases in the simulated data from the Asymmetry model assuming positivity/confirmation bias 
(Figure 2.2a, paired t-test, t(99) = 56.07, p < .001; Figure 2.3a, rmANOVA, F(1,99) = 4842.84, 
p < .001) and the Asymmetry model assuming negativity/opposite confirmation bias (Figure 2.2e, 
paired t-test, t(99) = -52.45, p < .001; Figure 2.3e, rmANOVA, F(1,99) = 55408.02, p < .001), I 
also replicated the previous finding by showing that pseudo-asymmetry of learning rates occurred 
when the Asymmetry model was fitted to the simulated data from the Perseverance model (Figure 
2.2i, paired t-test, t(99) = 16.82, p < .001; Figure 2.3i, rmANOVA, F(1,99) = 1754.38, p < .001). 
These results indicate that an inadequate model causes either pseudo-asymmetric learning rates 
or pseudo-perseverance. 

Finally, I investigated whether the Hybrid model could dissociate these underlying 
processes (i.e., asymmetric value updating and perseverance). Our results clearly demonstrate that 
the Hybrid model could capture the genuine process underlying choice behavior. When the 
Hybrid model was fitted to the simulated data generated from the true Asymmetry model 
assuming positivity/confirmation and negativity/opposite confirmation bias, the bias of learning 
rates was captured by the Hybrid model (Figure 2.2b and 2.2c, Asymmetry vs Hybrid with paired 
t-test , t(99) = 1.61, p = .11; Figure 2.2f and 2.2g, Asymmetry vs Hybrid with paired t-test, t(99) 
= -1.35, p = .18; Figure 2.3b and 2.3c, Asymmetry vs Hybrid with paired t-test, t(99) = 1.07, p 
= .29; Figure 2.3f and 2.3g, Asymmetry vs Hybrid with paired t-test, t(99) = .05, p = .96), and 
the pseudo-perseverance induced by fitting the Perseverance model was controlled (Figure 2.2d, 
paired t-test, t(99) = 11.90, p < .001; Figure 2.2h, paired t-test, t(99) = -4.50, p < .001; Figure 
2.3d, paired t-test, t(99) = 24.56, p < .001; Figure 2.3h, paired t-test, t(99) = -36.16, p < .001). 
When the Hybrid model was fitted to the simulated data generated from the true Perseverance 
model, the pseudo-bias of learning rates induced by fitting the Asymmetry model was controlled 
(Figure 2.2j and 2.2k, Asymmetry vs Hybrid with paired t-test, t(99) = 20.56, p < .001; Figure 
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2.3j and 2.3k, Asymmetry vs Hybrid with paired t-test, t(99) = 17.88, p < .001), while the 
perseverance parameter was captured by the Perseverance model (Figure 2.2l, paired t-test, t(99) 
= -.49, p = .63; Figure 2.3l, paired t-test, t(99) = .82, p = .42). Furthermore, when the Hybrid 
model was fitted to the simulated data generated from the true Hybrid model assuming 
positivity/confirmation and negativity/opposite confirmation bias, the Hybrid model identified 
the true parameters related to both asymmetric updating and perseverance in each learning context 
(Figure 2.4 and 2.5). These data confirm that the Asymmetry, Perseverance, and Hybrid models 
were identifiable. Given that the advantage of the Hybrid model was validated, I subsequently 
applied the empirical data collected in the web-based experiment and open data from previous 
studies.  

 

Figure 2.2 The results of the simulation in the factual learning context. (a - d) The results of 
the true model with asymmetric learning rates assuming positivity bias ((12 = 0.5, (13 = 0.2). (e 
- h) The results of the true model with asymmetric learning rates assuming negativity bias ((12 =
0.2, (13 = 0.5). (i - l) The results of the true model assuming symmetric learning rates ((12 =
	(13 = 0.5) and choice perseverance (φ = 1.5). (a, e, i) The first column indicates the learning rates 
in the Asymmetry model. (b, f, j) The second column indicates the learning rates ((12	,	(13	) in the 
Hybrid (gradual) model. (c, g, k) The third column shows the degree of learning rate bias ((12 −
	(13 ). (d, h, l) The final column shows the perseverance parameter (φ) in the Perseverance 
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(gradual) and Hybrid (gradual) models. ***p < .001, **p < .01 and *p < .05. The error bars 
represent the standard error of the mean. The diamonds denote the ground-truth value of the 
parameters used in the data generation. 

 

Figure 2.3 The results of the simulation in the counterfactual learning context. (a - d) The 
results of the true model with asymmetric learning rates assuming confirmation bias ((12 =
0.5, (13 = 0.2, (52 = 0.2, (53 = 0.5 ). (e - h) The results of the true model with asymmetric 
learning rates assuming opposite confirmation bias ((12 = 0.2, (13 = 0.5, (52 = 0.5, (53 = 0.2). (i 
- l) The panel shows the results of the true model with symmetric learning rates ((12 =	(13 =
	(52 = (53 = 0.5) and choice perseverance (φ = 1.5). (a, e, i) The first column indicates the 
learning rates ((12	,	(13	, (52	,	(53	) in the Asymmetry model. (b, f, j) The second column indicates 
the learning rates in the Hybrid (gradual) model. (c, g, k) The third column indicates the degree 

of confirmation bias (9!
"29#$
0 −

9!$29#"
0 	 ). (d, h, l) The final column shows the perseverance 

parameter (φ) in the Perseverance (gradual) and Hybrid (gradual) models. ***p < .001, **p < .01 
and *p < .05. The error bars represent the standard error of the mean. The diamonds denote the 
ground-truth value of the parameters used in the data generation. 
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Figure 2.4 The results of the simulations generated from the Hybrid model (gradual) in the 
factual learning context. (a - d) The results of the true model with asymmetric learning rates 
assuming positivity bias ((12 = 0.5, (13 = 0.2) and choice perseverance. (e - h) The results of the 
true model with asymmetric learning rates assuming negativity bias ((12 = 0.2, (13 = 0.5) and 
choice perseverance. The first and second columns indicate the learning rates ((12	and (13) in the 
Asymmetry (a, e) and Hybrid (gradual) (b, f) models, respectively. (c, g) The third column shows 
the degree of learning rate bias ((12 −	(13). (d, h) The final column shows the perseverance 
parameter (φ) in the Perseverance (gradual) and Hybrid (gradual) models. ***p < .001, **p < .01 
and *p < .05. The error bars represent the standard error of the mean. The diamonds denote the 
ground-truth value of the parameters used in the data generation. 

 

Figure 2.5 The results of the simulations generated from the Hybrid (gradual) model in the 
counterfactual learning context. (a - d) The results of the true model with asymmetric learning 

0.00

0.25

0.50

0.75

1.00

αc
+ αc

−

Le
ar

ni
ng

 ra
te

a

0.00

0.25

0.50

0.75

1.00

αc
+ αc

−

Le
ar

ni
ng

 ra
te

b

−0.50

−0.25

0.00

0.25

0.50

De
gr

ee
 o

f b
ias

Learning rate Biasc

0

1

2

3

Pa
ra

m
et

er
 es

tim
at

es

Perseverance Parameterd

0.00

0.25

0.50

0.75

1.00

αc
+ αc

−

Le
ar

ni
ng

 ra
te

e

0.00

0.25

0.50

0.75

1.00

αc
+ αc

−

Le
ar

ni
ng

 ra
te

f

−0.50

−0.25

0.00

0.25

0.50

De
gr

ee
 o

f b
ias

Learning rate Biasg

0

1

2

3

Pa
ra

m
et

er
 es

tim
at

es

Perseverance Parameterh

Asymmetry Hybrid

Asymmetry Hybrid

   True model
   Hybrid with
  positive bias
    (αc+ > αc−)

  True model
  Hybrid with
 negative bias
    (αc+ < αc−)

*** *** ***

*** *** *** ***

(αc+ － αc−)

(αc+ － αc−)

0.00

0.25

0.50

0.75

1.00

αc
+ αc

− αu
+ αu

−

Le
ar

ni
ng

 ra
te

a

0.00

0.25

0.50

0.75

1.00

αc
+ αc

− αu
+ αu

−

Le
ar

ni
ng

 ra
te

b

−0.4

−0.2

0.0

0.2

0.4

De
gr

ee
 o

f b
ias

c

−2

0

2

4

6

pa
ra

m
et

er
 es

tim
at

es

Perseverance Parameterd

0.00

0.25

0.50

0.75

1.00

αc
+ αc

− αu
+ αu

−

Le
ar

ni
ng

 ra
te

e

0.00

0.25

0.50

0.75

1.00

αc
+ αc

− αu
+ αu

−

Le
ar

ni
ng

 ra
te

f

−0.4

−0.2

0.0

0.2

0.4

De
gr

ee
 o

f b
ias

Learning rate Biasg

−2

0

2

4

6

pa
ra

m
et

er
 es

tim
at

es

Perseverance Parameterh

Asymmetry

Asymmetry

Hybrid

Hybrid

       True model
       Hybrid with
  Confirmation bias
(αc+ > αc−, αu+ < αu−

              True model
              Hybrid with
Opposite confirmation bias
         (αc+ < αc−, αu+ > αu−

)

)

*** *** *** ***

*** *** *** ***

Perseverance Hybrid

Asymmetry Hybrid Perseverance Hybrid

Asymmetry Hybrid

         (αc+ + αu−
2 － αc− + αu+

)2

Learning rate Bias
         (αc+ + αu−

2 － αc− + αu+
)2

***

*** ***

***



 26 

rates assuming confirmation bias ( (12 = 0.5, (13 = 0.2, (52 = 0.2, (53 = 0.5 ) and choice 
perseverance. (e - h) The results of the true model with asymmetric learning rates assuming 
opposite confirmation bias ((12 = 0.2, (13 = 0.5, (52 = 0.5, (53 = 0.2) and choice perseverance. 
The first and second columns indicate the learning rates ((12, (13, (52, and (53) in the Asymmetry 
(a, e) and Hybrid (gradual) (b, f) models, respectively. (c, g) The third column shows the degree 

of learning rate bias (9!
"29#$
0 −

9!$29#"
0 ). (d, h) The final column shows the perseverance parameter 

(φ) in the Perseverance (gradual) and Hybrid (gradual) models. ***p < .001, **p < .01 and *p 
< .05. The error bars represent the standard error of the mean. The diamonds denote the ground-
truth value of the parameters used in the data generation. 

2.3.2 Application of the Hybrid model to empirical data 

 Our subsequent aim was to evaluate the extent to which asymmetric updating and choice 
perseverance influence actual human choice behavior. To reliably achieve this goal, I conducted 
a web-based experiment to obtain a relatively large sample size (N = 143 per context; see details 
in the ‘Methods’ section).  

Behavioral performance in the web-based experiment 

To determine whether the subjects in the web-based experiment adequately learned the 
probabilistic instrumental learning task, I conducted a two-way repeated-measures analysis of 
variance (rmANOVAs) with the effects of Context (factual and counterfactual) and Phase (1st to 
4th) of the preferred response rate under the same condition and the correct rate under the different 
and reversal conditions (Figure 2.6). 

Under the same condition, a significant main effect of Phase was observed (F(2.82,400) 
= 3.74, p = .01), whereas the main effect of Context and the interaction were not significant 
(Context: F(1,142) = 2.21, p = .14; Context × Phase: F(2.71,385.31) = 3.74, p = .71). The post 
hoc comparisons showed that the preferred rate significantly increased from the 1st to 3rd phase 
(p < .01). Under the different condition, the main effect of Phase and the interaction were 
significant (Phase: F(2.76,392.35) = 30.07, p < .001; Context × Phase: F(2.69,382.62) = 4.50, 
p < .01), and no main effect of Context was observed (F(1,142) = 2.68, p = .10). Significant simple 
effects of Phase were observed in both the factual and counterfactual contexts 
(factual: F(2.71,384.91) = 9.82, p < .001; counterfactual: F(2.63,373.86) = 28.26, p < .001). 
Additionally, significant simple effects of Context were found in the 2nd and 3rd phases 
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(2nd: F(1,142) = 6.79, p < .05; 3rd: F(1,142) = 7.25, p < .001). The post hoc comparisons showed 
that the correct rate significantly increased from the 1st to 2nd (p < .05) and from the 3rd to 4th 
(p <.05) phases in the factual learning context, whereas the correct rate increased only from the 
3rd to 4th phases (p <.05) in the counterfactual learning context. These results suggest that the 
subjects successfully learned the reward probabilities of the presented options. Under the reversal 
condition, the main effect of Phase was significant (F(2.16,306.59) = 102.5, p < .001), but the 
main effect of Context and the interaction were not (Context: F(1,142) = .002, p = .97; Context × 
Phase: F(2.3,326.03) = 1.56, p = .21). The post hoc comparisons indicated that the correct rate 
significantly increased in the 2nd phase, decreased in the 3rd phase, and then increased again in 
the 4th phase (ps < .001). This profile confirmed that the subjects detected the reversal in the 
reward probability. 

 

Figure 2.6 Behavioral performances across the three conditions in the factual and 
counterfactual contexts of the web-based experiment. I divided each learning session into four 
subphases. Each curve shows the average performances of 143 participants in the four phases. 
The error bars represent the standard errors of the mean. (a) Under the same condition, 
performance was measured as the preferred rate. Under both the different (b) and reversal (c) 
conditions, performance was measured as the correct rate. Blue and green denote the factual and 
counterfactual learning contexts, respectively. ***p < .001, **p < .01, and *p < .05. 

Model comparisons using web-based experimental data 

 In addition to the three models used in the simulation (Asymmetry, Perseverance, and 
Hybrid models), a standard RL model was fitted to the empirical datasets as a benchmark for the 
model comparisons. Furthermore, I used two variants of the Perseverance and Hybrid models. 
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The original models used in the simulation have a gradual decay rate (0 ≦ τ ≦ 1) in which several 
preceding choices influence the current choice. In addition to these Perseverance and Hybrid 
models with a gradual decay rate, I also fitted Perseverance and Hybrid models with an impulsive 
decay rate (τ = 1) in which only the immediately preceding choice influences the current choice 
because this type of decay rate was included in the models reported in a previous study (Palminteri, 
Lefebvre, et al., 2017). Thus, I applied six models (i.e., RL, Asymmetry, Perseverance (impulsive), 
Hybrid (impulsive), Perseverance (gradual), and Hybrid (gradual) models) to the subjects’ choice 
behavior and then compared these models using log marginal likelihood (LML; Table 2.2). 

 In the factual learning context, the Perseverance model was the best among the six 
models (rmANOVA; F(1.73,246.04) = 17.69, p < .001; post hoc comparison: ps < .05) but was 
comparable with the Hybrid (gradual) model (post hoc comparison: p > .99). In the counterfactual 
learning context, the log marginal likelihood was decreased in the order of Perseverance (gradual), 
Hybrid (gradual), Asymmetry, Perseverance (impulsive), Hybrid (impulsive), and RL models 
(rmANOVA; F(1.74,246.92) = 31.09, p < .001). The Perseverance (gradual) model was the best 
among the six models (post hoc comparisons: ps < .05). These results indicate that the preceding 
choices greatly influenced the current choice in both learning contexts. 

Table 2.2 List of models and model selection results of the web-based experiment data 

 

Learning context Model Learning rate (s) Inverse
temperature Perseverance # of free

parameters
Log marginal
likelihood (SD)

RL α β − 2 -123.99 (15.64)

Asymmetry α c
+ , α c

- β − 3 -120.33 (19.36)

Perseverance (inpulsive) α β τ =1, φ 3 -121.12 (20.20)

Perseverance (gradual) α β τ, φ 4 -118.41 (21.83)

Hybrid (implusive) α c
+ , α c

- β τ =1, φ 4 -120.51 (21.08)

Hybrid (gradual) α c
+ , α c

- β τ, φ 5 -118.69 (22.47)

RL α β − 2 -121.27 (20.98)

Asymmetry α c
+ , α c

- , αu
+ , αu

- β − 5 -115.28 (25.83)

Perseverance (inpulsive) α β τ =1, φ 3 -116.97 (25.50)

Perseverance (gradual) α β τ, φ 4 -113.18 (27.21)

Hybrid (implusive) α c
+ , α c

- , αu
+ , αu

- β τ =1, φ 6 -117.27 (26.64)

Hybrid (gradual) α c
+ , α c

- , αu
+ , αu

- β τ, φ 7 -114.54 (27.01)

Counterfactual
learning

Factual
learning
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Parameter estimates using web-based experiment data 

 To empirically confirm that the Hybrid model can evaluate the degree of asymmetric 
value updating by controlling the pseudo-bias of learning rates, I compared the estimated learning 
rates among the three models (Asymmetry, Hybrid (impulsive), and Hybrid (gradual) models; 
Table 2.3). I predicted that if the bias of learning rates estimated by fitting the Asymmetry model 
was pseudo-bias, this bias should disappear by fitting the Hybrid (gradual) model. This prediction 
was confirmed in the factual learning context. The positivity bias of learning rates ((12 > (13) 
observed in the Asymmetry model (Figure 2.7a; t(142) = 4.70, p < .001) disappeared by fitting 
the Hybrid (gradual) model (Figure 2.7c; t(142) = -.54, p = .59) but not by fitting the Hybrid 
(impulsive) model (Figure 2.7b; t(142) = 2.26, p = .03). Indeed, the degree of positivity bias 
decreased in the order of the Asymmetry, Hybrid (impulsive), and Hybrid (gradual) models 
(Figure 2.7d; F(1.42,202.94) = 37.26, p < .001; post hoc comparisons: all ps < .001). In the 
counterfactual learning context, our prediction was also confirmed. According to a previous study 
(Palminteri, Lefebvre, et al., 2017), confirmation bias in RL is characterized as follows: the 
learning rates of the outcome that supports one’s choice (i.e., learning rate of the positive outcome 
of the chosen option ((12) and negative outcome of the unchosen option ((53) are higher than the 
learning rates that do not support one’s choice (i.e., learning rate of the negative outcome of the 
chosen option ((13) and positive outcome of the unchosen option ((52)). The confirmation bias of 
the learning rates observed in the Asymmetry model (Figure 2.7f; a two-way repeated-measures 
ANOVA; interaction: F(1,142) = 155.21, p < .001) was diminished by fitting the Hybrid (gradual) 
model (Figure 2.7h; interaction: F(1,142) = .85, p = .36) but not by fitting the Hybrid (impulsive) 
model (Figure 2.7g; interaction: F(1,142) = 83.73, p < .001). The degree of confirmation bias 

(9!
"29#$
0 −

9!$29#"
0 	) was significantly decreased in the order of the Asymmetry, Hybrid (impulsive), 

and Hybrid (gradual) models (Figure 2.7i; F(1.28, 182.05) = 59.70, p < .001; post hoc 
comparisons: all ps < .001). 

Furthermore, to confirm that the Hybrid model can evaluate the degree of choice 
perseverance by controlling pseudo-perseverance, I examined the perseverance parameter (φ) in 
the four models (Perseverance (impulsive), Perseverance (gradual), Hybrid (impulsive), and 
Hybrid (gradual) models; Table 2.3). In the factual learning context, the perseverance parameters 
in the Perseverance (gradual) and Hybrid (gradual) models were comparable (Figure 2.7e; 
rmANOVA: F(1.62,230.24) = 38.90, p < .001; post hoc comparisons: p = .12) but significantly 
higher than those in the Perseverance (impulsive) and Hybrid (impulsive) models (ps < .001). 
Similarly, in the counterfactual learning context, the perseverance parameters in the Perseverance 
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(gradual) and Hybrid (gradual) models were comparable (Figure 2.7j; rmANOVA: F(1.77, 
251.69) = 111.47, p < .001; post hoc comparisons: p = .13) but significantly higher than those in 
the Perseverance (impulsive) and Hybrid (impulsive) models (ps < .001). 

 Taken together, these results indicate that choice perseverance mainly governed choice 
behavior in the web-based experiment. This result also highlights that the Hybrid model allowed 
us to clarify a genuine process underlying the empirical choice data. 

Table 2.3 List of models and parameter results of the web-based experiment data 

 

 

Figure 2.7 The results of the web-based experiment. The rows show the results of the web-
based experiment in the factual and counterfactual learning contexts. The first to third columns 

Model α α c
+ α c

- αu
+ αu

- β τ φ

RL 0.36 (0.32) − − − − 0.32 (0.48) − −

Asymmetry − 0.43 (0.30) 0.26 (0.32) − − 0.19 (0.20) − −

Perseverance (inpulsive) 0.35 (0.32) − − − − 0.27 (0.36) 1.00 0.47 (0.46)

Perseverance (gradual) 0.45 (0.32) − − − − 0.19 (0.26) 0.41 (0.30) 1.10 (1.26)

Hybrid (implusive) − 0.41 (0.31) 0.32 (0.34) − − 0.17 (0.20) 1.00 0.33 (0.35)

Hybrid (gradual) − 0.45 (0.34) 0.47 (0.33) − − 0.13 (0.15) 0.39 (0.30) 0.98 (1.35)

RL 0.18 (0.22) − − − − 0.51 (1.04) − −

Asymmetry − 0.41 (0.30) 0.15 (0.21) 0.15 (0.23) 0.40 (0.33) 0.18 (0.23) − −

Perseverance (inpulsive) 0.23 (0.27) − − − − 0.36 (0.60) 1.00 0.59 (0.54)

Perseverance (gradual) 0.35 (0.29) − − − − 0.21 (0.33) 0.33 (0.27) 1.62 (1.32)

Hybrid (implusive) − 0.37 (0.30) 0.16 (0.23) 0.17 (0.25) 0.34 (0.31) 0.19 (0.26) 1.00 0.21 (0.37)

Hybrid (gradual) − 0.39 (0.34) 0.36 (0.33) 0.35 (0.33) 0.36 (0.33) 0.17 (0.23) 0.38 (0.32) 1.49 (1.36)
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represent the learning rates in the Asymmetry (a, f), Hybrid (impulsive) (b, g), and Hybrid 
(gradual) models (c, h). (d, i) The fourth column indicates the degree of learning rate bias (i.e., 
positivity bias in the factual context and confirmation bias in the counterfactual context). (e, j) 
The final column shows the perseverance parameter (φ) in the Perseverance (impulsive), 
Perseverance (gradual), Hybrid (impulsive), and Hybrid (gradual) models. ***p < .001, **p < .01 
and *p < .05. The error bars represent the standard error of the mean. 

Parameter recovery using web-based experimental data 

 While it is important to identify the perseverance parameter (φ) in the Perseverance 
(gradual) and Hybrid (gradual) models, it is possible that the perseverance parameter and inverse 
temperature parameter (β) represent a trade-off (see Equation 2.4 in the ‘Methods’ section). To 
determine the identifiability of these parameters, I calculated the correlation between the 
estimated parameters and further performed parameter recovery under both the factual and 
counterfactual conditions (see ‘Methods’ section). The correlation analysis ensured that the 
perseverance parameter was not significantly correlated with the inverse temperature parameter 
in both learning contexts in both the Perseverance (gradual) and Hybrid (gradual) models (Figure 
2.8; ps > .99). The parameter recovery also indicated that all parameters were well recovered in 
the factual (Figure 2.9; 0.84 < r < 0.98, all ps < .001 with Bonferroni correction) and 
counterfactual (Figure 2.9; .75 < r < .95, all ps < .001 with Bonferroni correction) learning 
contexts. These results confirm that the parameter optimization procedure used in this study 
allowed us to identify the free parameters in each model. 
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Figure 2.8 Parameter correlation in the web-based experiment. Correlation matrices 
indicating Pearson’s correlations between the estimated parameters. The top row was estimated 
from the Asymmetry model in the factual (a) and counterfactual (b) learning contexts. The bottom 
row was estimated from the Hybrid (gradual) model in the factual (c) and counterfactual (d) 
learning contexts. The color and value in each cell represent Pearson’s correlation coefficients. 
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Figure 2.9 Parameter recovery in the web-based experiment. The correlation matrix 
represents the Pearson’s correlation coefficients between the parameters estimated from the 
empirical data (x-axis) and the simulated data (y-axis). (a - c) The results of the Asymmetry, 
Perseverance (gradual), and Hybrid (gradual) models in the factual learning context. (d - f) The 
results of the Asymmetry, Perseverance (gradual), and Hybrid (gradual) models in the 
counterfactual learning context. The color and value in each cell represent the Pearson’s 
correlation coefficients. Additionally, in the diagonal elements, the root mean squared errors 
between the true value used in the data generation and the estimated value are noted in the 
parentheses. 

Model-neutral analysis 

 Katahira (2018) proposed the use of a model-neutral analysis to examine the existence 
of the asymmetric value updating process without the RL model framework. This analysis utilizes 
the fact that the asymmetric learning rate induces an interaction effect between past outcomes on 
the current choice. The merit of a model-neutral analysis is that it does not assume a specific 
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functional form regarding how past experience influences the reward, while RL model fitting does 
make this assumption. Thus, there is a possibility that the absence of the asymmetric learning rate 
in the RL model fitting is due to a mismatch of the functional form. To examine this possibility, 
I performed a model-neutral analysis (see details in Methods) of the empirical choice data. 
Consequently, no evidence of asymmetric value updating was observed, which is consistent with 
our RL model-based analysis.  

In the factual learning context, the logistic regression model included the following three 
terms: the outcome of the chosen option at the #-th trial (Rct), the chosen outcome at the (# − 1)-
th trial (Rct-1), and the interaction between these past outcomes (Rct×Rct-1). The regression 
coefficients of Rct and Rct-1 were significant and positive (Rct: β = .89, p < .001; Rct-1: β = .40, p 
< .001, Table 2.4). However, the interaction was not significant (Rct×Rct-1: β = -.08, p = .30), 
indicating that evidence of asymmetry in value updating during the underlying learning process 
was lacking. In addition, the intercept was significant and positive (β = .27, p < .001), suggesting 
a tendency to repeat choices. 

In the counterfactual context, the logistic regression model including the following six 
terms: the chosen outcome at the #-th trial (Rct), the chosen outcome at the (# − 1)-th trial (Rct-
1), the interaction between these past outcomes (Rct×Rct-1), the outcome of the unchosen option 
at the #-th trial (Rut), the unchosen outcome at the (# − 1)-th trial (Rut-1), and the interaction 
between these latter two outcomes (Rut×Rut-1). The regression coefficients of Rct and Rct-1 were 
significant and positive (Rct: β = .59, p < .001; Rct-1: β = .27, p < .001, Table 2.4). However, the 
regression coefficients of Rut and Rut-1 were significant but negative (Rut: β = -.40, p < .001; Rut-
1: β = -.19, p < .001). Furthermore, neither interactions (between the outcomes of the chosen 
options or between those of the unchosen options) were significant (Rct×Rct-1: β = -.011, p = .19; 
Rut×Rut-1: β = -.09, p = .27), further indicating that evidence of asymmetric value updating is 
lacking. The intercept was significant and positive (β = .98, p < .001). 
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Table 2.4 Regression coefficients of the logistic regression model in the model-neutral 
analysis 

 

2.3.3 Application of the Hybrid model using open data 

As shown above, the Hybrid model allowed us to identify a genuine process underlying 
the empirical choice data. Here, to reconsider the processes underlying open datasets collected by 
previous studies reporting asymmetric value updating, I re-analyzed these open datasets by 
applying the Hybrid model. Similar to the web-based experiment, I fitted six models (the RL, 
Asymmetry, Perseverance (impulsive), Perseverance (gradual), Hybrid (impulsive), and Hybrid 
(gradual) models) to these open datasets and compared the parameter estimates. 

Dataset 1 (Palminteri et al., 2017) 

Dataset 1 comprised the open data reported by Palminteri, Lefebvre, et al. (2017), who 
examined the asymmetric learning rates in both the factual and counterfactual learning contexts. 
The model comparisons (Table 2.5) showed that the Perseverance (gradual) model was the best 

Learning context Effect

Intercept 0.27 (0.07) 3.78 < 0.001 ***
Rc t 0.89 (0.08) 11.74 < 0.001 ***
Rc t-1 0.40 (0.06) 6.56 < 0.001 ***
Rc t×Rc t-1 -0.08 (0.08) -1.04 0.30

Intercept 0.98 (0.09) 10.93 < 0.001 ***
Rc t 0.59 (0.08) 7.76 < 0.001 ***
Rc t-1 0.27 (0.06) 4.72 < 0.001 ***
Ru t -0.40 (0.07) -5.88 < 0.001 ***
Ru t-1 -0.19 (0.06) -3.11 < 0.01 **
Rc t×Rc t-1 -0.11 (0.08) -1.32 0.19
Ru t×Ru t-1 -0.09 (0.08) -1.1 0.27

Note :  Rc t  = chosen outcome at t-th trial;  Rc t-1  = chosen outcome at (t - 1)-th trial;
          Ru t  = unchosen outcome at t-th trial; and Ru t-1  = unchosen outcome at (t - 1)-th trial.

Beta  (SE ) z-value p-value

Factual learning

Counterfactual
      learning
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among the models in both the factual (F(1.11,21.16) = 6.41, p = .02) and counterfactual 
(F(1.39,26.32) = 26.58, p < .001) learning contexts. 

In the factual learning context, by fitting the Asymmetry model, I replicated the finding 
showing that the learning rate of the positive outcome ((12) was significantly higher than that of 
the negative outcome ((13)  (Figure 2.10a; paired t-test, t(19) = 2.36, p = .03), supporting 
positivity bias. However, this positivity bias ((12 −	(13) was decreased by fitting the Hybrid 
(impulsive) model (Figure 2.10b; paired t-test, t(19) = 1.35, p = .19) and was diminished by 
fitting the Hybrid (gradual) model (Figure 2.10c; paired t-test, t(19) = .15, p = .88). Indeed, the 
degree of positivity bias was significantly smaller in the order of the Asymmetry, Hybrid 
(impulsive), and Hybrid (gradual) models (Figure 2.10d; F(1.53,28.98) = 15.95, p < .001; post 
hoc comparisons, all ps < 4.47×10-3). Although the degree of the perseverance parameter 
significantly differed among the models (Figure 2.10e; rmANOVA, F(2.05, 39.04) = 16.09, p 
< .001; post hoc comparisons, all ps < .047), the perseverance parameters (φ) estimated in the 
Perseverance and Hybrid models were above zero, leading to repeat preceding choices. 

In the counterfactual learning context, I also replicated the finding showing that the 
learning rate of positive RPE was greater than that of negative RPE in terms of the chosen 
outcomes (i.e., (12 >	(13), but the opposite was observed in terms of the unchosen outcomes (i.e., 
(52 <	(53 ) (Figure 2.10f; two-way rmANOVA, interaction: F(1,19) = 124.88, p < .001), 
indicating confirmation bias. Although this confirmation bias was also observed by fitting the 
Hybrid (impulsive) (Figure 2.10g; F(1,19) = 53.45, p < .001) and Hybrid (gradual) models 
(Figure 2.10h; F(1,19) = 5.58, p = .03), a significant difference in the learning rates was not 
observed between the positive and negative RPE of both the chosen and unchosen outcomes in 
the Hybrid (gradual) model (ps > .15). The degree of confirmation bias in the Hybrid (gradual) 
model was significantly smaller than that in the Hybrid (impulsive) model (Figure 2.10i; 
rmANOVA, F(1.21, 23) = 7.10, p = .010; post hoc comparisons, p = .04). The perseverance 
parameter in the Hybrid (gradual) model was smaller than that in the Perseverance (gradual) 
model (Figure 2.10j; rmANOVA, F(1.69, 32.16) = 25.98, p < .001; post hoc comparison, p = 
1.43×10-3) but remained positive. 

 According to these results, the view claimed in the previous study (i.e., the existence of 
asymmetry in the learning rate) was not supported. In contrast, our results suggest that the choice 
behavior in Dataset 1 was mainly governed by choice perseverance rather than asymmetric value 
updating in both the factual and counterfactual learning contexts. 
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Dataset 2 (Niv et al., 2012) 

Dataset 2 comprised the open data reported by Niv et al. (2012), who applied the 
Asymmetry model to explain risk-seeking/aversion behaviors in the factual learning context. In 
contrast to Dataset 1, the Asymmetry model was better than the Hybrid (impulsive) and Hybrid 
(gradual) models (Table 2.5; rmANOVA, F(1.43,21.52) = 4.29, p = .04; post hoc comparisons, 
ps = 3.01×10-3) but did not significantly differ from the RL, Perseverance (impulsive), and 
Perseverance (gradual) models (ps > .41).  

As Niv et al. (2012) reported, in the Asymmetry model, the learning rate of positive 
RPE ((12) was significantly lower than that of negative RPE ((13) (Figure 2.10k; t(15) = -3.07, p 
= 7.80×10-3). This negativity bias were also observed in the Hybrid (impulsive) (Figure 2.10l; 
t(15) = -3.06, p = 7.93×10-3) and Hybrid (gradual) models (Figure 10m; t(15) = -2.84, p = .012). 
The degree of negativity bias ((12 −	(13) was comparable among these models (Figure 2.10n; 
rmANOVA, F(1.01,15.19) = .75, p = .40). Additionally, the perseverance parameter (φ) in the 
Hybrid (gradual) model was almost zero and did not significantly differ from that in the 
Perseverance (impulsive), Perseverance (gradual), and Hybrid (impulsive) models (Figure 2.10o; 
rmANOVA, F(1.55, 23.23) = 0.87, p = .41). Thus, our results based on the Hybrid model support 
the asymmetric value updating process claimed in a previous study (Niv et al., 2012). 

Table 2.5 Models and model selection results of Dataset 1 (Palminteri et al., 2017) and 
Dataset 2 (Niv et al., 2012)  

 

Table S2. The list of models and model selection results for open data

Learning context Model Learning rate (s) Inverse
temperature Perseverance # of free

parameters
LML (SD)
Dataset1

LML (SD)
Dataset2

RL α β − 2 -99.23 (24.09) -67.62 (6.69)

Asymmetry α c
+ , α c

- β − 3 -90.21 (26.09) -67.60 (8.57)

Perseverance (inpulsive) α β τ =1, φ 3 -91.34 (27.25) -69.57 (7.03)

Perseverance (gradual) α β τ, φ 4 -87.50 (28.12) -68.44 (7.68)

Hybrid (implusive) α c
+ , α c

- β τ =1, φ 4 -90.17 (27.12) -69.66 (8.85)

Hybrid (gradual) α c
+ , α c

- β τ, φ 5 -88.55 (27.44) -69.35 (8.66)

RL α β − 2 -89.18 (25.91) −

Asymmetry α c
+ , α c

- , αu
+ , αu

- β − 5 -76.09 (29.89) −

Perseverance (inpulsive) α β τ =1, φ 3 -80.01 (29.87) −

Perseverance (gradual) α β τ, φ 4 -75.82 (29.35) −

Hybrid (implusive) α c
+ , α c

- , αu
+ , αu

- β τ =1, φ 6 -78.15 (30.24) −

Hybrid (gradual) α c
+ , α c

- , αu
+ , αu

- β τ, φ 7 -77.11 (30.35) −

Factual
learning

Counterfactual
learning
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Figure 2.10 The results of open datasets 1 and 2. (a - e) The results of open dataset 1 (Palminteri 
et al., 2017) in the factual learning context. (f - j) The results of open dataset 1 in the counterfactual 
learning context. (k - o) The results of open dataset 2 (Niv et al., 2012). The first to third columns 
indicate the learning rates ((12	and	(13	in the factual learning context; (12	,	(13	, (52	, and	(53	in the 
counterfactual context) in the Asymmetry (a, f, k), Hybrid (impulsive) (b, g, l), and Hybrid 
(gradual) (c, h, m) models. (d, i, n) The fourth column shows the degree of learning rate bias. (e, 
j, o) The final column shows the perseverance parameter (φ) in the Perseverance (impulsive), 
Perseverance (gradual), Hybrid (impulsive), and Hybrid (gradual) models. ***p < .001, **p < .01 
and *p < .05. The error bars represent the standard error of the mean. 

2.4 Discussion 

This study considered a method to dissociate two factors underlying human choice 
behavior, i.e., asymmetric learning and choice perseverance. By using these methods, I attempted 
to identify the processes underlying human choice behavior. In the simulation, I replicated 
previous findings (Katahira, 2018) showing that pseudo-asymmetric updating was induced when 
a model without perseverance (Asymmetry model) was fit to simulated data from a model with 
symmetric updating and perseverance (Perseverance (gradual) model). In contrast, when a model 
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without perseverance was fitted to the simulated data generated from a model with true 
asymmetric updating, pseudo-perseverance was observed. As Katahira (2018) mentioned, these 
results show that asymmetric updating and choice perseverance result in similar choice behavior 
statistical properties. Therefore, it is important to investigate how to dissociate these processes 
underlying choice behavior. In this study, I considered the Hybrid model, which incorporating 
both asymmetric updating and perseverance components, and I tested the capability of the Hybrid 
model using simulated and empirical datasets. The simulations showed that the Hybrid model 
could identify the following true parameters in the simulated dataset generated from all 
hypothetical models: optimistic asymmetric updating, pessimistic asymmetric updating, and 
symmetric updating with perseverance. The Hybrid model also identified the true parameters of 
the simulated dataset from a hypothetical model containing asymmetric updating and 
perseverance. These results support the advantage of the Hybrid model in distinguishing the 
processes underlying choice behavior. 

 Palminteri, Lefebvre, et al. (2017) claimed that asymmetric value updating underlies 
choice behavior in a probabilistic instrumental learning task. Their candidate models also included 
the Perseverance model and showed that an asymmetric learning rate model attained a better fit 
than the Perseverance model (Palminteri, Lefebvre, et al., 2017). However, their Perseverance 
model only considered impulsive perseverance (the influence of only the most recent choice under 
the same condition). As Katahira (2018) noted, a model that considers only impulsive 
perseverance is insufficient for avoiding statistical bias in estimates of the learning rate. Thus, 
there is a possibility that the overlooked influence of a more distant past induces pseudo-
asymmetric learning rates.  

 To determine whether learning asymmetry or perseverance is dominant in choice 
behavior in a probabilistic instrumental learning task while addressing the above issue, I applied 
the Hybrid model (with gradual perseverance) to the empirical data. To obtain the empirical data, 
I mainly focused on data collected in a web-based experiment involving relatively large samples 
(N = 143 per context; compared with the previous study, N = 20 per context) to improve the 
statistical robustness. As previously reported (Lefebvre et al., 2017; Palminteri, Lefebvre, et al., 
2017), I replicated the asymmetry in learning rates in both factual and counterfactual learning 
contexts in a model without the perseverance factor (Asymmetry model). The learning rates of 
the chosen outcomes when the outcomes were positive were greater than those when the outcomes 
were negative, whereas the opposite pattern was observed in the learning rates of the unchosen 
outcomes. Such asymmetry was interpreted as "confirmation bias" in a previous study (Palminteri, 
Lefebvre, et al., 2017). However, I found that this asymmetry in learning rates disappeared when 
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the Hybrid model was fitted, including the gradual perseverance factor (τ < 1) and the asymmetric 
learning rate (Hybrid (gradual) models. Moreover, the model-neutral analysis did not support the 
existence of asymmetric value updating. These findings support our previous claim that model 
misspecification in which perseverance is not considered in the model can cause the erroneous 
detection of asymmetry in the learning rates of choice behavior (Katahira, 2018). Our results also 
highlight the merit of the Hybrid model in identifying the underlying process in empirical data. 

 I also showed that when the Hybrid model, which included impulsive perseverance (τ = 
1), was fitted, the asymmetric learning rates were significant in both contexts. Furthermore, I 
demonstrate that this residual asymmetry of learning rates disappeared when using the Hybrid 
model that incorporated gradual perseverance (τ < 1). Indeed, similar results were obtained using 
open data in a previous study (Palminteri, Lefebvre, et al., 2017). These findings suggest that the 
superiority of the asymmetric learning model over the perseverance model in the previous study 
was due to an insufficient length of the choice history. 

Furthermore, I demonstrated that the Hybrid model could identify asymmetric updating 
in empirical data obtained in a different type of task. In the open data reported by Niv et al. (2012), 
the asymmetry in the learning rates remained after controlling for choice perseverance. The factor 
inducing asymmetry in value updating in the context of reinforcement learning remains unclear. 
It is possible that the structural differences in the instrumental learning tasks might contribute to 
the discrepancy between the two datasets of open data in the influence of choice perseverance. In 
Niv et al. (2012), the existence of forced choices might have weakened the effect of choice history 
(Alós-Ferrer et al., 2016). Furthermore, the existence of certain options that vary the risk level 
between the options might lead to asymmetric value updating. Future studies should investigate 
the psychological source of asymmetric learning rates. 

In conclusion, I demonstrate the utility of the Hybrid model with multiple computational 
components in dissociating the cognitive process underlying human choice behavior. The 
proposed model used in this study contributes to a deeper understanding of the neural mechanisms 
of and individual differences in these cognitive components in instrumental learning. 
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Chapter 3 Pursuit of overtly unprofitable targets: computational 

substrates and its psychological effects                      

3.1 Introduction 

Repetitive choice behaviors are induced by either extrinsic or intrinsic information 
resulted from own choices (i.e., chosen outcomes and choice per se). Through Chapter 2, I 
developed the hybrid model incorporating these information processing based on the 
reinforcement learning model, and demonstrated that this hybrid model could dissociate the 
impact of each information in human choice behaviors. Thus, in Chapter 3, I aimed to investigate 
the computational process underlying the pursuit of the hard-to-get target by using the hybrid 
model developed in Chapter 2. 

Life is a series of choices. For example, we are often faced with the selection of a partner 
in the real world. Although selecting a person with whom one could build a good relationship is 
critical to enriching one's life, humans sometimes direct their unrequired passion toward the 
person who hardly responds in a positive manner.  

Reinforcement learning is the predominant framework to account for choice behavior 
in organisms (Doya, 2007; Thorndike, 1911). From a traditional reinforcement learning 
perspective, choice behaviors depend on previously obtained outcomes (Daw & Tobler, 2013; 
Sutton & Barto., 1998). According to this outcome-dependent process, the option that is never 
reinforced is rarely chosen. Thus, it is difficult to explain pursuit of hard-to-get targets by 
reinforcement learning. From the computational perspective of reinforcement learning, previous 
studies have reported that asymmetric value updating (Frank et al., 2007; Samuel J Gershman, 
2015; Lefebvre et al., 2017; Niv et al., 2012; Palminteri, Lefebvre, et al., 2017) and choice 
perseverance (Akaishi et al., 2014; Alós-Ferrer & Shi, 2015; Erev et al., 2013; Lau & Glimcher, 
2005; Schönberg et al., 2007) lead to repetitive choices. Asymmetric value updating is able to 
facilitate the impact of positive outcomes and to inhibit the impact of negative outcomes, 
subsequently leading to repeating the previous choice. On the other hand, choice perseverance 
leads us to repeat the past choice independent of past outcomes. It is possible that the 
reinforcement learning model with asymmetric value updating or choice perseverance accounts 
for the pursuit of hard-to-get targets. The purpose of this study is to investigate whether the pursuit 
of a hard-to-get target is accounted for by asymmetric value updating, choice perseverance or 
both. 
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Preference is another important factor in decision-making. Most people might believe 
that the pursued target is the most preferred for the decision-maker. In general decision theory, 
preferences are thought to be stable over time (Glimcher, 2009), and we can infer others’ 
preferences from their choices. However, many studies have reported that the choice per se 
increases the preference for the chosen target (Ariely & Norton, 2008; Brehm, 1956; Cockburn et 
al., 2014; Hornsby & Love, 2020; Izuma & Murayama, 2013; Koster et al., 2015; Nakao et al., 
2016; Schonberg et al., 2014; Sharot et al., 2009). Through this choice-induced reevaluation, the 
chosen target becomes more preferred, which will often lead to choosing the same option again. 
Therefore, it is reasonable that even when the target is not the most attractive at a baseline, if the 
target is continuously chosen, the target comes to be recognized as more attractive. 

Based on the above evidence, I hypothesized that cognitive computation processes, such 
as asymmetric value updating or choice perseverance, lead us to repeatedly choose the hard-to-
get target, subsequently increasing the attractiveness of the selected target. Here, to investigate 
this hypothesis, an avatar choice task that mimicked partner selection was used in a web-based 
experiment. To control the baseline attractiveness of the avatars presented in the choice task, I 
selected avatars based on preference ratings before the choice task. Additionally, by manipulating 
outcome probabilities, I established hard-to-get and easy-to-get avatars. Subjects rated the 
attractiveness of the avatars again after the choice task to examine whether attractiveness was 
altered via the choice task. As a consequence, I found that subjects with higher choice 
perseverance pursued the hard-to-get avatar which rarely provided positive reactions, resulting in 
the increased attractiveness of the hard-to-get avatar. 

3.2 Methods  

3.2.1 Subjects 

One hundred fifty subjects were recruited via CrowdWorks (https://crowdworks.jp/). 
Due to the nature of our task, I only recruited subjects who were at least 18 years old and were 
romantically interested in females. The study was approved by the ethical research committee at 
Nagoya University, and the study was carried out in accordance with the relevant guidelines and 
regulations. 
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3.2.2 Web-based experimental procedure 

Informed consent was obtained from all subjects by clicking ‘I Agree’ after reading the 
information about the aims and procedures of this study. After they completed the survey for basic 
demographic information, including gender and age, they downloaded the Inquisit player 
(Millisecond Software LLC, Seattle, USA) and started a series of behavioral tasks (see the details 
below). To protect subjects’ privacy, all data were anonymized. If the subject completed the entire 
task and survey without interruption, I paid 550 yen (approximately $5). 

Two subjects were excluded from the following analyses because they omitted more 
than 30% of choice trials. Thus, the data from 148 subjects (age: range = 18-65 years, M = 38.07, 
SD = 11.03) were analyzed. 

3.2.3 Behavioral tasks 

In the web-based experiment, the subjects performed two tasks: an avatar evaluation 
task and an avatar choice task. First, to investigate the baseline attractiveness of 48 avatars, the 
subjects performed the avatar evaluation task. In this task (Figure 3.1a), three pictures of an 
avatar with different facial expressions (positive, neutral, and negative expressions) were 
displayed on the computer screen. They were asked to rate the subjective attractiveness of the 
presented avatar on a 9-point scale (1: not at all attractive, 9: very attractive) by pushing the 
numeric keys on their PCs. The order of presentation of the avatars was randomized across 
subjects. 

After the avatar evaluation task was completed, subjects performed the avatar choice 
task. To minimize the difference in baseline attractiveness of the avatars used in the avatar choice 
task as much as possible, eight avatars were selected based on the attractiveness rated in the 
preceding avatar evaluation task in the following manner. (i) The avatars rated as 6 or 7 points 
were selected. If the number of avatars rated as 6 or 7 points was less than eight, (ii) among the 
avatars rated less than 5 points, the avatar with the highest point was selected. If the total number 
of selected avatars was still less than eight, (iii) among the avatars rated more than 8 points, the 
avatar with the lowest point was selected. Then, (ii) and (iii) were repeated in a sequence until 
eight avatars were selected. 

The avatar choice task consisted of two sessions. Four pairs were made from the eight 
selected avatars, and then two pairs (pair A and B) were used in each session. In each trial (Figure 
3.1b), subjects were required to choose one of two avatars presented on the screen for 3,000 ms. 
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The presented position of the avatars was randomized across trials. After the subject selected one 
avatar, the selected avatar was highlighted with a red frame until the 3,000 ms had elapsed. Then, 
the visual and auditory stimuli associated with the reaction of the selected avatar was presented 
2,000 ms. Specifically, the positive reaction was a smiling facial expression and a happy voice, 
while the negative reaction was a disappointed facial expression and a boring voice. At the display 
of the reaction, a horizontal bar, which represented the accumulated likability from the avatar to 
the subject, was presented below the avatar. The bar increased when the avatar expressed a 
positive reaction, while the bar did not change when the avatar expressed a negative reaction. The 
subjects were asked to maximize the likability from avatars throughout the task. In the first trial 
of each avatar pair, the reaction of the selected avatar was always negative. In the following trials, 
the ratio of positive and negative reactions was determined by the first choice to minimize the 
influence of first impressions (Shteingart et al., 2013). For pairs A and B, the reaction probability 
(positive/negative) of the initially chosen avatar was set at 0.1/0.9 and 0.9/0.1, respectively. Based 
on this probability, I referred to the initially chosen avatar in pair A as the “difficult” avatar and 
the initially chosen avatar in pair B as the “easy” avatar. For the unchosen avatars of both pairs 
(called "neutraldiff" and “neutraleasy”) in the first trial, the reaction probability was set at 0.5/0.5. 
These probabilities were fixed across the task so that subjects were required to learn the 
probability of each avatar (Figure 3.1c). In each session, subjects completed 80 trials (40 
trials/pair). The order of pairs was randomized for each subject and session. 

To investigate whether the attractiveness of the avatars was altered after the choice task, 
the subjects again rated the attractiveness of the 48 avatars presented at the initial evaluation task 
after they had completed the avatar choice task. 
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Figure 3.1 Behavioral task. (a) Avatar evaluation task. Subjects were asked to rate the 
attractiveness of 48 avatars on a 9-point scale. (b) Avatar choice task. This task required 
participants to choose one of the two avatars displayed on the screen and to maximize the 
likeability from the avatar represented as a length of red bar. After they chose an avatar (RT is 
response time), the reaction from the chosen avatar was displayed. Positive reactions increase the 
likeability, while negative reactions did not alter the likeability. (c) The outcome probability for 
each avatar was determined based on the first choice in the avatar choice task. In pair A, the 
initially chosen avatar was rarely associated with positive reactions in the subsequent trials 
(positive/negative = 0.1/0.9; i.e., difficult avatar). On the other hand, the initially chosen avatar 
in pair B was frequently associated with positive reactions in the subsequent trials 
(positive/negative = 0.9/0.1; i.e., easy avatar). 

3.2.4 Behavioral analyses 

I calculated the CP of avatars presented in the avatar choice task by dividing the number 
of choices by the number of trials (40 per avatar). Based on the CP of the difficult avatar (CPdiff), 
the subjects were divided into two groups: The Pursuit group (CPdiff was more than 0.5) and the 
No-pursuit group (CPdiff was less than 0.5). To confirm the difference in CP of the difficult and 
easy avatars between groups, two-way ANOVA with Group (Pursuit vs No-pursuit) and Avatar 
(difficult vs easy) was conducted. 

To examine whether the baseline attractiveness differed among the avatars, including 
difficult, easy, neutraldiff, neutraleasy, and the unused avatars that were not presented in the choice 
task in the two groups, two-way mixed-design ANOVA with Group (Pursuit vs No-pursuit) and 
Avatars (difficult, easy, neutraldiff, neutraleasy, and unused) was performed. Additionally, to 
investigate whether attractiveness changed after the avatar choice task, I calculated the difference 
in attractiveness before and after the avatar choice task for the avatars. Then, two-way mixed-
design ANOVA with Group (Pursuit vs No-pursuit) and Avatars (difficult, easy, neutraldiff, 
neutraleasy, and unused) was performed. To examine whether the attractiveness of each avatar was 
changed, the degree of changes in attractiveness was compared with zero by using one-sample t 
tests. The issue of multiple comparisons for one-sample t tests was corrected with Bonferroni’s 
method. Moreover, to examine whether the choice per se increased the attractiveness of the 
chosen avatar, a general linear model (GLM) analysis was performed. In this model, the change 
in attractiveness was a dependent variable. The changes in attractiveness of the avatars used in 
the choice task were pooled across all subjects. The number of choices, the number of positive 
reactions, and an interaction were independent variables. 
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All analyses were executed by using R version 4.0.2 statistical software (http://cran.us.r-
project.org). Post hoc pairwise comparisons for significant effects were conducted based on 
Shaffer’s correction for multiple comparisons. The statistical threshold for significance was set at 
0.05 for all behavioral analyses. 

3.2.5 Models 

In Chapter3, I mainly used three types of reinforcement learning models: (i) asymmetric, 
(ii) perseveration, and (iii) hybrid model. Although the models described below are identical with 
those used for the factual learning condition in Chapter 2, I redescribed the models to promote 
understanding. All models were modified based on a typical Q-learning model (called the “RL 
model”): 

N(#) = *(#) − ..(#) (3.1) 

..(# + 1) = ..(#) + (N(#) (3.2) 

Throughout this chapter, I basically consider cases with only two options (i = 1 or 2). 
The model assigns each option i an expected outcome Qi(t), where t is the index of the trial. The 
initial Q-values are set to zero (i.e., Q1(1) = Q2(1) = 0). The model updates the Q-values depending 
on the outcome of the choice (i.e., the reaction of the chosen avatar). The actual outcome at trial 
t is denoted by R(t). I typically consider a binary outcome case whereby I set R(t) = 1 if a positive 
reaction is given and R(t) = 0 if a negative reaction is given. The learning rate α determines how 
much the model updates the action value depending on the reward prediction error, δ(t). Here, I 
denote the option that is chosen at trial t by act(t) (= 1 or 2). Based on the set of Q-values, the 
model assigns the probability of choosing option 1 using the soft max function: 

2(@W#(#) = 1) = 	
1

1 + exp(−8[.*(#) − .0(#)])
(3.3) 

where β is called the inverse temperature parameter, which determines the sensitivity of 
the choice probabilities to differences in Q-values. 

Based on the RL model, the asymmetric model assumes two independent learning rates: 

..(# + 1) = O
..(#) + (2N(#) if N(#) ≥ 0
..(#) + (3N(#)	if N(#) < 0

(3.4) 
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where α+ adjusts the amplitude of value changes from one trial to the next when 
prediction errors are positive (when the actual reward R(t) is better than the expected outcome 
Q(t)); the changes with α− are vice versa. 

The perseveration model is also based on the RL model and adds the computational 
process of choice history independent of the outcome-based learning process (Akaishi et al., 2014; 
S. J. Gershman et al., 2009; Schönberg et al., 2007): 

;.(# + 1) = ;.(#) + =(i(@W#(#) = _) − ;.(#)) (3.5) 

The choice trace Ci(t) is defined to introduce the effect of past choice into the CP. The 
initial values of Ci(t) are set to zero (i.e., C1(1) = C2(1) = 0). The indicator function I(·) takes on 
a value of 1 if the statement is true and 0 if the statement is false. The decay rate τ is a free 
parameter that determines the number of preceding choices in the choice history influencing the 
current choice. When the choice is binary, the probability of choosing option 1 is implemented 
by the following: 

2(@W#(#) = 1) = 	
1

1 + exp(−8[.*(#) − .0(#)]) − I[;*(#) − ;0(#)])
(3.6) 

where the weight of choice history (φ) is a parameter that controls the tendency to repeat 
previous choices or avoid previously chosen options. A high positive value of this parameter 
indicates that the agent frequently repeats the previous choice. 

Finally, the hybrid model has features of both the asymmetric and perseveration models. 
This model incorporates not only asymmetric learning rates but also choice traces (equations 3.4, 
3.5, and 3.6). A previous study demonstrated that this hybrid model allows us to separately 
evaluate asymmetric learning rates and choice perseverance (Katahira, 2018; Sugawara & 
Katahira, accepted).  

3.2.6 Simulation 

To investigate what computational process contributes to pursuing the difficult avatar, 
I simulated the choices from the agents with the hybrid model. In particular, I systematically 
varied the free parameters of the hybrid model and evaluated CPdiff and CPeasy based on the 
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simulated choice data. The task structure used in a simulation was identical to that in the web-
based experiment. 

The hybrid model has five parameters: learning rates for positive and negative reward 
prediction error (α+, α−), inverse temperature (β), decay rate (τ), and weight of choice history (φ). 
Because I was interested in the degree of asymmetric learning rates, the difference in learning 
rates (αbias = α+ − α−) was calculated as the learning rate bias. In case 1, to examine the parameters 
related to the impact of past outcomes, the learning rate bias (-1 ≦ αbias ≦1, interval = 0.1) and 
inverse temperature (0 ≦ β ≦10, interval = 1) were varied, but the decay rate (τ = 0.5) and the 
weight of choice history (φ = 1) were fixed. In case 2, to examine the parameters related to the 
impact of past choice, the decay rate (0 ≦ τ ≦ 1, interval = 0.1) and the weight of choice history 
(0 ≦ φ ≦ 10, interval = 1) were varied, but the learning rate bias (αbias = 0) and inverse temperature 
(β = 2) were fixed. I hypothesized that the increased CPdiff was accounted for by the higher choice 
perseverance, which was represented as the greater weight of choice history. Thus, I further 
examined the interaction between the weight of choice history and parameters related to the 
impact of past outcome on the CP. In case 3, the learning rate bias (-1 ≦ αbias ≦1, interval = 0.1) 
and the weight of choice history (0 ≦ φ ≦ 10, interval = 1) were varied, while the inverse 
temperature (β = 2) and the decay rate (τ = 0.5) were fixed. In case 4, the inverse temperature (0 
≦ β ≦10, interval = 1) and the weight of choice history (0 ≦ φ ≦ 10, interval = 1) were varied, 
while the learning rate bias (αbias = 0) and the decay rate (τ = 0.5) were fixed. In the simulation, 
100 virtual datasets were simulated for each parameter setting. 

3.2.7 Parameter estimation and model selection procedure 

I fitted the four models mentioned above (i.e., RL, asymmetric, perseveration, and 
hybrid models) to the choice data derived from the avatar choice task. The RL model was included 
as a benchmark for model estimation. Using the R function “solnp” in the Rsolnp package 
(Ghalanos & Maintainer, 2015), I fit the parameters of each model with the maximum a posteriori 
(MAP) estimation and calculated the log marginal likelihood for each model using the Laplace 
approximation (Daw, 2011; Katahira, 2016). If all the models have equal prior probability, 
because the marginal likelihood is proportional to the posterior probability of the model, the 
model resulting in the highest marginal likelihood is the most likely one given a data set. Note 
that this study used the negative log marginal likelihood (i.e., lower values indicate a better fit). 
The prior distributions and constraints were set following previous studies (Palminteri, Lefebvre, 
et al., 2017;Sugawara & Katahira, accepted). All the learning rates were constrained to the range 
of 0 ≤ α ≤ 1 with a Beta (1.1, 1.1) prior distribution. The inverse temperature was constrained to 
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the range of β ≥ 0 with a Gamma (shape = 1.2, scale = 5.0) distribution. In the perseverance model, 
the decay rate was constrained to the range of 0 ≤ τ ≤ 1 with a Beta (1, 1) distribution (i.e., a 
uniform distribution), and the choice trace weight was constrained to the range of −10 ≤ φ ≤ 10 
with a Norm (μ = 0, σ2 = 5) distribution. 

For the model comparisons, two-way mixed-design ANOVA with Group (Pursuit and 
No-pursuit) and Model (RL, asymmetric, perseveration, and hybrid) was conducted to compare 
the log marginal likelihoods. Additionally, I compared the estimated model parameters. For the 
learning rates ((12	 , (13	 ), two-way mixed-design ANOVA with Group and Valence was 
performed. To correct for the violation of the sphericity assumption, Greenhouse-Geiser’s 
adjustment of the degrees of freedom was used for the within-subject factor when appropriate. 
Post hoc pairwise comparisons were performed based on Shaffer’s correction for multiple 
comparisons. For the bias of learning rates, inverse temperature, decay rate, and weight of choice 
history, the group difference was evaluated by using a two-sample t test. All analyses were 
executed by using R version 4.0.2 statistical software (http://cran.us.r-project.org). The statistical 
threshold for significance was set at 0.05 for all behavioral analyses. 

3.3 Results 

3.3.1 The results of behavior and subjective evaluation 

Choice probability in the avatar choice task 

 To characterize subjects who pursued the difficult avatar despite the frequent negative 
reactions, I focused on the choice probability for the difficult avatar (CPdiff) in the avatar choice 
task. Sixty-eight of 148 subjects showed that CPdiff was greater than 0.5 (i.e., they chose the 
difficult avatar in more than half of the trials). Thus, I divided subjects into two different groups 
based on CPdiff. The subjects with a CPdiff value greater than 0.5 were assigned to the Pursuit group 
(n = 68), while the subjects with a CPdiff value lower than 0.5 were assigned to the No-pursuit 
group (n = 80). Figure 3.2 shows the averaged CP for the difficult and easy avatars in the Pursuit 
and No-pursuit groups. The group difference in CP was significantly different between difficult 
and easy avatars (two-way mixed-design analysis of variance (ANOVA); Group×Avatar 
interaction: F(1,146) = 144.29, p < .001). CPdiff was significantly higher in the Pursuit group than 
in the No-pursuit group (post hoc pairwise comparison; p < .001), whereas CPeasy was comparable 
between groups (p = .05). These results confirmed that subjects in the Pursuit group behaved 
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differently only toward the difficult avatar, which was a pattern that was not observed in the 
subjects in the No-pursuit group. 

 

Figure 3.2 Choice probability for difficult and easy avatars in the two groups. In this study, 
subjects were assigned two different groups based on the choice probability for the difficult avatar. 
Error bars represent the standard error of the mean. Asterisk denotes a significant group 
difference: ***p < .001 (Shaffer’s corrected). 

Attractiveness of avatars before and after the avatar choice task 

 If the baseline attractiveness was higher for the initially chosen avatar than for the 
unchosen avatar, this difference in baseline attractiveness might have affected whether or not the 
subject pursued the difficult avatar. However, our results indicated that the attractiveness of the 
avatars used in the choice task was not different between groups and that the paired avatars were 
rated at the same level of attractiveness in both groups. I compared the attractiveness rated before 
the choice task between avatars and groups. The baseline attractiveness in any type of avatar (i.e., 
difficult, easy, neutraldiff, neutraleasy, and unused avatars) was not significantly different between 
groups (two-way mixed-design ANOVA; Group×Avatar interaction: F(1.4, 204.05) = .32, p 
= .64; main effect of Group: F(1,146) = .28, p = .60). On the other hand, the baseline attractiveness 

0.00

0.25

0.50

0.75

1.00

Difficult avatar Easy avatar

Ch
oi

ce
 p

ro
ba

bi
lit

y

Pursuit
No−pursuit

***



 52 

was significantly different among avatars (main effect of Avatar: F(1.4, 204.05) = 82.20, p < .001). 
The avatars used in the choice task were rated as more attractive than the unused avatars (post 
hoc pairwise comparisons; ps < .001; Shaffer corrected). In addition, the avatars in pair B, 
including easy and neutraleasy avatars, had significantly higher attractiveness scores than the 
avatars in pair A, including difficult and neutraldiff avatars (post hoc pairwise comparisons; ps 
< .022; Shaffer corrected), with the exception of the comparison between difficult and neutraleasy 
avatars (p = .65). However, the paired avatars had comparable attractiveness in both groups (ps 
> .11). 

I investigated how the attractiveness of the avatars changed through the choice task. The 
change in avatar attractiveness was calculated by subtracting the score before the choice task from 
the score after the choice task (Figure 3.3). The interaction between groups and the types of avatar 
was significant (Group×Avatar interaction: F(3.52, 513.71) = 14.62, p < .001). The attractiveness 
of the unused avatars was not changed after the choice task in either group (one-sample t test, 
Pursuit: t(67) = -.50, p > .99, No-pursuit: t(79) = .48, p > .99; simple main effect of Group: 
F(1,146) = .44, p = .51). The attractiveness of the easy and neutraleasy avatars did not differ 
between groups (simple main effect of Group; easy: F(1,146) = .016, p = .90, neutraleasy: F(1,146) 
= .71, p = .40). In both groups, the easy avatar was rated as more attractive (one-sample t test, 
Pursuit: t(67) = 5.35, p < .001; No-pursuit: t(79) = 5.31, p < .001), while the neutraleasy avatar was 
rated as less attractive after the choice task (one-sample t test, Pursuit: t(67) = -4.03, p = 1.45×10-

3; No-pursuit: t(79) = -4.08, p = 1.07×10-3). On the other hand, the attractiveness of the difficult 
avatar increased in the Pursuit group (one-sample t test, t(67) = 3.02, p = 3.59×10-2), while it did 
not change in the No-pursuit group (one-sample t test, t(79) = -1.82, p = .72; simple main effect 
of Group; F(1,146) = 12.33, p < .001). In contrast, the attractiveness of the neutraldiff avatar, which 
was paired with the difficult avatar, decreased in the Pursuit group (one-sample t test, t(67) = -
4.65, p < .001) but did not change in the No-pursuit group (one-sample t test, t(79) = 2.35, p = .21; 
simple main effect of Group; F(1,146) = 27.55, p < .001). These results indicated that both 
difficult and easy avatars were more attractive after the choice task in the Pursuit group, while 
only easy avatars were more attractive in the No-pursuit group. 

The increased attractiveness of the difficult and easy avatars in the Pursuit group raised 
the question of what events occurred in the choice task to increase the attractiveness of avatars. 
To answer this question, I conducted a linear mixed-effect model analysis with the number of 
choices and positive reactions as independent variables and the changes in attractiveness as the 
dependent variable (see Methods section). The number of choices had a significant effect only on 
the change in attractiveness observed after the choice task (F(1,663.85) = 31.88, p < .001). On 
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the other hand, the main effect of the number of positive reactions (F(1,1020.23) = .080, p = .78) 
and the interaction were not significant (F(1,1015.09) = 3.00×10-3, p = .99). Thus, the changes in 
attractiveness depended on the choice per se rather than reactions in the choice task. 

 

Figure 3.3 Changes in attractiveness ratings after the avatar choice task. The figure shows 
the changes in attractiveness ratings of the five types of avatar in the two groups. Changes in 
attractiveness ratings were calculated by subtracting the score at the prechoice rating from that at 
the postchoice rating. The unused avatars were not used in the avatar choice task (i.e., 40 avatars). 
The other types of avatar (i.e., difficult, easy, neutraldiff, and neutraleasy) were used in the avatar 
choice task. The error bars represent the standard error of the mean. Asterisks denote significance 
levels: ***p < .001, **p < .01, and *p < .05. 

3.3.2 Simulation 

 I found that some subjects (i.e., the Pursuit group) pursued the difficult avatar despite 
very few positive reactions (Figure 3.2). This behavioral phenomenon raised the question of what 
cognitive process makes these subjects pursue the difficult avatar. To answer this question, I used 
several variants of reinforcement learning models to determine what accounted for this choice 
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behavior. Previous studies have reported that asymmetric value updating (Lefebvre et al., 2017; 
Palminteri, Lefebvre, et al., 2017) and choice perseverance (Akaishi et al., 2014) can lead to 
repetitive choice of a previously selected option. I previously demonstrated that a hybrid model 
allows us to distinguish between asymmetric value updating and choice perseverance (Sugawara 
& Katahira, accepted). Thus, I conducted a simulation to investigate what parameters 
implemented in the hybrid model could account for the behavioral pattern shown in the Pursuit 
group. In particular, the hybrid model has five free parameters: learning rates for positive and 
negative reward prediction errors (α+ and α−), inverse temperature (β), decay rate of choice history 
(τ), and choice trace weight (φ) (see Methods section). The degree of asymmetric value updating 
is denoted by the difference in the two learning rates (i.e., αbias = α+−α−). Thus, I simulated the 
agent’s choice behavior by manipulating these four parameters (αbias, β, τ, and φ) under the same 
task structure as the web-based experiment (see Methods section). 

 In case 1, αbias and β were varied, while τ (= 0.5) and φ (= 1.0) were fixed. The 
asymmetric learning rates quadratically decreased CPdiff (Figure 3.4a) but quadratically increased 
CPeasy (Figure 3.4b). Moderate positivity bias (αbias = 0.4) induced the least CPdiff, while moderate 
negativity (αbias = −0.6) bias induced the most CPeasy. The inverse temperature produced a linear 
decrease in CPdiff and a linear increase in CPeasy. In any combination, CPdiff was less than 0.5, 
indicating that these parameters did not account for the behavioral pattern observed in the Pursuit 
group (CP diff > 0.5). 

In case 2, τ and φ were varied, while αbias (= 0) and β (= 2.0) were fixed. For the difficult 
avatar, CPdiff values in the condition with moderate decay rate (τ > 0.2) and higher perseverance 
factor (φ > 6.0) reached over 0.7 (Figure 3.4c). Meanwhile, CPeasy did not depend on these 
parameters and was always over 0.7 (Figure 3.4d). In the higher perseverance condition, the 
behavioral pattern was similar to the Pursuit group in the web-based experiment. 

To further examine whether the effect of perseverance trades off with the effect of the 
value-related parameters (i.e., αbias and β), I covaried either αbias (case 3) or β (case 4) with φ. In 
case 3, although CPdiff was modulated by the asymmetric learning rates (αbias) in the condition 
with lower perseverance (φ < 6.0), the condition with higher perseverance (φ > 6.0) showed higher 
CPdiff (Figure 3.4e) and CPeasy (Figure 3.4f). Likewise, in case 4, in the condition with higher 
perseverance (φ > 6.0), CPdiff (Figure 3.4g) and CPeasy (Figure 3.4h) were not affected by inverse 
temperature and showed higher probability (CP > 0.7). Therefore, these results suggested that a 
higher perseveration generates the behavior pattern shown in the Pursuit group. 
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Figure 3.4 The results of the simulation in the hybrid model. The simulation of the agent’s 
choice behavior was generated by manipulating four parameters (αbias, β, τ, and φ) included in the 
hybrid model. The upper and lower rows show the choice probability for difficult and easy avatars, 
respectively. In case 1, the bias of learning rates (αbias = α+ − α−) and the inverse temperature (β) 
were varied, while the decay rate (τ = 0.5) and the weight of choice history (φ = 1.0) were fixed 
(a, b). In case 2, τ and φ were varied, while αbias (= 0) and β (= 2.0) were fixed (c, d). In case 3, 
αbias and φ were varied, while φ (= 1.0) and β (= 2.0) were fixed (e, f). In case 4, β and φ were 
varied, while αbias (= 0) and τ (= 0.5) were fixed (g, h). 

3.3.3 Model selection 

 By conducting a simulation, I indicated that choice perseverance could account for the 
increased choices for the difficult avatar with fewer positive reactions (Figure 3.4). Therefore, to 
investigate the hypothesis that the behavioral pattern shown in the Pursuit group was due to choice 
perseverance, I fitted computational models to the choice data derived from the web-based 
experiment. I used four variants of RL models to examine the benchmark of model fitting: (1) a 
standard Q-learning model (hereafter, the RL model), (2) the asymmetric model, (3) the 
perseveration model, and (4) the hybrid model (see Methods section). The results revealed that 
the perseveration model was the best for the Pursuit group, while the asymmetric model was the 
best for the No-pursuit group (Table 3.1). There were no differences among the models in the 
No-pursuit group (F(1.05, 83.28) = .12, p = .75), but there were differences in the Pursuit group 
(F(1.57, 105.27) = 91.00, p < .001). For the Pursuit group, there was no significant difference 
between the perseveration and hybrid models (post hoc comparison; p = .64; Shaffer corrected), 
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but the RL and asymmetric models, which did not include the choice history process, were much 
worse than the perseveration and hybrid models, which did include the choice history process (ps 
< .001). 

Table 3.1 Models and model selection results 

 

Furthermore, to examine whether the group difference of the underlying cognitive process was 
manifested in both pair A (including the difficult avatar) and B (including the easy avatar), I 
separated the choice data of pair A and B and then fitted four models into the separated datasets 
(Table 3.2). The results showed that there was a significant interaction between Group and Model 
in pair A (F(1.58,230.41) = 41.58, p < .001) but not in pair B (F(1.51,220.14) = 1.19, p = .30). 
Although the simple main effect of Model in pair A was significant in both groups (Pursuit: 
F(1.42,94.92) = 44.90, p < .001; No-pursuit group: F(1.61,127.04) = 4.12, p = .026), post hoc 
pairwise comparisons did not show any differences among models in the No-pursuit group (ps 
> .14). In contrast, there was a significant difference between all models in the Pursuit group (ps 
< .001) with the exception of the comparison between the perseveration and hybrid models (p 
= .19). 

Table 3.2 Models and model selection results in each pair 

 

Model Learning rate (s) Inverse
temperature Perseveration # of free

parameters
Pursuit group
LML (SD)

No-pursuit group
LML (SD)

RL α (α+ = α− ) β − 2 -51.94 (27.52) -53.83 (27.50)

Asymmetric α+, α− β − 3 -47.09 (29.21) -53.71 (27.47)

Perseveration α (α+ = α− ) β τ, φ 4 -37.89 (33.87) -54.17 (27.23)

Hybrid α+, α− β τ, φ 5 -38.23 (34.33) -54.14 (27.29)

Condition Model Learning rate (s) Inverse
temperature Perseveration # of free

parameters
Pursuit group
LML (SD)

No-pursuit group
LML (SD)

Pair A RL α (α+ = α− ) β − 2 -35.21 (12.23) -34.37 (13.64)

Asymmetric α+, α− β − 3 -30.30 (15.06) -34.19 (14.00)

Perseveration α (α+ = α− ) β τ, φ 4 -22.30 (21.06) -37.14 (15.91)

Hybrid α+, α− β τ, φ 5 -23.51 (23.17) -36.56 (15.16)

Pair B RL α (α+ = α− ) β − 2 -16.57 (16.54) -19.96 (15.95)

Asymmetric α+, α− β − 3 -15.74 (16.80) -19.54 (16.36)

Perseveration α (α+ = α− ) β τ, φ 4 -17.33 (19.56) -19.35 (16.48)

Hybrid α+, α− β τ, φ 5 -15.75 (19.61) -19.50 (17.66)

includes
DIFFICULT
avatar

includes
EASY
avatar
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These results indicated that choice behaviors in the Pursuit group depended on choice 
history, while choice behaviors in the No-pursuit group depended on past choice outcomes. 
Furthermore, this group difference in the impact of choice history was observed only in the 
specific context involving avatars with relatively few positive reactions. 

3.3.4 Parameter estimation 

 To directly examine what computational process elicited the difference in choice 
behavior between the two groups, I compared the model parameters estimated from the hybrid 
model between groups. Although the hybrid model was not the best for the Pursuit and No-pursuit 
groups (Table 3.1), in Chapter 2, I proved that the hybrid model can distinguish between the 
elements and correctly derive the parameters, even if the true model only contains the element of 
either asymmetric value update or choice perseverance (Sugawara & Katahira, accepted). 

The Pursuit group had a higher learning rate (α) than the No-pursuit group (Figure 3.5a; 
F(1,146) = 16.46, p < .001). Positive learning rates were higher than negative learning rates in 
both groups (F(1,146) = 42.85, p < .001). The interaction was not significant (F(1,146) = 1.67, p 
= .20). Furthermore, the difference between the positive learning rate minus the negative learning 
rate was calculated as the learning rate bias. There was no significant difference in the learning 
rate bias between groups (Figure 3.5b; t(146) = -1.29, p = .20). The inverse temperature (β) was 
significantly lower in the Pursuit group than in the No-pursuit group (Figure 3.5c; t(146) = 7.45, 
p < .001). While the decay rate (τ) was not significantly different between groups (Figure 3.5d; 
t(146) = 1.28, p = 0.20), the choice trace weight (φ) was significantly higher in the Pursuit group 
than in the No-pursuit group (Figure 3.5e; t(146) = -8.48, p < .001). These results indicated that 
the Pursuit group placed greater weight on past choice than the No-pursuit group, while past 
outcomes had a greater influence on choice in the No-pursuit group than in the Pursuit group. 

 

Figure 3.5 Estimated parameters with the hybrid model. The figure shows estimated 
parameters by fitting the hybrid model to the choice data derived from the web-based experiment. 
(a) The learning rates for the positive and negative reward prediction errors (α＋ and α−). (b) The 
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learning rate bias calculated by subtracting the negative learning rate from the positive learning 
rate (α＋ − α−), indicating the degree of asymmetric value updating. (c) The inverse temperature 
(β) represents the sensitivity to value differences in decision-making. (d) The decay rate (τ) 
indicates how far past choices are incorporated into the next choice. The weight of choice history 
(φ) represents the sensitivity to differences of the choice history in the decision-making. Error 
bars represent the standard error of the mean. Asterisks denote significant group differences: ***p 
< .001 and **p < .01. 

To examine whether this group difference in choice perseverance was observed in a 
specific context, I compared the model parameters in each separated dataset. Regarding the 
learning rates with both pair A (Figure 3.6a) and B (Figure 3.6b), the main effect of valence was 
significant (A: F(1,146) = 78.36, p < .001; B: F(1,146) = 42.88, p < .001), whereas the interaction 
was not significant (A: F(1,146) = .06, p = .81; B: F(1,146) = 2.10, p = .15). While the Pursuit 
group had a higher learning rate than the No-pursuit group with pair A (F(1,146) = 8.84, p = 
3.44×10-3), no significant difference was shown with pair B (F(1,146) = 2.93, p = .09). The 
learning rate bias was not significantly different with either pair (Figure 3.6c; A: t(146) = .24, p 
= .81, Figure 3.6d; B: t(146) = -1.45, p = .15). The inverse temperature was significantly lower 
in the Pursuit group than in the No-pursuit group with both pairs (Figure 3.6e; A: t(146) = 7.64, 
p < .001, Figure 3.6f; B: t(146) = 3.05, p = 2.69×10-3). The decay rate was not significantly 
different between groups (Figure 3.6g; A: t(146) = -.37, p = .71, Figure 3.6h; B: t(146) = -1.85, 
p = .07) with both pairs. Importantly, while the choice trace weight was significantly higher in 
the Pursuit group than in the No-pursuit group with pair A (Figure 3.6i; t(146) = -8.41, p < .001), 
there was no significant difference with pair B (Figure 3.6j; t(146) = -1.30, p = .20). The increased 
weighting for past choices shown in the Pursuit group was noticeable only in the context that 
included the difficult avatar. The results suggested that increased weight for past choices (i.e., 
higher choice perseverance) causes the pursuit of the hard-to-get avatar. 
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Figure 3.6 Estimated parameters with the hybrid model in each pair. The figure shows 
estimated parameters by fitting the hybrid model to the choice datasets separated by avatar pair. 
Upper and lower rows indicate estimated parameters for pair A (including the difficult avatar) 
and B (including the easy avatar), respectively. Error bars represent the standard error of the mean. 
Asterisks denote significant group differences: ***p < .001 and **p < .01. 

3.4 Discussion 

 The present study investigated why people pursue hard-to-get targets. In the web-based 
experiment, the subjects performed the avatar evaluation and the avatar choice tasks. By 
manipulating outcome probabilities, I established the difficult avatar as one that rarely had 
positive reactions and the easy avatar as one that frequently had positive reactions. In most 
subjects, easy avatars that usually had positive reactions were more frequently chosen than paired 
avatars that had positive and negative reactions at the same frequency. Nevertheless, some of the 
subjects (i.e., the Pursuit group) frequently chose difficult avatars that seldom had positive 
reactions as well as easy avatars. Thus, I confirmed that some people pursue hard-to-get targets. 
The attractiveness of the avatars after the choice task was changed in accordance with the number 
of choices. Subsequently, following the choice task, the Pursuit group rated the difficult avatar as 
more attractive, while the No-pursuit group rated this avatar as less attractive. Then, I used a 
computational modeling approach to reveal the cognitive process mediating the pursuit of the 
difficult avatar. In a simulation, I demonstrated that a higher weight for choice history (i.e., choice 
perseverance) led to repetitive selection of not only the easy avatar but also the difficult avatar. 
To confirm this finding in the empirical data, I fitted the hybrid model proposed in a previous 
study (Sugawara & Katahira, accepted) to the choice data derived from the web-based experiment. 
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Consistent with the simulation results, the weight placed on choice history was significantly 
higher in the Pursuit group than in the No-pursuit group. According to these findings, I concluded 
that higher choice perseverance leads to repetitive choice of hard-to-get targets, consequently 
increasing the attractiveness of the selected target. 

 The pursuit of hard-to-get avatars shown in the Pursuit group was not explained by the 
traditional reinforcement learning theory that argues that the action probability is increased if the 
action is associated with positive outcomes (Sutton & Barto., 1998; Thorndike, 1911), despite the 
subjects in the current experiment having to maximize the likability from the avatar. Another 
possible explanation is that the Pursuit group preferred the hard-to-get avatar over the alternative 
avatar because the baseline preference influenced decision-making (Glimcher, 2009). However, 
in both groups, the baseline attractiveness did not differ between the paired avatars used in the 
avatar choice task. Thus, differences in baseline attractiveness did not account for the pursuit of 
hard-to-get avatars. The other possibility is that Pursuit group incidentally repeated to choose the 
hard-to-get avatar because they failed to update the values of its avatar from the obtained 
outcomes. However, the learning rates (α) in Pursuit group were significantly higher than those 
in Non-pursuit group, though the positivity bias was observed in both groups. These results might 
suggest that Pursuit group normally updates the values from the obtained outcomes. Why is the 
Pursuit group insensitive for the learned values? The answer for this question is the lower inverse 
temperature (β) in the Pursuit group compared to the Non-pursuit group. Higher inverse 
temperature makes us more sensitive to the difference in values for the options. Thus, even if they 
are able to learn the values from the obtained outcomes, their choices do not depend on the values 
when they are insensitive to the difference in values. Nevertheless, the only low inverse 
temperature is not enough to explain the repetitive choice behaviors. In the case of this study, the 
difference in values is obvious because the reward probabilities for difficult and easy avatars were 
extreme (i.e., 0.1 and 0.9, respectively). Considering that all participants showed learning rates 
over zero, it could be plausible that participants even in the Pursuit group were able to capture the 
difference in values. In addition, it is difficult to explain the repetitive choices for the hard-to-get 
avatar only by low inverse temperature. On the other hand, for the outcome-independent 
processing, our results indicated that the Pursuit group largely weighted the preceding choice 
history, representing the higher value of choice perseverance parameter (φ). If the choice 
perseverance parameter is higher, participants frequently repeat the preceding choice. In contrast, 
if this parameter is near zero, the participants’ choice is independent of preceding choices. Choice 
perseverance reflects Thorndike’s law of exercise stating that producing an action makes it more 
likely to be selected on future occasions (Thorndike, 1911). Although the law of exercise captures 
the key feature of habits in which behavioral repetition automatizes the behavior (Perez & 
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Dickinson, 2020), habituation is due to reward-based learning mechanisms (Miller et al., 2019). 
Because the hard-to-get avatar seldom made positive reactions, the pursuit of the hard-to-get 
avatar could not be accounted for by habituation. Unlike habituation, choice perseverance and the 
law of exercise are independent of choice outcomes. It is reasonable that the pursuit of the hard-
to-get avatar is accounted for by choice perseverance. 

Why were there two groups of subjects who did or did not pursue hard-to-get targets? 
To answer this individual difference, I should consider how choice perseverance emerges. Akaishi 
et al. (2014), which proposed the basis of the perseverance model used in this study, demonstrated 
that choice perseverance, which they called choice inertia, is accounted for by an autonomous 
learning mechanism of beliefs about the environmental state. Through this learning process, 
choice per se updates the choice likelihood estimate in each state. In the perseverance model, the 
weight of choice history (φ) determines how the choice likelihood estimate influences subsequent 
decisions independent of choice outcomes. According to this study (Akaishi et al., 2014), the 
weight of choice history reflected how the decision depended on one’s own belief. Therefore, it 
could be speculated that subjects who pursued the hard-to-get target (i.e., Pursuit group) give 
weight to their own belief rather than the outcome history. 

I also found that the group difference in the weight of choice history was observed only 
in the choice context including difficult avatars but not in the context including easy avatars. This 
finding suggested that the weight of one’s own belief is modulated by the choice context even in 
people who pursued hard-to-get avatars. Akaishi et al. (2014) also showed that the tendency to 
repeat the same choice depends on ambiguity in the decision environment. That is, choices made 
in a more ambiguous state have more impact on subsequent trials. From this perspective (Akaishi 
et al., 2014), the weight of choice history might depend on the perceived ambiguity in each choice 
context. In the choice context including an easy avatar, the way to maximize positive reactions 
was obvious. On the other hand, I speculate that in the choice context including a difficult avatar, 
the perceived ambiguity varied across subjects because it is difficult to maximize positive 
reactions compared with the context including an easy avatar. Subjects who shift the behavioral 
goal to minimizing negative reactions might perceive the context as less ambiguous, while 
subjects who stick to positive reactions from previously selected avatars might perceive the 
context as highly ambiguous. Nevertheless, the psychological factors modulating choice 
perseverance remain unclear. To further understand the psychological mechanisms underlying the 
pursuit of hard-to-get targets, future studies should investigate such modulating factors in the 
decision-making used in the present study. 
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Our results showed that the increase in attractiveness depended on the number of choices 
rather than the number of positive reactions. This choice-dependent reevaluation has been 
reported (Brehm, 1956; Egan et al., 2007; Lieberman et al., 2001). Brehm (1956) reported that 
after the choice between two similar valued options, the selected option was evaluated as better 
than the unchosen option. Sharot et al. (2009) showed that hedonic-related neural activity in the 
caudate nucleus for the selected option was enhanced after a decision was made in a free choice 
task, suggesting that imagination during the decision process activates the hedonic-related brain 
region and conveys pleasure expected from the simulated event. This choice-induced reevaluation 
modifies the hedonic response to the selected option. From the view of imagination-related 
pleasure (Sharot et al., 2009), participants feel two types of pleasure in the avatar choice task used 
in this study: one induced by the imagination during the decision process and another induced by 
the obtained outcome. Subjects with higher choice perseverance focus on the decision process 
rather than the obtained outcome. Thus, it is possible that their preferences are more strongly 
affected by the pleasure from imagination during the decision process, which consequently 
increases attractiveness of the hard-to-get avatar. Moreover, choice-induced reevaluation was 
observed even in amnesic patients who did not remember the option they chose (Lieberman et al., 
2001), younger children, and capuchin monkeys (Egan et al., 2007). According to this evidence, 
persons with higher choice perseverance repetitively select the hard-to-get avatar due to the 
weight placed on past choices, which subsequently increases the attractiveness of the selected 
avatar through automatic choice-induced reevaluation. 

In the present study, I demonstrated that persons with higher choice perseverance pursue the target 
that rarely responded with positive reactions and rate the selected target as more attractive via the 
choice-induced reevaluation mechanism. In contrast, persons with less choice perseverance select 
the target depending on past positive reactions and rate the selected target as more attractive via 
the reinforcement learning mechanism.  
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Chapter 4 General discussion                      

4.1 Summary of present findings 

The aim of this thesis was to elucidate the information processing underlying seemingly 
irrational pursuing behaviors by using the computational modeling which can dissociate the 
effects of extrinsic and intrinsic information in the reinforcement learning paradigm. To 
accomplish this aim, I firstly validated whether the hybrid computational model including both 
extrinsic and intrinsic information processing could identify the genuine process underlying the 
choice behaviors (Study 1; Sugawara & Katahira, 2019; Sugawara & Katahira, accepted). 
Subsequently, by using this hybrid model, I unveiled the cognitive process underlying the pursuit 
of the unprofitable target (Study 2; Sugawara & Katahira, under revision). 

In Chapter 2, to validate whether computational modeling could dissociate the effects 
of “obtained outcomes” and “choice per se”, I tested the usefulness of the hybrid model 
incorporating the asymmetric value updating and the choice perseverance that lead the repetitive 
choice behavior in the reinforcement learning context. Through a simulation, I demonstrated that 
the hybrid model is able to capture true model parameters even when the effects of the asymmetric 
value updating and the choice perseverance were mixed. By applying this hybrid model into actual 
choice behaviors collected from the web-based experiment, I empirically confirmed that the effect 
of choice perseverance was overlooked and was mistaken for the effect of the asymmetric value 
updating. Indeed, I re-analyzed the open data collected from previous study reporting the 
asymmetric value updating, and revealed that this open data was well accounted for by the choice 
perseverance rather than the asymmetric value updating. In parallel, another open data was 
accounted for by the asymmetric value updating rather than the choice perseverance. According 
to these findings, I validated the usefulness of the hybrid model to identify the genuine cognitive 
process underlying choice behaviors in the reinforcement learning context. 

In Chapter 3, the hybrid model established in Study 1 was used to reveal the genuine 
cognitive process behind seemingly irrational behaviors such as the pursuit of the unprofitable 
target in spite of the lack of positive outcomes. Through the web-based experiment, I found that 
some subjects pursued the hard-to-get target that seldom returned positive reactions, while the 
other subjects did not choose such target. By using the hybrid model established in Study 1, I 
demonstrated that subjects who pursued the hard-to-get target (Pursuit group) make their choice 
depending on preceding choices (i.e., higher choice perseverance) compared to the subject who 
did not pursue such target (No-pursuit group). Furthermore, the attractiveness of the hard-to-get 
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target was increased in the Pursuit group after the choice task, indicating that the hard-to-get 
avatar becomes more attractive by the choice-dependent reevaluation. Taken together, I 
concluded that people with high choice perseverance pursue the hard-to-get target, making the 
target more attractive. 

4.2 Psychological process mediating the choice perseverance 

 Choice perseverance is that the current choice per se influences subsequent choices. 
This psychological process is well documented in various terms: “the law of exercise” (Thorndike, 
1911), choice bias (Akaishi et al., 2014; Urai et al., 2019), and choice perseverance (Katahira, 
2018; Sugawara & Katahira, 2019; accepted). It is still unclear how choice perseverance 
influences subsequent choices. Such choice perseverance is observed not only in reinforcement 
learning context but not in perceptual decision-making (Akaishi et al., 2014; Bonaiuto et al., 2016; 
Urai et al., 2019). According to previous studies, choice perseverance is mediated by active 
cognitive processing (Akaishi et al., 2014; Urai et al., 2019) rather than by residual activity of 
preceding decision (Bonaiuto et al., 2016). By using the drift diffusion model (Ratcliff & McKoon, 
2008), Urai et al. (2019) demonstrated that the speed of perceptual evidence accumulation (i.e., 
drift rate) is faster for the previously chosen stimulus than for the unchosen stimulus, suggesting 
that choice history might direct attentional resources toward the previously chosen interpretation 
of current sensory input. Likewise, Akaishi et al. (2014) formulated such decision bias as the 
simple updating process of choice history (see Equation 3.4). Afterward, Katahira, (2018) 
incorporated the updating process of choice history into the reinforcement learning model. Thus, 
the perseverance model used in this thesis is based on this updating process. 

 In perceptual decision-making, choice perseverance seems to bias the interpretation of 
sensory input. What is the interpretation of sensory input in the reinforcement learning context 
such as a two-armed bandit task? In Chapter 3, we found that the hard-to-get avatar was perceived 
as more attractive in subjects that pursued this avatar. This phenomenon is well known as choice-
dependent re-evaluation in preference studies (Brehm, 1956; Egan et al., 2007; Lieberman et al., 
2001). Although the mechanism of the choice-dependent reevaluation is still debating, Sharot et 
al. (2009) proposed that expectations that accompanied with choice aroused hedonic experiences, 
resulting in the choice-dependent reevaluation. During decision-making, we expect the desirable 
outcome resulted from the chosen option, and experience the pleasure from the expected 
outcomes. People enjoy the moments leading up to reward, that is, expectation makes us happy 
before the expected future comes true (Iigaya et al., 2020; Loewenstein, 1987). This hedonic 
experience induced by expectation might alter the affective evaluation for the options. The choice-



 65 

dependent reevaluation is observed even in amnesic patients (Lieberman et al., 2001), suggesting 
that this reevaluation is implicit. Thus, I hypothesize that the expected outcomes implicitly 
increase the value for the chosen option, leading the choice perseverance. Because this working 
hypothesis depends on the expected outcomes, the choice perseverance is not affected by the 
obtained outcomes. Based on this hypothesis, I propose a dual-updating model which has two 
types of value updating processes from actual outcomes and expected outcomes (Figure 4.1). In 
this model, I assume the value-updating process from the expected outcomes which is simulated 
during decision-making. Through two types of value-updating processes, agents represent two 
independent values: experience-dependent value (Q) and simulation-dependent value (Q’). 
During subsequent decision-making, these two values are integrated by the same computational 
process. If this dual-updating model is true, I expect that the Pursuit group accurately recognizes 
the actual reward probability due to representing the experience-dependent value. Future studies 
should investigate whether this proposed model could explain the pursuit of the hard-to-get avatar, 
and how this model relates to perseverance model through simulations and experimental 
investigations.  

 

Figure 4.1 A dual-updating model. This model assumes two types of value-updating processes. 
One is the updating from actual outcomes which is formulated in standard reinforcement learning 
models. Another is the updating from expected outcomes which is simulated during decision-
making. I assume that the values resulted from these two types of updating processes are 
independently represented in our brain, and are integrated to decide subsequent choices. 
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 The value-updating from the expected outcomes in the proposed model is not limited to 
the social context addressed in Chapter 3, because the expectation of the desired outcomes is 
observed in non-social situations (e.g., lottery, auction, and shopping). Thus, future studies should 
investigate whether the pursuit of the hard-to-get object could be observed in non-social situations. 
In addition, value-dependent decision-making is generally investigated in non-human species. If 
the value-updating from the expected outcomes is observed across species, the neural mechanisms 
of this novel updating process could be extensively investigated by using cutting-edge 
neuroscientific technologies such as opto-genetics, chemo-genetics, and neuropharmacological 
interventions. It should be investigated whether the pursuit of the hard-to-get option is observed 
in non-human species. 

4.3 Other psychological factors related to repetitive choice behaviors 

In this thesis, I addressed asymmetric value updating and choice perseverance as source 
of repetitive choice behaviors. However, there are many psychological factors related to repetitive 
choice behaviors: sunk-cost effect (Arkes & Blumer, 1985; Haller & Schwabe, 2014; Olivola, 
2018), rarity (Hertwig et al., 2004; Kahneman & Tversky, 1979; Williams et al., 2016; Worchel 
et al., 1975), curiosity (Kidd & Hayden, 2015; Rigoli et al., 2019) and gambler’s fallacy (Jarvik, 
1951; Jessup et al., 2011).  

To understand how these factors induce the repetitive choices, let you consider the 
situation that you have bought many sweets to collect a secret free gift (e.g. snacks with a baseball 
card and “chocolate eggs”). If you buy extra sweets because a lot of money has already spent, this 
repetition is resulted from a sunk-cost effect. Sunk-cost effect refers to the pursuit of the option 
which significant, unrecoverable resources are invested previously. If you buy extra sweets 
because you want to know what is a secret gift, the cause of repetition is a curiosity which is a 
special form of information-seeking (Loewenstein, 1994; Oudeyer & Kaplan, 2009). If you 
believe that will definitely get a secret toy next time since you bought many times it but not get, 
your behavior is governed by a gambler’s fallacy. Individuals adhering to the gambler’s fallacy 
appear to assume non-independence between sequential outcomes (Tversky & Kahneman, 1971). 
Although these three factors (i.e., sunk-cost effect, curiosity, and gambler’s fallacy) make you to 
continue previous actions, these factors are disappeared once you get a secret gift. However, in 
our experiment showed in Chapter 3, subjects that pursue the hard-to-get avatar continued to 
choose it after the avatar responded in a positive manner.  
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On the other hand, if you buy extra sweets because a secret gift is rare, a rarity is an 
important drive for the repetitive choice. When attempting to determine the value of unknown 
items, we may utilize the assumption that rare items are inherently more valuable than abundant 
items simply because they are rare (the scarcity heuristics; Williams et al., 2016). In our 
experiment, it is possible that the hard-to-get avatar is recognized as more valuable due to the fact 
that the avatar rarely returns a positive response. However, it is unknown whether the rarity 
influences the pursuing behaviors, and how subjects incorporate the rarity into the action selection 
if it modulates pursuing behaviors. To answer these questions, future studies should manipulate 
the rarity of avatars and investigate the effect of this manipulation on pursuing behaviors. 
Specifically, as Shin & Ariely, (2004) conducted, if subjects are instructed that the paired avatar 
is changed after a few trials, does information about rarity make the subjects that pursue the hard-
to-get-avatar to shift their choice from the avatar that we have pursued until now to the other 
avatar? It is necessary to develop the cognitive computation models incorporating these additional 
factors and to clarify the interaction between psychological factors on the pursuing behaviors. 

4.4 Usefulness of computational modeling 

As I showed in Chapter 2, cognitive computation models allow us to dissociate 
complicated information processing underlying behaviors that are seemingly the same. By using 
cognitive computation models, I demonstrated that the pursuit of the hard-to-get option is mainly 
produced from the choice-dependent and outcome-independent information processing. 
Moreover, this choice-dependent processing strongly affects subjective value. In parallel, 
computational approach highlights the quantitative difference of information processing 
underlying qualitatively different behaviors. I showed in Chapter 3, computational models can 
clarify the difference of implicit information processing leading the individual difference in 
behaviors in the specific situation. As I mentioned in Chapter 1, computational modeling approach 
is tightly linked to neuroscience. Because computational models formulate implicit processing, 
the estimated variables provide the interpretation of the neural activity measured from behaving 
animals. According to these advantages, computational approach is essential to understand the 
mechanisms of animal behaviors. 

On the other hand, computational modeling is not a panacea. As I investigated in 
Chapter 2 as well as Katahira (2018), an insufficient cognitive computation model results in 
incorrect interpretations for our behaviors. To avoid such model misspecification, careful 
simulations and well-designed psychological experiments are necessary (Wilson et al., 2019). In 
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these precautions are taken, cognitive computation modeling is an extremely useful tool, and 
significantly contribute to a comprehensive understanding of psychological processes. 

4.5 Concluding remarks 

 Through this chapter, I discussed the mechanisms of the choice perseverance behind 
pursuing behaviors. People persist in their actions even when the consequences of one's own 
choices are not desirable. In Chapter 3, the pursuit of the hard-to-get avatar showed in Pursuit 
group seems to be associated with one aspect of stalking behaviors. Stalkers relentlessly approach 
their target even if they don't get any favors. This behavior is socially problematic, developing 
criminal behavior and psychiatric disorders. Furthermore, I found that the computational process 
which is independent of chosen outcome leads to repetitively choose the hard-to-get target, 
consequently increasing subjective attractiveness for the target despite seldom positive reactions. 
This finding highlights the computational processing of intrinsic information for the 
understanding of maladaptive choice behaviors. How to modify these problematic behaviors is 
the general interest. Psychotherapist often attempts to modify problematic behaviors by altering 
action-outcome associations. However, our present findings imply that controlling environmental 
factors (i.e., manipulating the reward probability in the surrounding environment) is insufficient 
to solve the pursuing behaviors. Future study should investigate how to modify the outcome-
independent process underlying the pursuing behavior, and might contributes to develop the novel 
approach of behavior modification. 

 Like a coin, there are always two sides to every event in this world. Pursuing behaviors 
are not always problematic. As I mentioned in Chapter 1, scientists passionately pursue their 
interest even if they do not get desirable results. Old painters that were never admired in their 
lifetime continued to paint in their passions. Although pursuing behaviors are looked like 
irrational for observers, such behavior is essential for achieving great works. The only way for 
getting the chance of success is never give up. Choice perseverance seems to be associated with 
the tolerance of negative outcomes. My working hypothesis is that the expected outcomes from 
the current choice mediates the choice perseverance. As I mentioned in Chapter 1, positivity and 
confirmation biases refer to the preferential attention to own desirable outcomes, resulting in the 
reducing the effect of undesirable outcomes on future decisions. If my hypothesis is true, 
optimistic imaginations underlying choice perseverance also prevent the impact of undesirable 
outcomes. However, the choice perseverance is significantly differed with positivity and 
confirmation biases because the optimistic imagination depends on the expected outcomes but 
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not on the obtained outcomes. Thus, the optimistic imagination might maintain one’s belief even 
in difficult situations. 

 In summary, choice perseverance not only develops the problematic behaviors observed 
in psychiatric disorders and criminal behaviors, but also contributes to maintain our passion and 
motivation. Studying pursuing behaviors might provide valuable information not only to prevent 
pathological behaviors but also to improve our passion and motivation in our daily life. 
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